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Structure problems for cylindric algebras

J. DONALD MONK

Abstract. Much of the work that has been done in algebraic logic concerns the
relationships between kinds of algebras, or global questions about varieties of

~ algebras. Thus the relationships between relation algebras, cylindric algebras,
and polyadic algebras is fairly well understood. The representation theory
has been carefully studied, and the relationships between various types of
representable algebras such as cylindric set algebras, generalized cylindric set .
algebras, etc., has been thoroughly investigated. This article is not concerned
with any of these kinds of problems. Instead, we are interested here in intrinsic
questions about cylindric algebras in general and the most important class of
such algebras, the regular locally finite dimensional cylindric set algebras. In
the selection of these problems we have been guided by two principles: to not
go over old ground covered in the books HMT[71], HMT[85] and HMTAN(81],
and to see what problem areas in the theory of Boolean algebras naturally
transfer to cylindric algebras. We shall take the theory of Boolean algebras as
known, although there are many questions open about them, too, of course.
All the results about BA’s which we need can be found by browsing through
the BA handbook BA[88]. " '

We survey some recent new results, with a few proofs, and mention some
open problems. We will not mention related algebraic structures like relation
algebras, except in passing. We use the notation of HMT[71], HMT[85] with-
out recalling it (some of it is recalled in Maddux’s introductory paper in the
present volume, and in §2 of the “Open problems” paper).

1. Groups

Groups appear in cylindric algebras in at least two natural ways: as au-
tomorphism groups, and via a kind of Galois theory. First we consider the
automorphism groups. The central result here is the following theorem of
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Andréka and Németi (unpublished): for any a > 2 and any group G, there
is a Csie8 N Lf, 2 such that G = Aut. Their proof is based on an idea
of Maddux [85], who did the same thing for (in general non-representable)
relation algebras. (They also proved a similar result for relation set alge- -
bras, and after hearing of their theorem, Maddux obtained this result by a
different proof.)

Thére is still a small natural question remaining. What is the situation
for CA;’s, or, more generally, for monadic-generated CA,’s?- We give a few
results for this case, but there are still open questions; the results are due
to Andréka, Monk, and Németi. It is convenient to introduce some notation
first, connected with the treatment of monadic-generated CA,’s in section
2.2 of HMT[71]. We adjoin to the language for CA,’s unary operation
~ symbols aj for all k < (a+ 1) Nw. In a CA,, a,z denotes the element

C(x) {H(ﬁ X K) - H S| .

A<k

This element is 0-dimensional if Az C {0}. A special term is a Boolean
term built up from the following atomic parts: dj, sgvz-, and a,u, where
u is a formal product of various terms v; and —v;. The relevant indices of
a special term are the subscripts x, A occurring in the parts d,) or sQv;. A
convenient consequence of Lemma 2.2.22 of HMT[71] in this terminology is
as follows: ‘

(¥) If 7 is a special term with variables among wo, ... ,Vm-1, and if
k < a, then there is a special term o with the following properties:

The variables of o are also among vg, ... ,Vm—1;
The relevant indices of o are those of 7 except for x;

~ For any CA, 2 and any elements zo, ... , Zm—1 of A such that Az; C 1
for all 4 < m we have c7(Zo,... ,Tm—1) = 0(Z0,--. , Tm—1)-

‘We also need the following notation. Aut[K] is the class of all auto-
morphism groups of members of K; thus IAut[K] is the class of all groups
isomorphic to automorphism groups of members of K. BA is the class of
all Boolean a,lgebras, and G is the.class of all groups. For any class K of
cylindric algebras, MgK is the class of all monadic-generated members of
K. If % is monadic-generated, then 92 is the BA of elements a € A such
that Aa C {0}. '

The _follow-ing lemma will be useful:
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Lemma 1.1. Suppose that a > 0, 2 and B are monadic-generated CA, s,
and g is an isomorphism of MM with 9MB. Then g extends to an isomor-
phism onl onto B iff gayz = - angT whenever k < (o + 1) Nw and z € M.

