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Introduction to the Handbook

The genesis of the motion of a Boolean algebra (BA) is, of course, found in the
works of George Boole; but his works are now only of historical interest — cf.
HarperIN [1981] in the bibliography (elementary part). The notions of Boolean
algebra were developed by many people in the early part of this century -
Schroder, Lowenheim, etc. usually working with the concrete operations union,
intersection, and complementation. But the abstract notion also appeared early,
in the works of Huntington and others. Despite these early developments, the
modern theory of BAs can only be considered to have started in the 1930s with
works of M.H. Stone and A. Tarski. Since then there has been a steady
development of the subject.

The present Handbook treats those parts of the theory of Boolean algebras of
most interest to pure mathematicians: the set-theoretical abstract theory and
applications and relationships to measure theory, topology, and logic. Aspects of
the subject not treated here are discussion of axiom systems for BAs, finite
Boolean algebras and switching circuits, Boolean functions, Boolean matrices,
Boolean algebras with operators — including cylindric algebras and related alge-
braic forms of logic— and the role of BAs in ring theory and in functional
analysis.

The Handbook is divided into two parts (published in three volumes). The first
part (Volume 1) is a completely self-contained treatment of the fundamentals of
the subject, which mathematicians in various fields may find interesting and
useful. Here one will find the main results on disjointness (the Erdés—Tarski
theorem), free algebras (the Gaifman—Hales, Shapirovskii—Shelah, and Balcar—
Franék theorems), and the basic decidability and undecidability results for the
elementary theory of BAs, as well as the systematic development of the abstract
theory (ultrafilters, representation, subalgebras, ideals, topological duality, free
algebras, free products, measure algebras, distributivity, interval algebras,
superatomic algebras, tree algebras).

The second part of the Handbook (Volumes 2 and 3) is intended to indicate
most of the frontiers of research in the subject; it consists of articles which are
more or less independent of each other, although most of them assume a
knowledge of at least the easier portions of Part I. The second part is arranged in
four sections, with two appendices and a bibliography. Section A, Arithmetical
properties of BAs, has two chapters: on distributive laws and their relationships
to games on BAs, and on disjoint refinements, treating extensively this elemen-
tary notion discussed in Part I. Section B, Algebraic properties of BAs, treats
subalgebras, particularly the lattice of all subalgebras and the existence of
complements in this lattice; cardinal functions on Boolean spaces; the number of
BAs of various sorts; endomorphisms of BAs, including the existence of endo-
rigid BAs; automorphisms groups; reconstruction of BAs from their automor-
phism groups; embeddings and automorphisms, especially for complete rigid
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BAs; rigid BAs; and homogeneous BAs. Section C is devoted to special classes of
BAs: superatomic algebras, mainly thin-tall and related BAs; projective BAs; and
two lengthy chapters on countable BAs, with Ketonen’s theorem; and on measure
algebras, giving an extensive survey of this topic which is perhaps the most
important subfield of the theory of BAs for most mathematicians. Section D deals
with logical questions: decidable and undecidable theories of BAs in various
languages; recursive BAs; Lindenbaum-Tarski algebras; and Boolean-valued
models of set theory. Two appendices, on set theory and on topology, explain
some more advanced notions used in some places in the Handbook. There is a
chart of topological duality. Finally, there is a comprehensive Bibliography on the
aspects of the theory of Boolean algebras treated in the Handbook.

Many people contributed to the Handbook by checking manuscripts for mathe-
matical and typographical errors; in addition to several of the authors of the
Handbook, the editor is indebted to the following for help of this sort: Hajnal
Andréka, Aleksander Blaszczyk, Tim Carlson, Ivo Duntsch, Francisco J.
Freniche, Lutz Heindorf, Istvan Németi, Stevo Todorcevi¢, and Petr Vojtas.
Thanks are also due to the North-Holland staff, especially Leland Pierce, for their
editorial work.
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Introduction to Part I

The history of Boolean algebras goes back to George Boole (BooLE [1854]).
Boole stated a list of algebraic identities governing the “laws of thought”, i.e. of
classical propositional logic. The algebraic structures satisfying Boole’s identities
were first considered in HuNtINGTON [1904] and called Boolean algebras in
SHEFFER [1913].

Boole had in mind two interpretations for his identities. The first of these is the
two-element Boolean algebra 2 = {0, 1}, where 0 is identified with the truth-value
“false”, and 1 with the truth-value “true”, together with the operations corres-
ponding to the logical ones of disjunction, conjunction and negation. The second
interpretation was the ““algebra of classes”’, where the Boolean operations were
interpreted by those of union, intersection and complementation of arbitrary
classes. More generally, and in a setting which avoids proper classes, every
algebra of sets is a Boolean algebra. Here for any set X, an algebra of sets over X
is a non-empty subfamily of the power set P(X) closed under the finitary
set-theoretical operations of union, intersection and complementation with re-
spect to X. Boole’s observation amounted, in algebraic language, to saying that
his identities held true under both interpretations. Interestingly enough, Boole’s
second example was a precursor to Cantor’s set theory which began to emerge
around 1874.

Only in 1921 (respectively 1936), was it proved that Boole’s identities give in
fact a complete axiomatization for both of his interpretations: the completeness
theorem for propositional logic (Post [1921]) amounts to saying that every
identity valid in the two-element Boolean algebra is derivable from Boole’s
axioms, and Stone’s representation theorem (StoNE [1936]) asserts that every
Boolean algebra is isomorphic to an algebra of sets. The proofs of both results are
closely connected.

Stone duality, a fundamental part of the theory of Boolean algebras, sets up an
equivalence between Boolean algebras and Boolean spaces, i.e. totally discon-
nected compact Hausdorff spaces. Thus, through a growing interest of topologists
in Boolean spaces, Boolean algebras have a bearing on topology. They are also
important in measure theory and functional analysis by way of measure spaces
and Boolean algebras of projections in Banach spaces. But the main applications
of Boolean algebras are still in parts of mathematics related to logic: in switching
algebra, a topic not covered by our presentation, classical propositional (respec-
tively predicate) calculus and set theory. The latter applications are based on the
fact that sentences of propositional or predicate logic can be given truth values
not just in the two-element Boolean algebra 2 = {0, 1} = {false, true} but in an
arbitrary Boolean algebra. The first success of this concept of Boolean-valued
model was a new and particularly lucid algebraic proof for the completeness
theorems of propositional and predicate logic found by Rasiowa and Sikorski in
1950 (Rastowa and Sikorski [1963]). The major breakthrough, however, was the

3
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observation made in 1967 by Scott, Solovay and Vopénka that Cohen’s construc-
tion of generic models for independence proofs in set theory can be conceived as
an instance of Boolean-valued models. Not only do complete Boolean algebras
thus contribute to the understanding of models of set theory, but conversely the
Boolean-valued version of Cohen’s method has been applied to prove mathemati-
cal theorems on Boolean algebras by metamathematical means.
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Introduction

Boolean algebras are defined by a list of algebraic axioms; this chapter deals
with arithmetical laws derivable from the axioms and with notions arising in a
particularly simple way from the arithmetic of Boolean algebras: atoms, relative
algebras, and disjointness.

We give, in Section 1, a somewhat lengthy list of axioms for Boolean algebras.
There are many other, in particular shorter, axiom systems for Boolean algebras;
a lot of work on these has been done but is outside the scope of this book. Our
axiom system will, however, appear completely natural to a reader familiar with
lattice theory: the axioms simply state that a Boolean algebra is a distributive and
complemented lattice. We derive a certain amount of additional algebraic laws
and give examples of Boolean algebras. The most sophisticated of these come
from logic, functional analysis and topology: Lindenbaum-Tarski algebras,
Boolean algebras of projections in Banach spaces, and regular open algebras of
topological spaces.

In Section 2 we use the laws established so far to prove Stone’s representation
theorem, the most important fact in the structure theory of Boolean algebras:
every Boolean algebra is isomorphic to an algebra of sets. This gives enough
insight to dispense once and for all with proofs of further arithmetical laws since it
implies that an equation holds in every Boolean algebra iff it holds in every
algebra of sets. In Section 3 we prove elementary results on disjointness and two
non-trivial theorems on disjoint families: the Balcar—Vojtas theorem on disjoint
refinements and the Erdos—Tarski theorem on the existence of large disjoint
families, the latter one being a standard tool in combinatorial questions on
Boolean algebras.

We freely introduce and use some basic algebraic notions such as subalgebras,
homomorphisms, etc. as they occur naturally in the proofs. They will be studied
in greater detail in Chapter 2.

1. Examples and arithmetic of Boolean algebras

This section presents a study of the arithmetic of Boolean algebras and a variety
of examples, the most important ones arising in set theory, logic, and topology:
algebras of sets, Lindenbaum-Tarski algebras, and regular open algebras.
1.1. Definitions and notation
1.1. DerINITION. A Boolean algebra is a structure (A, +, -, —,0,1) with two
binary operations + and -, a unary operation —, and two distinguished elements 0

and 1 such that for all x, y and z in A,

(associativity) B x+(y+2)=(x+y)+z, (B1") x-(y-2)
=(x-y)z,
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(commutativity) (B2) x+y=y+x, (B2) x-y=y-x,
(absorption) B3) x+(x-y)=x, B3) x-(x+y)=x,
(distributivity) B4) x-(y+t2)=(x-y)+(x-2), (B4') x+(y-2)
=(x+y)(+2),
(complementation) (B5) x +(—x)=1, (B5') x-(—x)=0.

Two standard examples of Boolean algebras, algebras of sets and Lindenbaum-—
Tarski algebras, arise in set theory and logic. The operations +, - and — of a
Boolean algebra are therefore often written as U, N, — or v, A, 71 and called
union, intersection, complement or disjunction, conjunction, negation or, as in
lattice theory, join, meet, complement. We follow Boole’s original notation which
is frequently used in modern texts on axiomatic set theory and think about +, -,
— as being spelled as sum, product, complement. It should be pointed out that
the distinguished elements 0 and 1 of a Boolean algebra are not assumed to be
distinct — see Example 1.5.

The roles of + and - respectively of 0 and 1 in the above axiom system are
completely symmetrical, a fact more thoroughly expressed in the duality principle
1.13. Nevertheless, to save notation we shall henceforth adopt the familiar
convention that multiplication binds stronger than addition and omit parentheses
around products whenever possible. We also agree that — binds stronger than
both + and - and write, for example, —x + y - —z for (—x) + y - (—z), etc. By the
first two couples of axioms, we tacitly omit parentheses and permute summands
(respectively factors) in sums (respectively products).

The structure (A, +, -, —,0,1) is usually identified with its underlying set A.
This gives rise to the following definition.

1.2. DerNITION. A Boolean algebra (A, +,:, —,0,1) is finite (countable, of
cardinality «, . . .) if its underlying set A is finite (countable, of cardinality «, . . .).

There is a perfectly natural notion of homomorphism between Boolean alge-
bras which makes the class of all Boolean algebras, together with all homomor-
phisms between them, into a category. When dealing with different Boolean
algebras (A, + 4, 4, —4,04,14) and (B, +5, 5, — 5,05, 15), we drop the sub-
scripts on +, -, etc. if no confusion arises.

1.3. DEerFINITION. A homomorphism from a Boolean algebra A into a Boolean
algebra B is a map f: A— B such that

fo)=0, f1)=1,
and for all x, y in A,
fa+ =@ +f(y),  fxy)=fx) ),
f=x)=~f(x).

fis an isomorphism from A onto B if f is a bijective homomorphism from A onto
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B. A and B are isomorphic (A= B) if there exists an isomorphism from A onto
B.

1.2. Algebras of sets

The examples given in the following list are simple but quite basic and will
often be referred to. Two of these, power set algebras and interval algebras, have
very special properties not shared by every Boolean algebra. For example, power
set algebras are complete but interval algebras of infinite linear orders are not, as
explained in the subsection on infinite operations. On the other hand, algebras of
sets provide the most general example of Boolean algebras: every Boolean
algebra is, by Stone’s representation theorem 2.1, isomorphic to an algebra of
sets, more precisely, by Theorem 7.8, to the clopen algebra of some topological
space.

1.4. ExampLE (power set algebras). Let X be any set and P(X) its power set. The
structure

(P(X)a U} na _yﬂa X) 5

with —a the complement X\a of a with respect to X, is a Boolean algebra — the

axioms (B1) through (BS5') simply state elementary laws of set theory. P(X) is
called the power set algebra of X.

1.5. ExampLE (the trivial Boolean algebra). For X the empty set, P(X) reduces to
the Boolean algebra 4 = (P(@),...,0,4,1,) with 0,=1,, the trivial or one-
element Boolean algebra. Obviously, any two Boolean algebras with exactly one
element are isomorphic.

1.6. ExampLE (the two-element Boolean algebra). For a singleton X = {x}, P(X)
reduces to {0, 1}, where 0 =@ and 1= X. This algebra is called the two-element
algebra and, following a convention in set theory, denoted by 2. Its operations are
given by the table below.

x Yy |x+y Xy -X
0 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 1 1 0

If 0 and 1 are identified with the truth values ‘“false” and “true’’, then the
Boolean operations on 2 represent the logical operations of disjunction, conjunc-
tion and negation. It follows from 1.18 and 1.21 below that any Boolean algebra
with exactly two elements is isomorphic to 2.
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1.7. DERNITION. A structure (A, + 4, 4, —4,0,4,1,) is a subalgebra of the
Boolean algebra (B, +g, 5, —5,05,15) if ACB, 0,=05, 1,=1, and the
operations + ,, -, — 4 are the restrictions of +,, -5, —5 to A.

Again we drop the subscripts whenever possible. By identification of Boolean
algebras with their underlying sets, a subalgebra of B is simply a subset A of B
containing 0, and 1, and closed under the operations of B. A is then a Boolean
algebra in its own right since the axioms are valid for arbitrary elements of B and,
a fortiori, of A.

1.8. DEFINITION. A subalgebra of a power set algebra P(X) is called an algebra of
subsets of X or an algebra of sets over X. A Boolean algebra is an algebra of sets if
it is an algebra of sets over X, for some set X.

Note that A being an algebra of sets over X not only requires that the elements
of A are subsets of X but also that the operations of A are the set-theoretical ones
inherited from P(X) and that § and X are contained in A.

1.9. ExamrLE (finite—cofinite algebras). Let X by any set. A subset a of X is
called cofinite in X or, for fixed X, simple cofinite, if X\a is finite. Let

A={aCX: a finite or cofinite} .
A is then an algebra of sets over X, the finite—cofinite algebra on X. To check that
aUband anb are in A for a, b in A, note that a U b is finite for a, b finite and
cofinite otherwise; a N b € A follows from de Morgan’s law,

anb=X\((X\a) U(X\b)),

since A is closed under — and U.

If X has infinite cardinality , then so has the finite—cofinite algebra on X, since
X has exactly « finite subsets. Thus, every infinite cardinal is the cardinality of a
Boolean algebra. A non-negative integer k, however, is the cardinality of a
Boolean algebra iff k =2" for some n € w, as follows from Corollary 2.8.

1.10. ExampLE (clopen algebras). Let X be a topological space. A subset of X is

clopen if it is both closed and open. The set Clop X of clopen subsets of X is an

algebra of sets over X, the clopen algebra of X.

1.11. ExamrLE (interval algebras). Let L be a linearly ordered set with first

element 0,. Extend the linear order of L to L U {»}, where = is an element not

contained in L, by letting x < for x € L. For x, y € L U {}, the set
[x,y)={z€L:x=z<y}

is the half-open interval of L determined by x and y. We show that the set A of
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finite unions of half-open intervals is an algebra of sets over L. In fact,
L=[0,,) and @ =[x, x), where x €E L, are in A, and A is closed under finite
unions. By de Morgan’s law, it suffices as in the example of finite—cofinite
algebras to check that A is closed under complementation.

To see this, first consider the relative position of two non-empty intervals [x, y)
and [s,¢) in L. If y <s, then [x, y) lies left of [s, ¢) and [y, s) is non-empty; if
t<x, then [s,t) lies left of [x, y) and [¢,x) is non-empty. In both cases,
[x, y) U[s, t) is not an interval. In the remaining case we have s<y, x <t and

[x, y) Us, £) = [min(x, 5), max(y, 1))

is a half-open interval.
Now let

a=[x17yl)U...U[xn7yn)

be an element of A where the number » of intervals is minimal for a. Then no
interval [x;, y;) is empty; hence, x; <y,. For i#j, [x;, y,)U[x;, y;) is not an
interval by minimality of n, so [x;, y,) lies left of [x;, y;) or vice versa. Thus, after
a permutation of indices, we may assume that x, <y, <x,<y,<---<x,<y:

E £ AY 'l AY £
T

and conclude that
L\a=[0,,x)U[y;,x,)U---U[y,,®

is again in A.

The Boolean algebra A is called the interval algebra of L and denoted by
Intalg L. It can also be constructed for linear orderings without first element, by
simply attaching one.

1.3. Lindenbaum—Tarski algebras

Our second major example of Boolean algebras, the Lindenbaum-Tarski
algebras, exemplify the connection between Boolean algebras and logic. It will be
proved in Section 9 that every Boolean algebra is isomorphic to a Lindenbaum-—
Tarski algebra. By their very definition, Lindenbaum-Tarski algebras are not
algebras of sets.

'1.12. ExampLE (algebras of formulas and Lindenbaum-Tarski algebras). Let L be
a language for propositional or first order logic and T a theory, i.e. an arbitrary
set of sentences, in L. For formulas a, 8 of L, define

a~B iffTaop,
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i.e. iff @ «> B is formally provable from the axioms of T in classical propositional

(respectively predicate) calculus. ~ is then an equivalence relation on the set of
all formulas; e.g. it follows from « ~ 8 and B ~ y by

Flaep)r(Beoy)>(aeoy)

and modus ponens that « ~y. Let [a] be the equivalence class of a with respect
to ~ and put

B(T)={[a]: « a formula of L} .
By defining
[a] +[B]=[a v B8],
[a]-[B]=[aAB],
—[a]=[7a],
1=[ay— a],
0=[ay A a],
where ¢, is an arbitrary formula, we make B(T) into a Boolean algebra, the

algebra of (equivalence classes of) formulas with respect to T. In fact, the
operations of B(T) are well-defined since

Flaea)r(Bop)—>((avB)e(a’vE)),
etc.; the associative law (B1) holds in B(T) since
Fav(Bvy)e(avp)vy,
etc. For every formula a, [a] = 1iff T |- a. Thus, T is syntactically consistent (i.e.
not every formula is derivable from T') iff B(T') is not the trivial Boolean algebra.
There are several naturally defined subalgebras of B(T), e.g. if we are deal-
ing with first order logic and x,,...,x, is a fixed list of individual variables,
then
A = {[a]: all free variables of « are among x,, ..., x,}
is a subalgebra. In particular, the subalgebra

{[a]: « a sentence of L}

is called the Lindenbaum—Tarski algebra of T.
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1.4. The duality principle

Before embarking on the arithmetic of Boolean algebras, we state a general
principle which saves a good deal of computational work. We do not bother to
formulate and prove it in great detail but think that even a reader inexperienced
in logic will understand it. For every statement ¢ on Boolean algebras, let the
dual statement d¢ of ¢ be obtained by systematically exchanging the symbols +, -
and 0, 1 in ¢. Obviously dd¢ = ¢ and each of the axioms (B, ) in Definition 1.1 is
the dual of (B,). It is this self-duality of the axiom system which gives rise to the
following theorem.

1.13. Tueorem (duality principle). If a statement holds in every Boolean algebra,
then so does its dual.

Proor. Let ¢ hold in every Boolean algebra and let B = (B, +, -, —, 0, 1) be any
Boolean algebra; we show that d¢ holds in B. Consider the dual structure
dB = (B, -, +, —, 1,0) obtained from B by exchanging the operations + and - and
the elements 0 and 1. An arbitrary statement ¢ holds in dB iff dy holds in
ddB = B. In particular by self-duality of the axiom system in Definition 1.1, dB is
a Boolean algebra. So ¢ holds in dB and d¢ holds in B. O

1.5. Arithmetic of Boolean algebras. Connection with lattices

We now prove a numbér of laws governing the elementary arithmetic of
Boolean algebras. They will be used in the future without specific reference. All
laws are assumed to be assertions about arbitrary elements x, y, z... of a

Boolean algebra. By the duality principle, we shall prove only one of two dual
statements in the following.

1.14. LemmMA. (a) (idempotence) x + x = x and x - x = x.
M) x+ty=yiffx-y=x.
Proor. (a)

x+x=x+x-(x+x) by (B3)
=x by (B3).

(b) If x +y =y, then, by (B3'),
xy=x-(x+y)=x,

and the converse implication follows by duality. O
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We take for granted the notion of a partial order or partially ordered set (P, <),
i.e. a set P with a binary relation < which is reflexive, transitive, and antisymmet-
ric (if x<y and y=<x, then x =y). The subsequent lemmas prove that every
Boolean algebra is partially ordered, in a natural way, and its operations can be
recovered from the partial order. In fact, Boolean algebras are often defined as
being distributive complemented lattices, a special kind of partially ordered sets.

1.15. DEerintTION. Let (P, <) be a partial order. For MC P and a€EP, a is a
lower bound (an upper bound) of Mifa=m (m=a) foreverymE€M.aE Pisa
least element ( greatest element) of P if a is a lower bound (an upper bound) of P.
For M C P and a € P, a is a greatest lower bound of M, a = glb M, (a least upper
bound of M, a=1ub M) if a is a lower bound (an upper bound) of M and a’ <a
holds for each lower bound a’ of M (a < a’ holds for each upper bound a’ of M).
(P, =) is a lattice if, for any x and y in P, glb{x, y} and lub{x, y} exist.

In the above definition, a lower bound for M C P does not necessarily exist nor
is it unique. It is, however, easily checked that a least element of P or a greatest
lower bound of M C P, if they exist, are uniquely determined. Similar reasoning

applies to greatest elements of P and least upper bounds of M, and thus justifies
the notation a =glb M and a =1ub M.

1.16. LemMa. For every Boolean algebra A, the relation < defined by

x=y iffx+ty=y

(iff x-y==x, by 1.14) is a partial order on A. (A, <) is a lattice in which
glb{x, y} =x-y and lub{x, y} =x +y.

Proor. The relation = is reflexive by 1.14(a). If x<y and y < z, then

x+z=x+(y+z) byy=:z

=(x+y)tz
=y+z byx=y
=z byy=z,

so x<z and = is a transitive relation. It follows from x <y and y =<x that
y=x+y=y+x=x; thus, the relation = is antisymmetric and (4,=<) is a
partially ordered set.

x +y is an upper bound of both x and y: e.g. by 1.14(a),

x+(x+y)=x+x)+y=x+y,

which shows x =x + y. Let z be an arbitrary upper bound of x and y. Then
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x+y)+tz=x+(yt2z2),
=x+z byy=z

=z byx=z,

thus x + y =2z and we have proved x + y =1lub{x, y}. It follows by dual con-
siderations that x -y = glb{x, y}. O

The partial order constructed in the preceding lemma is sometimes referred to
as the canonical or the Boolean partial order on A. For algebras of sets, the
Boolean partial order simply is set-theoretical inclusion.

In the proofs of 1.14 and 1.16, we only used the axioms (B1) through (B3’),
hence every structure (A, +, -) satisfying (B1) through (B3’) can be made into a
lattice (A, <). There is a converse to this construction: for (A, <) a lattice, define
binary operations + and - by letting x + y = lub{x, y} and x-y = glb{x, y}. The
structure (A, +, -) then clearly satisfies (B2) and (B2') (commutativity of + and
-). Axiom (B1) (associativity of +) holds since both x + (y + z) and (x + y) + z
coincide with lub{x, y, z} and (B3) holds since x - y < x. (B1’) and (B3’) follow
by dual reasoning.

It is not difficult to see that the constructions outlined above, of lattices from
algebraic structures (A, +, -) satisfying (B1) through (B3’') and vice versa, are
converses of each other. We shall freely identify lattices (A, <) with their
associated algebraic structures.

1.17. LemMa. The distributive laws (B4) and (B4') are equivalent in every lattice.

Proor. By duality, it is sufficient to prove (B4') from (B4) and the lattice axioms
(B1) through (B3'):
x+y) (x+z2)=(x+y)-x+(x+y)-z by (B4)
=x+(x-z+y-2) by (B3'), (B4)
=xty-z by (B1), (B3). O
We turn to implications of (B5) and (B5'). The following laws characterize the

distinguished elements 0 and 1 of a Boolean algebra A as the unique least and
greatest elements of the lattice (A, =<).

1.18. LEMMa. (a) O0=x=1.
(b) x+0=xand x-1=x.
() x-0=0and x+1=1.

Proor. By (BS") and 1.16, 0 is the greatest lower bound of x and —x; in
particular, 0= x. Hence, x + 0=x and x-0=0. The rest follows by duality. O
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1.19. DerinimioN. Let (L, <) be a lattice. L is distributive if the distributive law
(B4) (hence, by 1.17, (B4')) holds in L. If L has a least element 0 and a greatest
element 1, then yE L is a complement of x€EL if x+y=1and x-y=0. L is
complemented if L has a least and a greatest element and each element of L has a
complement.

Inspection of our axiom system shows that Boolean algebras can be described
as being distributive complemented lattices. By the following proof, complements
are unique in distributive lattices.

1.20. LeMMA. —x is the unique complement of x.

Proor. By (B5) and (B5'), —x is a complement of x. If y and z are both
complements of x, then

z=1z-1
=z-(x+y) byx+y=1
=z-x+z-y by (B4)
=0+z-y by x-z=0
=z,

hence z=y. Similarly, y <2z and thus y =z by antisymmetry of the Boolean
partial order. [J

Since 0, 1 and the operations +, -, — of a Boolean algebra are definable in
terms of its partial order, we find (taking for granted the notion of isomorphism
for partial orders) that two Boolean algebras are isomorphic as algebraic struc-
tures iff their associated partial orders are isomorphic.

1.21. Lemma. (a) — —x=x,
(b) if —x=y, then x =y,
() —0=1and —1=0,
(d) (de Morgan’s laws) —(x +y)=—x-—y and —(x-y)=—x+ —y.

Proor. (a) Both x and — —x are complements of —x.

(b) If —x=—y,thenx=——x=——y=y.

(c) By 1.18(c), 0+1=1 and 0-1=0. So 0 and 1 are complements of each
other.

(d) By distributivity and absorption,

(x+y)—x-—y=x-—x-—y+y —x--y,
=0+0,
=0,
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and

(x+y)+—x-—y=x-(y+-y)+y+-x-—y
=xytx-—ytyt+t—x-—y
=y+x-—y+-—-x-—y

=y+-y
=1,

thus —x - —y is the complement of x + y. The second law follows by duality. [J
1.22. Lemma (monotonicity laws). If x<x' and y=<y', then x+y=x'+Yy/
x-y=x'-y' and —x'=—x.
Proor. The first assertion follows from
E+y+E +y)=E+x)+(yty)=x"+y’,
the second one by duality, and the third one by de Morgan’s law and
-x'+—x=—(x-x")=—x. O

1.23. LemMA. (@) x<y iff —-y=—x iff x- —y=0.
®) z-x=yiffx=—z+y.

Proor. (a) By 1.22, x <y implies —y =< —x. Conversely, —y = —x implies x =
——x=--—y=y. Ifx=<y,thenx=x-yandx-—y=x-y-—y=0. Conversely,
x-—y =0 implies that

x=x(y+-y)
=x-y+x._y
=x-y

and x=<y.

(b) If z- x =y, then by monotonicity of +,
X=z'xt—-z-xs=y+-—-z.
If x<-2z+y, then by monotonicity of -,

z'x=z-(—z+y)=z-y=y. O
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1.6. Connection with Boolean rings

There is a close connection between Boolean algebras and particular commuta-
tive rings with unit, the so-called Boolean rings. For an outline of this, we
consider one more operation on Boolean algebras definable in terms of +, - and
—, symmetric difference. Two other less important operations are defined in
Exercise 1.

1.24. DeriniTION. For any elements x, y of a Boolean algebra A, the symmetric
difference of x and y is

xAy=x-—y+y-—x.

Thus, for an algebra A of sets, x Ay as defined above is the set-theoretic
symmetric difference (x\y) U (y\x) of x and y.

1.25. LemMa. (a) x=y iff x Ay =0.
) xA(yAz)=(xAy)Acz.
© x(yAz)=(xy)Ax-2).
Proor. (a)
x=y iffx<=yand y=x
iff x-—y=0andy-—x=0 by 1.23(a)
iff xAy=0.
(b) By de Morgan’s laws and distributivity,
~(yAz)=(-y+2)(-z+y)
=yz+t-y-—z.
Evaluation of x A (y A z) gives, using the same laws,
xA(yAz)=x-(y-z+-y - —2)+—x-(y-—z+—y-2)
=x'y-z+tx-—y-—z+—x-y-—z+—-x-—y-z.

By symmetry, evaluation of (x A y) A z gives the same result.
©
x(yAz)=x-(y-—z+z--y)
=x-y._z+x.z._y
and
x-NAE-z)=x-y (~x+-2)+x-z-(—x+—y)
=x-y-—z+x-z-—y. O
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1.26. DeFINITION. An element x of a ring R is idempotent if x-x=x. R is a
Boolean ring if R is a ring with unit and every element of R is idempotent.

1.27. ProrosiTioN. The following assignments give a one-to-one correspondence
between Boolean algebras and Boolean rings: for a Boolean algebra B =
(B, +,-,—,0,1), let

rB=(B,A,-,0,1);

for a Boolean ring R= (R, ©,-,0,1), let
bR=(R,+,-,—,0,1),

where for x and yin R, x+y=x®y®(x-y) and —x=xD 1.

ProoF. rB is a Boolean ring; this follows immediately from Lemma 1.25 and the
fact that symmetric difference is commutative and has 0 as a neutral element.

To prove that bR is a Boolean algebra we first list some consequences of R
being Boolean. As usual in ring theory, we omit parentheses around products
whenever possible.

(1) x-yPy-x=0,
since
x@y=(x®y) (xDy)

=x-x®x-yDPy-xDy-y

=x®@x-yDy-xDy.
Letting x =y in (1), we find
2) x®x=0;
then (1) and (2) imply that
3) X'y=y-x,
i.e. that a Boolean ring is commutative. The Boolean algebra axioms for bR are
proved by straightforward computation, using the ring axioms for R and the
additional laws (2) and (3).

It follows from the elementary facts proved above and easy computations that
brB=B and rbR=R. [

By this equivalence between Boolean algebras and Boolean rings, the theory of
Boolean algebras could be subsumed under that of rings, and there is in fact some
literature where this is done. But since the intuitive idea of a Boolean algebra is
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rather that of being an algebra of sets — and Stone’s representation theorem 2.1
proves this intuition to be correct—or a lattice, we will never use the ring-
theoretic approach.

The construction of a Boolean algebra from a Boolean ring can be somewhat
generalized to other rings. For an arbitrary ring R, let Idp R be the set of all
idempotent elements of R. Then if (R, &, -, 0, 1) is a commutative ring with unit,
(IdpR, +, -, —,0,1) with + and — defined as in 1.27 is a Boolean algebra. For a
ring (R, @, -, 0, 1) with unit but not necessarily commutative, (B, +,-, —,0,1) is
a Boolean algebra where

B={x€ldpR:x-r=r-x for every r € R}

and +, — are defined as in 1.27. Similar examples of Boolean algebras are
relevant to functional analysis and described below in the subsection on Boolean
algebras of projections.

1.7. Infinite operations

The Boolean operations +, -, and — reflect the finitary set-theoretical opera-
tions of union, intersection, and complement. We now introduce two operations %
(sum) and II (product) defined for some, but not necessarily all, subsets of a
Boolean algebra; they reflect several properties of unions and intersections of
arbitrary families of sets. The formal definition 1.28 of sums and products is
motivated by the fact that, for M a family of subsets of X, U M and (1 M are the
least upper bound and the greatest lower bound of M in the partial order
(P(X),C). Also if x4, . . ., x, are finitely many elements of a lattice L and n =1,
then an easy induction shows that x, +---+x, and x,- --- -x, are the least
upper bound and the greatest lower bound of {x,,...,x,} in L.

1.28. DerNITION. Let A be a Boolean algebra. For MC A, £ M (Il M) is the
least upper bound (the greatest lower bound) of M in the partial order (A, <) if it
exists. We write X, m, (Il,c, m;) if M ={m;: i €I} and £ M (Il M) exists. A is
complete if © M and II M exist for every M C A. Let « be an infinite cardinal. A is
k-complete if ¥. M and II M exist for each M C A of cardinality less than k. A is
o-complete if £ M and II M exist for each countable M C A.

A word of caution is in order here. If A is an algebra of sets and U M € A for
some subset M of A, then clearly U M =¥ M. It is however possible that & M
exists but does not coincide with U M: e.g. let A be the interval algebra of the
real line R and

M={[x,©0):xER,0<x};

then U M is the open interval (0,*) and £ M is the half-open interval [0, o).
Thus, when dealing with a subalgebra A of a Boolean algebra B, it is usually
necessary to distinguish, for M C A, the least upper bound L“* M of M in A and
the least upper bound ©? M of M in B; similarly for II* M and I1° M.
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1.29. DEerINITION. A subalgebra A of a Boolean algebra B is a regular subalgebra
of B if for each M C A such that £ M (IT* M) exists, also ©® M (I1® M) exists
and 24 M =22 M (1" M=11° M). An algebra A of sets is a complete algebra of
setsif U ME A and N\ M € A for each M C A. A is a k-algebra (a o-algebra) of
sets if UMEA and NME A for each MC A of size less than «k (each
countable M C A).

Thus, a complete algebra of sets is, by definition, an algebra of sets in which
sums and products of arbitrary subsets not only exist but are formed set-
theoretically. It could also be defined, in a more abstract way, as being a regular
subalgebra of a power set algebra which is complete in its own right. Every power
set algebra is a complete algebra of sets; Exercise 4 shows that, conversely, a
complete algebra of sets is isomorphic to a power set algebra. The regular open
algebra of the reals considered in 1.37 is complete and, by Stone’s theorem 2.1,
isomorphic to an algebra of sets. It is, however, not isomorphic to any o-algebra
of sets; cf. Exercise 3 of Section 2. For any infinite regular cardinal x and any set
X, a simple example of a k-algebra of sets over X is given by

A={aCX:|a|<kor |X\a|<«k}.

1.30. ExampLE (Borel algebras). Let X be a topological space and 0 its topology,
the family of open subsets of X. Then

Bor X =1 {AC P(X): A a o-algebra of sets over X and 0 C A}

is a o-algebra of sets over X containing all open sets, in fact the smallest
o-algebra of sets over X containing all open sets. It is called the Borel algebra of
X; the sets in Bor X are the Borel subsets of X.

1.31. ExawmpLE (Baire algebras). Let X be a topological space. A subset a of X is
said to have the Baire property if a A u is meager, for some open subset u of X.
Elementary topological reasoning shows that the set

Bai X = {a C X: a has the Baire property}

is a o-algebra of sets over X, the Baire algebra of X; see Exercise 6 for the
relevant definitions. Since every open subset of X has the Baire property, Bor X
is a subalgebra of Bai X.

1.32. ExampLE (the algebra of measurable sets). The set Leb R of all Lebesgue-
measurable subsets of R is a o-algebra of sets over R. Since every open subset of
R is Lebesgue-measurable, Bor R is a subalgebra of Leb R. More generally,
o-algebras of sets arise in measure theory through the concept of a measurable
space, i.e. a pair (X, A), where X is a set and A a o-algebra of sets over X.

The algebras considered in Examples 1.9 and 1.11 are, in all interesting cases,
not even o-complete. E.g. let A be the finite—cofinite algebra over an infinite set
X and let Y C X be such that both Y and X\Y are infinite; then M = {{y}: y E Y}
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has no least upper bound in A. More generally, if « is regular and infinite and X
has cardinality at least «, then the algebra {a C X:|a|<«k or |X\a|<k} is
k-complete but not « “-complete. For L an infinite linear order, the interval
algebra A of L as defined in 1.11 is not o-complete since without loss of
generality there is a strictly ascending sequence (x,),c, in L. Then

nEw
M ={[x,,, X3,41): nE 0}

has no least upper bound in A. For suppose

a=[y,z;)U Ul z;)

is an upper bound. For some s € {1, . . ., k}, the set N consisting of those n such
that [x,,, X,,.,) C[¥,, z,) is infinite, and there is some n such that both n and
n+1 are in N. Then y, <x,,,; <X,,, <2z, and a\[X,, 1, X;,4,) iS an upper
bound of M in A strictly smaller than a.

1.33. LEMMA. Let A be a Boolean algebra and suppose the least upper bounds of
the subsets M, N, M,, ..., M,, M, (i € I) exist. Then the right-hand sides in (a),
(b), (c) exist and

(@) (de Morgan’s law) —X M =11 {-m: m € M},

(b) (distributivity) fora€ A, a-TM=X{a-m: mE M},

(c) (distributivity) ZM-EN=L{m-n:m€E€M, nEN} and

YXM,-- LM =X{m,-....m:mEM,for l=i=<k},

(d) (associativity) T,c; (Z M,) =X (U,., M,) in the sense that, if one of these
sums exists, then so does the other one, and they coincide.

Proor. (d) holds because the subsets {% M;;i €I} and U, M, of A have the
same set of upper bounds.

(a) We show that, for s=X M, —s is the greatest lower bound of the set
{~m: me& M}. Now for mEM, m=s and hence —s=<—m by 1.22. If x is
another lower bound of {—m: m € M} in A, then for m € M, x < —m and, again
by 1.22, m=—x, hence s<—x and x = —s.

(b) Again let s =X M; we show that a-s is the least upper bound of the set
{a-m:meM}. By a-m=a-s for mEM, a-s is an upper bound; let ¢ be
another one. For mEM, a-m=t, so m=—a+t by 1.23(b). Then s<—-a+¢
and, again by 1.23(b), a-s=<t.

(c) follows by iterated application of (b), making use of (d). O

By duality, we obtain under assumptions dual to those of 1.33,

-MMM=%Y (-m:me My,
a+HM=H{a+m:mEM}, )
MM +--+1IM =I1{m + - +m:meM,for1<i=<k},
H(HM,.)=H(I_LEJI M,.).

iel
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de Morgan’s laws show that in the definition of complete and «-complete
Boolean algebras, one only needs to insist that for all M (respectively for all M of
power less than «), & M exists — or that, for all M (of power less than «), I M
exists.

The algebraic laws in 1.33 and Stone’s theorem 2.1 might suggest that the
infinite operations ¥ and Il obey exactly the same laws as the set-theoretical ones
of union and intersection. It will, however, be explained in Section 14 that
distributive laws more general than 1.33(c) do hold in complete algebras of sets
but not in arbitrary complete Boolean algebras.

1.8. Boolean algebras of projections

We sketch an example of Boolean algebras which arises in functional analysis.
The reader is advised to consult the book by DuNrForD and ScHWARTZ [1957-71]
for proofs and more detailed definitions.

For V any vector space over a field K, the linear maps of V into itself form a
ring End .V under the operations + of pointwise addition and ° of composition,
the endomorphism ring of V. The zero O (respectively the unit 1) of End,V is
the zero map (respectively the identity map) id,. With the additional operation of
scalar multiplication by elements of K, EndV is also a K-algebra. It is, of course,
non-commutative if V has dimension at least 2. The idempotent elements of
End.V, i.e. the linear transformations e of V satisfying ece=e, are called
projections. More precisely, e is said to be a projection onto the range of e, i.e. the
linear subspace im e or V.

1.34. DErFINITION. A Boolean algebra of projections in V is a set A of idempotent
elements in End,V such that O, € A, 1, € A, the elements of A are pairwise
commuting and A is closed under the operations defined by

evf=et+tf—ecof,
enf=eof,

—e=1p—e.

A straightforward ring-theoretical computation shows, as in 1.27 and the
remarks following it, that a Boolean algebra of projections as defined above is
really a Boolean algebra. Its Boolean partial order is given by

4) e<f iffimeCim f.

Historically, Boolean algebras of projections arose from the following exam-
ples. If V is a finite-dimensional unitary vector space over the complex numbers
and f: V— Vis a self-adjoint linear transformation, then the spectral theorem says
that V has an orthonormal base {v,, ..., v,} consisting of eigenvectors of f, and
the eigenvalue A, of v; is a real number. Now if e, denotes the orthogonal
projection of V onto the subspace spanned by v;, then
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f= % A€ s

I=i=n

where the e; can be considered as elements of the finite Boolean algebra
A={,Z ei:Mg{l,...,n}}
ieM

of projections in V.

This example has a less trivial generalization to infinite-dimensional spaces: for
V a Banach space over the reals R or the complex numbers C, the bounded linear
transformations of V into itself form a Banach algebra B, a subalgebra of End,V,
and a Boolean algebra of projections is then naturally assumed to be a subset of
B. The finite-dimensional spectral theorem generalizes to the situation where V is
a Hilbert space over the complex numbers and f: V—V a bounded self-adjoint
transformation; it gives a representation

F=[ AE@y)

of f as the integral of the function id, with respect to a spectral measure E. Here a
spectral measure is a homomorphism from the Boolean algebra Bor R of Example
1.30 into a Boolean algebra A of projections in V which satisfies an additional
requirement of countable completeness, similar to the definition 1.35 below. In
the finite-dimensional case considered above, E would be the map defined by

E(u)={2 e;l=<i=n, AiEu}

for each Borel set u in R.

It is natural to require, for A a Boolean algebra of projections in a Banach
space V, that the infinite operations of A, whenever defined, respect the topologi-
cal structure of V. In view of (4), we define:

1.35. DerNITION. A Boolean algebra of projections in a Banach space is a
complete (a-complete) algebra of projections if for each M C A (each countable
MC A), 2* M and IT"* M exist and

im(HAM>=n{ime:eEM},

im(ZA M ) = the topological closure of the linear subspace generated by
U{ime: e€ M} .

It can be shown that A is a complete Boolean algebra of projections iff, for
each subset M of A, IT* M (£ M) is the limit, in the strong operator topology, of
the net {Il “M’': M' C M finite} (of the net {£* M': M’ C M finite}, respectively).

Let us consider two simple examples of Boolean algebras of projections. For
the Hilbert space



§1] EXAMPLES AND ARITHMETIC OF BOOLEAN ALGEBRAS 25
— . 2
H= {(xn)nEw‘ X ER’ nzelm Xn < OO}
and u C w, define e,: H— H by

e, (x)=x-x,

(pointwise multiplication), where x,: @ — {0, 1} is the characteristic function of u.
Then e, is a projection of H.

A={e,,uCw}

is a Boolean algebra of projections in H which is isomorphic to P(w) and hence
complete as a Boolean algebra. It is not difficult to check that A is also a complete
Boolean algebra in the sense of Definition 1.35.

On the other hand, let 7 be an infinite set, V the Banach space of all bounded
functions from [ into R with the sup-norm; again for u C I, define e,: V—>V by
e, (x)=x"- x,. Then

A={e,ucCl},

being isomorphic to P(I), is complete as a Boolean algebra but not complete in
the sense of 1.35. To see this, let u C I be the union of a strictly increasing
sequence (u(n)),c,, of subsets of u. If x denotes the map from I to R with constant
value 1, then e, (x) = x, is not the limit of the sequence e, (x) = x,,, since
lle.(x) — e, ()] =1 for every n; thus (e, ),c, does not converge to e, in the
strong operator topology.

nEw

1.9. Regular open algebras
We give a standard example of a complete Boolean algebra, the regular open

algebra of a topological space. For X a topological space and a C X, we denote by
int a the interior and by cl a the closure of a in X.

1.36. DeriNtTION. Let X be a topological space. For a C X, ra=intcla is the
regularization of a. u C X is regular open if ru = u.
RO(X) = {u C X: u regular open}
is the regular open algebra of X.
V The name regular open algebra is justified by the following theorem where, for

notational convenience, a Boolean algebra is identified with its associated partial
order.
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1.37. THeoREM. RO(X) is a complete Boolean algebra under set-theoretical inclu-
sion. The distinguished elements and the operations of RO(X) are given by

0=9, 1=X,
u+v=r(uUv), u-v=uNv, —u=int(X\u),
2M=r(UM), HM=r(ﬂM).

Proor. We establish six elementary facts on regular open sets. Let u, v, w range
over open subsets of X.

5) uCru
since u Cclu and u =int u Cint cl uru.
(6) If u and v are regular open, then sois uNv,

since u N v Cr(u Nv) by (5), while r(u N v) Cru = u and r(u N v) Crv = v imply
that f(uNv)Cunw.

@) ra is regular open for each a C X :

we have raCcla, clraCcla, so rra =intclra Cintcl a =ra. But ra C rra holds
by (5).

8 ru is the least regular open set including u ,
since u Cru €RO(X) by (5) and (7), and u Cv € RO(X) implies ru Crv = v.
9 uNraCr(uNa) foreachaC X :

openness of u implies uNclaCcl(uNa), hence uNra=intuNintcla=
int(u Ncl a) Cintcl(u N a) =r(u N a).

(10) Ifunv=@, thenruNrv=9

since uC X\v, cluCcl(X\v)=X\w, clunNv=@ and ruNv=@. By the same
reasoning, ru Nrv = 0.

Now for a proof of the theorem, note that (RO(X), C) is a partial order with a
least and a greatest element, since both the empty set and X are regular open. For
any subset M of RO(X), U M is the least set including each m € M and it is
open, so by (8) r(\U M) is the least upper bound of M in RO(X). To show that
w=r1( M) is the greatest lower bound of M, observe that w € RO(X) by (7).
Since (N M C m for m € M, it follows that w C rm = m; so w is a lower bound of
M. If v is another lower bound of M in RO(X), then v C N Mand v=rvC
(M M) =w.

We have thus proved that (RO(X), C) is a lattice in which every subset has
both a least upper bound and a greatest lower bound. In particular,
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(RO(X), +, ) satisfies the lattice axioms (B1) through (B3’) since by (6),
u-v=unNwv for u, v ERO(X). Also u-int(X\u) =9 for u € RO(X) since u and
int(X\u) are disjoint sets and u + int(X\u) = 1 since u U int(X\u) is a dense subset
of X.

We are left with the proof of the distributive laws, and by Lemma 1.17 we need
only check (B4). So let u, v, w be regular open. By the lattice axioms, we have
uCu+v,sow-uCw-(u+v). Similarly, w-v C w- (u + v) which gives w-u +
w-vCw-(u+v). Conversely,

w-(ut+tv)y=wnr(uUv)
Cr(wn(uUv) by (9)
=r(wNu)U(wnNvu))

=w-u+w-v. O

Even a very special case of this last theorem gives, up to isomorphism, all
complete Boolean algebras: every partial order (P, =) can be topologized in a
trivial way by taking the sets {g € P: ¢ =p}, where p € P, as the base of a
topology. It will be proved in Section 4 that every complete Boolean algebra B is
isomorphic to RO(P) for some partial order P. This connection between partial
orders and complete Boolean algebras is, in axiomatic set theory, responsible for
the equivalence between forcing with partially ordered sets and forcing with
complete Boolean algebras.

Exercises

1. Define, in a Boolean algebra A, the binary operations | (Sheffer stroke) and
1 (Peirce arrow) by

xly=-x--y, xty=-x+-y.

Prove that 0, 1, and the Boolean operations are definable, in terms of equations,
both by | and by 1.

2. Using the notation of Proposition 1.27, check that bR is a Boolean algebra
and that brB = B, rbR = R.

3. Let A be the finite—cofinite algebra on X and B the power set algebra of X.
Then, for any subset M of A, %" M exists iff U ME A, and in this case
M=UM=2M.

4. Every complete algebra of sets, as defined in 1.29, is isomorphic to a power
set algebra.

Hint. If A is a complete algebra of sets over X, define an equivalence relation
~ on X by

x~y iff foreacha€ A, xEaiff yEa.

Then A= P(Y), where Y is the set of equivalence classes of ~.
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5. Let T be a first order theory in the language L and ¢(xx,...x,) an
L-formula. Let, in the algebra B(T) of (equivalence classes of) formulas,

M, ={[¢(x,...x,)]:taterm of L},

where ¢(tx, ...x,) arises from ¢(xx,...x,) by substitution of ¢ for x, after
renaming bound variables in ¢ if necessary. Prove that

ZM¢=[EIx¢(xx1...xn)], HM¢=[Vx o(xx, ...x,)].

6. In a topological space X, call a subset a of X nowhere dense if intcla =0
and meager if it is the union of countably many nowhere dense sets. Prove that
the Baire algebra of X, as defined in 1.31, is a o-algebra of sets over X.

7. In a topological space X, call a C X regular closed if a = clint a. The set of
all regular closed subsets of X is a complete Boolean algebra, under inclusion,
which is isomorphic to RO(X).

2. Atoms, ultrafilters and Stone’s theorem
The principal result of this section is the following theorem.

2.1. TueorREM (Stone’s representation theorem, set-theoretical version). Every
Boolean algebra is isomorphic to an algebra of sets.

We first give a simple proof under the additional hypothesis that the algebra
involved has enough atoms — see Corollary 2.7; in particular this gives a complete
description of finite Boolean algebras in 2.8 and 2.9. In the general case, the
notion of an atom has to be replaced by that of an ultrafilter, and the Boolean
prime ideal theorem 2.16 guarantees that every Boolean algebra has sufficiently
many ultrafilters. It does so, however, only at the expense of using the axiom of
choice in a significant way; see the discussion following Corollary 2.17.

As a consequence of Stone’s theorem, we find an elementary method for
checking validity of an equation in all Boolean algebras (Proposition 2.19). We
finally consider the Rasiowa-Sikorski lemma 2.21, an extension of the Boolean
prime ideal theorem which is useful in predicate logic and axiomatic set theory.

2.1. Atoms

2.2. NorartioN. For x and y in a Boolean algebra A, x 'y if x <y does not hold.
x<y (or y>x, x is strictly smaller than y) if x<y but x # y.

