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0. Introduction

A pseudo-tree is a partially ordered set (7, <) such that for each ¢ € T, the initial
segment {x € T: x <t} of T is linearly ordered, under <; in case each of these
initial segments is well-ordered, we get a tree. Thus pseudo-trees are a generaliza-
tion of both trees and linear orders. We will discuss Boolean algebras obtained from
pseudo-trees in different ways some of which have been considered in the literature
for trees. We also make comments about related classes of Boolean algebras.

For (T, <) a pseudo-tree and 7in 7, we let T T ¢ ={x € T: t < x} and we define
Treealg T, the pseudo-tree algebra of T, to be the algebra of subsets of 7" generated
by {T 1 t:1 € T}. Thus for T a tree, it coincides with the tree algebra of T as defined
by G. Brenner in [4]; see also [5] and [6). If 7 happens to be a linear order, Treealg
T coincides with the interval algebra Intalg 7. For a basic exposition of these
notions, see Section 16, resp. 15 in [17]. Let us point out that a special question on
pseudo-tree algebras (which pseudo-tree algebras are isomorphic to interval alge-
bras?) has been considered before in [10].

The paper is organized as follows. In Section 1, we review those results on tree
algebras which carry over to pseudo-tree algebras. In Section 2, we apply methods
from the theory of semigroup algebras (see [11]) to pseudo-tree algebras, and in
Section 3, we study the close connection between pseudo-tree algebras and interval
algebras. Sections 4 to 6 present further constructions of Boolean algebras from
pseudo-trees: regular open algebras, restricted regular open algebras, pseudo-tree-
generated Boolean algebras. In Section 7, we consider the class of tail algebras
Tailalg P; here Tailalg P is generated from an arbitrary partial order (P, <) in the
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same way as Treealg 7 is generated from a pseudo-tree (7, <). The final Section 8
compares these and a few related classes of Boolean algebras.

For all unexplained notation and results in set theory, see [13]; in Boolean
algebras, see [17]. In particular, we denote the Boolean operations by +,-, —, 0, 1
and the Boolean partial ordering by <, and we assume familiarity with Section 16,
on tree algebras, of that book.

We thank L. Heindorf for showing us the semigroup-algebraic proofs of Theo-
rem 2.3 and 2.4 which are included here with his kind permission.

1. Facts on Tree Algebras which Generalize to Pseudo-Tree Algebras

We ask here how much of the elementary theory of tree algebras extends to
pseudo-tree algebras. The numbers 16.1 to 16.20 below refer to Section 16 in [17].

16.3, 16.6, the normal form lemmas. These carry over to pseudo-tree algebras.
16.6 needs a new proof in part, since the well-foundedness of the tree under
consideration was used in a minor way. Instead of picking w of minimal height in
g\e,, pick it minimal among the finitely many elements which are relevant to the
argument, or let it be an arbitrary member of ¢\e,, if there are no relevant points
in &\e,.

16.4, extension to homomorphisms, carries over because of 16.3.

16.7, each tree algebra Treealg T is isomorphic to a tree algebra Treealg T*
where T* has a single root. This carries over as follows. If the set of minimal
elements (roots) of T is finite and every element of 7 has a root below it, proceed
as in the first part of the proof of 16.7, otherwise as in the second part of that proof
(note that pseudo-trees do not necessarily have roots — for example, take a linear
ordering with no first element). We give another proof of 16.7 in Theorem 2.3.

16.8, Treealg (T 1 1) = (Treealg T) [ (7 1 1), extends to pseudo-tree algebras.

16.9, Treealg 7° embeds into Treealg T for 7’ < T, carries over with some change
in the proof. Namely, if 7" has only finitely many roots and every element of 7 lies
above some root of 7", proceed as in Case 2 of 16.9; otherwise proceed as in
Case 1.

16.10, description of atoms of Treealg 7, remains the same for pseudo-tree
algebras.

16.11, ultrafilters of Treealg T correspond to initial chains of T’; here a subset C
of T is called an initial chain if it is a chain in 7, x < y and y € C implies x € C,
and, if T has only finitely many roots and each element of T has a root below it,
then some root belongs to C. This carries over, too; we give an additional piece of
information not stated in 16.11. Namely, by identifying each subset C of T with its
characteristic function y.: 7'— 2, we obtain the natural topology on the power set
PT of T; 2T is homeomorphic to the product space 72, hence Boolean. The set X
of initial chains of T is a closed subspace of 27T, and the function mapping an
ultrafilter p of Treealg 7 to the initial chain {z € 7: T' 1 t € p} is a homeomorphism
from Ult(Treealg T') onto X, as is easily checked.
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16.17, 16.18, the class of tree algebras is closed under finite products and under
homomorphic images. This extends to pseudo-tree algebras; we will give in 2.4 a
less computational proof of 16.18 than the one contained in [17].