Proof => is trivial, so we only consider <. First note that if 7 is a special
term with empty relevant index set, then 7(zo,...,Zm-1) = 0 in A iff
7(9z0,... ,9Tm—1) = 0 in B, for zg,... ,Tm-1 € M. It then follows that
a product of elements of the set

- A{dea i koA < afU{—dgy i K, A < a}U
{sEx x € MU, §<a}U{a:z € M, n<(a+1)ﬂw}

is 0 iff the corresponding product with each z replaced by gz is 0. This is
easily proved by induction on the number 7 of relevant indices in a product
given by a special term, using (*) and the hypothesis of the lemma. In fact,
suppose that 7(zg,:.. ,Zm—1) = 0 is such a product. Our initial note takes
care of the case i = 0, so suppose that 7 # 0. Let & be any relevant index
of 7. Choose o by (*). Then |

7(20,. .. ,Tm~1) = 0 iff cx7(T0,... ,Zm-1) =0
iff o(zoy... ,Zm-1) =0
iff o(gzo,... ,9Tm—-1) =0
iff c.7(9x0,... ,9Tm—1) =0

iff 'r(ga:o, “as ,ga:m_l) =0

By Sikorski’s extension theorem it follows that g extends to an isomorphism
of the Boolean part of 2 onto the Boolean part of 9B, preserving diagonals
and taking sga: to sggm' for all z € M. An application of (*) again shows
that g is a cylindric isomorphism. J

Theorem 1.2. Assume that o > 0. For any BA % there is a Mg(Csi¥8NLf,)
B such that 2 is isomorphic to MMB, and also AutA = AutB.

Proof. We may assume that 2 is an algebra of subsets of a set U, and
that each non-zero member of A is infinite. Let C consist of all elements of
P(2U) having the form {a € *U : agp € z} for some z € A, and let B be the
Cs, of subsets of U generated by C. Thus 9B is monadic-generated. Note
that C' is the universe of 9B ; this follows from Theorem 2.2.24 of HMT|71].
So we let ¢ = 9MB. Now U is isomorphic to MB; a desired isomorphism is
a— {z €U :xo € a}.
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Thus we can finish the proof by showing that Aut® is isomorphic to
Aut€. Given an automorphism f of 9B, the restriction of f to C is an
automorphism of €; and that restriction has only f as an extension to an
automorphism of B. That every automorphism of ¢ extends to an auto-
morphism of B is an easy consequence of Lemma 1.1. In fact, let g be an
automorphism of €. Note that our assumption that all non-zero elements of
A are infinite implies that an element a.z is 0 iff the element z is 0 (z € C);
and this is true iff the element gz is 0. Hence, since each element a,z is
0-dimensional, it follows that ga,z = argz. So Lemma 1.1 apphes to show
that g extends to an automorphism of 9. §

Lemma 1.3. Suppose 0 < a < w and 2 is a monadic-generated Mg(Cs; 6N
Lf,). Then 2 is isomorphic to a Mg(CsL® NLf,) B such that for every atom
z of MW, if 3o =1, then {ug : u € z} is infinite.

Proof Say that 2 has base U. For each y € M2 let V,, = {U() u € yJ.
Note that if y is atomless in 92, then Vj, is infinite; but if y is an atom, then
Vy can have any cardinality. Now we associate with each atom y € M% such
that o < |V,| < w an infinite superset V;; of V, such that (V;NU)\V, = 0 and
V, NV, =0 for distinct y, 2. Then let U' = U UJ{V, : y is an atom of I
with a < |Vy| < w}. Foreach a € M2 let Wy = {uo : u € a}U{J{V, : yis an
atom of MA, a < V| < w, and y < a}. Thenlet fa = {u € “U’ : ug € W, }.
It is easily seen that f extends to the desired isomorphism, using Lemma
1.1. 1

Now we are ready for our main positive result about automorphlsm
groups of mona.dlc-generated cylindric algebras.

Theorem 1.4. (i) IAut[BA] C 1Aut[Mg(Cse8nLf,)] C 1Aut[Mg(CA,)] C G.
(i) For a < 8 we have 1Aut|[Mg(Csi8 N Lf,)] C 1Aut[Mg(Csg® N Lfg)].
(iii) For I < o we have 1Aut[CA;] C 1Aut[Mg(CA,)].

