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0. Introduction

In this chapter we describe what is known about automorphism groups of BAs,
exclusive of results concerning rigid BAs which are treated in other chapters in
this Handbook. No_characterization is known of those groups isomorphic to

Aut A for some BA A. In Section 1 we show how the general study of

automorphism groups can be reduced to several cases: automorphism groups of
products of rigid BAs, of products of homogeneous BAs, and of BAs with no

rigtd or homogeneous elements Section 2 is devoted to the study of the relative -

automorphism group Aut, B={fE Aut B: f | A is the identity}, when B is
obtained from A by adjoining a single element (and hence all Boolean combina-
tions of it with elements ‘of A). These groups turn out to be very simple to
describe and-work with. Section 3 does the same when B is obtained from A by
adjoining finitely many elements; then the situation is more complicated. Finally,
in Section 4 we discuss the size of automorphism groups. In the general case a
fairly complete description of the relationship between |A| and |Aut A| is known,
~ but there are still open problems when we restrict attention to classes of BAs such
as interval algebras or superatomlc BAs. Section 4 can be read dlrectly after
Section 1 ‘

1. General properties

Direct product decompositions of BAs enable us to break the analysis of
automorphism-groups into several cases. Most of the results of this section are
taken from MCKENZ[E and Monk [1975]. We begin with these con51deratlons :

1.1. LEMMA. If (A;: ie I) is a system of similar algebras, then 11,., Aut A,. can
be isomorphically embedded in Autll,c, A,.

Proor. For each fEI,c; Aut'A;, each i €I, and each x €II;; A, let (Ff)xi =
fx;. Itis easily verified that F is the desired isomorphic embedding O

Now we shall call BAs A, B totally different 1f foralla€ A" and b € B wef
have A | aB | b.

In several of the proofs below we shall use the following construction. Given a
system (A;: i €EI) of BAs, an index j €/, and an element a € A, we denote by
¢;a the element of II,.; A, such that (£;a), =0 if i # j, while (fja) =a.

1.2. Tueorem. If (A , iel ) is a system of pairwise totally different BAs, then
Il Aut A,=Aut Il A4,.
iel el
ProoF. We show that the function F defined in the proof of Lemma 1.1 is onto. .
Let g€ Autll,., A;; we want to find f € l'I,e, Aut A; such that Ff = g. To do this,

we need three aux111ary statements.

. 519
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(1) Ifiel, xEHA and (gx), #0, thenxaéO

IE)

For, assume otherwise. Let y = &( gx) Thus, y gx,s0 g ly=nx. ‘Choose] SO
that (87'y);#0; thus j#i. Now £,(g 'y); =g 'y=x,s0 ((g6,0):a=(g"'y);)
is an isomorphism from A, l‘ (g y) onto A; | ( géi(g y) );» a contradiction.
So (1) holds. '

@)  Ifi,jEl, i;éj, and a € A,., then (gf,-c_z)j =0.
" " This is immediate from (1). |
() i€l thengél=¢£1.

For, by (2) write g§l=¢a and g~ "t(—a)=¢b. Then éb=¢b-¢1=
g '¢(—a)- g~ fa—O so b=0 and a=1. So (3) holds.

Now define f.a = (géa), foranyi€land a€ A,. By (2) and (3) it is clear that
fEel,, _AutA To show that Ff=g, let xEH,E,A and i € I; we show that
(Ff).i=(gx),. Now (Ff)i=fx;=(géx;);. Since &x;=x, we have (g{x,), =
(gx);. Also, (x-—&x;), =0, so by (1) (gx- _ggixi)‘i =0, ie. (gx);= (gfjxj)i, as
desired. OO ' 2

Theorem 1.2 has several useful corollaries. Thus, if (A;:i € I) is a system of
pairwise totally different rigid BAs, then II,.; A, is rigid. If A and B are totally
different and B is rigid, then Aut(A X B)= Aut A. If A is infinite and homoge-
neous and B is rigid, then Aut(A X B) = Aut A. ’

At least for complete BAs, the study of Aut A breaks into three cases by the
next theorem. : ‘ -

1.3. THEOREM. Let A be a complete BA Then there exist B, C, D such that
‘A= B X CX D, Bis a product of homogeneous BAs, C is a product of rigid BAs;
~and D has no rigid or homogeneous direct factors. Furthermore, Aut A=
AuthAuthAutD :

'— Proor. Let a=X{x:VyE(A | x)"3z€(A | )" (A | z is homogeneous),
and let b be defined similarly with “homogeneous’ replaced by “rigid”. Then
A la, Al b, A I (—a-—b) may be taken for B, C, D. . U

The decomposition in Theorem 1.3, is clearly unique. It is natural now to
consider the three cases in 1.3 in turn, even for non-complete BAs. First,
- however, we give a general fact about 1somorph1sm of direct powers which will be
used below. ' g

1.4. Tueorem, Let |I|<x=|J|, let A be a «" -complete BA, and suppose that
(a,, i€l ]EJ) is a system of elements of A such that VzEI (A jET)isa

partition of unity andVj€ J (a;: i €1 ) is a partition of umty (we allow zerosina -

partition of unity). For any x €A /

- and any jE J let (fx), =L, x;" a,;. Then fis an
. isomorphism from ‘A onto 'A. . ‘
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ProoF. We define the . 1nverse g of f For any y € A and zEI let ( gy)
Lies Y, a;. Then for any yE’A and jE J we have '

(fgy)-= L (gy)i-a;= Z Yt ay =Y,

Thus, fgy =y, so fog'is the 1dent1ty Similarly, ge f is the identity. Clearly, x <% .
implies that fx <fz for x, zE€ ‘A, and analogously for g, so f is the- desucd»
1somorphlsm o :

1.1. Products of rigid BAs
The following simple lemma will be fundamental for what follows.

1.5. LemMa. Let a,bE A", a#b, and let f be an isomorphism from A | a onto
A | b. Then there exist disjoint non-zero ¢ = a, d < b such that fc=d

Proor. If a¥b we let c=a-—b, d f(a —b), while 1f bZa we let c=
f\(b-—a),d=b-—a. O ,

This lemma has two immediate corollaries worth mentioning. If f € Aut A4 is
non-trivial (i.e. not the identity), then there is an a € A™ with a- fa =0; hence, -
A=BXBxC, where B=A [ aand C=A [ (—a'—fa). If Ais ngld then-
A | a A | b for any two distinct elements a, b € A.

It can also be shown that for an BA A, Aut A has a non-trivial center iff-
A= B X B X C for some non-trivial rigid B and some C such that B and C are
totally' different; see McKENZIE and Monk [1975, Theorem 1.16].

From Lemma 1.5 it follows in particular that if Aut A is non-trivial, then it has
an element of order 2 —hence not every group is the automorphlsm group of a -
BA. This result can be generalized as follows.

1.6. THEOREM. Let A be an infinite BA, and G the direct sum of | A| copies bf the
two-element group. Then Aut(A X A) has a subgroup isomorphic to G. In the case
where A is rigid, Aut(A X A) is actually isomorphic to G.

Proor. For each a € A, let f, be the automorphism of A X A pictured as follows:

(%, y)'_)(x'a’x'lﬁ-a”))'a’ y:—a)
»—>(ya,_x-—'a,x-a,y--—a)

»(yra+x-—a,x-at+y-—a).

If a,b€EA and a#b, say a-—b+#0, then f,(a,0)=(a*—b,a-b)+(0, a)
f.(a,0),so f,#f,. Clearly, f, has order 2; and f,°f, = f,, f = fan, for any a
b€ A. Hence, {f,: a€ A} is isomorphic to G.

- Now let A be rigid, and let g be any automorphism of A X A. Say g(1,0) =
(a,b), and then choose c¢- so that g(c,0)=(a,0). The mapping
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| x|—>(x 0)=, ( y, 0)— y is an 1somorph1sm of A | conto A | a, so by the above
remarks, ‘a=c. ‘Thus, g(a,0)=(a,0) and g(l 0)=g(a,0)+ g(—a,0), so

g(—a,0)= (0, b), and the above remarks give b = —a. Also by the same argu-
ments, g(0, 1) =(—a, a), g(0, @) = (0, a);, g(0, —a) = (—a, 0). Hence,

g(x,y)=g(xfa¥x-—-a,y-q+~y-—a) .
=g(x' a; 0)+g(x- —0,0)+g(0, y'a)'+g‘(01 y'__h)
=(x-a,0)+(0,x-—a)+ (0, y-a)+(y-—a,0)
=f o9, -

‘and g = f_,, finishing the proof. [

The subgroup of Aut(A X A) constructed in the proof of 1.6 is not in general
normal; for example, Fr « X Fr « = Fr «, and Aut Fr « is simple, for x = w.

. 1.7. COROLLARY. If Ais atomless and Aut A is non-trivial, then |Aut A| = R,.

- 1.8. COROLLARY. If A is infinite and Aut A is finite, then A is isomorphic to some
- product B X'C, where B is finite, and C is infinite, atomless, and rigid. Further-
more, Aut A is then isomorphism to some finite symmetric group — namely to the
group of all permutations of the atoms of B. '

After these preliminaries, we now discuss automorphisms of products of rigid
BAs. ‘The following result describes automorphisms of a power of a rigid
(complete) BA A in terms of elements of A.