16.20, chains in 7T and in Treealg 7. The theorem carries over to pseudo-tree
algebras in the following form. Suppose C is a chain in the pseudo-tree algebra of
T and the cardinality « of C is regular and uncountable. Then there are subchains
D of C and E of T of size x which are isomorphic or conversely isomorphic. This
does not follow in an obvious way from the proof of 16.20. But the above result is
established in [12) for semigroup algebras, and we show in 2.1(b) that every
pseudo-tree algebra is a semigroup algebra.

Concerning 16.12 and 16.19, the relation between tree algebras and algebras
embeddable into interval algebras, we refer to Section 3: let us just mention here
that 16.12 carries over to psendo-tree algebras: every pseudo-tree algebra embeds
into an interval algebra (Theorem 3.1).

2. Connection with Semigroup Algebras

We show in this section how to derive many of the preceding results from Section
16 of [17] by using the theory of semigroup algebras. The presentation of this
material follows mostly an outline by L. Heindorf.

Call a subset H of a Boolean algebra B disjunctive if, for h and h,,... . h,e H
satisfying h <h, +---+h,, there is i & {1, ..., n} such that h < h,. If H is disjunc-
tive then 0 ¢ H — otherwise, 0 < the sum of the empty subset of H, contradicting
disjunctivencess. B is a semigroup algebra if it is generated by a subset H such that
0,1€ H, H is closed under multiplication (thus a subsemigroup of (B,-)) and
H\ {0} is disjunctive. Finally, call H < B a ramification set if for all s, t € H either
s t=0o0rs<tort<s; His then a pseudo-tree under the inverse of the Boolean
partial order.

REMARK 2.1 (a) If R < B is a ramification set, then so is every subset of R.
Moreover, Ru {0} is closed under multiplication.

(b) Let T be a pseudo-tree. Then the set R = {T'1¢; 1 € T} of canonical genera-
tors of Treealg 7 is a ramification set; it is also disjunctive, as shown in (c). If 7" has
a single root r, then 1 =7 Tr e R. Thus H = Ru{} shows that Treealg T is a
semigroup algebra.

(c) More generally, let (P, <) be a partial order. In the power set algebra of P,
the set R={P1p:peP} (where P1p={qeP:p<gq}) is disjunctive (this
situation will be studied more closely in Section 7). For let p,p,,...,p, €P
and PTpsPTipu---UP1p,. Now pePTp so peP Tp, for some i and
PtpcsPip.

PROPOSITION 2.2. (a) H < B is disjunctive iff, for each M = H, there is a (unique)
homomorphism f,, from {H) (the subalgebra of B generated by H), to PM (the
power set algebra of M), sending he Hto M | h={me M:m <hj}.
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(b) Let T < B* = B\{0} be a disjunctive ramification set and X, Y finite subsets of
T.Then M1 X <X Y iff either (X =0 and T Y = 1) or (x - x" =0, for some x, x" € X)
or (x <y, for some xe X and y € Y).

(c) Let T< B* be a ramification set and T* = T maximally disjunctive. Then
(T*) =<T).

Proof. For the non-trivial direction of (b), suppose II X < X Y and none of the
first two cases applies. Then X is non-empty, x = IT X is an element of 7, and by
disjunctiveness, Case 3 applies.

(a) First assume that H is disjunctive and that M < H. In order to apply
Sikorski’s criterion on the extension of mappings to homomorphisms (see Theorem
12.2 in [21] resp. 5.5, 5.9 in [17]), assume that h,,..., h, k,,...,k, € H and
hy...-h,<k,+---+k,; we want to show that (M | h)n---n(M | h,) <
M k) --uM | k,) Hence suppose that xe(M | ) -n(M | h,). So
x<h, ... h,and hence x <k, + - +k,,. Since H is disjunctive, x <k, for some
i, and hence x e (M | k;), as desired.

Conversely assume the indicated condition and supoose that 4, 4,,... , h, e H
and h <h,+---+h,. Consider M = {h} and f,,: (H) - ?M as in the statement of
(a). Then

heM Lh=fy(h) Sfulh) o - Ofy(h) =M | h)o UM |h,),

hence & < h, for some i.

(c) Let r € T\T* with the aim of showing t € {(T™*). Since ¢ ¢ T*, T*u{¢} is not
disjunctive.

Case 1. There are 1, € T* such that 1 <¢ +---+1¢, but 1 £¢, for all i. Let
n be minimal for this situation. It follows that 7-¢ #0, hence ¢ <t and
t=t+---+1t,e{T*). Note that, by minimality of », the ¢, are pairwise disjoint.