A"={xE A:0<x}

(=A\{0}, by 1.18) is the set of positive elements of A.
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2.3. DerINITION. Let A be a Boolean algebra. a € A is an atom of A if 0 <a but
there is no x in A satisfying 0 < x < a. At A is the set of atoms of A. A is atomless
if it has no atoms and atomic if for each positive element x of A, there is some
atom a such that a =x.

For example, a power set algebra P(X) and the finite—cofinite algebra on X
(Example 1.9) are atomic, the atoms being the singletons {x}, where x € X. Also
each finite Boolean algebra is atomic since if x >0 in a Boolean algebra A and
there is no atom below x, then there exists a strictly decreasing infinite sequence
Xo=x>x,>x,> ---in A". The interval algebra of the real line (Example 1.11)
is atomless and so is the regular open algebra of the reals in their usual topology
(Theorem 1.37). To see the latter, note that for s <¢in R, the open interval (s, t)
of R is regular open. Now if a is a positive element of RO(R), then there are
u<s<t<v in R such that (u, v) C a which shows that, in RO(R), 0< (s, ) <a
and thus that a is not an atom. Similarly for each dense linear order L, Intalg L
and RO(L) are atomless if L is given the order topology. If L is a linear order
isomorphic to a copy of w followed by a copy of R, then the interval algebra of L
is neither atomic nor atomless.

2.4. LemMA. The following are equivalent, for every element a of A:
(a) a is an atom of A,
(b) for every x in A, a= x or a=< —x but not both,
(©) a>0and, forallx and yin A, a<x+yiffasxora<y.

Proor. (a) implies (b): let a be an atom and x € A. If both a=x and a = —x,
then a <x - —x =0, a contradiction. If a ¥ x then 0 <a - —x = a by 1.23; since a is
an atom a- —x = a and thus a < —x.

(b) implies (c): trivially both a < x and @ = y imply a < x + y. For the converse,
assumea=<x+ybuta®x. Thena=-xby (b)anda=—-x-(x+y)=—x-y=y.
Also a >0 since otherwise, both a =x and a = —x hold for every x in A.

(c) implies (a): assume that b € A and 0= b < a with the aim of showing that
b=0.Nowa=a-b+a-—b=b+a-—b, and since a € b, we obtain a<a-—b
by (c). Soa=-b and, by 1.23,0=a-b=>b. O

A homomorphism between two Boolean algebras was defined in 1.3 to be a
map respecting all Boolean operations.

2.5. DeFINITION. A homomorphism f: A— B between the Boolean algebras A
and B is a monomorphism or an embedding of A into B if it is one-to-one. It is an
epimorphism if it is onto.

The image f[ A] of A under a homomorphism f: A— B is a subalgebra of B; if f
is an embedding, then A is isomorphic to f[A] via f.

2.6. ProPOSITION. For every Boolean algebra A, the map from A into the power
set algebra P(At A) defined by
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fx)={a€EAtA:a=x}

is a homomorphism. It is an embedding if A is atomic and an epimorphism if A is
complete.

Proor. Obviously, f(0) =0 and f(1) = At A. By 2.4(b),

f(=x)={a€EAtA:a=—x}
=AtA\{a€EAt A:a=x}
= At A\f(x),

and f(x + y) = f(x) U f(y) follows similarly from 2.4(c). Also, f(x - y) = f(x) N f(y)
since

a=x-y iffa=xanda=y

holds for every a in A. Thus, f is a homomorphism.

Now let A be atomic and x # y in A; without loss of generality, x 'y. But then
x - —y is non-zero by 1.23, and there is an atom a of A such thata=x-—y. It
follows that a € f(x) and a €f(y), so f(x) # f(y) and f is one-to-one.

Let A be complete and Y C At A. We prove that Y = f(s), where s=XY,
which shows that fis onto: if a € Y, then a <s and a € f(s). Conversely, consider
a€ At A\Y. Then for every y € Y, a and y are distinct atoms of A, hence a Xy,
a<-—y by 2.4(b), and a-y=0 by 1.23. It follows from the distributive law
1.33(b) that a-s =0, so aZf(s). O

The last proposition not only gives a weak version of Stone’s theorem, but also
describes the complete atomic and the finite Boolean algebras.

2.7. CoroLLARY. Every atomic Boolean algebra is isomorphic to an algebra of
sets. Every complete and atomic Boolean algebra is isomorphic to a power set
algebra. O

2.8. CoroLLARY. The finite Boolean algebras are, up to isomorphism, exactly the
power set algebras of finite sets.

Proor. If A is a finite Boolean algebra then At A is finite and A is both complete
and atomic. By Proposition 2.6, A is isomorphic to P(At A). O

In particular, a natural number is the cardinality of a Boolean algebra iff it is a
power of 2.

2.9. CoroLLARY. Two finite Boolean algebras are isomorphic iff they have the
same cardinality.
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Proor. If A and B have both cardinality k, then by A= P(At A) and B=
P(At B) we have k =2", where n = |At A| = |At B|. Now any bijection between
At A and At B gives rise to an isomorphism between P(At A) and P(At B),
hence between A and B. [

2.2. Ultrafilters and Stone’s theorem

Ultrafilters, the main tool in the proof of Stone’s theorem, arise naturally from
embeddings of Boolean algebras into power set algebras. If e: A— P(X) is such
an embedding or, more generally, a homomorphism, then for any point x of X,
the subset

p={a€ A: xE e(a)}
of A has the following properties:

lep, 0&p,

a-bep iffa€pandb€Ep,

at+tbep iffa€EporbEp,
—a€p iffagp.

The subsets of A with these properties are exactly the ultrafilters of A defined
below, as follows from Proposition 2.15. Thus, if e embeds A into P(X), then the
points of X give rise to ultrafilters of A. Conversely, Stone’s theorem is proved by
taking the ultrafilters of A as the points of a set Ult A; Corollary 2.16 then says
that Ult A is large enough to embed A into P(Ult A).

2.10. DEFINITION. A filter in a Boolean algebra A is a subset p of A such that

1€p,
ifxEp,yEAandx=y,theny€Ep,
ifx€Epand yEp, thenx-yEp.

For example, for eacha € A, the set {xE A;a=x} isafilterin A; fora=1 it
reduces to {1} and for a =0 it coincides with A, giving rise to the following
definition.

2.11. DerNITION. A filter p of A is a principal filter if p={x € X: a=x} for
some a € A; p is then the principal filter generated by a. p is the trivial filter if
p ={1}; it is a proper filter if 0Z p, i.e. if p # A.

i.12. LEMMA AND DEFINITION. Let E be a subset of A. Then the set

{xEA:e;-----e,<xforsome nEwande,,...,e, €E}
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is a filter of A, the filter generated by E in A. E has the finite intersection property
if,foraln€Ewande,,...,e,€EE, e,-----¢,>0.

2.13. LEMMA. The filter generated by E in A is the least filter of A including E. It
is proper iff E has the finite intersection property. 0O

Filters can also be characterized as being subsets p of A such that 1€ p and
D) forallx,y€EA,x-yEp iffxEpandy€Ep:

ifpisafilterandx-yEp,thenxEpand yEpsincex-y=xandx-y=<y;sop
satisfies (1). Conversely, if p satisfies (1) and xEp, yE A and x <y, then
x-y=x € p implies y € p, so p is a filter. For more special filters we get stronger
properties similar to the properties of atoms listed in Lemma 2.4:

2.14. DerNiTION. A filter p of A is an ultrafilter if, for each xE A, xEp or
—x € p but not both. p is a prime filter if it is proper and, forx, yE A, x+yEp
implies that x Ep or y E p. p is a maximal filter if it is proper and there is no
proper filter of A having p as a proper subset.

A typical example of an ultrafilter is provided, for A an algebra of sets over X
and x any point of X, by the set {a € A: x € a}. The principal filter generated by
an element a of an arbitrary Boolean algebra A is, by Lemma 2.4, an ultrafilter iff
it is prime iff a is an atom of A; distinct atoms of A generate distinct ultrafilters.
Thus ultrafilters can be considered as generalizations of atoms.

2.15. ProrosiTioN AND DErINITION. For every filter, the properties of being
maximal, an ultrafilter and prime are equivalent. An arbitrary subset p of a
Boolean algebra A is an ultrafilter iff its characteristic function x,: A—2 is a
homomorphism from A into the two-element Boolean algebra, the characteristic
homomorphism.

Proor. For any filter of A, each of the three properties implies properness.

Let p be maximal; we prove that p is an ultrafilter. Let x € A. Since p is
proper, x and —x cannot both be in p. Suppose x & p. By maximality of p, the
filter generated by p U {x} contains 0, hence by 2.13, a-x =0 for some a € p.
Thus, a<—x and —x E p.

Every ultrafilter is prime: assuming x €p and y €p, we have to show that
x+ y &p. This follows from —xEp, —yEp and —x-—y=—(x+y)Ep.

Primeness implies maximality: we assume x & p and prove that p U {x} gener-
ates the improper filter. Since 1= x + —x is in p but x is not, —x € p. So the filter
generated by p U {x} contains x - —x = 0.

An arbitrary subset p of A is, by (1), a proper filter iff x,(1) =1, x,(0) =0 and
X, preserves the operation -. It is, by the first part of our proposition, an
ultrafilter iff x, also preserves the operations + and —. [
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Because of the equivalence between ultrafilters, prime filters and the prime
ideals defined in Section 5 and also for historical reasons, the following existence
theorem for ultrafilters, or rather its consequence that every non-trivial Boolean
algebra has an ultrafilter, is called the Boolean prime ideal theorem (BPI).

2.16. ProrosiTioN (Boolean prime ideal theorem). A subset of a Boolean algebra
is included in an ultrafilter iff it has the finite intersection property.

Proor. If E C A is included in an ultrafilter p of A, then by properness of p, p
and hence E have the finite intersection property.

Conversely, assume E C A has the finite intersection property, so the filter p,
generated by E is proper by 2.13. The set P of all proper filters of A including p,
is non-empty and partially ordered by inclusion, moreover each non-empty chain
C in P has UC as an upper bound in P. By Zorn’s lemma, let p be a maximal
element of P. Then p is a maximal filter and includes E; by 2.15, it is an
ultrafilter. O

2.17. CorOLLARY. An element a of a Boolean algebra is contained in an ultra-
filter iff a>0.

Proor. The set {a} has the finite intersection property iff a >0. O

The proof given above of the Boolean prime ideal theorem uses Zorn’s lemma,
an equivalent of the axiom of choice, and it is in fact shown in FEFERMAN [1965]
that BPI is not derivable from the axiom system ZF of Zermelo—Fraenkel set
theory without the axiom of choice. On the other hand, HALPERN and LEevy [1971]
show that in ZF, BPI is strictly weaker than the axiom of choice. Like the axiom
of choice, BPI has several interesting equivalences. For example, it is shown in
KeLiey [1950] that the full axiom of choice is equivalent in ZF to Tychonoff’s
theorem (the product space of a family of compact topological spaces is compact)
for arbitrary spaces, but the restriction of Tychonoff’s theorem to Hausdorff
spaces is equivalent to BPI (cf. £os and RyLL-NarpzEwsk1 [1954]; RuBIN and
Scott [1954]).

With the machinery of ultrafilters at our hands, we are ready to embed any
Boolean algebra into a power set algebra.

2.18. DErinITION. For A a Boolean algebra,
Ult A= {p C A: p an ultrafilter of A}

is the set of ultrafilters of A. The map s: A— P(Ult A) defined by
s(x)={peUlt A: xE p}

is the Stone map of A.
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Proof of Stone’s representation theorem 2.1. 1t follows as in the proof of 2.6 that
the Stone map s is a homomorphism from A into P(Ult A). For example, s(0) =0
since every ultrafilter is proper,

s(x+y)={p:x+y€Ep}
={p:xep}U{p: yEp}
=s(x)Us(y),

since ultrafilters are prime, etc. We prove that s is one-to-one: let x #y in A;
without loss of generality, x ¥y. Thus, x- —y >0; by 2.17 let p be an ultrafilter
containing x - —y. Then x € p and y &€p which gives p € s(x)\s(y). O

The set Ult A of ultrafilters of A and the Stone embedding s of A will be
analyzed more thoroughly in Section 7: Theorem 7.8, the topological version of
Stone’s theorem, states that Ult A can be topologized in such a way that s is an
isomorphism from A onto the clopen algebra of Ult A.

2.3. Arithmetic revisited

Stone’s theorem makes Boolean algebras look quite simple but, apart from
giving an intuitive picture of how they look like, it does by no means trivialize
every problem. For example, none of the combinatorial proofs in the following
section would be really easier for algebras of sets than for arbitrary Boolean
algebras. However, there is one aspect of their theory which is simplified by
Stone’s theorem, or rather the method of ultrafilters developed for its proof —
elementary arithmetic.

Let us understand by an equation an expression of the form

(xy...x,)=t'(x;...x,),

where ¢t and ¢’ are terms built up from the variables x,, . . ., x,,, the constants 0
and 1 and the Boolean operation symbols +, -, and —. We say that the above
equation holds in a Boolean algebra A if the values of ¢ and ¢ coincide for every
assignment of elements a;,...,a, of A tox;,...,x,.
2.19. ProrositioN. For every equation e, the following are equivalent:

(a) e holds in every Boolean algebra,

(b) e holds in every power set algebra,

(c) e holds in some non-trivial Boolean algebra,

(d) e holds in the two-element Boolean algebra.

Proor. Obviously, (a) implies (b) and (b) implies (c). Also (c) implies (d) since
the two-element algebra 2= {0, 1} is, in a canonical way, a subalgebra of every
non-trivial Boolean algebra A; thus an equation holding in A holds, a fortiori,
in 2.
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Finally assume that (a) fails for an equation e of the form #(x,...x,)=
t'(x;...x,); we prove that (d) fails. There is a Boolean algebra A and a,, ..., a,
in A such that b=1(a, ...a,) and b’ =t'(a, . .. a,) are distinct, say b Zb’. But
then, as in the proof of Stone’s theorem, there is an ultrafilter p of A such that

bEp and b’ Zp. Let f: A—2 be the characteristic function of p. Then

1=£(b) =f(t(a, . .. a,))=tf(a,) ... fla,))

since f is a homomorphism from A into 2. Similarly,

0="1(f(ay) ... fa,);
thus e does not hold in the two-element Boolean algebra. O

The validity of a particular equation may thus be decided either by (b) above
or, using the table in Example 1.6, i.e. the well-known truth-table method, by
(d). We shall, in the rest of this text, not prove elementary equations holding in
every Boolean algebra but leave it to the reader to convince himself by either
method.

Also, inequalities of the form #(x, ...x,)=t'(x,...x,) are decidable in this
fashion since ¢=t' is equivalent to the equation ¢ - ¢' = t. Our method is, however,
limited to equations and inequalities involving only finitary operations. For
example, (a) and (b) in the above proposition are not necessarily equivalent for
equations involving the infinite operations ¥ and II since the Stone map from a
Boolean algebra A into the power set algebra of Ult A generally fails to preserve
the infinite sums and products which happen to exist in A. See the following
subsection and Exercise 1 for a discussion of this phenomenon. In fact, in Section
14 infinite distributive laws will be considered which trivially hold in every power
set algebra but can fail badly in atomless complete algebras.

2.4. The Rasiowa-Sikorski lemma

The Boolean prime ideal theorem 2.16, or rather its corollary 2.17, gives an
easy proof for the completeness theorem of propositional logic; see Exercise 5. In
fact these two theorems are equivalent in ZF set theory without the axiom of
choice (Rastowa and Sikorski [1963]). The proof works on the grounds that the
Boolean structure of an algebra of formulas, as defined in 1.12, reflects the
propositional connectives of disjunction, conjunction and negation. In predicate
logic, the quantifiers are reflected by, possibly infinite, sums and products (see
Exercise 5 of Section 1), thus a similar proof for the completeness theorem of
predicate logic would require ultrafilters which preserve some infinite sums and
products. Existence of these ultrafilters is guaranteed by the Rasiowa—Sikorski
lemma 2.21 below, and the completeness theorem of predicate logic for countable
languages follows without difficulty (Exercise 6). The Rasiowa—Sikorski lemma is
also used in set theory to ensure existence of generic filters over countable
structures.
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2.20. DeFiNiTION. Let f: A— B be a homomorphism of Boolean algebras and
M C A such that T4 M(IT* M) exists. f preserves L* M (respectively IT* M) if
% f[M] exists (I1® f[M] exists) and

f(ZA M) =X fim]

(respectively f(IT* M) =I1® f[M]). Let p be an ultrafilter of A and M C A such
that £ M (Il M) exists. p preserves ¥ M if ¥ M € p implies that m € p for some
m€& M. p preserves Il M if M C p implies that I[I1 M € p.

Thus, an ultrafilter p of A preserves & M (Il M) iff its characteristic homomor-
phism y,: A—2 does. And by the infinitary version 1.33 of de Morgan’s laws, p
preserves L M (respectively II M) iff it preserves II {—m: m € M} (respectively
L{-m:meM}).

2.21. TueoreM (Rasiowa—Sikorski lemma). Let, in a non-trivial Boolean algebra
A, S and P be at most countable families of subsets of A such that ¥ M exists for
each M in S and 11 N exists for each N in P. Then there is an ultrafilter of A
preserving L. M for each M in S and 11 N for each N in P.

Proor. By the remarks preceding this theorem, it suffices to find an ultrafilter
preserving ¥ M for each M in S. If S is empty, then any ultrafilter of A will
do - note that A has at least one ultrafilter by the Boolean prime ideal theorem,
being non-trivial. Thus, let

S={M,:n€w}

by an enumeration of S. We construct by induction a decreasing sequence
l=a,=a;,=a,="--

in A" = A\{0} such that, for each n € w,

2,) an+1-2M,,=O or a,,,=mforsome meM,.

Let a,=1. After a,>0 has been constructed, we find a,,, as follows. If
a,-X M, =0, we let a,,_; =a,. Otherwise by the distributive law 1.33(b),

0<an-2Mn=2{an-m:m€Mn};

hence, there is some m € M, such that 0<a,-m and weleta,,, =a,-m. So (2,)
holds.

The set E={a,: n€ o} is a decreasing chain in A" and thus has the finite
intersection property; let, by the Boolean prime ideal theorem, p be an ultrafilter
including E. Then p preserves £ M for each M in S. To see this, assume M = M,
and ¥ M, € p. Since a,,, € p and p is a proper filter, a,,, - L M, >0. So by (2,),
a,,, =m for some m € M, which implies m€p. O
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One might naturally try to remove the countability restriction on the sets S and
P in the Rasiowa-Sikorski lemma. This is partially done in the following
statement; the “countable chain condition” referred to is defined in Section 3.

MARTIN’s Ax1oM. Let, in a non-trivial Boolean algebra A satisfying the countable
chain condition, S be a family of subsets of A such that |S| <2 and & M exists for
each M in S. Then there is an ultrafilter of A preserving ¥ M for each M in S.

Martin’s axiom is consistent with, but not provable from, the axioms of ZFC set
theory. It is a consequence of the continuum hypothesis CH (2° = w,) since under
CH it simply reduces to the Rasiowa—Sikorski lemma proved above in ZFC.
Several consequences of CH can be also proved from Martin’s axiom; cf. MARTIN
and Sorovay [1970] for a discussion of these topics. The analogue of Martin’s
axiom to families S of cardinality at least 2, however, contradicts the axioms of
ZFC, see Exercise 3 in Section 3. And Exercise 7 in Section 4 shows that there is
a Boolean algebra A not satisfying the countable chain condition and a family S of
subsets of A such that |S| = o, and no ultrafilter of A preserves & M for each M in
S.

Exercises

1. In a Boolean algebra A, let M C A such that ¥ M exists. The Stone
homomorphism s: A— P(Ult A) preserves ¥ M iff ¥ M =¥ M, for some finite
subset M, of M.

Similarly, let M and N be subsets of A such that [} s[M]C U s[N]. Then there
are finite subsets M, of M and N, of N such that (1 s[M,]C U s[N,].

2. Let X be a compact Hausdorff space. Then for every ultrafilter p of RO(X),
there is a unique point of X lying in (1 {clu: u € p}.

3. Let, in the regular open algebra RO([0, 1]) of the real unit interval, S be the
set

S={(a, b): a, b rational and 0=a<b=1}.

Using Exercise 2, show that no ultrafilter of RO([0, 1]) preserves L S’ for every
subset S’ of S. Conclude that RO([0, 1]) is not isomorphic to any o-algebra of
sets.

4. Consider the Lindenbaum-Tarski algebra

A={[a]: « a sentence of L}

of a fixed theory T in a first order language L, as defined in Example 1.12. A
completion of T is an L-theory T* such that TC T* and T* is maximally
consistent. Prove that for each completion T* of T, the set {[a]: a € T*} is an
ultrafilter of A, and that this assignment gives a one-to-one correspondence
between completions of T and ultrafilters of A.
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5. (Completeness theorem for propositional logic). Let L be a language for
propositional logic with V as its set of propositional variables and T a consistent
theory in L. Prove that T has a model, i.e. there is an assignment h: V—>2=
{false, true} under which every formula in T is true.

Hint. Fix an ultrafilter p of the algebra B(T) and put h(v) = 1 iff [v] € p. Then
for every formula a in L, « is true under A iff [a] € p.

6. (Completeness theorem for countable languages in first order logic). Let L
be a countable language for first order logic and T a consistent theory in L. Then
T has a countable model.

Hint. Fix, by the Rasiowa—Sikorski lemma, an ultrafilter p of B(T') preserving
L M, for each L-formula ¢(xx, .. .x,); the set M, = {p(tx,...x,): tatermin L}
has been considered in Exercise 5 of Section 1.

(a) Prove that

t=¢t" iff[t=¢]€p

defines an equivalence relation = on the set of L-terms; let A be the set of
equivalence classes t/=.

(b) Prove that there is a unique L-structure A with A as its underlying set such
that, for each atomic L-formula a(x, ... x,) and arbitrary terms ¢,,...,¢,,

(%) AfEalt/=,...,t,/=] iffla(t,...t)]Ep.

(c) Show that (*) holds for every L-formula a. It follows that A is a model of
T.

3. Relativization and disjointness

We describe a simple construction of new Boolean algebras from old ones, the
relative algebras. Relativization is a useful device since certain aspects of Boolean
algebras, e.g. cardinal invariants, are sometimes easier to investigate for suitably
chosen relative algebras of a Boolean algebra than for the algebra itself.

The main topic of this section is the study of disjoint families and partitions of
unity in a Boolean algebra, in particular of the cardinality functions of cellularity
(respectively saturation) connected with these notions. It is not difficult to show
that if X is a partition of unity in a sufficiently complete Boolean algebra A, then
A is isomorphic to the cartesian product of the relative algebras A | x, x € X see
Section 6. Thus, questions about A can often be reduced to questions about some
relative algebras of A.

The method of relativization is applied in proving the first of two non-trivial
combinatorial results on pairwise disjoint families, the Erdos—Tarski theorem on
attainment of cellularity and the Balcar—Vojtas theorem on disjoint refinements.
They will be used in Section 13 where they play a prominent role in the proof of
the Balcar—Franék theorem.
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3.1. Relative algebras and pairwise disjoint families

3.1. Lemma AND DErRINITION. Let A be a Boolean algebra and a € A. Then the
subset

Ala={x€EA:x=a}

of A is, with the partial order inherited from A, a Boolean algebra, the relative
algebra or factor algebra of A with respect to a.

Proor. The subset A | a of A is closed under the operations + and - of A, hence
a distributive lattice. It has 0 as its least and a as its greatest element, and each x
in A | a has a-—x as a complement. Thus, (A | a,=<) is a distributive com-
plemented lattice, i.e. a Boolean algebra. O

For example, for any set X and any a C X, P(X) | a is the power set algebra of
a. If X is a topological space and a C X is clopen, then (Clop X) | ais the clopen
algebra of a where a has the topology induced by X.

A | aisnot a subalgebra of A for a # 1, since its unit element and complemen-
tation are not those inherited from A. It is, however, a homomorphic image of A:
one easily checks that the “projection” map

P.A—>Aa, p.(x)=a-x

is a homomorphism which is onto since p,(x)=x for xE A | a.

The cartesian product set A X B of two Boolean algebras A and B can be made
into a Boolean algebra by defining all operations componentwise; we shall study
cartesian products of (arbitrarily many) Boolean algebras in greater detail in
Section 6. The following lemma explains the name of ‘“factor algebras” for
relative algebras.

3.2. LemMma. For each a in A,
A=A M a)xX(A | —a).

Proor. Define functions g:A—(A | a)x(A | —a) and h: (A | a)X
(Al —a)—>Aby

gx)=(x-a,x-—a), h(y,z)=y+z.

Then g is a homomorphism since g(x) = (p,(x), p_,(x)) and it is bijective since g
and A are inverses of each other. [

3.3. DerINITION. Let A be a Boolean algebra, x and y in A and XC A. x and y
are disjoint if x-y=0. X is a pairwise disjoint family if 0 <x for x € X and any
two distinct elements of X are disjoint.
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In algebras of sets, this notion of disjointness coincides with the usual one
known from set theory. It is of course an abuse of notation to call a subset of A a
pairwise disjoint family; we will also call an indexed family (x;),,; in A a pairwise
disjoint family if x; >0 and x; - x; =0 for i #].

3.4. ProrosITION. In every infinite Boolean algebra, there are an infinite pairwise
disjoint family, a strictly increasing infinite sequence and a strictly decreasing
infinite sequence.

Proor. Let A be infinite; we first construct a strictly decreasing sequence (a,,),.c.,
in A such that, for every n € w, A | a,, is infinite. Let a, = 1. Assume that a, has
been constructed such that A | a, is infinite; pick a€ A | a, such that 0<a <
a,. If A | ais infinite, we let a,,, = a; otherwise by Lemma 3.2, A | (a, - —a)
must be infinite and we let a, ., =a, - —a.

The rest of the proposition follows immediately: if the sequence (a,),c, is
strictly decreasing, then (—a,,), c,, is strictly increasing. Also, {a, - —a,.,: n € 0}
is an infinite pairwise disjoint family since m < n implies a, <a,, ., and

(am._am+1).(an'_an+1)san'_am+1=0‘ D

We have seen in Corollary 2.8 that the cardinalities of finite Boolean algebras
are exactly the powers of 2 and in the remark following 1.9 that every infinite
cardinal is the cardinality of some Boolean algebra. The next corollary, a simple
consequence of Proposition 3.4, shows that there are restrictions on the cardin-
ality of o-complete infinite algebras. The possible cardinalities of infinite o-
complete and also of k-complete (k > w;) or complete algebras will be deter-
mined in Section 12: they are exactly those cardinals « satisfying k = k.

3.5. CorOLLARY. An infinite o-complete Boolean algebra has cardinality at least
2%

Proor. Let A be infinite and o-complete; by Proposition 3.4, fix a pairwise
disjoint family {d,,: m € w}. We show that the function f: P(w)— A defined by

fMy= % d,

meM

is one-to-one. If M and N are distinct subsets of w, then there is, without loss of
generality, some m € M\N. Then d,, = f(M), hence

d, f(M)=4d,>0,
whereas, by 1.33(b),
dm-f(N),=n§eJNd,,,-d,,=o. O

It is a consequence of Zorn’s lemma that every pairwise disjoint family can be
extended to a maximal one.
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3.6. LeMMA. A pairwise disjoint family X is maximal iff ¥ X = 1.

Proor. For the non-trivial direction of the equivalence, assume that ¥ X does not
exist or is strictly smaller than 1. Thus, there is an upper bound b of X satisfying
b<1, and the pairwise disjoint family XU {—b} shows that X is not
maximal. O

In a power set algebra P(M), the maximal pairwise disjoint families are exactly
the partitions of M. This motivates the following definition.

3.7. DEFINITION. A subset of a Boolean algebra A is a partition (a partition of A,
a partition of 1, a partition of unity) if it is a maximal pairwise disjoint family.

3.2. Attainment of cellularity: the Erdos—Tarski theorem

Proposition 3.4 implies that every countably infinite Boolean algebra has a
countably infinite pairwise disjoint family. Is it possible to find, in an arbitrary
infinite Boolean algebra A, a pairwise disjoint family of cardinality | A|? A strong
counterexample to this question is provided in Section 9 by free Boolean algebras:
they can have any prescribed infinite cardinality but have only countable pairwise
disjoint families.

We describe, in this subsection, the possible sizes of pairwise disjoint families in
a Boolean algebra by the cardinal invariant of cellularity, the first of several
cardinal functions on Boolean algebras to be studied later. In particular the
countable chain condition is a very strong assumption on a Boolean algebra. It is
relevant to set theory where it arises through the subjects of forcing and Martin’s
axiom; cf. the discussion following the Rasiowa—Sikorski lemma in Section 2.

3.8. DerINITION. Let A be a Boolean algebra, « a cardinal. Then
cA =sup{|X|: X a pairwise disjoint family in A}
and

sat A=min{u: p a cardinal, |X| < u for each pairwise disjoint family
X in A}

are the cellularity and the saturation of A. cA is attained if cA =|X| for some
pairwise disjoint family X in A.

A satisfies the k-chain condition if | X| < k for each pairwise disjoint family X in
A, i.e. if sat A= «k. A satisfies the countable chain condition if each pairwise
disjoint family in A is at most countable.

The notion of cellularity is also considered in topology: for a topological space
X, define the cellularity of X by
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cX =sup{|U|: U a family of pairwise disjoint non-empty open
subsets of X} .

For example, cX = w if X is separable, i.e. if it has a countable dense subset D.
For suppose U is a family of non-empty pairwise disjoint open subsets of X. Then
for u€ U, choose a point d, in U N D; the d, are pairwise distinct, and thus
|U|=|D| = w.

The definitions of cellularity for Boolean algebras and topological spaces are
connected by

cX=cRO(X);

this follows from the fact that, for any two disjoint open subsets u and v of X,
their regularizations int cl  and int cl v are non-empty and disjoint by (10) in the
proof of Theorem 1.37. As an example, consider the algebra RO(X) for an
infinite separable Hausdorff space X. It satisfies the countable chain condition as
shown above but has cardinality at least 2 by Corollary 3.5; in fact |RO(X)| =2
since each regular open subset of X is determined by its intersection with a
(countable) dense subset of X.

Pairwise disjoint families are sometimes called antichains, and the k-chain
condition could be more properly called the k-antichain condition. In fact, a
Boolean algebra with only countable pairwise disjoint families can have uncount-
able chains, i.e. subsets which are linearly ordered under the Boolean partial
ordering; see Exercise 2.

Let us make some simple remarks on attainment of cellularity. For a finite (or,
more generally, an atomic) Boolean algebra A, cA is attained since the set At A
of all atoms of A is a pairwise disjoint family in A and cA = |At A|. If cA = o,
then A is infinite and cA is attained by Proposition 3.4; also cA is trivially
attained if it is a successor cardinal. For x a weakly inaccessible, i.e. a regular
uncountable limit cardinal, there is a Boolean algebra A with cA = « not attained,
cf. Example 11.14. The remaining case of a singular cardinal is handled in the
following theorem.

3.9. NoratioN. For A a Boolean algebra and a€ A,
c,a=c(A | a).
If A is understood, we write ca for c ,a.

3.10. TueoreM (Erdos—Tarski). For every Boolean algebra A, cA is attained if
singular.

Proor. We shall use the following fact several times: if a€ A and ca > u for
some cardinal w, then there is a pairwise disjoint family X of size win A | a. This
holds since u <ca implies that there is some pairwise disjoint family Yin A | a
satisfying | Y| = u; let then X be any subset of Y of cardinality u.

Let A=cA, « its cofinality and (A,),., a strictly increasing sequence of
cardinals such that A =sup,_ A,. The proof is broken up into three cases.
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Case 1. There is some b € A such that, for each x satisfying 0 <x < b, cx = A.
In this case, a pairwise disjoint family Z of size A is easily constructed: by
singularity of A, we have k <A =cb; let {b_: @ < k} be a pairwise disjoint family
in A | b. Now A, <A=cbh, for a <k, so let Z, be a pairwise disjoint family of
size A,in A | b, and put Z=U___ Z_. This finishes Case 1.

Now assume that Case 1 fails; we define two sets S and X relevant to the rest of
the proof. Let

S={a€E A :ca<]A}

and let X be maximal among the pairwise disjoint families included in S. By
failure of Case 1, there is for each b € A* some s € S such that s < b. Thus, X is,
in the terminology of Definition 3.7, a partition of unity.

Case 2. sup,.ycx =A. Again we find a pairwise disjoint family Z of size A.
Since cx < A for x € X but sup, ., cx = A, choose by induction pairwise distinct
elements x_, of X for a < «k such that A, <cx,. For each a, pick a pairwise disjoint
family Z, of size A, in A | x, and again let Z=U__, Z,.

Case 3. sup,.xcx<A. We prove that, in this case, the partition X has
cardinality A. For otherwise let

w=supcx, p' =max(|X], n)";

xEX

thus, ' < A =cA since A is a limit cardinal. Let Y be a pairwise disjoint family in
A of size u' and consider, for x € X, the set

Y, ={yeY:x-y>0}.
Since ¥ X =1 by Lemma 3.6, we find that Y=U __,Y,. Now {x-y: y€Y,}
is a pairwise disjoint family in A ! x, so |Y,|=cx=pu. It follows that
|Y|=pup-|X|<p', a contradiction. O

Saturation, the other cardinal function defined in 3.8, is connected with
cellularity as follows. Clearly

sat A =sup{|X|": X a pairwise disjoint family in A} .
Thus, sat A =(cA)" if cA is attained (in particular if cA = n € w, then sat A =
n+1), and sat A =cA otherwise. Considering all finite cardinals to be regular,

we obtain a reformulation of the Erdés—Tarski theorem in terms of saturation.

3.11. CorOLLARY. For every Boolean algebra A, sat A is a regular cardinal. [

3.3. Disjoint refinements: the Balcar-Vojtds theorem

It is sometimes useful to “disjoint” a family (a;),c, consisting of arbitrary
elements of a Boolean algebra, i.e. to replace the a; by pairwise disjoint elements
b, such that b, = a; and the sequence (b,),c, shares some properties with (a,),c;.
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In sufficiently complete algebras, Lemma 3.12 describes a standard procedure to
do this. Since the proof requires a well-ordering of the index set I anyway, we
assume that 7 is a cardinal «.

3.12. LemMA. Let A be a k-complete Boolean algebra. Then for every family
(@,)q<. in A there is a family (b)), ., consisting of pairwise disjoint elements such
that b, < a, and

a<k % a<k

if one of these sums exists.
Proor. Let
b,=a, — ) ag .

Then b, =a, and, for B<a, b, - by =0 since by =a, and b, = —a,. It follows
by induction that ¥,_, by =%,_, a, for each a <«k. So {b,: @« <k} and {a,:
a < k} have the same set of upper bounds in A, which proves the last assertion of
the lemma. O

The construction in the preceding proof does not ensure that (b, ),., is a
pairwise disjoint family in the sense of Definition 3.3 and the remark following it,
since some of the b, may be zero. In fact, if A satisfies the countable chain
condition and « is uncountable, only countably many b, can be positive. For a
less trivial result, we have to assume a bit more on cellularity in A.

3.13. DEerINITION. Let (a,), ., be any sequence in A™. Then (b,),_, is a disjoint
refinement of (a, ), if 0<b,=a, for a <k and b, -b, =0 for B<a<k.

a<k

3.14. Tueorem (Balcar—Vojtas). Assume « is an infinite cardinal and k™ < cx for
each x € A™. Then each sequence of type « in A" has a disjoint refinement.

Proor. Let (a,),-. be a sequence of positive elements of A. For each pairwise
disjoint family X in A and a € A, write

X@)={xEX:x-a>0}.

It suffices to construct a pairwise disjoint family X such that |X(a,)|= « for
a < k; given X with this property, inductively choose

x, € X(a, )\Mxz: B<a}

and put b, =a,-x,.
To find X, we shall construct by induction X, for @ < k such that
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(X,),<. is an increasing chain of pairwise disjoint families in A;

for a, y <k, either X,(a,) =0 or |X,(a,)|=«";

| +1(a |—K >

and then let X=U__, X,.

Put X,=0 and X,=U_,_,X, for a limit ordinal A<«k. If X, has been
constructed, let X, ,, =X, if |X,(a,)|=«". Otherwise X,(a,)=9 and hence
X, CA | (—a,). Thenbyc(a,)=«", A | a, has a pairwise disjoint family Y of
size k *; note that X, U Y is a pairwise disjoint family. Define

=&, UYNU({Y(@,): y<kand |Y(a,)|=«}. O

Disjoint refinements can be applied to questions on ultrafilters and to topology;
these two topics are closely related since for every Boolean algebra A, the set
Ult A of all ultrafilters of A is, in a natural way, a topological space — cf. Section
7. We give here an application to ultrafilters which generalizes the following
argument. If cx = o for every x € A", then A | x is infinite for x >0 and A has
no atoms; consequently, no ultrafilter of A is principal. Hence, no ultrafilter of A
is, in the sense of Definition 2.12, generated by finitely many elements.

3.15. PROPOSITION. Assume A is a k" -complete Boolean algebra and k™ <cx for
each x in A*. Then no ultrafilter of A is generated by less than k" elements.

Proor. Assume for contradiction that p is an ultrafilter of A generated by the set
E={e,:a<A},

where A = | E| = k. We may assume that A is minimal for p, i.e. that no set of size

less than A generates p and, since the set of all finite products of elements of E

also has cardinality A and generates p, that E is closed under finite products.
Thus, for each e € E,

(1 {fE€E: f=e}|=

for the set on the left-hand side of (1) generates p.
Using (1), we choose by induction elements f, and g, of E for « < A such that

fa’ ga E{CEE: esea}\pga {fﬁ’ gﬁ} ’

fa¢ga N

By the Balcar-Vojta$ theorem and |E|=<«k, there is a disjoint refinement
(d(e)).cg of E. Put
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a= 2 d(f.), b= X dg,).

Then a- b =0 since the d(e,), d(g,) are pairwise disjoint. We prove that a € p:
otherwise, —a € p. The set E generates p and is closed under finite products, thus
there is some a < A such that e, < —a which gives e, -a=0. Now d(f,)=f, =
e,; also d( f,) = a by definition of a. This implies d( f,) =0, a contradiction. The
same reasoning shows that b € p. This, however, is impossible since a- b =0 and
p is a proper filter. O

Exercises

1. P(w) is embeddable into every infinite o-complete Boolean algebra.

Hint. For A infinite and o-complete, find an embedding g: P(w)— A by
slightly modifying the map f: P(w)— A in the proof of 3.5.

2. A subset X of a Boolean algebra A is called a chain (respectively a
well-ordered chain) in A if X is, under the partial order inherited from A, a linear
order (respectively a well-ordering).

(a) If A satisfies the countable chain condition, as defined in 3.8, then each well
ordered chain in A is countable. The converse holds if A is o-complete.

(b) In the finite—cofinite algebra A over an infinite set, every chain is countable
but A does not necessarily satisfy the countable chain condition.

(c) Find an interval algebra which has an uncountable chain but satisfies the
countable chain condition.

3. Conclude from Exercise 3 in Section 2 that even for Boolean algebras
satisfying the countable chain condition, the hypothesis |S|<2“ cannot be
removed from the formulation of Martin’s axiom in Section 2 without contradict-
ing ZFC.

4. In the interval algebra of the reals, the subset

{(a, b): a and b rational, a < b}

has no disjoint refinement. Thus, the assumption that cx =« * for each x€ A"
cannot be removed from the Balcar—Vojtas theorem.

5. A map u: A—[0, 1] from a Boolean algebra A into the real unit interval is
called a finitely additive measure if u(1) =1 and, for every finite set {a,: i € I} of
pairwise disjoint elements, u(X,c; a;) = L,c; n(a;) (and it is a o-additive measure
if, in addition, w(X,c,; a;) = L,c; n(a;) holds for every countable set {a,: i € I} of
pairwise disjoint elements for which £,_; a, happens to exist). u is strictly positive
if a >0 implies u(a) >0.

Show that each algebra admitting a strictly positive finitely additive measure
satisfies the countable chain condition.
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Introduction

This chapter describes, more thoroughly than the preceding one, three basic
methods for constructing new Boolean algebras from old ones: subalgebras,
quotient algebras (i.e. homomorphic images), and cartesian products. These
notions are of general importance when dealing with algebraic structures, for the
following reason.

Consider a class V of algebraic structures of a fixed similarity type L. V is said
to be a variety if there is a set E of L-equations defining V, i.e. such that

V={A: A an L-algebra such that every equation in E holds in A} .

For example, the class BA of all Boolean algebras is a variety, being defined by
the equations (B1) through (B5’) in Section 1.

For every class K of L-algebras there is a smallest variety V(K) including K, the
variety generated by K: simply let E(K) consist of all L-equations holding in every
member of K, and let then V(K) be the variety defined by E(K). It is a
consequence of Proposition 2.19 that there are only two varieties of Boolean
algebras. For let K be any class of Boolean algebras. If all members of K are
trivial, i.e. one-element algebras, then every equation holds in every member of K
and V(K) is the class consisting of all trivial Boolean algebras. Otherwise by 2.19,
E(K) consists of all equations holding in the two-element Boolean algebra 2 and,
again by 2.19, V(K) = BA.

Now Birkhoff’s theorem, one of the fundamentals of universal algebra, charac-
terizes the varieties as being those classes of L-algebras which are closed under
the operations of taking subalgebras, homomorphic images, and products. More
precisely, it says that, for any class K of L-algebras, V(K) = HSP(K) where

HSP(K) = {A: A a homomorphic image of a subalgebra of a product of
members of K} ;

here the inclusion HSP(K) C V(K) is easily verified. In the special case of a class K
of Boolean algebras, the non-trivial inclusion V(K)C HSP(K) can be derived
from Stone’s theorem as follows. First note that the assertion is obvious if all
members of K are trivial. So assume K has a non-trivial member A; let B be an
arbitrary Boolean algebra with the aim of showing that B € HSP({ A}) C HSP(K).
By Stone’s theorem, B is isomorphic to a subalgebra of some power set algebra
P(X). But P(X) is isomorphic to the cartesian product I ., C,, where C, =2 for
x € X, via the map assigning to each subset of X its characteristic function;
moreover, 2 is a subalgebra of A. Thus, B is isomorphic to a subalgebra of
I,y A,, where A, = A, which proves that B € HSP({A}).

It actually turns out that, in the variety of Boolean algebras, formation of
cartesian products is less important than that of subalgebras and homomorphic
images; in fact, the direct factors of a Boolean algebra are easily described, in
Section 6, as being its relative algebras and thus are well known. The most basic

49



50 S. KoPPELBERG / ALGEBRAIC THEORY [cn. 2

and frequently used topics of this chapter are then the process of generating
subalgebras from subsets of a Boolean algebra and finding normal forms for their
elements, as well as Sikorski’s extension theory for homomorphisms. We also
introduce another important construction of Boolean algebras: the completion of
a Boolean algebra and, more generally, of an arbitrary partial order.

4. Subalgebras, denseness, and incomparability

One of the most frequently applied constructions of Boolean algebras is, for an
arbitrary subset X of an algebra B, the formation of the subalgebra (X) of B
generated by X. This subalgebra is easily definable by abstract reasoning: it is the
intersection of all subalgebras of B including X. The normal form theorem 4.4
describes the elements of (X ): they are exactly those elements of B representable
in a certain normal form over X. The normal form has a somewhat messy
notation but is in many situations the only tool to get detailed information on
(X). Normal forms are essential in Section 5 for a characterization of those maps
from X into an arbitrary Boolean algebra B’ which can be extended to a
homomorphism from (X) into B'.

We further study the notions of denseness, irredundance, and incomparability
for subsets of a Boolean algebra; they are related to subalgebras by McKenzie’s
result 4.23 that maximally irredundant subsets generate dense subalgebras and
Shelah’s theorem 4.25 that every Boolean algebra has a ‘“large” irredundant
subset consisting of pairwise incomparable elements. The most important one of
these notions is denseness. For example, a Boolean algebra B is called a
completion of an algebra A if B is complete and A is a dense subalgebra of B. We
shall see that every Boolean algebra has a unique completion, up to isomorphism,
and that the embedding into the completion preserves arbitrary sums and
products. The process of completion can be generalized to arbitrary partially
ordered sets. Again the completion of a partial order is a complete Boolean
algebra; we follow KUNEN [1980] in describing axiomatically the relationship
between a partial order and its completion. The passage from a partial order to
the completion is reflected, in axiomatic set theory, by the connection of forcing
with partiallly ordered sets and forcing with complete Boolean algebras.

4.1. Normal forms

A subalgebra of a Boolean algebra B was defined, in Section 1, to be a subset A
of B containing 0 and 1 and closed under the operations +, -, and —. It suffices,
however, to insist on non-emptiness and closure under + and — (or, dually, under

and —) since 1=x+—x, 0=-1, and x-y=—(—x+ —y). We define, for
reference in later sections:

4.1. DEFINITION. A subalgebra A of a Boolean algebra B is a k-complete
subalgebra (a o-complete subalgebra, a complete subalgebra) of B if for each
subset M of A of size less than k (each countable subset M of A, each subset M of
A) such that L® M exists, also * M exists and 24 M = %% M.
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Thus, A is a k-algebra of sets as defined in 1.29 if it is a k-complete subalgebra
of a power set algebra; similarly for o-algebras of sets and complete algebras of
sets.

The intersection () S of a non-empty family S of subalgebras of B is again a
subalgebra of B, and so is the union U S of § if S is a chain under inclusion, i.e.
if SCT or TCS holds for all §, T €S. More generally, if S is a non-empty
directed family of subalgebras, i.e. if for arbitrary S, T € S there is some RE S
satisfying S U T C R, then U S is a subalgebra of B.

4.2. DEFINITION AND LEMMA. Let X be a subset of a Boolean algebra B. Then
(X)= M {ACB: XCA, A a subalgebra of B}

is the subalgebra generated by X in B; it is the least subalgebra of B including X.
The elements of (X) are said to be generated by X. X is a set of generators for a
Boolean algebra A if X C A and (X) = A. We write (x;: i €I) for ({x;: i€ I}).

Formation of the generated subalgebra is, by its very definition, an order-
preserving operation: if X C X' C B, then (X)C(X'). There is a standard
procedure to prove, for X and A subsets of B, that (X) = A: one checks that A is
a subalgebra of B, X C A, and every subalgebra of B including X also includes A.
This reasoning shows, for example, that in a power set algebra P(Y), the
singletons {y}, y €Y, generate the finite—cofinite algebra on Y. The interval
algebra of a linear order L (Example 1.11) is generated by the half-open intervals
[0,, x), where x € L.

We turn to a closer analysis of what the elements of (X) look like. Here the
main result is the normal form theorem 4.4, in particular Step 2 of the proof and
its notation. They will be frequently used in the sequel.

4.3. DerINITION. Let B be a Boolean algebra. For x € B and ¢ one of the integers
+1 or —1, define the element ex of B by

(+D)x=x, (-Dx=-x.

For X C B, an elementary product over X is a finite product with factors of the
form ex, e € {+1, —1}, x € X. An element of B is in (additive) normal form over
X if it is a finite sum of pairwise disjoint elementary products over X.

In view of the connection between Boolean algebras and propositional calculus,
the normal form defined above is also called the disjunctive normal form. Plainly,
each element of B representable in normal form over X is generated by X; the

.converse is stated in the following proposition.

4.4. ProrositioN (normal form theorem). The subalgebra generated by X C B
contains exactly the elements of B representable in normal form over X.
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ProoF.
Step 1. We first prove that an element of B is generated by X iff it is generated
by a finite subset of X, i.e. that

(1) (X)= U {{Y): Y a finite subset of X} .

To see this, denote by A the right-hand side of (1). Then A C (X) by monoto-
nicity. Also by monotonicity, (Y) U (Z) C (Y U Z) for arbitrary subsets Y, Z of
X, so the subalgebras (Y), Y a finite subset of X, constitute a directed family and
A is a subalgebra of B. For every x€ X, xE€(x) C A. Hence, XC A and
(X) C A, which proves (1).

Step 2. We are left with the proof that if a finite subset X of B generates b € B,
then b is representable in normal form over X. Let

X={x;,...,x,}
and

E=""""{+1 -1} = {e: e a function from {1, ..., n} into

{+1,-1}}.
For e € E, let p, be the elementary product over X defined by
p.=e(l)x, - -e(n)x,.
We then have
(2) p.'p,=0 fore#e',

since if, for example, e(i)=+1 and e'(i)=—1 fo some i, then p,<x, and
P. = —x;. Moreover,

@ L=l

as follows by evaluating the right-hand side of
i=@+—-x) - -(x,+—x,)

by distributivity. Now for M C E, the sum

% p,

s =
M eEM

is in normal form over X; let A= {s,,: M C E}. We show that (X) C A, thus
proving our theorem. A is non-empty and closed under + and — since, by (2) and

3,

4) St Sy = Suum >
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so it is a subalgebra of B. Every x; is in A, since by

X, =X; ,l;[; (x; + —x;)

and distributivity, x;=s,, where M = {e € E: e(i) = +1}. This proves (X)C
A O

4.5. CoroLLARY. If X C B has cardinality n < w, then the subalgebra generated by
X contains exactly the elements

r I e(x)x ,

eEM xEX

where M C*{+1, —1}, and thus has cardinality at most 2*". So each finitely
generated Boolean algebra is finite. If k = | X| is infinite, then (X) has cardinality
K.
Proor. The first assertion follows from Step 2 in the preceding proof. If k = | X] is
infinite, then « =<|(X)| by XC(X) and [(X)|=<w-k=k by (1), the first
assertion and since X has exactly « finite subsets. O

For every n € o, the bound 2%" in Corollary 4.5 is actually attained for suitably

chosen sets X, as shown by Exercise 1. Normal forms for more special situations
are easily obtained from the general result 4.4.

4.6. DEFINITION. Let A by a subalgebra of B. For n€ w and x,,...,x, in B,
Ay ... x,)=(AU{x;,...,x,})

is the finite extension of A by x,, ..., x,. For x € B,
A(x)=(AU{x})

is the simple extension of A by x.

