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0. Introduction

For almost all classes K of BAs which have been an object of intensive study,
there are exactly 2" isomorphism types of members of K of each infinite power «.
In particular, this is true for the class of all BAs. This is evidence that the
structure of members of such classes is complicated. In this chapter we prove
several results of the above type. First we give five simple but somewhat special
constructions, which apply to interval algebras, superatomic BAs, subalgebras of
free BAs, subalgebras of Pk, and complete BAs. In the second section of the
chapter we present an instance of a general method of Shelah for producing many
isomorphism types.

Here is a list of many of the theorems known about counting various kinds of
BAs.

(1) For each k = w there are 2" isomorphism types of interval BAs of power «.
See Section 1 below.

(2) For each k> o there are 2" isomorphism types of superatomic BAs of
power «; see Section 1 below. There are w, isomorphism types of denumerable
superatomic BAs; see Part I, Chapter 6, Theorem 17.11.

(3) For each k > w there are 2" isomorphism types of dense subalgebras of the
free BA on k generators; see Section 1 below. Any dense subalgebra of Fro is
atomless, and hence isomorphic to Frw (recall that Frk is the free BA on free
generators). But every countable BA can be isomorphically embedded in Frw, so
Fro has 2° pairwise non-isomorphic subalgebras.

(4) For each k = w there are 2% pairwise nonisomorphic subalgebras of Pk
each containing all singletons; see section 1.

(5) There are 22° pairwise non-isomorphic countably complete subalgebras of
PR each containing all singletons, where R is the set of real numbers. See
FRENICHE [1984], where further results along these lines are given (there are
evidently some problems left, though). _

(6) Let T be a complete theory of BAs, with infinite models and 7,2 T in
some language extending the language of BAs. Let K be the cla§s of all
BA-reducts of models of T,. Then for each x>|T,| there is a family of 2
pairwise non-elementarily-embeddable members of K of power k. See SHBL.‘AH
[1978, pp. 9, 30-31, 364, 421]. In particular, if Tis a complete theory of BAs with
infinite models, and x > w, there are 2" pairwise non-isomorphic models of T of
power k. For k = w the situation is simple: let T be a complete theory of BAs
with infinite models. If all models of T have only finitely many atoms, then that
number of atoms is constant and T has only one denumerable model, up to
isomorphism. If 7 has models with infinitely many atoms, then T l{as g“’
denumerable models. This can be seen by combining the first construction In
Section 1 below with the construction given in the proof of Proposition 18.5 in
Chapter 7, Part I. : ’ o

(7) For each x with «“ = k there are 2" pairwise non-isomqrphlc rigid complete
BAs of power «. This is an unpublished result of Shelah which uses the .methods
of SHELAH [1983]. See Section 1 below for a partial result along these lines.

M
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(8) For each k > w there are 2" pairwise non-isomorphic rigid BAs of power «;
see MoNk and RassBAacH [1979]. Recall from the article on automorphism groups
that there is no denumerable rigid BA.

(9) More generally, for each « > w there are 2* pairwise non-isomorphic
onto-rigid interval BA’s of power «; see Loats and RuBiN [1978].

(10) ToporCevi¢ [1979] showed that for each regular uncountable « there are
2" pairwise non-isomorphic Bonnet-rigid interval BAs of power . (Bonnet,
Loats, and Shelah independently worked along these lines.) There are evidently
open problems here.

(11) If o = A®, then there is a family of power 2* of indecomposable endo-rigid
BAs of power p such that any homomorphism from one of them to another of
them has finite range; see SHELAH [1984]. There still appear to be some small
open problems in this connection.

The constructions given in the second section of this article may be considered
to be an introduction to the methods used in (6), (7), (8), and (11) above, and to
other constructions of this sort in SHELAH [1971], [1978], [1984]. :

1. Simple constructions

Our first construction is of a folklore nature. For each infinite cardinal k we
produce 2" pairwise non-isomorphic interval BAs of power k.

Let ay=w and a, =1+7+ w, where 7 is the order type of the rational
numbers. For each ¢ € “2 we set

Be=Hasg,

&<k

the ordinal product: B, consists of all functions f €11 e<x @ such that {&: f€ #0}
is finite, and f < g iff f¢ < g¢, where £is the greatest v < « such that fv # gv. Note
that | 8,| = «. Let A, be the interval algebra over B.; so |A_| = k. We shall show,

eventually, that the algebras A, are pairwise non-isomorphic for ¢ € 2,
For any BA B let

JB= (At BU {x € B: x is atomless} )¢,

where At B is the set of all atoms of B. We repeat this construction transfinitely as
follows:

I,B =0} ;
L,B= U LB for A a limit ordinal ;
£<A
I,,B=U I(BIILB).

If a € B, we denote by [a] the image of a under the natural homomorphism from
B onto B/I,B (¢ is to be understood from context).
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1.1. LemMMA. Let € € 2. Then €0 =0 iff A, is atomic.

Proor. => Let 0#x &€ A_; we want to find an atom =x. We may assume that
x = s, t) for some s <t in B,. Say sv = tv for all »> £, and s¢ <t£, where £ <«k.
Let u0=s0+1 and uv =sv for all v>0. Clearly, s<u=t. Since u is the
successor of s in B,, it follows easily that [s, ¥) is an atom =x.

& Suppose that 0 =1; we show that A, is not atomic. Let s, € B, be such
that s0 < 10, both being in the n-part of 1 + n + , and sy = tv for all » > 1. Then
[s, t) is atomless, as is easily checked. [

1.2. LEMMA. Let £ € %2. For each & <« and each s€Ill, ., ., ., let s* be the
member of 1,_ a,, such that s'v=0 for all v<§, and sTv=sv for §=v<k;
and let F.s = ([0,s")]. Then:

(i) F, is an order-isomorphism into A /I A,.

(ii) The range of F, generates A, /I A,. .