Case 2. There are ¢t;,...,t, € T* such that t,<t+1¢+---+1, but t,£ ¢t and
ty & t, for 1 <i < n, and again, # is minimal for this situation. As in Case 1, f, is the
disjoint sum of 7 and ¢,,...,¢,. Sot=1t,- —(t;,+ - +1,) €{T*). a

THEOREM 2.3. For every Boolean algebra B, the following are equivalent:

(a) B is isomorphic to Treealg T, for some pseudo-tree T with a single root,

(b) B is isomorphic to Treealg T, for some pseudo-tree T,

(c) B is generated by a ramification set S < B™,

(d) B is generated by a ramification set R< B* such that 1€ R and R is

disjunctive.

Proof. Trivially, (a) implies (b) and (b) implies (c) — see 2.1(b).

(c) implies (d): if S < B* is a ramification set generating B, then so is Su{1}.
Pick R = Su{l} such that 1 € R and R is maximally disjunctive. R verifies (d), by
2.2.(c).

(d) implies (a): let B be generated by a ramification set 7< B™* such that 1e T
and T is disjunctive. So 7 is a pseudo-tree under the converse <, of the Boolean
partial order < of B. By 2.2.(a), consider the homomorphism f;: B — 27T mapping
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teTto Tti={xeT:t <;x}. Clearly f; maps B onto Treealg 7. It is also

one-one, for let #-...-f, €5+ -+s,, where ¢, s;e€T7. By 22.(b),
t=t-...-t,e Tand t £ for all j. Thus
re nfT(tl)\UfT(sj)a
i 7
as desired. O

COROLLARY 24. (a«) Homomorphic images of pseudo-tree algebras are pseudo-
tree algebras.

(b) Every pseudo-tree algebra is retractive.

Proof. Let B be a pseudo-tree algebra, hence (by 2.3) generated by a disjunctive
ramification set 7< B* where 1€ 7T, and let f: B— 4 be an epimorphism of
Boolean algebras. Then R = f[T] is a ramification set generating A, hence 4 is (up
to isomorphism) a pseudo-tree algebra, by 2.3.

We find an embedding g: 4 — B satisfying fog=id, as follows. Pick
R* < R\{0} such that 1 € R* and R* is maximally disjunctive; R* generates 4, by
2.2.(¢c). For r € R*, pick a preimage g(r) € T of r under f such that g(1) = 1. The
map g: R*— B extends to a homomorphism by 2.2.(b) and since, for r, r" € R¥,
r-r’=0 implies g(r) - g(r") =0 and r <r’ implies g(r) < g(r"). O

2.4.(b) follows also from 3.1 below and Rubin’s theorem that subalgebras of
interval algebras are retractive (see 15.18 in [17]). We note that the proofs of 2.3
and 2.4 are still valid when the notion of a pseudo-tree is replaced everywhere by
that of a tree, thus giving some well-known facts on tree algebras.

3. Connection with Interval Algebras

We prove in Theorem 3.1 the analogue of 16.12 in [17] and then discuss the
question whether the converse holds. Theorem 3.1 has first been shown by M.
Bekkali, by a proof different from ours.

THEOREM 3.1. Every pseudo-tree algebra embeds into an interval algebra.

Proof. Let T be a pseudo-tree; we may assume by 16.7 that 7" has a single root
min 7. Consider, in the first order language {<}u{c,:t e T,t#minT}u{d,:1 €T,
t #min T} (where ¢, and d, are distinct constant symbols), the theory X expressing
that, for every model o =(L, <.a,,b,),c 7 »mn r Of Z, the following hold.

L is a dense linear order with a first element min L
min L <a,<b, fortinT, t#min T
a,<a;and b, <b,, for t<sin T, t#minT

b, <a, or b, <a,, if t,s € T\{min T} are incomparable.
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Clearly, if of =(L, <,...) is a model of %, then there is an embedding from
Treealg T into Intalg L mapping 7 Tmin7 to L and T 11, t #min 7, to the
interval [a,, b,).

In fact, £ has a model by the compactness theorem of first order predicate logic:
for if T, < T is finite, then the finite subset of £ which consists of those sentences
referring only to points in 7, has a model because 7}, is a (well-founded) tree and
by, 16.12 in [17], its tree algebra embeds into an interval algebra. O

We do not know whether the converse of Theorem 3.1 holds:

PROBLEM 1. Is every subalgebra of an interval algebra isomorphic to a pseudo-
tree algebra?

In view of Theorem 3.1, a positive answer would imply that the class of pseudo-tree
algebras is closed under taking subalgebras. Note that Example 16.19 in [17] does
not solve the question since it is not hard to check that the algebra B in this
example is isomorphic to Treealg 7 where T is the disjoint union of « linear orders,
each of them inversely well-ordered of type w¥. In fact, there are two results giving
a positive answer to Problem 1 for special situations. Let us note that both results
show once more that the algebra in Example 16.19 of [17] is a pseudo-tree algebra
and that a special case of 3.2(a) has earlier been proved by van Douwen (cf. [8]):
every subalgebra of the interval algebra of w, is a pseudo-tree algebra. Also
Problem 1 above is stated in [8].