4.7. CoroLLARY. For A a subalgebra of B and x € B,

Ax)={a-x+a'-—x:a,a €A}

={a,"x+a, - —x+a;: a,,a,, a; E A pairwise disjoint} .

Proor. The first assertion is an immediate consequence of the normal form
theorem. For the second one, note that

a-xta-—x=(a-—a')-x+(a-—a)—x+a-a,
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where a- —a', a’ - —a and a- a’ are disjoint, and that, conversely,
a,*x+a,-—x+a;=(a, +tay) x+(a,+ta) —x. O

If A,,..., A, are subalgebras of B, then the elements of (A, U---UA,,)
are, by the normal form theorem, exactly the finite sums of productsa, - --- - a,,,
where a; € A,. In the special case where m =2, A; = A, and A, =(x,,...,x,),
(A;U A,) coincides with A(x,, ..., x,). Using the notation of Step 2 in 4.4, in
particular p, = e(1)x, - --- - e(n)x,, and collecting, for e € E, summands of the
form a - p,, where a € A, we obtain:

A(xl...x,,)={§Eae-pe:ae€A foreeE}.

4.2. The completion of a partial order

We begin this subsection by defining, for a subset of a Boolean algebra, the
notion of denseness and list a few simple equivalences. Denseness and the
associated cardinal function of density are a strong tool for studying complete
Boolean algebras. For example, it is a consequence of Theorem 4.14 that two
complete Boolean algebras are isomorphic if they have dense subsets which are,
with the partial orderings induced by the Boolean ones, order-isomorphic.

4.8. DEFINITION. Let B be a Boolean algebra. A subset X of B™ = B\{0} is dense
in B if for every b € B" there is some x € X such that 0 <x < b. A subalgebra A
of B is a dense subalgebra if A* is dense in B.

mB =min{|X|: X C B dense in B}
is the density of B.

For example, in the regular open algebra of the reals, the set of all open
intervals with rational endpoints is dense, and hence m(RO(R)) = w. A Boolean
algebra A is, by definition, atomic iff the atoms of A form a dense subset of A,
and then wA = |At 'A|. The notation wB comes, via an equlvalence between
Boolean algebras and particular topological spaces described in Section 7, from
the cardinal invariant called m-weight (pseudo-weight) in topology.

4.9. LemMA. The following are equivalent, for X C B™:

(a) X is dense in B,

(b) for every b€ B, there is a pairwise disjoint family M C X such that
b=Y M,

(c) for every b € B, there exists M C X such that b=X M,

(d) for every bE B, b=L{x€ X: x=b}.
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Proor. Only the direction from (a) to (b) is non-trivial. So assume b € B and, by
Zorn’s lemma, let M be maximal with respect to the properties that M C X N
(B | b) and M is a pairwise disjoint family. If b # ¥ M, then there is an upper
bound b’ of M strictly smaller than b. By the denseness of X, pick x € X such that
0<x=b-—b' The pairwise disjoint family M U {x} then contradicts maximality
of M. O

It follows immediately from this lemma that |B| <2'*! if X C B is dense in B,
and hence that |B|<2"".

We shall now assign in a canonical way to every partial order (P, <) a complete
Boolean algebra, its completion. This process may be illustrated by the following
standard example, a partial order used in axiomatic set theory to construct models
which collapse cardinals and violate the general continuum hypothesis.

4.10. ExampLE (partial functions). Let I and J be arbitrary sets, A a regular
infinite cardinal and

Fn(I, J, \) = { p: p a function from a subset of I into J, |[dom p|<A};
for p, g €Fn(l, J, A), let

g=p iff pCq (i.e. iff dom p Cdom q and p(i) = q(i) for i € dom p).
4.11. DeFiNITION AND LEMMA. Let P be a partial order. Two elements p and g of

P are compatible if there is some r € P such that r<p and r =g, otherwise
incompatible. For p € P, let

u,={qeP:q=p}.

The set {u,: p € P} is the base of a topology of P, the partial order topology. A
subset u of P is open in this topology iff p € u and g < p imply g E u.

For example, in the partial order Fn(Z, J, A) of 4.10, p and g are compatible iff
the relation p U q is a partial function from I into J, i.e. iff p(i) = q(i) for every i
in dom p Ndom gq.

4.12. DerINITION. Let P be a partial order. A completion of P is a pair (e, B)
such that B is a complete Boolean algebra, e a mapping from P into B* and

(6) e is order preserving: if g <p in P, then e(g)<e(p) in B,

@) e preserves incompatibility: if p and g are incompatible in P, then
e(p)-e(q)=0in B,

(8) e[P] is dense in B .

Note that it follows from (6) and from e(r) >0, for r € P, that the converse of
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(7) holds true: if e(p)-e(g) =0, then p and g are incompatible. If X is a dense
subset of a complete Boolean algebra B, then X, equipped with the partial order
inherited by B, has (id,, B) as a completion; (7) holds since p - ¢ > 0 implies, by
denseness of X, that 0 <r=p - g for some r € X, thus p and g are compatible in
X.

4.13. TueoreM. Every partial order P has RO(P) as a completion.

Proor. Equip P with the partial order topology of 4.11 and define B to be the
regular open algebra of P; let e: P— B be the mapping defined by

e(p)=intclu, .

We show that the pair (e, B) is a completion of P.

For every p € P, the regularization e( p) of u,, in the sense of Definition 1.36,
is regular open by (7) in Section 1. Since u, is a non- empty open subset of P,
u,C e( p) by (5) of Section 1, so e( p) € B. The following argument shows that
e[P] is dense in B: let b be a non-empty regular open subset of P. Since
{u,: p € P} is a base for the topology of P, there is some p such that u, C b. By
(8) in Section 1, e(p) is the least regular open subset of P 1nclud1ng Uu,, SO
e(p)Cb.

Monotonicity of e is trivial since g < p implies u, Cu, and thus e(q) C e( p).
Finally, suppose that p and g are incompatible. Then u, and u, are disjoint and so
are their regularization e(p) and e(q), by (10) in Section 1. [l

4.14. THEOREM. Any two completions of a partial order P are isomorphic over P.

Proor. Let (e, B) and (e’, B') be completions of P; we prove that there is a
unique isomorphism 4: B— B’ such that hce=e¢'".

e B
/
P
x BI
First suppose that h exists. Then by the denseness of e[ P] and Lemma 4.9,
b=L {e(p): pEP, e(p)=b)
for every b € B, and since an isomorphism preserves arbitrary sums,
h(b) =2 (h(e(p)): p € P, e(p) = b}
=L {e'(p): pEP e(p)=b}.
This shows uniqueness of & and suggests its definition for the existence proof:

since B and B’ are complete, we can define mappings h: B—~> B’ and h': B'— B
by
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h(b) =L {¢'(p): pE P, e(p)=b},
h'(b') = Y. {e(p): pEP e (p)=b'}.

h and k' are order preserving and will be isomorphisms of the partially ordered
sets (B, =) and (B’', =), hence of the Boolean algebras B and B’, if we can show
that h'oh=1id; and h°h’ =idg.. The proof of this relies on

9) for p€ P and b € B, e(p) < b iff e'(p) = h(b).

To prove the non-trivial direction of (9), assume that e’( p) < h(b) but e( p) Zb.
By the denseness of e[P] in B, pick g € P such that e(g) < e(p)- —b. Then p and
q are compatible by (7); let r € P satisfy r <p and r=g. So

e'(n=e'(p)=h(b)=X {e'(s): SE P, e(s)<b} ;

by the distributive law 1.33(b), there is some s € P such that e(s)<b and
0<e'(r)-e'(s). Thus, r and s are compatible; let tE P satisfy t=r and t=<s. It
follows that e(f) = e(gq) = —b and e(¢) - b = 0; on the other hand, e(t) <e(s)<b, a
contradiction.

p

1

By (9) and the denseness of e[ P],

h'(h(b)) = L {e( p): ¢'(p) = h(b)}

=X {e(p): e(p) = b}
=b;

and heh' =idy, follows similarly.
We finally prove that hoe = e’: by definition of &, we have e'( p) < h(e( p)) for
p € P. Similarly, e( p) < h'(e’(p)) and thus h(e(p) =h(h'(e'(p))) =e€'(p). O

The uniqueness theorem implies an assertion mentioned at the beginning of this
subsection: let B and B’ be complete Boolean algebras with dense subsets X
(respectively X') which are, with the partial orderings inherited from B (respec-
tively B'), isomorphic. Then (idy, B) is a completion of X and (idy., B') is a
completion of X', as remarked above; thus B and B’ are isomorphic.
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We sketch, for readers with some background in forcing, the fundamental
connection between forcing with partial orders and Boolean-valued models of set
theory. Let P be a partial order and (e, B) its completlon as constructed in 4.13.
In the theory of forcing, one defines a proper class V* depending on P, a formal
language, the forcing language, for set theory which has the elements of v
constants, and a binary relation I between elements of P and sentences of the
forcing language; p I+ ¢ reads “p forces ¢”’. For each sentence ¢ of the forcing
language, the subset ||@|| of P, defined by

l¢ll={pEP: pl-o},

is regular open, hence an element of B, and the assignment of ||¢|| to ¢ gives a
Boolean valuation of the sentences of the forcing language. Conversely, the
forcing relation can be recovered from the Boolean valuation || . .. || by

pi¢ iffe(p)=|¢[ in B.

It is shown in the theory of forcing that each axiom of ZFC is forced by every
p € P. Thus, ||$|| =1 for each axiom ¢ of ZFC, i.e. (V|| ...|) is a Boolean-
valued model of ZFC with underlying class V®.

By the existence and uniqueness theorems 4.13 and 4.14, we may speak about
the completion of a partial order. There is a desirable property of completions
which does not hold for arbitrary partially ordered sets: one would like e to be an
isomorphism, rather than only an order preserving map, from P onto the dense
subset e[ P] of B.

4.15. DErFINITION. A partial order P is separative if for all p and g in P such that
q Zp, there is some r =< q incompatible with p.

The partial order Fn(Z, J, X) of partial functions defined in 4.10 is separative if J
has at least two elements. For assume g ;€ p; then the function g does not extend
p. Thus, either p(i) # q(i) for some i € dom p, and r = g is incompatible with p.
Otherwise, there is some i € dom p\dom ¢, and r = q U {(i, j)} is incompatible
with p, where j € J\{ p(i)}. Also for a Boolean algebra A, every dense subset X
of A with the partial order inherited from A is separative, for if g p in X, then
q - —p is non-zero in A; by denseness of X in A, there is some r € X such that
0<r=gq-—p. Then r =g and r is incompatible with p in X since r-p =0.

4.16. ProrosITION. Let P be a partial order and (e, B =RO(P)) the completion of
P constructed in 4.13. The following are equivalent:

(a) P is separative,

(b) e(p) =intclu, coincides with u,, for every p € P,

(c) eisan tsomorphlsm from P onto the partial order e[P]C B.

Proor. (a) implies (b): first note that for every subset a of P we have, in the
partial order topology,



§4] SUBALGEBRAS, DENSENESS, AND INCOMPARABILITY 59
inta={x€P:u,Ca}
cla={x€P:u,Na#0},

since u, is the least neighborhood of x in P. For p € P,
cdu,={y€P:u,Nu,#0} ={y EP: y and p are compatible} ,
intclu, = {x € P: every y <x is compatible with p} .

Hence, if P is separative, then g & u, implies g Zintclu,, i.e. intcl u, Cu,; also
since u, is open, u, Cintclu, by (5) of Section 1.

(b) implies (c): if ¢ Zp, then u, is not included in u, and e(q) Ze(p) by (b).
This shows that e is one-to-one and e ' is order j preservmg, thus (c) holds.

(c) implies (a): since, by the remark preceding our proposition, dense subsets
of Boolean algebras are separative. [

4.3. The completion of a Boolean algebra

For a Boolean algebra A, the completion of the partial order (A, <) in the
sense of Definition 4.12 is the two-element Boolean algebra, since for each partial
order P with a least element, the regular open algebra of P reduces to {@, P}.
Any reasonable definition of completion for Boolean algebras would, of course,
require the completion of A to be a complete Boolean algebra B having A as a
subalgebra and being, in a way, minimal over A. Now by Stone’s representation
theorem 2.1, A is embedded into the complete algebra P(Ult A) via the Stone
homomorphism. This embedding has a serious drawback: it does not preserve any
non-trivial infinite sums and products, as shown by Exercise 1 in Section 2. The
following proposition describes a better behaved class of embeddings. Recall from
Definition 1.29 that a subalgebra A of a Boolean algebra B is a regular subalgebra
if £* M = %% M for each M C A such that £ M exists.

4.17. ProrosITION. Every dense subalgebra of a Boolean algebra B is regular in B.

ProoF. Suppose A is a dense subalgebra of B, M C A and a = %* M exists. Then
a is an upper bound of M in A, hence in B. Let b be any upper bound of M in B;
we claim that a < b. Otherwise, pick by denseness of A some a’ € A" such that
a'=<a-—b. Then a- —a’ is an upper bound of M in A strictly smaller than a, a
contradiction. [

This proposition partly motivates the following definition.
4.18. DEFINITION AND NoOTATION. Let A be a Boolean algebra. A completion of A

is a complete Boolean algebra B having A as a dense subalgebra. We write B= A
if B is a completion of A.
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4.19. THEOREM. Every Boolean algebra has a unique completion, up to isomor-
phism.

Proor. Uniqueness is an immediate consequence of the remark following
Theorem 4.14: if A is a dense subalgebra of the complete algebras B and B’, then
A" = A\{0} is, with the partial order inherited from A, a dense subset of both B
and B’, hence there is an isomorphism h: B— B’ such that h | A=id,.

To prove existence of a completion, it is enough to find a complete Boolean
algebra B and a monomorphism f from A onto a dense subalgebra of B; A can
then be identified with the isomorphic algebra f[ A]. To define B, note that A" is
a dense subset of A, hence a separative partial order by the remark preceding
Proposition 4.16. Let (e, B) be the completion of A* constructed in the proof of
Theorem 4.13, i.e. B=RO(A") and e(p)=int cl(u,) (=u,, by 4.16); then
extend e: A" — B to a function f: A— B by defining f(O) 0

By separativity of A™, e is one-to-one and so is f since f[A] C B™ and £(0) = 0.
We prove that fis a Boolean homomorphism. Clearly, f(0,) =05 and f(1,) =15.
If p, g € A are such that p- g >0, then

flp-q)=u,,=u,Nu,=f(p) f(q);

if p-q=0, then both f(p-q) and f(p)-f(q)=f(p) N f(q) are empty. In par-
ticular,

f(p)-f(-p)=f(0)=0.

Also, f(p) + f(—p) =1: otherwise p #0, —p # 0 and by denseness of e[A*] in B,
there is some g € A” such that e(q)- e(p) =0=e(q): e(—p). This means that
qg-p=0=gq-—p, contradicting g >0. Thus, f preserves - and — and is a
homomorphism.

Finally, f[A] is a subalgebra of B since f is a homomorphism; it is a dense
subalgebra since e[A"] is dense in B. O

Again we speak about the completion A of A, having in mind any complete
Boolean algebra with A as a dense subalgebra. For example, the power set
algebra P(X) of X is the completion of the finite—cofinite algebra on X. There are
constructions of A different from that given in 4.19, e.g. we introduce in Section 7
a topology in the set Ult A of ultrafilters of A and prove that A=RO(Ult A).
The construction above has, however, the advantage of not using any form of the
axiom of choice. For another characterization of A over A, see Exercise 2 of
Section 5.

4.20. ProposITION. A Boolean algebra is complete iff it is isomorphic to the
regular open algebra of some topological space.

Proor. The regular open algebra of a topological space is complete by Theorem
1.37. Conversely, let B be complete and endow the partial order B™ with its
partial order topology. The proof of Theorem 4.19 shows that RO(B™) is a
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completion of B; trivially B is another one. Thus, B=RO(B") by uniqueness of
completions. [

4.4. Irredundance and pairwise incomparable families

We prove here three combinatorial theorems involving the notion of denseness
and the process of generating subalgebras from subsets with, possibly, additional
properties.

4.21. DerFINITION. A subset X of a Boolean algebra is irredundant if no element x
of X is generated by X\{x}.

The subsequent results show that a Boolean algebra need not have an irredun-
dant set of generators; it has, however, large subalgebras in the sense of
denseness which are irredundantly generated. This follows from 4.23 since, by
Zorn’s lemma, each Boolean algebra has a maximally irredundant subset.

4.22. ProrosITION. No infinite o-complete Boolean algebra has an irredundant set
of generators.

Proor. Assume for contradiction that A is infinite, o-complete and generated by
an irredundant subset X. Thus, X is infinite; let x,,, n € w, be distinct elements of
X and put Y=X\{x,: n € w}. A is the union of the countable chain (4,),c, of
subalgebras where A, = (Y U {x,: k <n}), and by irredundance of X, each A, is
a proper subalgebra of A. This situation, however, is impossible as shown by the
following argument.

Call a€ A small if A | aC A, for some n € w, and large otherwise. If a,
a' € A are such that a + a' is large, then a or a' is large. Otherwise, there is n € w
such thatboth A | aand A | a’ areincludedin A,,andthen A | (a+a')C A,
contradicting largeness of a +a’, since for x€EA | (a+a’'), x=x-a+x-a’
where x-a and x-a’ are in A,

For a € A, define the height of a by

h(a)=min{nEw:a€ A, }.

We claim that if a € A is large and n € w, then there is b =< a such that h(b) >n
and a - —b is large. To see this, pick a’ < a such that h(a') > max(n, h(a)); this is
possible since a is large. Then k(a - —a’) > h(a) (otherwise, a’ =a-—(a-—a’) is
in A, ) and at least one of the elements 4’ and a - —a’ must be large, as shown
above. So let b=a' if a- —a’ is large and b =a-—a’ if a’ is large.

Using this claim and the fact that the unit element 1 of A is large, we
inductively choose pairwise disjoint non-zero elements d,,, n € w, of A such that
h(d,)>n and —(d,+---+d,_,) is large. Now let {N,: k € w} be a partition of
o into infinite subsets; by o-completeness, put

sk=Z {d,-nEN,}
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and pick, for k € w, an element I(k) of N, such that k <I(k) and h(s,) = I(k).
Define

x=Y{dy kEw).

By disjointness of the d,, the distributive law 1.33(c) and N, N {l(j): jE w} =
{l(k)}, we obtain, for every k € w,

Sk’x=dl(k) .

Assume x € A,. By the above choice of /(k), both x and s, are in A,,,. But then
dyxy € A > a contradiction. So x €U ,., A and A# U, ., A,. O

4.23. ProrositioN (McKenzie). Every maximally irredundant subset of a Boolean
algebra generates a dense subalgebra.

Proor. Let X be maximally irredundant in a Boolean algebra A and D the
subalgebra of A generated by X. Suppose a € A*; we want to find some d € D™
such that d =a. We may assume that a & D. By maximality of X and a €D =
(X), there is an x € X such that x € (Y U {a}) where Y = X\{x}. By Corollary
4.7, write

x=y-atz-—a,

where y, z€(Y). Then x - —a = z - —a, thus the symmetric difference d = x A z,
an element of D, satisfies d < a. Since z € (Y) but x €(Y) by irredundance of
X, x# z; so d is non-zero. [

4.24. DermNiTION. Two elements x and y of a Boolean algebra A are comparable
if x<y or y=x, incomparable otherwise. A subset X of A is a pairwise
incomparable family if any two distinct elements of X are incomparable.

A Boolean algebra of infinite cardinality x does not necessarily have a pairwise
incomparable family of size « or a chain, i.e. a set of pairwise comparable
elements, of size k. For example, in SHELAH [1981] a Boolean algebra is
constructed under CH which has cardinality , but no uncountable pairwise
incomparable family or uncountable chain. At least, by the following result and
the consequence |A| <27* of 4.9, a Boolean algebra A of cardinality k has an
incomparable family of size A, for some cardinal A satisfying 2* = «.

In the following proof, call (,),c, an irredundant family in A if a, & (a;: j €
I\{i}) for every i € I

4.25. TaeoreM (Shelah). Every infinite Boolean algebra A has an irredundant
pairwise incomparable family of size wA.

Proor. We start out with two preliminary remarks.
Claim 1. If f: A— B is a homomorphism of Boolean algebras, (a,),., a
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sequence in A such that ( f(a,)),, is an irredundant family in B, then (a,),., is
an irredundant family in A.

For otherwise, some a, is generated by {a,: B # a}. Writing a, in normal form
over {a,: B a} shows that f(a,) can be written in normal form over
{f(ag): B# a} and that f(a,) is generated by {f(az): B # a}, a contradiction.

Claim 2. Let, in a Boolean algebra B, (b,),.,. be a sequence of positive
elements such that, for « <k, no positive element of B | b, is generated by
{bs: B<a}. Then (b,),, is an irredundant family.

Otherwise there are a finite subset X of k and some a € « such that a & X but
b, € (b,: £ € X); we may assume that | X| is minimal for this situation. Since b,
is not generated by {b;: B <a}, X is non-empty, say

X={a(l),...,a(n)}, a()<---<a(n).
By assumption of Claim 2, a < a(n). Let
A=<ba(i):1si<n>’ U=b,p;

thus b, € A(u) and by Corollary 4.7, there are pairwise disjoint a, a’, a” in A such
that

b,=a-u+a-—u+a".

Now a-b,=a-u=u=b,.,; this implies a-b, =0 since a- b, is generated by

{bg: B<a(n)}; it follows that a-u =0. Similarly, a'- —u=<b,, thus a'- —b, =<
u,a -—b,=0and a' = b, which gives a’'-—u=a'-b,=a'. So

b,=0+a +a"

is generated by {b,y: 1=i<n} which contradicts the minimal choice of X and
finishes Claim 2.

We now prove the theorem by induction on the cardinal invariant wA of A.
Note that A is infinite iff 7A is infinite, so let kK = A be infinite and suppose the
theorem holds for every infinite Boolean algebra C with 7 C < k. Define, for
a€ A, w(a)=w(A | a).

Case 1. There is some a€ A such that @w(b)=«k for all b€ A satisfying
0<b=a. Then a is not an atom of A, so choose disjoint non-zero elements a,
and a, in A | a. For i =1, 2, define inductively a sequence (a;,),~,in (A | a,)"
such that no positive element of A | a,, is generated, in A | a;, by {a;5: B <a}.
This is possible since by w(a;)= k, the subalgebra generated in A [ a; by
{a;5: B <a} cannot be dense in A | a;. Define, for a <k,

Ca = ala + a2' _a2a 5
we show that (c,), ., is an irredundant family of pairwise incomparable elements.

Obviously, B < « implies that a,; ¥ a,, and hence Cg #Zc,; similarly for 8 <a,
ay £ a,,, —a,, £—a,; and c, £c,. So the c, are pairwise incomparable. To
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show irredundance, consider the projection homomorphism p: A— A | a, de-
fined by p(x) = x - a,. By Claim 2, (a,,),, is an irredundant family in A | a,; so
by Claim 1 and p(c,) =a,,, (c,),<, is an irredundant family in A.

If Case 1 fails, then

D={a€A": m(a)< k)

is dense in A. By Lemma 4.9, there is a partition X of unity included in D.

Case 2. |X| = k. Then X is an irredundant pairwise incomparable family in A,
and we are finished.

Case 3. | X| < k. Then for x € X, choose a dense subset D, in A | x of size
m(x) < k. U,y D, is dense in A and thus has cardinality at least mA = k. So « is
singular; let k =sup, . . k, Where each k_ is an infinite cardinal less than «. Since
| X| <k, |D,|= m(x) for x € X and

K= | = sup 7(x),

XEX

we can choose a sequence (x_), .., of pairwise distinct elements of X such that
7(x,) > k,. By induction hypothesis and k, < 7w(x,) <k, each A | x, has an
irredundant pairwise incomparable family M, of size «,. Then U, _ . M, is an
irredundant pairwise incomparable family in A of size k. 0

Exercises

1. Let n € , A the power set algebra of "2 = "0, 1}; so |A|=2"". Find
a subset of A of size n which generates A.

2. Show that a Boolean algebra A is atomic (respectively atomless) iff its
completion A is atomic (respectively atomless). Moreover, mA = 7wA.

3. Prove that no dense proper subalgebra of a Boolean algebra can be
complete.

4. Show that RO(R) is (isomorphic to) a completion of Intalg R.

5. Let (P, <) be a partial order. Call X C P an antichain of P if the elements of
X are pairwise incompatible and define

CpoP =sup{|X|: X C P an antichain} ,

the cellularity of (P,=<). Prove that, if P is equipped with its partial order
topology,
C,oP = the cellularity of the topological space P
= the cellularity of the Boolean algebra RO(P) .
6. Let J be a discrete topological space; endow J with the product topology

and the partial order Fn(/, J, w) with the partial order topology. Then RO('T) =
RO(Fn(7, J, w)).
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7. Let P be the separative partial order Fn(Z, J, »), where |I| = 0, |J| = 0, and
let (e, B) be the completion of P. Prove that

(a) B does not satisfy the countable chain condition.

(b) For each j € J, the set

M;={e(p): pE P, jEran p}

is dense in B, hence L M; =1.

(c) There is no ultrafilter x of B preserving & M; for each j € J, for otherwise,
U {p € P: e(p) E x} is a function mapping I onto J.

Thus, in Martin’s axiom, the assumption of the countable chain condition
cannot be dispensed with.

8. Let (X, d) be a metric space. For a C X non-empty, the diameter of a is
defined by

diam(a) = sup{d(x, y): x, yE a} .

(a) For uC X open and ru=intcl u its regularization (cf. Definition 1.36),
show that diam(u) = diam(ru).

(b) For 1=n<w, fix a pairwise disjoint family P, in RO(X) maximal with
respect to the property that diam(u) =< 1/n for u € P,. Then each P, is a partition
of unity in RO(X) and U, _,_, P, is dense in RO(X).

(c) Conclude that the cellularity of RO(X) equals sup{|P,|: 1=n < w}, and is
actually attained.

5. Homomorphisms, ideals, and quotients

In this section we deal with several important notions, constructions and results
on homomorphisms. The first major topic is Sikorski’s theory on extensions of
maps between Boolean algebras to homomorphisms and extensions of homomor-
phisms defined on subalgebras to larger algebras; Sikorski’s extension criterion
5.5 is one of the bread-and-butter theorems on Boolean algebras. Two special
cases of Sikorski’s extension criterion imply Vaught’s isomorphism theorem 5.15
for countable Boolean algebras and a characterization of complete Boolean
algebras via Sikorski’s extension theorem 5.9. Both results are fundamental for
the theory of countable (respectively complete) Boolean algebras.

Our second topic is the formation of the quotient of a Boolean algebra modulo
an ideal. This is a frequently applied and quite general construction since every
homomorphic image of a Boolean algebra A is isomorphic to a quotient of A. As
a particularly enlightening example, we study the quotient of the power set
algebra P(w) of the natural numbers modulo the ideal of finite sets.

5.1. Homomorphic extensions

A homomorphism between Boolean algebras A and B was defined, in 1.3, to be
a map g: A— B preserving the Boolean operations +, -, — and the distinguished
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elements 0 and 1. It suffices, however, to assume that g preserves the operations
+ and — or, dually, - and —, since the remaining operations and constants can be
recovered from these. Even preservation of +, 0, 1 and disjointness is sufficient
(and hence preservation of +, -, 0 and 1), for it implies g(x) + g(—x)=1 and
g(x)-g(=x)=0, i.e. g(—x)= —g(x). Every homomorphism preserves the sym-
metric difference x A y =x - —y + y - —x and also the Boolean partial order, for it
follows from x <y that x = x-y, g(x) = g(x)- g(y) and g(x) < g(y).

In the class of complete (x-complete, o-complete) algebras, there is a stronger
and more natural notion of homomorphism:

5.1. DerINITION. A Boolean homomorphism is complete (k-complete, o-
complete) if it preserves, in the sense of 2.20, ¥ M for every M C A (for every
M C A of cardinality less than «, for every countable M C A) for wich L* M
happens to exist.

In Definition 2.5, a one-to-one (onto, bijective) homomorphism was called a
monomorphism (an epimorphism, an isomorphism). Let us list, for further
reference, two more notions.

5.2. DerINITION. Let A be a Boolean algebra. An endomorphism of A is a
homomorphism from A into itself. An automorphism of A is an isomorphism
from A onto itself.

5.3. LeMMA. A homomorphism g: A— B is a monomorphism iff, for every x in
A, g(x) =0 implies x =0.

Proor. This follows from the equivalence of y=zand 0=y A z in A (see Lemma
1.25) (respectively g(y)=g(z) and 0=g(y)A g(z)=g(yAz) in B), since g
preserves symmetric differences. O

In the rest of this subsection, we deal with the question in which circumstances
a map f defined on a set X of generators of A can be extended to a homomor-
phism g: A— B. Such an extension, if it exists, is uniquely determined.

5.4. Lemma. If g and g' are homomorphisms from A to B coinciding on a set of
generators of A, then g =g'.

Proor. This is an immediate consequence of the normal form theorem 4.4. Here
is a less computational proof: the set

Ag={xEA: g(x)=¢g'(x)}

is a subalgebra of A. If it includes a set of generators of A, then A,= A and
g=g. 0O

In the following proof, we use the fact that, loosely speaking, the union of a
non-empty directed family of homomorphisms is a homomorphism. More precise-
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ly, assume that for i€ I, g;: A,— B is a homomorphism from a subalgebra A,
of A into B and that for arbitrary i, jE I there is k€[ such that A, UA, C A,
and g, extends both g, and g;. Then U,.; A, is a subalgebra of A and
U,c;8: U,c; A;,— B is a homomorphism. In particular, the union of any
non-empty chain of homomorphisms from subalgebras of A into B is a homomor-
phism from a subalgebra of A into B.

With the normal form theorem 4.4 and its notation at our hands, we are in a
position to prove the fundamental result of this subsection.

5.5. TueoreM (Sikorski’s extension criterion). Assume X generates A and f maps
X into a Boolean algebra B. The following condition is necessary and sufficient for
f to extend to a homomorphism from A into B:

forn€w,x,,...,x,EXand ¢,,... 5, €{+1, -1},
(1) if ex,- - -€,x,=0in A, then & f(x;)- -+ - ¢,f(x,)=0in B.

X C A=(X)

B

Proor. Necessity of the condition is obvious. For sufficiency, it is enough to
consider the case where X is finite. For suppose the theorem holds true for finite
sets of generators. Then for each finite subset Y of X, there is by 5.4 a unique
homomorphism

gy:(Y)—>B

extending f [ Y. Now if Z is a finite subset of X including Y, then also the
restriction of g, to (Y) is a homomorphism extending f | Y, so g, extends g.
Thus, {g,: Y a finite subset of X} is a directed set of homomorphisms, and its
union is a homomorphism from A into B extending f.

So assume X = {x,, ..., x,} is finite. We define, as in the proof of the normal
form theorem 4.4, the set

E={1 ..... n){+1,_1}
of all functions from {1, ..., n} to {+1, —1} and, in A, the elementary products
pe = e(l)xl Tt e(n)xn

for e € E, and elements written in normal form:

sM = e§M pe
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for M C E. Similarly, we define in B

g. = e(D)f(x,)- -+ - e(m)f(x,)

for e € E and

for M C E. By the normal form theorem, A = (X) = {s,,: M C E}; we will see
that the map g: A— B, given by

8(sy) =ty
for M C E, works for the theorem.

First, g is well-defined, i.e. s,, = s,,, implies ¢,, = t,,., for M, M' C E. To prove
this, note that by assertions (4) and (5) in the proof of the normal form theorem,
the map assigning s,, to M is a homomorphism from P(E) into (x,,...,x,).
Thus, if s,y = 5,, then 0=1s,, As,,, =Sy p p>1.€. p,=0foreache€ M A M'. By

condition (1) above, also g, =0 for e € M A M’, and this shows t,,=¢,,..
g is a homomorphism since, by (4) in 4.4,

8(n +50) =8 pum) = taune =t Tt = 8(Sa) T 8(Sar) 5
similarly, g preserves complements by (5) in 4.4.
Finally, letting M = {e € E: e(i) = +1}, we have s,, = x; and g(x,) = t,, = f(x,);
thus g is an extension of f. O

The same proof gives the following more general but somewhat messy formula-
tion which is also referred to as Sikorski’s extension criterion.

5.6. ProrosiTioN. Let r C A X B be a relation between elements of two Boolean
algebras A and B. Then r is a function from dom r C A into B and extends to a
homomorphism from (domr) C A onto (ranr) C B iff:

forn€w, (x;, y;),...,(x,, y,)Erand e,,...,¢,E{+1, -1},
2) if exy - -e,x,=0in A, then gy, -+ -¢,y,=0in B.
r extends to an isomorphism from (dom r) C A onto (ranr) C B iff:

forn€w, (x;,y,),.-.,(x,,y,)Erand e, ..., e, €{+1,—-1},
(29 ex, o e,x,=0in Aiff eyy,- -+ -¢,y,=0in B.

Proor. We only prove that r is a function; the rest follows from 5.3 and 5.5.
Assume (x, y,) and (x, y,) are in r with the aim of showing y, = y,. With n =2,
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x;=x,=x and g, = +1, &,=—1, we see that £x, - &x,=x-—x =0. Thus, by
(2), &1y1 - &y,=y,-—y,=0and y, <y,. Similarly, y, <y, and thus y, =y,. 0O

Let us state two useful special cases of Sikorski’s extension criterion.

5.7. CorOLLARY. Assume that, for i€ I, f,: A,— B is a homomorphism from a
subalgebra A; of A into B and that U ,_, A, generates A. There exists a
homomorphism from A into B extending each f, iff:

for n € w, distinct i(1), . .., i(n) €I and Aoy € Aiey >

(3) if a1y - iy =0in A, then fiy(a,3y) - finy (@) =0 in B.

Proor. In the preceding proposition, put r = U ,, f.. Since, for every i € I, A;is
a subalgebra and f; is a homomorphism, the elementary products considered in
(2) can be reduced to the form considered in (3). O

Recall from Section 4 that, for A a subalgebra of a Boolean algebra A’ and
x € A, A(x) is the subalgebra of A’ generated by A U {x}, the simple extension
of A by x.

5.8. CoroLLARY. Let f,: A—> B be a homomorphism of Boolean algebras, A(x) a
simple extension of A and y an element of B. There exists a homomorphism
g: A(x)— B extending f, and mapping x to y iff for all a and a’ in A:

4) ifasx=a'in A then fo@=y=f,(a)inB.

A C AW
B

Proor. Let, in Proposition 5.6, r = f, U {(x, y)}. Existence of g is equivalent, by
(2), to the assertions

if c-x=0, then f,(c)-y=0,
and
if d-—x =0, then fy(d)- —y =0,

for(c, din A. But ¢ - x =0 iff x < —c and, since f, is a homomorphism, f,(c)-y =0
iff y <fy(—c). Similar reasoning applies to the second assertion. [
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5.2. Sikorski’s extension theorem

As a consequence of Corollary 5.8, we shall now prove Sikorski’s extension
theorem, a powerful principle characteristic of complete Boolean algebras. The
core of its proof is the fact that, given a homomorphism f,: A— B into a complete
Boolean algebra B and a simple extension A(x) of A as in 5.8, there is always a
homomorphic extension g of f, to A(x). For, by completeness of B, we can
consider

s=ZB{f0(a):a€A,an}, t=HB{f0(a’):a'EA,xSa'}.

Now s =t since fy(a) = f,(a’) fora=x=a’' (a, a’ € A), and every y € B such that
s=y=t satisfies (4) in 5.8, guaranteeing existence of g. Sikorski’s extension
theorem slightly generalizes this situation.

5.9. TuroreM (Sikorski’s extension theorem). Let A be a subalgebra of A' and f a
homomorphism from A into a complete Boolean algebra B. Then f can be
extended to a homomorphism of A' into B.

A - A’

f 4
B

Proor. Let P be the set of those homomorphisms g from a subalgebra of A’ into
B such that dom g includes A and g extends f. P is non- -empty and partially
ordered by inclusion; moreover each non-empty chain C in P has U C as an
upper bound. Thus, by Zorn’s lemma, P has a maximal element g. The subalgeb-
ra dom g of A’ coincides with A’, i.e. g is as required. Otherwise let x €
A\dom g; by completeness of B and the remark preceding this theorem, g has a
homomorphic extension g': (dom g)(x)— B, contradicting maximality of g. [

5.10. CoroLLARY. Let A be a subalgebra of A'. Then there is an epimorphism
from A’ onto a Boolean algebra A" having A as a dense subalgebra such that
T | A=id,.

A - A’

T
id,

AII

Proor. By Sikorski’s extension theorem, the identity map id, from A into the
completion A of A has a homomorphic extension m: A’'— A, and the subalgebra
A"=ran m of A has A as a dense subalgebra since A C A” and A is dense in
A O
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A homomorphic extension g of f as given by Sikorski’s extension theorem is, in
general, neither uniquely determined nor can we expect g to be one-to-one if fis.
Injectivity of g is sometimes ensured by the following simple fact.

5.11. LEMMA. Let A be a dense subalgebra of A', f: A— B a monomorphism and
g: A'— B a homomorphic extension of f. Then also g is a monomorphism.

Proor. By Lemma 5.3, we have to show that g(y) >0in Bif y>0in A’. Choose,
by denseness of A in A’, x € A such that 0<x =y. Then 0<f(x) = g(x) <g(y)
since f is one-to-one. [

Let us consider two consequences of the preceding results. First, assume that f
is the inclusion map from A into its completion A = B. Then every A’ having A as
a dense subalgebra embeds into A over A; thus the extensions A’ of A with A
dense in A’ can be described as being the subalgebras of A lying between A and
A. Second, assume A’ is the completion A of A and B is an arbitrary complete
algebra into which A is embedded via f; then A is embeddable into B via an
extension of f. For this reason, A is sometimes called the minimal completion of
A.

We finish this subsection with a category-theoretic description of complete
algebras.

5.12. DerINITION. A Boolean algebra B is injective if every homomorphism from
an arbitrary algebra A into B can be extended to every extension of A.

B is a retract of an algebra C if there are homomorphisms e: B— C and
r: C— B such that ree=id,.

Be=C

If B is a retract of C via e and r, then e is one-to-one and r is onto; thus, B is,
up to isomorphism, both a subalgebra and a homomorphic image of C. If
e: B— C happens to be the inclusion map, then the epimorphism r: C— B
satisfies r [ B =1id, and is called a retraction of C onto the subalgebra B.

5.13. TuroreM. The following are equivalent, for every Boolean algebra B:
(a) B is complete,
(b) B is injective,
(c) B is a retract of a complete Boolean algebra.

Proor. The implication from (a) to (b) is asserted by Sikorski’s extension
theorem 5.9.

(b) implies (c): fix any complete Boolean algebra C having B as a subalgebra
(e.g. let C be the completion of B). By injectivity of B, the identity map
idz: B— B has an extension g: C— B, so B is a retract of C via id; and g.

(c) implies (a): suppose B is a retract of a complete algebra C via e: B— C and
r: C— B. Let M be a subset of B; we prove completeness of B by showing that
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b= r<ZC e[M])

is the least upper bound of M in B. For every m € M, e(m) < %€ e[M] and thus
m = r(e(m))=<b; so b is an upper bound of M in B. If b’ is another one, then
L€ e[M]=<e(b') and hence b =< r(e(b’))=b". O

A category-theoretic dual of injectivity, the notion of projectivity, is studied
and characterized in the chapter by KoppELBERG [Ch. 20 in this Handbook]. The
characterization, however, is much more complicated than that of injectivity given
in the preceding theorem.

5.3. Vaught’s isomorphism theorem

We turn to Vaught’s isomorphism theorem, another application of Sikorski’s
extension criterion. Virtually every isomorphism theorem for countable Boolean
algebras can be recovered from it, easy examples being provided by Corollary
5.16 and Proposition 6.6. The theorem itself and the notions involved are basic
for the deep study of countable Boolean algebras undertaken in KeroNen [1978];
see the chapter by Pierce [Ch. 20 in this Handbook] on countable Boolean
algebras.

5.14. DerFINITION. A binary relation R between Boolean algebras is a Vaught
relation if it satisfies the following conditions:

(5) R is symmetric, i.e. ARB implies BRA ,
(6) if ARB and A is trivial (i.e. |A| =1), then B is trivial ,

7N (back and forth property) if ARB and a € A, then there is b € B such
that (A | @)R(B | b) and (A | —a)R(B | —b).

For example, being isomorphic is a Vaught relation. We have seen in Lemma
3.2 that, for every element a of a Boolean algebra A, A is isomorphic to the
product of the relative algebras A | @ and A [ —a, and it will be proved in
Section 6 that every product decomposition of A arises in this way. Thus,
existence of a Vaught relation R such that ARB essentially means that A and B
decompose into factors in a similar way.

5.15. TueoreM (Vaught’s isomorphism theorem). Assume A and B are at most
countable Boolean algebras and ARB for some Vaught relation R. Then A is
isomorphic to B.

Proor. We first set up some notation motivated by the proof of Sikorski’s
extension criterion 5.5 and its modification 5.6. Following the convention from set
theory that each n € w is the set {0,...,n— 1}, we define
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E,="{1,-1}.

Then if (a,),c, and (b;),c, are arbitrary sequences in A (respectively B), define,
for e € E,, elementary products in A and B by

p.=e@a,, q.=Ile@)p,.

i€n i€n

We aim to construct a, € A and b; € B in such a way that
A={a;i€ w}, B={b;:i€ w}

and, for n € w,

(8), (Al p)RB | q,) foreache€E,.

Then putting A, = {a;:i<n) and B,=(b,:i<n), we see that A=U ., A,
since A ={a,: i € w}; similarly, B=U ., B,. It follows from (8),, (6) and 5.6
that there is a unique isomorphism f, from A, onto B, mapping a; onto b, for
i <n. Clearly, (f,),ec, is a chain of homomorphisms from subalgebras of A into
B, and f=U ,_, f, is an isomorphism from A onto B.

To construct the elements a; and b,, let

A={a,, a,,a,,...}, B={b,, b;, bs,...}

be enumerations of A and B, possibly with repetition; we will construct sub-
sequently b, € B, a, € A, b, E B, a, €E A, etc.

Suppose n is even (so a, is already defined) and (a,),.,, (b;);., have been
constructed such that (8), holds. For every e € E,, we have (A | p,)R(B 1 gq,)
and p,-a,€E A | p,; so by the back and forth property (7) of R, pick x, €
B | g, such that

(Al p.-a,)RB 'x), (Al p-—a,)RBI g, ~x,)
and define
bn=Z {x,;e€E,}.

Then (8),,,, holds again. For consider e EE, ., and pute=¢ | n. If e(n) = +1,
then p, =p,-a, and g, =¢q,- b, =x,; if e(n)=—1, then p, =p, - —a, and g, =
q.-—b,=gq,-—x,. In both cases, (A | p.)R(B ! ¢q,) holds by the above choice
of x,.

If n is odd, then b, is already defined and we find a, by interchanging the roles
of A and B and using symmetry of R. O

For a reader acquainted with model theory, it is not very hard to see that for
any two Boolean algebras A and B, there is a Vaught relation R satisfying ARB iff
A and B are elementarily equivalent in the logic L, —in fact, being L, -
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equivalent is a Vaught relation. Vaught’s result can then be regarded as a
consequence of Scott’s theorem that any two countable structures elementarily
equivalent in L, are isomorphic.

The following application of Vaught’s theorem characterizes, for example, the
interval algebra of the rationals as being the unique countably infinite and
atomless Boolean algebra, up to isomorphism.

5.16. CorOLLARY. Any two countably infinite atomless Boolean algebras are
isomorphic.

Proor. Define the relation R by
ARB iff A, B are both trivial or both infinite and atomless .

Clearly, R is a Vaught relation. [

5.4. Ideals and quotients

We describe the fundamental connection between homomorphisms, congruence
relations, and quotients of Boolean algebras. There is, of course, nothing
particular about Boolean algebras here, since the same connection exists for
arbitrary universal algebras, as may be known to the reader. In view of the fact
that Boolean algebras can be conceived as particular rings (cf. Section 1) and that
the congruence relations of a ring R are in one-to-one correspondence with
certain subsets of R, the ideals of R, also the congruence relations on Boolean
algebras are determined by ideals; we shall thus define the quotient of a Boolean
algebra modulo an ideal.

5.17. DeriNiTION. Let A be a Boolean algebra. A congruence relation on A is an
equivalence relation ~ on A such that, for all x, x', y, y'in A, x~x" and y ~ y’
imply —x~—-x"andx+y~x'+y"

Thus, a congruence relation is an equivalence relation respecting the Boolean
operations + and —. It also respect the operation - and all operations definable in
terms of equations from + and —.

Each homomorphism f: A— B of Boolean algebras induces the congruence
relation on A defined by

x~x' iff f(x)=f(x").
There is a converse to this process:

5.18. DerFINITION AND LEMMA. Let ~ be a congruence relation on A. For x € A,
let

m(x)={x'€ A:x~x'"}
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be the equivalence class of x with respect to ~, and let
Al~={7m(x):x€ A}

be the set of equivalence classes of ~. There is a unique Boolean algebra
structure on A/~ which makes

mA—> A/~

an epimorphism of Boolean algebras. A/~ is the quotient algebra of A with
respect to ~; o is the canonical homomorphism from A onto A/~. The
congruence relation induced by 7 on A coincides with ~.

In Section 2, a subset F of a Boolean algebra A was called a filter if 1 € F, Fis
closed under finite products and x € F, x <y imply y € F. Ideals of A are defined
dually.

5.19. DEerINITION AND LEMMA. A subset I of a Boolean algebra A is an ideal of A
if

0elrl,

ifxel,yEAand y=x,theny€l,

ifx€landy€El, thenx+y€el.
Iis a complete ideal (a o-complete ideal, a k-complete ideal) if © M € I for each
subset M of I (each countable subset M of I, each subset M of I of size less than
k) such that ¥ M exists. For every filter F of A,

—-F={-x:x€F}
is an ideal of A, the ideal dual to F. For every ideal I of A,

—I={-x:x€I}
is a filter of A, the filter dual to I.
Thus, taking the dual of a filter sets up an order-preserving one-to-one corres-
pondence between filters and ideals of a Boolean algebra.

The elements of an ideal I of A may be intuitively thought of as being “small”
in A. For example, for any set X, the set of finite subsets of X is an ideal in the
power set algebra P(X), its dual filter being the set of cofinite subsets of X.
Similarly, the subsets of X of cardinality less than « form a k-complete ideal in

P(X) if « is regular. The sets of Lebesgue measure zero form a o-complete ideal
in the o-algebra of Lebesgue-measurable subsets of the reals as considered in
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Example 1.32, and so do the meager Borel sets in the Borel algebra of an
arbitrary topological space (cf. Example 1.30).
As analogues of 2.11 through 2.13, we have the following definitions.

5.20. DerinNiTION AND LEMMA. For every subset E of A, the set
{(xeA:x<e, +---+e,forsome nEwande,,...,e, EE}

is an ideal of A, the ideal generated by E; it is the least ideal of A including E. Let
I be an ideal of A and F its dual filter. [ is proper if 1€ I, i.e. if F is a proper
filter. I is trivial if I = {0}, i.e. if Fis the trivial filter. I is principal if I is the ideal
{x € A: x =< a} generated by some a € A, i.e. if F is the principal filter generated
by —a. I is prime if it is proper and x - y € I implies that x El or y € I; i.e. if Fis
a prime filter.

Passing to the dual filter F of an ideal I and applying Proposition 2.15 shows
that 7 is prime iff it is a maximal proper ideal. Moreover, by the very definition of
ultrafilters, I = A\F iff F is an ultrafilter.

5.21. DeFINITION AND LEMMA. If f: A— B is a homomorphism of Boolean
algebras, then

F7H0)={x€ A: f(x) =0}
is an ideal of A, the kernel of f, and
i) ={xeA: fx)=1}
is a filter of A, the dual kernel of f.
It is, of course, a matter of taste or technical convenience whether to deal, in a
particular situation, with a filter or its dual ideal. For instance, the following
construction of congruence relations is mostly described via ideals but the

computational details are more suggestive in terms of filters.

5.22. LemmA AND DErFINITION. Let 7 be an ideal of a Boolean algebra A and F its
dual filter. Then the relation = on A, defined by

x=y iffxAy€el,

is a congruence relation on A. For all x and y in A,

x=y iffx+i=y+iforsomei€l
iffx-f=y-ffor some fEF.

The quotient algebra A/= is denoted by A/I or A/F and called the quotient
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algebra of A by I (respectively F). The canonical epimorphism 7: A— A/I has I
as its kernel and F as its dual kernel.

Proor. We first derive the above equivalences of x=y. For x and y in A, the
symmetric difference x A y is the least element a of A satisfying x + a=y + a;
thus x A y € I iff there is i € I such that x +i=y +i. Also, x +i=y + i, where
i € I, implies that x- f=y - f, where f=—iE F; dually x-f=y - f for some f E F
gives x +i=y+i, where i=—f €

Using these equivalences, we prove that = is a congruence relation on A. For
example, for transitivity of =, suppose x =y and y = z. Choose f and g in F such
that x-f=y-fand y-g=z-g; then f- g is again in F and

x-f-g=y-f-g=zfg,

which shows that x=z. Also the relation = respects the operation + (— is
handled similarly). For suppose x=x"and y=y',sayx-f=x'-fandy-g=y'-g
where f, g € F. Then

x+y)f-g=xfgtyfg=xfg+ty f-g=x'"+y)f-g,

hence x + y=x'+y'

The canonical homomorphism m: A— A/l maps an element x of A onto
0,,=m(0)iff x=0,i.e. iff x = x AOE I. Thus, I is the kernel of 7, and it follows
by passing to complements that F is the dual kernel of . O

It similarly makes sense to form quotients in the class of k-complete algebras,
ideals and homomorphisms: let A be a k-complete Boolean algebra and I an ideal
of A. Then I is k-complete iff the associated canonical epimorphism 7: A— A/l
is, and in this case, also A/ is k-complete.