1.9. TueoreMm. Let |I|U|J|=«, let A be a rigid k" -complete BA, and let
f:'A—A. Then the following condlnons are equivalent:

- (i) fis an isomorphism from 'A onto ’A. -

(ii) Thereis an a satisfying the conditions of 1.4 with respect to f

- PROOF. (11):}(1) is given by Theorem 1.4, Now assume (i). For any i €l and
"JE T let a; = (f§1);. Now (fll i€Il)isa partltlon of unity, so -

4) E (a,] i€l)isa partmon of unity for eachjeJ.
(5). ForanyxEA 1EI andJEJ f§(x a;)=§&(x- au)

For, we have &(x- a,]) &(x<(f€E1);)=f&1, so choose u 50 that féu=
& (x a;). Now: ((fé Yy y= u) is an 1somorph1sm of Al u onto Al (x a;),so -
- u=x"-ay;. Hence (5) follows ’

(6) (au ]E J)is a partltlon of umty for each i€ I..

e

In fact, if j, k€ J andAj 7 k, then '
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0=§,a;- §a, =f£iaij ‘féa, by (5),

so §a; - §a, =0 and hence a,; - @, =0. Furthermore,

4

fe1= X &(fe1),= L £ay
= L fea,; by(5)
| e i§1 A
and hence 1=1,.,a;. So (6) holds.
(7) Forany x€E A, i€, and jE€J, (féx);=x-a; .

For,

(féx); = (f k§J §i(x - ay )
= sz:J (f&(x- aik))j
=X ('fk(x'aik))j by (5)

ker

i

=x-a;,

as desired. Finally, if x € A and jE J, then

(fx)f‘='(fi§1 §‘-x,-) =izE:I (ff,-x,-),- |

i

= ize:l x;-a; by (7) >
and the proof is complete. [l |

The case I=J in Theorem 1.9 gives a characterization of Aut(‘4). In particu-
lar, we obtain:

1.10. CoroLLARY. If A is an infinite rigid BA and 2<m < w, then |Aut("A)| =
| Al | - ‘

A characterization of Aut(”A) different from that in 1.9 can be given, still for
2=m<w: for A rigid, Aut(™4) is isomorphic to the subgroup of ""“Sym(m)
consisting of all continuous functions f: Ult A— Sym(m), where Sym(m) has the
discrete topology: see MCKENZzIE and MoNk [1975, Theorem 1.12]. ‘

Having given a kind of characterization of Aut(‘A) for A rigid, the next natural
problem is to describe when ‘A and ‘B are isomorphic for A and B rigid. To do
this, we make a slight digression. ~ .

An important notion for any BA A is its invariant subalgebra: Inv A= {a €
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A: fa= a for every fEAut A} Note that 0 1E€EInv A and if 0<a<1 then
ac€lnv Aiff A |"aand A | (—a) are totally different.

1.11. THEOREM. Let A be ngzd and let I be a non-empty set. Then Inv('A) is the
: dtagonal subalgebra of ‘A, conszstmg of all constant functions in 'A; in particular,
Inv( A) A.

ProoFr. ' For each ac A, let c, be the member of A such that cii=aforalliel
Then :

(8) fe,=c, forallac A and all fEAut A.

(We cannot obtain this from 1.9, since we have no completeness assumptions.) In
fact, suppose that fc, # c,. Choose i € I so that (fc,)i# a. Then (fc,)iZa or
a#(fc )i. Assume that (fc )iZa, and let b =(fc,)i* —a. Thus, &b = fc,,

f (fb)_c Since b#0, there is a j&€I such that (f (§b))] #0. Now
(febNj=<a, &(FT(&ED)I=<fT'(&b) and hence fE(f (éb)j=éb=
£,(—a). Hence, a and —a are not totally different, contradlctmg the rigidity of A.

aZ(fc,)iis treated snmllarly So (8) holds.

"~ Now suppose that x € ‘A and x is not a constant mapping. Choose i,jelso
that x, ;Zx;. Let a=x;-—x;, so that a7 0. Then §a=<x and {;a=—x, so x and
—x are not totally dlfferent Hence x ,E’ Inv(. A) o . ‘

1.12. TaeoreMm. If A, B are rigid, I #0# J, and 'A = ’B, then A= B. Moreover
\if 1is finite and |A[>1 then |l| |7].

Proor. By 1.11, A= B. Now assume that I is finite. We show that |J|<|1| so
_that, by symmetry, |I|=|J|. Suppose that |J|>|I|. Then ‘A has a system -
: (x k=|I|) of non-zero, pairwise disjoint, pairwise isomorphic elements. For
any fixed m = ]| it is easy to convert such a system into a similar one (k=
7]} with the same properties, where additionally x™'< &1 for some i. Thus, in
|7] + 1 steps we obtain such a system with Vm < |I| 3im € I (™ < £,1). Since A
is rigid, it follows that for each jE€ I, ¢ ;1 does not contain two disjoint non-zero
isomorphic elements. Hence, i is a one-to-one function; a contradiction. [1

Note that for any non-trivial finite BA A if ’A=’A then |I | =1J|. For any

infinite BA A, if |I| |7| <sat A and A=A, then |I|=|J|. In fact, sat(‘A)=
~ |I|* Usat A and sat(’A) = |J|*, so this is clear. (Recall that sat A = mm{x |X| <
k for every disjoint system X C A}.) In the remammg cases we can have A=A
with |I | # |7 | -

1.13. THEOREM Suppose o =<p=A\. Then there is a rtgzd complete BA A such
that "A="A.

.
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ProoF. Let B be freely generated by (x40 @ <p, B<A),and’set .

I=({Xy %oy @ <p, B,y <A, BFY}U
{Xep Xy B<A, o, 'Y<f""a#')’})id'

Set C=B/I and a,, = =[x, g] for all @ <pu, B <A, where [xap] is the image of Xog
under the natural map B—> C. We claim now: .

9) - va<p(2'aa =1) and vB<A(E a;ﬁ=1).-

By symmetry it suffices to prove the first part of (9) Assume that a < g, c € C,
and c-a,, =0 for all B <A. Say ¢ =[y]. There is a finite I' C u X A such that
yE{x,5:(y,8)ET}. Pick B <A such that (y, B)EZT for all . Now Y Xap el,.
S0 we can write

(10) ’ y: xaﬁ = x‘yl",&l ’ xyl,sl toeee x'ym sm x'ym,sm

F X X T X X

yIml + ynqn ?

with obvious assumptions. There is an endomorphism f of B such that fx,, = x,,
for all (6, y)ET, fx,z =1, and fx,, =0 if (6, $) & T and (6, ¥) # (@, B). Note
that if (i, ni) = (a, B), then fx ., =0, and if (i, ni)= (e, B), then fx,,, =0
(i=1,...,n). It follows that if we apply f to (10) and then apply the natural
homomorphlsm of B onto C we get an expression of the form

DI=lxapl+ o+ el

Since [y]-[x,,,;] =0 for each i=1,..., p, it follows that [¥]= 0 as desired.
Now it is known that C can be completely embedded in a rigid complete BA A.
By (9) and Theorem 1.4 our theorem follows. [J A

The above results give a fairly complete plcture of possibilities for A, A r1g1d
Now we discuss how the powers ‘aA,’B can be combined. - :

1.14. LEMMA. Let A be a complete BA with at least one non-trivial rigid element.
(An element a is rigid provided that A | a is rzg:d) Then there is a non-empty
collection C of rigid, pairwise disjoint and isomorphic, non-zero elements of A
such that £ C and —X. C are totally different.

PROOF. Let y be a Indn-zerc') rigid element of A. By Zorn’s lemma let D be a
maximal family of pairwise disjoint elements of A each isomorphic to y; and with- '
y € D. For each d € D let f, be an isomorphism of A [ y onto A | d. Let E be a
maximal collection of pairwise disjoint elements (d, €) E(A | YX(AT —-EZD)
such that A | d= A | e. For each (d, €) € E let g,, be an isomorphism of A | d
onto A | e. Let z=X,,cpd, and set x =y —z. Then x # 0 since D is maximal,
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and x is rigid since x<y. Let C={fx:u€ D}. Thus, C is a collection- of
pairwise disjoint elements of ‘A each isomorphic to x; also, x € Csince x = f,x and
yeD." To complete ‘the proof it suffices to derive a contradiction from the
assumptions 0% v <X C, w= —X C, h an isomorphism from A [ v onto A r w.
Choose u € D such that v - f,x #0. Now. there are three cases. '

Case 1. BtED[h(v f,x)- t#0]. Thus, s—h(v fx) fz#0, smcef, =t and
f(y-—z)=fx=ZE C while h(v-f,x)=—-X C. Thenf, s andfu 'hls are 1som0r-
phic- dls]omt non-zero subelements of y, a contradlctlon fils=z and filh 's=
x,s0 f, s f'h s =0,

Case 2. Vt€ D[h(v-f,x)-t=0] but 3(d, e) € E[h(v- f,,x) e #0]. This time
8ae ‘(h(v-f,x)-€) and f, Th~ Y(h(v - f, x)-e) are 1som0rph1c disjoint non-zero ele-
“ments of y, a contradiction.