- (iv) For a, 3 > w we have equality in (ii), and also 1Aut[Mg(CA,)] =
IAut[Mg(CAg)].

Proof. (i) is an immediate consequence of Theorem 1.2. For (ii), suppose
that 2 is a Mg(Csi®® N Lf,); we want to_construct a Mg(Csz® N Lfg) B with
the same automorphism group as 2. If o < w we may assume that 2 has
- the property described in Lemma 1.3. For each a € M2'let. ga = {u €
AU :u | @ € a}, and let B be the Csg generated by g[A]. Cleatly g is an
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isomorphism from 22 onto 9MB. Let f be an automorphism of 9. ‘It
suffices to show that the two conditions

f extends to an automorphism of 2
go fog~! extends to an automorphism of B

are equivalent. First suppose that f extends to an automorphism of 2, and
agga = 0 for some £ < (f+ 1) Nw and a € M%; ‘'we want to show that
axgfa = 0. Since agga = O; it follows that there are atoms zg, ... ,Tm—1 Of
MA such that a = x¢ + -+ -+ Tm—1, and if @ < w the special property given
by Lemma 1.3 implies that apz; = 0 for all # < m. An easy argument then
shows in any case that a,gfa = 0, as desired. Conversely, if a,gfa = 0,
then axga = 0 by applying the argument just given to f~* and go f~1og~1.

On the other hand, suppose that go fog~! extends to an automorphism
of 8B, and k < (@ + 1) Nw with axa = 0. Clearly then acga = 0, and so
axgfa = 0. Thus a,fa = 0, as desired. For the converse one proceeds as
before. : '
For (iii), let 2 be any CA;.  We may assume that 2 is a subdirect
product of B;, i € I, where each B; is a Cs; with base U;, U; N U; = 0
for i # 7, and each non-zero element of %B; is infinite. For each a € A let
ga = Ujer{u € °U; : u | 1 € a;}, and let € be the Gs, generated by g[A].
So € is a Mg(CA,,). Clearly g is an isomorphism from 912 onto 9¢. Next,
we claim

axga = gcpa for any 0 < k < (@ + 1) Nw and any a € A.

In fact, ]
axga NU; =°U; iff [{up : v € *U; Nga}| > &
iff {uo:u€ U, ultle€a} >k
iff a; 75 0
iff (Coa)i = lUi
iff gco N U; = °U;,
as desired.

Now let f-be an automorphism of 9. Then f is an automorphism of

2A iff go f o g~ extends to an automorphism of €. In fact, for = we have
!

gfg taxga = gfcoa = gcofa = axgfa,
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and for < we have
feoa =g lgfg tgcoa = g7 gfg ta1ga = g7 a19fa = co fa.

Next we consider the first part of (iv). Say w < a < . Given B €
Mg(Cs}fgﬂ Lfg), say with base U, let for b € MB gb = {u € *U : up = vy for
some v € b}, and let 2% be the Cs, generated by g[M*B]. It is easy to check
that g is an isomorphism of MMB with MA, and gagb = axgd for all k < w
and all b € M®B. Hence an easy argument shows that an automorphism
f of MB extends to an automorphism of B iff go f o g~! extends to an
automorphism of %A, as desired.

Finally, we take the second part of (iv). Suppose that w < a < 3. First
suppose that 2 is a Mg(CA,); say % is a Gs, with unit element | J;c; °U;,
U;NU; = 0 for 72 # j, the relativization of 2 to *U; being regular for each
i€l Let ga={ue€ UieI'BU’i :u | « € a} for each a € M%; then proceed
as above. Second, suppose that B is a Gsg with unit element J;.; bu;,
U; NU; = 0 for i # j, the relativization of B to U; being regular for each
i€l Let gb={u | a:u € b} for each b € M*B; then proceed as above.

- Now we consider possible improvements of Theorem 1.4. Obviously
IAut[BA] = IAut[Mg(Cs;*® N Lf;)]. For a > 1, equality no longer holds:

Proposition 1.5. For a > 1 we have lAut[BA] C 1Aut[Mg(Cs.8 N Lf,)].