THEOREM 3.2. (a) (Bonnet; cf. (i) = (iv) in the main theorem of (2]). Every
superatomic subalgebra of an interval algebra is a pseudo-tree algebra.

(b) Let L be a linear order, J a set of half-open intervals in L. Then the subalgebra
of Intalg L generated by J is isomorphic to a pseudo-tree algebra.

Proof of (b). Let I = {[a, b): a <b in L} be the set of all half-open intervals of L;
for x, y € I, write

x|yiff(xsyorysxorxny=0);

otherwise write x} y. Le., x |y means that x, y don’t overlap. Thus T</ is a
ramification set, as defined in Section 2, iff x | y holds for all x,y € T.

For r € L, call x € I r-centered if r is one of the end points of x. The importance
of this notion is that the family of all r-centered intervals is a ramification set in
Intalg L.

CLAIM. Let x €1 be r-centcred and let y € I be such that x } y. Then there are
s, 1 € I, both r-centered, such that s and ¢ are generated by x and y, and y is
generated by s and 1.
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The proof splits into four easy cases.

Case 1. x =[r, b) for some b >r, and y = [u, v) where r <u <b <v. Then put
s=[r,u), t=[r,v); clearly s =x\y,t =xuy, and y =1\s.

Case 2. x =[r,b)and y =[u,v) where u <r <v <b. Put s ={u, r), t =[r, v); then
s=y\x,t=xny,and y =sUl.

Case 3. x =[a,r) and y = [u, v) where u <a <v <r. Similar to Case 1.

Case 4. x =[a,r) and y = [u, v) where @ <u <r <vp. Similar to Case 2.
This finishes the Claim,

To prove the theorem, let B be the algebra generated by J and let I, = I n B. Thus
I, generates B. We shall construct a ramification set 7 < I, generating B; by
Theorem 2.3, this completes the proof.

Without loss of generality, L is infinite; let {r,: « < x} be an enumeration of L
where k = |L|. We define, by induction on a <x. a subalgebra B, of B and a
ramification set T, < B:

= (U7)

T, ={x €I, xis r,-centered}\B,.

Clearly:

(1) if x € I is r,-centered, then xe B,uT, S B, .,

(2)ifxeT,, yelyand x} ythen ye B, ,.

This follows by applying the Claim to r =r,: we get s, t € {x, y> < B which are
r,-centered such that y € (s, ). Now s,t € B,,, by (1) and hence ye B, . ,.

Let T= U,“ T,. T generates B, since B is generated by Iy and for x €/,
r,-centered, (1) implies that x e B, . , = <{T).

We finally show that T is a ramification set; so let x < f <k, xeT,,and ye Ty
with the aim of showing that x | y. But if x } y then (2) implies that y € B, , , < B,
contradicting 7, nB; = 0. )

4. Restricted Regular Open Algebras of Pseudo-Trees

In this section we are interested in a subalgebra RRO(7 '), the restricted regular
open algebra, of the regular open algebra RO(7T ') of a pseudo-tree T'; we'll prove
that restricted regular open algebras of pscudo-trees are pseudo-tree algebras and
the converse holds for trees but not, in general, for pseudo-trees.

Let us briefly recall the construction of the complete Boolean algebra RO(P) for
P a partially ordered set (see, e.g., [17, Section 4.2], for details). For p € P, we
define u,=P | p={qeP:q<p}. The set {u,:pe P} is the base of the partial
order topology on P, and RO(P) is the regular open algebra of P with this topology.
For p € P, write e(p) = int cl(u,). We then have, for arbitrary p and g in P,

(3) if g <p, then e(q) <e(p)
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(4) if p and g are incomparable, then e(p) - e(g) =0

(5) if P is separative (i.e., if for all p, g € P satisfying ¢ £p there is r <gq
incompatible with p) then e(p) = u,.

Moreover,

(6) D ={e(p): p € P} is a dense subset of RO(P) (i.e. for every x € RO(P)\ {0}
there is p € P such that e(p) < x)

(N if P=T""'=(T, =) where (T, <) is a pseudo-tree, then

e(p) ={q € T: every t 2 q is comparable with p}.

The restricted regular open algebra RRO(P) of P is then defined to be the
subalgebra of RO(P) generated by the elements e(p), p € P; a dense subalgebra of
RO(P). Note that every Boolean algebra A is isomorphic to RRO(P), for some
partial order P, since A = RRO(A ™).

PROPOSITION 4.1. A Boolean algebra is isomorphic to the restricted regular open
algebra of a pseudo-tree iff it is generated by a dense ramification set. In particular,
it is then isomorphic to a pseudo-tree algebra, by Theorem 2.3.