(iii) Ift€N,_ a,, and sE€Il, ., a,, is the restriction of t,then [s", t)ELA,.
Proor. We proceed by induction on &. The case £=0 is trivial. Assume the
lemma for £, and let s, tE11,, <, <, @, If s=1, clearly Feo8= F, ,t. To show
that F,  , # F, ¢ for s <t it suffices to show that there are infinitely many z.itoms
=([s*, £")] (here [[s*, t")] € A,/I,a,, while " is relative to £ + 1). For eachi € w,
let u, be like s* except that u,£ =i +1 (in the w-part of a,;). By the induction
hypothesis, [[u;, u,,)] is an atom of A /I,A, and it is clearly =[[s", ¢ )], as
desired. To prove (iii), we assume that 1€, a,, and s €Tl 15, <, @, 18 the
restriction of ¢; also let u be the restriction of ¢ to I, ..., anfi let vE
I,.,..a, extend s so that vé =0. Then [u,0)EILA, by. the induction hyp9-
thesis. [v,u) is a sum of an atomless element and [zmtgly many atoms in
intalg(Il, ., ., @,,), so by the induction hypothesis, [v", "] € I;,,A,. Hence
[v',)EI,,,A,. Since v* =s", this proves (iii). Clearly (ii) follows from (iii).

Now suppose that £ is a limit ordinal <«, and the lemma holds for all v <§&.
Clearly (i) holds. Assume the hypothesis of (iii). Choose v < & so that = 0 for
all €[, ¢), and let u be the restriction of ¢ to Il,,.;“qaw. Then [u , 1) E
LA, CIA,. Since u" = s*, this proves (iii). Again, (ii) follows from (iii). O

Lemmas 1.1 and 1.2 immediately give the desired result:

1.3. THEOREM. For each k = w there are 2" pairwise non-isomorphic interval
algebras of power k. O

Our second construction gives the number of superatomic BAs. By T.heorem
17.11, Chapter 6 of Part I, there are exactly o, denumerable superatomic BA§.
Our construction gives 2* superatomic BAs for each uncountable cardinal «. This
result is due independently to BONNET [1977], CARPINTERO ORGANERO [1971], and
WEESE [1976]; we follow the construction of Weese. . ,

Recall the definition of the cardinal sequence of a superatomic BA A:
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L,A={0},
I, A=U (A(A/1,A))",

LA= U LA for A limit.
B<A

We denote by [a], the image of a € A under the natural homomorphism of A
onto A/I A. A is superatomic iff I;A= A for some B. The least 8 such that
IzA = A is a successor ordinal aA4 + 1. Then A/l , is a finite non-trivial BA; we
let nA be the number of atoms of A/I_,. The cardinal sequence of A is the
sequence (|At(A/IA)|: ¢ =aA).

Our construction will use weak products; recall from 17. 18, Chapter 6 of Part I,
that a weak product of superatomic BAs is again superatomic, and the cardinal
sequence of a weak product can be described in terms of the cardinal sequences of
its factors. We also need the following lemma.

1.4. LeMMA. Let (A:i€1) be an infinite system of non-trivial BAs, and set
B=1I)c, A,. Let o be the least ordinal a such that {iel:a=aA,} is finite. Then
for each a < o we have B/I, B=IT"., AllA,.

Proor. We use the following elementary fact, easily established by induction on
a: ‘

(*) L,CN(C | ¢)=1(C | ¢) for any BA C, any c € C, any ordinal a.
Furthermore, (C/1,C) | [c], is isomorphic to (C | ¢)/I(C | ¢) via
[x],— [x], for each x =c.

Now the desired isomorphism is given by (f[x],); =[x,], for each x € B; the
only non-trivial parts of the verfication of this fact are that [ is well-defined and
one-to-one. Well-definedness follows from (*). For one-to-one-ness, suppose that
flx], =0. If {i: x,# 1} is finite, then from {i: @ = p;} infinite (which follows from
the definition of o) we find i € 7 such that x;=1and a = p,. But then [x,]_ #0, a
contradiction. So {i € I: x, #0} is finite. Since x, €IA, for all i€, it then
follows from (*) that x € I B, as desired. O

1.5. TueoReM. For each k = , there are 2~ isomorphic types of superatomic BAs
of power k.

Proor. For any BA C we denote by II} C the weak product of w copies of C, and
by II}’ C that of w, copies. Now for each fE2 we construct a superatomic BA
A, by induction on dom f: '
- Ap=2,
A, =I;[w As(e=0,1),

A= l;[:' A“afo; d'o‘mf=)« limit <« .

o
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(Here fe is f " (£).) By induction, |dom f|<|A,|=|dom f|- w, for all f € 2, s0
|A,| = « for all f & “2. By induction using 17.18, Chapter 6 of Part I,

(1) If B =« and f €2, then aA,= B and nA;=1.

Note that A, is a factor of each algebra A, with f € =<2, 0€dom f, f0=0.
Hence

(2) If f€ 52, 0Edom f, and f0=0, then there is an a € A, such that
A, | a]=w.

On the other hand, we claim

(3) If f€ =2, 0E€dom f, and f0=1, then there is no a € A, such that
|A; | a]l=w.

We prove (3) by induction on dom f. Since A, is isomorphic to the finite~
cofinite algebra on w,, (3) holds for dom f=1. If dom f=p8+1and (3) is true
for shorter functions, take any a € A,. If {i{EI: a;# 1} is ﬁpite, the.n there is a
b=awith A, | b= A,z and the inductive hypothesis applies. If {i € I a; # 0}
is finite, then ‘

Ay b a=(Ap g 1 b)) XX (Apyp | D)

\

for certain b,,...,b,, and again the inductive hypothesis applies. The final

induction step — dom f a limit ordinal —is treated sﬁmi]arly. So (3) holds.
The major part of the proof is the following claim:

(4) If y +85=B=x, f €2, and g& = f(y + £) for all £ <3, then
AJLA=A,.

~ We prove (4) by induction on 8, with vy fixed. For 8 =0 it follows from (1).
Assume (4) for 6, let f67+5+12, let gé=f(y+¢§) for all £<8, and let
hé=f(y + &) for all £ <8 +1. Then.