. Case 3. h(v- fx)=- - D- (deeb-e Then (f.'(v-fx), h(v f.x) €
(Al )X(A 1 -ED), Al f'( fX)=A 1 h@v-fx), and (f, (v f%),
h(v - f,x))- (d, €) =0 for all (d, e) € E, contradicting the maximality of E. [

1.15. THeOREM. Let A be a complete BA in which the rigid elements are dense.
Then there exists a system { B,: a < B) of non-trivial pairwise totally different rigid
BAs and a strtctly mcreasmg sequence {ka: a < B) of non-zero cardinals such that

.A 11, “°B,.

: PROOF By an’ easy transfinite construction using Lemma 1.14 we can write
A=Il,_z “B,, as in the theorem, except that (ka: a < B) is just a sequence of
non-zero cardmals But we can assume that @ <y < B implies ka =< ky. Now for
any a < 8 we have

I1 {'B,: ka = K'}'} = '“'H {B : ko= ky},
~ and by Theorem 1.2, II{B,: ka'= ky} is rigid. The theorem follows. O
The representation in Theorem 1.15 is not unique, by Theorem 1.13. It is

- possible to refine this representation so as to obtain umqueness see MCKENZIE
and Monk [1975, Theorem 1.21].

12 Products of hombgenéous BAs

Products of homogeneous algebras, and thelr automorphlsms can be analyzed

- much as for products of rigid algebras.

7z

- '1.16. THEOREM. If A is a complete homogeneous BA and A has a dzs]omt famzly
of size M, then ‘A= A.

]

. L 17 THEOREM If A and B.are non- trtvzal homogeneous BAs, A has no disjoint
famtly ofszze |1], and 'A“"B then |I| |J| and A= B. :
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PROOF Let f be the 1somorph1sm from A onto ’B. A. and B have 1somorph1c
non-zero elements, so A = B. Suppose |I| # |J|; wlog say |I| > |J |. For eachj€J

let K; = {i € I f(£1);#0}. Since A has no disjoint family of size [I| eachset K;* |

has power <|1. Thus for every j € J, A has a disjoint family of size |K;| < |I|
and |I| = £,, |K;|. Thus, |I] is singular; so by the Erdés-Tarski theorem A has a
disjoint famlly of size |1 | a contradiction. [J .

1.18. THEOREM. Let A be a complete BA in which the homogeneous elements are
dense. Then there is a non-decreasing sequence {k,: a < ) of non-zero cardinals
and a system (B,: a < B) of pairwise totally different, non-trivial, homogeneous -
BAs such that for every a < B with x,>1, B, has no disjoint famzly of size k,,, "

and A= I,z “B,. The representatzon is unique: if A=II, YC_. with similar
conditions, then B v, K, = A, for each a < B, and for each a < B there is a

permutation w of {8: ks = Ka} ‘such that B, = C_, for each such 8. '

- Proor. Given any homogeneous element a of A, there is a maximal disjoint
family C such that a € C and all elements of C are isomorphic. Thus, £ C and
—X C are totally different. Repeating this construction transﬁmtely, we easﬂy
arrive at the indicated representation.

Now suppose . that another representation is given, as 1nd1catcd say f is an -
isomorphism from II,, _, “B, onto I1, _, *+C,. By Theorem 1.17 it sufficés now to
take any a < 8 and ﬁnd é < such that “B = %(,. Since the C,’s are pairwise
totally different, we know that there is a unique .8 <y such that (f¢€,1); #0.
Thus, "B, is 1somorph1c to an element of *C;. Hence, B, = C; and k, < A,. By
symmetry, there is an ¢ < 8 such that C; =B, and As=k,.Soa=¢ and K, = As,
as desired. [ .

This represcntatxon theorem has the following consequence for aut0morphlsms
Aut A ‘is isomorphic to II, _; Aut(“*B,). Thus, for a complete BA in which the
homogeneous elements are dense, the automorphlsm problem reduces to consid-

ering automorphisms of complete BAs ‘A, A homogeneous. Not much is known . °

about these automorphisms. If A is homogeneous and complete, then Aut A is
simple. See STEPANEK [Ch. 16 in this Handbook] and RuiN [Ch. 15 in this
' ‘Handbook] for more on automorphism of homogeneous BAs. '

- 1.3. Products of BAs with no rigid or homogeneous factors .

Not much is known about BAs of the klnd mentioned. Complete BAs \mth no
rigid or homogeneous factors were shown to exist in StEPANEK and BALcar [1977).
See also KoppELBERG [1978] and StEPANEK .[1982]. An casy example of . an
incomplete BA with no rigid or homogeneous factor was given in BRENNER [1983]
See also STEPANEK [Ch. 16 in this Handbook]. ,

To close this section we mention some open problems.

ProBLEM 1. If the isomorbhisrn in the proof of Lemma 1.1 is’ onto, are the BAs
pairwise totally different?
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PROBLEM 2. Does the decomposmon in Theorem 1 3 extend to mcomplete BAs in
some form?

- ProBLEM 3. What can one say about |Aut(‘4)| for A_homogeneous?.

o2, Galois theory of simple extensions

Given BAs AC B, we let Aut, B={f € Aut B: f | A is the identity}. Con-
nections between Aut, B and Boolean algebraic properties of the extension
* relation between A and B may loosely be called Galois theory for Boolean
algebras. In this section and the next one we deal with this theory. As will be
seen, the results are easy and may be considered as part of the folklore of this
. subject (especially by ring theorlsts) In this section we take the case in which B is

a simple extension of A: B = A(u) (A U {u}). In both the sections our treat-
ment is quite elementary Some of the results and formulations may seem more
natural when expressed in terms of the sheaf theory described in Part I of this .
Handbook.

IfAC B and u € B, we define two 1deals I and I of A:

18={a_€A:a-u=0},
={a€Aia-—u=0}.
Ideals I and J in a BA A are disjoint if I N J = {0}.

2.1. THEOREM. (1) Let A(u) be a simple extension of A. Then Iy and I7 are
disjoint ideals of A. Furthermore, u € A iff Iy + I = A.

- (ii) Conversely, let J, and J, be disjoint. 1deals of A. Then there is a szmple
extension A(u) of A such that Iy =17, and Iy =1J,. If A(v) is any other simple
extension of A with Iy=1,, I’ = Jl, then there is an isomorphism of A(u) onto
A(v) which is the identity on A

Proor. The first part of (i) is clear. If u€ A, let x€ A be arbitrary. Then
x=x-—u+x-u€ly+1I}. So Iy+Ii=A. Conversely, suppose that I + 1=
JA.Say 1=x+y w1th xelo, y EI Then x+y =0 since I and I7 are dls]omt
Thus, y=—-x. Now x-u=0and —x-—u=0, sox——uanduEA ;

For (ii), define F: A—(A/J,) X (Al],) by fa=(ally,ald;) for all a€ A.
Clearly, f is an isomorphism into. Since (A/J,) X (A/J,) is generated by Rng f U
{(11J,,0/1,)}, the existence of the desired A(u) is clear. The uniqueness part -
follows from the Sikorski extension criterion. [ )

The automorphism groups Aut, A(u) are characterized in the following
theorem. In this theorem and several others below, I and II refer to operations in
the completion of A. ‘

2.2. THEOREM. Let A(e) be a simple extension of A;“Let F={a€ A:a-X(I; + )
I7)=0}. Then (F, A) is an abelian 2-group, and it is isomorphic to Aut, A(u)
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~ Proor. For each a€e F define f A(u)— A(u) by setting fx = x for all x €.A and
fu=aAu; f, extends to an endomorphism of A(u) by Sikorski’s extension
criterion. In fact, if x€ A and x-u=0, then xE€1I;, so x-a=0, hence
x(aAu)=0; if xEA and x-—u=0, then xE€I;, so x-a=0, hence
x:—(aAu)y=x-(a-u+—a-—u)=0. Now f,°f, =identity, so f, is an automor-

phism. Thus, f: F— Aut, A(u). It is easily checked that F is closed under 4,

hence (F,A) is an abelian 2-group, and f is an isomorphism from F into -

Aut, A(u). Now let g € Aut , A(u) be arbitrary. Write gu=b-u + c- —u with b,.
cCEA.Nowb-c=gu,sob-c=g (b .¢) < u. Similarly, —b - —c - gu =0 implies
that —b-—~c-u=0.Sogu=(b+—c)-u+(c-—b) —u.Leta=c-—b. We claim
that a € F. To show this first let x € I. Thus, x-u =0, so x-gu=0, hence
x+c-—b-—u=0; but x-u=0 then y1eldsO x-c-—b=x"a. Second, let x €
I7. Now g( uy=—gu=c-—b-u+(b+—c)-—u, so the same proof ylelds
x+a =0 again. Thus, x € F. Clearly, f g. O .

By Theorems 2.1 and 2.2 the relative automorphism groups Aut , A(u) can be
of any size « for which there a BA of size «, namely 2™ for any m € o, and any .
infinite .