Proof. If B=RRO(T ") for some pseudo-tree 7, then R = {e(p): p € T} is, by
(3) and (4) above, a ramification set generating B. R is dense in RO(7 ') and hence
in B.

Conversely let B be generated by a dense ramification set 7< B*. Let
f: B-RO(T") be the unique embedding mapping ¢t € T to e(f). Now f[B] is
generated by {e(t): 1 € T}, so B=f[B] = RRO(T ). O

The question whether, conversely, every pseudo-tree algebra is isomorphic to
RRO(T ') for some pseudo-tree 7, has different answers for trees and pseudo-
trees.

PROPOSITION 4.2. Every tree algebra Treealg S is isomorphic to RRO(T "), for
some tree T. If Treealg S is atomless, i.e., if every element of S has infinitely many
successors, then T = S, without loss of generality.

Proof. Let B = Treelag S where S has, without loss of generality, a single root.
Then

R={S1s:seS}u{teB:tan atom of B}
is a conversely well-founded dense ramification set in B generating B. By 4.1, B is
isomorphic to RRO(T ') where 7= R, If B is atomless then clearly T~ S. (]

The analog of Proposition 4.2 for pseudo-trees does not hold.

EXAMPLE 3.3. Let B be the interval algebra ( =pseudo-tree algebra) of the half-
open real unit interval [0,1). Then B is not isomorphic to RRO(T™') for any
pseudo-tree T.
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Proof. Suppose that, by 4.1, T< B™ is a dense ramification set generating B.
Since B has a countable dense subalgebra, it follows that 7 has a countable subset
{t,:n € o} which is dense in B.

We not construct, for n € w, elements s, of T and I, =[a,, b,) of Int(s,); here
Int(s,) is the finite set of intervals whose union is s,. Let 5, € T and 7, € Int(s,) be
arbitrary. Having defined s, and I, =]a,,b,), choose r,se[0,1) such that
a,<r<s<b,ands,_, e Tsuchthats, ,<[r,s) and,ifs,n[r,s) #0thens,,  is
a proper subinterval of 7, n[r,s). Then choose 7, , € Int(s, ., ,) arbitrarily. This
finishes the construction. Note that s, , &[r,s) =1, <s,,50 5, <7S8,,, Where <,
is the converse of <, restricted to 7.

Claim. For any t € T, either t <; s, for some n or ¢ is incomparable with s, for
some A.

For, choose n such that 1, = ¢; thus r <, ¢,. If t <;5,,, or 7 is incomparable
with s, ,, the claim is proved. Otherwise, s,,, <,t <1, and ¢, <5, ,, which
contradicts the construction.

Now let, in the interval [1, 0), @ =sup, ., a,. By the claim, for all ¢ € T, either
t <,s, for some n, hence s, = and a is an interior point of 7, or ¢ and s, are
incomparable for some #, hence 1 ns, =@ and a is an interior point of s,. In either
case, a is not an end point of some interval of t. Hence [0, a) is not generated by
T < B, a contradiction. O

5. Regular Open Algebras of Pseudo-Trees

Our main result in this section is the equivalence of several constructions of
complete Boolean algebras, including regular open algebras of pseudo-trees. These
algebras seem to have been first considered in [9].

Except for the part involving minimally generated algebras, Theorem 5.1 in a
more general topological form is essentially due to [22]; see also [7] who obtained
the same results, evidently independently but later. The proofs in both papers are
difficult to follow, and our specialization to Boolean algebras is not quite straight-
forward, so we give a self-contained proof here, which is, moreover, simpler, at least
given the development of the theory of minimally generated algebras.

A Boolean algebra B is defined to be minimally generated if B can be represented
as the union of an increasing continuous chain (B8,), . , for some ordinal p such that
B, is the two-element algebra and, for « + 1 < p, B, ., is minimal over B, i.e., there
is no subalgebra of B, _, lying properly between B, and B, , ,.

A fact we will use in the proof of Theorem 5.1 that is pseudo-tree algebras, i.e.
algebras generated by ramification sets (see 2.3) are minimally generated. This
follows from Theorem 3.1 and the facts established in [18) that interval algebras are
minimally generated and that subalgebras of minimally generated ones are mini-
mally generated. A more direct proof runs like this. Assume R is a ramification set
generating B: well-order R ={x,:a <p} for some ordinal p and let B, be the
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subalgebra of B generated by {x;:  <x}. Applying Lemma 1.1 and Proposition
1.3 from [18], it is easily shown that B, ., is minimal over B,.

THEOREM 5.1. The following are equivalent, for a Boolean algebra A.

(a) A is isomorphic to RO(T "), for some tree T

(b) A is isomorphic to RO(T "), for some pseudo-tree T

(¢) A is isomorphic to (Intalg L) for some linear order L (here B denotes the
completion of a Boolean algebra B)

(d) A is isomorphic to (Treealg T)™, for some pseudo-tree T

(e) A is isomorphic to (Treealg T)", for some tree T

(f) A is isomorphic to B, for some minimally generated Boolean algebra B.