5.23. ProrositioN (homomorphism theorem). Let f: A— B be an epimorphism
of Boolean algebras with kernel I. Then there is a unique isomorphism g:
A/I— B such that gem=f.

/ All
A\ l

B d

The homomorphism theorem can often be used when checking isomorphism of
two Boolean algebras. For example, let a € A be arbitrary and I={xE A: x =
—a} the principal ideal of A generated by —a. Then A/I= A | a since the
projection epimorphism p,: A— A | a defined by p,(x) = x - a has I as its kernel.

5.24. ExampLE. A filter F is an ultrafilter iff A/F is the two-element Boolean
algebra. For let m: A— A/F be canonical. If A/F=2={0,1}, then F= 7 '(1) is
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an ultrafilter. Conversely, if F is an ultrafilter, then by Proposition 2.15 the
characteristic function y,: A—2 of F is an epimorphism with dual kernel F, and
the homomorphism theorem guarantees that 2= A/F.

5.25. ExampLE. Suppose p,,..., p, are distinct ultrafilters of A and F is the
filter p, N---Np,. Then A/F is isomorphic to the power set of {1,...,n}.
Moreover, for every M C{1, ..., n}, there is an a € A such that, fori€ I, a € p,
iffieM.
This is proved by letting X = {1, ..., n} and considering the map
f: A— P(X)
defined by

fla)={ieX:a€p,;}.

Then, similar to the proof of Stone’s theorem 2.1, f is a homomorphism; it has F
as its dual kernel. Thus, A/F= P(X) will follow from the homomorphism
theorem if we can prove that f is onto.

So let M C X with the aim of finding a € A such that a € p, iff i € M. For any
two distinct elements i and j of X, p; and p; are distinct maximal filters of A,
therefore fix a;; € p;\p;. For i € M, let

ai=H{aiJ.: JEX\M};
s0 a; € p, but a; Zp; for j € X\M. Then
a=% {a; i€ M}

works for our claim.

5.5. The algebra P(w)/fin

Most order-theoretic or combinatorial properties of Boolean algebras are not
inherited by quotients. This is illustrated below by the algebra P(w)/fin, where fin
is the ideal of finite sets in the power set algebra P(w) of the natural numbers.
The algebra is fairly well understood and can even be characterized up to
isomorphism under the continuum hypothesis 2“ = w,; it is not quite so well
understood under Martin’s axiom. Some of its properties are independent from
Zermelo—Fraenkel set theory ZFC. Results on P(w)/fin are also relevant to
topology since, via Stone’s duality theory presented in Sections 7 and 8, studying
the algebra P(w)/fin is equivalent to studying the topological space w* = Bo\w;
here w is given the discrete topology and B is its Stone—Cech compactification.

The algebra P(w) is complete, atomic, and satisfies the countable chain
condition; so its cellularity, as defined in Section 3, is w. We prove below that
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none of these properties holds for P(w)/fin. There is, however, a property
generalizing o-completeness which carries over to quotients.

5.26. DEFINITION. A Boolean algebra A has the countable separation property if,
for any two at most countable subsets X and Y of A satisfying x -y =0 for all
x€ X and y €Y, there is an element a of A separating X and Y, i.e. such that
x=aand ys=—aforalxEXand yeY.

Clearly, every o-complete Boolean algebra has the countable separation
property —if X and Y are given as stated in 5.26, simply let a = rX.

5.27. LEMMA. (a) A has the countable separation property iff for any two at most
countable subsets X and Y of A such that X U Y is a pairwise disjoint family, there
is some a of A separating X and Y.

(b) A has the countable separation property iff for any two at most countable
subsets X and Z of A satisfying x < z for all x € X and z € Z there is an element a
of Asuchthat x<a=<z forallx€EX and zE€ Z.

(c) If A has the countable separation property, then so has every quotient of A.

Proor. (a) This holds because an element of A separates {x,:n€ w} and
{y,: n € w} iff it separates the pairwise disjoint families {x, - —X, ., x;: n € w}
and {yn ’ _2i<n yi: ne (D}

(b) Consider X, YC A andlet Z={—y: y€Y}. Then x-y=0 for all xEX
andyeYiff x=zforallx€E Xand z € Z. Also,a € A satisfiesx<aandy= —a
for all x € X and y € Y iff it satisfies x<a =<z for all xE X and z € Z.

(c) Let f: A— B be an epimorphism. Note that for each at most countable
pairwise disjoint family (b,),, in B, we can choose pairwise disjoint preimages
(a,) e, in A by picking c, € A such that f(c,) = b, and letting a, =c,- —Z,_, c,.

Suppose that X U Y is an at most countable pairwise disjoint family in B; by the
preceding remark, there is a pairwise disjoint family M U N in A such that f maps
M onto X and N onto Y. Now if a separates M and N in A, then f(a) separates X
and Yin B. O

5.28. ExampLE. Let B = P(w)/fin. Then

(a) B has the countable separation property,

(b) B is atomless,

(c) ¢(B)=2"is attained,

(d) each infinite partition of unity in B is uncountable,

(e) if C is a finite or countable chain in B\{1}, then there is b € B such that
c=b<1 for every c€ C.

Prook. (a) follows from Lemma 5.27(c) and the remark preceding it, since P(w) is
o-complete. For the remaining assertions, let 7: P(w)— B be canonical. Note
that for a, b € P(w):
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m(a)=0 iff a is finite,
m(a)=1 (iff a is cofinite ,
m(a) = w(b) iffaAb is finite,
m(a) < w(b) iff a\b is finite,
m(a)- w(b)=0 iffan b is finite .

To prove (b) assume that in B, ¢ = a(a) >0, where a C w. Thus, a is infinite;
let a’ C a such that both a’' and a\a’ are infinite. Then 0 < 7(a’) < ¢ which shows
that ¢ is not an atom of B.

For a proof of (c), call a and a’ in P(w) almost disjoint if a and a’ are infinite
but a N a’ is finite; this amounts to saying that «r(a) and w(a’) are non-zero and
disjoint in B. (c) follows if we can construct in P(w) a family D of pairwise almost
disjoint sets such that |D|=2“. It is easier to construct such a family D not in
P(w) but in the power set of the (countable) set of rationals: for each real number
x, choose a strictly increasing sequence (r,,),c,, Of rationals converging to x and
let

nE€Ew

dx={rxn:new}3
D={d,:xER}.

Then each d, is infinite but, for x#y in R, d, N d, is finite — otherwise for any
infinite subset a of d, N d,

x=supd, =supa=supd, =y,

a contradiction.

(d) is proved by showing that no countably infinite family D consisting of
pairwise almost disjoint subsets of w can be maximally almost disjoint. For
assume D ={a,: n € w} and pick x, €Ea,\(g,U---Ua,_,); this is possible since
a, is infinite and a, N a, is finite for k <n. Then a = {x,: n € w} is infinite and
aNa,, being included in {x,,...,x,}, is finite for every n; so D U {a} is an
almost disjoint family strictly larger than D.

(e) We shall derive (e) from (d); it is in fact easily seen that (d) and (e) are
equivalent in every infinite Boolean algebra. Our assertion is trivial if C is empty
or has a greatest element. Otherwise, replacing C by a cofinal subchain, we may
assume that C={c,:nE€ w}, where 0=c,<c;<c,<---. Defining d,=c,,,"
—c,, we obtain a countably infinite pairwise disjoint family D ={d,: n € } in B.
By (d), D is not a partition of unity in B, so by Lemma 3.6 it has an upper bound
b strictly smaller than 1. b is also an upper bound of C, since c,,;, =d,+---+d,
for every n. O

The algebra P(w)/fin has cardinality 2, since |P(w)| =2“ and |fin| = . The
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following argument shows that it is not o-complete: by Lemma 3.4 (or by
5.28(c)), there is a countably infinite pairwise disjoint family X in P(w)/fin. If £ X
exists in P(w)/fin, then X U {—X X} is a countably infinite partition of unity in
P(w)/fin, contradicting 5.28(d).

The properties of P(w) /fin listed in 5.28 have several interesting consequences;
it will actually turn out that, under the continuum hypothesis, they determine
P(w)/fin up to isomorphism. For the rest of this subsection, let us call a Boolean
algebra B w;-universal if every Boolean algebra of cardinality at most w, is
embeddable into B. B has the strong countable separation property if it is infinite
and for any non-empty and at most countable subsets X and Y satisfying

x,+ o t+x,<y;-ccy,forn, m€ow, x,...,x,€Xand y,;,...,y,€Y,
there is some b€ B such that x;, +---+x,<b<y,-----y, for all x,...,
x,€X and y,,...,y, €Y. It is a matter of routine to check that B has the

strong countable separation property iff it satisfies the conditions (a), (b), and (e)
of Example 5.28; by equivalence of (d) and (e) in 5.28, B has the strong countable
separation property iff it is infinite and atomless, satisfies the countable separation
property and has no countably infinite partition of unity. In particular, P(w)/fin
has the strong countable separation property. Let us note that if B has the strong
countable separation property, then for each non-zero element b of B, the
cellularity ¢(B | b) is at least w,: it is at least w since B is atomless; by the strong
countable separation property, B satisfies (d) in 5.28 and thus ¢(B | b) = w,.

5.29. ProrosITION. Every algebra satisfying the strong countable separation prop-
erty is w;-universal.

Proor. This follows immediately, by a transfinite construction of length ,, from
the subsequent claim.

Claim. Assume that B has the strong countable separation property. Then
every embedding f: A— B from an at most countable Boolean algebra A into B
extends to every simple extension of A.

For suppose A(x) is a simple extension of A. Consider the sets

I={ieA:i=x}, J={jEA:j=—x},
K={i+jii€l jE]}, U=AK.

It suffices to find y € B such that f(i)=y for i€, f(j)=-y for jE€J, and
fw) £y, fu)£—y for u€ U, for then as in Corollary 5.8 there is a unique
monomorphism f': A(x)— B extending f and mapping x onto y.

For u € U, construct an element ¢, of B as follows. I, J and hence K are ideals
of A. Thus, for each k€K, u-—k>0 and f(u)-—f(k)>0. Since f[K] is a
countable subset of B closed under finite sums, the strong countable separation
property gives ¢, € B such that 0<c¢,=<f(u)- —f(k) holds for all kEK, i.e.
0<c¢, =f(u) and c, is disjoint from each f(k). By the Balcar—Vojtas theorem 3.14
and ¢(B | b)= w, for b € B¥, we may assume that (c,),cp is a pairwise disjoint
family, otherwise replacing the c, by smaller positive elements.

For u € U, write c, as the sum of two disjoint non-zero elements d, and e, ; this
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is possible since B is atomless. The countable separation property gives y € B
separating the sets f[I]U{d,: u € U} and f[J]U{e,: u € U}. Then f(i)<y for
i€l and f(j)=—y forjeJ. ForueU, 0<e,=-y and e, <c, =< f(u), thus
f(u) Zy. Similarly, 0<d, <y and d, < ¢, =< f(u); thus f(u) £—y. O

5.30. CoroLLARY. Assume 2° = w,. Then every algebra of cardinality w, with the
strong countable separation property is isomorphic to P(w)/fin.

Proor. P(w)/fin has the strong countable separation property and cardinality
2° = @,. Thus, the Corollary follows from the Claim in the proof of 5.29 and a
transfinite construction of length ;. O

We finally sketch another characterization of P(w)/fin, assuming some defini-
tions and results from model theory. The first order theory of infinite atomless
Boolean algebras is complete, since it has, by 5.16, exactly one countable model
(up to isomorphism). Thus, under the continuum hypothesis 2 = w,, it has
exactly one w,-saturated model of size w;, say B. It is a straightforward
consequence of w,-saturatedness that B satisfies the strong countable separation
property (in fact, a bit more model theory shows that, for atomless algebras, the
strong countable separation property is equivalent to w,-saturatedness). But then
by 5.30, B is isomorphic to P(w)/fin. Hence, if 2 = w,, then P(w)/fin is, up to
isomorphism, the unique w,-saturated atomless Boolean algebra of size w,.

5.6. The number of ultrafilters, filters, and subalgebras

We prove a theorem comparing the number of ultrafilters, filters, and subalgeb-
ras of a Boolean algebra with its cardinality. Let, in this subsection, Filt A be the
set of all filters and Sub A the set of all subalgebras of the algebra A.

5.31. THEOREM. For every infinite Boolean algebra A,
|A| < |Ult A]<|Filt A|<|Sub 4| <2!.

Here the main assertion is the inequality |A|=|Ult A|. The inequality
|Ult A|=<2"! is trivial; we will see in Section 9 that the upper bound 2! for
|Ult A is attained if A is a free Boolean algebra. The lower bound | A| for |Ult A|
is, for example, attained if A is the finite—cofinite algebra on an infinite set X, for
then |A|=|X| and the ultrafilters of A are the principal filters generated by the
atoms and the filter of all cofinite subsets of X. More generally, it will be proved
in Section 17 that [Ult A| = | A| if A is infinite and superatomic. In Theorem 5.31,
|Ult A| can of course be replaced by the number of maximal ideals of A and
|Filt A| by the number of ideals of A. In Section 10, we shall prove a much deeper
theorem by Shelah on the number of filters (respectively ideals) of an infinite
algebra A: if k = |Filt A, then k® = «.

We begin with two lemmas, the first one being of independent interest in the
topological duality theory of Section 8. Note that, if p is an ultrafilter of A and B
is a subalgebra of A, then p N B is an ultrafilter of B.
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5.32. LemMa. Let B be a proper subalgebra of A. Then there are distinct
ultrafilters p and q of A such that p N\ B=q N B.

Proor. Choose a € A\B and define two filters of B by
F={bEB:a<b}, F'={beEB:-a=b}.

Now F U F' has the finite intersection property as defined in 2.12, for otherwise
there are bE Fand c € F' such that b-¢=0. Thenb=-c<aanda=b€EB, a
contradiction. Thus, by the Boolean prime ideal theorem 2.16, let r be an
ultrafilter of B including F U F".

Also, r U {a} has the finite intersection property. Otherwise, c¢ - a =0 for some
¢ €r; then —c € F C r, which contradicts ¢ € r. Similarly, r U {—a} has the finite
intersection property. So there are ultrafilters p and g of A such that rU {a} C p
and rU{—a}C gq. Clearly, p#gbutpNB=r=gqnNB. 0O

Recall from Definition 5.19 that, for a filter F of A, —F={—x: x € F} is the
ideal of A dual to F.

5.33. LEMMA. For every filter F of A, F U — F is a subalgebra of A. Moreover, if F
and G are distinct proper non-maximal filters of A, then FU—-F# GU —G.

Proor. The first assertion is verified either by direct computation or by noting
that F U — F is the preimage, under the canonical map, of the subalgebra {0, 1} of
AlF.

Let F and G be distinct, proper and non-maximal and fix a € F\G. If a & - G,
then a € FU —Fbut a € G U — G, and we are finished. So assume —a € G. Since
F is not an ultrafilter, pick b € A such that neither b nor —b is in F. Now b + —a
and —b + —a cannot both be in F since otherwise their product —a is in F,
contradicting a € F and properness of F. Without loss of generality assume
b+ —aZF. Then b+ —aisin GU—G but not in FU —F, as desired. 0O

Proof of Theorem 5.31. Tt is obvious that |Ult A| < |Filt A| and |Sub A| <2 To
prove |A|=|Ult A|, choose for any two distinct ultrafilters p and g of A an
element a_, of p\q; this is possible since p, being maximal, cannot be included in
q. Let B be the subalgebra of A generated by {a,,: p#q in Ult A},
|B| = [Ult A|. But B = A by Lemma 5.32 since, for any distinct ultrafilters p and q
of A, pN B+#qN B is exemplified by a,, € BN (p\q).

For a proof of |Filt A|=|Sub A|, let Pr be the set of all proper non-maximal
filters of A. We show that

|Ult A| <|Pr| =[Filt A| ;

then |Filt A| = |Sub A| follows since Lemma 5.33 gives a one-to-one map from Pr
into Sub A. Fix p*€Ult A. The map f from Ult A\{p*} into Pr given by
f(q)=p* N gq is one-to-one by Example 5.25; also |Ult A\{ p*}| = [Ult A| since
Ult A is infinite. Hence, |Ult A|=|Pr|. Finally, since a filter of A is either
improper or maximal or in Pr,
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|Filt A| =1+ |Ult A| + |Pr|=|Pr|. O

The inequalities of Theorem 5.31 are strictly limited to infinite algebras. For a
finite algebra with n atoms, |Ult A| = n and | A| = 2" = |Filt A| since every filter of
A is principal. Every subalgebra of A is determined by its atoms and these give
rise to a partition of the set of atoms of A4, so |[Sub A| is the number of partitions
of an n-element set.

Exercises

1. Assume X and X' are dense subsets of the Boolean algebras A and A’ and
that f: X— X' is an isomorphism of the partial orders X, X' (with respect to the
orderings induced by A, A’). Using Sikorski’s extension criterion, show that f
extends to an isomorphism from (X) onto (X'). Derive from this the uniqueness
theorem 4.14 for completions of partial orders.

2. Let B be complete and e: A— B a complete monomorphism; by Sikorski’s
extension theorem, there is a monomorphism f: A— B extending e.

(a) fis uniquely determined.

(b) fis complete.

(c) Assume that B is completely generated by e[ A], i.e. that every complete
regular subalgebra of B including e[ A] coincides with B. Then fis an isomorphism
from A onto B. '

Thus, A can be characterized as the unique complete algebra C such that A is a
regular subalgebra of C, C is completely generated by A, and every complete
embedding of A into a complete algebra B extends to a unique complete
embedding of C into B.

3. (for model theorists) Prove that two Boolean algebras A and B are
elementarily equivalent in the logic L, iff ARB holds for some Vaught relation
R. This gives another explanation of Vaught’s theorem 5.15.

4. Let A and A’ be countable infinite atomic Boolean algebras, I (respectively
I') the ideals generated by their atoms; assume that A/l and A’/I’ are infinite and
atomless. Then A and A’ are isomorphic.

5. Let A be a Boolean algebra and / C A. Then [ is an ideal of A as defined in
5.19 iff I is an ideal of the Boolean ring associated with A, in Proposition 1.27.

6. Let I be an ideal of a Boolean algebra A, m: A— A/I canonical. Then the
assignment K — 7~ '[K] is an order preserving bijection between the ideals of A/I
and the ideals of A including I.

7. An element c¢ of a lattice L is said to be compact if, for every M C L,
¢ =X M implies that c <X M’ for some finite subset M' of M. Show that a lattice
L is isomorphic to the lattice of ideals (under inclusion) of some Boolean algebra
iff it satisfies the following conditions:

(a) L is complete; in particular it has a least element 0, and a greatest element
1,.

(b) L is distributive.

(c) L is algebraic, i.e. each element of L is the sum of compact elements.

(d) The set of all compact elements contains 1, and is a complemented
sublattice of L.
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8. Let f: A— B be an epimorphism with kernel I, g: A— C a homomorphism
with kernel J. There is a (unique) homomorphism k: B— C such that heof=
giff IC J. h is one-to-one iff [ =J.

9. Prove that every Boolean algebra Q is the quotient of an atomic algebra A
modulo the ideal generated by the atoms of A.

Hint. Embed Q into some power set P(Y) and let A be a suitably chosen
subalgebra of P(X) where X =Y X w.

10. Let w: A—[0,1] be a finitely additive measure as defined in Exercise
5 of Section 3 and N={a€ A: u(a)=0}. Then N is an ideal of A and
there is a unique finitely additive measure v: A/N— [0, 1] such that v o 7= p
(m: A— A/N canonical). v is strictly positive and hence A/N satisfies the
countable chain condition. State and prove a similar assertion for o-additive
measures on o-complete algebras.

11. In a simple extension A(x) of A (cf. Definition 4.6), define the ideal I(x) by

Ix)={a€A:a=x}.

Let A(x), A(y) be simple extensions of A. Then there is an isomorphism
h: A(x)— A(y) mapping x to y and extending id , iff I(x) = I(y) and I(—x)=
I(—y).

12. Let I, J be ideals of A such thati-j=0 for i € I, j € J. Prove that there is a
simple extension A(x) of A such that (in the notation of Exercise 11) I(x) = I and
I(—x)=1.

Hint. Let A(x) = B/M, where B is the product algebra A X A, M a suitably
chosen ideal of B, w: B— B/M canonical, A is identified with its image under
mee: A— B/M, e(a) = (a, a), and x = w(u), where u is the element (1, 0) of B.

13. (for model theorists) (a) Let a,, ..., a, be finitely many elements in an
atomless Boolean algebra A. Show that the elementary type

{p(x;,...,x,): ¢ aformula in the language of Boolean algebras and
Al ¢la,--a,]}
realized by the sequence (a,, . .., a,) in A is determined by the set {e € E: p, =

0}, where for e € E = "">"}{+1, —1}, p, is the elementary product e(Va,---- -
e(n)a,. Conclude that the theory of infinite atomless Boolean algebras admits
elimination of quantifiers.

(b) Prove that every Boolean algebra with the strong countable separation
property is w,-saturated, in the sense of model theory.

6. Products

Cartesian products provide, together with subalgebras and quotients, the third
major construction of new Boolean algebras from old ones. Unlike the situation
for groups or other algebraic structures, however, the decompositions of a
Boolean algebra into a product of finitely many factors are easily described — they
correspond, in a one-one manner, to the finite partitions of unity. Similarly the
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product decompositions into infinitely many factors correspond, in sufficiently
complete algebras to infinite partitions of unity.

In view of the ease of decomposing Boolean algebras into factors, there might
be some hope to solve problems on isomorphism of factors like that whether two
Boolean algebras are isomorphic if each of them is isomorphic to a factor of the
other one. Our main result here is the counterexample, given by Hanf, of an
algebra A such that A= A X2X2but AZF AX2.

6.1. Product decompositions and partitions

6.1. DEFINITION AND LEMMA. Let (A;),; be a family of Boolean algebras. Then
the cartesian product

_I;IIA,. ={a:a=(a;);e;, a3, €E A, for i€ I}

of the sets A, is a Boolean algebra, the product algebra of the A;, under the
componentwise operations

(a+b),=a;+b,, (a-b);=(a;"b;), (—a);=—a;,
0=0)ier>» 1=1)ies-

For i € I, the projection map
pr;: il;[IA,.—» A,

defined by pr;(a) = a, for a = (a;);<,, is an epimorphism.

Other notation concerning products should be self-explanatory For example,
we write A, X -+ X A, for ., A, if I={1,...,n}, Aif A,=Aforalli€l,
and A" (msteadof A)]fI n={0,. n—l}andA = Aforien.

Every power ‘2 of the two- element Boolean algebra 2 is 1somorphlc to the
power set algebra P(I), an isomorphism being given by the map f: "2 P(I),
where f(a)={i € I: a;=1}.

It is easily seen that for every subset M of a product algebra P=1I,.; 4,,

XM= <2Ai pri[M])ieI

in the sense that the left-hand side exists iff the right-hand one does; a dual
statement holds for the greatest lower bound I1” M of M in P. Hence II,, A, is
complete (k-complete, o-complete) iff each A; is.

Also the following subalgebras of II,., A, are sometimes considered, for
example in the topological duality theory presented in Section 8.

6.2. DeFINITION. Let « be an infinite cardinal. The k-weak product of the A, is
the subalgebra
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1= Ai={ael;[IA,.: {i€l:a,#0}| <k or

iel
[{i€l:a,#1}|< K}

of I,c; A;. For k = w, it is called the weak product of the A; and denoted by
H:vel Ai'

The following proposition describes the cartesian product of a family of
Boolean algebras by a universal property: in the category of all Boolean algebras
and Boolean homomorphisms, the algebra II,_, A;, together with the projection
maps pr;, is a product of the family (A,;),., as defined in category theory. We shall
investigate in Section 11 a similar but less obvious construction of Boolean
algebras, namely the free product, which is, formally speaking, the category-
theoretic dual of the product construction.

6.3. ProrosiTioN. The pair (Il,c; A;, (P1;);c;) has the following universal proper-
ty. Given a Boolean algebra B and a family ( f.);c; of homomorphisms f;: B— A,,
there is a unique homomorphism f: B—1l,., A; such that pr,of=f, for every
iel

Conversely, assume Q is a Boolean algebra and q;: Q— A;, for i€, a
homomorphism such that, given a Boolean algebra B and homomorphisms
8: B— A,, there is a unique homomorphism g: B— Q such that q;°g = g, for
i € I. Then there is a unique isomorphism h:11,.; A,— Q such that q;° h = pr, for
iel

II 4, IlA,e0
B pr, \/
A A,

Proor. A standard argument of category theory: for the first assertion, define
f(b) = (fi(b));c; for b € B. To prove the second one consider, by the universal
property of (Q,(q;);c;), the unique homomorphism k:1II,., A,— Q such that
g;° h = pr;; similarly, by the universal property of (Il,c; 4,, (pr;);c;), there is a
unique homomorphism hA': Q—1II,., A, such that pr,och’ = g,. Then h'°h is the
identity map on II,.; A, and hoh’ is the identity map on Q. [

The principal result of this subsection is the simple but basic connection
between product decompositions and partitions of unity. Unlike the definition
given in Section 3, let us call here a family (4,),c; in a Boolean algebra A a
partition (of unity) if a,-a,=0 for i#*j and I, ,a;,=1-ie. we drop the
requirement that a; > 0.

6.4. ProposiTiON. For every partition (a;),., of a Boolean algebra A, the map
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frA-IlAta),  f=(-a)q

zs a monomorphism. It is onto zﬁ‘ L4, ¢, exists for each family (c)
L., (A | a;), in particular if A is |I|* -complete
Conversely, for every isomorphism f: A—1l,.; A, from A onto a product
algebra, there is a partition (a;),;c; of A such that A,;=A | a, for i€ 1.

zE]

Proor. In the first assertion, f is a homomorphism since, for every i € I, pr;of is
the canonical projection homomorphism from A onto A | a; considered in
Section 3. f is one-to-one since if x#0 in A, then x-4,#0 for some i€ I
Moreover, if A is sufficiently complete and ¢ =(c;);c; EIl;c; (A | a;), put x=
£2, c,. Then f(x) = c by disjointness of the a;.

In the second assertion, let for i €I €' be the element e of II,;_ 1 A; satisfying
e;=1and e¢; =0 for i # ], the family (e'),, is a partition of unity in the algebra
H,E,A Lettmg a,=f"'(¢'), we see that (a;),c, is a partition of unity in A.
Clearly, the restriction of f to A | a4; is an isomorphism from A | a; onto
(M, A) 1 e=A,. O

By the preceding proposition, the product decompositions of a complete
algebra are in one-to-one correspondence with partitions of unity, a fact repeated-
ly used in the structure theorems on complete Boolean algebras in Section 13.
The product decompositions of an arbitrary Boolean algebra A into finitely many
factors are given by

A=A taxX---xXAla,,

where the a; are pairwise disjoint and a, +---+a,=1; the factors of A in
arbitrary product decompositions are, up to isomorphism, the relative algebras
A I aof A.

6.2. Hanf’s example

Let us consider the following problems on products of Boolean algebras.

(A) If A= A X B X C, does it follow that A= A X B?

That is, are two Boolean algebras (A and A X B in Question (A)) isomorphic if
each of them is a factor of the other one? The answer is positive for o-complete
algebras, and the reader can immediately proceed to the proof, given in Section
12, if he wishes. Letting B= C or even B= C=2 in (A) gives the successively
weaker questions:

(B) If A= A X B? does it follow that A= A x B?

(C) If A=A x2X2, does it follow that A= A x 27

Also the following questions might be asked:

(D) If A>= B? does it follow that A= B?

(E) If A’= A, does it follow that A>= A?

These questions were posed by Tarski for Boolean algebras and other algebraic
systems; Question (A) for Boolean algebras, independently, by Sikorski. The
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special case of (E) for countable algebras is called “Tarski’s cube problem”. (A)
and (D) are considered in KapLANSKY [1968] as test problems whose solvability,
in a class K of abelian groups, should indicate to what extent the structure of
groups in K is understood.

The aim of this subsection is a counterexample, due to Hanf, to Question
(C) — a fortiori to (B) and (A) — which also settles (D) and (E).

6.5. ExampLE (Hanf). For every n =2, there is a Boolean algebra A of cardinali-
ty 2° such that A>= A4 and A X2"= A but Ax2*# A for I=k<n.

To construct such an algebra, fix a countably infinite set X. Let us say, for
subsets m and p of X, that m splits p if both m and X\m have non-empty
intersection with p.

Fix a partition P of X such that each element of P has size n and let A consist of
those subsets of X which split only finitely many elements of P. Then A is an
atomic subalgebra of P(X), the atoms of A being the singletons {x} where x € X.

To see that AX2"=A. pick pEP. Then A=A | pxA | -p A p=2"
and A | —p = A. More generally, A | a = A for every a € A which is the union
of infinitely many elements of P, since A | a consists of those subsets of a which
spzlit only finitely many elements of P included in a. This argument also shows that
A=A

Now let 1=k <n and assume, for contradiction, that A x2*= A. Call a
partition of unity (i.e. a maximal pairwise disjoint family) R in an arbitrary
Boolean algebra B complete if ©° M exists for every subset M of R. Clearly
A x 2* has a complete partition R such that exactly one element of R is the sum of
exactly k atoms of A X 2* and the other elements of R are the sum of exactly
atoms. By A X 2= A, A has a complete partition with the same property, say Q;
let g* be the unique element of Q of cardinality k. Call an element g of Q bad if
g # q* and q splits some element of P, i.e. if ¢ € O\({g*} U P).

Claim 1. Q has infinitely many bad elements.

Otherwise, all but finitely many elements of O\{q*}, say ¢,, ..., g,, are in P.
Then the set

M=qg*UqU---Ug,

has the property that X\M and hence M is a union of elements of P, contradicting
the fact that M has size - n + k, a number not divided by n.

Claim 2. There are pairwise distinct elements, p,, € P, q,, € O for m € @ such
that

(1) g, splits p,,,

(2) p;Ngq;=0 for i#].
To prove Claim 2, assume p;, and g, have been constructed for i < m. Then each of
the sets

s=q,U---Ugq_ _,, P'={peP:pns#0}, u=U p

is finite. By Claim 1, there is a bad element g, of Q not intersecting u; since q,, is
bad, there is some p, € P split by g,. Note that p, &P’ - otherwise gq,,,
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intersecting p,,, would intersect u. So p,, N u=9. Now (2) holds for all i, j=m
since for every i<m, p,Ugq; is contained in u: clearly, ¢;CsCu and, by
p;Ng;#9, p;,€EP' and p, Cu.

With the elements p,, and g,, of Claim 2 at hand, we see thata= U . g,, is
an element of A, Q being a complete partition of A. ButaNp,, = p,. N q,, by (2),
so a splits every p,, and is not in A. This contradiction shows that A X 2k=A.

Additional interesting properties of the algebra A of Hanf’s example are easily
derived:

For 0=k<I<n, AX2"= Ax2 —otherwise Ax2*x2"'=Ax2' x2""'=
A X2"= A, contradicting 1=n+k—1I1<n.

Since A= A, the algebra B = A X 2 satisfies B""' = A"" 2" = A x 2" x 2=
A X 2= B; similarly, for 2=< k< n, B*= A x2* % B. This in particular gives, for
n =2, a counterexample to (E).

If n=2and B=AX2, then B¥ A but B>= A X (A %X2x2)= A% a coun-
terexample to (D).

Denoting the algebra A constructed for n€ w in 6.5 by A,, we find that
A, X2# A, and A;X2FA; but A, X A;X2= (A, x2%)X A, X2= A, X
(A;x2°)= A, X A,.

Thus the questions (A) through (E) are answered in the negative, but by
uncountable algebras. In fact, by the following proposition, there is no countable
counterexample to (C). Note here that if A X2"= A, where 1=n < w, then A
must have infinitely many atoms, for |At A| = k < w would imply that |At(A X
2 =k+n.

6.6. ProrositioN (Vaught). If A is a countable Boolean algebra with infinitely
many atoms, then A X2= A.

Proor. It suffices, by Vaught’s theorem 5.15, to check that the relation R defined
by

ARB iff A, B are finite and isomorphic
or A, B are infinite and |At A| =|At B|<w

or A, B are infinite and |At A| =|At B| = » and,
for some n € w, (A= B X2" or B= A X2")

is a Vaught relation as defined in 5.14. The least trivial part of this is the
following: assume that ARB holds by the third clause in the definition of R,
A = B X 2" for simplicity, and a € A. So a is an ordered pair (8, a), where B € B
and a €2 and —a = (—B, —«). We may assume that B | B has infinitely many
atoms — otherwise interchange the roles of a and —a. Pick » distinct atoms in
B | B,say x;,...,x,, and put

y=x,+--+x,, 0=x,.,t +x,,
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where m is the number of atoms in 2" | «. Finally, let

e=B-—(y+9), b=¢e+vy.

&
B -B
vl &
a —a B -B
a —a
A=Bx2" B

Then (A | @)R(B | b) since A | ais the product of B | b and a finite power of
2. Also, since 2" | —a=2"""=B | §and —b=8 + — where § - —8 =0, we
obtain:

Al —a=B | -B)xQ2" I —a)=(B | -B)x(B 1 8)=B | -b
and (A | —@)R(B | —b). O

A solution of questions (A), (B), (D) and (E) for countable algebras turns out
to be much more difficult. HANF [1957] provides a countable counterexample to
(B) and hence to (A), a particularly intuitive version of the proof being given in
the book by HaLmos [1963]. If A and B are countable, A X B>= A4 but A x B¥
A, then C= A X B is a countable algebra such that A ¥ C but A= C? which
settles (D) for countable algebras. The remaining question (E), Tarski’s cube
problem, was answered in the negative much later by Ketonen. The solution
follows from a difficult structure theorem on countable Boolean algebras in
KETONEN [1978]; cf. the survey chapter by Pierce [Ch. 21 in this Handbook] on
countable Boolean algebras.

Exercises

1. For arbitrary non-trivial Boolean algebras A and B, there is a monomorph-
ism e: A—> A X B such that pr,ce=1id,, where pr, is the projection onto the
first coordinate. Hence, A is a retract of A X B, as defined in 5.12.

2. Let L be a linear order with a smallest element 0, and with a strictly
increasing cofinal sequence (x,),c,, Where x, = 0,. Then Intalg L is isomorphic
to the weak product of the algebras Intalg[x,, x,,,), n € w.

3. (Hanf) Let A be an interval algebra with infinitely many atoms. Then
A X2= A, regardless of the cardinality of A.

4. Let (A;);c, be a family of Boolean algebras and D an ultrafilter of P(I).
Then
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F= {(a,.),.e,e IEIIAiz {i€l:a;,=1}€ D}

is a filter of II,.; A;; the quotient algebra II,.; A,/F is called the ultraproduct of
(A,);e; with respect to D and denoted by Il,., A,/D. For a€Il,., A;, the
equivalence class of a with respect to F is also denoted by a/D.

(@) Let a=(a,);c; EIl,c; A;. Then

a/D is an atom of I;Ai/D iff (i€ 1I:a;is an atom of A,} ED .

(b) II,.; A,/D is atomic iff {i € I: A, is atomic} € D.

(c) Assume there are countably many elements X,, n € w, of D such that
M., X,=0. Prove that B=1I,.; A,/D satisfies (a) (the countable separation
property) and (e) of 5.28. (These assertions should be familiar to readers
acquainted with ultraproducts in model theory.)

5. The following construction gives once more the essential step in the proof of
Stone’s theorem, i.e. that every Boolean algebra is embeddable into an atomic

one. Let A be an arbitrary Boolean algebra, I the set of all finite subalgebras of
A.Fora€ A, let

X,={Cel:a€C}.
(a) There exists an ultrafilter D of P(I) containing every X,.
(b) Let, for i= C€1I, A, = C. Fix an ultrafilter D with {X,:a€ A} C D and
define
e: A— 11 A,;/D
iel

by letting e(a) = (a,),c,/D, where a,= a if a €i and a, =1 otherwise. Then e is a
monomorphism embedding A into the atomic Boolean algebra II,., A,/D.



CHAPTER 3

Topological Duality

Sabine KOPPELBERG

Freie Universitit Berlin

Contents
Introduction. . . ... ..o e

7. Boolean algebras and Boolean spaces. . ......... ...ttt
7.1. BOOIEAN SPACES . . .. vttt ettt e
7.2. The topological version of Stone’s theorem. .............................
7.3. Dual propertiesof Aand Ult A ........... ... ... .. i,
BXOTCISES . . ottt e

8. Homomorphisms and continuous maps . ... .......ouieneunerneneunenennen ..
8.1. Duality of homomorphisms and continuous maps . ................ooueen..
8.2. Subalgebras and Boolean equivalence relations. . .........................
8.3. Product algebras and compactifications . ............ ... ... .. i
8.4. The sheaf representation of a Boolean algebra over a subalgebra............
EXEICISES . . ..ottt e

HANDBOOK OF BOOLEAN ALGEBRAS
Edited by J.D. Monk, with R. Bonnet
© Elsevier Science Publishers B.V., 1989






Introduction

Stone’s topological duality theory lies at the beginning, and is in fact the core,
of the modern structure theory of Boolean algebras. It establishes an essentially
one-to-one correspondence between Boolean algebras and zero-dimensional com-
pact Hausdorff spaces, the so-called Boolean spaces (cf. Section 7); this is
extended, in Section 8, to a correspondence of homomorphisms between Boolean
algebras and continuous maps between Boolean spaces. Consequently, algebraic
questions on Boolean algebras translate into topological ones on Boolean spaces,
and vice versa.

As a rule, assertions and definitions concerning Boolean algebras (respectively
Boolean spaces) are best understood when considered both in their algebraic and
their topological formulation. Let us consider just one example: we show in
Section 8 that, for each infinite set X, the power set algebra P(X) corresponds,
under Stone duality, to the Stone—Cech compactification BX of the discrete space
X, and the quotient algebra P(X)/fin (fin the ideal of finite subsets of X)
corresponds to the Stone—Cech remainder X* = B X\X. For X the set w of natural
numbers, the quotient algebra P(w)/fin is characterized up to isomorphism by
algebraic properties, in Corollary 5.30, under the continuum hypothesis CH. This
gives a topological description of the space w* under CH which is well known in
topology as Parovienko’s characterization; the standard method for its proof,
however, is the algebraic one outlined in 5.30.

It is often a matter of taste whether to attack a specific problem on Boolean
algebras algebraically or topologically, but in some situations, one approach
seems to be definitely superior to the other one. For example, complete Boolean
algebras are, as a rule, easier handled algebraically; on the other hand, free
Boolean algebras and free products of Boolean algebras are better visualized
topologically, their dual spaces being generalized Cantor spaces (respectively
products of Boolean spaces).

We will assume a working knowledge of set-theoretic topology; the book by
ENGELKING [1977] is an excellent reference.

7. Boolean algebras and Boolean spaces

This section sets up the fundamental duality between Boolean algebras and
particular topological spaces, the Boolean spaces. Here the dual algebra of a
Boolean space X is Clop X, the algebra of clopen subsets of X, and the dual space
of a Boolean algebra A is the set Ult A of ultrafilters of A, equipped with the
so-called Stone topology. The point about these assignments is that every Boolean
algebra A is isomorphic to Clop Ult A —more precisely the Stone map
s: A— P(Ult A), as defined in 2.18, is an isomorphism from A onto Clop Ult A.
In particular, we obtain a stronger topological version of Stone’s theorem 2.1:
every Boolean algebra is isomorphic to the clopen algebra of some topological
space. Dually, each Boolean space X is homeomorphic to Ult Clop X.

95
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Stone’s duality theorems are proved after establishing some basic properties of
Boolean spaces. We then give a, rather incomplete, survey of algebraic properties
and notions on Boolean algebras and their topological counterparts for Boolean
spaces. For example, a Boolean algebra A is countable iff its dual space is
metrizable; it is atomic iff the isolated points form a dense subset of the dual
space, etc. The most important one of these dualities says that the ideals of a
Boolean algebra correspond to the open subsets of its dual space. Our examples
also show how topological facts on Boolean spaces are sometimes very easily
recovered from algebraic ones on Boolean algebras and vice versa. For example,
topological considerations prove once more Theorem 2.8 that every finite
Boolean algebra is isomorphic to a power set algebra, and the consequence 5.16
of Vaught’s theorem implies that the Cantor discontinuum is homeomorphic to
the product space “2, where 2= {0, 1} has the discrete topology.

7.1. Boolean spaces

The algebra Clop X of clopen subsets of an arbitrary topological space X is one
of the standard examples for an algebra of sets. For a connected space X,
however, this algebra reduces to the two-element algebra {@#, X}. We consider in
this subsection a particular class of topological spaces, the Boolean spaces, for
which Clop X is large in the sense that it is a base for the topology of X, and
prove some general facts on Boolean spaces.

7.1. DErINITION. Let X be a topological space. X is zero-dimensional if Clop X is
a base for the topology of X. X is a Boolean space if it is Hausdorff, compact and
zero-dimensional.

Zero-dimensionality of a space X is equivalent to the existence of a base for X
consisting of clopen sets or of a subbase for X consisting of clopen sets. For
example, the space of irrational numbers with the topology inherited from the
reals is zero-dimensional, having the intervals (a, b) with a and b rational as a
clopen base.

7.2. ExampLEs. (a) Every finite discrete space is Boolean. In particular, we
denote by 2 the Boolean space with underlying set 2= {0, 1} and the discrete
topology.

(b) The product space of any family of Boolean spaces is Boolean. In particu-
lar, so is the product space ‘2 for any index set I. It is called, for infinite I, a
(generalized) Cantor space of weight |I|.

(c) Every closed subspace of a Boolean space is Boolean.

For a proof of (b), let X =1II,., X, be a product ot Boolean spaces X;. Then X is
Hausdorff and, by Tychonoff’s theorem, compact. For fixed i€ and b, €
Clop X;, define a subset s(b;) of X by

s(b)={x€X:x(i)EDb,}.

Then X\s(b;) = s(X;\b,), and by the very definition of the product topology on X,
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both s(b;) and s(X,\b,) are open, hence clopen. X is zero-dimensional since the
sets s(b;) form a subbase for the product topology. The term ‘“‘generalized Cantor
space of weight |1|” will be justified by Example 7.24 and Proposition 7.23 below.

To prove (c), let X be Boolean and Y a closed subspace of X. Then Y is
Hausdorff and compact; it is zero-dimensional since the intersections of the
clopen subsets of X with Y constitute a clopen base of Y.

As a consequence of (b) and (c) in 7.2, every closed subspace of a Cantor space
2 is Boolean. We shall conclude from Proposition 7.11 that, conversely, every
Boolean space is homeomorphic to a closed subspace of a Cantor space.

7.3. EXaMPpLE (the classical Cantor space). The following subspace C of the reals,
the classical Cantor space or Cantor discontinuum is a standard example of
set-theoretical topology. Let

c=0Nc¢,,
n€Ew

where each C, is a compact subset of the reals, constructed as follows. Let
C, = [0, 1]. Suppose C, has been defined and is the union of a family F, consisting
of 2" pairwise disjoint closed intervals of length 1/3". Then C, ., arises from C, by
replacing each interval I in F,, say I=[a, b], by the two closed subintervals
[a,a+ (b—a)/3] and [b—(b—a)/3,b]. The space C is Hausdorff; it is also
compact, being a closed and bounded subspace of R. To check that it is
zero-dimensional, let x € C and suppose (r, s) is an open interval of R containing
x; we will find a clopen subset u of C such that x € u C (r, s). Choose n so large
that the unique interval I of F, containing x is included in (r, s); this is possible
since the intervals in F, have length 1/3". Then I is clopen in C,, u=INCis
clopen in C and x Eu C (r, 5).

Recall from topology that a space X is said to be connected if Clop X = {#, X},
i.e. if X is not the union of two non-empty disjoint closed subsets; Boolean
spaces, on the other hand, are highly disconnected. In view of the following
theorem, they are sometimes defined to be the compact hereditarily disconnected
Hausdorff spaces.

7.4. DEFINITION. A topological space X is hereditarily disconnected (totally dis-
connected) if no subspace of X with at least two points is connected.

7.5. THEOREM. A compact Hausdorff space is zero-dimensional (hence Boolean)
iff it is hereditarily disconnected.

Proor. Let X be compact and Hausdorff. If X is zero-dimensional and Y a
subspace of X with two distinct points y and y’, then there is a clopen set a such
that y €Ea and y' &€a. So Y N a1s a proper non-empty clopen subset of Y and Y is
not connected. Thus, X is hereditarily disconnected.

Conversely, suppose X is hereditarily disconnected. Let x € X and u an open
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neighbourhood of x; we shall find a clopen subset f of X such that x € f C u, thus
proving that Clop X is a base. To this end, define

F={f€ClopX:x€f}, q=NF.

It suffices to show that ¢ C u. For then, since X is compact, u is open and each
f € Fis closed, N F' C u for some finite subset F' of F, and we let f= ) F'. We
will, in fact, show that g = {x}. Otherwise g has at least two points and is not
connected. So

q=q,Yq,,

where ¢q,, g, are non-empty, disjoint and closed in g. Now ¢ is a closed subset of
X, so each g, is closed in X. By compactness and hence normality of X, choose
disjoint open sets u,, u, satisfying g, C u;. Then g Cu, U u,, and it follows as
above by a compactness argument that f C u; U u, for some f € F. Both u; N f
and u, N f are clopen in f, hence in X. Since x € f, assume that x € u; N f. Then
u,NfEF and g Cu, Nf . This implies g, C g C u,, a contradiction to ¢, C u,,
disjointness of the u; and non-emptiness of g;. [

We collect some useful properties of Boolean spaces for further reference.

7.6. LEMMA. Let X be a Boolean space.

(a) If BCClop X is a base for X which is closed under finite unions, then
B =Clop X.

(b) If Y is a closed subspace of X, then

ClopY={anY:a€Clop X} .

(c) If y and z are disjoint closed subsets of X, there is a clopen subset a of X
separating y and z, i.e. such that y C a and z C X\a.

Proor. (a) Let a be clopen in X. Then a is the union of a subfamily B’ of B;
since a is compact, a = U B" for some finite subset B” of B'. So a € B.

(b) The set {aNY: a&Clop X} is a clopen base of the Boolean space Y, and
it is closed under finite unions. By part (a), it coincides with Clop Y.

(c) Y=yUz is a closed subspace of X in which y and z are clopen. By part
(b), y=anNY for some clopen subset a of X. O

Let us point out a principle on compact Hausdorff spaces which is frequently
applied when dealing with Boolean spaces. If f: X— Y is a continuous map
between compact Hausdorff spaces, then f is closed, i.e. images of closed subsets
of X are closed in Y. Hence, f[X] carries the quotient topology induced by X and
f. In particular if f is one-to-one, then it is a homeomorphism from X onto the
closed subspace f[X] of Y.
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7.2. The topological version of Stone’s theorem

We are ready to show that every Boolean algebra is isomorphic to the clopen
algebra of a Boolean space. To this end, recall from Section 2 that Ult A is the set
of all ultrafilters of a Boolean algebra A and that the Stone map

s: A— P(Ult A)
defined by
s(a)={p€Ult A:aE p)}

is a monomorphism of Boolean algebras. In particular, s[A] is a family of subsets
of Ult A which is closed under finite intersections, hence the base of a unique
topology.

7.7. DErFINITION. For a Boolean algebra A, the Stone topology is the unique
“topology on Ult A having s[A] as a base. Ult A, equipped with the Stone
topology, is the Stone space or the dual space or the space of ultrafilters of A.

7.8. THEOREM (Stone’s representation theorem, topological version). Every
Boolean algebra is isomorphic to the clopen algebra of a Boolean space. More
precisely, the dual space Ult A of a Boolean algebra A is Boolean and the Stone
map of A is an isomorphism from A onto Clop Ult A.

Proor. Let A be a Boolean algebra and X =Ult A its dual space. X is zero-
dimensional since, by X\s(a) = s(—a), each of the base sets s(a) is clopen. Also, X
is Hausdorff, for suppose p and q are distinct ultrafilters of A; by maximality of p,
pick a € p\q. Then s(a) and s(—a) are disjoint neighbourhoods of p and g.

To prove that X is compact, let U be an open cover of X. It suffices to consider
the case that each element of U is a basic set; so let U= {s(a): a € A}, where
A’ C A. Suppose no finite subset of U covers X. Thenforn€wanda,,...,qa, €
A,

s(a))U---Us(a,)#* X=s(1),

hence a,+---+a,#1 and —a, - ----—a,#0. It follows that the set —A’'=
{—a:a€ A’} has the finite intersection property; by the Boolean prime ideal
theorem 2.16, let p be an ultrafilter of A including — A’. Then for each a € A’ we
have —a € p, a € p and p & s(a) — contradicting our assumption that U covers X.

So X is a Boolean space. Since the Stone map s is a monomorphism from A
into Clop X, we are left with showing that Clop X = s[A]. But this follows from
Lemma 7.6(a) by considering the base B =s[A] of X. [
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7.9. DEFINITION AND LEMMA. Let X be a Boolean space. Then Clop X is the dual
algebra of X. For each x € X, the set

t(x)={a€Clop X: xE a}
is an ultrafilter of Clop X. This defines the map
t: X—UltClop X .

Theorem 7.8 can now be stated as saying that the bidual of a Boolean algebra
A, i.e. the dual algebra of the dual space of A, is isomorphic to A. There is a
topological dual of this fact: every Boolean space is homeomorphic to its bidual.

7.10. TueoreM. Every Boolean space is homeomorphic to the Stone space of a
Boolean algebra. More precisely, for a Boolean space X, the map
t: X— Ult Clop X in 7.9 is a homeomorphism from X onto Ult Clop X.