. Given a sunple extension A(u) of A, we denote by F=F A% the ideal F deﬁned
in Theorem 2.2, and by f= fA" the 1SOm0rph1sm defined there.

If G C Aut B, we set Fix G= {b € B: gb= b for all g€ G}.

2.3. TuEOREM. Let G be a subset of Aut, A(u) and set F' = {a € F*": Au € G}.
Then FixG={c-utd-—u:c, dEAand(cAd)-ZF'=0}. :

Proor. To prove C, leta€ F', c, dEA,andc-u+d- —uEleG we show that .
(cAd)-a=0. We have

ccutd-—u=f(c-ut+td - —u . -

=c-—a'utca-—utd-autd-—a-—u.

Hence, c-u=c-—a-u+d-a-u, so [(cca)A(d-a)]-u=0. Similarly,
[(c-a)A(d-a)]-—u=0,s0 (cAd)-a=0. - o
The inclusion D is treated similarly. [J

Now we can characterize “‘closed” groups:

!

2.4. THEOREM. Let A(u) be a simple extens:on of A, let G be a subset of
Aut, A(u), and set F'={a€ F*“: f € G}. Then the followmg conditions are
equivalent: ,

(l) G= AutleG A(u) “

(i) F’—{aEFA" a<Y F'}.

Proor. (i)= (ii). Assume (i) and take any a € F with a<¥ F'; we show that
a€ F'. To this end it suffices to take any x € Fix G and show that fx=x. By
Theorem 2.3, say x=c-u+d-—u w1th (cAd)-EF'=0. So (cAd) a=0
hence x Ele{f} by 2.3. :
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~ (i))=>(i). Assume (ii), and let g € Auty, ; A(x); we want to show that g € G.
Say g = f, with a € F*"; we need to show that a € F’. Suppose a & F’; then by (ii)
a-—LF' #0;saybEA” and b<a-—X F'. By 2.3 we have b-u€Fix G, so

b-u=fb-uy=b-—a-utb-a- —u.

So b - —u=0. Similarly, b - —u €Fix G, hence b - u =0, so b =0, a contradiction.
O

Using 2.4 it is easy to construct examples of closed groups, and examples of
non-closed groups. Also we can show:

2.5. THEOREM. Let A(u) be a simple extension of A. Then the following conditions
are equivalent:

(i) For every subgroup G of Aut, A(u) we have G = Auty,, . A(u).

(il) |[Aut, A(u)|=2.

Proor. Trivially (ii) = (i). Now suppose that |Aut, A(x)|>2. By Theorem 2.2
choose 0<b<a in F** Let G={Id, f,}. By Theorem 2.3 it is clear that.
fo € Autg, g A(u). Hence G # Auty,, ¢ A(w). [ :

Now we consider theiother aspect of Galois theory, namely closed algebras.

2.6. THEOREM. For any simple extension A(u) of A the following conditions are
equivalent: '

(i) A=Fix Aut, A(u).

(i) I+ I{={x€A:x=L (Ig + I7)}.

Proor. (i)=>(ii). Assume (i), and let x € A with x <X (I + I7); we are sup-
posed to show that x € 1% + I%. Now.x - & F** =0, so by Theorem 2.3, x- —u €
Fix Aut , A(u) = A. Hence, also x-u€ A, and x=x-—u+x-u€l;+1;.
(ii) = (i). Assume (ii), and let x € Fix Aut, A(x); we show that x € A. By
Theorem 2.3 write x=c-u+d-—u with ¢, dE A and (cAd)-X F=0. Now
Y F=-X(Iy+1I}), so by (ii) choose a € I and b € I with cAd=a+ b. Then

x=c¢c-—d-u+d-—c-—u+c-d
=c-—d-b-ut+d-—c-a-—u+c-d
=c-—db+d-—c-at+c-dc€A. O

Some special cases of simple extensions are of interest. There are two extreme
cases: in the first, |Aut , A(u)| =1, or equivalently, by Theorem 2.2, I+ I is
- dense in A. We then call A(u) a rigid simple extension. The second extreme case
- occurs when u is independent over A, i.e. a-u#0#a-—uforalac A", This is
equivalent to saying that I;=I{={0}. In this case we have F A=A and
Fix Aut , A(u) = A. ~ N
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It is of interest to see the connection of the observations in this section with the -
known Galois theory of commutative rings. We give some indications along these. -
lines; see CHASE, HARrisON and “ROSENBERG [1965], DEMEYER and INGRAHAM
[1971], Macip [1974], and VILLAMAYOR and ZELINSKY [1969] for the general )
theory and further references.

Suppose that A C B. We form the amalgamated free product B®,B. “There is
a homomorphism p from B @ , B into B such that u(b&c)=b-c for allb,cEB.
(For clarity we write b® ¢ for b - ¢, where b comes from the first factor B, and ¢
from the second.) We say that B is a separable extension of A provided that there
isau€B® ,B such that pu=1and (keru)- u={0}.

2.7. THEOREM. If AC B, then B is a separable extenswn of A tff Bis a ﬁmte .
extension of A.

PROOF. =>. Let u€ B®, B be such that pu=1 and (ker m)-u= {0} erte
u=X~, b,®c;with ¢, ¢ =0 for i # j, each ¢, #0. Since l—pu—Z:"lb c;, it
follows that ¢, < b; for all i,and Zi., ¢c;=1. We may assume that ¢, = b, for all i.

Now we clalm that B = (AU{cl,.. ,c,}). Let d€B. Then since -

(ker w)- u = {0}, for any i, (dD(—d))(c; @c) 0,'so there is an 5, € A such
that d-c;<s;,and —d-s;"¢; =0. Hence d-c;=s;" C;. Therefore

hence dE(AU{cl,..,. }) '
& LetB= (AU{ul',.. u,}). We may assume that u; - u; =0 for i#j, and
u, +--+u,=1 Setv—Z"'lu @ u,. Thus, pv =1. Now1tlseas1lyver1ﬁedthat .
ker p is generated by {d®(—d): dEB} So to check that ker p-v = {0} it
suffices to take any d € B and 1=i=m and show that (d® (- d)) (u; @u) O :
Write d=5", s, u, with each 5,€ A. Then d-u,=s; u,<s, and —d "y
-8 u.<—s,, hence [dD —d] - (u, GBu) 0. 'O -

Let B be any BA. Automorphisms fand g of B are strongly distinct if for every‘? '
non-zero b € B there is an s € B such that fs - b #gs-b. :

2.8: LEMMA. If Iy or I is non-trivial, then no members of Aut , A(u) are strongly
distinct. .

Proor. Say 0# a € I;. Let g and h be distinct members of Aut, A(u) By 2.2,
write g=f;, h=1., w1th d,e € F**, Then for any sEA(u) write s =5, u +
- —u. Then

f‘ds-a=.[s0-'(dA.u)+_s1-—(dAx;)]-a

=s,a,

since a-u =0 and a - d =0. Similarly, f,s = s; - a. This shows that f, and f, are not
strongly distinct. [J SR
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2.9. LEMMA. Assume that u is independent over A [hence It=14= {0} and
" F** = A). Let d, e € A. Then the following conditions are equwalent

(1) f;and f are strongly dtstmct

(i) d =—e.

PROOF (i) @(ii) Suppose that d # —e. Then there are-two possibilities.
Case 1. d+e+#1.Say0#ac€ Aanda-d=0=a-e. Thus, a-u#0. Then for
any s € A(u), say with s =s,-u+ s, —u, with so, 5, EA,

fds a-u=/|s, (dAu)+s1 —(dAu)] a-u

=85,"a-u,

| and similarly f,s-a-u=sy-a-u, so f; and f, are not strongly distinct. .
“Case 2. d-e#0. Then d-e-u0 and for any s€ A(u) as above,
fisd-e-u=s,-d-e-u=fs-d-e-u, again showing that f, and f, are not

 strongly distinct.

- (ii)=>(i). Given 0# b € A(u), say wlog b has the form ¢ - u with c € A. Then
fi(—u)y-ccu=—(dAu)-cru=c-d-u and f_,(— W-cru=c-—d-u#c-d-u.
Hence f,and f_, are strongly dlstmct O

Let A=B. We say that B is Galois over A if B is a separable extension of A
and there is a finite subgroup G of strongly dlbtlnCt members of Aut, B such that
Fix G = A.

2.10. TueoreM. For A(u) a szmple extension of A the following conditions are
equivalent: :

(i) A(w) is Galois over A,

(il) u € A or u is independent over A.

Proor. (i)=> (ii): by Lemma 2.8. (ii) = (i): assume that u is independent over A.
"By 'Lemma 2.9, f, and f; are strongly distinct, so it suffices to show that
Fix{ f,, f} = A. Suppose that b EFix{f,, f,}; say b=b,-u+ b, - —u, with b,
b,€A. Then b=fib=by-(1Au)+b,-—(1Au)=by-—u+b, -u, so by-u=
b, - u, hence by A b, € Iy = {0}, hence by=5b,. Thus bE A. [ -

‘Given A=< B, we call B weakly Galois over A if there is a finite partition of .
unity {a,: z<m) in A such that for each i<m, B r a; is Galois over A | a,.