Proof. Trivially, (a) implies (b) and each of (¢) and (e) implies (d).

(b) implies (c): the algebra B = RRO(7 ') is dense in RO(7~') and, by 4.1, a
pseudo-tree algebra. By Theorem 3.1, we can assume that B is a subalgebra of
Intalg X, for some lincar order K, Applying Corollary 5.10 of [17], we obtain an
algebra C which has B as a dense subalgebra and is a homomorphic image of Intalg
K. Tt follows that C =~ Intalg L, for some linear order L (see e.g. [17, 15.9]) and that
A = B~ C" = (Intalg L)“".

(d) implies (f) since pseudo-tree algebras are minimally generated, as shown
above.

(f) implies both (a) and (e): let B be minimally generated. By [18, 4.3] (and the
remark after 2.4 of this paper), B has a dense subalgebra C which is isomorphic to
Treelag S, for some tree S; thus A4 = B“" = (Treealg S)“”. Moreover, by 4.2,
C =~ RRO(T ") for some tree T; thus 4 > B~ C™ = RO(T""). O

There are many complete Boolean algebras not isomorphic to the regular open
algebra of a pseudo-tree — see, e.g., [9], [14]. In fact, regular open algebras of
pseudo-trees have quite special properties, as proved essentially in [14], [18]:

PROPOSITION 5.2. Let A= RO(T "), T a pseudo-tree. Then

(a) n(A) (the smallest cardinality of a dense subset of A) equals ¢(A) (the cellularity
of A, defined to be sup{|X|: X a disjoint subset of A}) or c(A)*

(b) if x is an infinite cardinal and n(A | a) > x for all a € A\{0}, then A satisfies
the (x, 2)-distributive law.

There is another well-known construction of a complete Boolean algebra from a
linear order L: endow L with its order topology having the open intervals ( — 0, a),
(a, o) (where a € L) and (a, b) (where a <b in L), as a base and consider the
regular open algebra RO(L) of L in the order topology. We have the following
additonal part of William’s theorem 5.1.

THEOREM 5.3. The following are equivalent, for a Boolean algebra A.
(a) A is isomorphic to (Intalg L), for some linear order L (i.e., condition (c) of 5.1
holds).
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(b) A is isomorphic to RO(L), for some linear order L equipped with the order
topology.

Proof. (a) implies (b): this is obvious if L is a dense linear order, for in this case,
the map sending [q, b) € Intalg L to (a, b) € RO(L) extends to an isomorphism from
(Intalg L)“" onto RO(L).

Otherwise, fix a partition X of unity in Intalg L such that each x e X is a
half-open interval of L and (Intalg L) [ x is either the two-element algebra or
atomless. Pick lincar orders (K, <) such that (Intalg L) [ x = Intalg K, K, has a
first element and, if |K,| > 1, then K, is a dense linear order without last element.
Let < be a well-ordering of X such that, if [K./|=1 and |K,|>1 then x >y;
K =), +K, is totally ordered by

s<tifff(s,7e K, and s <. f)or (seK,,t €K, and x <y)].

Then

(Intalg L)™ = [T ((Intalg L) [ x)™"

xe X
= [] (Intalg K, )" = [| RO(K,)
xeX xe X
~RO(K).

(b) implies (a): if 4 = RO(KX) for a linear order K, then
C ={intcl(( — o0, x)): x € K}

is a chain in 4. The subalgebra of 4 generated by C is (isomorphic to) an interval
algebra and dense in 4. Hence A = (Intalg )" for some linear order L. O

6. Pseudo-Tree-Generated Algebras

A Boolean algebra A is said to be (pseudo-) tree-generated if there is a (pseudo-)
tree 7, under the inverse of the Boolean ordering of A4, such that A4 is generated by
T. Note that we do not require here that incomparable elements of T are disjoint.

PROBLEM 2. Can one construct, in ZFC, a Boolean algebra which is not
pseudo-tree-generated?

The following remarks shed some light on this question.

1. The supremum of cardinalities of incomparable families in a Boolean algebra
A is the same as the supremum of the cardinalities of trees in 4; see [19].

2. In {3] an interval algebra of power x =cf(2*) is constructed which has no
incomparable subset of size x; this is an example of an algebra which is pseudo-
tree-generated but not tree-generated.
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3. Rubin’s algebra constructed in {20] under ( <) is not psecudo-tree generated. In
fact, any uncountable subset of this algebra has three distinct elements a, b, ¢ such
that ¢ =a - b; this is clearly not true in an uncountable algebra generated by the
inverse of a pseudo-tree.