AJLA, = (I(HS) A, r(1+a)) /LA,
v ' 14
=ﬂ7I]5) (A1 omy/LAs1oes) (0F (D and Lemma 1.4)
= [I" A, (induction hypothesis)
f(y+8)
= Ah ,

as desired. Now assume that & is a limit ordinal, (4) holds for all £ <9, fer*%2,
gE=f(y + ¢) for all £<6, and (he)é = f(y + &) for all £ <g, for each £ <4.
Then | - | _
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AfLA =17 A 1,4,
sfl;[ﬁw (Ap /LA, ,) (by (1) and Lemma 1.4)

= II" (4,,,/14,,,) by (1)

Y=E<S

= ]I A4 »e induction hypothesis

ySE<8

= A,.

We have established (4).

Now suppose that f, ¢ €*2 and f # g. Let 8 be minimum such that fB # gB. By
(4), AIA = A, and A IgA, = A,, where h6 = f(B + 6) and k8§ = g(B+9)
for all § <k. So h0# k0, and so by (2) and (3), A, # A,. This finishes the
proof. [

The third construction of many non-isomorphic BAs gives the following
remarkable theorem of Erimov and KuzNecoy [1970]: for each k > w there are 2*
pairwise non-isomorphic dense subalgebras of the free BA on « generators. The
construction is based on the following general facts.

Let f be a homomorphism of a BA A onto a Ba B. We set
Pr={(x, y):x,y € A and fx = fy} .
Thus, P, is a subalgebra of A4 x A. Set
I ={(x, y):x,y€E A and fx=fy =0} .
Then 1, is an ideal in Py, and P,/1, is isomorphic to B.

1.6. LEMMA. Suppose that A is a free BA, 0#XCA,and I={a€ A:a-x=0
forall x€ X}. Then 1 is a countably generated ideal in A.

Proor. We may assume that A is uncountable. Say A is freelty generated by
(x,: @ <k), k an uncountable cardinal. For I" € [«]1 and f €72 we set

f)= I fo-x,,
where 1-y=y, 0-y =~y for all y. Let

F={f: f€"2 for some I' €[], x(f) €1, and x(f | AZI
if ACT}.

Clearly, {x(f): f € %} generates I, so it sffices to show that & is countable.
Suppose not. Then by the A-system lemma plus the pigeon-hole principle there
exist a finite AC «, an h € “2, and an uncountable 9 C % such that for any two
distinct f, g € ¢ we have dom fNdomg=Aand f | A=g |} A=h. Now we
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may assume that each member of X has the form x(f) for some f e'2 with
I' €[«]™“. Note that x(h) &I (since AC I for any I' such that f € ¢ and fe 2
for some f). Hence, choose I'E[x]™ and f€ ™2 so that x(f)EX and
x(f)-x(h)#0. Say dom f={ey,...,a,_,}. Choose m+1 distinct members
Bos--» 8, Of 4. Since x(f)-x(g)=0 there is a B;Edom g, Ndom f with
1B; # 8,B;, for each i = m. Now |dom f|<m +1, so choose distinct i, j = m such
that B, = ;. Then B; € dom g, Ndom g; = A, while fB, # g,8; = h;, contradicting
x(f)-x(h)#0. 0O '

1.7. LemMA. If A is a free BA on k = w generators, and if I 'is a maximal ideal in
A, then I cannot be generated by <k elements.

PrOOF. Say A is freely generated by X, |X | = k. Suppose that  is generated by Y,
|Y| < k. For each y €Y there is a finite F,C X such that y € (F,). Choose
xX€E X\Uye,, F,. Then x€1 or —x€ 1, and either possibility clearly gives a
contradiction. U

1.8. LEmMA. Suppose that A is an uncountable free BA, and f is a homomorphism
of A onto a countable BA B. Then P, is not isomorphic to A.

PrOOF. Suppose it is; we shall get a contradiction by finding a countably gener-
ated maximal ideal in P,. (Sec Lemma 1.7.) Let J be a maximal ideal in B, and' set
K ={(a,b)E P;: fac J}. Clearly, K is a maximal ideal in P,. To show that it is
countably generated, first let X = {(x, 0) € Py fx=0}. Set

L= {(u,v) € P;: (u,v)" (x,0)= (0, 0) for all (x,0)E X} .
Thus, by Lemma 1.6, L is a countably generated ideal in P;. We claim

(1) L={(0,v)E P;: fo=0}

For D, is obvious. For C, let (4, v) € L. It suffices to show that u = 0. Suppose
not. Now there is a non-zero x = u such that fx =0, since otherwise f | (A | u)
would be one-to-one and B would be uncountable. Taking such an x, we have
(x,0) € X and (x,0)- (1, v) # (0, 0), a contradiction. So (1) holds.

By symmetry, the set L' = {(u,0)E P;: fu= 0} is a countably generated idez.al
in P,. Next, for each z € B choose a, € A such that fa, = z. To show that K is
countably generated it now suffices to prove

(2) K=(LUL’U{(az,az):zEJ})id.

Clearly, D holds. For C, given (x, y)EK we have (x, Y)'(f‘ffxv _afx.) e(LUu
L) and (x, y) =(a,, a,) + (% ) (—ag, ~ay,), so (x, y) is in the right-hand
side of (2), as desired. O :

We are now ready for the theorem of Efimov and Kuznecov:
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1.9. THEOREM. For each k> w there are 2* pairwise non-isomorphic dense sub-
algebras of the free BA A on k generators.

Proor. By Theorem 1.3 and its proof there is a family (B, : a <2*) of pairwise
non-isomorphic BAs of power « with the following property:

(1) For every @ <2" and every x € B there is a non-zero y = x such that
B, | y is countable .