Proof. By Boolean-algebraic results it is enough to show that there is a
monadic-generated Csi® N Lf, with automorphism group of size 4. This is
easy: let U be an infinite set, and pick two elements of U, u and w, and
let the remaining elements be divided into two equal-sized infinite parts U’
and U”. Let ¢ = {a € U : ap = u}, and let y be defined similarly using w.
And let z5 = {a € ®U : a9 € U'}, and define z; similarly using U”. Take the
CA, & generated by {z,y, 20,21}. It is easy to check that 2 is as desired,
using base automorphisms. I

Also, not every group is isomorphic to the automorphism group of a
monadic-generated cylindric algebra:

Proposition 1.6. 1Aut|Mg(CA,)] # G.

Proof. We show that, like BA’s, every non-trivial automorphism group of
-a monadic-generated CA, has a member of order 2. To prove this, let 2 be a
monadic-generated CA, with non-trivial automorphism group. We consider
- two cases.
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Case 1. There is a zero-dimensional element moved by some automor-
phism. Then by arguing in the easy way one does for BA’s, there exist
disjoint non-zero zero-dimensional elements a and b such that fa = b for
some automorphism f. The following automorphism g is then non-trivial
and of order 2: z+ f(z-a) + f~ (z-b)+x-—a- —~b.

Case 2. All zero-dimensional elements are fixed by all automorphisms.
Now there exist an automorphism f and non-zero disjoint elements a and b
such that Aa =1, Ab =1, and fa = b. We define the function g on M
just as in case 1; g is at least an automorphism of 9MA of order 2. We want
to show that it extends to an automorphism A of 2. This is seen similarly to
the above; the new facts to observe are the following, valid for any = € M%:

0T = fa,® = ax fT; axT = axgx;

The first part is clear. The second part follows upon not1cmg that if u
“and v are disjoint members of Nr;2 then :

C(x) (a(ra X K) - H sS (u + v)) = Z [c(“j (a(u, X ) - H sgu)-

A<K wtv=x A<p

) (H(u X ) - H sgv)];
: ALy
and this is easily checked by verifying it in set algebras.

So h exists by Lemma 1.1. I .

Now we make some observations about monadic-generated set algebras,
leading up to the next proposition. Let 2 be a monadic-generated Cs,
with base U, and let B = 9MA. Then with each b € B we can associate a
subset tb of U such that b = {u € U : up € tb}. Note that if ¢b is finite,

then there are atoms co, ... ,cp—1 of B such that b = ¢y + -+ - + ¢;p—1 and
(tc; 1 ¢ < m) is a partition of ¢b.

Proposition 1.7. Assume the above notation, and suppose that f maps B
into B. Then f extends to an automorphism of 2 iff f is an automorphism
of B and for all 0 < kK < aNuw, f permutes {b : b is an atom of B and
[th| = k}. '

Proof. For all such K, |tb| = K iff

<(x) (3(& x &) [] Sgb) © —Ck+1) (3((f~c +1)x(k+1)- [] sgb) =

ALK A<k+1
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From this observation, = in the theorem is clear. For <=, we apply Lemma
1.1. To do this, it suffices to show that agb = 0 implies that a, fb.= 0. By
the hypothesis and the above observation, there are atoms cg, ... ,cm—1 of
% such that b =cy+ - -+ ¢n—1. And the hypothesis for our direction then
implies easily that a,fb = 0. I

Corollary 1.8. Suppose that 0 < a < w and G is a finite group. Then G is
isomorphic to the automorphism group of some Mg(Cs,,) iff G is isomorphic
to the direct product of a many symmetric groups.

Proof =. Suppose G is the automorphism group of 2, with the above
notation (B, etc.) For each 0 < k < a let X, = {b : b is an atom of
% and |tb| = x}. Thus by Proposition 1.7, the set X, is finite. Let b =
—(Y.ca 2. Xk)- Then Proposition 1.7 says that G is isomorphic to the
direct product of all the symmetric groups on X, with the automorphism
group of B[ B | b. The result now follows from Boolean algebraic facts.