2 ll THEOREM. A(u) is weakly Galois over A iff I, and 1| are prmczpal

PROOF :> Let (a;:i<n) be a partition of unity in A such that A(u) | a; is
Galois over A | a, for all i <n. Note that A(u) | a,=(A | a,)(u-a,) for each
i<n. Say by Theorem 2.10 that u-a,€ A | a, for all i<m, while u-a; is
mdependent over A | a; for m=i<n. Let x=%,_, —u-a;, y=%L,_,u-a,

Thus, x € I and y € I}. Suppose that z is any member of /. Thus, z=<—u.
ASuppose z-a,#0 with m=i<n. Then z-a;,-u+#0, a contradiction. Hence,
Z=x. This shows that Iy= ({x})'d Slmllarly, I“ = ({y})’d
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&. Say I = ({x})id and7“= {{y}) Let z=—x-—y. Then (x+7y,2) is "a '
partition of unity in A. Now A()  (x+y)=A | (x+y). For, suppose that.
b€ A(u) ' (x+y). Thus, b<x+y and, say, b=c-u+d-—u with ¢c,d € A.

Then b:x=d-x € A and similarly b-y € A, so b € A. Also, A(u) | z is Galois . |

over A | z, in fact u- z is independent over A | z. For, suppose that 0+# b €
Al zIfb-u-z=0,thenb-u=0, hence b€ I; and b =<x so b =0, a contradic- .
tion. Similarly, b- —a-z =0 is impossible. [

3. Galois theory of finite extensions

‘ It is more complicated to analyze the relative automorphism groups for
arbitrary finite extensions. This was carried out by KOPPELBERG [1982] using sheaf
theory. We present these results here in a ‘non-sheaf setting. We begin with a
generalization of Theorem 2.1. If B= (AU F) for some finite set F, where
A < B, then we write B = A(F). We call F reduced if it is a partition of unity, and -
for all distinct u, v € F we have u &€ ( AU (F\{u, v})). Any finite extension A(F)
can bewritten in the form A(G), G reduced: just let G be a partition of unity
such that A(F)= A(G) of smallest cardinality — clearly poss1ble Note that if Fis
reduced, then 0 F. We call (b,: i <m) reduced if {b;: i < m} is and the b s are
distinct. If (b i <m) is a finite system of elements, we set A(by, ..., b, ;)=

A({by,...>b,,_(}). A finite system (I:i<m) of ideals is an extender if the o

following condltlons hold:

(1) ‘Ion--.nlm_1={0}.
(2) ’ Foralli,j<mandallaEA,ifaE>I,.,then—a,&’lj.

Given a finite partition of unity ¥ = (u;: i<m) in B, and A=< B, we deﬁne an
associated sequence of ideals (Ji:i<m) by

Ji= {aE A:a u;=0} .
The following extension pf Theorem 2.1 holds.

3.1. TueoreM. (i) Let (u;:i<m) be reduced in A(ug,...,u,_,). Then
(Ji:i<m) is an extender. ‘ :

(ii) Conversely, let (K,: i <m) be an extender. Then there is an extension B of
A and a reduced system {u;:i<m) in B such that B= A(u,,...,u,_,) and
J4=K, foralli<m. If C= A(vy,. .., V,_) with (v;: i <m) a partition of unity
and J; = K, for all i <m, then there is an zsomorphzsm g of B onto C such that
ga—afor allAEA and gu; = v, for allz<m

Proor. For (1) clearly Jy N -+ N J" {0}“ Now suppose that i, j <m, a'é J"
and" —a€J;. Then a-uy, —0——a u;;, so i#j since u;#0. Then u;
(—Zppi,j Ui) " — @, SO U, € (A U {u,: k#z j}), a contradiction.
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“For’ (11) let B= l'I,<m A/K;, and deﬁﬂe"g A—> B by setting (ga), = a/K, for
éach i <m. Clearly, g is an isomorphism into. For each i<m let u; EB be
defined by u;i=1, u] 0 if j#i. Then {u;: i<m) is a partition of unity, and

© B= (g[A])(uo,'. .., U, ;). Also, clearly J! =g[K;] for all i<m. To show that

Augi<m) is reduced suppose that i, j<m, i #], and u, E(g[A]U{uk k#
i, ]}) It is easily seen that

"-(*) - (glA]U{u,: k#i, j})={b€E B: for some a € A,
| ~ b;=alK; and b;=alK}} .

Hence there is an a€ A with ui= a/K and u;—a/K Thus aEK and
—a € K;, a contradiction. The ﬁnal assertion of. (ii) is clear by the SlkOrSkl
~extension criterion. [ -

" It is worth noting that not every finite extension is a simple extension. For,
suppose that u is independent over A and v & A(u). Then we claim that A(u, v) is
not a simple extension of A. For, suppose that A(u,v)= A(w). Write u=
a-w+b-—w, where a,b€ A. Then a-b-—u=0, so.a-b=0. Similarly,
“—a+—b=0, so b=—a. Thus, u=a-w+ —c'z-—w. Hence, —u=—-a-w+
a:—w,sow=a-u+—a-—u€ A(u). Therefore v € A(u), a contradiction.
Now we shall give a (rather complicated) description of the. members of
~ Aut, B, where B= A(ug, ..., u,_;), with (u;:i<m) reduced. For each p €
Ult A let B,=B/{ p)", and let pr, be the natural homomorphism from B onto
B,. Thus Bp is a finite BA, and its atoms are the non-zero elements in
{pr Ugy -« 5 Pyl ). Now if g € Aut, B, then g induces an automorphism of -
B hence a permutation of the atoms of B hence a permutation of {0, ...,

—1}. Our description hinges on a charactenzatlon of these permutations. We o

‘denote by §,, the symmetric group of all permutatlons of {0,...,m—1}.

Temporarlly fixpeUlt A If i, j<m, we write i~j at p provxded that there is
a ¢ € p such that for all g € Ult A with ¢ € ¢ we have —u, € ()" iff — —u, € ()"
Clearly, this is an equivalence relation on m. It is easily checkcd that i ~j at p iff
there is a ¢ € p such that for ala€ A | c,a€Jiff a€ J;. Next, if pE S,, we
say that p is compatible with p if i ~ pi at p for all i<m. Fmally, 1f gEAuUt, B
and p€S,, we say that g is induced by p at p if for all i<m we have
pr,gu;=pr,u,. (Note that' g is uniquely determined “on B,” by this last
condmon ) If one of these three relations holds — i~ j at p, pis compatlble with p,
g is induced by p at p - then therc is a ¢ € p such, that the glven relation holds for
any g with ¢ € q in place of p. :

3.2. LEMMA. Let pEUtAandp€<S,. Thenpis compauble with P iff there is a
g € Aut, B which is induced by p at p. e .

_ PROOF. First suppose that p is compatible with p. By a remark before this lemma,
. ‘'choose cEpsuch thatforalla€E A | candalli<m,a€JiffaEJ, SlkOl’Sle :
“extension criterion yields an isomorphism g of B into B such that g I A is the
‘identity and gu, = —c-u,+ ¢ u, for all i <m. Clearly, g maps onto B, and so
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gE Aut, B. To show that ~g- is induced by p at D, take any i<m. Clearly,'

—(gu; Aup,)e(p) SO pr, gU; = Pryl,;, as desired. |
‘Now suppose that g EAut B is mduced by p at p. Let i <m. Choose ¢ E p

such ‘that ¢ =<(—gu, +u,)" (gu, u,;). Then for any: aEA I c, aGJ“ iff
-u; =0 iff a € J;;. Hence, p is compatlble with p. O

Now we are ready for the theorem charactenzmg members of Aut B.If Tisa
finite partmon of unity in A, then a function h: T— §,, is compattble with T if for
all t€ T and all p € Ult A w1th t € p we have that h, is compatlble w1th p.

3.3. THEOREM (1) Let T be a_finite. partition of unity in A and suppose that
h: T— S, is compatible with T. Then there is ag=g,€ Aut, B such that, for all
i<m, .

=X tou,.

Moreover, g is induced by h, at p whenever tE p. -
~ (ii) For T a finite partition of unity in A, let G {g,, : T— S, is compatible -
with T}. Then Gy is a finite subgroup of Aut, B. -
(iii) IfHisa ﬁmte subset of Aut , B, then there isa ﬁmte partmon T of umty in
A such that H C Gr.

Proor. (i) For the existence of git sufﬁces to show thatif i<mand tE€ T, then
there is an isomorphism & of B | (t-u;)onto B | (¢-u,;) such that k(a-¢t-u,)= -
a-t-u,,; for all a€ A. To do this, it is enough to check that a-¢t-u, =0 iff
a-t- uh,~0 Suppose that a-t-u,#0. Say a- - u, EqEUltB Letp ANg;
sopE Ult A. Now tE p, so h, is companble with p. Choose ¢ € p so that for all
x€EA | ¢, xeJ! iff XEJ,.‘, Now a-t-u,-c€gq, so a-t-u;-c#0, hence
a-t-c&J;. Thereforea-t-cZJ,,;, soa-t-u,,#0. The converse is similar. For
the final statement of (i) assume that ¢ € p. Then for any i<m,t-gu,=t-u,;=
u,; and t-u, ;= gu;, so t=(—gu, +u,”) (- u,“+gu) consequently pr, gu'.=
pr uht '

(ii) Obviously G is finite. The identity element of Aut, B is g,, where A, is the
identity for each ¢ E T. If h, k: T— S,, are compatible with 7, then so is /, where
l,=hrok foreach t€T, and g, = g, °, 8- If h is compatible with 7, then so is k,
where k,=h;' for each t€ T, and g:' = g,. Thus, (ii) holds.