Now for each a <2" let f, be a homomorphism from A onto B, and then set

P, =Py, 1, =I,. Recall from Theorem 9.14, Chapter 4 of Part I that A4 X A is

isomorphic to A; so P, can be considered to be a subalgebra of A. Now P_ is

dense in AX A, for suppose (a,b)E(AX A)*; say a#0. Then there is a

non-zero a' = a with f,a’ =0 (otherwise f, | (A | a) would be one-to-one and so

B, would be uncountable). So (a’,0) € P, and 0% (a’,0) = (a, b), as desired.
The proof will be completed by proving

(2) P,ZFP;fora#p.

For, suppose that g is an isomorphism of P, onto Pg;. Since P, /1, = B_, it suffices
to show that g[1,]CI,. Suppose that (a, b) € I, but g(a, b)Z1,. Now (a,0),
(0,b)E P,, and g(a, b) = g(a, 0) + g(0, b), so say g(a,0)ZI,. Let g(a,0)=
(c, d). Since (c, d) & 1,, we have f;c #0. Choose 0 # e = fyc with B, | e count-
able. Say fyc’ = e, and set ¢" = ¢’ - ¢ - d; then also fac¢”=e. Choose a’ € A so that
g(a',0) = (¢", ¢"). Hence,

3) A=P | (@,00=P, | (c',c").

Now A | ¢"= A; let h be such an isomorphism. Let k = faoh™\ It is easily

checked that P, | (¢”,¢")=P,. By Lemma 1.8, P, A, which contradicts
3). O

VAN DOUWEN (unpublished) has improved Theorem 1.9 by showing that for
each x > w there are 2" totally different rigid dense subalgebras of Fr (totally
different means no non-trivial isomorphic factors).

The fourth construction which we present also concerns subalgebras of specific
algebras. Call a subalgebra of P« full if it contains all singletons. We present the
result of FRENICHE [1984] that for any infinite x there are 22" pairwise non-
isomorphic full subalgebras of Px. We give two proofs: one using the result just
established, and a direct one.

Let x =2 w. Let A be a free subalgebra of P« with |A| =2". Then by Theorem
1.91et (B,: a <2%) be a system of pairwise non-isomorphic dense subalgebras of
A. For each a <2 let C,=(B,U{{¢):¢£< k}). Suppose that a, B<2%,
a # B, and f is an isomorphism of C, onto C,. Then f induces an isomorphism
from C,/[x]™“ onto C,4/[k]=*, and these are, respectively, isomorphic to B, and
B, a contradiction.

Now we turn to the direct construction.
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1.10. LEMMA. If Px has X full subalgebras in all, and A>2%, then Px has A
pairwise non-isomorphic full subalgebras.

Proor. Any isomorphism between full subalgebras is induced by a permutation of
k, so every isomorphism class of full subalgebras has at most 2° members. The
lemma follows. 0O

If Fis a filter on a BA A, then, as is easily seen, (F)=FU {a: —a € F}.

1.11. LeMMA. If F and G are distinct filters on A and neither is an ultrafilter, then
(F)#(G).

PrOOF. Say a€ F\G. If —aZ G, then a€ (F)\(G). Assume that —a€G.
Choose ¢ € A so that ¢, —c & F (since F is not an ultrafilter). Then —c + —a € G
while —c+ —a and c-a are not in F; so (G) #(F). O

1.12. VTHEOREM. There are 2*° full subalgebras of Px.

Proor. (For the first proof, see above.) By Lemma 1.10 it suffices to exhibit 2
full subalgebras without worrying about isomorphisms. The proof is now 2&3
consequence of Lemma 1.11 and the following two facts: (1) there are 2
non-principal ultrafilters on P«; and (2) if F;, F,, Fs, F, are dis.tinct ultrafilters,
then F, N F, # F, N F, (the desired family of full subalgebras is then {F n G:
(F, G} € ) for some partition 2 of the set of all non-principal ultrafilters into
2-element subsets). (1) is well known. For (2), say a € F\F;, bEF\F,, c€
F)\F,, dE€F)\F,. Then a-b+c-dE€EF,NFHNFHNF). The proof is
finished. [

The final construction in this section, taken from MONK.a.nd SOLOVAY‘ [1?72] , is
a construction of complete BAs derived from forcing conditions and using infinite

combinatorics. .
Let « be an infinite cardinal. Let M be a family of independent subsets of k with
|M|=2" and let ¢ be a one-to-one mapping from Pk onto M. For each RC P«

with |Pxk\R|=2* we define a complete BA Cg as follows. Let Ap={¢,: a€
Px\R}. We also define a partial ordering on the set Pp = {(k, K): kE[K],
KE€[A]""} by setting

(k,, K,) = (ky, K,) iff k, C ky, Ky C Ky, and K, 0 UK, Ck,.

With this partial ordering we associate a complete BA in the usual way familiar to
those used to forcing: for each (k, K) € P we define

OkK = {(k” K’) € g’R: (k’ K)-S—(k” K')} ’

the sets 0, form a base for a topology on Pp, and Cg is the complete BA of
regular open sets in this topology. ’
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This construction of Cy, is essentially found in MARTIN and SoLovay [1970]. We
proceed to describe the basic properties of these algebras, -

1.13. LemMA. C, satisfies the « *-chain condition.
Proor. If 0., N 0, =0, then k # I; since (]| = k, the lemma follows. O

Next, note the following properties of the topology above. For any z € P, let
bpz be the interior of the closure of 0,; thus bgz € Cy. Then, as is easily checked
for any partial ordering,

brz={wEP,:Vw' = wlz' = z2(z'zw')];

~brz={WE Pp:Vz' 2z 2(z' Zw)} .

We also need the following specific property of our partial ordering:

1.14. LeMMA. by(k, K) = {(I, L) € P, kglu(K\U AR), KcLiInUKCc k}.

Proor. First suppose that (/, L)€ bg(k, K). Suppose that e € kN U A Ry W€
show that @ €/, which thus establishes the first inclusion above, Saya Ex € Ay.
Then (I, LY=(I, LU {x}), so there is (m, M) such that (/, L U {x}) = (m, M)
and (k, K)=(m, M). Now e€emn U (LU {x}), so a €I Next, suppose that
K\L #0; say y € K\L. By independence, choose « € y\(U L U I). Then (I, L) =
(TU{a}, L), so there is (m, M) with (U {a}, L)=(m,M) and (k,K)=
(m,M). ThenaemnU K,so a€k. Also, a €U Ay, s0 a €[ by the above,
a contradiction. Finally, suppose that o € / NU K. Choose (m, M) so that
(, L)=(m, M) and (k, K) = (m, M). Then e e m N U K C «, as desired.