Proor. It is sufficient to prove that ¢ is continuous and bijective, since both X and
Ult Clop X are compact Hausdorff spaces. Let A =Clop X. Continuity of ¢
follows since preimages of the basic sets s(a), a € A, are _open: for a€ A and
xE X, x €t [s(a)] iff t(x) Es(a) iff a€ t(x) iff xE a, 50t~ [s(a)] = a is clopen.

t is one-to-one, for let x and y be distinct points of X. Since X is Boolean,
choose a € Clop X such that x € a and y €a. Then a € t(x)\t(y).

To prove that ¢ is onto, let p be an ultrafilter of A = Clop X. Now X is compact
and p is a family of closed subsets of X with the finite intersection property, so
pick x € X such that x € a for each a € p. Then p C #(x) and, by maximality of the
ultrafilter p, p=t(x). O

It is essential for the following proposition that the set 2= {0, 1} carries the
structure of both a Boolean algebra and a Boolean space. Thus, given a Boolean
space X, we may consider *2 as a power of the algebra 2; considering 2 as a
Boolean space, we may ask which of the maps x € *2 are continuous. Conversely,
given a Boolean algebra A, we consider 42 as a generalized Cantor space and
then, considering 2 as a Boolean algebra, ask which of the maps x € 42 are
Boolean homomorphisms.

7.11. ProposITION. For every Boolean space X, the set {x € *2: x continuous} is a
subalgebra of the product algebra *2 isomorphic to Clop X. For every Boolean
algebra A, the set {x € “2: x a homomorphism} is a closed subspace of the Cantor
space “2 homeomorphic to Ult A.

Proor. In the first assertion, note that a map x: X—2 is continuous iff the
preimage of the clopen subset {1} of 2 under x is clopen in X, i.e. iff x is the
characteristic function of some clopen subset of X. The map f: Clop X — *2
which assigns to each clopen subset of X its characteristic function is a monomor-
phism (in fact, it is the restriction of the natural isomorphism from P(X) onto *2
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cor}{sidered in Section 6) which maps Clop X onto the set of continuous functions
in “2.

For the second assertion, consider the map g: Ult A— “2 assigning to every
p €Ult A its characteristic homomorphism. Clearly, g is one-to-one and by
Proposition 2.15, ran g is the set of those x: A—2 which are homomorphisms. g
is continuous since for any a € A, the preimage of {x € “2: x(a) =1} under g is
the clopen subset s(a) of Ult A. O

By Theorem 7.10, every Boolean space is homeomorphic to the dual space of
some Boolean algebra. Thus, the second part of the preceding proposition implies
that every Boolean space is homeomorphic to a closed subspace of some
generalized Cantor space. See Exercise 5 for a purely topological proof of this.

We conclude this subsection by characterizing the Stone monomorphism
s: A— P(Ult A) of a Boolean algebra A among all embeddings of A into power
set algebras.

7.12. DEFINITION. A representation of a Boolean algebra A is a monomorphism
from A into a power set algebra. A representation e: A— P(X) is reduced if e[ A]
separates the points of X, i.e. if for any two distinct points x and y in X, there is
an a € A such that x € e(a) and y & e(a). It is perfect if for every ultrafilter p of A
there is a point x of X such that for all a € A, a € p iff x € e(a).

7.13. ProposiTioN. The Stone monomorphism s: A— P(Ult A) is a reduced and
perfect representation of A. Conversely assume that e: A— P(X) is a reduced and
perfect representation of A Then there is a unique bijection ¢: X— Ult A such
that, for a € A, e(a) = ¢ '[s(a)]. With the topology having e[ A] as a base, X is a
Boolean space, Clop X = e[ A] and ¢ is a homeomorphism.

Proor. An arbitrary representation e: A— P(X) induces a map
) ¢: X—>UltA, d(x)={a€E A:xEe(a)}.

Clearly, e is reduced iff ¢ is one-to-one and perfect iff ¢ is onto.

Letting X be Ult A and e the Stone map s, we find that ¢ defined by (1) is the
identity map on Ult A; thus s is reduced and perfect.

Now assume that e: A— P(X) is a reduced and perfect representation. Then ¢
as defined in (1) is bijective and satisfies e(a) = ¢ ~'[s(a)]. If ¢' is another map
with this property, then for x € X and a € A,

o(x)Es(a) iff xE€e(a) iff ¢'(x)Es(a).

That is to say, the points ¢(x) and ¢’'(x) of Ult A are contained in the same basic
sets s(a) of Ult A, hence ¢(x)=¢'(x) for all x€ X and ¢ = ¢'. Finally, ¢
transfers the base e[A] of X onto the base s[A] of Ult A and thus is a
homeomorphism. O
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7.3. Dual properties of A and Ult A

We compare here algebraic properties of a Boolean algebra and topological
ones of its dual space. The following examples are fairly simple but will give the
reader some idea of the interplay between algebraic and topological reasoning.

7.14. ExampLE (finite Boolean algebras). For an arbitrary Boolean algebra A,
the following properties are equivalent:

A is finite,

Ult A is a finite Boolean space,

Ult A is a finite discrete space,

Clop Ult A = P(Ult A),

the Stone map of A is an isomorphism from A onto P(X), for some finite set X.
So we recover the fact that finite Boolean algebras are isomorphic to power sets
(Corollary 2.8). It may be worth noticing that A is the trivial Boolean algebra iff
the space Ult A is empty and A is the two-element algebra iff Ult A is a one-point
space.

7.15. ExampLE. We have seen in Example 5.25 that if p,,..., p, are distinct
ultrafilters of a Boolean algebra A and M is an arbitrary subset of {1,..., n},
then there is a € A such that a € p,iff i € M. For a topological proof of this,
choose for 1=i=n a clopen neighbourhod u; of p; in Ult A such that u,N
{Pis-- ., P,y ={p;}; this is possible since Ult A is Hausdorff and zero-dimen-
sional. Since Clop Ult A =s[A] (s the Stone map), let a€E A be such that
s(a) = U,.,, u;. This element a works for our claim.

7.16. ExampLE (sums and products preserved by the Stone map). The Stone
monomorphism s, considered as a map from A into P(Ult A), does in general not
preserve infinite sums and products. More precisely, if M is a subset of A,
T M (=%“ M) exists and

) S(Z’* M) = 2PN m1= U s[M,
then ¥ M =¥ M’ for some finite subset M’ of M. For the left-hand side of (2) is a

clopen, hence compact, subset of Ult A and is thus covered by finitely many
elements of s[M], say

(2 M) =s(m) U -+ Us(m,),

soXM=m;+---+m

n*

7.17. ProrositiON. The regular open algebra RO(Ult A) of Ult A is a completion
of A.

Proor. RO(Ult A) is complete, thus by Definition 4.18 we have to show that A is
(isomorphic to) a dense subalgebra of RO(Ult A). Now the Stone map s is an
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isomorphism from A onto ClopUlt A, a subalgebra of RO(Ult A). Also
Clop Ult A, being a base for the topology of Ult A, is dense in RO(Ult A). O

The Stone space of a Boolean algebra A is determined by A, and conversely the
topological version of Stone’s theorem says that it determines A up to isomorph-
ism. Thus, every algebraic notion on Boolean algebras can be translated into a
topological dual on Boolean spaces, and vice versa. We begin with this translation
process in the following proposition.

7.18. ProrosITioN. The atoms of a Boolean algebra A correspond to the isolated
points of Ult A. Hence A is atomless iff Ult A has no isolated points and A is
atomic iff the isolated points of Ult A constitute a dense subset of Ult A.

Proor. A bijection f between the set At A of atoms of A and the set Is of isolated
points of Ult A is obtained by letting, for a € At A,

fla)=x iffs(a)={x}.

This holds since, first, a >0 in A iff the clopen subset s(a) of Ult A is non-empty
and, second, a is an atom of A iff s(a) is not the union of two disjoint non-empty
clopen subsets, i.e. iff s(a) is a singleton {x}, where x is isolated. [

The last assertion of Proposition 7.18 may be reformulated as saying that A is
atomic iff Ult A is a compactification of a discrete space. We shall have a closer
look at such compactifications in the following section.

7.19. ExampLE (one-point compactification of discrete spaces). For every cardinal
k, there is a Boolean space X of cardinality «: if « is finite, let X be a discrete
space with k points. Otherwise, let X = Ult A, where A is the finite—cofinite alge-
bra on a set I of size k. Then X has cardinality « since Ult A={p} U {p,:i €I},
where

p ={a € A: a cofinite} , p;={a€A:i€a}.

A is atomic, the atoms being the singletons {i}, i € I; the p, are the isolated
points of Ult A, and Ult A is the one-point compactification of its discrete
subspace {p;: i€ I}.

7.20. DerINITION. A topological space X is extremally disconnected if the closure
of every open subset of X is open. It is basically disconnected if the closure of
every countable union of clopen subsets is open.

7.21. ProposSITION. Let A be a Boolean algebra. For M C A, T M exists iff the
closure of U s[M] in Ult A is open. In particular, A is complete iff Ult A is
extremally disconnected and o-complete iff Ult A is basically disconnected.

Proor. First note that M has a least upper bound in A iff its image s[ M] under
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the Stone map has a least upper bound in the isomorphic algebra s[A]=
Clop Ult A. Let ¢ be the closure of U s[M] in Ult A4; thus c is the smallest closed
subset of Ult A including s(m) for each m € M.

If ¢ happens to be open, then it is clearly the least upper bound of s| M] in s[ A].
Conversely, suppose the least upper bound b of s[M] in s[A] exists. Then
U s[M] C b, hence ¢ =cl(U s[M])C b. We claim that ¢ = b. Otherwise b\c is
open and non-empty, so there exists a non-empty clopen subset d of b\c. Then
b\d is an upper bound of s[M] in s[A] strictly smaller than b, a contradiction.

The second assertion of the theorem follows since a subset u of Ult A is open iff
u = U s[M] for some subset M of A. [

Proposition 7.21 has an obvious generalization to k-complete algebras: a
Boolean algebra A is k-complete iff, in Ult A, the closure of every union of less
than « clopen sets is open.

7.22. DeriNiTioN. The weight of a topological space X, denoted by wX, is the
least possible cardinal of some base of X.

7.23. ProposiTION. For every infinite Boolean algebra A, w(Ult A)=|A|. In
particular, Ult A is metrizable iff A is at most countable.

ProoF. s[A] is a base for Ult A and thus w(Ult A) =< |A|. Conversely, assume B
is any base for Ult A with the aim of proving | A| =|B|. A, and hence Clop Ult A,
is infinite, so B must be infinite. For each a € A, pick B,C B such that
s(a) = U B,; since s(a) is compact, we may assume B, to be finite. Assigning B,
to a € A gives a one-to-one map from A into the set of finite subsets of B; so
|A| <|B| since B is infinite.

For the second assertion, apply Urysohn’s theorem that a compact Hausdorff
space is metrizable iff it has a countable base. O

Combining Proposition 7.23 with Theorem 5.31, we obtain w(X)=|X| for
every infinite Boolean space X. For X finite, w(X) = | X| holds since X is discrete.
More generally, it is a well-known fact of topology that w(X)=|X| for any
compact Hausdorff space.

7.24. ExaMmpLE (the classical Cantor space, again). The classical Cantor space
C C R defined in Example 7.3 is homeomorphic to the product space “2. This is
known from topology but can easily be recovered from duality arguments. Both C
and “2 are Boolean spaces with countable bases and without isolated points, so
their dual algebras, being countably infinite and atomless, are isomorphic by
Carollary 5.16. It follows that the dual spaces of the algebras are homeomorphic
and

C=UltClop C=UltClop “2=“2.

Ideals of a Boolean algebra correspond, by duality, to open subsets of the
Stone space:
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7.25. THEOREM. The assignments
I—o(I)=U s[I] (the open subset of Ult A duat 10 1),
ur i(u) ={a€ A: s(a) Cu} (the ideal of A dual to u),

are order-preserving bijections between the ideals of a Boolean algebra A and the
open subsets of Ult A. For each ideal I of A,

Ult(A/I) = Ult A\o(I) .

Proor. Let Id be the set of ideals of A and 0 the set of open subsets of Ult A.
Plainly, the above assignments are order-preserving maps

o:1ld— 0, i:0—~1d;

we prove that they are inverses of each other.

Obviously, o(i(x)) C u for every u € 0 and IC i(o(I)) for every I € Id. Con-
versely, let x Eu. Choose a € A such that xE€s(a) Cu. Then a€i(u) and
x € o(i(u)) which shows u C o(i(u)). To prove i(o(I))C I, let a € i(o(I)). Then
s(a) C U s[I] and it follows by compactness of s(a) that a<a, +---+a, for
some n € w and a,, . .., a, € I; so a €I holds.

Finally, assume u = o(I). The homomorphism f: A— Clop(Ult A\u) defined by

f(a) = s(a) N (Ult A\u)

is onto, by Lemma 7.6(b), and has the ideal I as its kernel. So by the
homomorphism theorem 5.23, A/I = Clop(Ult A\u) and Ult(A/I)=Ult A\u. O

Theorem 7.25 says, in a somewhat more abstract formulation, that the lattice of
ideals of A is isomorphic to the lattice of open subsets of Ult A. In view of the
order-preserving bijection I+— — I = {—a: a € I} between ideals and filters of A
and the order-reversing bijection u — Ult A\u between open and closed subsets of
Ult A, there is a one-to-one order-reversing correspondence between filters of A
and closed subsets of Ult A. The closed set corresponding to a filter F of A is
M s[F] and the filter corresponding to a closed subset ¢ of Ult A is {a € A: ¢ C
s(a)}. In particular, an ultrafilter p of A corresponds to the closed subset { p} of
Ult A.

The last assertion of Theorem 7.25 gives, as a particularly simple special case:

7.26. ExampLE. Let A be a Boolean algebra and a € A. Then the dual space
of the relative algebra A | a is homeomorphic to the clopen subspace s(a) of
Ult A.

To see this, let I be the principal ideal of A generated by —a. Then
A | a= A/I by the remark following 5.23, o(I) = s(—a) in the notation of 7.25,
and hence

Ult(A | a) =Ult A\s(—a) = s(a) .
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Exercises

1. Verify that each well-ordered set with a greatest element is a Boolean space,
in its order topology.

2. A subset P of an arbitrary field K is called (the set of positive elements of)
an ordering of K if

(@) 0ZP,

(b) ifx,yEP, thenx+yEPand x-y EP,

(c) for every x € K, either x=0or x€P or —xEP.

Prove that the (possibly empty) set X of all orderings of K is a Boolean space if
endowed with the following topology: for a € K, let X, ={P€ X: a€ P} and
take S = {X,: a € K} as the subbase of a topology.

Hint. Identify X with the subset { x(P): P € X} of the Cantor space 2, where
x(P): K—2 is the characteristic function of P.

3. Let U be an open cover of a Boolean space X. Then there are u,,.. .,
u, € U and clopen subsets ¢, of u, (1 =k =n) such that {c,,...,c,} is a clopen
partition of X.

4. Let X be a Boolean space and U C X open. Then U is an F, -set (i.e. a
union of countably many closed sets) iff it is a union of countably many clopen
sets.

5. Prove, without using Stone’s duality theory, that every Boolean space is
homeomorphic to a closed subspace of a generalized Cantor space.

Hint. If X is Boolean, consider the map f: X— “2, where A = Clop X and
f(x) = (x,(%)),e4> X, the characteristic function of a.

6. A subset M of a Boolean algebra A generates A iff the subset s[M] of
Clop Ult A (s is the Stone isomorphism) separates points in Ult A.

7. Let D CUlt A. Then the homomorphism e: A— P(D) defined by e(a) =
{pE D:a€Ep} is one-to-one iff D is dense in the topological space Ult A.
Consequently, min{|D|: D a dense subset of Ult A} is the least cardinal k such
that A embeds into P(X), for some set X of size «.

8. Homomorphisms and continuous maps

In this section, the duality of Section 7 between Boolean algebras and Boolean
spaces is extended to a duality between homomorphisms of Boolean algebras and
continuous maps of Boolean spaces. In terms of category theory, there are
contravariant functors from the category BA of Boolean algebras and homomor-
phisms into the category BS of Boolean spaces and continuous maps, and vice
versa. The categories BA and BS are dually equivalent; commutative diagrams in
BA translate into commutative diagrams in BS and vice versa. Together with
Theorem 7.8 (on the canonical isomorphism of a Boolean algebra A with its
bidual Clop Ult A) and Theorem 7.10 (on the canonical homeomorphism of a
Boolean space X with its bidual Ult Clop X), Theorem 8.2, which expresses these
facts, constitutes the core of Stone’s topological duality theory.

After setting up the basic facts, we dualize the algebraic constructions of
forming subalgebras and products of Boolean algebras: their topological duals
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consist in taking the quotient of a Boolean space by a Boolean equivalence
relation (respectively the Stone- Cech compactification of a disjoint union of
Boolean spaces). More generally, for any family (A,),c, of Boolean algebra, we
analyze the Stone spaces of the “intermediate algebras”, i.e. the algebras lying
between the weak product and the full cartesian product of the family (A,),c;.

The last subsection gives the sheaf representation of a Boolean algebra B over a
subalgebra A. This representation is an excellent tool for visualizing how B lies
over A. Sheaf representations have been successfully used to obtain decidability
results for structures representable by sections of a sheaf over a Boolean space;
see the chapter by WEEsSE [Ch. 33 in this Handbook] on decidable theories of
Boolean algebras.

8.1. Duality of homomorphisms and continuous maps
The crucial idea for dualizing homomorphisms and continuous maps 1s that, for
any homomorphism f: A— B of Boolean algebras, the preimage f~ [y] of an
ultrafilter y of B is an ultrafilter of A Dually, for any continuous map ¢: X—Y
of Boolean spaces, the preimage ¢ ~'[b] of a clopen subset b of Y is clopen in X.
In the formulation of Theorem 8.2, we let
s,: A—Clop Ult A
denote the Stone map and
ty: X—Ult Clop X
the canonical homeomorphism of Theorem 7.10.
8.1. DerNiTION. For every homomorphism f: A— B of Boolean algebras, the
dual of f is the map
fE: Ut B—Ult A
defined by
="l
For every continuous map ¢: X— Y of Boolean spaces, the dual of ¢ is the map
¢“: Clop Y— Clop X
defined by

¢“(b)=¢'[b].
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8.2. THeorREM (Stone duality for homomorphisms and continuous maps). Let
f: A— B, g: B— C be homomorphisms of Boolean algebras and ¢: X—Y,
Yy:Y— Z continuous maps of Boolean spaces.

(@) f%:Ult B—Ult A is continuous and ¢*: Clop Y—> Clop X is a homomor-
phism.

(b) (ldA) UltA and (1dx) ClopX

© (g°f) ‘f °g” and (¢ ¢)* —¢ oy

(d) f“os,=sgzofand p*oty=1t,°p.

A Clop Ult A X Ult Clop X
f F ¢J ¢
B Clop Ult B Y UltClop Y

(€) f is one-to-one (respectively onto) iff f* is onto (respectively one-to-one); ¢
is one-to-one (respectively onto) iff ¢° is onto (respectively one-to-one).

Proor. It is convenient to have the following notation. For arbitrary sets X and Y
and an arbltrary map h: X— Y, define h*: P(Y)— P(X) by letting h*(b) =
h™'[b], the preimage of b under h. Then h* is a complete homomorphism
between the power set algebras P(Y) and P(X); it is one-to-one (respectively
onto) 1ff h is onto (respectlvely one-to-one).

(@) f?is continuous since for every basic set s 4(a) of Ult A, where a€ A,

(1) () [sa@] = s5(f(a))

is a basic set of Ult B. Also, ¢“ is a homomorphism, being he restriction of ¢* to
the subalgebra Clop Y of P(Y). Note that, dual to (1),

() (6" [tx(0)] = t,($(x))

holds for every x € X.
(b) and (c) are straightforward.
(d) For every a€ A, (1) implies that

Fs4@) = (f) " [s4(@] = s5(f(a)) -

The second assertion follows similarly from (2).

(e) I follows from the above remarks on the map A* that f* is one-to-one if f is
onto and ¢> is one-to-one if ¢ is onto. Now assume that f is one—to -one; without
loss of generahty, f=id,, where A is a subalgebra of B. Then f%(y) =y N A for y
in Ult B; f* is onto since by the Boolean prime ideal theorem 2.16, every
ultraﬁlter of A, having the finite intersection property, can be extended to an
ultrafilter of B. If ¢ is one-to- -one, we may again assume that ¢ =id,, where Xis
a closed subspace of Y. Then ¢*(b) = b N X for each b in Clop Y, and ¢* is onto
by part (b) of Lemma 7.6.
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The remaining assertions follow from part (d). For example, if f* is onto, then
f* is one-to-one and so f=(s,) o f%*os, is one-to-one. [

Similar to the identification of a Boolean algebra or a Boolean space with their
biduals and in view of 8.2(d), the bidual f* of a homomorphism f is sometimes
identified with f and the bidual ¢** of a continuous map ¢ with ¢ —i.e. the
canonical isomorphisms s,: A—>ClopUlt A and homeomorphisms t,: X—
Ult Clop X are thought of as being identity maps.

It might be worth noticing that part (e) of 8.2 gives another proof for Lemma
5.32: let A be a proper subalgebra of B. Then the monomorphism id ,: A— B is
not onto and its dual map ¢, defined by ¢(p) =p N A, is not one-to-one.

8.2. Subalgebras and Boolean equivalence relations

The last part of Theorem 8.2 says that embeddings of Boolean spaces corres-
pond to epimorphisms of Boolean algebras or, by the homomorphism theorem
5.23, to quotients of Boolean algebras. Similarly, embeddings of Boolean algebras
correspond to continuous onto maps of Boolean spaces. Inside of a fixed Boolean
space X, this means that the subalgebras of Clop X correspond to those equival-
ence relations on X giving rise to a Boolean quotient space. We sketch a direct
proof of this fact.

8.3. DEFINITION. Let ~ be an equivalence relation on a Boolean space X. A
subset M of X is closed under ~ if x € M and x' € X, x ~ x' imply that x' € M.
~ is a Boolean equivalence relation if the subalgebra

B_={bC X:b€&Clop X, b closed under ~}

of Clop X separates the equivalence classes of ~, i.e. if distinct equivalence
classes of ~ are included in disjoint elements of B_.

8.4. LEMMA. An equivalence relation is Boolean iff its quotient space is Boolean.

Proor. Let ~ be an equivalence relation on a Boolean space X. X, and hence its
quotient space X/~, are compact, but X/~ is not necessarily Hausdorff. Now a
compact space Y is Boolean iff Clop Y separates points; the non-trivial part of this
follows from Theorem 7.5. Also, a subset W of X/~ is clopen in X/~ iff U W is
clopen in X, i.e. iff U W is in B_. Thus, X/~ is a Boolean space iff B_ separates
equivalence classes, i.e. iff ~ is a Boolean equivalence relation. [

8.5. ProrosITION. Let X be a Boolean space. There is an order-reversing one-to-
one correspondence between subalgebras of Clop X and Boolean equivalence
relations on X such that, for B a subalgebra of Clop X and ~ the corresponding
equivalence relation,

UltB=X/~.
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Proor. Each Boolean equivalence relation ~ on X determines the subalgebra B_
of Clop X defined in 8.3. Conversely, if B is a subalgebra of Clop X, define an
equivalence relation ~, on X by

x~gy iffforalbEB, xEbiff yED.

Then each b € B is closed under ~,, and ~, is a Boolean equivalence relation.
These assignments of subalgebras to Boolean equivalence relations and vice versa
are clearly order-reversing. We leave it to the reader to check that they are
converses of each other.

Suppose, finally, that B is a subalgebra of Clop X. Then the map f:
Clop(X/~ )~ Clop X defined by f(x) = U u is a monomorphism, and its range
consists of those clopen subsets of X which are closed under ~ 5. Thus, ran f=
B__ =B, B=Clop(X/~) and Ult B= X/~ by duality. O

As a consequence of Example 7.19 (every cardinal is the cardinality of a
Boolean space), each set can be given a topology which makes it into a Boolean
space. There is an amusing extension of this fact.

8.6. ExampLE. Let X be an arbitrary set and ~ an arbitrary equivalence relation
on X. There is a topology on X which makes X into a Boolean space and ~ into a
Boolean equivalence relation.

Proor. The plan of our proof is as follows. We will define a subalgebra A of P(X)
such that

3) A is reduced and perfect over X,

which means that id ,: A— P(X) is a reduced and perfect representation of A4 in
the sense of Definition 7.12. By Proposition 7.13, we equip X with the unique
topology such that X is Boolean and A = Clop X. We then define a subalgebra B
of A such that

(4) ~ is the Boolean equivalence relation corresponding to B.

To begin with, let P be the set of equivalence classes of ~. For each p € P,
choose a reduced and perfect algebra of sets A, over p. For example, fix, by
Example 7.19, a topology on p which makes p into a Boolean space and let
A, = Clop(p).

If P is finite, define, for any subset a of X:

a€A iffanpe A, foreverypeP,
and for b € A:

be B iff b is a union of elements of P .

We omit the simple proofs of (3) and (4).
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Now let P be infinite. Fix p* € P and some x* € p*. Let A consist of those
subsets a of X whch satisfy each of the following conditions:

5) aNpE A, foreveryp€EP,
(6) if x* € a, then a includes all but finitely many pE P,
@) if x* Z a, then X\a includes all but finitely many p € P.

It is easily seen that A is reduced over X. To show perfectness, let g be an
ultrafilter of A; we have to find x € X such that g = {a € A: x € a}. If g happens
to be the ultrafilter

g¥r={a€A:x*€a},

x* will do. Otherwise, pick a in A such that @ € g\g*. Then by x* € a and (7),
a C U Q for some finite subset Q of P, and

a=qLEJQ(aﬂq).

Each g in Q distinct from p* is in A, hence so is @ N g. Also, if p* happens to be
in Q, then a Np* is in A, by

anp*=a\U{aNg:q€Q, g#p*}.

Since g is a prime filter of A, a Np Eg for some p€ Q. So f=gN A, is an
ultrafilter of A ,; since A, is perfect over p, it is determined by some x in p. This
point x also determines g, which finishes the proof of (3).

For every subset b of X, define

beB iff b€ A and b is a union of elements of P .

Then B is a subalgebra of A satisfying (4) — the only non-trivial assertion is that B
separates equivalence classes of ~. But if p # g in P, we may assume that p # p*.
Sob=pisin B and p C b, g C X\b.

8.3. Product algebras and compactifications

The dualities found in the previous subsections show that homomorphic images,
i.e. quotient algebras, of a Boolean algebra A correspond to closed subspaces of
Ult A and subalgebras of A to (Boolean) quotient spaces. We now describe the
dual spaces of product algebras — they are the Stone—Cech compactifications of
disjoint unions of Boolean spaces. More generally, the subalgebras of a product
algebra II,.; A; which include the weak product IT}c, A; correspond to zero-
dimensional compactifications of a disjoint union of Boolean spaces.
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Let us recall from topology the following definition. Suppose that, for every i in
an index set I, X, is a topological space and that the sets X;, i € I, are pairwise
disjoint. Then the disjoint union space of the spaces X; is the set

v=Ux,,
iel

with the topology in which a subset u of U is open iff u N X; is open in X; for
every i € I. Replacing the X; by pairwise disjoint copies, one can also define the
disjoint union space for an arbitrary family (X;),c, of topological spaces.

Separation properties, like being Hausdorff, zero-dimensional or Tychonoff,
are inherited by U, X; if they hold for each X;. Clearly, a subset a of U, X; is
clopen iff a N X; is clopen in X; for every i € I; in particular, each X; is a clopen
subspace of U, X;. For finite I, compactness (respectively Booleanness) of each
X, implies compactness (respectively Booleanness) of U, X,

8.7. ProrosiTioN. For every finite product A; X -+ - X A, of Boolean algebras,
Ult(A; x---xA)=UltA,U---UUIt A, .

Proor. Denote by X, the Stone space of A; and by U the disjoint union space of
the X;. The above description of clopen subsets of U implies that

Clop U=Clop X, X --- X Clop X,
EAIX'“XAn'
Now U is Boolean, so U=Ult(4, x--- X A4,). O

In a disjoint union space U = U, X,, the family (X,),., is an open cover with
no proper subcover. Hence, U fails to be compact if infinitely many of the spaces
X, are non-empty. An analogue of Proposition 8.7 for infinite index sets I is,
however, obtained by replacing the disjoint union U,_, Ult A, by a suitable
compactification.

Here a compactification of a topological space U is a pair (v, X) such that X is a
compact Hausdorff space and y: U— X is a homeomorphism from U onto a
dense subspace of X. By abuse of notation, one often writes (y, yU) or simply
yU for the pair (y, X) and calls the space yU a compactification of U if the
embedding v is understood. It is a standard fact of topology that a space U has a
compactification iff it is a Tychonoff space.

In the following results, recall from Section 6 the definition of the weak product
of a family of Boolean algebras: it is the subalgebra

II"a,= {aE l;[lAiz {i€I: a,#0} finite or {i E I ai#l}ﬁnite}

iel

of the full product II,_; A;. Let us call, in this subsection, every subalgebra of
Il,., A, including II]_, A, an intermediate algebra.
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8.8. ProposiTiON. Let (A,),c; be any family of Boolean algebras. The Stone
spaces of intermediate algebras are exactly the zero-dimensional compactifications
of U, Ult A,.

Proor. For i€ I, let X,=Ult A, and let ¢’ be the element of IT}., A, satisfying
¢'(i)=1and €'(j)=0 fOl‘]?él
First assume that B is an intermediate algebra and let

s: B—>Clop Ult B

be its Stone isomorphism. For i € I, the element ¢’ is in B, the sets s(e') are
pairwise dls]omt and their union is dense in Ult B since L., ¢' = 1. Each relative
algebra B | e'is isomorphic to A,; by Example 7.26 there is a homeomorphism f
from X; =Ult A, onto s(e’). So y = U,E . [, is a homeomorphism from U, X,
onto a dense subset of Ult B, and Ult B is a zero-dimensional compactification of
Ui/ X;.

Conversely, let yU be a zero-dimensional compactification of U = U, _, X;; we
may assume that U,_, X, is a dense subspace of yU, embedded by the identity
map. For every i €1, let

s;: A;— Clop X,

be the Stone isomorphism of A;. Then each X is an open and compact, hence
clopen, subspace of yU. We prove that the homomorphism

f: Clop yU—> I;II A,,
defined by

fla)=(s;"(@N X))ies »

is an isomorphism from Clop yU onto an intermediate algebra. f is one-to-one by
Lemma 5.3, since every non-empty clopen subset of yU intersects some X;, by
denseness of U,_, X, in yU. Thus, the subalgebra B = f[Clop yU] of II,, A, is
isomorphic to Clop yU. It includes IT}, A, for if x = (a;);c; EII}; A, is such that
a, =0 for almost every i, then x = f(a), where a = U, 5,(a;). Consequently, B is
an intermediate algebra isomorphic to Clop yU, and yU is homeomorphic to the
Stone space of B. O

It is not difficult to show that the above assignments between intermediate
algebras and zero-dimensional compactifications of U,_, Ult A, are essentially
inverses of each other, up to homeomorphism of compactifications over
U,c; Ult A,. Let us characterize the compactifications corresponding to the
greatest and the least intermediate algebra, i.e. of the full and the weak product.

A compactification (y, X) of a Tychonoff space U is called a Stone—Cech
compactification if for each continuous map f from U into a compact Hausdorff
space Y, there is a continuous map f': X— Y such that f'oy = f. Every Tych-
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onoff space U has a Stone—Cech compactification; it is determined uniquely up to
homeomorphism over U and denoted by (8, BU).

U—E2—BU
\ r
Y

It should be pointed out that the Stone—Cech compactification of a zero-
dimensional Tychonoff space is not necessarily zero-dimensional; see Section 6.2
in ENGELKING [1977] for a thorough discussion of disconnectedness properties and
their preservation in Stone—Cech compactifications.

8.9. THEOREM. For any family (A,);c; of Boolean algebras,
Ult(H A,.) = B(U Ult A,.) .
iel iel
Proor. Define the element e’ of II,; A, as in the proof of Proposition 8.8, let
X= Ult(H Ai) ,
iel

s:M;c; A;,— Clop X the Stone isomorphism and X, =s(e’). The proof of 8.8
shows that

v=Ux,

iel

is a dense open subset of X homeomorphic to U, Ult A4,, so it suffices to prove
that (id,, X) is a Stone-Cech compactification of U.

Claim 1. Assume a and b are disjoint subsets of U which are closed in U. Then
a and b are separated by a clopen subset of X.

To show this, pick for each i € I by Booleanness of X; and Lemma 7.6(c) a
clopen subset ¢, of X, which separates a N X; and bﬂX For example, by
s(e)= X, let c,=s(b; ) where b, EIl,, A, and b,=e. Then a and b are
separated by ¢ = s(x), where x is the element (pr; (b )),E ,of Il A,

To check the universal property of the Stone—Cech compactxﬁcatlon for X,
suppose f is a continuous map from U into a compact Hausdorff space Y.

Claim 2. For every point p of X, the subset

M, = M {cl f[cNU]: ¢ a clopen neighbourhood of p in X}

of Y contains exactly one point (cl denotes closure in the space Y).

For, by denseness of U in X, ¢ N U is non-empty for every nelghbourhood c of
p; socl flcN U] is a non-empty closed subset of Y. Thus, M, is non- -empty since
Y is compact. Assume for contradiction that y and y’ are distinct points in M,.
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Using regularity of Y, choose open subsets u and u’' of Y such that
YyEu, y'€u', cduncu =0.

By Claim 1, there is a clopen subset ¢ of X such that f '[clu]Cc and
f'[cdu']C X\c. We may assume that pEc. Then yEM,Cd(fl[cnU])
and y'€u’, so u'NflcNU]#0 since u' is open. It follows that
f[u']N(cNU)#P, contradicting f '[u'] C X\c.

In view of Claim 2, we define f': X— Y by

f'(p) = the unique point of M, .

f' extends f since f( p) € M, for each p € U. Also, f' is continuous, for assume
PEX and v is an open neighbourhood of f'(p) in Y. Thus, M, Cv and by
compactness of Y, cl f[cN U] Cv for some clopen neighbourhood ¢ of p. But
then f' maps c intov. O

For every locally compact but non-compact Hausdorff space U, the one-point
compactification aU of U is defined, in topology, as follows. The underlying set of
aUis U U {p*}, where p* is a point not contained in U and a subset u of aU is
defined to be open iff either p* €u and u is open in U or p*€ U and U\u is a
compact subspace of U. It is easily verified that every compactification yU of U
for which yU\U consists of exactly one point is homeomorphic to a U over U, and
that the one-point compactification of a locally compact zero-dimensional Haus-
dorff space is Boolean. In particular, if X; is a Boolean space for i € I, then
U,, X, is locally compact and a(U,, X;) is Boolean.

8.10. ProrosiTioN. If I is infinite and A, is a non-trivial Boolean algebra fori €1,
then

Ult(ieH]w A,.) = “(LGJI ult A,.) :

Proor. The proof of 8.8 and its notation show that U, Ult A, is homeomorphic
to the dense open subspace U= U, s(e’) of X =Ult(IT}-, A,). Now

p*= {b € .l;[l‘v A,: b, =1 for all but finitely many i € 1}

is an ultrafilter of II}_; A, not contained in U. Moreover, X =U U { p*}, for let
p EX\{ p*} Then there is some b € p such that b<X,_, e' for some finite subset
J of I. So ¢' € p for some i € J and p € s(e’) C U.

Thus, X is a compactification of U such that X\U consists of exactly one point,
and X=aU. O

‘The following sketch gives some additional information on the correspondence
between intermediate algebras and compactifications of U, Ult A;; detailed
proofs and more general results can be found in the book by DwINGER [1971]. For
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an arbitrary Tychonoff space U, a quasi-order (i.e. a reflexive and transitive
relation) on the compactifications of U is defined, in text books on topoiogy, as
follows: we say that (8, 8U) = (v, yU) if there is a continuous map h: yU— 6U
satisfying hoy = 4.

U/YU
S b

Call two compactifications (y,yU) and (8,8U) equivalent if there is a
homeomorphism A: yU— 8U such that hoy =3, i.e. if (y, yU)=(5,8U) and
(8,8U) = (y, yU). The above quasi-order on the compactifications of U induces
a partial order on the equivalence classes; it is called the partial order of
compactifications of U. In this partial order, B U is the greatest compactification of
U; if U is locally compact but non-compact, then aU is the smallest one. For
(A,);c; a family of Boolean algebras and U = U, Ult A,, it turns out that the
partial order of zero-dimensional compactifications of U is isomorphic to the
partial order of intermediate algebras under inclusion. This reflects, of course, the
fact that subalgebras of a Boolean algebra correspond to continuous images of its
Stone space.

Let us finally consider the simple but interesting special case that, for every i in
an infinite set I, A; is the two-element Boolean algebra. Then Ult A, is a
one-point space and U,_, Ult A, is a discrete space of cardinality |I|; we identify
it with the discrete space with underlying set I. The dual space of II}_, A, is then
al, the dual space of II,., A,="2= P(I) is BI, and the intermediate algebras
correspond to the zero-dimensional compactifications of the discrete space I.
Identifying  with its image under B: I— B1I, i.e. with the set of isolated points of
BI, we find by Theorem 7.25 that

oU

Ult(P(I) /fin) = BINI ,

where fin is the ideal of finite subsets of I.

8.4. The sheaf representation of a Boolean algebra over a subalgebra

The notion of a sheaf of Boolean algebras is extremely useful in visualizing
pairs (A, B) of Boolean algebras where A is a subalgebra of B. Sheaves of
Boolean algebras are a topological generalization of the following discrete
situation. Let X be an arbitrary set and for p € X, let B, be a Boolean algebra.
Then the product B =11, B, is a Boolean algebra with A = *2 as a subalgebra.
The elements of B are the choice functions, i.e. those functions f from X into
s=U sex B, satistying f(p) € B, for all p € X. In a sheaf of Boolean algebras,
both X and S carry a topology and we naturally restrict our attention to the
continuous choice functions, obtaining a subalgebra of the full product.

We first define the somewhat more general notion of a sheaf of sets.
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8.11. DEFINITION. A sequence
EP: (S’ m, X’ (Bp)pEX)

is a sheaf (of sets) if each of the following holds:
(a) S and X are topological spaces,
(b) (B,),cxis a family of pairwise disjoint non-empty sets and § = U pex Bys
(c) m:S— X is the map satisfying

m(s)=p iffsE€EB,;

it is continuous, open and a local homeomorphism—i.e. each sES has a
neighbourhood v such that 7 | v is a homeomorphism from v onto «[v]; v is
then a canonical neighbourhood of s

(d) if uC X is open and f, g €Il ., B, are continuous (being functions from u
into §), then the set {p € u: f(p) =g(p)} is open.

S is the sheaf space, X the base space and w the projection map of &. The sets
B, are the stalks of &. ¥ is called a Hausdorff sheaf if its sheaf space S is
Hausdorff.

Ik

— t — X

p

8.12. DeFINiTION. Let ¥ =(S, 7, X, (B,),cx) be a sheaf. For uC X and f, g€
e, B,, define

I f=gll={pE€u: f(p)=g(p)}.

For every open subset u of X,
L(¥)= { f Epl;lu B,: f continuous}

is the set of (local) sections of & over u.
(%) =Ix(¥)

is the set of global sections of .

So if both § and X are discrete spaces and S is the disjoint union of the sets B,,
P E X, then I'(¥) is simply the cartesian product Il x B,,.

We cannot conclude from axioms (a) through (d) in 8.11 that there are any
global sections, but this will be of no concern to us since in the special case 8.16
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below, the set I'(¥) will trivially be non-empty. Also, for global sections f and g
of an arbitrary sheaf, the open set || f = g|| is not necessarily clopen, as follows for
example from Proposition 8.20. Most of the following lemma on the basic
properties of sheaves will not be used in the sequel, but the reader might
appreciate some additional information.

8.13. LemMA. Let ¥ =(S, 7, X, (B,),cx) be a sheaf.

(@) Each stalk B, is a discrete space, in the topology induced by S.

(b) Assume s € S and v is an open canonical neighbourhood of s in S. Let
h=a | v, a homeomorphism from v onto u= w[v]. Then h™" is a section of &
over u.

(c) Each local section f € I(¥) (u C X open) is an open mapping from u into
S.

(d) Assume the base space X is Boolean. Then for every p* € X and s* € B,
there is a global section f of & such that f(p*)=s*.

(¢) Let X be Boolean. Then & is Hausdorff iff, for all global sections f and g of
¥, the set || f=g|| is clopen.

Proor. (a) For s € B, let v be a canonical neighbourhood of s. Then v N B, =
{s}, so s is isolated in B,.

(b) An immediate consequence of the sheaf axioms: the set u = «[v] is open
since 7 is an open map, and & is a homeomorphism from v onto u. In particular,
k™' is a continuous map from u into S.

(c) Assume u C X is open and f is a section over u. It suffices to prove that for
every p € u there is an open neighbourhood u’ of p such that u’ C u and f[u'] is
open; so let p € u be given. Put s = f( p) and choose, by axiom (c), an open
canonical neighbourhood v of s in S such that =7 | v is a homeomorphism
from v onto w = ar[v]. Taking v small enough, we may assume that w C u. Both
f | w and, by part (b), k™' are sections over w, so by axiom (d),

w=|frw=n7|
is an open neighbourhood of p. Moreover,
flul=h w]=vOa [u]

is open in S.

(d) For every p € X, fix a point 5, of B, and assume s,. = s*. By axiom (c) and
part (b) of our lemma, there is for every p € X an open neighbourhood u, of p
and a section f, over u, such that f,(p) =s,. A global section f is obtained by
patching together parts of the local sections f,: let, by compactness of X,
Up(rys « = + » Up(ny DE a ﬁni.te‘ subcover of {u,: p € X}; we may assume that p(1) =
p*. There are pairwise disjoint clopen subsets c,;, of u,,, such that p* € c,;, and
X is covered by Cp(1ys - - - » Cp(m) — SEE Exercise 3 in Section 7. So

f=fha t GV Ulhm I Cm

proves our claim.
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(e) If £ (i.e. §) is Hausdorff, then for any continuous functions f, g: X— S, the
set {x EX: f(x)=g(x)} is closed. So it is clopen by axiom (d). Conversely,
assume || f = g|| is clopen for arbitrary global sections f and g of & and that s, s’
are distinct points of S. If p = m(s) and p’' = «(s') are distinct, choose disjoint
neighbourhoods u of p and u' of p’; then 7 '[u] and = '[u'] are disjoint
neighbourhoods of s and s’. So assume 7(s) = w(s') = p. By part (d) there are
global sections f and f’ such that f(p)=s and f'(p)=s'. Then the set
c¢=X\||f=g|| is clopen in X, and f[c], f[c'] are disjoint open neighbourhoods of
s, s’ in S by part (c). O

8.14. DeFINITION. A sheaf of Boolean algebras is a sequence &=
(S, 7, X, (B,),ex) such that each of the following holds.

(a) S and X are topological spaces.

(b’) Each B, is (the underlying set of) a Boolean algebra, the sets B, are
pairwise disjoint and S =U,cx B,,.

(c) The map : S— X satisfying

m(s)=p iffs€EB,

is continuous, open and a local homeomorphism.
(d') Let uCX be open, f,...,f, sections over u and #(x,...x,),
t'(x;...x,) Boolean terms. Then the set

{peu «(fi(p)... fL(PN=2'(fi(p)-.. f.(P)}

is open.

8.15. ProOPOSITION. For every sheaf & of Boolean algebras, I'(¥) is a subalgebra
of Il,ex B,.

Proor. We show that for arbitrary global sections f and g of ¥, the function
h: X— S defined by A(p)=f(p)+ g(p) is continuous, hence an element of
I'(¥). It follows similarly that I'(¥) is closed under all other Boolean operations
and that the functions assigning to each p € X the unit (respectively the zero)
element of B, are global sections.

Let p be a point of X; it is enough to find a neighbourhood u of p such that 4 is
continuous on u. Put s = h( p) and fix a neighbourhood v of s in S such that = | v
is a homeomorphism from v onto an open neighbourhood w of p. By Lemma

8.13(b), A’ =(m | v)~"is a section over w. Now

f(p)+e(p)=s=h'(p),
so by axiom (d’), there is a neighbourhood u of p such that uCw and
f(q) + g(g) = h'(q) for all g € u. Thus, h coincides with A’ on u and is continuous
onu. O

There is, of course, nothing particular about Boolean algebras in the preceding
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definition and proposition —if L is any language for first order predicate logic,
then a sheaf of L-structures is defined by replacing in 8.14 the conditions (b’) and
(d') by

(b") Each B, is (the underlylng set of) an L-structure, the sets B, are pairwise
disjoint and S=U

(d) LetuC X be open fl, ..., f, sections over u and ¢(x, ... x,) an atomic
L-formula. Then the set

{pE€u:B,Fo[fi(p)... f,(P]}

is open.
We are ready to present our standard example for a sheaf of Boolean algebras.

8.16. ConsTrUCTION AND NOTATION (the sheaf associated with a pair of Boolean
algebras). Assume B is a Boolean algebra and A a subalgebra of B. Then

X=UltA

is a Boolean space. For p € X, let p be the filter generated by p in B; it is, by
Lemma 2.12, the proper filter

p={bE B:a=<Db for some aEp}
of B. Let

m,: B—>B,=Blp
be the canonical epimorphism —so ,(b) = 7,(b") iff b-a=b'-a for some aE p
(see the proof of 5.22).

The sets B, p € X, are pairwise disjoint, for assume s € B,. Then since s is
one of the equivalence classes modulo p, p can be recovered from s by

5={—(bAb'): b, b Es),

where A denotes symmetric difference, and p can be recovered from p by
p=p N A. Hence, we define

s=UB

PEX p’
mS—>X, w(s)=p iffs€EB,.

For every b € B, define a choice function by

frr X—S, fb(P)=""'p(b)- '

The following assertion will be useful in Theorem 8.17.
Claim. ||f,=f, | is an open subset of X, for all b and b’ in B. For let
pE|lf, =f,|l. Then m,(b) = m,(b'), and there exists a € p such thata-b=a- b,
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Thus, for s,: A— Clop X the Stone isomorphism, s,(a) is a clopen neighbour-
hood of p included in || f, = f,||-

The sets f,[u], where b € B and u is open in X, constitute the base of a
topology of S. To check this, assume s € f,[u] N f,.[u'], where b, b’ € B and u, u’
are open in X. Put p=m(s). Then p€EuNu’ and s=f,(p)=1f,.(p), ie. pE
|l f, = fi-ll. By the Claim, there is an open neighbourhood u” of p included in
unu' N|lf,=fll. So

sE€fWIC filul N f, [w'].

This finishes the construction of the sequence & = (S, 7, X, (B,),cx)- In view of
Theorem 8.17, it is called the sheaf associated with the pair (A4, B).

8.17. THEOREM. Let A be a subalgebra of a Boolean algebra B. Then the sequence
F=(S, m, X, (B,),cx)) constructed in 8.16 is a sheaf of Boolean algebras and the
map

e: B— [l B,,
PEX
defined by
e(b)=1,,

is an isomorphism from B onto I'(¥).

Proor. The axioms (a) and (b’) of 8.14 are clearly satisfied. Also (c) is easily
shown: 7 is an open map since the image of a basic open subset f,[u] of S is the
open subset u of X. 7 is continuous, for let s € S, p = w(s) and u a neighbour-
hood of p in X. Since s € B, = m,[B], pick b € B such that s = m,(b). Then
s=f,(p) and f,[u] is a neighbourhood of s mapped onto u by =. Finally, for
every s€ S, say s = m,(b), where p € X and b € B, v = f,[X] is a basic neigh-
bourhood of s in S. 7 being continuous and open, 7w | v is a homeomorphism
from v onto wv]=

Before starting out on axiom (d’), let us prove three additional facts.

Claim 1. For b € B, the map f,: X— S is continuous. For let v be open in S.
Then f, '[v] =f, '[v'], where v’ = v N f,[X] is open in S. But f, '[v'] = #[v'] is
open in X since 7 is open.

Claim 2. Let f €11, 4 B, be continuous and p € X. Then there are b € B and
a neighbourhood u of p such that pE€ucl| f=fll. For s =f(p) is a point of B,,
so s = (b)=f,(p) for some b € B; also f,[X] is a neighbourhood of s. By
continuity of f, choose a neighbourhood u of p which is mapped into f, [ X] under
f- Obviously uC||f= f,,||

Claim 3. The map e is a monomorphlsm from B into Il,cx B,. e is clearly a
homomorphism since each 7, is a homomorphism. It is one-to- one since every
b#0 is contained in an ultrafilter x of B and, for p =xN A, f,(p) = m,(b) #0.

Now assume u, f;, . . ., f, and t, ¢’ are given as in axiom (d’) and p € u is such
that
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(fi(p) .- f.(P)=1¢(fi(p)-.. £.(P)).

By Claim 2, fix a neighbourhood w of p and b(1), ..., b(n) € B such that w Cu
and

PEWQ”fi=fb(i)”

for i€{l,...,n}. In B, consider the elements b=#b(1)...b(n)), b'=
t'(b(1) ... b(n)). Then since e: B—1I,.x B, is a homomorphism,

fo =t oy - Jom) > fo =t(foqy -+ - o) -

Also, f,(p) = f,.(p), so by the Claim in 8.16, fix a neighbourhood v of p satisfying
vCwn | f,=fyll Thus,

pevC{q€u:t(fi(q) ... f()=1'(fi(q) ... f.(q)}-

This concludes the proof that & is a sheaf of Boolean algebras.

We are left with showing that the monomorphism e from B into I'(¥) is onto;
so let f € I'(¥). For each p € X, choose by Claim 2 some b, € B and an open
neighbourhood u, of p such that

w, CIf= ol -

We apply once more the patching technique used in the proof of 8.13(d): by
compactness of X, assume

X=up(1)U---Uup(,,).