(iii) Temporarlly fix kK € H; we construct a finite partltlon of umty T in A. For
each pES,, let ‘

vi={pEUltA: p induces k at p} .

Then v is an open subset of Ult A by the comment before Lemma 3.2,
Furthermore

1 .Ult”A' = U v;.
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In fact let pEUltA Define p €S, as follows; let i <m. If —u, §= (p)f'

pi = i; otherwise ku,/{ p)" is an atom u; /(p)fl of B,, and we set pi = j. Clearly,
_induces k at p, and so p € v . That is, (1') holds.

By (T) and the compactness of Ult A there is a partition of umty (c pES,)

in A, c =0 allowed, such that sc - v forall p € S,,. Clearly, if c epeUltA,
then p s compatible with p — this is the content of Temma 3.2. We let T, be the
set of non-zero elements of {c p€S,,}. Then let T be the common reﬁnement
~of all the partitions T, for k € H To prove that H C G, let k€ H be arbltrary
We define h: T— S,,. Given tE€ T, choose h,E S, s0 that t< c,I Now 4 is
compatible with T, since if t € T and p € Ult A w1th t € p, then c,, € p and so A, is
compatible with p. We claim that.g, = k. To show this, take any i <m and t € T
we show that g,(¢t-u;)=k(t-u;). Now g,(t-u,)=1t-u,; and k(t-u;)=1t-ku,.
Suppose that these are not the same. Say 7-(u, ,Aku )EqeUlt B and set
p=ANgq. ThustE p, so c,, € p. By construction, then h, induces k at p. Hence,
—(ku;Au,,;) € { p)f‘ C g, a contradiction. This finishes the proof of Theorem
3.3, O

" Recall that a group G is locally finite if every finitely generated subgroup of G is
finite.

3.4. COROLLARY. Aut, B is locally finite.

" Now we discuss in the general finite extension case the general notions of ring
theory mentioned in the previous section — Galois and weakly Galois BAs First
we have a sunple lemma generallzmg Lemma 2.8. :

3.5. LEMMA. If a=u; for some i<m and some a € A*, then no members of
Aut , B are strongly distinct.

Proor. By Theorem 3.3, we may assume that our two arbitrary members of
Aut , B have the form g,, g,, where h, k: T— S, are compatible with 7', T some
finite partition of unity in A. Choose tE T so that a-t7#0. We show that
g,s-a-t=g.s-a-tfor any s € B, so that g, and g, are not strongly distinct. Say
s=ey uyt--+e, ;- u, ., withe, ..., e, _, €A Then, since a=<u,,
gs-a-t=g(s-a-)=g,s;-a-t-u)=gy(s;-a-)=s;-a‘t.
Similarly, g,s-a-t=s;,ca-t. O

.. For the next theorem, we say that C is a relatively complete subalgebra of D if |
+ C=D and for every d € D there is a smallest cE C such that d < c; see, for
example, HaLmos [1955]. :

3.6. THEOREM. Let A and B be as. above Then the following conditions are
" equivalent:

(i) For every i <m, J} is principal.

(i) A-is relatively complete in B. . "~
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(ili) There is a g € Aut ;B such that gb # b for all b € B\A. :
(iv) There is a finite subgroup G of Aut, B such that Fix G = A.

Proor. (i)=>(ii). Say J*={(a,)' for each i<m. Let bEB; say b=cq uy+
et ycu, , With ¢g,...,C 1 EA. Set d=cy-—ag+- -+ Cp_y—a,_;.
Thus, b<d € A. Suppose b=e& A. Then for any i <m, ¢;-u;=b-u,<e-u,
so ¢;* —e-u; =0, hence ¢, —e=4q,, or ¢;- —a;=<'e. Thus, d<e asdesued .
(11):)(111) Define p =g iff p, qultA and for. all i<m, —u,€{p)" iff
—u, € (q)". This is an equivalence relation on Ult A. Each equlvalence class is .
open: let p € Ult A. For each i <m let a, be the smallest element of A =y, and

let ¢, be a, or —a, depending on which is in p Then s(cy- - ~Cp_q) IS contained
in the equlvalenoe class of p. In fact, let ¢, - c,..EQE Ult A and let i <m.
If —u, e(p)“ then b < —u, for some b € p. Thus u;<-—>b,soa,=-—b and so

¢; = —a,. Hence, —a,Eq and so —u, € (q)" The,converse is similar. Thus, -
indeed each equlvalence class is open: Hence there is a finite partition of unity 77
such that for each ¢t € T, st is contained in an equxvalence class. ‘

Let t€T. Let p€EUlt A with tE€p. There is a permutatlon h, of {0
m—1} such that hi=i whenever pr,u, =0, while pr,u,—pr,u,; is a cychc '
permutation of the atoms of B, for pr,u; ;é 0. The eqmvalence property assures us
that this definition does not need to depend on p. Clearly, h is compatible with 7.

Now let b € B\A. Let p € Ult A such that b, —bZ{p)". Say t€ T with t € p.
By Theorem 3.3(i), g, is induced by £, at p. Since h, is cyclic and pr b is the sum
of some, but not all, atoms of B,, g, moves b.

(111):)(1v) This-is clear by Theorem 3. 3(11) (iii).

(iv)=>(i). Let i <m, and suppose that J} is not principal. Then

(*)‘ {aEA —a-u;=0}U{a€E A: VxE(A i —a) (x-u, #0)}

has the finite intersection property. In fact, otherwise we obtam

a1""'an'c1"""cp=0,'
with al,.. s Cpseen » Cp EA —a,-u;=0 for k_=1,...,n, and Vx€E.
(Al —¢c)” (x u#O)fork 1,. ..,p.Soci~---.-cpS—a1+ *+ —a,, and
hence cl ‘u;=0. Choose d€J; with c¢,-----¢c,<d. Then
—(c1 ‘c )#0 sayd —c, #0. But d - u; =0, contradicting “the choice of

the c¢,’s. So ( ) holds.

Let p € Ult A contain the set (*). Now by Theorem 3 3(111) we may-assume
that the subgroup G- described in (iv) has the form G for some finite partition of
unity 7 in A. Say € T N p. Let a be the equlvalence class of i under the relation
~ at p. By the remark before Lemma 3.2, choose a € p such that for every
qEUltA if a € g, then for any j, k€ a we have j~k at q. Now we claim

() there is a j & such that —u; & (p)".

For, otherwise, for each j& a there is a ¢;E€p such’ that ¢;=—u;. By the )
definition of p (see (*)), there is then an element x € (A | Iz, ;- @)™ such that
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X-u,= —0.Ifxe q EUlt A then Proti = 0 for all k< m, a contradlcuon So (1)
holds.

Letb=a-t- Eka Up. Then 0<pr,b <1 using (1), so bZ A. We claim that
gb=0>b for each gE G, (contrad1ct1ng (1v)) Say g=g,, where h: T—S,,
compatible with T. Thus, &, is compatible with p, and so h, maps « into a. By
Theorem 3.3(i) we have g(a t-u)=a-t u,, for each kE a, so gb=b. This
finishes the proof of Theorem 3.6. [ :

“We call (u i< m) mdependent over A if for all i<m and alla € A we: - have
a-u, #0#a-—u,. : :

3. 7. LEMMA If {u;: i<m) is independent over A and A is a relatzvely complete
subalgebra of B, then B is Galois over A. :

Proor. Let o be a cyclic permutatlon of {0,...,m—1}. Then using the proof of
Theorem 3.6(ii) = (iii), we choose h: T— S, compatlble with T such that 4, = o
for all t€ T, and Fix{g,} = A. It suffices to show that the powers of g, are
‘strongly distinct. Suppose that k and [ are such that o* # 0. Assume that v and w
" are associated with o* and o, respectively, and let 0% b € B. Say b =e,- u, +

te, U, 1w1th €os - -5 Cpm_y EA. Say e;- -u,#0, and choose tE€ T with
- e, u; #0. Letaj—z Then v(t u) b=t-e - u;, while w(t-u) - b=1-eu,
for some s # i, s0 v(t-u;) b # w(t-u;)-b; so v and w are strongly distinct. O

. The converse of Lemma 3.7 does not hold. To see this, let A be a complete
atomless BA, and suppose that 0<<a <1 in A. Using Theorem 3.1itis easy to
' ﬁnd an extension B = A(u,, u;, U,, u;) of A such-that Iy =17 = {a)" and I}

= {0}, with (u i <4) reduced. Then A is a relatively complete subalgebra of
B (u,;:i<4) is not independent over A, but B is Galois over A. The last
_ . statement is seen by the argument of the proof of Lemma 3.7, letting o be the
permutation (0, 1)(2, 3).
 We do not have a characterization of the Ga101s extenswns but there is one for
, the weakly Galois extensions:

3. 8 THEOREM B is weakly Galois over A ijf A is relatively complete in B.