Conversely, let (/, L) satisfy the conditions in the braces. Suppose that
(, L)=(m, M). Then k, K)C(kUm, KU M), since

(kUm)nUngu(anK)c_:ku<}nnULnU K)
gku(mUK)gk
and (m, M)C (kUm, KU M), since
: (kUm)nUMgmU(kﬂU.M)
cmU[ (10 (U 4,)) U u]
=mQ(InUM)gm. |

‘Thus (I, L)€ bg(k, K). This finishes the proof of Lemma 1.14. O
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For each a < k let aza = by({a},0); these elements will be used in the proof
of the following lemma.

1.15. LEMMA. Cj is completely generated by a set with at most « elements.
Proor. Lemma 1.14 yields the following:
(1) aga={(l,L)E Pr:a€l} if a€U Ag;
(2) apa =Py if e €x\U Ap;
(3) —aRa={(l,L):aEUL\I} faclU Ag.
Hence, using Lemma 1.14 further, we get
(4) br(k, K)= an apan anx\k —aga = ml;lk apa- ael;lm —aza.
Thus, Cp is generated by {agza: a <}, as desired. [
1.16. LEMMA. |Cg| =2"
Proor. f3y Lemma 1.13, every join or meet is a join or meet over a subset of the
index of power =x. Hence, by Lemma 1.15 it easily follows that |Crl =2% Now
we exhibit 2 elements of C,. For each t € A, we have
b(0, {t})={(, L)E Pr:tE L and I C K\t}
by Lemma 1.14. So b(0, {t})% b(0,{t'}) if t#1', as desired. O

Now let R C P«, | Px\R| = 2*. We say that R is represented in a complete BA D
by x € “D provided that ‘

(*) Ri{aC_ZK:Z{xa:aEta}=l}.
(Remember that ¢ maps P« onto Ag.)

1.17. Lemma. If D is a complete BA of pOWer 2% then there are atxmosx 2% sets
R C P« with |Px\R| = 2* which are representable in D by some x €"D.

ProOF. There are only 2* functions from « into D. O

1.18. Lemma. For any R C Pk with |Px\R| =25, the function ag, represents R in
C,. T

ProoF. Suppose that a € Px\R. Then by (4) in the proof of Lemma 1.15 we have

0% b0, {t,)) =1l {-aza: a €1},
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so that £ {aga: a €1,} # 1. So D in (*) holds. Now let @ € R; we need to show
that U {aza: @ €1,} is dense in the topological space P;. Let (k, K) € 2,
Choose a €1,\U K by independence. Then (kU {a}, K) € Ok Naga, as de-
sired. The proof is complete. [J

‘We are now prepared to prove the theorem.

1.19. THEOREM. For each infinite  there are exactly 2*° pairwise non-isomorphic
complete BAs of power 2%,

Proor. Define R=S iff R, SC Px, |Px\R| = |PK\S|=2", and Cp= C,. Note
that if f is an isomorphism from a complete BA D onto a complete BA E, and
X € "D represents R in D, then fex represents R in E. So by Lemma 1.17, each
=-class has at most 2" elements. So the theorem follows from Lemma 1.18. O

2. Construction of complicated Boolean algebras

As an illustration of the ideas in SHELAH [1983] we shall construct a large family
of pairwise unembeddable rigid BAs (with strong notions of rigidity and unem-
beddability). The construction is in two parts: a purely combinatorial part, and a
construction of BAs from certain combinatorial objects.

K,, is the class of all rélational structures J such that:

(1) the universe of I is a subset of ““A for some A, closed under initial
segments;

(2) the relations of I are as follows:
- P,={n€ I length(n) =i} for each i < w;
<={(m, v) EIX I length(n) < length(v) and = | length(7)};
<={n (a),n(B)):n (a),n (B)E and a <B};
Eq.={(n,v)EIXI: length(n), length(») =i and n i=v | i} for each
i<w;s - '
z={(-)}, where (-) is the empty sequence.
L is a language appropriate for K. If{I:t€T)isa system of L-structures, then
L.er 1, is the disjoint union of them: its universe is U, I x {t} (1, is identified

with its universe), and if R is an n-ary relation symbol of L, then the correspond-
ing relation of L, I, is :

{{(ay,0),..., (@, 0):teT,I FRla,,..., al]}.

For t € T we denote by I the structure & . J

s#t Lge ) ’ :
Let L, be the language which has an m-ary operation symbol F,, for all m,

n<w. Let L’ be a joint expansion of L and L,,, with an additional unary relation
symbol P. If I is an L-structure, then M(I) is the following L’-structure: its
L, -reduct is the absolutely free algebra generated by 7, its L-reduct has all the
relations of 7, and P is interpreted as /. In the terms of L, we always write the
operation symbols to the left, and we use a standard sequence of variables
Vgs Uy, ... A term 7 of L, is initialized if for some m € o the variables which
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occur in 7 are v, . . ., U,,_,;, and they occur in that order in 7 without repetitions;
we call m the type of 7. If o and 7 are initialized terms of type m and n,
respectively, ¢ € ™I, d €I, and o¢ = 7d, then o =7 and ¢ = d (proof by induc-
tion on o). Every element of M(I) can be written in the form 7¢, where 7 is an
initialized term and ¢ € "I, m the type of 7, and this expression is unique. For
each a € M(I) we denote this 7 by 7,, and ¢ by c,.

Letay,...,a,_,, by,...,b,_ € M(I). We write

{ag,...,a,_,)=(bg,...,b,_) (mod M(I))

if 7,,=7,; for each i <m, and ¢,, -** €, satisfies the same quantifier-free
formulas ¢, ¢ " Cpim-q) in L.