7. Tail Algebras and Disjunctively Generated Algebras

We consider here a generalization of pseudo-tree algebras. For (P, <) a partial
order and p € P, define P 1 p = {q € P: p <gq} and let Tailalg P, the tail algebra of
P, be the subalgebra of the power set algebra of P generated by R ={P 1 p:p € P}.
Call a Boolean algebra disjunctively generated if it is generated by some disjunctive
subset (as defined in Section 2).

Thus we have the following relations: every pseudo-tree algebra is a semigroup
algebra (see 2.1(b)); semigroup algebras are isomorphic to tail algebras (see 7.1
below); tail algebras are disjunctively generated (see 2.1(c)). Our main results state
that the largest class mentioned here (the class of disjunctively generated algebras)
does not contain all Boolean algebras (by 7.3, resp. 7.4) but that, on the other
hand, the (possibly smaller) class of tail algebras is quite close to the class of all
Boolean algebras by Theorem 7.5,

PROPOSITION 7.1. Every semigroup algebra is isomorphic to a tail algebra.
Proof. Let the Boolean algebra A be gencrated by a subset H such that H is
closed under multiplication, 0, 1 € H, and P = H\{0} is disjunctive. Consider the
homomorphism f = f» from 4 onto Tailalg (P ') given by 2.2.(a), i.e., f(p) =P | p
for p € P; we want to show that f is one-one. By Sikorski’s criterion, we have to
show that f(p,)n---nf(p,) =f(g)v---Uflg,) (where p, g €P) implies

P Pa<q + - +4q,. Without loss of generality, p =p, ... p, is non-zero
and hence in P. By definition of /' = f,, in 2.2(a), p € f(p,) " f(p,). So p € f(g,)
for some j, thus p <g,, and p < g, + " * +g,,, as desired. O

LEMMA 7.2. Let P be an infinite partially ordered set. Then: either P has a strictly
ascending chain of type @, or P has a strictly descending chain of type w, or P is
well-founded (with, say, P, as its o'th level) and there is some n € o such that P, is
infinite.

Proof. Assume P has no descending chain of type w (so P is weli-founded) and
no infinite level P,(n € w). For each n € w, let

T,={(po,---,Pa):p,€P,fori<n and py<---<p,}.

So T'=J,.. 7, is an infinite tree ordered by end extension of sequences in which
every level is finite and non-empty. But then 7 has an infinite branch, which yields
an increasing chain of type w in P. O
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THEOREM 7.3. Every infinite disjunctively generated algebra has a countably
infinite homomorphic image.

Proof. Say A =(P), where P is an infinite disjunctive subset of 4. We apply
Lemma 7.2 to P!, and have three cases.

Case 1. There is in P an ascending sequence (p,:ne€w). Let then M=
{p,:n € w}, and consider the homomorphism f,, given by 2.2(a). Then f,, maps
each p € P to an initial segment of M, and since f(p,) ={po,...,p,} and P
generates A, it follows that the image of 4 under f}, is the finite-cofinite algebra on
M, a countable algebra.

Case 2. There is in P a descending sequence of type w. This is similar to Case 1,
again considering M = {p,:n € w}.

Case 3. P ' is well-founded, and for some (minimal) n € w, P, is infinite.
Consider M = P, and f = f,, as in 2.2(a). Note that

1. fi(p)=0ifpeP,,a>n

2. f(p)=1{p} forpeP,

3. {f(p):pe P,k <n}is finite.

It follows that the image of A under f is superatomic, since its quotient under
the ideal generated by the atoms is finite. It is well-known, and easy to check, that
every superatomic algebra has a countable homomorphic image, giving the desired
result. O

A related result is included in [11]: every infinite semigroup algebra has a countably
infinite homomorphic image. In fact, more is true as pointed out by Heindorf: by
[1, Thm. 3.2}, every infinite subalgebra of a semigroup algebra has a countably
infinite homomorphic image.

A statement slightly weaker than the following Corollary was proved, but not
published, by A. Blass and S. Koppelberg, answering a question by G. Brenner.
Recall that a Boolean algebra A is said to have the countable separation property if
for any countable subsets X and Y of A satisfying x - y =0 forall xe X and y € ¥,
there is some a € 4 such that x <gand y< —aforall xeXand ye Y.

COROLLARY 74. No infinite Boolean algebra having the countable separation
property is disjunctively generated.

Proof. The countable separation property is inherited by homomorphic images
(see [17, 5.27]); moreover, no countably infinite algebra has the countable separa-
tion property. O

The following theorem is due to S. Koppelberg and L. Heindorf.

THEOREM 7.5. Every Boolean algebra is a retract of a tail algebra, in particular,
every Boolean algebra is embeddable into a tail algebra.
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Proof. This is trivial for a finite Boolean algebra B with, say, n atoms — just take
a tree with n roots and no other points. So let B be an infinite Boolean algebra; we
may assume that it is the algebra of clopen subsets of some Boolean space X.