Choose a finite clopen partition
X=s4(a)U---Usy(a,)

of X such that s ,(a;) C u,; here s,: A— Clop X is the Stone map and q; € A.
In B, define

b=a,-b,;+--+a,b

n “p(n) -

Then for arbitrary g € X, say a;Eq, f,(q) =fb,,(,~)(‘1) = f(q) since q € s ,(a;) C
Uyiy © ”fbp(i) =f” Thus, f=f,. O

Suppose that in the situation of the preceding theorem, B is identified with
I'(¥) via e. Then an element a of A is identified with the characteristic function
X.: X— 2, where c is the clopen set s ,(a) of X —here, of course, the two-element
subalgebra of B, is identified with 2= {0,1}. Thus, a global section of &
corresponds to an element of A iff it attains only the values 0 and 1.

As an easy example for Theorem 8.17, let us consider the case that B is a
simple extension of its subalgebra A.



§8] HoMoMORPHISMS AND CONTINUOUS MAPS 123

8.18. ExampLE (simple extensions). Let B be generated over A by a single
element ¢. There are two canonical ideals in A associated with ¢:

ILL={a€A:a=<t}, I ,={a€A:a= —1t}.

The simple extension A(?) is uniquely determined over A by the ideals /, and I_,;
cf. Exercise 11 in Section 5. Now in the sheaf representation of B = A(t) over A,
every stalk B, has at least two and at most four elements since B is generated by
A and ¢ and the epimorphism #, maps A onto 2. For the global section f, assigned
to ¢t in 8.16, axiom (d') of 8.14 implies that the set

u,={pEX: f(p)=1}

is open. In fact, u, is the open set corresponding to the ideal I, under Stone
duality, since for p € X,

f(p)=1 iffa=¢for some a€p
iff pNI#0.
Similarly, the open set
u_={p€X: f(p)=0}

corresponds to the ideal I_,. Since |B,|=4 iff f,(p) &2, we may represent the
extension A(¢) over A by the following diagram:

The situation of Example 8.18 simplifies even more if we restrict our attention
to Hausdorff sheafs.

8.19. DEFINITION. Let A be subalgebra of B. A is said to be relatively complete in
B if for each b € B there is a greatest element a € A such that a<b. We write

pr (b) =pr(b)=max{a € A:a=<b}.

8.20. ProrosiTION. Let B be a Boolean algebra, A a subalgebra and &=
(S, 7, X, (B,),ex) the associated sheaf. The following are equivalent:
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(@) A is relatively complete in B,

(b) the continuous map ¢: Ult B— Ult A dual to the inclusion homomorphism
id,: A— B is open,

() the subset ||f=g|| of Ult A is clopen, for all global sections f and g,

(d) & is Hausdorff.

Proor. Equivalence of (c) and (d) was proved in 8.13(e).

To prove equivalence of (a) and (c), we identify B with I'(¥) and A with the set
of continuous maps from X into 2. Then A is relatively complete in B iff for each
fET(Y), the open subset ||f=1| of X has a greatest clopen subset, i.e. iff
|| f=1]| is clopen for each f € I'(¥). This is equivalent to (c) since for arbitrary
f g€, lIf =gl =Ilh=1], where h=—(f A g) in I(%).

For the equivalence of (a) and (b), recall that ¢: Ult B—Ult A is the map
defined by

dp(y)=ynA

for y € Ult B and denote by s, and s, the Stone isomorphisms of A (respectively
B). Assume that A is relatively complete in B. Let u C Ult B be open and y € u;
we find an open subset v of Ult A such that

d(y)EvC olu].

To this end, pick b € B such that y € s5(b) Cu, let x = ¢(y), a= —pr(—b) and
v =s,4(a). So a is the least element of A satisfying b < a. We claim that x € s ,(a)
(and thus ¢(y) € v). Otherwise, —aExC y; alsoaE y since bEy and b=a, a
contradiction. Next, v =s,(a) C ¢[sz(b)]. For assume x' € s ,(a). If there is no
y' E sy(b) satisfying x' =y’ N A, then x' U {b} does not have the finite intersec-
tion property; so b =<—c for some c € x'. It follows that a=—c and a-c=0,
contradicting a €E x’' and c € x".

Conversely, suppose ¢ is open and let b € B. The set ¢[sz(—b)] is open since ¢
is open and closed since ¢ (being a continuous map between compact Hausdorff
spaces) is closed. So there is a € A such that

s4(a) = X\¢[sz(—b)];

we claim that a = pr(b). First, a =< b — otherwise a - —b is contained in an ultrafil-
ter y of B. Then x = ¢(y) is an element of ¢[sz(—b)] and a & x, a contradiction.
Second, every ¢ € A such that ¢ < b satisfies ¢ < a: otherwise ¢ - —a € x for some
x€Ult A. Then x &s,(a), so x=yN A for some y € Ult B containing —b. It
follows that ¢ € x C y and b &y which is absurd since c<b. O

It is particularly easy to visualize the sheaf representation of a simple extension
B of A if A is relatively complete in B. Simple extensions of this type are the
building blocks for projective Boolean algebras; see the survey chapter by
KoprpELBERG [Ch. 20 in this Handbook] on projective algebras.
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8.21. ExaMpLE (simple extensions with A relatively complete in B). Assume A is
relatively complete in B and B is generated by ¢ over A. Then for arbitrary b € B,
s ,(pr(b)) is the open subset || f, = 1|| of X and s ,(pr(—b)) = || f, = 0||. Letting, in
A,

indp(b) = —(pr(b) + pr(—b)),

the “independent part of b”’, we see that {pr(b), pr(—b), indp(b)} is a partition
of unity in A and that

sa(indp()) = {p EUlt A: f,(p) £2} ;
in particular, for the element ¢ generating B over A:
s4(indp(t)) = {p EUlt A: |B,| =4} .

It should now be intuitively clear that, for arbitrary b € B = A(¢), indp(b) =
indp(¢) in A; moreover, indp(b)=indp(¢) iff b generates ¢ over A, i.e. iff
A(b) = A(2). Thus, the simple extension A(¢) of A is determined, up to isomorph-
ism over A, by A and the element indp(?) of A.

Exercises

1. Let ¢: X— Y be a continuous map of Boolean spaces.

(a) ¢ is one-to-one iff, for every Boolean space S and continuous maps
a, ¢':S—> X, poa=¢oa’ implies a = a'.

(b) ¢ is onto iff, for every Boolean space T and continuous maps 8, 8': Y— T,
Bo¢ =B’ implies B = B".

Formulate and prove a dual statement for homomorphisms of Boolean
algebras.

2. For a compact Hausdorff space X, let G =UltRO(X) and f: G— X the
unique map satisfying f(p) € (N {clu: u € p} (cf. Exercise 2 in Section 2).

(a) fis a continuous map from G onto X; moreover f is irreducible, i.e.
fl[H]# X for every proper closed subspace H of G.

(b) If f': G'— X is another continuous irreducible map from an extremally
disconnected Boolean space G' onto X, then there is a unique homeomorphism
h: G— G’ satisfying f'oh = f.

The pair (G, f) is called the projective resolution of X; G is the Gleason space
or the absolute of X.

3. Let (A,),e, be any family of Boolean algebras. It follows, for example from
6.2.6, 6.2.4, and 6.2.12 in ENGELKING [1977] that the Stone—Cech compactifica-
tion of the disjoint union space U, , Ult A, is zero-dimensional. Use this fact,
the universal property 6.3 of products and a duality argument to give another
proof that Ult(Il,., A,)= g(U,_, Ult A4,}.

4. Let A be a relatively complete subalgebra of B.



126 S. KoppELBERG / ToproLogIcAL DUALITY [cH. 3

(a) id,: A— B preserves all sums and products existing in A.

(b) If B is complete, then so is A.

5. Let A be a Boolean algebra and a € A. Prove (e.g. by using Exercise 12 in
Section 5) that there is a simple extension B = A(t) of A such that A is relatively
complete in B and indp ¢, defined in 8.21, equals a. B is uniquely determined,
over A, by A and a.

6. Let A(¢) and A(¢') be simple extensions of A such that A is relatively
complete in both A(¢) and A(¢'). Then indp(¢) <indp(?'), in A, iff there is an
embedding e: A(f)— A(¢') such thate | A=id,.
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Introduction

This chapter presents a construction of Boolean algebras generated in a
particular way by some subset (respectively by the union of some prescribed
family of subalgebras). The intuitive idea here is that the process of generation be
as general as possible, i.e. the generators should satisfy no algebraic relations
except those enforced by the laws of Boolean algebras (respectively by the
structure of the given family of subalgebras). This idea is made precise by defining
freeness by a somewhat technical condition on extendibility of homomorphisms
which implies immediately the uniqueness of free algebras (respectively of free
products).

It remains then to show existence of free algebras (respectively of free
products). This follows from general principles of universal algebra: in each
variety V, the free V-algebra over a set U is obtained by taking the set Tm(U) of
all terms built up from the variables in U and the operations of V, and by then
dividing Tm(U) by the relation of being equivalent in all V-algebras; it is this
construction which lies at the background of the proof of Proposition 9.9. Stone
duality, however, provides a much more natural construction of free algebras and
free products: the free Boolean algebra over a set U is the clopen algebra of the
Cantor space U2, and the free product of a family (A,),, of Boolean algebras is
the clopen algebra of the product space II,., Ult A,. This topological interpreta-
tion of free products explains their importance for the general structure theory of
Boolean algebras.

Particular emphasis will be given to a special question: Given a Boolean algebra
A, for which cardinals k does A have a free subalgebra of size k? The dual
topological question (Given a Boolean space X, for which cardinals k does X
have the Cantor space “2 as a continuous image?) has been intensively investi-
gated in topology. Section 10 is devoted to several advanced results on the
problem in its algebraic form. Let us mention a historically much earlier one,
presented in Section 9 and due to Fichtenholz, Kantorovich and Hausdorff the
power set algebra of each infinite set X has a free subalgebra of size 211 1t will be
generalized in Section 13 by the Balcar—Fran¢k theorem: each infinite complete
algebra B has a free subalgebra of cardinality |B|.

9. Free Boolean algebras

We would like to call a Boolean algebra F free over a subset X if X generates F
and the elements of X do not satisfy any algebraic equations except those
derivable from the axioms for Boolean algebras. This idea is formalized by
defining F to be free over X if every map from X into an arbitrary Boolean
algebra A extends to a homomorphism from F into A. It is quite obvious that free
Boolean algebras, should they exist, are uniquely determined by the number of
their free generators, and that every Boolean algebra is a homomorphic image of
a free one. Also freeness of a Boolean algebra F over a subset X can be

129
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characterized by an internal algebraic property of X, independence. It is perhaps
less obvious that free algebras exist at all; we prove this by applying the
topological duality theory of Section 8 to the effect that the dual algebra of a
generalized Cantor space "2 is free over k generators. Another existence proof for
free algebras which does not use Stone duality is given via algebras of formulas as
considered in Example 1.12.

As free Boolean algebras are completely determined by the number of free
generators, it is not surprising that their structure is very well understood. For
example, every infinite free algebra is atomless, satisfies the countable chain
condition and has, in some respect, a large automorphism group. The major
combinatorial result on free algebras implies that every algebra of regular
uncountable cardinality « which is embeddable into a free one has a free
subalgebra of size k. This motivates the general question which Boolean algebras
have large free subalgebras. We prove here that every infinite power set algebra
P(X) has a free subalgebra of cardinality 21X postponing stronger results to the
following section.

9.1. General facts

9.1. DEFINITION. Let X be an arbitrary set. A free Boolean algebra over X is a
pair (e, F) such that Fis a Boolean algebra and e is a map from X into F such that
for every map f from X into a Boolean algebra A there is a unique homomorph-
ism g: F— A satisfying gece=f.

X— >F
f g
A

A Boolean algebra F is free if there are X and e: X— F such that (e, F) is free
over X.

Thus, if the pair (e, F) is free over X and x,, . . ., x,, are distinct elements of X,
then every equation satisfied by e(x,), ..., e(x,) in F is satisfied by arbitrary
elements a,,...,a, of any Boolean algebra. For pick f: X— A such that
f(x;)=a; and let g: F— A be as guaranteed in the definition of freeness. If an
equation is satisfied by the e(x;) in F, then so it is by their homomorphic images
g(e(x;)) = f(x;) = a; in A.

We start out with the three basic results on uniqueness, characterization and
existence of free algebras.

9.2. LEmMA (uniqueness). Assume (e, F) is free over X, (e', F') is free over X'
and f: X— X' is a bijection. Then there is a unique isomorphism g: F— F' such
that gce=¢'f.
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XI ” > FI

Proor. Routine, like the proof of the uniqueness assertion in Proposition 6.3
from the universal property of products. [

Sikorski’s extension criterion 5.5 characterizes, for U a set of generators of a
Boolean algebra F, those maps from U into Boolean algebras which extend to
homomorphisms. This gives an internal description of freeness.

9.3. DerINITION. A subset U of a Boolean algebra A is independent if all
non-trivial elementary products over U are non-zero, i.e. if for arbitrary disjoint
finite subsets {u,,...,u,} and {v{,...,v,} of U,

ul. DN /] ._vl. “ e ._vm>0.

The subalgebra of A generated by U is then said to be independently generated or,
in view of 9.4, freely generated by U.

9.4. ProposITION (characterization). Let e be a map from a set X into a Boolean
algebra F. The pair (e, F) is free over X iff e is one-to-one and e[ X] independently
generates F.

Proofr. Assume first that (e, X) is free over X. If e is not one-to-one, pick x and y
in X such that x#y but e(x)=e(y) and let f be a map from X into the
two-element Boolean algebra 2 such that f(x) # f( y). Clearly, there is no g: F—2
satisfying goe = f, a contradiction.

In the rest of the proof, we may therefore assume that e is one-to-one; for
simplicity let X C F and e the identity map on X.

If X generates a proper subalgebra B of F, pick by Lemma 5.32 distinct
ultrafilters p and p' of F satisfying p N B=p’'N B and let g, g': F—2 be their
characteristic homomorphisms. Then g# g’ but g | X=g' | X, contradicting
the uniqueness assertion in the definition of free algebras.

If X is not independent, pick disjoint finite subsets {x,,...,x,} and
{yi,---» Y, of Xsuchthatx,-----x,-—y,-----—y,=0andlet f: X—2 be
such that f maps each x; onto 1 and each y; onto 0. It follows from the trivial part
of Sikorski’s extension criterion 5.5 that f has no homomorphic extension to B, a
contradiction.

Conversely, suppose that X is a set of independent generators of F. Then each
map from X into any Boolean algebra has a homomorphic extension to F by the
non-trivial part of Sikorski’s extension criterion. This extension is unique by
Lemma 5.4. O

9.5. TureoreM (existence). For every set I, there is a free Boolean algebra over I.
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ProoF. Given the set I, let F be the clopen algebra of the Cantor space '2; for
i € I, define e(i) to be the clopen subset

e(i)=u,={x€2: x(i) =1}

of '2. Using Proposition 9.4, we prove that the pair (e, F) is free over I.
The following argument shows that e is one-to-one and e[I] is independent in

F: let {i;,...,i,yand {j,,..., j,} be disjoint finite subsets of . Then any point
x of "2 such that x(i)=1fori€e{i,,...,i,} and x(j)=0forjE{j,..., j,.}
shows that

x€e(i)N---Ne(, )\ e(j)U---Ue(j,)#0.

Moreover, e[I] generates F, for consider the subalgebra B of F generated by e[I].
B includes the canonical subbase

{uienpu{2w,:ien}

of '2, hence the canonical base of ‘2. Now F C B, since each clopen subset of )
is, by compactness, a finite union of basic sets. [

The uniqueness and existence assertions 9.2 and 9.5 allow us to speak about the
free Boolean algebra (e, F) over a set X. By the characterization 9.4 we shall
always assume that X is a set of independent generators of F. Since F depends
only on the cardinality of X, we introduce the following notation.

9.6. NotatioN. For any cardinal k, Fr « is the free Boolean algebra over «
independent generators.

9.7. CoroLLARY. (a) The Stone space of Fr k is homeomorphic to the generalized
Cantor space “2.
(b) A finite Boolean algebra A is free iff A has cardinality 2% , for some k € w.

Proor. (a) The construction of free algebras given in 9.5 shows that the free
Boolean algebra over a set I has ‘2 as its dual space.

(b) The Stone space X of A is discrete and finite, say of size n. By part (a), A is
free over k independent generators iff n=2% [J

As an immediate consequence of Corollary 9.7, we obtain two cardinality
observations. First, for any k< w, Fr k is generated by k elements and has size
2”" — the maximal cardinality of an algebra with k generators, by Corollary 4.5.
Second, for an infinite cardinal k, Fr « is a Boolean algebra of size « with Stone
space of size 2.

9.8. CoroLLARY. Every Boolean algebra A is a homomorphic image of a free one.
More precisely, if |A| <k, then A is a homomorphic image of Fr k.
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Proof. Assume |A| =< k. Let Fr « be freely be generated by U, where |U| = « and
fix a map f from U onto A. Then the homomorphic extension g of f to Fr « is an
epimorphism from Fr x onto A. [

By Stone duality, the preceding corollary reproves a fact observed in Section 7:
every Boolean space is homeomorphic to a closed subspace of a Cantor space.

One of our first examples of Boolean algebras was, in 1.12, the algebra B(T) of
(equivalence classes of) formulas in a propositional or first order language L
modulo a fixed theory T. For suitably chosen propositional theories T, the
algebras B(T) are perfectly natural examples of free Boolean algebras; an easy
generalization of the same construction shows that every Boolean algebra is
isomorphic to B(T), for some T. It follows along the same lines that every
Boolean algebra is also representable as the Lindenbaum—Tarski algebra of some
first order theory, as defined in 1.12. We postpone the proof of this to the
exercises since it is basically the same one as for propositional logic, but looks
somewhat artificial.

9.9. PRrOPOSITION. For every set P, there is a propositional theory S such that B(S)
is free over | P| independent generators.

Proor. Let L be the language of propositional logic having P as its set of
propositional variables and let S be the theory in L consisting of all tautologies.
Define

e: P— B(S)
by letting
e(p)=[pl,

where [a] denotes, as in 1.12, the equivalence class of a formula a with respect to
S. Then e[P] generates B(S) since every formula arises from P by forming
disjunctions, conjunctions and negations. We show that e is one-to-one and e[ P]
is independent in B(S): assume {p,,..., p,} and {q,,..., q,} are two finite
disjoint subsets of P and let @ denote the formula

=P A AP, ATIg A ATIG,, .
Then 1« is not derivable from S, hence

0#[a]=e(py) -~ -e(p,) —e(q) - - —e(q,). O

9.10. I;ROPOSITION. For every Boolean algebra A, there is a propositional theory T
such that A= B(T).
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Proor. Let P be any set of cardinality at least | A|; choose the language L and the
theory S for this set P as in the proof of 9.9. Now B(S) is free over a subset of size
|P|, so let, by Corollary 9.8, f be an epimorphism from B(S) onto A. Define a
theory T in L by

a€T iff f([a]s) =1,

where [a], denotes the equivalence class of « with respect to S. Clearly, S C T;
moreover, for any formula « in L,

1) a€T iff Tl a.

For the non-trivial part of this, assume that T |- «. Then there are finitely many
elements of T, say a, . .., a,, such that - a, A+ A a,—> a. So

[e]s - [ )s=[els,

and since f([a;]5) =1 for each i, we have f([a]s)=1 and a € T.
Since S C T, there is a unique epimorphism

g: B(S)— B(T)
satisfying

g([als) =[al;

([a]; the equivalence class of a with respect to T'). By (1), the epimorphisms f
and g both have {[a]s: @ € T} as their dual kernels, and thus by the homomorph-
ism theorem 5.23, there is an isomorphism 4 from B(T) onto A satisfying
hog=f 0O

9.2. Algebraic and combinatorial properties of free algebras

By the characterization 9.4 and the normal form theorem 4.4, we know
perfectly well how a free Boolean algebra arises from its free generators. As a
consequence of this, infinite free algebras share many algebraic properties.

9.11. ProrositTioN. Every infinite free Boolean algebra is atomless.

Proor. Let F be independently generated by an infinite subset U and let 0 < b in
F with the aim of finding b’ in F such that 0 < b’ <b. We may assume, by the
normal form theorem 4.4, that b is an elementary product b=
Uy U, —v - -—v,, where u,, ..., v,, are distinct elements of U. Since
U is infinite, pick u€ U\{u;,...,u,,0,,...,v, } andlet b’'=b-u. So b'<b
and, by independence of U, 0<b'. If b=1>', then b=u and b-—u=0, con-
tradicting independence of U. Thus, b'<b. O
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9.12. DeFINITION. A Boolean algebra B is homogeneous if, for any non-zero
element b of B, the relative algebra B | b is isomorphic to B.

For every b in a Boolean algebra B, the Stone space of B | b is homeomorphic
to the clopen subset s(b) of Ult B (cf. Example 7.26). Hence, B is homogeneous
iff every non-empty clopen subset of Ult B is homeomorphic to Ult B.

The trivial Boolean algebra and the two-element algebra are clearly homoge-
neous. These are the only finite examples of homogeneous algebras since a
homogeneous algebra with at least four elements must be atomless, hence infinite.
In particular, the four-element algebra is not homogeneous. For all other Boolean
algebras, there is a useful alternative description of homogeneity.

9.13. ProposITION. Let B be a Boolean algebra with |B| #4. Then B is homoge-
neous iff for any two elements a,b of B satisfying 0<a,b<1, there is an
automorphism of B mapping a onto b.

Proor. Let B be homogeneous and 0<a, b<1. The relative algebras B | a,
B! —a, Blb, B —b are all isomorphic; let f:B | a— B | b and
g:B | —a— B | —b be isomorphisms. The map h: B— B, defined by

h(x)=flx-a) + g(x —a),

is an automorphism of B mapping a onto b.

Conversely, let B satisfy the condition stated in the proposition; thus for 0 < q,
b<1in B, we have that B | a= B | b. Without loss of generality, | B| = 8 since
every Boolean algebra with at most two elements is homogeneous. Let 0 < b <1
in B; we want to prove that B | b= B. Since |B| =8, there are disjoint non-zero
elements x and y in B such that a = x + y is less than 1. Lemma 3.2 implies that
Bl a=B | xXB | y. Thus,

B!b=B 'la by 0<a,b<1
=B xXBly
=B laXB | —-a by0<x,y,a, —a<l
=B by 3.2. O

9.14. ProposITION. Every infinite free Boolean algebra is homogeneous.
Proor. We prove the topological dual: for an infinite set I, every non-empty
clopen subset of the Cantor space X =2 is homeomorphic to X.

Let B be the canonical base of X. Each element of B, say

b={xeX:x(i,)=¢ forl=k=n},

where i;,...,i, € are distinct and ¢,,...,¢,E2, is a clopen subset of X
homeomorphic to X, since [ is infinite. In particular for i € I, both



136 S. KopPPELBERG / FREE CONSTRUCTIONS [cH. 4
u,={xeX:x(i)=1}

and X\u, are elements of B. Since X =u; U (X\u;), X is homeomorphic to the
disjoint union space X U X, defined in Section 8 (here U denotes the union of
disjoint copies of X, for the sake of clarity).

Now let ¢ be a non-empty clopen subset of X. Since Clop X is generated by
U = {u,: i € I}, the normal form theorem 4.4 implies that ¢ is the union of finitely
many disjoint elementary products over U, i.e. of finitely many disjoint elements
of the base B, say b;,...,b,. So

c=b,U---Ub,=XU---UX=X. O

We now turn to combinatorial properties of free Boolean algebras. Here the
main result is Theorem 9.16.

9.15. REMARK. Assume that U is an independent subset of a Boolean algebra A,
U,,...,U,are pairwise disjoint subsets of U and A; = (U,), the subalgebra of 4
generated by U,. Then for arbitrary non-zero elements g, of A; (1=i=n),

a;-----a,>0.
To see this, pick for each i an elementary product p; over U, such that 0< p, < a,.

Then p,-----p,<a,-----a,, and p, - --- - p, is non-zero by independence of
U.

9.16. THEOREM. Let « be a regular uncountable cardinal. If F is a free Boolean
algebra and X C F has cardinality k, then X has an independent subset of size k.

Proor. Let F be independently generated by U and let X C F have size k. For
each x € X, pick a finite subset U, of U generating x.

First, as the subalgebras (U, ) generated by U, are finite, X has a subset X' of
size k such that U, # U, for x #y in X'. Next, by the A-system lemma, X' has a
subset X" of size k such that the sets U, x € X", form a A-system, say with root
V. Put W,=U,\V for x in X" and let B= (V).

B is finite; let b,, ..., b, be its atoms. Each element x of X" is generated by
U.=VUW, CBUW,_, hence by the remark following 4.7, there are a,,, . . ., a,
in (W,) such that

X

x=a,, b+ --+a, b,
and thus
—x=(—ay) b+ - -+(—ay) b,.

Finally, there are subsets M and N of {1,..., k} and Y of X” such that Y has
cardinality « and for each x in Y,
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{ie{1,...,k}:a,>0}=M, {ie{l,...,k}:—a,>0}=N;

we show that Y is independent.
Note that M N N #0, for consider two distinct elements x and y in Y. Without
loss of generality x - —y >0, and

x-—y=Z{a,.x-—a,.y~b,.:1$isk}.

It follows that a,, - —a,, >0 for some i; so iE M N N.
To prove independence of Y, let S and T be disjoint finite subsets of Y and
consider the elementary product

p=Hs-H—t.

SES teT
Foreachie€ {1,...,k},

p = bi ) sl;ls Gis * tle_[T I
But for i in M NN, 9.15 shows that the right-hand side is non-zero since
b,e(V),0<a,e(W,),0<—a,c(W,) and the sets V, W, for s € S and W, for
t€ T are pairwise disjoint subsets of U. [

Since distinct elements of an independent set are neither comparable nor
disjoint, we obtain the following corollaries.

9.17. CoroLLARY. Every chain in a free Boolean algebra is countable.

9.18. CoroLLARY. Every free Boolean algebra satisfies the countable chain con-
dition.

The structure of free algebras being well known, they might be used for
comparison with other Boolean algebras. For example, Corollary 9.18 says that
no Boolean algebra with an uncountable pairwise disjoint family is embeddable
into a free one. On the other hand, if Fr « is embeddable into a Boolean algebra
B, then the Stone space of B has the Cantor space “2 as a continuous image and
hence |Ult B|=2". We define the cardinal invariant ind B as a measure of which
free algebras can be embedded into B.

9.19. DEerNtTION. For B a Boolean algebra,
ind B = sup{|U|: U an independent subset of B}
is the independence of B.

Thus, Theorem 9.16 implies that ind B = | B| for every uncountable subalgebra
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B of a free algebra. This is also true for countably infinite B since, for k € w, any
partition of unity in B of size 2* generates a free subalgebra on k independent
generators.

There are examples of Boolean algebras with large cardinality but small
independence. For example, in Section 15 we prove that ind B = w for every
interval algebra B. In the following section we shall define superatomic Boolean
algebras and prove that an algebra is superatomic iff it has no infinite independent
subset. As an easy example for the following proposition, consider the finite—
cofinite algebra over an uncountable set X: it has cardinality | X|, is generated by
the (pairwise disjoint) singletons {x}, x € X, and has no infinite free subalgebra.

9.20. ProposITION (Argyros). Let k be a regular uncountable cardinal and A a
Boolean algebra with a set G of generators such that no subset of G with cardinality
Kk has the finite intersection property. Then A has no free subalgebra of cardinality
K.

Proor. Assume that A has a free subalgebra F of size x; we find a subset of G
which has cardinality « and the finite intersection property. By Corollary 5.10 to
Sikorski’s extension theorem, there is an epimorphism h: A— Q, where Q has F
as a dense subalgebra and & extends the inclusion map idz: F— Q.

Now G generates A, so h[G] generates Q. Since Q has F as a subalgebra and
|F| =k, also |h[G]|= k. Thus, there is some G'C G such that |G'|=«, h is
one-to-one on G’ and A(x) >0 for x € G'. For x € G', pick by denseness of Fin Q
an element a, € F such that 0<a, < h(x).

If G’ has a subset G” of size « such that a, = a, for all x and y in G”, then
clearly G” has the finite intersection property. Otherwise, by regularity of «, there
is some G”C G such that |G”| = k and a, # a, for x # y in G". Then by Theorem
9.16, there is G” C G” such that | G”| = « and the set {a,: x € G"} is independent
in F; in particular, it has the finite intersection property. Thus, G" has the finite
intersection property in A. [

As another application of Proposition 9.20, consider a weak product A=
IT]_, A, of Boolean algebras; suppose that « is regular and uncountable and
|A,| <« for i€ I A is generated by the subset

G ={a€ A:a,;#0 for at most one i E I},

and no subset of G with cardinality « has the finite intersection property. Hence,
every independent subset of A has cardinality less than «.

Let us finally give an example of Boolean algebras with large independent
subsets.

9.21. ExamprLE (Fichtenholz, Kantorovich, Hausdorff). Let A be a set with
infinite cardinality «. Then the power set algebra P(A) has an independent subset
of size 2" (in particular, ind(P(A)) = Z'Al) and 2° ultrafilters.

We may assume in the proof that A is (the underlying set of) the free Boolean
algebra Fr k on k generators. Example 5.25 says that the set U = Ult A, a subset
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of P(A), is independent in P(A); it has size 2" since Ult A is the Cantor space “2.
The subalgebra F of P(A).generated by U is isomorphic to Fr 2%; thus
Ut P(A)| = |Ult F| =2*".

A considerably more general theorem, due to Balcar and Franék, will be
proved in Section 13: every infinite complete Boolean algebra B has an indepen-
dent subset of size |B|.

Exercises

1. Find an infinite Boolean algebra A such that each algebra B with |B| <|A]| is
a homomorphic image of A, but A is not free.

2. Show that for a finite Boolean algebra A with exactly n atoms, ind A =
max{k € w:2*<n}.

3. Prove that every free algebra F is projective, i.e. it has the following
universal property. Let p: A— A’ be an epimorphism of Boolean algebras and
g': F— A’ a homomorphism. Thus there is a homomorphism g: F— A such that
p°g=g.

4. Show that, for any two ultrafilters p and g of a free Boolean algebra F, there
is an automorphism of F mapping p onto q. Equivalently, the topological space
Ult F is homogeneous, i.e. for any two points p, g of Ult F there is a homeomor-
phism from Ult F onto itself mapping p to q.

5. Prove that every Boolean algebra is isomorphic to the Lindenbaum—Tarski
algebra of some first order theory (9.10 says it is isomorphic to the algebra of
formulas of a propositional theory).

6. For F free over U, show that there is a unique finitely additive measure
w: F—[0,1], as defined in Exercise 5 of Section 3, such that each elementary
product gu, - -+ -¢gu, (,€{+1,-1}; u,,...,u, €U pairwise distinct) has
measure 1/2". Conclude that each chain and also each pairwise disjoint family in
F is countable — cf. 9.17 and 9.18.

7. Show that every infinite algebra with the countable separation property has
an independent subset of size 2°.

10. Independence and the number of ideals

We study in some detail the problem of finding large independent subsets of
Boolean algebras. Results of this type are also interesting to topologists since they
guarantee that certain Boolean spaces have generalized Cantor spaces of large
weight as continuous images.

More precisely, Shelah’s theorem 10.1 says that the cardinal invariant ind A of
a Boolean algebra A, i.e. the least upper bound of the sizes of independent
subsets of A, is large if A satisfies, say, the «x-chain condition and the cardinality
of A is large if compared with k. Sapirovskii’s theorem 10.16 then describes ind A
in terms of a cardinal invariant for ultrafilters in homomorphic images of A. The
crucial argument of both theorems is an inductive construction of independent
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families using somewhat advanced tools of set theory: stationary sets and Fodor’s
theorem. See the Appendix on Set Theory in this Handbook for a review of
these.

As a consequence of Theorem 10.16, we prove in 10.17 that for A a subalgebra
of B, ind B is essentially the supremum of ind A and the cardinals ind B/p, where
p is an ultrafilter of A and p the filter of B generated by p; B/p is then the stalk
over p in the canonical sheaf representation of B over A developed in Section 8.
The proof will, however, not use any terminology or results from sheaf theory.

Let us point out another substantial result on independence, the Balcar—Fran¢k
theorem proved in Section 13: every infinite complete Boolean algebra of
cardinality « has an independent subset of size k. A thorough discussion of the
behaviour of the cardinal invariant ind under algebraic constructions such as
products, quotients, subalgebras, etc. can be found in Monk [1983].

Using the main theorem and the methods of the first subsection, the second one
presents a recent result by Shelah: the number id(A) of ideals in an infinite
Boolean algebra A satisfies id(A)” =id(A).

10.1. Independence and chain conditions

The aim of this subsection is a theorem by Shelah claiming that the indepen-
dence of a Boolean algebra A is large provided the cardinality of A is large if
compared with the cellularity of A. Recall that A satisfies the «-chain condition if
every pairwise disjoint family in A has cardinality less than «.

10.1. TueoreM (Shelah). Assume k and A are regular infinite cardinals such that
u=" < A for every cardinal u < A, and that A is a Boolean algebra satisfying the
k-chain condition. Then every subset X of A of size A has an independent subset Y
of size A.

Before embarking on the proof, we collect some frequently used principles
connecting chain conditions and the size of k-complete subalgebras. In Definition
4.1, we called a subalgebra A of a Boolean algebra B a k-complete subalgebra (a
complete subalgebra) if for every X C A of cardinality less than « (respectively for
every X C A) such that %% X exists, also * X exists and 24 X =22 X —ie. if A
is closed under all sums of length less tan k (respectively under arbitrary sums)
which happen to exist in B. Strictly speaking, this is an abuse of language since
the definition does not say that A is k-complete in its own right. But if B is
x-complete and A is a k-complete subalgebra of B, then A will be k-complete,
too.

10.2. LEMMA. Assume B satisfies the k-chain condition and X C B. Then there is
some Y C X of size less than k such that X and Y have the same upper bounds in
B. In particular, L. X = L Y if one of these sums exists.

Proor. This follows easily from Lemma 3.12 if B is | X|-complete. For arbitrary
B, we argue as follows. Let D be a pairwise disjoint family in B maximal with
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respect to the condition that for each d € D there is some x, € X satisfying
d=x,.

D and X have the same set of upper bounds: clearly every upper bound of X is
an upper bound of D. Conversely, let b be an upper bound of D and suppose that
xZb for some x € X. Then DU {x-—b} contradicts maximality of D. By the
k-chain condition, |D|< k. So Y = {x,: d € D} works for the lemma. O

As a consequence of 10.2, every o-complete Boolean algebra satisfying the
countable chain condition is complete. Similarly, a Boolean algebra is complete if
it is k-complete and satisfies the k-chain condition.

10.3. LEMMA AND DEFINITION. Let k be an infinite cardinal, B a Boolean algebfa
and X C B. Then

(XY™ = {A: XC ACB, A a k-complete subalgebra of B}

is the smallest x -complete subalgebra of B including X, the k-complete subalgebra
generated by X (or: the subalgebra k-completely generated by X). Similarly

(X)*™=({A: XC AC B, A a complete subalgebra of B}

is the smallest complete subalgebra of B including X, the complete subalgebra
generated by X (or: the subalgebra completely generated by X).

Unfortunately there is no reasonable analogue of the normal form theorem 4.4
for the elements of (X )" or (X)°™ In fact the lack of normal forms has the
striking consequence that the complete subalgebra generated by a countable set X
can have arbitrarily large cardinality — a result due to Gaifman and Hales which
will be proved in Section 13. Thus, assertions on the size of { X)“™ have to rely on
additional hypotheses.

10.4. LemMA. Let k be a regular infinite cardinal and X a subset of a Boolean
algebra B. Then

(X" = max(aw, | X])=".
Proor. Define by induction subsets X, of B for a <«k: let
X,=XuU{0,1},
X, =X, U{-x:x€EX,}U {2 M:MCX,,|M|<k, L M exists}
and for limit ordinals A < «,
Xx,=Ux,.
a<A

It is easily checked by induction on a<k that X, C(X)“°™ and
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X, |= max(w | X|)=". By regularity of « and the definition of X, ,,, U,_, X, isa
k-complete subalgebra of B. Hence, (X)**"=U__ X, ,. O

10.5. CorOLLARY. Assume B satisfies the k-chain condition for a regular infinite
cardinal k. Then for every subset X of B,

|{X) | = max(w, | X])=" .
Proor. By 10.2, (X)°™ coincides with (X)"“°™. O

The following Lemmas 10.6 and 10.8 allow us to construct independent sets in
the proofs of both Theorem 10.1 and Sapirovskii’s characterization 10.16 of
independence.

10.6. LeMMA. Assume T is a set of ordinals, (A,),er an increasing sequence of
subalgebras of a Boolean algebra B, r a non-zero element of B and (a,) .y a
sequence in B such that
(i) ag€A,, for B<ain T,
(i) reA,, forainT,
(ili) x-a,>0and x-—a, >0, forain Tand xE(A, | )" = A, | n{0}.
Then {a,: a € T} is an mdependent subset of B.

Proor. We prove by induction on n thaf, for a(1)<:--<a(n) in T and
&y, €, in {+1, =1},

P=r-ga,qy " ¢g, a(n)>0

This holds for n=0 since r>0. Suppose it holds for n, so p>0. Now if
e€{+1, -1} and a € T is such that a(n) < a, then (i) and (ii) imply that p is a
non-zero element of A, | r. Thus, both p-a, and p - —a, are non-zero, i.e. our
assertion holds for n +1. O

We introduce a piece of notation for the proof of Theorem 10.1. If B is a
complete Boolean algebra and C a complete subalgebra of B, let for fixed x € B

lpr(x,C)=2{cEC:ch}, upr(x,C)=H{c€C:xsc},

the lower and the upper projection of x with respect to C. So lpr(x, C) is the
greatest element of C below x and upr(x, C) is the least element of C above x. (In
the terminology of Definition 8.19, lpr(x, C) = pr.(x), but the above notation is
more suggestive in the present context.) Clearly, Ipr(x, C) < x <upr(x, C), and
Ipr(x, C) =upr(x, C) iff x € C. The impact of these notions to independence
comes from 10.6 and the following lemma.

10.7. LemMMA. Let B be complete, A a complete subalgebra of B and a € B\A.
Then

r =upr(a, A)- —lpr(a, A)
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is a non-zero element of A such that, for every non-zero element x of A | r,
x-a>0and x-—a>0.

PROOF. r is non-zero since a € A and thus Ipr(a, A) <upr(a, A). Let x€ A | r
be non-zero.

If x-a=0, then a=< —x, upr(a, A) < —x since —x € A, and x < —upr(a, A) =
—r, which contradicts 0<x=r. Similarly, if x-—-a=0, then x=a,
x=<Ipr(a, A) since x € A, so again x<—r. [

Our final lemma for bridging the gap between 10.7 and 10.6 is a standard
application of Fodor’s theorem.

10.8. LEMMA. Let A be a regular uncountable cardinal and (A ), ., an increasing
sequence of Boolean algebras such that |A_ | <A for a <A and |U,_, A |=A.
Assume S is a stationary subset of A and that, for a €S, A, = UBQ Agandr,is
an element of A ,. Then there arer€ U __, A, and a stationary subset T of S such
that r, =r for each a € T.

Proor. Fix a bijection

fia—> U A

a<A @

A routine argument shows that
K= {a <A fla] = 3L<Ja AB}

is closed and unbounded in A, so SN K is stationary. We obtain a regressive
function

g SNK—A
by letting
g@)=17(r.)-
For r, is an element of A,; if « €S, then r, € U,_, A, and if, in addition,

a €K, then f'(r,) < a.
Now by Fodor’s theorem, g is constant on a stationary subset of SN K. [

Proof of Theorem 10.1. Suppose k, A, A and X are given as stated in 10.1. Note
first that k <2~ < A. Hence,

S={a<Ak=cfa}
is a stationary subset of A.

Let B be the completion of A and define, by induction on @ <A, e, € X and a
complete subalgebra A, of B:
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A,=(ag: B<a)™, a,EX\A, .

This is possible since, by denseness of A in B, B satisfies the k-chain condition; so
|A,| = max(w, |«])= <2

by Corollary 10.5 and our hypothesis on «, A. For every a €S, A, =U g<a Aps
for by k =cf a, UBQ A, is a k-complete subalgebra of B, hence a complete
subalgebra by the k-chain condition and Lemma 10.2. Moreover, |U__, A, |=A
by |[A,|<Aand a, €A,.

For a € §, let

ra = upr(aa’ Aa). _lpr(aa’ Aa) *

Sor,€ A, and r, >0 since a, £ A,. Applying 10.8, we get a stationary subset T
of S and r >0 such that r, = r for « € T. Lemma 10.7 says that (A,), 7, r and
(a,) e satisfy the hypotheses of 10.6. Thus, Y ={a,: a € T} is an independent
subset of X having cardinality A. O

As an immediate consequence of 10.1, we obtain:

10.9. CorOLLARY. Let 7 be an infinite cardinal. Then if A is a Boolean algebra
such that |A|>2" and A satisfies the 7" -chain condition, then A has an indepen-
dent subset of cardinality (27)". (In fact, every subset of A of size (27)* has an
independent subset of size (27)".)

Proor. Apply Theorem 10.1to k =7" and A=(2")". O

Letting 7= w in the corollary, we obtain that in an algebra A satisfying the
countable chain condition, each subset of A of size (2°)" has a subset of size
(2®)* which is independent, hence has the finite intersection property (cf. Section
2). This result is best possible in the following sense: in ToporCEvi¢ [1986], an
algebra A is constructed (in ZFC) which satisfies the countable chain condition,
but not every subset of A of size 2“ has a subset of size 2“ with the finite
intersection property.

The technique of Theorem 10.1 is used in SHELAH [1980] to prove two
additional facts:

(1) Let A be a weakly compact cardinal and A a Boolean algebra of power A
satisfying the A-chain condition. Then every subset X of A of size A has an
independent subset Y of size A.

(2) Let A be singular and k regular such that p~* < A for every u < A. Assume
A is a Boolean algebra satisfying the k-chain condition. Then every subset X of A
of size A" has an independent subset Y of size A.

ARrGYROs [1981] presents, under the generalized continuum hypothesis, a
construction of a Boolean algebra A such that |A| = A" where A is singular, A
satisfies the k-chain condition where k = (cf A)” and A has no independent subset
of size A" (note that these assumptions imply u=* <A for every w <A). This
shows that (2) above cannot be improved to give |Y|=A".
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10.2. The number of ideals of a Boolean algebra

We shall apply Shelah’s theorem 10.1 and part of the techniques used in its
proof to show the following theorem.

10.10. TueoreM (Shelah). If A is an infinite Boolean algebra and id(A) the
number of its ideals, then id(A)” =id(A).

Thus, by the duality between ideals of Boolean algebras and open subsets of
Boolean spaces (cf. 7.25), the number o(X) of open subsets of an infinite Boolean
space X satisfies o(X)* = o(X).

More generally, de Groot asked the question whether, for an infinite Hausdorff
space X, o(X) is necessarily a power of 2; asking whether o(X)” = o(X)
considerably weakens this question. Let us note that in spaces X which fail to
satisfy reasonable separation properties also the equation o(X)” = o(X) can fail
badly: e.g. let the underlying set of X be any infinite cardinal «; the set o(X) of
all initial segments of k (i.e. o(X)= k +1) is a topology on X and has size k.
Concerning de Groot’s problem, it was proved, for example, by Hajnal and
Juhasz, assuming the generalized continuum hypothesis and non-existence of
inaccessible cardinals, that o(X) is a power of 2, for every Hausdorff space. See
HopkL [1984] for a survey of de Groot’s questlon SHELAH [1986] shows, under an
additional set-theoretical assumptlon (0% does not exist), that o(X)” = o(X) if X
is Hausdorff and o(X) =2

The major step towards Theorem 10.10 is Proposition 10.14 below. Call a
subset D of a Boolean algebra A ideal-independent if no element d of D belongs
to the ideal generated, in A, by D\{d}. Similarly, a family (d,),, of elements of
A is said to be ideal-independent if for no i in I, d; belongs to the ideal generated,
in A, by {d;: j#i}. This notion is relevant to the proof of 10.10 since dlstmct
subsets of any ideal-independent set D generate distinct ideals and hence 2/P!
id(A).

A translation of ideal-independence to topology runs as follows. For any
topological space, the spread of X is the cardinal invariant

sX =sup{|Y|: Y a discrete subspace of X} .
Let
s*X =sup{|Y|": Y a discrete subspace of X} .

10.11. LemMA. (a) An infinite Boolean algebra A has an ideal-independent subset
of size « iff its dual space has a discrete subspace of size k. Hence,

s*(Ult A) =min{k: A has no ideal-independent subset of size k} .
(b) cf(s*X) > w, for each infinite regular Hausdorff space X.

Proor. (a) If Y is a discrete subspace of Ult A, then for y € Y choose a clopen



146 S. KorPELBERG / FREE CONSTRUCTIONS [ch. 4

subset a, of Ult A such that a, N Y = {y}. Clearly, (a,),ey is an ideal-indepen-
dent family in Clop Ult A, an algebra isomorphic to A. Conversely, suppose D is
an ideal-independent subset of Clop Ult A= A. No element d of D is covered by
finitely many elements of D\{d}; by compactness of Ult A, choose a point y, in
d\U (D\{d}). Then Y ={y,: d € D} is a discrete subspace of X, since dNY =
{ya)-

(b) A proof of this non-trivial result and of the set-theoretical background
required is contained in Junasz [1971]. O

The proof of Proposition 10.14, and also of Lemma 10.13 preparing it, is
facilitated by a slight extension of some notation in the preceding subsection. If B
is a complete Boolean algebra, b € B and X an arbitrary subset of B, put

Ipr(b, X) =1pr(b, (X)), upr(b, X) = upr(b, (X)) .

10.12. Lemma. (a) Assume B is complete, XCYC B and b€ B such that
Ipr(b, Y)E X. Then lpr(b, Y)=Ipr(b, X); similarly, upr(b, Y)=upr(b, X) if
upr(b, Y) E X.

(b) Assume B is complete, C and D are complete subalgebras of B such that
DcCCBanddeD,ceC,be B. Then

if d-b-—c=0 and upr(b, C)E€ D, then d-upr(b, C)- —lpr(c, D)=0;
ifd-—(b-—c)=0, then d- —(lpr(b, C)- —upr(c, D)) =0.

Proor. (a) Clearly, lpr(b, X)<Ipr(b, Y). On the other hand, lpr(b, Y) is an
element of (X)°™ lying below b, so lpr(b, Y)=<Ilpr(b, X) and lpr(b, Y)=
lpr(d, X).

(b) We prove the first assertion; the proof of the second one is similar but
easier. Ifd-b-—c=0,thenb=c+ —d, upr(b, C)=<c+ —dsince c + —d isin C,
and d-upr(b, C)<c. Now if, in addition, upr(b, C) € D, then d-upr(b, C) <
Ipr(c, D); this gives d - upr(b, C)- —lpr(c, D)=0. O

Let us say, in this subsection, that an infinite cardinal A is k-closed if ue<A
holds for each cardinal u < A.

10.13. LEMMA. Assume k and A are regular infinite cardinals and A is k-closed.
Let B be a complete Boolean algebra satisfying the k-chain condition and (a,),, <,

a sequence of pairwise distinct elements of B. Then there are b, b, in B such that
for any X C B of size less than A and containing b, b,, the set

A{a<ilpr(a,, XU{ag: B< a})=b, and upr(a,, X U {az: B<a})=b,}
has cardinality A.

Proor. Suppose not. Then for every pair p = (b,, b,) in B there is a counter-
example X(p) C B satisfying | X(p)| <A, b,, b, € X(p), but
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[{a <A:lpr(a,, X(p)U{az: B<a})=b, and
upr(a,, X(p) U{a,: B<a})=b,}|<A.

We shall construct a complete subalgebra C of B which is closed under taking
counterexamples and write C as the union of an increasing continuous chain of
subalgebras C,; a standard argument using stationary sets will then produce a
contradiction.

To this end, define, for p =(b,, b,) €E B X B,

X'(p)=X(p)U{a,: a<A,lpr(a,, X(p)U{az: B<a})=b,,
upr(a,, X(p)U{as: B<a})=b,}

and, for a <A,

X (p)=X'(p)U{az: B<a}.
Then X'(p) and X_(p) have cardinality less than A. Moreover, application of
Lemma 10.12(a) to X(p)U{a,: B<a}C X (p) shows, together with b,, b, €
X(p), that
(3)  if Ipr(a,, X.(p)) = b, and upr(a,, X.(p)) = b,, then a, € X'(p).

Let C=U__, C,, where the subalgebras C, of B are defined, by induction, as
follows: C,=2, C, = U,B<a C, for limit «, and

Con={C. Ve B<a)UU (X(p): pEC, X C,)
U{Z M:Mc;ca,|M|<K}>.

Since B satisfies the «-chain condition, A is k-closed and | X'(p)| < A, each C, has
cardinality less than A. Also, for each 6 in the stationary set

S={6<Acfd=«},

it follows, as in the proof of 10.1, that C; is a complete subalgebra of B. By
continuity of the chain (C,),., and |C,| < A, the set

S’ = {8 < A: 8 limit, and for a <A: @ <$§iffa, € C,}

is closed and unbounded in A. We shall eventually reach a contradiction by fixing
an element § of SN S’. For this §, C, is complete and a; & Cs. The pair

p =(by, by) = (Ipr(as, Cs), upr(a,, Cs))

is in C; X Cj; since 6 is a limit ordinal, also X'( p) C C;. It follows from
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by, b, € X(p)CX'(p)C X,(p)C G,
and Lemma 10.12(a) that

b, =lpr(a,, C;) =Ipr(a;, X(p)) = Ipr(a,, Xsl (p)

and similarly that b,=upr(a;, X;(p)). Thus by (3), a,EX'(p)CC;, a
contradiction. [

10.14. PROPOSITION. Assume that « is regular, A is k-closed, and that A is a
Boolean algebra satisfying the k-chain condition and |A|=\. Then A has an
ideal-independent subset of size A.