Let I and J be L-structures. We say that I is y(x, y)-unembeddable in J
provided that: (x, y) is an L-formula with X and y of the same length, and for
every function f: I—> M(J) there exist sequences &, b in I both of the length of x
such that I |= ¢[a, b], fa, has the same length as fb, for each i <length a, and
fl@)=f(b) (mod M(J)). (f(a) is the concatenation of f(a,), . . -, fla),...,i<
length(a); similarly for f(b).) Finally, we say that K, has the full (x, A)-y-bigness
property if there are I, € K,, (i < x) such that |[I,| = A and [; is ¢-unembeddable in
I for all i<y We shall be interested only in the following formula

¥(xg, X1, Yo» ¥1):

v [Pis1Xo A Piuyyo A PuXi A Xy = Y1 AXo S Xy
A Eq(xq, Yo) A Yo <X -

It expresses that x, and y, have the form n~ (a) and n~ (B), respectively, with
B <a, and x, = y, has domain @ and extends x,. . v
Now we prove a combinatorial theorem about these notions.

2.1. THEOREM. If w <A =A* with A regular, then K, has the full (A, A*)-{-
bigness property.

ProoF. Let S = {8 < A: § is a limit ordinal and cf 8 = w}. Thus, S is a f.ta‘ltionary
subset of A. Write S=U,_, S, with the ; stationary and pairwise disjoint. For

I

each 8 € S choose 7, € “8 strictly increasing with sup 8. For all i <A let

1,.=nL<Jw "A*U{n;: 8 ES;}.
Thus, |I,-| = A*, and [, has a natural L-structure. The rest of tl}e pfoof is devoted
to showing that for an arbitrary i <A, I, is -unembeddable in /; .
To this end, let f: I~ M(I; ) be given. For any a € I, let

orco(a) = sup{y < A: there is a k< length(c;,) such that (k)= (1, J)
for some ¢ and j, and y=jor y= sup(ran(¢)} .
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(3) C={8 <X:for all nE “”8, orco(n) < 5) .

Clearly, C is club in A. We shall use C later on. ‘

Now with each 0# 5 € “”A we associate an equivalence relation E,onA. Lety
be the last value of n. For each a < A, let m_ be the length of Crtn™ (> a0d for
each k <m, write ¢, - . (k) =(t,,, Jax)- Now we set o E, B iff fltn’ (a)_)f'“-
f(m " {B)) (mod M(1,;’)), and for all k<m,, ifj, <yor Jak <7, then jox = Jais
and if / <length(z,,) and tax(I) <7y or tg, (1) <4, then (1) = tg,(1). Note that
fm (a))=f(n(B)) (mod M(I;7)) implies that m, = mg and length(z )=

length(z,,) for all k<m,. Clearly, E, is an equivalence relation on A. Now we
claim

(4) There are <A equivalence classes under E,.

In fact, suppose that I” €[A]* consists of pairwise inequjyalent elements under
E,. Since L’ is countable while A is regular and uncountable, W€ cap assume that
fn{a))=f(n"(B)) (mod M(I;)) for all a, B € T". Since y < A, we can assume
thatj_, =jg, if one of them is <v,foralla, BE 'and all ; < m,, and also that if
k<m, and length(t,,) is finite, then tar() = t5,(1) if one of them js <y, for all
[ <length(t,,) and all q, B € I'. Now by construction, any infinite length ¢,, has
the form 7, for some . Hence, we may assume that tak = tgy if one of them has
the form 7, with § =< v, for all a, BET, and all k <m,_. Now if @ € " and k<m,
with ¢ . of infinite length, with some terms >v, choose I, Minimum such that
ta(ex) Z . We may assume that for all a, BET, I, = Igx In these circum-
stances. Then we may assume that in these cases L) =1, () foran 1 <1,,. But
then o E, B for any two members of I, a contradiction. Thus (4) holds.

Now we define a continuous function a: \—> A a0=0, 3nd ad = U <5 ax for
4 limit <A. Now suppose that x < A and ax has been defined. We define B: w— A
by induction: B0 = ax. Suppose that 8 has been defined. For each nE“B j let
I, C A have exactly one element from each E,-class. Thys, [I,| < by (4). Set

B(i+1)=(U {I",,tne“’>Bi}U;3j)+1.

Finally, set a(x +1)=UJ jew B;. This defines a. For each , <A we have:
(5) forall 0% neE ““a(x + 1) and all 8 € A there is a y < @(k + 1) such that

BE,,‘Y .
Let C ={«x<A:forallj<«, aj < k}. Thus, C,is club

a in ). BY stationarity of Si
choose s €ES,NCNC,. Let Cras = (U, Jo), .. ., (k15 j,_,))- Thus, j,%i for
call < k. Set , ‘ ‘

V=(Y ran@)) UG ... iy

Now each u, with infinite length is strictly increasing with sup # 8, by construction
of the 1,’s. Hence, V N § is bounded in 8, say by m,n. Since & C, we have
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sup, ., as = 8. Hence, we can choose « + 1 <8 so that n;n < a(k + 1)< 4. Let m
be maximum such that n;m < a(k +1). Then by (5) choose ¥ < a(k + 1) so that
ns(m+ 1)E y, with v =7, | (m+1).

We claim that

(ms [ (m+2),m;, v (7))

shows the ¢-unembeddability of I, into I . via f. Clearly, this quadruple satisfies ¢
in I, Now we want to show that

(f(ns 1} (m+2)), fn;) = (f(" (7)), fn; )(mod M(I;")).