< is easily seen by a direct construction, using Proposition 1.7. I

Corollary 1.9. For w > a < 3 we have

IAut{Mg(Cs 8 N Lf,)] # 1Aut[Mg(Csz® M Lfg)] .

Proof. According to Corollary 1.8, IAut[Mg(Csg*® N Lfg)] contains a group
of size 22! but there is no such group in |Au’c[Mg(Cs‘fJf’g NLfy)- &

Proposition 1.10. For 0 < a < w and 0 < 3 we have |Aut[Mg(Cs;8 N
Lf,)] lAut[Mg(CAg)]

Proof. Let (2, :v < a+ 2) be a system of pairwise non-isomorphic rigid
infinite BA’s, and let 8 be a four-element BA. By Theorem 1.2, for each
v < a+2let ¢, be a Mg(Csg) with the properties mentioned there relative
to the BA 21, x 8. Then [[, ., €, is the algebra desired. §

“As mentioned at the beginning, there are still some bpen problems here.

Problem 1. Give an abstract characterization of the automorphism groups
of monadic-generated CA,’s, at least relative to the (abstractly unknown)
class of automorphism groups of BA’s.

Problem 2.
For0<a<wand a<f,is IAut[Mg(CAa)] C 1Aut[Mg(CAg)]?
For a > w, is IAut[Mg(Csie® N Lfy)] = 1Aut[Mg(CAq)]?
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The other place in the theory of cylindric algebras where groups nat-
urally appear is in a kind of Galois theory. We do not have any definite
problems to mention here, but we would like to call the reader’s attention
to this little area of algebraic logic, which has not received a systematic -
treatment in any of the books. So we will indicate the basic notions in-
volved, and state without proof two of the main theorems involving them.

Let o be an ordinal and U a non-empty set. We denote by Sym U the
group of all permutations of U, and by PU the CA, of all subsets of *U.
With each g € Sym U we can associgte the base automorphism g of PU
defined by §X = {y € *U : g~ oy € X}. Now if G is a subgroup of Sym U,
we define Fzf;G to be the set of all X C *U such that AX is finite and
gX = X for all g € G. It is easy to see that Fzj;G is the universe of a
Cs,® N Lf,, which we shall denote by Jrj fG’ Here is the first theorem we
want to mention:

Theorem. (Daigneault [64], Comer [84]) Suppose that U 1's a finite non-
empty set and |U| < a+1. Then 37} is an antiisomorphism from the lattice
- of all subgroups of Sym U onto the lattice of all locally finite regular set
algebras with base U

This theorem is similar to a much earlier theorem of Krasner [38] which
can be formulated in terms of (non locally-finite) polyadic algebras. The
condition |U| £ a + 1 is really necessary; see Driessel [68] and Comer [84].

Of course it is natural to consider also the case in which U is infinite.
There are then some obvious restrictions on both the set algebras and the
groups involved in the theorem. Call a set algebra 2 locally complete if for
every finite J, the BA of elements z with Az C J is closed under arbitrary
unions. It is obvious that for any subgroup G of Sym U the algebra SripG is
locally complete. Call a subgroup G of Sym U closed if for every f € Sym U,
if for every finite F' C U there is a ¢ € G such that f | FF =g | F, then
f € G. This really is a closure operation (the intersection of arbitrarily
many closed sets is closed). And it is easy to check that if H is the closure
of G, then F i7G = StiyH. Thus it is natural in trymg to extend the above
theorem to restnct to closed groups.

Theorem. (Carter, Driessel) If Ry = |U| < «, then §tf; is an antiisomor-
phism from the lattice of all closed subgroups of Sym U onto the lattice of
all locally complete locally finite regular set algebras with base U.

For this theorem, see Driessel [68], where also an example showing that
the condition |U| < « is necessary can be found.
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~

For uncountable U there are some results of Reyes [70].

Also, the Galois theory has been investigated for relation algebras. See
Jénsson [84] and Wielandt [69]. |

2. Endomorphisms

, Fo;‘_ahy cylindric algebra 2 we let End2 be the endomorphism monoid
of 2. Note, first of all, that Autfl is first-order definable in End—as the
set of all invertible elements.