Proor. If A is regular, this follows from Theorem 10.1 since every independent
set is ideal-independent. Thus assume that A is singular. Note that

(4) for every infinite cardinal u <\, (u~*)" is k-closed and satisfies
p=(p)" <A

since « is regular and A is k-closed. By (4), we can write

A= sup A,

B<cfA

where A, <Ag for a < <cf A, A, is a k-closed successor cardinal and cf A < Ag.
The followmg set of pairs of ordinals:

P={(B,a): B<cfA,a<A,}= Byc“ {B}x A4
has cardinality A and is well-ordered by the lexicographic order
(B,a)<(B',a') iff B<B'or (B=B'and a<a’).

Since |A| = A, choose pairwise distinct elements a,, p € P, in A and write ag, for
a,, if p=(B, @) € P. We shall define, for p € P, an element y, of A and prove
that (y,), ep is ideal-independent.

Working in the completion A of A, we apply Lemma 10.13 to each of the sets
{@g,: @ <A,z} to obtain by, b,z € A such that for any X C A with |X| <\, and
big, b, EX we have
(5) [{a <Ag:lpr(ag,, XU{a,,: v<a})=b,, and

upr(ag,, XU {a,,:v<a})= by} =g

Note that b,z <b,,, for otherwise each a in the set displayed in (5) satisfies
big = by = ag,, i.c. the set has at most one element; contradiction. Hence,
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b = by by

is non-zero. For p € P, define
E,={bg, b5, by: B<cfA}U{a;:lEP,1<p};

SO

(6) p<gq implies E,C E_.

To define the elements y, for p € {8} X A,4, consider the subset
X={bg, big, bys: B<cf A} U{a;: I=(y, v) E P where y < B}

of A; it has cardinality less than Ag and contains b, and b,s. If p=(B, a)E
{B} X Ag, then XU {a,,: v<a}=E,. By (5) above, the set

Q={p€{B} X Ag:lpr(a,, E,)=b,, and upr(a,, E,) = b,z }

has size A,;. Thus, by induction on the lexicographic order, assign to each pair
pE{B} X A, two pairs p’, p” such that

@) p,p"€Q and p'<p”,
8 if p<gq, then p'<p"<q'<q";

note that, since for p € { 8} X A, also p’ and p” are in {8} X A4, (8) will hold for
arbitrary pairs p, q in P.
Put

an element of A. We are left with showing that the family (y,),cp is ideal-
independent. Suppose for contradiction that

yp._yp(l). PR .—yp(n)=0,

where p, p(1), ..., p(n) in P are distinct. We may assume that n € w is minimal
for this situation and that p(1) <--- <p(n).

Case 1. n=1 and p < p(n). Let then p(n)" have the form (B, a) and consider
the complete subalgebras

D= <Ep(n)’>cm c Cc= (Ep(n)”>cm c B= (EB,a+1>cm

of A and A=Y, =Ypoay' """ " Ypm-1)> €= 8pinys b =0a,(, (8) shows that
deD, ceC, and be B. Now Ipr(b, C)=b,,, upr(c, D)=b,, and 0=d-
~Ypmy = d-—(b-—c); by Lemma 10.12(b) and b, < b,;, we obtain d =0 which
contradicts the minimality of .
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Case 2. n=0 or p(n) <p. Let then p" have the form (B, a) and consider the
complete subalgebras

= (Ep,>cm cC= <Ep~>cm CB= <Eﬁ,a+1>cm

of A and the elements d = —Yra1) m of D, c=a, of C, b=a, of B.

Then upr(b, C) = b,, € D, Ipr(c, D) b and 0=d-y, —'d-b-—c; again by

Lemma 10.12(b), we obtain d- bg = 0. If n O this implies b, =0, a contradic-

tion. Otherwise, consider x =bg - =Y,y *** * —Yp(n_1), 2 element of (E, )

disjoint from —y,.,,. The proof of Case 1 then shows that x =0. But a,

upr(a,., E,.) = b,, and similarly —a, <—b,5, so y,<bg and y,- —y, )"
~Ypn-1) O contradicting the mlmmahty ofn. O

Proof of Theorem 10.10. The proof is broken up into six steps defining certain
sets and seven claims concerning these sets.

Let Id(B) denote the set of ideals of an arbitrary Boolean algebra B, id(B) its
cardinality and, for b in B, put id(b) =id(B | b). For an arbitrary ideal / in B
and bin B, define I | b=INB | b.

Let A be an infinite Boolean algebra and assume for contradiction that
id(A) <id(A)“.

Step 1: Definition of A and A,. Let A be the least cardinal satisfying id(A) < A*.
By id(A) <id(A)” and minimality of A,

A=<id(A) <A°®

A has an infinite pairwise disjoint family and hence has at least 2 ideals; thus,
2° <id(A) and 2° < A. By the minimal choice of A, k < A implies that k“ < A. It
follows that cf A= w —otherwise A“=X, _, k*=<A=id(A), a contradiction.
Hence, there is a sequence (A,),c, of cardinals satisfying

nEw

A=supd,, 2°=s=A, <A <--, A=A,
nEw

Claim 1. There is (without loss of generality) no b in A such that id(b) = A, and
id(=b)= A.

For, suppose that for each n € w and a € A with id(a) = A, there is b < a such
that id(b) = A, and id(a- —b) = A. Then by induction we get a pairwise disjoint
family (a,),c, in A such that id(a,) = A,; it follows by disjointness of the a, that
M, A, =<I0,.,id(a,) =id(A), and IT, ., A, = A” (e.g. see Theorem 1.6(i) in the
Appendix on_Set Theory); a contradiction. So there are a € A and n € » such
that id(a)= A but for no b=<a we have both id(b)= A, and id(a- —b)=A.
Replacing (A, )ico Y (Ay),<k<o and A by A | a, we may assume that n =0 and
a=1.

Step 2: Definition of M. The set

nEw

M={a€ A:id(a) < Ay}

is clearly an ideal of A; by Claim 1, it is maximal. In particular, |A| = |M|.



§10] INDEPENDENCE AND THE NUMBER OF IDEALS 151

Claim 2. |A| < A,, without loss of generality.

To see this, assume first for contradiction that A =<|A| and consider the
countably generated ideals of A included in M. If such an ideal / is generated by
the countable subset X of M, then

I=U {A | s:s a sum of finitely many elements of X},

and |I| = @ - A, = A, since there are only countably many sums of finite subsets of
X, and if s is one of these sums, then s € M and |A | s| <id(s) < A,. Each ideal I
as considered above has at most A; = A, countable subsets. So there are at least
|M|® = A“ countably generated subideals of M and A“ <id(A), a contradiction.
Thus, |A| < A and, without loss of generality, |A| < A,.

Step 3: Definition of Id' and Id". We partition the set Id(A) of all ideals of A
into two subsets: let

Id'={I€ld(A): ICM}, Id"=Id(A\Nd' .

Claim 3. |I1d"| < A, and thus |Id’| = A.

For if 1€ 1Id”, then there is a €M such that —a€1I; since —a€l, I is
determined by I | a. There are at most A, choices for a € M, by Claim 2; for each
a € M, there are at most ), choices for I | a, by definition of M. Thus, |1d"| < A,.

Step 4: Definition of s, and a(I), for I€ Id'. For I € Id', choose by Zorn’s
lemma an ordinal a(/) and a sequence

s = (ai)i<a(l)
in A satisfying
a,€EM, a, &I, a,-a,€lfori<j<a(l)

and such that, for m: A— A/I canonical, {7 (a,): i < a(I)} is maximally pairwise
disjoint in the set {m7(a): a € M}.

Claim 4. If s,=5s,=(a;);c,and I | a,=J | a, for all i< e, then I=1J.

For assume there exists x €/\J. Then xEM, x&J, and x-a,EI | a;,=
J I a;CJ holds for all i <a, contradicting the maximal choice of (a;);., =s,.

Step 5: Definition of 0. Let o be the cardinal s*(Ult A). By Lemma 10.11, it is
the least cardinal k such that A has no ideal-independent subset of size «;
moreover cf o> w.

Claim 5. 2= = (27)” < A,, without loss of generality.

257 =(277)* follows from cf o0 > w. For each k < o, 2“ =<id(A) holds by the
very definition of o; so 2°7 <id(A). Since 27 = (27)* but id(A4) <id(A)*, we
obtain 27 <id(A) and, without loss of generality, 2=7 < A,.

Claim 6. For I € 1d', there are, without loss of generality, at most A, elements
J of Id’ satisfying s, =s,.

In fact, fix /€ Id" and let s, = (a,);.,. For i < a, consider

Id'={K€E€I(A | a): a, &K but a;-a, €K, for j € a\{i}},
i = |Idi| :
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Then
[(Jetd:s,=s3=<1l y,

since, by Claim 4, each J € Id' satisfying s, = s, is determined by the sequence
(J ! a;)icq, and J | a; € Id’ for all i < a. Next,

_l;[ My = ld(A) b

since the map assigning, to each sequence (K,),., where K€ Id’, the ideal
generated by U,_, K, is one-to-one. We claim that the cardinal u =1II,_, u;
satisfies u < A.

This is trivial if w is finite. Also, if u = u, for some i, then u <A, since, by
a,€E M, p;=id(a;) < A,. If p is infinite and p > u, for all i < a, then p* = u (see,
for example, Theorem 1.6(iii) in the Appendix on Set Theory). Since u <id(A)
and id(A) <id(A)®, it follows that u < A.

We have thus assigned, to each I € Id’, a cardinal w(/) < A having the form
I, <oy &,y Where (by ideal-independence of (a,);<o(y) @(I) <o and p, ;< A,.
Application of Theorem 1.6(iv) in the Appendix on Set Theory to o and y = A,
shows that the set {u(l): I€Id’, Ay < w(I)} is finite. So there is n € © such that
w(l) <A, for all I € Id'; without loss of generality, n =0. This proves Claim 6.

Claim 7. There is some k < o such that A <|A|".

The set Id' defined in Step 3 has, by Claim 3, at least A elements. By Claim 6,
there are at least A elements I of Id’ with pairwise distinct sequences s,. Since
(@:)i<a(r is an ideal-independent sequence in A, the length a(I) of s, is less than
o. Thus, there are at least A sequences of length less than o in A4, and A =< | A|~".
It follows from cf A = w and cf o >  that A <|A|", for some k < o.

Step 6: Definition of & and x. Fix k < ¢ as guaranteed by Claim 7 and put

8 =max(k ", sat A)

(sat A has been defined, in Section 3, to be the least cardinal p such that A has no
pairwise disjoint family of size p). Let y be minimal with respect to the property
that

|Al=x~".

We shall reach a final contradiction by applying Proposition 10.14 to the
cardinals & and y. First, & is regular by Corollary 3.11 of the Erddés—Tarski
theorem. Also, A satisfies the &-chain condition and, by sat A = o, we obtain
8 = 0. By regularity of 8 and the minimal choice of y, x is 8-closed, in the sense
defined preceding 10.13. The definition of y implies that y <|A|. So by Proposi-
tion 10.14, A has an ideal-independent subset of size y; this gives y <o and
2X¥ =<id(A). Some cardinal arithmetic now shows that also id(A) =2* and thus
that id(A) = 2* satisfies id(A)“ =id(A), finishing the proof by contradiction:
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2°=<2%" byd=o
<X by Claim 5
<A
=|A|™® by k<8 and Claim 7.

So 2<% <x by our choice of y. It follows that A=<|A|®®=x=° § =2 =<y,
A=x=x¥=2¥and id(4)=A"=2*x. O

10.3. A characterization of independence

The two major results of this subsection, Theorems 10.16 and 10.17, are stated
in terms of a cardinal invariant ind* defined as follows.

10.15. DerNiTION. Let A be a Boolean algebra. For D and X subsets of A, D is
dense in X if for every x € X\{0}, there is some d € D such that 0<d =x (D is
not required to be a subset of X). For any filter g in A,

mx,(q) =min{|D|: D C A, D dense in g}
is the pseudo-character of q in A.
mxA =min{my,(p): p €Ul A}
is the pseudo-character of A. Finally, let
ind* A =sup{myA’: A’ a non-trivial homomorphic image of A} .

10.16. THEOREM (Sapirovskii). If A has an infinite independent subset (i.e. by
10.19, if ind* A = w), then ind A = ind* A.

10.17. TueoreM (Sapirovskii). Let A be a subalgebra of B; for p € Ult A let p be
the filter of B generated by p. Then

ind* B = max(ind* A, sup{ind*(B/p): p€Ult A}).

In the terminology of sheafs (see Section 8), Theorem 10.17 implies that if
F=(S, m X,(B,),cx) is the sheaf associated with the pair (A, B), then the
value of ind* for the algebra I'(¥) of global sections is determined by the value of
ind* for Clop X and the stalks B,. Our proof will, however, not use any sheaf
theory.

The. term pseudo-character for my,(g) comes from the dual topological situa-
tion where the filter g corresponds to a closed subset of Ult A —cf. the remarks
following Theorem 7.25. ind* A could be more properly written as hmyA (the
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hereditary pseudo-character of A), but in view of Theorem 10.16, we prefer the
notation ind*.

If p is an ultrafilter of A, then clearly my,(p) =1 iff p is generated by an atom
of A, and my,(p)= w otherwise. Hence, myA =1 iff A has at least one atom,
and myA = w otherwise. It follows that ind* A =1 iff every non-trivial homomor-
phic image of A has an atom, and ind* A = w otherwise.

10.18. DeFiNTION. A Boolean algebra A is superatomic if every non-trivial
homomorphic image of A has an atom.

Superatomic algebras are investigated in greater detail in Section 17 where, in
particular, several attractive equivalences to superatomicity are given. Cf. also the
survey chapter by RorrmMan [Ch. 19 in this Handbook] for special questions on
superatomic Boolean algebras.

Let us recall two obvious facts on independence: first, a Boolean algebra A has
an independent subset of cardinality « iff Fr «, the free algebra on x generators,
embeds into A. Second, if f: A— A’ is a homomorphism of Boolean algebras, fis
one-to-one on X C A and f[X] is independent in A’, then X is independent in A.

10.19. LemMA. (a) If A has no infinite independent subset, then A is superatomic.
(b) If A has an independent subset of size k = w, then A has a homomorphic
image A' such that myA' = k.
In particular, ind* A =1 iff A is superatomic iff A has no infinite independent
subset.

Proor. (a) Suppose A’ is an atomless non-trivial homomorphic image of A. It is
not difficult to see that A’ has a countably infinite atomless subalgebra F'. By 9.11
and 5.16, F’ is isomorphic to Fr w; so each of F', A’ and A has an infinite
independent subset.

(b) Assume that Fr « is a subalgebra of A. By the Corollary 5.10 to Sikorski’s
extension theorem, there is an epimorphism 7 from A onto an algebra A’ having
Fr k as a dense subalgebra. Let p be an arbitrary ultrafilter of A’; we show that
mx 4+ (p) = k. Otherwise, pick Y C A’ such that 0 € Y, |Y| < k and Y is dense in p.
By denseness of Fr k in A, we may assume that Y C Fr . Let U be a set of free
generators for Fr k, and for y €Y, let U, be a finite subset of U generating y.
Then U'=U yey U, has cardinality less than «, so pick u € U\U'. Now either
u€por —u€p.If u€p, then by denseness of Yinp, 0<y=<uforsome ye Y,
a contradiction since y is generated by U’, u€ U\U’' and U is independent.
Similarly, —u € p leads to a contradiction. [

10.20. LEmMA. Let C be a subalgebra of A such that |C| < mxA. Then there are
a€ A and r € C” such that for each x€(C | r)*, x-a>0and x- —a>0.

Proor. Every ultrafilter p of A has an element a, such that, for every x € C”,
x - —a, > 0; this is because C" is not dense in p. Since a,€p, theset {—a,: p€E
Ult A} is not included in any ultrafilter of A and does, by the Boolean prime ideal
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theorem 2.16, not have the finite intersection property. So there is a finite subset
Yof {—a,: peUlt A} such that I Y = 0; note that, by definition of the elements
a,,x-y > 0 for xin C* and y in Y. Let Z be a subset of Y which is minimal with
respect to the property that, for some r in C™,

) r-llz=0.

Z is non-empty since r > 0. Fix an element a of Z; by (9), r-a-11(Z\{a}) =0 and
hence

r-1l(z\{a})< -a.

Consider an arbitrary element x of (C | r)". Then x-a>0 since a€ ZCY.
Also,

0<x-II(Z\{a}) by minimality of Z
=x-r-1l(z\{a})
=x-—a. O

10.21. LemMA. Let A be a regular uncountable cardinal such that A< wyA. Then
A has an independent subset of cardinality A.

Proor. We define by induction elements a, and r, of A and subalgebras A , of A,
for @ <A, as follows. Given a, for g < a, let

A,=(az;:B<a).
Since |A_| <A =<myA, choose by Lemma 10.20 a, € A and r, €(A,)" such that
x-a,>0, x-—a,>0 forxe(A, |r,)"

In particular, a, €A,. So |U,_, A,|=1; also A, =U,_, A, for each limit
ordinal a. Apphcatlon of Lemma 10.8 gives an r € A" and a statxonary subset T
of A such that r,=r for each « €T. By Lemma 10.6, {a,: «a €T} is an
independent subset of A of size A. O

Proof of Theorem 10.16. Assume that A has an infinite independent subset, i.e.
that ind* A= w. Then Lemma 10.19(b) implies that ind A <ind* A. The con-
verse, ind* A =ind A, will follow if we can prove that for every non-limit cardinal
A=ind* A, also A <ind A holds. But if A=ind* A is a successor cardinal, pick a
homomorphic image A’ of A such that A< myA’. By Lemma 10.21, A’ and hence
A has an independent subset of size A. O

Let us note, as a consequence of 10.16 and 10.19, that if A is a subalgebra or a
homomorphic image of B, then ind* A =ind* B. This is trivial for homomorphic
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images; so suppose A is a subalgebra of B. If ind* B =1, then B is superatomic
and so is A, by 10.19; thus ind* A= 1. If ind* B = o, then ind* A = (ind* B)"
would give, by 10.16, an independent subset of A having size (ind* B)"; so
ind B = (ind* B)", a contradiction.

Proof of Theorem 10.17. 1t follows from the preceding remark that ind* A=<
ind* B and, for each p in Ult A, ind*(B/p) <ind* B. So our theorem follows if
ind* B=1.

Thus, assume that ind* B = w. It suffices, by Theorem 10.16, to prove that for
each infinite cardinal «, if Fr k embeds into B, then k =ind* A or « =ind*(B/p)
for some p in Ult A.

Suppose Fr k is a subalgebra of B but ind* A < k. By Corollary 5.10, we find a
Boolean algebra B’ and an epimorphism s: B— B’ such that B’ has Frk as a
dense subalgebra and & extends the identity map on Fr .

Fr k - B 2 A ) p

i':lFr K

B' o) A’ ) pl
Let A’ = h[A] and fix an ultrafilter p’ of A’ such that

x4 (p') = mxA';

we will show that the ultrafilter p = (h | A)"'[p'] of A satisfies ind*(B/p) = k.
To this end, let p’ be the filter of B’ generated by p’; then

mxg(p)<mx,(p')=myA <ind* A<«k.

Here the first inequality holds since every subset of A’ dense in p' is also, being a
subset of B’, dense in p’, and the second one since A’ is a homomorphic image of
A. Since Fr « is dense in B', fix D C (Fr k)" such that |[D| < « and D is dense in
p'

In B’, fix an independent set U of generators for Fr . There is V C U such that
|V|<kand D C(V);let W= U\V. So |W| = k and the subalgebra (W) of Fr « is
free over W. We claim that the canonical epimorphism

k:B'—>B'lp’

is a monomorphism on (W). For let x be a non-zero element of (W ). If k(x) =0,
then —x € p’; by denseness of D in p’, there is d € D such that 0<d < —x, i.e.
d - x=0. This is impossible since d € (V' ), x € (W) and U is independent. So we
have shown that B'/p’ has an independent subset of size k.

Finally, by the homomorphism theorem 5.23, B'/p” is a homomorphic image of
B/p, since p is contained in the dual kernel of k o . By 10.16 again, it follows that

x <ind(B'/p’) <ind(B/p) =ind*(B/p). O
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Exercises

1. Assume B is a complete algebra satisfying the countable chain condition and
(B,)a<, an increasing sequence of subalgebras such that B, is a complete
subalgebra of B, B, =U__, B, if A <p is a limit ordinal, and for each successor
ordinal @ < p, B, is a complete subalgebra of B. Show that, for A < p limit, B, is a
complete subalgebra of B iff cf A > w.

Hint. Use the proof of 4.22.

2. Let A be the subalgebra of P(w) generated by the singletons {n}, n € w,
plus 2 almost disjoint subsets of w (see the proof of 5.28). Prove that A is
superatomic. Thus, |A| =2, A satisfies the countable chain condition but has no
infinite independent subset.

3. Show that every Boolean algebra of size at least (2°)" which satisfies the
countable chain condition has a complete algebra of size (2“)* as a homomorphic
image.

4. Prove that for every Boolean algebra A,

s(Ult A) =sup{|At A'|: A’ a homomorphic image of A}
=sup{|At A’|: A’ an atomic homomorphic image of A}
=sup{cA’: A’ a homomorphic image of A} ;

here sX is the spread of a topological space X as defined before 10.11 and cA is
the cellularity of A.

5. Compute the spread of Ult A for

(a) A a free Boolean algebra,

(b) A a power set algebra,

(c) A the interval algebra of the real line.

6. Let A be a Boolean algebra generated by the union of two subalgebras A,
and A,. Show that if A, and A, are superatomic, then so is A.

11. Free products

This section introduces another construction of new Boolean algebras from old
ones, the free product of a family (A,;),c,;- The most natural interpretation of free
products is given by Stone duality and shows their bearing on topology — the dual
space of the free product of (A;),., is simply the cartesian product of the spaces
Ult A,;. The denotation of “free product” comes from universal-algebraic conside-
rations similar to those for free Boolean algebras: the free product of (A4,),; has
the A, as subalgebras and is generated by their union in such a way that only
those non-trivial algebraic equations can hold for the elements of U, A, which
are forced to hold by the internal structure of the A;. In the final subsection we
consider a generalization, the amalgamated free product of a family (A;),c,; over
a common subalgebra C. It is generated by the A; in such a way that non-trivial
algebraic equations can hold for the elements of U, A, only if forced to hold by
the structure of the A, and the way how C lies, as a subalgebra, in A4,.

Free products provide a natural tool for the construction of embeddings with
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prescribed properties. For example, every Boolean algebra B embeds into an
atomless one (respectively a homogeneous one), simply by considering B as a
subalgebra of a free product B C for suitable C (cf. Exercise 1 and Theorem
11.10). Also free products are a source of counterexamples, in particular for
questions on cellularity; they show that for each weakly inaccessible cardinal «,
there is a Boolean algebra A with cA = k not attained (Example 11.14), which
complements the Erdos—Tarski theorem 3.10. It is an attractive problem whether
the free product of a family (A,);., satisfies the «-chain condition if each of the
A; does. This question readily reduces to free products of finitely many factors;
see Exercises 3 and 4. Even the most simple special case is known to be
independent from the axioms of ZFC set theory: under Martin’s axiom plus the
negation of the continuum hypothesis, a free product B @ C satisfies the count-
able chain condition if both B and C do (cf. KUNEN [1980]); under the continuum
hypothesis however, GALVIN [1980] gives a counterexample. ToDORCEVIC [1986]
constructs, in ZFC, an example of an uncountable cardinal « and a Boolean
algebra B such that ¢(B) = k and ¢(B ® B) > «.

11.1. Free products

The free product of a family of Boolean algebras is defined, similar to the
notion of a free Boolean algebra, by a universal property concerning extendibility
of maps to homomorphisms.

11.1. DerFniTioN. Let (A)),c, be a family of Boolean algebras. A pair
((e;);er, A) is a free product of (A;);c; if A is a Boolean algebra, each e, is a
homomorphism from A; into A and, for every family ( f;);c, of homomorphisms
from A, into any Boolean algebra B, there is a unique homomorphism f: A— B
such that foe,=f, for i€ L.

A— A
f

fi
B

The defining property of free products is the category-theoretic dual of that one
stated in Proposition 6.3 as being characteristic of products; so the free product of
a family of Boolean algebras is its coproduct in the category of Boolean algebras.
Existence and uniqueness of free products now follow immediately from standard
arguments of category theory plus some Stone duality.

11.2. THEOREM (existence and uniqueness). Every family of Boolean algebras
has, up to isomorphism, a unique free product.

Proor. To be definite, let us formulate the uniqueness assertion: if ((e;);e;, 4)
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and ((e,),c;, A') are free products of (A,),.,, then there is a unique isomorphism
h: A— A’ such that hoe, = e, for i € I. This follows like the uniqueness assertion
9.2 on free Boolean algebras or the second part of Proposition 6.3 on the
characterization of products.

For existence, let (A;),c; be a family of Boolean algebras. Let X, be the dual
space of A;, X the product space of the X, and p;: X— X, the projection map. It
is a standard fact of topology that the pair ((p,);e;, X) has, in the category of
Boolean spaces and continuous maps, the universal property of products stated in
6.3 for product algebras. Now let A Clop X be the dual algebra of X,
e;: Clop X,— A the homomorphism p? dual to p, (cf. Theorem 8.2), and identify
A with Clop X;. By the duality theorem 8.2, ((e;);c;, A) is a coproduct of (A;);<;
in the category of Boolean algebras and Boolean homomorphisms, as indicated in
the diagrams below.

A—-—>A X(——X
Y=Clop B O

For many practical purposes, the abstract characterization of free products has
to be replaced by a more down-to-earth one. This is done along the lines of the
characterization 9.4 of free algebras.

11.3. DernNITION. A family (B;);c; of subalgebras of a Boolean algebra A is
independent if, for arbitrary n € w, pairwise distinct i(1), ..., i(n) € I and non-
zero elements b, of By,

bi(l)..."bi(n)>0 il’lA.

Independent families of subalgebras occur naturally in free algebras: assume F
is free over U C F and (U,),, is a family of pairwise disjoint subsets of U. Then
Remark 9.15 shows that the subalgebras (U,) of F constitute an independent
family.

The main and most intuitive example of an independent family of Boolean
algebras runs as follows. Assume that, for i € I, X, is a set and g;: A;— P(X,) is a
monomorphism. Let X be the cartesian product of the sets X, p;: X— X; the
projection map and define embeddings

e;: A,— P(X)
by
ea;)=p; '[8(a)].

Then the subalgebras ¢,[A;] of P(X) are independent. Moreover, Proposition
11.4 asserts that ((e;);c;, A) is a free product of (A,),c;, Where A is the
subalgebra of P(X) generated by the union of the ¢,[A,].
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11.4. ProrosITION (characterization). Let A be a Boolean algebra and, for i €1,
e;: A,—> A a homomorphism; assume that no A, is trivial. The pair ((e;);c;, A) is a
free product of (A,);c; iff each of (a) through (c) holds:

(@) each e;: A,— A is one-to-one,

(b) (e;[A;]);c; is an independent family of subalgebras of A,

(c) A is generated by U,_,e[A,].
Moreover, if ((e;);c;, A) is a free product of (A;);c,, then

d) e[A]Ne[A;]=2, fori#].

Proor. Assume first that ((e;);c;, A) is a free product of (A,),.;. If (a) fails, i.e.
if e; is not one-to-one for some j, then consider, in Definition 11.1, the algebra
B = A; and an arbitrary family of homomorphisms f;: A;— B such that f; = id ’
Clearly, there is no homomorphism f: A— B satisfying feoe; = f, =id 45 a con-
tradiction.

For the rest of the proof, we may assume that each A, is a subalgebra of A and
that e;: A,— A is the inclusion map.

If (c) fails, then by Lemma 5.32 there are distinct homomorphisms f and f’
from A into 2 coinciding on (U,_; A4,); let f;: A;— 2 be the restriction of fto A,.
Then f and f' are distinct homomorphlsms from A into 2 extending each f;, which
contradicts the uniqueness assertion in Definition 11.1.

If (b) fails, assume a;(;, - - - - * 4,y = 0 provides a counterexample where a,,, €
A,(k) and the i(k) are distinct. For each i € I, fix a homomorphism f;: A;,—2 in
such a way that f;,,(a,,) =1; this is possible since a;,,>0. If f: A2 is a
homomorphism extending every f;, then

0 =f(ai(1) Tt ai(n))
=fi(1)(ai(1))' T 'fi(n)(ai(n))
—3 1 ,

a contradiction.

Conversely, suppose ((e;);c;, A) satisfies conditions (a) through (c) and that
f.: A,— B are homomorphisms. Since A is generated by U, A,, there is at most
one homomorphism f: A— B extending each f,. To prove existence of such a
homomorphism let r C A X B be the relation defined by

(x,b)Er ifffor somei€land a,E A;, x=a; and b = f(a;) .

We apply the version 5.6 of Sikorski’s extension criterion: let (x,, b,),.
(x,,b,)Erande,...,e, €{+1,—1} such that

p=81x1.....8x =0

n"n

with the aim of proving that

q=¢b,- - -¢,b,=0.

n-n

Say x; = a;4) € A4y and by = fi;) (a4, ). Since each A, is a subalgebra of A and
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fixy 18 @ homomorphism, we may collect factors of p (respectively g) arising from
the same A, and thus assume the i(k) to be pairwise distinct. By independence
of the subalgebras A;, p =0 implies that some ¢,a,,, is zero. So, f;,, being a
homomorphism, ¢,b, =0 and g =0.

Finally, condition (b) immediately implies (d): suppose for contradiction that
there are 7, jin I and b € ¢][A;] N ¢;[A;] such that i # j and 0 <b <1 (we do not
assume (a) here and thus have to distinguish A, from e[ A,]). Letting i(1) =i,
i(2) =], by;y = b and b,y = —b then gives b, - b,,, =0, contradicting independ-
ence of the subalgebras ¢,[A,] of A. O

Given existence and uniqueness of free products, we set up the following
notation.

11.5. NOTATION AND CONVENTIONS. In a free product ((e;);c;, A) of a family
(A;);c; of Boolean algebras, we denote the algebra A by ®,., A,. For I=
{1,...,n} finite, we write A=A, @ ---DA,. Since each e;: A;,—> A is a
monomorphism, we generally identify A, with ¢,[A,]if A,N A; =2 for i #j, and
simply call the algebra ©,.; A, the free product of (A4,);c;-

We will henceforth generally assume that each A, is a subalgebra of A =
@D,c; A; and can then characterize A by the fact that (A,;),c; is a family of
independent subalgebras of A whose union generates A. Even if A, N A, #2 for

some i # j, we might replace the A, by isomorphic coples A, satlsfymg A, ﬂ A
2 for i#j and then identify EB,e,A with @,., A;, assuming each A 1s a
subalgebra of @,.; A;. In particular, this applies to notation as C® C, etc. Of
course all this is an abuse of notation, and if desperate, one should use the correct
notation ((e;);c;, A).

It should be clear that formation of free products is an associative and
commutative operation, up to isomorphism. For example, if I is the union of a
disjoint family (1(k)),ck, then

Da=0 (D 4),

i€l kEK \i€l(k)

etc. We list some additional elementary facts on isomorphism of free products.
Since, by the existence proof for free products,

1) U1t(€B A) Huia,,

iel

results of this type are often easily proved by applying the topological duality of
Section 8.

11.6. ExampLEs. (a) If each A, is a four-element algebra, then @ie ; A;is the free
Boolean algebra on || independent generators.

(b) B&2=B and B®1=1 for any Boolean algebra B; here 1 denotes the
trivial Boolean algebra.
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() BXxC)®D=(B®D)*x(CDD), for arbitrary Boolean algebras B, C
and D.
(d) B®2"= B", for any Boolean algebra B.

Proor. (a) The Stone space of each A, is a two-point discrete space. So
Ult(®,, A,) is by (1) homeomorphic to the Cantor space ‘2, and &®,., A, = Fr ||
by 9.7(a).

(b) follows from (1) since the Stone space of 2 is a one-point space and the
Stone space of 1 is empty.

(c) For any Boolean algebras A; and A,, Ult(A; X A,) is the disjoint union
space Ult A, UUIlt A,, by Proposition 8.7, and (XUY)XZ=(XxXZ)U
(Y x Z) holds for arbitrary topological spaces.

(d) follows from (c) and (b).

Let us have a closer look at the free product B® C of just two Boolean
algebras B and C. We assume that B and C are independent subalgebras of B® C
and that B U C generates B@® C. By a remark following 4.7, each element x of
B ® C has a representation
2) x=b,¢c,+--+b,-c,,

n n

where n € w, b, € B and ¢, € C. Moreover, by independence, b- ¢ =0, where
b € B and c € C, implies that b =0 or ¢ =0. The following lemma is frequently
used when dealing with the normal form (2) in B® C.
11.7. Lemma. Let b, b, EBand c;, ¢,;EC for 1<i=<n, 1<j=<m. Then
byrc,+---+b,-c,<bj-ci+--+b,c, inB®C
iff, for every i€{1,...,n} and every JC{1,...,m},
b,.sZ {b;: JEJ} or cisz {c'j: J&JT}.
Proor. Denote by [ (respectively r) the left-hand side and the right-hand side of
the inequality under consideration. Since I=r iff b,-c,<r for every i, fix
ie{l,...,n}. Now
b,-c;=r iffb,-c,-—r=0

iffbi-ci-l_[{—b;.+—c'].:lsjsm}=0.

Evaluating this last product by distributivity, we find that b, - ¢, <r iff, for each
JCA{1,...,m},

bc, Il{-bj: jeny-Il{-c;: jgry=0.

By independence of B and C in B® C, this means that, for each J,
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b,-TI{~b;: jEJ}=0 or ¢;"II{—c;: j&T} =0, i.e. that b, <% {b;: jEJ} or
c<2{c ]QJ} a

In 8.19, a Boolean algebra B was said to be relatively complete in D if B is a
subalgebra of D and for each d in D there is a greatest b in B satisfying b = d or,
equivalently, for each d in D there is a least b in B satisfying d = b. B is a regular
subalgebra of D (cf. Definition 1.29) if the inclusion map from B into D preserves
all sums existing in B.

11.8. PropPosITION. B is relatively complete in B@® C, hence a regular subalgebra
of B&C.

Proor. The first assertion can be derived from the equivalence of (a) and (b) in
Proposition 8.20 (the proof of this equivalence didn’t use any sheaf theory), since
the continuous map dual to the inclusion homomorphism from B into B & C is the
projection from Ult(B @ C)=Ult B X Ult C onto the first coordinate, an open
map. For a purely algebraic proof, we indicate how to find, foreveryxE BO C, a
least element B of B satisfying x =< 8. Writing x in the normal form (2), we may
assume that ¢; #0 for 1=i=<n. Then for b € B,

x=b iffb,-c,=b for every i
iff b, —b-c;, =0 for every i
iff b,- —b =0 for every i by independence of B and C
iffb, +---+b,<b.

Thus, B=b,+---+b, works for our claim. The second assertion follows
immediately. O

11.9. ProrosiTioN. If both B and C are infinite, then B® C is not o-complete.

Proor. By Proposition 3.4, let (b,),c, and (¢,),e, be countably infinite pairwise
disjoint families in B (respectively C) and assume that {b, - c,: n € w} has a least
upper bound in B® C, say

2{bn-cn:nEw}=Bl~yl+---+Br-y,,

where B; € B and v, € C. For every n € o, there is some j € {1, .. ., r} such that
b,-c,-B;-v;>0. Hence, there are distinct k, [ € @ such that for some j&

{,...,r},
bk'ck'ﬁ~")’j>0 and b 'CI'B"')'j>O-
So b, B >0 and ¢, ¥;>0 which implies, by mdependence of B and C, that

b, B ¢;"v,>0 and hence b,-c,"(B; v, + - +B,-v)>0. This is absurd
since, for k # I, the elements b, - ¢, and X {b,, - c,: n € w} are disjoint. []
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11.2. Homogeneity, chain conditions, and independence in free products

The first aim of this subsection is the following theorem. Recall from Section 9
that a Boolean algebra A is said to be homogeneous if A | a= A, for every
non-zero element a of A.

11.10. TuroreM (Gritzer). Let B be a non-trivial Boolean algebra and «k an
infinite cardinal such that |B| < k. Then there is homogeneous Boolean algebra C
of power « such that B&® C= C.

Since B is a subalgebra of B & C, this shows that every Boolean algebra embeds
into a homogeneous one. Moreover, the natural embedding from B into B&® C
has two additional pleasant features: it is complete by Proposition 11.8, and by
Proposition 11.11 below, every automorphism of B extends to an automorphism
of B® C. We shall encounter similar theorems in Sections 13 and 14: every
complete Boolean algebra is completely embeddable into a complete homoge-
neous algebra with a countable set of complete generators. In fact, the construc-
tion in Section 14 is a variation of the natural embedding from B into B® C.

11.11. ProposITION. For arbitrary Boolean algebras B and C, every automorphism
of B extends to an automorphism of B ® C.

Proor. For any automorphisms f, of B and f, of C, there is a unique automorph-
ism of B® C extending both f; and f., by the universal property of B® C —
consider fg and f as being homomorphisms from B (respectively C) into B® C.

A similar statement holds, of course, for free products of arbitrarily many
factors A;: if f; is an automorphism of A;, for i € I, then there is a unique
automorphism of @,.; A, extending each f,. [

11.12. LEMMA. Let A be the free product ®,.; A;; assume that i(1),...,i(n)E I
are distinct, a,,) € A,y and a=a,,y - * -+ - ay,. For i€ I\{i(1), ..., i(n)}, put
a;=1. Then

Ala=D(A, ! a).

iel
Proor. We may assume that A=Clop X, where X=II,.,X,, each X, is a
Boolean space and without loss of generality,
A,.={u X l;[X] uEClopX,.}.
i#]
For i € I, there is u; € Clop X, such that

a,.=ul.><HX

i

Then the clopen subset a = a;;) N - -+ N a,,,y of X is the cartesian product of the
clopen subsets u; of X;, and
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Al a=Clopa
= D Clop 4,

iel

=@ 1ae). O

Proof of Theorem 11.10. If B is the two-element algebra, let C by any homoge-
neous algebra of size «, e.g. a free one (cf. Proposition 9.14); then B® C=C
holds by Example 11.6(b).

So assume that B has at least four elements. Let (A4,);, be a family of Boolean
algebras satisfying:

@ |1 =«,

(b) for every i € I, there is b€ B™ such that A,= B | b,

(c) for every b € B”, there are « different elements i € I such that A, =B | b,
and define C=@,; A,.

Clearly, B@® C= C since C has infinitely many free factors isomorphic to
B ! 1=B. Also, |C|=« since |I|=«k, |A,| =« for every i and, on the other
hand, there are « different elements i € I such that 4=<|A,|. So we are left with
proving that C is homogeneous.

As a first step, note that if i(1),...,i(n) €I are distinct, a,;) € A,y is
non-zero for =k =<nand c=a,,," ' - ay,, then C | ¢=C, by Lemma 11.12
and the above choice of the algebras A,. In the second step, we prove that
C X C=C. For pick i €I and g, € A, such that 0 < a; <1; then by the first step
and Lemma 3.2,

C=ClaxCl—-a=CXxC.
Finally, an arbitrary non-zero element x of C is the sum of finitely many pairwise
disjoint non-zero products with factors in U, A;, say x=c¢; + - - + ¢,. By the
previous steps,

Clx=CleXx-XCleg=C=cCc. O

11.13. CoroLLARY. For any set K of non-trivial Boolean algebras, there is a
homogeneous algebra C such that K® C= C for every K in K.

Proor. Define a family (A,x),;c,, xex Such that A, = K, for i € w and K € K, and
let

B= D 4,.

i€Ew,KEK

So K@ B = B for every K in K. For this algebra B, choose C by Theorem 11.10.
Then, for K€K,

K®C=K®BO®C)=(K®B)OC=BOC=C. O

We next give an example on cellularity in free products. Recall that in 3.8, the
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cellularity cA of a Boolean algebra A was defined to be the least upper bound of
the cardinals |X|, where X is a pairwise disjoint family in A. This least upper
bound is trivially attained if it is a successor cardinal; it is also attained, by the
Erdos—Tarski theorem 3.10, if it is singular. For regular limit cardinals, i.e. for
weakly inaccessible cardinals, there is a counterexample.

11.14. ExampLE (Erdos-Tarski). Let k be a weakly inaccessible cardinal and, for
each cardinal @ <k, let A, be the power set algebra of a (so cA, = @). Then
A=6&,_, A, has the property that cA = « and cA is not attained.

For a proof of this, note that for « <k, a =cA_, =cA since A, is a subalgebra
of A. Thus, k =cA and we have to prove that | X| < k for every pairwise disjoint
family X in A. This follows by a standard application of the A-lemma: assume
| X| = k. For each x in X, pick a finite subset I(x) of I = {a: a < k, « a cardinal}
such that x is generated by U . 1) Ao By the A-lemma, there is an Y C X of
size k such that {I(y): y € Y} is a A-system, say with root J.

We may assume that each y € Y is a product

a
acl(y) 7%’

where a,, € (A,)", since the products IT__ 1) %> 8, € (A,)", constitute a dense

subset of @,¢(,) A, It follows from independence of the subalgebras A, in A
that the elements

=l a

ac] V*

of A are pairwise disjoint and non-zero; thus ¢(D,; A,) = «. This is impossible,
for A, is atomic with o atoms, and @, A, is atomic with max{a: a € J} atoms
(cf. Exercise 1).

The rest of the subsection is devoted to a computation of the cardinal invariant
ind*(®,c; A;), defined in 10.15, in terms of the cardinals ind* A,.

11.15. TueoreM. Let B, C, and A,, for i € I, be Boolean algebras. Then
ind*(B @ C) = max(ind* B, ind* C) ;
if 1 is infinite and |A;| =4 for all i, then
ind*( 63 A,.) = max(|I|, sup{ind* A,: i €I}) .
We proved in Section 10 that ind* B =1 iff B is superatomic. Hence,
11.16. CoroLLARY. If both B and C are superatomic, then so is B® C.

If ind* B #1, however, then ind* B is infinite and coincides with ind B, by
Sapirovskii’s first theorem 10.16. We use Sapirovskii’s second theorem 10.17 and
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the following lemma to derive the first part of Theorem 11.15. Recall the notation
of Section 10: for a subalgebra B of D and an ultrafilter p of B, p is the filter of D
generated by p.

11.17. LemMA. Let B and C be arbitrary Boolean algebras. For every ultrafilter p
of B,

BHC)/lp=_C.
Proor. Consider the situation
C——B®C——(B®C)/p,

where e is the inclusion map and r is canonical. We claim that f=moe is an
isomorphism.
f is one-to-one, since f(c) = 0 implies that —c € p, so b= —c for some b € p.
By independence of B and C and b > 0, it follows that ¢ = 0. Also, fis onto, for if
x=b,rc;t--+b,-c

n

is an arbitrary element of B ® C, where b, € B and c; e C, then
m(x)= L {n(c,): b, €p} =L {f(c,): b, € p}
isinran f. O

Proof of Theorem 11.15. The first assertion is immediate, by Theorem 10.17 and
the preceding lemma.
For the second one, let

k = max(|1|, sup{ind* A,: i€ I}),

A=@D 4,.
iel
It follows from Theorem 10.16 that |I| <ind* A, since if A, is a four-element
subalgebra of A, for each i €I, then @, A, is, by Example 11.6(a), a free
subalgebra of A with || independent generators. Also, ind* A, <ind* A for each
i, since A, is a subalgebra of A (cf. the remark following the proof of 10.16). We
have thus proved that x <ind* A.

Now suppose that x <ind* A. Then Theorem 10.16 gives an independent
subset X of A of size k ™. For each x in X, choose a finite subset I(x) of I such that
x is generated by U, ., A,. Since |I| < k", there are a subset Y of X of size k *
and a finite subset J of I such that I(y)=J for y €Y. Thus, ®,_, A, has an
independent subset of power « * and

k* sind*(@ A,.)
ieJ

=max{ind* A;:i € J}
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by Theorem 10.16 and the first assertion of our theorem. This contradiction shows
that ind* A=«. O

11.3. Amalgamated free products

11.18. DErINITION. Let (A,),c, be a family of Boolean algebras, C another
Boolean algebra and, for i € I, h;: C— A; a monomorphism. A pair ((¢;)e;, 4)
is an amalgamated free product of ((h;);c;, (A;);c;) over C if

3) A is a Boolean algebra,

4) e;: A,— A is a homomorphism and e;°h;,=¢;°h; for all i, jEI,

) for every family (f;),c; of homomorphisms f; from A, into any Boolean

algebra B satisfying fieh,=f,eh; for all i, jE I, there is a unique
homomorphism f: A— B such that foe,=f fori€I.

B

i
A
€j

i

Letting C be the two-element algebra shows that free products, as defined in
11.1, are a special case of amalgamated free products, since the commutativity
requirements in (4) and (5) are trivially satisfied.

As in the theory of free products, we have a uniqueness, an existence and a
characterization theorem. Given the existence theorem 11.2 for free products, an
algebraic proof for existence of amalgamated free products is no more difficult
than a topological one.

11.19. TueoreM (existence and uniqueness). Every family ((h;);c;, (A;);c;) has,
up to isomorphism, a unique free product.
Proor. Uniqueness is formulated and proved as in Theorem 11.2. For existence,
let ((e}),c;, F) be the free product of the family (A,;),c,, and let M be the ideal of
F generated by the set

{h;(c) A hj(c): cedC i, jel}.

Then define
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A=FIM
and
’
e, =moe,;

for i € I, where m: F— A is canonical. We prove that ((e;),c;, A) is an amalga-
mated free product of the family ((k,);¢;, (A,);er)-

Clearly, e;oh; = e;°h; for all i, j € I, by the very definition of M.

To prove the universal property (5) let f.: A,— B be homomorphisms such
that f;e h; = f,o h, for i, j € I. Since ((€)iep> F) is the free product of the A, there
is a unique homomorphlsm h: F— B satisfying hoe,=f, for iEI. By f,oh,=
f;°h;, the kernel of & includes M, so there is a homomorphlsm f: A— Bsuch that
f oqr = h. It follows that foe, = f, for i € I. Moreover, f is uniquely determlned by
the requirement that foe, = f,, since F is generated by the union of the ;[ A,] and
A is generated by the union of the ¢;[A,]. O

11.20. ProrosITION (characterization). Let A and e;: A,— A be given such that
e,oh;,=e;oh; for i, jEI Then ((e;);c;» A) is an amalgamated free product of
((h))ier> (A});e;) over C iff each of (a) through (c) holds:

(a) each e, is one-to-one;

(b) if
ei(l)(ai(l))' e ei(n)(ai(n)) =0,
where i(1),...,i(n) EI are pairwise distinct and a,;, € Ay, then there are
€y ..., C, € C such that
Ay = hjgy(c,) and ¢+ -+ ¢, =0;

(c) A is generated by U, e,[A}].
Moreover, if ((¢;);c;> A) is an amalgamated free product of (h;);c;> (A,);c;) over
C, then:

() fori#jin I, e[A;]Ne][A;]=e[C], where e: C— A is the homomorphism
e;°h;, forany i € I
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Proor. First assume that ((e;),c;, A) is an amalgamated free product. Assertion
(c) has already been shown at the end of the preceding proof. For a proof of (a),
consider a non-zero element a; of A; with the aim of showing that e,(a,) #0. For
each j € I, choose a homomorphism f;: A;—2 as follows: for j =1, let f; be such
that f,(a;) = 1. For j # i, let f; be such that f;° h;, = f;° h; — to find such an f;, note
that p = {c € C: f(h;(c)) =1} is an ultrafilter of C and that, h; being one-to-one,
h;[ p] generates a proper filter of A;; choose f;: A;—2 such that f;(h;(c)) =1 for
cEp. Let, by the universal property (5), f: A—2 be the homomorphism
satisfying foe; = f; for j € I. Then f(e;(a,)) = f,(a;,) = 1 and e,(a;)) #0.

To prove (b), assume a,;y, . . . , 4, constitute a counterexample. Then the set

qo=1{c € C: a;yy = hyy,(c) for some k€{1,...,n}}

has the finite intersection property in C; let g be an ultrafilter of C including g,.
Also, for 1=k =n, the set

9k = hi(k)[q] U {ai(k)}

has the finite intersection property in Ay, since otherwise, a,, - h;y,(c) =0 for
some c€q which implies a,;y=<h,; (—c) and —cE€¢q,C q. So there is a
homomorphism fy: A;,)—>2 mapping g, onto 1. For i € I\{i(1), .. ., i(n)}, let
fit A;—2 map hjq] onto 1. Thus, fieh,=f,°h, for i, jEI; let f: A—>2 be a
homomorphism satisfying foe; = f;. It follows that

0 =f(ei(1)(ai(1))' T ei(n)(ai(n))) =fi(1)(ai(1))' T ’fi(n)(ai(n)) =1,

a contradiction.

Conversely, suppose that the pair ((e;);c;, A) satisfies the conditions (a)
through (c) and that homomorphisms f;: A;— B are given such that f,° h, = h for
each i€ I, where h: C—~ B does not depend on i. By Sikorski’s extension
criterion 5.5 and (c), we have to prove that, for i(k) €1, a,,) € A;,, and
g €{+1, -1},

51";‘(1)(“;’(1)) et enei(n)(ai(n)) =0
implies
51ﬁ(1)(“i(1))' g, i(n)(ai(n)) =0.