Since m,(m + 1)E, y, we know that f(n, | (m + 2)) = f(»" (7)) (mod M(I,)).
Leta=fn,, b = f(m, | (m+2)),d=f(v {y)) Thus, 7, = 7, a_nd ¢, satisfies
the same quantifier-free formulas as ¢, in /. It remains to consider formulas
relating a value of ¢, with one of a and the corresponding formula for ¢, and a.
Say ¢, = ((vg, Po)s - - - » Vym1> Pi=1))> €4 = ((Wos 90)5 - - +» (Wl—v‘ql-l))- Note
that length(v,) = length(w,) since ¢, and ¢, realize the same quantifier-free type
in I7. Also, m, | (m + 2)E“78, so & € C implies that orco(n;(m + 2)) <.
Thus, ran(v,) C 8, and similarly ran(w,) C . These statements are true for any
x <I. Now by symmetry it is enough to consider the following cases.

Case 1. (v,, p,) = (u,, j,). Then ran(v,) CV N 8, so for any s < length(v,) we
have v (s)<m,n=m,m, so by m,(m+1)E,y we get v,(p)= w,(p). Hence,
v,=w, and w,=u,. Now p =j EVNSY, hence p, <msn=nsm, so ms(m+
DE,y yields p, = q,. Hence (w,, q,) = (4, j,)-

Case 2. (v,, p,) <(u,, Jj,). Just like Case 1.

Case 3. (u,, j,) <(v,, p,). Similar to Case 1.

Case 4. (v,, p,)<(u,,j,). Say length(v,) = length(u,) =s + 1. Thus,
v, I s=u, | s, and the argument of Case 1 gives v, [ s =W, | sandp, = gq,. If
us=w.s, then u s<8 and we easily get v,s=W,s, a- contradiction. Hence,
w,z_< ug-v, (so (wx), q.)< (uy), jé) e d

ase 5. (u,, j,)<(v,, p,). Similar to Case 4. _ .

Case 6. B3 G0 poy o). Cleary, then, Eq (v, 4, Gty ). This

completes the proof of Theorem 2.1. [

Now we turn to the construction of BAs from members of K,,. For any .I € K,,
let B, () be the BA freely generated by (x,:n € I) except that n < v implies that
X, =x,. That is, B (I)=F/I, where F is the free BA on (x,,:vn el) and
I'=(x,- X, m< )" with x, identified with its equivalence class under I

2.2. Lemma. In B (I), if ny,- .., €1 are distinct and &, ..., &, €1 are
distinct, then x R .7 i =0 iff there exist i, j such that
n

nm

fié"h-

Proor. Clearly < holds. For =, suppose the implication fails. Then there exist
Py, p, €1 With py <y, ..., P, <Y, such that, in the free BA, :
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(6) X" Ky Ty X, DX X, b X, X,

Let f be the endomorphism of the free BA such that fx, =1if o =, for some i,
and fx, =0 otherwise. Thus, f(x, - -:- X Xyttt =xg) =1L fx, =1
then » =1, for some i; hence p, =7, and fx;=1.80 flx, - —x, +-+x,"
—x,,) =0. This contradicts (6). [

Let I€ K, and let B be a BA. We say that B is representable in M(I) if there
is a function f: B— M(I) such that if a,,..., a, 1, by,..., b, ,€EB and
(fag, ..., fa,_,y={fb,,..., fb,.-1) (mod M(I)), then {a,,...,a, ,) and
(bos ..., b,_,) satisfy the same quantifier-free formulas in B.

2.3. LemMA. Suppose I is y-unembeddable in J and B is a BA representable in
M(J). Then B,, is not embeddable in a factor of B.

Proor. Let g: B— M(J) be a representation of B in M(J), and suppose that &
embeds B, (/) into a factor of B. Let fn = ghx, for all n € I. Thus, f: [— M(J).
Since [ is y-unembeddable in J, there exist v, 1, vEI and n € © such that
length(n) = », length(y)) = length(v,) =n+1, y<n, v, | n= v, | n, n(n)<
n(n), and (fu, fa)={(fu, f1) (mod M(J)). Since g is a representation,

X,1, hx, ) satisfies the same quantifier-free formulas as (hx,,, hx, ). In particu-
lar, hx, = hx,, iff hx, = hx,,. Since h is an embedding, x, = x,, iff x,=x,,. Now
X, =X, 80 x, Sx,,, contradicting Lemma 2.2. [J

A BA B is called embedding-rigid if for all non-zero a,beE BwithaZb,B | a
cannot be embedded in B | b.

2.4. LemMA. If B is embedding-rigid, then B is mono-rigid, hence rigid.

Proor. Recall that mono-rigid means that there do not exist non-trivial one-to-
one endomorphisms. Suppose on the contrary that f is a non-trivial one-to-one
endomorphism of B. Say fx# x. If x & fx,then f | (A | x) embeds A | x into

Al fx, a contradiction. If fx=Zx, then ~x Zf(-x), and again we get a
contradiction. [J

We shall use the following general construction for BAs. Let A and B be BAs
and b € B. The BA .

(B I =b)X((B 1 b)xA) ~_

is denoted by Att(A, b, B). It is called the result of attaching A to B at b, and is
considered as a BA extending B. v :
~ Let A be uncountable and regular. By Theorem 2.1, let (I;: i <A) attest to the
full (A, A)-y, -bigness property. Let I' €[A}” also be given; say vy is a one-to-one
mapping of A onto I. We now construct a sequence (B;:i=A) of BAs. Write
MNOo, 1y =U .o, 4;, the A’s pairwise disjoint and of power A, and let A, =
{0,1}. Set B,=4,, a two-element BA. For i limit =2, let B, = UN B;. Now
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suppose that B; has been defined with universe Ui<,. A, Let b; be the first
element of B, different from 0,1 and all b, j<i. We set B, =
Att(B,(1,,), b;, B;), and we may take it to have universe U, 4;. This construc-
tion depends on I' and 7, and if necessary we shall indicate this dependence by
superscripts, e.g. BL”.

2.5. LEMMA. B, is representable in M(L,, L,).

Proor. With each Boolean term p with variables among Vg, ..., Up.1> Upn—
actually occurring in p, associate an m-ary operation symbol F, of L,, in a
one-to-one fashion.