First we consider regular locally finite set algebras. They are all simple,
and-so the endomorphism monoid has the special property that all elements
are left-cancellative (ab = ac implies that b = ¢). So the following question
is natural.

~ Problem 3. For a > 1 is IEnd[Csreg NLf,] the class of all left-cancellative
monoids?

Of course this is not the case for @ = 1, because of the above group
results.

Looking for a representation of more general monoids, it is natural to
consider the whole class of CA,’s:

Problem 4. For a > 1, is IEnd[CA,] the class of all monoids? This might
be interesting also for the class of representable CA,’s.

Optimists — who think the answer to Problem 4 is yes — might want
to try for.the stronger result that the category of CA,’s is alg—umversal (see
Puitr, Trnkova [80]).

There is one more thing about endomorphisms which is worth mention-
ing. We have the notion of rigidity for Boolean algebras — it means that
the BA has only the identity automorphism. There is the general algebraic
notion of endo-rigidity — meaning that the algebra has only the identity
endomorphism. For BA’s, this notion is vacuous — there are no such things
which are non-trivial since, for example, every BA has lots of two-valued
endomorphisms. (So, Boolean algebraists have used the term endo-rigid
for a weaker notion.) Perhaps it is a surprise that for CA,’s they exist
(this theorem and its corollary are essentially due to Andreka and Németi,
‘unpublished):
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' Theorem 2.1. For each a > 0 there is a non-trivial endo-rigid Csie8 N Lf,.

Proof. Let 2 be an infinite mono-rigid BA. We may assume that 2 is a
set algebra of subsets of a set U. For each a € A let | '

zq = {u € “U : up € a}.

Let B be the subalgebra of the Csy of all subsets of *U generated by all
of these sets z, for a € A. If f is an endomorphism of B it is one-one,
and f | M*B is an endomorphism of M®B. But MM is isomorphic to A, so
f I M must be the identity, and so the same is true of f itself. i

The following obvious corollary of this theorem shows another respect
in which the behaviour of endomorphisms is different for CA’s as opposed
to BA’s:

Corollary 2.2. Let a > 0. There are non-isomorphic non-trivial Csg® N
Lf,’s with isomorphic endomorphism monoids. §

3. Subalgebras

The first question that occurs about subalgebras is

Problem 5. Characterize the lattices of subalgebras of CA,’s and Cs,® N
- Lf,’s in lattice-theoretic terms, for & > 0 and « > 1 respectively.

Recall in this connection that the lattice of subalgebras of BA’s has a fairly
simple characterization, which holds also, of course, for Cs;*® N Lfi’s. See
Monk [88] or Gratzer, Koh, Makkai [72].

Now we turn to three related concepts involving subalgebras: cofinality,
Jonsson algebras, and the descending chain condition for subalgebras.

The cofinality of a CA, 2, denoted by cf 2, is the smallest infinite
cardinal x such that 2 has a strictly ascending sequence of subalgebras
with union 2, or co if no such cardinal exists. In fact, cf 2 < oo iff % is not
finitely generated. For a general reference concerning this notion see Gould,
Morel, Tsinakis [86], and for the cofinality of BA’s, see Koppelberg [77], van
Douwen [89], and Just [88]. It is obvious that cf(BI2A) < cf A for any CA,
Aq. -
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Theorem 3.1. If% is an infinite CAq, then cft A < 2%,

Proof. Cuase 1. 2 has an infinite simple homomorphic image %8. From the
simple form of simple CA;’s and from Boolean algebraic results it follows
that cf B < 2%, and so the same is true for 2.

Case 2. All simple homomorphic images of 2 are finite. It follows that
co[A] is infinite, and hence there is a system (z; : i < w) of disjoint non-
zero cp-closed elements, For each i < w let I; be a maximal ideal such that
—x; € I;. Since —x;+—x; = 1 for distinct 4, j < w, it follows that for distinct
i,7 < w we have z; € I;, and hence the natural homomorphism f from 2
~ into [], <w2/I; has infinite image. This shows that 2 has a homomorphic
image of power < 2“, and the theorem follows again.