For each b € B, take two new points p,, g, such that the points p,, g, (b € B), are
pairwise distinct and not in X. Then put

U={py.q,:b € B}
P=UuX

and define a partial order on P by setling p, < x and g, < x for all x € b. Thus, for
beB, P1p,={ps}ub, P1g,={qy}uband b=P1p,nP1gq,cTailalg P.

We define a map e from B into the power set algebra of P by fixing a
non-isolated point x* of X and putting e(b) =bif x*¢ band e(b) = U ubif x*e€b.
It is easily checked that e embeds B into the power set algebra of P and that
e(b) = —e( —b) € Tailag P if x* ¢ b; hence e is an embedding from B into Tailag P.

Now define

I = {a e Tailalg P: a~ X consists of finitely many non-isolated points},

an ideal of Tailalg P. The theorem is a consequence of the following two
statements:

(1) e[B] 1 = {0}

(2) Tailalg P is generated by e[B] U (cf. [17, 15.21]).

To prove (1), assume that b € B and e(b) € I. Now b = e(b) n X is a clopen subset
of X consisting of finitely many non-isolated points (since e(b) € I), and it follows
that 5 = 0.

To prove (2), we fix p € P with the aim of showing that P 1 p is generated by
e[BluUL

Case 1. p is a non-siolated point of X. Then P 1p = {p} €l

Case 2. p is an isolated point of X. Again P 1p={p}. Now {p} is a clopen
subset of X, hence is in B, and e({p}) = {p}, as desired.

Case 3. p=p, with heB and x*¢b (the case p =g, is similar). Then
P1tp={p}ub, and b = e(b) € ¢[B]. Now {p,} =(P 1 p,)\(P 1 q,), so {p} € Tailalg
P and hence {p} el

Case 4. p=p, with be B and x*eb (the case p =g, is similar). Then
Ptp={p}ub, and {p} el as in Case 3. Now e(b) = Uub, and so b =e(b)\U;
also U e Tailalg P since U = P\((P T p;) n(P 1 ¢,)). So U € I. Hence again P  p is
generated by e[B]u /. O

8. Comparison of Some Properties of Boolean Algebras

By way of a partial summary of the above results, we give a diagram of the
properties of Boolean algebras that we have dealt with.
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A is a tree algebra A is an interval algebra

N\ /

A 15 a pseudo-tree algebra

|
A is a semigroup algebra
|
A 1s a tail algebra A is minimally generated
|
A is disjunctively generated
|

A has a countable homomorphic image

Implications go from top to bottom, and the non-trivial ones have been proved
in 2.1.(b), 7.1, 7.3, and a remark before 5.1. As concerns the reversability of the
implications, and possibly some other implications, we make the following remarks.
There is an interval algebra not isomorphic to a tree algebra: see [17, 16.21]. There
is a tree algebra not isomorphic to an interval algebra: see [17, 16.22]. Every
uncountable free algebra is a semigroup algebra but not minimally generated.
Superatomic algebras are minimally generated, but not necessarily retractive, hence
not necessarily isomorphic to pseudo-tree algebras. Algebras with a countably
infinite homomorphic image are not necessarily disjunctively generated, as shown
by the following example.

EXAMPLE 8.1. Let C =4 x B where B is infinite and complete and A4 is count-
ably infinite. We shall use the fact (see e.g. [15]) that B is not the union of a strictly
ascending chain (B,),., of subalgebras B,. C has 4 as a countably infinite
homomorphic image; assume for the contradiction that it is generated by a
disjunctive subset P. Write 4 = {a,:n € w} and define, for i € w,

PI ={pEP:prl(p)e{a()a"-ﬂal}}q
C, = the subalgebra of C generated by P,

(where pr,, pr, are the projections onto the first respectively second coordinate).
Thus P is the union of the chain (P,), ., C is the union of the chain (C,),.,, and
B is the union of the chain (pr,[C,]), .- By the above choice of B, there is m € @
such that pr,[C,,] = B; we can pick m so large that also the element (1,0) of C is
in C,,.

Now C,, is disjunctively genecrated by P,, < P. On the other hand, pr,[C,,] is a
finite Boolean algebra, pr,[C,,] = B is complete and, by (1,0) € C,,.

Cm =pr [Cm] X prZ[Cm]’
a complete Boolean algebra. This contradicts Corollary 7.4.
Not every tail algebra is a semigroup algebra, as shown by Theorem 7.5, plus

Theorem 2 and Proposition 1 of [11]. Finally, under (<), there is a minimally
generated Boolean algebra with no countably infinite homomorphic image [16]. The
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remaining possibilities in the diagram are open, giving rise to the following
problems.

PROBLEM 3. Is every disjunctively generated algebra isomorphic to a tail
algebra?

PROBLEM 4. Is there in ZFC a minimally generated Boolean algebra with no
countably infinite homomorphic image?
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