We define fb for b € B, by induction on the first j such that b € B;. Ifj=0,
then b=0 or b=1; we set f0=({ ), y0), f1=((0), y0). Now suppose that
b+#0, 1, with j as indicated. Thus, j is a successor ordinal. By the construction of
B; we can write

b=(a,l§ d,-e,),

withce B, , [ —b,_,,

d,EB;,_, | b;_,¢E B, (I,;-y,) for all I <m. For each
I<mlet e, = p(ty, .

.., t,), p, a Boolean term involving all of v, ..., Uy, and
fors - -+ » 8y € L(;_y). Let G be a (2m + 3)-ary operation symbol of L, . Let the
terms o, . .. , 0,,,,, be obtained from Ty(;_1ys T-b(j-1)> Tfer 0>+« = > Fdm=1)>
F(vg,...,0,),-..,F,_1,(Ug,---,V,) by simply increasing the indices of the
variables so that in the sequence oy, ..., Oy, the variables form an initial
segment of the standard sequence of variables, appearing in order from left to
right, and let d be

Crp(i-1) Ef(-b(j-l)) Efc Crao """ Cra(m—-1)

(o0 YT = 1)), -+ 5 Ctaos YT = D)) 7200
(ome1s YG=1))s e ooy (g mmrs Y0 ~ 1)) .

Finally, let fb = (G(y, . - - » O3m+2))(d). This finishes the definition of f.

Now suppose that ag, ..., a,_y; Cos -+ 5 Cp-1 81€ elements of B, and

(7) (fag, ..., fa,_y)={(fco,---> fe,-1) (mod M(‘_g\ I,,.)) .
Assume that |

(8) Qg+ @y~ -~y =0.

We want to show that

9) co-----ch-Qch+l-"'--cp;1=0.

If a,=0, then fa, is ({ ), y0), and ({ ), ¥0) € 2, in M(Z,c, ). So (7) yields
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that fc; = fa, and ¢, = 0. Similarly, a, =1 implies ¢;=1. So we may assume that
each g, is #0, 1.

Suppose that j is minimum such that for all v < P, a, € B;; we proceed by
induction on j. Say for v < p ‘

’ ” "
(10) au = (av’ l<zr:nv aul ' avl) ’

"

witha,EB,,_, | ~b;,_,,d,,EB,_, | biy—1s @y € B, (L, ;,-1y), ju = j. Similarly,

we assume that all ¢, # 0, 1, and s is minimum such that for all v < p,c, € B,. Say
forv<p

) r " n
(11) cv = (Cv’ l<zr:w cul ’ Cul) ’

with ¢, €B,,_, | b, ,,¢,,€B,_, I b,,_,, " € B, (I,,-1y), sv =s. Note by
(7) that m, = n, for all v < p. Applying (8) to the first coordinates in (10) we get

r

’ ! !
ao- v e ‘ah.—ahi—l. - . ._ap._b"(hﬁ-])—] ‘e e '—bjp—l=0'

Now (7) yields that
(fa:), v fa’p—l’ f("bi(h+1)—1)’ SRR f(—bjp-l))
s s Sy St} (mod( 3 1))

so the induction hypothesis gives:

’ ! ’ !
(12) CO. sen -ch._ch'*l. “eoe '-‘Cp._bs(h-i'l)—l. cee ._bsp—1=0‘

Now we proceed to the second coordinates. Suppose g€, ,m, and A€
I,5,<, Pm,. Then by (8), (10), _

" ’
H av,gu : a:.gv ’ H H - a':JI * ij—l : H - a’:;l = 0 ’

v<h h=Zv<n l€eAv {€Emu/lAv

so by the free product property one of the following holds: ,

(13) iul;lh a';.gv - I TI - ay- bj,.;=0

h=sv<n l€AV ?

(14) vl;lha';',gv- I 11 —a,=0.

h=v<n lEmuv\Av

In the case where (13) holds, the argument for (12) gives

(15) v<h c"'g" ' hSI¢:I<n Igv B CUI ) bw—l - 0 :
If (14) holds, we use (7) to see that a., and ¢, are expressed by the same Boolean

term applied to sequences satisfying the same quantifier-free Boolean formulas,
using Lemma 2.2. So
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(16) I1¢ II I -¢,=o0

v<h U8V p=v<n lemuidv

By (12) and all instances of (15) or (16), (9) follows. [J
2.6. LeMMA. For any i <A, B, | —b, is representable in M(L, ¢, I,;)-

Prook. The proof is very similar to that of Lemma 2.5, and we just sketch it. We
define fb for b € (B, | —b,) by induction on the first j such that b= b"- b, for
some b’ € B;. The case j = 0 is treated as before. In the main step, we are assured
that j — 15 i, since otherwise b’ = ¢ € B,_,, contradicting the minimality of j. This
assures that f maps into M(Z,.c, I,;). The rest of the proof proceeds as
before. O

Now we can give the main theorem.

2.7. THEOREM. For each regular uncountable X there is a family of 2* embedding-
rigid BAs of power A, none embeddable in a factor of another.

ProoF. Let & be a family of 2* subsets of A, each of power A and none a subset of
another. For each I' €  let B} be as above. Then (BY: I € o) is as desired. In
fact, first suppose that I, A€ & and I' # A. To show that B f cannot be embedded
in a factor of B2, choose i € IN\A. Let vy be the one-to-one function mapping A
onto A used in the construction of B4. Since I, is y-unembeddable in I}, it is
clearly -unembeddable in E,_, /,,. By Lemma 2.5, B3 is represer;table in
M(Z,_, I,), so by Lemma 2.3, B,,(I;) is not embeddable in a factor of B4. Hence
B is not embeddable in a factor of Bj.

Finally, fix I' € &f; we show that B! = B, is embedding-rigid. Suppose a Zb,
but f embeds B, | ainto B, [ b. Letc=a- —b. Then ¢ fc =0, and fembec.is
B, | cinto B, | fc. Write ¢ = b;. Then B, (1) is embeddable in B, | ¢, hence in
B} fc,henceinB | —c=B | —b,. ByLemma2.6, B | —b;is representable in
M(Z,.;<, I,). This contradicts Lemma 2.3. O
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