A Jdnsson algebra is an infinite algebra 2 with more elements than -
fundamental operations which has no proper subalgebra of size |A|. This
differs slightly from the usual not1on Note that a Jémsson algebra has
cofinality cf|A|.

Theorem 3.2. Suppose that a > 3, k is a regular cardinal > |a| U w, and
there is a Jonsson groupoid of power k. Then there is a Cs & N Lf, with

cofinality k.

Proof. Let (U,-) be a Jénsson groupoid with |U| = . For each v € U let
o ={2.€ U xo=u}, b={z € *U: 22 =20 71}

Let 2 be the Cs,, of subsets of *U generated by all of these elements. Clearly
cf 2% < k. Suppose that (B¢ : £ < A) is an increasing sequence of subalgebras

of A with union A, where A < &. Choose £ < A such that C = et {u €
U : a, € B¢} has k elements, and b € Be. If w,v € C, then a,., =
szcocy(ay - sYay - b), and hence u - v € C. It follows that C = U, and hence
%g = 2, contradiction. §

This theorem implies that there are many CA,’s with high cofinality, by
the known results on the existence of Jénsson groupoids (see, e.g., Jénsson
[72] and Shelah [88]). We note in passing that Theorem 3.2 extends to
relation algebras.- Namely, let G' be a Joénsson group of infinite cardinality
k. Let 2 be the relation algebra which consists of the finite and cofinite
subsets of GG, with the complex algebra opera’rlons It is easily checked that
2 has cofinality . :

The main question left open by Theorem 3.2 is as follows.
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Problem 6. What is the cofinality of CAg’s? f

We turn to the problem of existence of Jonsson cylindric algebras. It
may be enlightening to go over the proof that there are no infinite Jénsson
BA’s. Let A be an infinite BA. Choose a € A such that A [ a and A | —a
both have more than two elements. Say |A I a| = |A]. Then ((A. | a)U{—a})
is a proper subalgebra of A with the same number of elements as A. This
argument generalizes to show the following theorem, for which we need a
lemma.

Lemma 3.3. Let A be an infinite BA, X a subalgebra of A, and | X| < |A].
Then A has a proper subalgebra B such that |B| = |A| and X C B.

Proof. There are two possibillities. Case 1. There is an element a € A such
that [A | a| = |A| and |A | —a| > |X|. Then the subalgebra of 2 generated
by (At a)U{z-—a:z € X} is as desired.

Case 2. The ideal I & {fac A:|A r a| < |A|} is prime, and |A |
a| < |X| for all @ € I. Let J be the ideal in % generated by X N I. Thus
|7| < |A|, and hence |A/J| = [A|. Let € be a proper subalgebra of A/J
with |Al elements. Then B def |JC is as desired. I

Theorem 3.4. There is no Jénsson CAj.

Proof. Let 2 be an infinite CA;. If |co[4]| = |A|, we can take a proper
subalgebra B of cy[A] as a BA with |A| elements, and take the subalgebra
of 2 which it generates; this works by Theorem 2.2.24 of HMT|[71]. On the
other hand, if ¢o[A] has fewer elements than A, then the lemma yields a
proper Boolean subalgebra % of 2 with |A| elements containing co[A], and
clearly B is actually a subuniverse of 2, as desired. I

This argument can be extended to CAg’s, in the following way. First a
lemma.

Lemma 3.5. Let %A be a CA,, a a zero-dimensional element of A, and B a
subalgebra of 2 | a. Let € = 6g(B). Then C | a = B.

—

Proof. Let Y ={y€ A:y-a € B}. Then BCY, and Y is closed under
all of the Boolean and cylindric operations. Hence ¥ = C. The lemma
follows. § :
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Theorem 3.6. Thereé is no Jénsson CA,.

Proof. Let 2 be an infinite CA2. We want to find a proper subalgebra of
2 with just as many elements as A. If |A | —co(—do1)| = |4|, Lemma 3.5
plus the non-existence of a Jénsson BA yield the result. So we may assume
that Co(-—dgl) = 1.