PROOF =>. Say (a;:i<n) is a finite partltlon of unity m A such that B r a; is
Galois over A | a, for each i <n. By Theorem 3.6, A- | a, is relatively complete
in B | a, for all z< n. Hence, A is relatively complete in B

<. For ‘each i <m choose g, € A max1mum such that g, = —u,. Then for each
E Cm set '

cg=1Ila- Il —a,.
iIEE xEm\E
Let X={cz: EC m}\{O} Thus, X is a finite partmon of unity. For E C m and
"¢ #0, B | ¢ is generated by A | cpU{u,c:iEME). fXxEA | ¢p, i€
m\E, and x - u, - ¢; =0, then x =< —u;, so x < g, and hence x =0. Thus, for each
such E there is a subset F of {u,- c,: i € m\E} Wthh is reduced, and independent
‘over A—so B | cg is Galois over A | c;. This finishes the proof. [
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4. The size'of automorphism‘gr.oupS'

In this section we present the known results (mamly from McKEnziE and MONK - .
[1975]) concerning the relationships between |A| and |Aut A|, more’ precisely,
those provable in ZFC. As we shall see, under GCH all the a pnon possible
relations between these two cardinals are true.
~ The results depend on the following basic theorem. (It is also found in MONK
.[Ch. 13 in this Handbook] in a stronger form, with a more comphcated proof)

4.1. THEOREM There is an atomic BA A of power 2° with |Aut A| =

PRrOOF. Let ( ff § <2”) enumerate all of the permutatlons of @ which move
infinitely many integers, Now we shall define two sequences: a sequence,
(A,: £=2") of subalgebras of Pw, and a sequence (B,: £ <2”) of subsets of
g’w so that for all ¢ =2 we have |A§| |B. =&+ @ andA N B, = 0. To start
with, we let A, be the BA of finite and coﬁmte subsets of w, and B =0.ForAa
limit ordinal <2° we set A,=U,,4,B=U,, B,. The step from £<2%t0
£ +1 is the essential thmg -
Choose I infinite, I C w, so that I 0 f.[I ]=0: ‘The followmg claim is the heart of
the proof:

(1) I)here is an infinite J € P1\A, such that (A, U {J}) Nn(B, U {fe["]}) -

Suppose that (1) fails. Thus

(2)  for every infinite J € PI\A, there ex1st C,D E A, such that. (C nJ ) U -
(D) € B, U {f[J]} .

Let K, be a family of palrwme almost disjoint infinite subsets of I with [Kol = o

Then by (2) and the condition |A,|=<|[£| + o there exist C, D € A such that the

set o
K ={J€ K)\A,: (CNT)U (D\J) € B, U {£[71))

has power >|A§| U|B,|. Now -

(3) . there exist at most two Je K, such that (C NnJ)yu (D\J )= fE[J]

For suppose: there are at least three such Jo» Jl, 12 Now ff[J ]ﬂ J,=0, so
D\J; = f,[J] for i <3. Hence

fg[JoﬁJ]Uff[J ﬂJz] (fg[Jo]nfg[Jtl)U(fg[J]nfg[JZ])
= [D\(J, U J)] U [D\(Jp U 1,)]
= (D) N[\ N 1)} 5

but the first set is finite and the last cofinite, a COIltl'adlCtIOIl So 3) holds



540 - J.D. Monk / AUTOMORPHISM GRoups a ) [cn. 14"

) Let K, be K, w1th0ut the J’s of (3) Since |K2| > |B§| + w, there is an Ee B,
' such that the set’

={JEK,: (CnJ)U(D\J)—E}
has at least two elements J, H. Then

E=[(CNJNH)UDN(DDN HO INE]EA,,

" a contradiction. Hence (1) holds.

Choose J as in (1). Let A, ., = (A, U {J}) ¢+1 = B U{fe[J]}. This finishes
the construction. Let A = A_, where a =2°. Clearly, |A| =2 A is a subalgebra
.of Pw containing all singletons. As such, each automorphism of A is induced by a

- permutation of w. Each finite permutation of @ induces an automorphism of A.
- These are the only automorphisms of A. For suppose that g is an. automorphis’m
of A induced by the non-finite permutation f of w. Say f = f, with { <. Then

with J as in the construction we have J € A but g] 1€ A a contradiction.

|

. From Theorem 4.1 we can obtain at once the main facts about the size of
automorphism groups: - . :

4.2. TueoreM. (i) If m € w, m#0, and k > w, then there is a BA A with |A| = K
‘and |Aut A| = m!. For any infinite BA B with |Aut B| < w we have |Aut B|=
for some positive integer m.
(ii) If 2° <k, then there is a BA A such that |Aut A| = w.and |A| = «.
(iii) If w <k =< A, then there is a BA A with |A| = A and |Aut A| = k.
(iv) If @ = «, then there is a BA A with | A| = k and |Aut A| =

Proor. We already proved (i) in Corollary 1.8. For (u) let A be the BA given in
Theorem 4.1: |A] = 2%, |Aut A| = ©, A atomic, and let B be an atomless rigid BA
of power . Then A ><,B is as desired, by Theorem 1.2. For (iii), let A be a rigid
BA of power x and B a rigid BA of power A such that A and B are totally
different. Then A X A X B is the desired algebra, by Theorems 1.2 and 1.6.
Fmally, for (iv) take A to be the free BA on « generators. [J

Theorem 4.2 does not say anythmg about denumerable BAs. We now show that
in this case the automorphism groups are always of size 2. Actually, the proof

also glves one of the consnstency results concermng possible improvements of
Theorem 4.2. -

4.3. TuroreM. If the k-Martin’s axiom holds, and A is a BA with infinitely many
atoms with- |A| =k, then the symmetric group on w can be isomorphically
embedded in Aut A. - ‘

Proo¥.. We shall apﬁly Theorem 2.2 of MARTIN and Sorovay [1970]. To this end
let a be a one-to-one mapping of w into the set of atoms of A. Clearly, there is an .
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ultrafilter F on A such that x € F whenever {i € w:a,<—x} is finite.. Set -
B={JCw:forsomexEF,J={i€Ew:a,<x}}and C= {JCw for some x € F,

J={i€w:a,-x=0}}. IfJ€ B and % is a finite subset of C,say J={i E w: a; =

x,} with x,EF and K = {i € w: a;- x, =0} with xx € F, for each K€ ¥*. Then '
X; Myeq Xk €F, and a,=x, - er% X implies that ie N\UJ. It follows that -
NU is infinite, since otherwise —(x;:Hgcy xK)EF So Theorern 2.2 of
MARTIN and SOLOVAY [1970] applies, and we 1nfer

(1) there is a D C w such that JA D is ﬁmte for each J € C and infinite if
JEB. <

Let E = {a,: i € D}. Then by (1),
(2) forall x€ A\F the set {e € E : e<x} is finite; and E is infinite .

By (2) we can write each X € A\Fin the form ¢, + L M, , where no member of
E is =t_, and M, is a finite subset of E. For any permutatlon fof E and any
xe A\F we set :

S .

fx=t + . Ez;w fe;
if x € F we set f xX=— f (- x) It is routine to check that f is an automorphlsm
of A and fis an isomorphism of the symmetric group on E into Aut A.. O

’

4.4. CoroLLARY. If |A| = w, then |Aut A| =
4.5. CorOLLARY. If Martin’s axiom holds and |Aut A| = w, then |A| =2°.

Proor. By. Corollary 1.7, A has 1nﬁn1tely many atoms. Hence the corollary
follows from 4.3. [J

These are all the results provable in ZFC that we know concerning the size of
automorphism groups of arbitrary BAs. Under GCH, the results are complete.
Thus, let x and A be cardinals, with A mﬁmte Then the followmg conditions are
equivalent under GCH:

(A) There is a BA A such that |Aut Al=« and [A| =

(B) One of the following holds:

(1) k = m! for some posxtlve integer m, and A > w;
(2) A=wand k =w;
B) A>wand =k =A". :

There are consnstency results with not(GCH) also. Thus, from Theotem 4.17 in
Monk [Ch. 13 in this Handbook] it follows that it is consistent that if w < x =2°,
then there is a BA A with |Aut A| = @ and |A| = «, where 2° can be large. For
further results along these lines see VAN DOUWEN [1980] and RorrmMan [1981].

Now we consider the size of automorphism groups of special kinds of BAs,
namely complete BAs, atomic BAs, interval algebras, and superatomic BAs.

For complete BAs, the main new fact is as follows. (KOPPELBERG [1981]):
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- 4.6. THEOREM. IfAisa complete BA and |AutA| is infinite, then |Aut Al°=
|Aut Al

I‘PROOF. By Theorem 1.3 we can write A= B, X B, X Cx D, where B, is atomic,
_ B, is an atomless product of homogeneous algebras, C is a product of rigid BAs,
' and D has no rigid or homogeneous dlrect factors Note that if E is homogeneous
then’ :

|“Aut E| < |Aut® E| : B (1.1)

= |Aut E| S (1.16)
<|“Aut E| . '

Hence, by 1.2 and 1.18, |Aut B,|* = |Aut B,].

Hence, it suffices to show that |[Aut(C x D)|” = [Aut(C x D)|. Now C X D has
no homogeneous direct factors. Hence, from- StEPANEK [Ch. 16,-3.13, in this
Handbook] we know that inv(C X D) is atomless (see the definition before 1.11).
Let X be a partition of unity in 1nv(C X D) satisfying the following condmons

(1) | for all. x€X and all a, be((CxD) [x) |Aut((C x D) | a)| =
|AUt((C X D) | b)|

(2)  if xE X, then there are 1nﬁmtely many y € X such that |Aut((C x
D) ! x)=|Aut((C x D) Pyl | ~

~ (We need inv(C X D) atomless to get (2) ) Since x and y are totally different for
- distinct x, y € X, we get

|Aut(C x D)| = [Aut((C X D)} x)|=«"
. for some K, as desired. EI
- Theorem 4.6 shows that the following theorem cannot be improved in ZFC.

4.7. THEOREM (i) If mew, m 7&0 K > w, and k” = k, then there is a complete

.~ BA A with |A| =k and |Aut A|

(i) If o < K =A k=K, A" = )\ then there is a complete BA A with |A| =
and |Aut A| = :
(iil) fo=<k= K"’,.then there is a complete BA A with |A| = k and |Aut A| =

Turning to atomic BAs, note first that. if A is atomic, then any finite permuta-

' ~ tion-of the atoms of A"extends to an automorphism of A. Hence, in this case we

have the restrictions |At A|=<]Aut A| <2 Our main result for atomic BAs is
the following generalization of Theorem 4.1 and its proof We use this notation —
- ifk and /\ are infinite cardinals, then :

N
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Sym k= { f: fis a permutation of «} ,
Supp f={a<k: fd #a} 'fo‘r‘fes'ym K:
Sym_, k= {f ESym «: ISuppr</\}

4.8. Trzorem. Let =A< x. Then theré is a BA AC Px with |A| = 2" such that
[«]** C A and Aut A is naturally isomorphic to Sym<,l K. ‘

Proor. Let (f,: ¢ <2%) enumerate ‘Sym «\Sym_, k. We call two subsets X,
YCk equzvalent modulo [k]* f XA Y €E€[k]™ Let (X,: a <2* ) be a system of,
subsets of k which are independent modulo [«x]", that is, so that (X / [K]<"
a <2°) is a system of independent elements of Px/[k]™"

Now we construct by transfinite recursion two sequences (Y,:a<2") and :
(B,: @ <2"); each Y, will be a subset of k, and each B, a'subset of 2" such that
|B,| =< @ + |a|. The only essential part of the construction is to do this so that the
following condltlon holds

‘(1) for each B<2" (Y,:a=p)U(X,: ,B<a<2" a,e’B ) is mdepen-‘ :
“dent modulo [«]<*, and for all £ =B, £,[Y,]& ({Y,: a<ﬁ}u[.<]<*)

Let y be <2" so that Y and B, have been defined for all B < v so that (1) holds
The rest of the proof is to construct Y, and B,. To begin with, let B”=
U,. , B, U(y +1). Then clearly

(2) (Y,: a<~y)U(X a €2\B”) is independent modulo [x]™"; ]B"l< L

w £lyl; and for ail € <y, 1Y (Yo« <v}ULKI™) -
Now let 8, and 8, be the two least elements of 2*\B”. We claim °

(3) there exist disjoint nom-empty Z,, Z,; C k, ZCxk, and X’ S
({Xso, Xs})\{K} such that Z=Z,UZ CX,|Z)|=A, and f, [ZO]

In fact, since f, & Sym<A k, there are disjoint C, D C  with |C | A and f, [C]
D. There is an atom T, of ({X,,-X, }) such that [T, N C|= A, and there is an
atom T, of ({X,,X; }) such that |1, Nf[T,NC]|=A. Let Z,=f [T,
LIT,N C]] Z = T rlf [T,NC], X=T,U TI, and note that ({XB,X }) has
four atoms; (3) follows

Now for each 8 €2"\(B” U {§,, 8,}) and each SC Z we set

B¥=B"U{5,8,8,}.

Note that Y* N(k\X) = X, N (x\X). Let C= (.@K/[K]“) r((K\X)/[Kr“) For'_' :
each W C Pk let hW= (W\[x]<") (k\X)/[«]="). Then h is a h0momorph1sm .
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from g’x onto C, and it takes the’ elements Y,, a <y, Y, XB’ B E€2\B* to
independent elements Hence, . C

(4) for alISEZ “\(B” U {8,, 8,}) and allSCZO, (Y,:a<vy)
U{(y, Y*)U(X,: a €2\B*) iis mdependent

-[Eventually we will let Y, = Y?®$, B, = B?® for some such 8 and S.] Now we need

(5) - let ¢<yand A, BE(Y,: a<y)‘ Then there is at most one 8 €2\
(B” U {8,, 8,}) such that for some S C Z, we have fe[Y,] equivalent to
(AN Y*)U (B\Y*®) modulo [«]**. .

For, suppose not; say &' €2°\(B” U {§,, 8,}), §' CZO, 887 and
6)  flY.] (AN YU (B\Y"'S‘) i=1,2.
Then
(X)) N(AAB)N(X,i A Xy2) C(0\Z)N(AA BYN (X, A X,2)
CUANY HUBYHALAN Y ) UBY™),

~ from which it follows by (2) that AAB=0 and so A= B, so (6) yields f,[Y,]
equivalent to A modulo [«]**, contradicting (2). Thus (5) holds.

There are at most.w + || triples (&, A, B) as in (5); so let & be the least
- member-of 2“\(B” U {60, 6 }) such that there are not ¢, A, B S as described in
(5) Thus .

"(7) for all £ <y and all S C Z, we havefE[Y]ﬁ/({Y a<'y}
. U{Yas‘}u[ ]<A>

Now we claim that for =0 or §= Z we have f, [Y“]E’({Y a<y}lU
{Y**} U[«]™"). (This will finish the construction.) Suppose that this is not true.
,Then there are 4,, B, € ({Y,: a<vy}),i=1,2, such that

(8) LIY°I=(A,NnY*°U(B\Y*") mod[x]<A :
f,[yazoj =(A,N Y’Zu) U (BAY*®) mod[k]™* .

Note that £,[y*'\X = f,[Y*]\X, Y°\X = Ysz"\)? X,;\X, and (consequently)

C(K\YPONX = (K\YBZO)\X (. \ X, )\ X. Hence 1ntersect1ng both s1des of the con-
gruences (8) with x/X we get. .

(4, N XAR) U (B, N (k\X, WE) = (4, NX,\X)
U (B, 0 (k\X,\X) mod[x]™*. -

—

P —
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Since (Y,:a<y)U{(X;, X’;O; X;,) are iodependent modulo [K]<;‘, this equiva-
lence is actually an equality, and implies that A, = A4,.and B, = B,.
Intersecting the congruences (8) with Z, we get

0= B, N Z, mod[x]™*,
Z,=B, N Z mod[k]**,

50 |Z,| < A, a contradiction. . '
So we choose $.=0 or § = Z, s0 that f, (Y1 €Y, :a<y)U{Y*}U[k ]<)‘)
LetY = Y?®s, B, = B%. Then (1) holds for Y. : :
This finishes the construction. Let A= ({Y a<Z}U [x]“) The désired
conclusions are clear from (1)..

Concerning the size of automorphism groups of atomic BAs, we also recall a
corollary of Theorem 4.8 of MoNk [Ch 13 in this Handbook] there is an atomic
" BA A with |A] =|Aut A| = |At A| =

Assume GCH for the following remarks For any atomic BA we have |At A| .
[Aut A|=|A|" and [A| =|At A|". By Theorem 4.8, for any infinite x theré is a
BA A such that |[At A| =|Aut Al =k and |A|=«". If B is the finite—cofinite
algebra on «, then. [AtB|=|B|=«k and |[AutB|=«". And |Px|=«k"=
|Aut Px|, while |At Pk|= k. The essential missing possibility here is an atomic
algebra A such that |At A| = |Aut A| = |A|= k. By the remark-of the preceding
paragraph, there is such an algebra for k = w;. Of course, there is none for K= w.
We do not know whether there are such for « > w,.

‘Turning to automorphlsm groups of interval algebras, first recall that for each
k > w; there is a rigid, cardinality-homogeneous interval algebra of power «.
Hence, parts (i) and (iii) of Theorem 4.2 hold for interval algebras. Part (iv) also
holds, by taking the interval algebra on an ordered set S of power k which has 2* '
order-automorphisms (for the existence of such an ordered set see, for example, °
Monk [1976, p. 451]). We do not know whether part (ii) holds; in particular;, we -
do not know whether there is an interval algebra of power 2 w1th automorphism
group of power w. ,

We know even less about the size of automorphism groups of superatomlc BAs.
Perhaps it is even true that always |Aut A| =2'**4! for A superatomic.
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