Second, if |co[?]| = | A|, we may take a proper subalgebra of co[%] as a
BA, of power |A|, and take the subalgebra it generates; Theorem 2.2.24 of
HMT|71] assures that we get a proper subalgebra of 2. So we may assume
that |co[2(]] < |A] N

Next, note that |cg[2]| = |c1[2]|. In fact, z — cy(dg1 - z) is a one-one
function from co[2A] onto cq[2]|.

It follows that the Boolean subalgebra X of 2 generated by co[2(] U
c1[2]U{dg; } has fewer than |A| elements. By Lemma 3.3, let B be a proper
Boolean subalgebra of 2 with |A| elements, and with X C B. Clearly B is
as desired.

We do not know 'the situation for o > 2:
Problem 7. For a > 2 is there a Jénsson CA,7

Finally, we turn our attention to the descending chain condition for sub-
algebras (DCCS); recall that an algebra has this condition if every strictly
decreasing sequence of subalgebras is finite. Clearly a DCCS. algebra of
power x has a Jénsson subalgebra of power & (with suitable restrictions on
the number of operations). So we have the following corollary of Theorems
3.4 and 3.6.

Corollary 3.7. There is no infinite CA; or CAq satisfying DCCS. I

Problem 8. For o > 2 is there a CA, of size > |a| satisfying DCCS?

The last concept involving subalgebras which we will consider is irre-
dundance. A subset X of an algebra 2 is irredundant if for all z € X, =
is not in the subalgebra of 2 generated by X\{z}. In the theory of BA’s
the problem of constructing a BA 2 with no irredundant subset of size |A]
has received quite a bit of attention. It turns out that the existence of such
an uncountable BA with no uncountable irredundant subset is independent
of ZFC. Using a general method of transfering Boolean structure to cylin-
dric structure, Andréka and Németi [87] showed that for @ < w there is
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a Cs, of power N; with no irredundant set of that size, under the same
‘set-theoretic hypotheses as for the BA construction. This gives rise to the
following questions. ‘ '

Problem 9. Can one prove in ZFC that for 0 < o < w; there is a Csy of
size N; with no irredundant subset of that size? '

Problem 10. For o > w, is there a Cs' N Lf, of size |o|* with no irre-
dundant subset of that size?

4. Independence

Where for Boolean algebras there appears to be only one natural notion
of independence, for cylindric algebras we consider three notions; let 2 be
any CA, and X a set of generators of :

X is Marczeﬁ)ski;indepeﬂdent if X {2}-freely generates 2.
X is CA,-independent if X CA,-freely generates 2.

X is HSPCs, -independent if 2 € HSPCs, and X HSPCs,-freely gen-
erates 2. : g ' '

(See HMTI Definition 0.4.23 for the definitions involved.) These indepen-
dence notions are clearly related to irredundance introduced above. The
following obvious implications hold between them, and no other implica-
tions are valid for all a:

CAa — independence = Marczewski—independéncé;
HSPCs, — independence = Marczewski-independence;

Marczewski-independence = irredundance.

That these are in general the only implications is seen as follows. Let K be
a proper subvariety of CA,, and let 2 be a member of K freely generated
by an infinite set X. Then X is Marczewski-independent but not CA,-
independent. Similar arguments work to show that Marczewski-indepen-
dence does not imply HSPCs,-indepen dence and HSPCs,-independence
does not imply CA,-in dependence (for « > 1). Since CA; = HSPCsy, the
“corresponding two notions of independence coincide for & = 1. For a > 1
there are non-representable CA,’s, and hence CA,-independence does not
imply HSPCs,-independence then. An example of an irredundant set which
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is not Marczewskl-mdependent can be obtained easily usmg the methods.of
Andréka, Németi [87]

Andréka and Németi [87] showed that there are arb1trar11y large CA,’s

with no nonempty Marczewski-independent subsets; for a < w one can even
take the algebra to be complete. The following question is open.

Problem 11. For « infinite, are there (arbitrarily large) complete CA,’s
with no nonempty Marczewski-independent subsets?
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