The e; and f; are homomorphisms, so we may assume that each ¢, =1 and that
i(1), ..., i(n) are distinct. Choosing c,, . . ., ¢, in C as guaranteed by (b), we find
that

fiey(@iy) - -+ iy @igny) = fiy (Riny(€)) - -+ *fiy(Rigy (€,,))
=h(c,) -+ - h(c,)
=h(c, - -c,)
=0.
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Finally, condition (d) is a consequence of (b): suppose i # j and e,(a,) = ¢,(a,),
where a, € A;, a,€ A;. Then e,(a;)" e;(—a;) =0, so pick ¢ and ¢’ in C such that
c-¢'=0, a,<hyc) and —a;= h;(c"). This implies

e(a)=e()=e(-c)=e(a),
hence e;(a;) =e(c)Ee[C]. O

11.21. NOTATION AND CONVENTIONS. Let ((e;),c;, A) be an amalgamated free
product of ((h;);c;, (A;);e;) over C. We may assume, by 11.20(a) and (d), that C
is a subalgebra of A, and A, a subalgebra of A, that k; and e, are inclusion maps
and that A,N A;=C, for i#j in I. (These assumptions should, of course, be
used with the same precautions as those in 11.5.) The algebra A is denoted by

A= @A,.;
&1

for I={1,...,n} finite, we write
A=A,0---DA,.
C C

We finally give a reformulation of the characterization 11.20 for the free
amalgamated product of two Boolean algebras and a couple of examples.

11.22. CoRrOLLARY. Assume A, A, are subalgebras of a Boolean algebra A and C
is a subalgebra of both A, and A,. Then A= A, ECBA2 iff A, U A, generates A and

for any two disjoint elements a, of A, and a, of A,, there is some c in C such that
a,=<cand a,=—c.
11.23. ExaMpPLES. Assume the notation of 11.21 and let
A=@ 4,.
C
iel
(a) For every c in C,
A PCECG?(A,. o).
iE]c
(b) Let C be finite and X the set of its atoms. Then

Aa=1l (GB (A, rc)).

cEX \ iel
Proor. (a) follows by checking that the unique homomorphism
@Al
iel

such that f(x) = x for x€ U, (A; | ¢) is an isomorphism.
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(b) A “consequence of part (a) plus

iel

A=l arte, Da=>Da4a,. O
ceX iél

Exercises

1. Describe the atoms of B @ C in terms of the atoms of B, respectively C. Use
this to show that for each algebra B, there is an algebra C with B ® C atomless.

2. Let A be a subalgebra of B and C another Boolean algebra. The following
equivalent:

(a) B= A® C', for some subalgebra C' of B isomorphic to C;

(b) in the sheaf representation & = (S, 7, X, (B,),cx) of B over A (cf. 8.16),
there is a homeomorphism ¢: S— X X C such that 7 =pro ¢. Here C has the
discrete and X X C the product topology; pr: X X C— X is the projection onto
the first coordinate.

3. Let A and B be Boolean algebras and « an infinite cardinal such that the
cellularities of A and B are not greater than «. Then c(A® B) =2*

Hint. Use the Erdos—Rado theorem 7.2 in the Appendix on Set Theory.

4. Assume that, for each finite subset J of I, the cellularity of @,.; A, is not
greater than a regular uncountable cardinal k. Show that c(®,.; 4;) < k.

5. (a) For I an infinite set and |J| =2, the partial order Fn(/, J, ) defined in
4.10 and the free product of |I| copies of the power set algebra P(J) have
isomorphic completions.

(b) Let the infinite cardinal x have the discrete topology and “k the product
topology. Then RO(“k) is isomorphic to the completion of the free product of w
copies of P(k).

(c) Use Exercise 4 to show that the cellularity of RO(“k) is attained and equals
k. Hence, RO(“k) has cardinality 2".

6. Show that if each A;, i €1, is an infinite homogeneous algebra, then so is
®iel Ai‘

7. (a) Show that the free product of two infinite Boolean algebras does not
satisfy the countable separation property.

(b) Let BX denote the Stone-Cech compactification of a completely regular
space X and X* = BX\X the Stone—Cech remainder. Conclude from (a) that
B X Bw is not homeomorphic to B(w X w) and w* X @* is not homeomorphic to
(0 X w)*.

8. If A is generated by the union of a family (A),),., of subalgebras, then

ind* A <max(|I|,sup{ind* A;:i€I}).

9. Let C be a Boolean algebra and, for i€ I, h;: C— A, a monomorphism.
Consider the continuous surjection p;: Ult A;— Ult C dual to k; and the subspace

X= {(x,.),.ele l;IIUlt A pi(x;)=px;) forall i, jE€ I}

of Il,,; Ult A,. Show that X is a closed subspace of I1,.; Ult A; and is, in fact, the
dual space of the amalgamated free product of ((h,);c;, (A,);er)-
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Introduction

Most of the preceding chapters were devoted to a presentation of the basic
notions and results on Boolean algebras; we shall now use the theory built up so
far to study several special classes of Boolean algebras. In this chapter, we
concentrate on Boolean algebras which are complete or satisfy assumptions
weaker than completeness.

Part of our results might be described, in a somewhat formal setting, as
speaking about the categories of complete (respectively of k-complete) Boolean
algebras and homomorphisms. It turns out that the category of x-complete
algebras behaves, in some aspects, like the category of all Boolean algebras but
differs considerably from the category of complete algebras. Here the principal
positive result is that amalgamated free products, and consequently also free
products and free algebras, exist in the category of k-complete algebras. There
are, however, no free algebras over infinitely many free generators in the category
of complete algebras. This is shown by the astounding example, for each infinite
cardinal «, of a complete algebra, the collapsing algebra RO(“k), which is
countably completely generated and has cardinality greater than «.

The other main result on complete algebras, and in fact one of the highlights of
their theory, is the Balcar—Franék theorem: every infinite complete algebra A has
a free subalgebra of maximal size |A|. This theorem is not only interesting in its
own right and because of its applications, but also for its proof which applies a
number of combinatorial techniques established in the previous sections.

In the final section of this chapter we are concerned with a property of Boolean
algebras, infinite distributivity, which does not explicitly assume completeness,
but is adequately studied in complete algebras. Distributive laws can be viewed as
classifying complete (respectively k-complete) algebras by their similarity to
power set algebras (respectively «-algebras of sets). This classification is generally
very rough, but for some special types of complete algebras turns out to be quite
successful. For example, (o, 2)-distributivity plus the countable chain condition
characterize Souslin algebras which are well known in set theory by their close
connection with Souslin trees and Souslin lines. On the other hand, the collapsing
algebra RO(“k) can be described by (w, k, k)-nowhere distributivity plus a
denseness assumption.

12. k-complete algebras

We present here results on Boolean algebras which depend on o-completeness
or only on the countable separation property but do not require full com-
pleteness.

. For definiteness, let C_, C, (for k > w) and C, denote, in this section, the
classes of o-complete, k-complete, respectively complete Boolean algebras. In
Section 5, a Boolean algebra A was said to have the countable separation
property if, for any countable subsets M, N of A such thatm-n=0forallm e M
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and n € N, there is an a € A satisfyingm=<=aandn=-aforme€ M and n € N;
let us denote by C, the class of all algebras with the countable separation
property. Then, for k > w,

€.CC,CC,CC,y;
here the first inclusion is proper for arbitrary «, the second one for k > w,, and
the third one by Example 5.28 (the algebra P(w) /fin). This examples also shows,
together with Lemma 5.27, that C, is closed under homomorphic images, but
none of the classes C_, C,, C, is. By abuse of notation, we also denote by C_ the
category of all o-complete Boolean algebras and o-complete homomorphisms;
similarly for C, and C.,.

From a systematic point of view inspired by Stone’s theorem, it is the central
question on «x-complete algebras how they are related to k-complete algebras of
sets, as defined in 1.29. Exercise 3 in Section 2, however, says that even a
complete algebra is not necessarily isomorphic to a o-complete algebra of sets.
The only general result available here is the Loomis—Sikorski theorem 12.7
asserting that every o-complete Boolean algebra is the image of a o-complete
algebra of sets under a o-complete homomorphism. A detailed discussion of
representability questions for k-complete algebras can be found in SIKORSKI
[1964]; also see Section 14.

As a consequence of the Loomis—Sikorski theorem, there is an explicit
construction of the free o-complete algebra on any number of generators. A
general but less explicit construction using principles of universal algebra proves
that amalgamated free products exist in each of the categories C, .

We further characterize the cardinalities and the Stone spaces of algebras lying
in the classes C,, through C_,. If C is one of these classes, then for each infinite
cardinal k, k = | A| for some infinite member A of C iff k“ = «; the Stone spaces
of algebras with the countable separation property are exactly the Boolean
F-spaces. The dual spaces of o-complete (k-complete, complete) algebras were
described, in Proposition 7.21, as being those Boolean spaces in which the union
of countably many (less than «, arbitrarily many) clopen sets has open closure.

Theorem 12.4 expresses another attractive property of o-complete Boolean
algebras: two o-complete algebras are isomorphic if each of them is isomorphic to
a direct factor (i.e. a relative algebra) of the other one. This assertion does not
hold for arbitrary Boolean algebras, as shown by Hanf’s example 6.5.

12.1. The countable separation property

We describe here the Stone spaces and the possible cardinalities of Boolean
algebras with the countable separation property. As a consequence, we are able
to characterize the cardinalities of algebras in the classes C_, C,, and C,,.

Let us recall some definitions from topology. A subset of a topological space is
an F_-set if it is representable as the union of countably many closed sets. In a
Boolean space X, this is equivalent, for open sets, to being a union of countably
many clopen sets. For assume u = c, is open and each c, is closed. For

n€Ew
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n € w, c, and X\u are disjoint closed subsets of X, so by 7.6(c), there is a clopen
subset a, of X satisfying ¢, Ca,Cu, and u=U ., a, proves our claim.

Two subsets u and v of a topological space X are completely separated if there is
a continuous function f: X— [0, 1] sending u to 0 and v to 1. For X Boolean, this
amounts to saying that there is a clopen set ¢ such that u C ¢ and v C X\c — for the
non-trivial part of this, note that u and v have disjoint closures if they are
completely separated, and use Lemma 7.6(c).

A subset u of a topological space X is co-zero if there is a continuous function
f: X—1[0,1] such that u={x € X: f(x) #0}. u is C*-embedded in X if every
continuous function from u to [0, 1] extends to a continuous function from X to
[0,1]. X is an F-space if every co-zero set in X is C*-embedded. F-spaces have
gained some interest in topology; they arise, for example, naturally in the theory
of compactifications.

12.1. ProPOSITION. A Boolean algebra has the countable separation property iff its
dual space is an F-space.

Proor. We use two facts whose proofs can be found in textbooks on topology
(e.g. WALKER [1974]): a completely regular space is an F-space iff disjoint co-zero
sets are completely separated; in a normal space, an open subset is co-zero iff it is
F,.

Let X be the dual space of a Boolean algebra A, a compact and hence normal
Hausdorff space. Combining the preceding remarks, we find that X is an F-space
iff any two disjoint open F,_-sets are completely separated iff disjoint countable
unions

u=Ua

nEw

v=Ub»b

>
n n€Eow

n

of clopen sets a,, b, are completely separated. By the above equivalence of
complete separation in Boolean spaces, this means that Clop X = A has the
countable separation property. O

12.2. TaeoreM (S. Koppelberg). If A is an infinite Boolean algebra with the
countable separation property, then |A|° =|A|.

12.3. CoroLLARY. Let C be one of the classes C.,, C, (for k > w), or C,, and let
A be an infinite cardinal. There is an algebra of cardinality A in C iff A* = A.

Proor. If A is an infinite member of C having size A, then A“ = A holds by
C CC,, and 12.2. Conversely, let A* = A. The algebra A =Fr A, the completion
of the free Boolean algebra on A generators, is complete and hence in C; we show
that | A| = A. Trivially, A = |Fr A| <|A|. On the other hand, since Fr A satisfies the
countable chain condition (cf. 9.18), it follows from Corollary 10.5 that |A|=
[Fr M*=2A“=A. O

Proof of Theorem 12.2. Let k =|A| and assume that x provides a minimal
counterexample, i.e. that k < k“ but |B|® =|B| holds for each infinite algebra B
with the countable separation property and size less than «.
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Claim 1. If (a,),ec, is a disjoint sequence in A, then |II,., A | a,| < k. This
holds because the function

f:A—»nl;[wA r an’ f(x)=(x.an)n6w

is onto. For let (x,),c, be an element of II,., A | a,. Put, for n€w, y,=
a,—x,. By the countable separation property, there is x in A such that x, <x
and y,=—x for n€w. So f(x)=(x,),e,- In particular, since there exists an
infinite pairwise disjoint family in A (cf. 3.4), we have

1)  2°=«k.

Call an ideal J of A o-bounded if every countable subset of J has an upper
bound in J.

Claim 2. Assume J is a o-bounded ideal and, for each a € Jsuch that A | ais
infinite, |A | a|”=|A | a|. Then |J| < k. For otherwise, using (1) we obtain:

k=17 = ‘ U a1 a|=|]-2" k=x,
a contradiction.
For the rest of the proof, let

I={a€ A:|A | a|<«k}.

So I'is a proper ideal of A. By minimality of « and since each relative algebra of A
has the countable separation property, we have

() ifa€land A | ais infinite, then |4 | a|*=|A | q|.

Claim 3. A/l is finite and [ is, without loss of generality, a prime ideal. For, if
A/l is infinite, choose by 3.4 a pairwise disjoint family (g,),c, in A/I and pick a,
in A such that w(a,)=gq,, where m: A— A/l is canonical. Let a,=
a,-—%, .,a,; then the a, are pairwise disjoint and =(a,) = ¢, >0. Hence a, &I
and

=K

K"’=’H Al a,
n€Eow

by Claim 1; a contradiction. So A/[ is a finite and non-trivial algebra; let a € A be
such that 7(a) is an atom of A/I. Replacing A by A | a (an algebra with the
countable separation property and cardinality «) and / by IN A | a, we may
assume that 7 is prime.

It follows from Claim 3 that |I| = «; (2) and Claim 2 show that I cannot be
o-bounded. Fix a set

{b,,new}CI
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having no upper bound in I. Replacing b, by b, - =X, _, b, , we may assume that
the b, are pairwise disjoint.

HAfbn‘<K.

n€Eow

3)

For otherwise, by Claim 1, |II,., A | b,| =k, and

nEw

w

k=11 4 1»,
n€w
<2°-|IL A1 b, by(2)andb, 1
=k by (1) .

Define an ideal K of A by
K={x€A:x-b,=0 for every n€E w} .
4) |A/K| < k and hence |K|=k .
This follows from (3) and the fact that
gA->1 A1 b, g0)=(xb,)e.

is a homomorphism with kernel K; so A/K is isomorphic to a subalgebra of
O, AT D,.

(5)  KCI.

For, if x € K, then —x is an upper bound of {b,: n € w}. So —x &I and, I being
a prime ideal, x € I.

We are ready to reach a final contradiction: the ideal K is o-bounded by its
very definition and by the countable separation property for A. (5) and (2) show
that the assumptions of Claim 2 apply to K, implying | K| < k. This contradicts
4. O

12.2. A Schréder—Bernstein theorem

The classical Schroder—Bernstein theorem of set theory states that, given
one-to-one maps f: X— Y and g: Y— X between two sets X and Y, there is a
bijection h: X— Y in fact, h can be constructed from f and g without any use of
the axiom of choice. We prove an analogue for o-complete algebras. Recall that,
by the characterization 6.4 of product decompositions, the direct factors of a
Boolean algebra A are, up to isomorphism, its relative algebras A | a.
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12.4. TueoreM (Tarski). If each of two o-complete algebras is isomorphic to a
factor of the other one, then they are isomorphic.

Proor. It suffices to prove the following

Claim. If b < a in a o-complete algebra A, then A | b= A implies A | a= A.
For suppose A and B are arbitrary o-complete algebras and f: A—B | B,
g: B— A | a are isomorphisms. Letting a = « and b = g(B) shows that b <a in
Aand A=A | bviagef Then B=A | a= A, as desired.

For a proof of the claim, let A be o-complete, b<=ainA andf: A— A | ban
isomorphism. The proof follows closely the lines of the Schroder—Bernstein
theorem in set theory: define inductively elements a, and b, of A by

ao=1, by=a, a,,=f(a), b,.,=fb,).
Then
(6) l1=a,zby=a,=zb,=---:
trivially b,<a,=1 and a,=f(a))=b=a=0b,. If a,.,=b,=a, holds, then

application of fyields a, . ,<b,,,<a,
By o-completeness of A, define

r=Ila, =115

nEw n€ew "

(6) shows that
1= % (a, b))+ L (b, —a,.,)+r,
a=by= 5 (8,01 ~bu1)+ L (b, —a,)+r,

where the terms in both sums are pairwise disjoint. Again by o-completeness of
A and Proposition 6.4,

A=l At (@, —b)x L Ak, —a.)xarr,
Ata=l At —b.)xILAL®, —a.)xAlr.

For each n € w, the isomorphism f maps a,- —b,in Atoa, ,-—b,,,inA | b,
)

Al(a, —b)=(A1Db)! (a1 —b,1)
=A 1 (@1 —bui1),
and it follows that A= A | a. O

It may be worth noticing that the classical Schroder—Bernstein theorem can be
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recovered from Tarski’s theorem. For let f: X— Y and g: Y— X be one-to-one
mappings. Then P(X)= P(Y) | f[X] and P(Y)= P(X) | g[Y], and Theorem
12.4 gives an isomorphism h: P(X)— P(Y). But & maps the atoms of P(X) onto
the atoms of P(Y), thus inducing a bijection from X onto Y.

Tarski’s theorem can often be applied to prove homogeneity of complete
algebras. Recall from Section 4 that each separative partial order (P, <) is a dense
subset of a unique complete Boolean algebra B, its completion; we may think
about B as being the regular open algebra of P, in the partial order topology. If
P = A\{0}, for a Boolean algebra A, then B = RO(P) is the completion A of A4 as
defined in 4.18. Generalizing Definition 9.12, let us call, for a moment, a partial
order (P, <) homogeneous if it has a greatest element and, for every p € P, the
partially ordered subset P | p={x € P: x=p} is isomorphic to P.

12.5. CoroLLARY. The completion of a homogeneous separative partial order is
homogeneous; in particular, the completion of a homogeneous Boolean algebra is
homogeneous.

Proor. Let B be a complete Boolean algebra and P a dense subset of B which is
homogeneous, in the partial order induced by B. We prove that B | b= B, for
any non-zero element b of B. By denseness of P in B, pick p € P such that
O0<p=<b.Now P | pisdensein B | p and isomorphic to P, thus

B | p=the completion of P | p
= the completion of P
=B.

So the Claim in the proof of 12.4 gives B [ b=B. O

As an application of the preceding corollary and homogeneity of infinite free
algebras (cf. 9.14), we find that the completion of every infinite free Boolean
algebra is homogeneous, and so is the completion of the partial order Fn(Z, J, A)
defined in 4.10 (the partial functions mapping less than A elements of 7 to J). In
fact, the first observation is a special case of the second one since the partial order
Fn(k, 2, ) is isomorphic to the dense set of elementary products, in Fr «, over
the k free generators. So Fn(k, 2, w) and Fr « have the same completion.

12.3. The Loomis—Sikorski theorem

Regarding algebras of sets as the standard examples for Boolean algebras, we
proved in Section 2 Stone’s theorem that every Boolean algebra is isomorphic to
an algebra of sets. In Definition 1.29, a Boolean algebra B was said to be a
k-algebra of sets if B C P(X), for some set X, and B is closed under complemen-
tation and under intersections of length less than «. Exercise 3 in Section 2 shows
that the analogue of Stone’s theorem fails to hold for «-complete algebras, if
k > w. The Loomis—Sikorski theorem 12.7 seems to be the best available descrip-
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tion of o-complete algebras via o-algebras of sets. (D. Maharam-Stone kindly
informed me that this theorem had been proved, previous to its publication by
Loomis and Sikorski, by J. von Neumann.)

12.6. DeFINITION. Let k be an infinite cardinal. A Boolean algebra A is k-
representable if there exists a k-complete epimorphism from a k-complete algebra
of sets onto A. A is o-representable if it is w,-representable.

12.7. TuroreM (Loomis—Sikorski). Every o-complete Boolean algebra is o-
representable.

In Section 14 we will find a close connection between k-representability and
validity of infinite distributive laws, and it will turn out that the Loomis—Sikorski
theorem does not generalize to cardinals k > w,.

The proofs of the three subsequent results rely on the idea of dividing the Borel
algebra of a Boolean space by the ideal of meager sets, plus Baire’s theorem. The
Borel algebra Bor(X) of an arbitrary topological space X was defined, in 1.30, to
be the o-algebra of subsets of X generated by the open subsets of X.

12.8. DerINmTION AND LEMMA. Let X be a topological space and a C X. a is
nowhere dense in X if int cl a = §. a is meager (or of first category) if it is the union
of countably many nowhere dense sets. X satisfies Baire’s theorem if no non-
empty open subset of X is meager. The meager subsets of X constitute an ideal in
P(X) wich is closed under countable unions.

Proor. Every subset of a nowhere dense set is nowhere dense; consequently a
subset of a meager set is meager. It follows immediately that the set of meager
subsets of X is a o-complete ideal of P(X), in the sense of Definition 5.19. O

The terminology of this definition comes from the famous Baire theorem in
topology: in every locally compact Hausdorff space and in every completely
metrizable space, non-empty open sets are non-meager. Since, in an arbitrary
topological space, the Borel algebra is o-complete and has the meager Borel sets
as a o-complete ideal, one should expect the quotient algebra to be exactly
o-complete. The following proposition, however, asserts full completeness of this
algebra, for many interesting spaces. In the special case of a Boolean space X, we
can then conclude from the classical Baire theorem for X and Proposition 7.17
that the quotient algebra is the completion of Clop X.

12.9. ProrosrITiON. Let X be a space satisfying Baire’s theorem and let M be the
set of meager Borel sets, a o-complete ideal of Bor(X). Then

Bor(X)/M =RO(X) .
Proor. We proved in Theorem 1.37 that, for any regular open subsets u, v of X,
U'roxyV=uNv

and for U CRO(X),
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YR U = int cl< U U) .

Its elements being open sets, RO(X) is a subset, though generally not a
subalgebra, of Bor(X).
To prove our proposition, let

7: Bor(X)— Bor(X) /M
be canonical. The restriction of 7 to RO(X) is a mapping
f: RO(X)— Bor(X)/M

which will be shown to be an isomorphism.

It is plain that f(1)=1 and f(0)=0. In both RO(X) and Bor(X), finite
products coincide with set-theoretical intersections and are thus preserved by f.
Also, f preserves countable sums, for let U C RO(X) be countable, put v =U U
and r =intclv. Thus, v C r and cl v, being the closure of an open set, is regular
closed, i.e. clintcl v =clv. It follows that

rvCclruv=clintclv\v =clv\v.
So cl v\v and r\v are nowhere dense, r Av is in M, and

Bor(X)/M

727 0) = ) = ) = ) = Z2 0 ) = B 101

since 7 is o-complete.

Preserving 0, 1 and finite sums and products, f is, by a remark at the beginning
of Section 5, a homomorphism; we have shown above that it is o-complete.
Validity of Baire’s theorem in X entails that f is a monomorphism, for if u is
regular open and f(u) =0, then u is meager and hence empty.

To prove that f is onto, consider the set O of open subsets of X and note that,
for u in O, intcl u A u =intcl u\u is nowhere dense, hence 7 (u)= w(intclu) =
f(int cl u). Thus, #[0] Cran f. But O o-generates Bor(X) and 7 is o-complete,
so w[0] o-generates Bor(X)/M. Moreover, since f is o-complete, ran f is a
o-complete subalgebra of Bor(X)/M. It follows that ran f=Bor(X)/M. O

Proof of Theorem 12.7. Let A be o-complete. Its Stone space X, being compact
and Hausdorff, satisfies Baire’s theorem. So consider the following diagram.

B C Bor(X)
& & Bor(X)/M

l £

A—e—) RO(X)
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Here M, m, and the isomorphism f ~': Bor(X)/M —> RO(X) are as in the proof of
12.9 and e is the canonical embedding from A into its completion RO(X) D
Clop X (cf. Proposition 7.17). Now m, f~', and e are o-complete, hence the
preimage B of e[A] under f ‘o is a o-algebra of sets. If g denotes the
restriction of f "o 7 to B, then e ' o g is well-defined and a o-complete epimorph-
ism from B onto A. O

The Loomis—Sikorski theorem allows an explicit construction of the free
o-complete algebra over a set I.

12.10. DerFNITION. Let k be an infinite cardinal and 7 any set. A free k-complete
algebra over I is a pair (e, F) such that F is a k-complete Boolean algebra,
e: I— F and for every k-complete algebra A and every map f: I— A, there is a
unique x-complete homomorphism g: F— A satisfying gce = f.

12.11. ProposITION. Let, for a set I, X be the Cantor space "2 and F the algebra of
sets over X o-generated by Clop X. Define

e:I—->ClopXCF
by

e(i)={xEX:x(i)=1}.
Then (e, F) is a free o-complete algebra over I.
Proor. Assume A is o-complete and f: I— A.

I—= >F x=1

A<—h—C Y

By the Loomis—Sikorski theorem, choose a o-complete epimorphism h: C— A,
where C is a o- algebra of sets, say over Y. For i€, fix c; E C such that
f(i)=h(c,). Let x,E 72 be the characteristic function of ¢,CY and define
x:Y—=>X="2 by x(y)= (X,(y)),e, Each b in F is a subset of X, thus
j: F— P(Y) defined by j(b) = x "'[b] is a o-complete homomorphism.

We prove that j maps F into C. It is sufficient to show that j maps some set of
o-complete generators of Finto C. But e[I] generates Clop X and o-generates F;
moreover, for i € I, j(e(i)) =c; is in C.

Now g = hoj is a o-complete homomorphism from F into A satisfying goe = f
since, for i € I,

g(e()) = h(j(e(@))) = h(c)=f() . O

As in Proposition 9.8, we can prove that every o-complete algebra is a
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o-homomorphic image of a free o-complete one, and 12.11 tells us that free
o-complete algebras are o-algebras of sets. This can be conceived as a particular-
ly lucid version of the Loomis—Sikorski theorem. Note, however, that the
Loomis—Sikorski theorem was heavily used in our proof of 12.11.

In the next subsection, we shall generalize Proposition 12.11 to prove that, for
every infinite cardinal «, amalgamated free products, in particular free products
and free algebras, exist in the category of k-complete Boolean algebras and
x-complete homomorphisms. No satisfactory internal characterization like 11.20,
11.4 or 9.4, however, is known for these algebras, and for k > w,, there does not
even exist an explicit construction of free k-complete algebras similar to 12.11.

12.4. Amalgamated free products and injectivity in the category of k-complete
Boolean algebras

Let us consider two questions concerning the categories C, (respectively C.,).
Here C, is, for « an infinite cardinal, the category of all k-complete Boolean
algebras and k-complete homomorphisms; similarly C, is the category of com-
plete Boolean algebras and complete homomorphisms. So

c.cC.cC,,

and C, is the category of all Boolean algebras and homomorphisms. We proved,
in Section 11, that amalgamated free products exist in C,. Also, the injective
algebras in C_ were nicely characterized in Theorem 5.13 as being the complete
Boolean algebras. In particular, plenty of injectives exist in C,, in the sense that
every Boolean algebra can be embedded into an injective one.

12.12. THEOREM. For every infinite cardinal k, amalgamated free products, in
particular free products and free algebras, exist in the category of k-complete
Boolean algebras and k-complete homomorphisms.

12.13. ProrosITION. For uncountable k, there are no injectives in C, . Similarly, no
injectives exist in C,,.

For a proper statement of these assertions, we need a couple of definitions.

12.14. DEerINITION. Let k be an infinite cardinal.

A cone in C, is a pair ((h;);c;, (A;);c;) such that, for some fixed algebra C, the
algebras C and A, and the homomorphisms #;: C— A; are in C, and the maps h;
are one-to-one.

A pair s=((e;);e;, B) is a commutative square over the cone c¢=
((h);er, (A);e;) if Band e;: A,— B are in C, and e;°h; —e]°h foralli, jE I

For commutative squares s=((e;);c;, B) and s'= ((e )ier» B') over c=
((hy)ier, (A)icr), @ homomorphism (respectively zsomorphzsm) from s to s’ is a
homomorpmsm (respectively isomorphism) h: B— B’ in C, satisfying hoe, = e;
foriel



186 S. KOPPELBERG / INFINITE OPERATIONS [cH. 5

PN

B—)B’

An amalgamated free product of c¢=((h;);c;, (A;);e;) over C, in C,, is a
commutative square s over c such that, for every commutative square s’ over c,
there is a unique homomorphism 4 from s to s'.

12.15. DEFINITION. A morphism e: A— B in a category C is mono if, for any
object D in C and any morphisms h, k: D— A in C, eoch = e k implies h = k.

An object Cin C is injective in C if, for any morphisms e: A— B and f: A— C
in C, where e is mono, there is some g: B— C in C satisfying goe = f.

A—— 5B
g

f J

C

Thus, if the morphisms of a category C are mappings and their composition, in
C, is the set-theoretical one, then every one-to-one morphism is mono; in some
categories, e.g. in the category C, of all Boolean algebras and homomorphisms
and in the category of all Boolean spaces and continuous maps, the converse
holds —see Exercise 1 in Section 8. And the injective objects of C, are, by
Theorem 5.13, the complete Boolean algebras.

Theorem 12.12 follows rather easily from abstract reasoning, provided we can
show that over each cone c in C,, there exists at least one commutative square.
This is seen by letting B be the trivial (one-element) algebra and e;: A,— B the
unique map from A; to B. Our preliminary lemma 12.16, however, says that there
exists a commutative square s = ((e;);c;, B) over ¢ in which each e; is one-to-one;
it follows that in every amalgamated free product s = ((e;);c;, B) of ¢ over C, the
e; are one-to-one.

12.16. Lemma (LaGrange). Let ¢ = ((h;);c;> (A;);c;) be a cone in C, and let
((e;);cs» A) be an amalgamated free product of c over C, in the category C,, of all
Boolean algebras and homomorphisms. Then each of the homomorphisms
e;: A;— A is k-complete. _

Hence, for the «k-complete subalgebra B of A generated by U, e[A,],
((e;);er> B) is a commutative square over c in C,.

Proor. By the remarks in 11.21, we may assume that each A, is a subalgebra of
A, that C is a k-complete subalgebra of each A; and that the union of the A,
generates A; we have to show that A, is a k-complete subalgebra of A.
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Fix i € I and a subset X of A, of power less than k. Now I/ X <II* X since A4,
is a subalgebra of A; it suffices to consider the special case that II*i X =0 and to
prove that 1" X =0. Otherwise, by the remarks on normal forms following 4.7,

there are a; € A; and a,;) €E A,y), . . ., 4y, € A,y Such that

0<p=a;-a,4y" """ ayy=x forxelX,
where i and i(1), . . ., i(n) are distinct in I. For x € X, p- —x =0, so by (b) in the
characterization theorem 11.20 for amalgamated free products in C,, pick
elements ¢,;, Cpiqy5 - - - 5 Cri(ny Of C such that

a,c—x=c,;, Ay = Cuqy forl=k=n
and
(M) Cri" Cxiqty” """ Crigny = 0.+

By «-completeness of C, we can define

c .
=0 {c,ixEX}, ck=HC {Chy: XEX} .

Then a,;y=c, for 1=k=n, since C is a k-complete subalgebra of A,,,.
Similarly for x € X, we obtain a;* —c,; = x and hence

ai-Hc{—cxi:xEX}SHAiX=O.
Thus, a;<c; and, by (7), p<c;-c,- -+ - ¢, =0, a contradiction. [J

Proof of Theorem 12.12. Let ¢ = ((h;);c;> (A;);e;) be a cone in C, . Consider the
following class of commutative squares over c:

Sq = {s: s =((e;);e;» D) a commutative square over ¢, D k-completely
generated by LEJI ei[Ai]}.

This class is non-empty, by the preceding lemma. If s = ((e;);c;, D) is in Sg, then
Lemma 10.4, applied to the regular cardinal « *, gives

r=(Z14))
iel
as an upper bound for the cardinality of D. Defining
sq={s€ S8q:s=((e;);es» D), D a subset of A},

we obtain a set, rather than a proper class, of representatives for the isomorphism
classes in Sq. For each s in sq, we write
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s =((es)iers By) -

Both the product algebra B =11, B, and, for i € I, the mapping ¢;: A;,— B
defined by

e(a)= (esi(a))sEsq

are in C, and it is easily checked that ((e;),c;, B) is a commutative square over c.
Let B* be the k-complete subalgebra generated by U, e,[A,]; we prove that
the commutative square

s* =((e;)ier» B*)

is the amalgamated free product of ¢, in C,.

So let s’ = ((e;),;c;» A) be a commutative square over c; we claim that there is a
unique homomorphism 4 from s* to s’, in the sense of Definition 12.14.
Uniqueness is trivial since B* is k-completely generated by U,_, e,[A,]. Let B’
be the k-complete subalgebra of A generated by U, e;[A,]. Then ((e;);c;» B')
is in the class Sq, hence isomorphic to some s in sq. Without loss of generality,
assume that

((e;)iel’ B') = ((e5);er> By) -

The restriction & of the projection map pr,: B— B, to B* works for our claim,
since, for iEl and a€ A,,

h(e(a)) = pr,((e,(@)sesg) = €(@) = €(a) . O

Proof of Proposition 12.13. Suppose C is injective in C,. Let A = max(w, |C|)
and consider, in C,, the diagram

+

22— SB=FraA
f ls
C

where B is the completion of the free Boolean algebra on A generators and e
(respectively f) are the unique morphisms from 2 to B (respectively C); trivially e
is mono. If g is in C, and goe = f, then the kernel I of g is a proper k-complete
ideal of B; by completeness of B, let b=1X”I. B satisfies the countable chain
condition, by 9.18, so by Lemma 10.2 there is a countable subset I’ of I such that
b="x®TI'. Thus, b€ I, I is the principal ideal generated by b and

rang=B/I=B | —b,

as shown by the remarks following 5.23. But b1 and B is a homogeneous
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algebra, by 12.5. So B | —b= B and ran g has cardinality greater than |C|, a
contradiction.

In this proof, we see that B, 2, and e are actually in the category C.; also, if C
is complete, then f is in C,. Hence, the same proof shows that there are no
injectives in C,,. O

Exercises

1. Imitating the proof of 4.22, show that an infinite algebra with the countable
separation property has no irredundant set of generators and is not the union of a
countable strictly increasing sequence of subalgebras.

2. Assume that 2= w, and that A and Q are algebras with the countable
separation property and with cardinality 2°. Prove that Q is a homomorphic
image of A. In particular, if Q satisfies the countable separation property and
|Q|=2° = w,, then Q is the homomorphic image of a o-complete algebra.

3. An ultrafilter p of a o-complete Boolean algebra A is said to be o-complete
if I M € p for each countable subset M of p. Show that for o-complete A, the
following are equivalent:

(a) A is isomorphic to a o-algebra of sets,

(b) each non-zero element of A is contained in a o-complete ultrafilter of A,

() no non-empty open subset of Ult A is included in

U {n CUlt A: n a nowhere dense intersection of countably many
clopen sets} .

(This equivalence does, of course, generalize to higher cardinals.)

4. If A is a o-algebra of sets over X, we say that an ultrafilter p of A is
determined by x € X if p = {a € A: x € a}. Prove that each o-complete ultrafilter
in the Borel algebra of the reals is determined by a point of R.

Hint. Show that each o-complete prime ideal of Bor(R) contains a greatest
open set. (The assertion generalizes immediately to every second countable
T,-space, and it holds in fact for each metric space whose cardinality is non-
measurable; cf. Theorem 27.1 in Sikorsk1 [1964].)

5. Consider the space X = w, of all countable ordinals, equipped with the order
topology.

(a) For each Borel subset b of X, either b or X\b includes a closed unbounded
subset of w;.

(b) {b €Bor(X): b includes a closed unbounded set} is the only o-complete
ultrafilter of Bor(X) not determined by a point of X.

6. (for logicians) Let k, A be infinite cardinals, x regular; we present a
construction for the free x-complete Boolean algebra Fr (A) on A free
generators. Denote by Fm the set of all formulas built up from a set V of A
distinct propositional variables and negation, disjunctions and conjunctions of less
than « formulas. For «, B8 € Fm, write « ~ B if each map h: V— 2 = {false, true}
assigns the same truth value to a and B. Fm/~ is a Boolean algebra in an obvious
way, and it is isomorphic to Fr (A).
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7. (D. Maharam; a slight generalization of the Loomis—Sikorski theorem)
Assume A is a o-complete Boolean algebra and A, is a subalgebra of A
o-generating A. Then A is the quotient, under a o-complete epimorphism, of-a
o-complete subalgebra of Bor(Ult A,).

13. Complete algebras

The class of complete Boolean algebras has been intensively investigated and it
is probably the most important special class of Boolean algebras. This is partially
due to its role in the theory of forcing, via Boolean-valued models of set theory.
In fact, many results on complete algebras translate into relevant assertions on
Boolean-valued models or were originally motivated by this translation. Let us
point out that the results of this section will be complemented, in the next one, by
characterizations, via distributivity (respectively non-distributivity) conditions, of
two special kinds of complete Boolean algebras: Souslin algebras and the
collapsing algebras RO(“k) considered below.

This section centers around three results: the Gaifman—Hales theorem 13.2, the
Balcar—Franék theorem 13.6, and Frolik’s theorem 13.23. The first of these states
that, contrary to the situation for k-complete algebras, there are no free complete
algebras over infinitely many generators. This follows from a theorem of Sol-
ovay’s which is interesting in its own right: the regular open algebra of the
product space “k (k with the discrete topology) has a countable set of complete
generators. We then present Stavi’s proof of a theorem due to Kripke: every
complete Boolean algebra is completely embeddable into a countably generated
one.

The Balcar—Franék theorem says that every infinite complete Boolean algebra
A has an independent subset of cardinality | A|. Its proof uses different combina-
torial techniques, including the non-trivial results on pairwise disjoint families
from Section 3, to produce large independent subsets. We proceed to give two
applications, by McKenzie (respectively Monk), of the Balcar—Franék theorem,
dealing with independent complete generators for infinite complete Boolean
algebras (respectively with independence in algebras having the countable separa-
tion property). ‘

Frolik’s theorem reveals part of the structure of automorphisms (in fact, of
particular endomorphisms) of a complete Boolean algebra A: if f is an au-
tomorphism, then A has a partition of unity {a,, a,, a,, a;} such that f is the
identity on A | a, and f(a,) is disjoint from g, for i = 1. It follows that the set of
fixed points of the dual of f, a continuous map from Ult A into itself, is clopen in
Ult A. Combination with the Balcar—Franék theorem implies that the dual space
of an infinite Boolean algebra is not homogeneous, i.e. that there are points x and
y in Ult A such that no homeomorphism from Ult A onto itself maps x to y.

13.1. Countably generated complete algebras

We have shown in Section 12 that, for an arbitrary set / and any infinite
cardinal «, there exists a free algebra over I, in the category C, of k-complete
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Boolean algebras and «-complete homomorphisms. This was part of the more
general theorem 12.12 on the existence of amalgamated free products in C, , the
essential point of the proof being that the proper class of commutative squares
over a cone in C, has a set of representatives The existence of this set, in turn,
followed from the fact that, for B in C, and X C B, Lemma 10.4 gives an upper
bound on the cardinality of (X )" (the K- complete subalgebra of B generated
by X) depending only on |X| and « but not on B.

This fact does not generalize to the category of complete Boolean algebras and
complete homomorphisms: even for countable X, there is no upper bound for the
size of (X)°™, by the following theorem. The proof uses the regular open algebra
RO(“k), where the infinite cardinal « is given the discrete and “k the product
topology. This algebra is called a collapsing algebra since the effect of forcing with
RO(“k) is to collapse k onto .

13.1. THEOREM (Solovay). Let k, an infinite cardinal, have the discrete and “k the
product topology. Then the collapsing algebra Ro(“k) is countably completely
generated and has cardinality at least k.

Similar to Definition 12.10, call a pair (e, F) a free complete Boolean algebra
over I if Fis a complete Boolean algebra, e maps I into F and for each map f from
Iinto a complete Boolean algebra B, there exists a unique complete homomorph-
ism g: F— B such that goe=f. Solovay’s theorem immediately implies non-
existence of free complete algebras over infinite sets, a result originally proved by
Gaifman and Hales, independently, by arguments involving infinitary logic.

13.2. CoroLLARY (Gaifman, Hales). There are no free complete Boolean algebras
over infinite sets.

Proor. Assume that [ is infinite and (e, F) is a free complete algebra over I. Let
k be any cardinal greater than |F| and consider the collapsing algebra B =
RO(“k). By Solovay’s theorem, B has a countable set X of complete generators;
let f: I— X be onto. Now if g: F— B is complete and satisfies go e = f, then ran g
is a complete subalgebra of B including X. So g is onto and k < |B|=<|F|<«k, a
contradiction. O

Proof of Theorem 13.1. Denote by X the product space “x and by B the algebra
RO(“k).

First note that each subset u of X depending only on finitely many coordi-
nates is clopen hence an element of B. For let u={x€E X: x r keM } where
k €  and M C *k. Now “« is a discrete space, so M is clopen in “k and u is clopen

in X.
Thus, for @ <k and n, m € w, the sets defined by
a,, ={x€X:x(n)=a},
b,.={x € X: x(m)<x(n)}

are elements of B. Since {a,,: @« <k} is a pairwise disjoint family in B for
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arbitrary n, it follows that | B| =2 (Exercise 5 in Section 11 shows that, actually,
|B| =2%).

Being a subbase for the product topology, the set {a,,:n € w, @ <k} com-
pletely generates B. We shall prove that

X a,,B)- II (—bm,l + B§a am,3> .

®  an=(-2an) I
Then the countable set {b,,:m,nE w} completely generates each a,,, by
induction on «, and hence all of B. To prove (1), we note that

2) B§aan3={xeX:x(n)<a}.
This holds because the right-hand side of (2) equals U p<a Qg and this set is
clopen, hence regular open, depending only on the nth coordinate. (2) gives:

3) -b,,+ Bz.a a,; = {x € X: x(m) < x(n) implies x(m) <a},

since both sets depend only on the coordinates m and n and are clopen.
Denote by r the right-hand side of (1). By (2), a,, - Xz, 4,5 =0 and by (3),

a,,<—b,,+LIs.,4a,, for mEw; so a,=r. If a,,<r, let u€ B such that

0<u=r-—a,,. We may assume that u is a set in the canonical base of X, say

u={xeX: x(0)=a(0),...,x(k—1)=a(k—1)},

where kK € o and a(0), ..., a(k—1)<«k. It follows from u-a,, =0 that n <k
and a # a(n). If a(n)<a, thenu<a,,,, <L;,azandu=r=-L;,_, 4, a
contradiction. If a < a(n), pick m € w\k and x € u such that x(m)= a. Then
x(m) < a(n) = x(n); so

xeugrg—bmn+ Z am,B’

B<a

and (3) implies that x(m) < a; a contradiction. Thus, a,, =r. O

The collapsing algebra RO(“k) has very interesting properties. It is homoge-
neous by Corollary 12.5, being the completion of the homogeneous partial order
Fn(w, k, ). In Section 14, RO(“k) is characterized, up to isomorphism, by a
non-distributivity condition. As a consequence of this characterization, many
naturally defined complete Boolean algebras turn out to be isomorphic to
collapsing algebras (cf. Exercise 3 in Section 14). Finally, the characterization
gives a result due to Kripke and proved in Section 14: every complete Boolean
algebra of size at most « is completely embeddable into RO(“k). This, in
particular, shows:

13.3. TueoreM (Kripke). Every complete Boolean algebra can be completely
embedded into a countably generated one.

We give here a proof of 13.3 due to Stavi, which is interesting in its own right
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for a reader acquainted with infinitary logic. Let us recall some definitions from
the logic L., .

Consider a language L = {¢, U}, where ¢ is a binary and U a unary predicate
symbol; & will denote the membership relation of set theory in the formal
language being set up. Let X be a fixed countable set of individual variables. The
formulas

xey,  U(x)

where x and y are in X, are called atomic. L, is the least class F satisfying:

each atomic formula is in F,

for ¢ in F and x in X, —1¢ and Jx¢ are in F,

if @ is a subset of F and U {Fv(¢): ¢ € @} is finite, then V & (the disjunction

of the formulas in @) is in F.
Here Fv(¢), the set of free variables of ¢, is defined as usual. A @, Vx®, ¢ v ¢,
¢ Ay, ¢—> ¢, ¢ <> are abbreviations for the formulas = V {1¢: ¢ € P},
23x0é, V{g, ¥}, A, ¥}, 1é v i, (6= ) A(y— ¢). It follows by induc-
tion on the complexity of ¢ that each ¢ in L, has only finitely many free
variables; we write ¢(x, ... x,) if Fv(¢)C{x,,...,x,}. A sentence of L, is a
formula without any free variables. L., is, of course, a proper class. But for each
infinite cardinal k, we can consider L, the least subset of L, including all
atomic formulas and closed under negation, existential quantification and disjunc-
tions of length less than «, as far as they are feasible in L, .

The formulas of L, can be naturally interpreted in Boolean-valued structures.
To this end, let A be a complete Boolean algebra. An A-valued L-structure is a
sequence

M=(M, ", U"),

where M, the underlying set of M, is non-empty and e, U™ are functions with
“truth”-values in A:

e MxM—>A, U":M—A.
Given such a structure M, a formula ¢(x,...x,) in L,, and elements
my,...,m, of M, we define by induction the Boolean truth-value
ll¢[m, ...m,]| of ¢ in M under the assignment of m; to x;, an element of A:

l(x;ex)m, ... m, || = e"(m,,m,) if1<i, j=n,

|UGx)m, ... m,]|| = UY(m,) ifl=si=n,

IG)m, ... m]l[=~ll¢lm,...m,]l,

A
ICv @)m, ...m, ]| = 57 (llg[m, ... m,]|I: 6 € D},

I@xpGx, ... x)my ... m )| =L {lglmm, ... m]l|: me M) .
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(We used completeness of A in the last two clauses.) For application in Lemma
13.5, let us define the following L., -formulas; intuitively, « (x) defines the
position of the set ¢ in the set-theoretical universe (V, €).

13.4. DeriNITION. For every set ¢, the formula a,(x) and the sentence B, of L.,
are defined by induction on the set-theoretical rank of c:

a(x): Vy(yex—> V {a,(y):dEc})n A {Fy(yex A ay(y)): dE c)
B::  Fx(UX) A a,(x).

13.5. Lemma (Stavi). Let A be a complete Boolean algebra. Then there is an
A-valued L-structure M = (M, . . .) such that AC M and ||B,|| = a for each a in A.

ProoF. Let M be any transitive set including A. We define two functions £” and
U, coding the membership relation on M and the subset A of M, by

1 ifmem’ m ifmeA
M A > M _ >
€ (’"”")—{o iEtmgm; U ("’)‘{o ifmZA.

For an arbitrary set ¢ and m € M, ||a.[m]|| € {0, 1} since the symbol U does not
occur in the formula a,(x) and &” attains only values in {0,1}. We prove by
induction on the rank of ¢ that

4) e [m]||=1 iff m=c.
Suppose that for d €Ec and n € M, ||a,[n]|| =1 iff n=d. Then

|| [m]|| =1 iff (for n € M such that n € m, there is d € ¢ such that
n=d) and (for d € c, there is n € M such that
nEmandn=4d).

By transitivity of M, this amounts to saying that m C c and ¢ C m, i.e. that m = c.
Now for a in A, (4) implies that

18,1l = L A{U™(m)-||a,(m)||: mE M} = U(a)=a. O

Proof of Theorem 13.3. Given a complete Boolean algebra A, fix an infinite
cardinal k such that |A| <« and each of the sentences B, defined in 13.4, for
a€A, is in L ,. By Lemma 13.5, fix an A-valued L-structure M such that
| B.|| = a for each a in A.

Starting out with M and L, , we define a Boolean algebra of (equivalence
classes of) formulas, as in Example 1.12: for ¢ and ¢in L, , say ¢ = ¢(x, ... x,)
and ¢ = ¢(x,...x,), let ¢ ~ ¢ iff ¢ and ¢ are equivalent in M, i.e.

S~y MEVr, . x, (b ... x,) U x| =1.

It is a routine matter to check that the equivalence classes
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¢={VEL, d~¢},

for ¢ in L, , constitute a Boolean algebra C under the operations:

Kw?

~¢="96, S+ty=9vy,
etc. and that

$=u iff|Vx, ... x, (6> ) =1,
5) L{b:¢ed)=Vd

if V¢ €EL,, . Moreover,

(6) Ede;(xxl...xn)=y§XC{¢(yx1...xn):yEX}

for every formula ¢(x x, ... x,) in L, —here X is the set of variables in L., and
¢(yx,...x,) denotes the result of substituting y for x in ¢(xx;...x,). To
prove (6), note that trivially

o(yx,...x,)=Ixdp(xx,...x,).

For the converse, let ¢ be any upper bound of {¢(y x; ... x,): y € X} in C; by
taking the list {x;,...,x,} of variables big enough, we may assume that also
¥ =14y(x,...x,). Let y be a variable occurring neither in ¢ nor in ¢(x x; . . . x,).
Then

”Vy Vxl ce xn(¢(yxl cc xn)——> !!’(xl et xn))” = 1 >

and hence

||Vx1 c X, (Ayd(y Xy x) > (L xn))” =1,

IVx,...x,(Fxp(xx; ... x,)=> ¥(x,...x))||=1;

so Ixp(x x, - . . x,) < ¢, which proves (6).
By (5) and (6), both C and its completion B are completely generated by the
countable set {¢: ¢ atomic}. We claim that the assignment

e:A>B, e(l¢lh=9,

for each sentence ¢ of L, , is a complete embedding from A into B; note that
actually every element a of A is the truth-value of some sentence in L, , e.g.
=Bl
e is well-defined and one-to-one since, for arbitrary L, -sentences ¢ and i,
l®|l = ||¢|| iff || <> ¢|| = 1iff ¢ = . It preserves sums of arbitrary length, for let
YC A, say Y={||¢||: ¢ € D} for some set ® of L, -sentences satisfying |®|=
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|Y]. So |®|=<|A|<«k, V ®is a sentence of L,, and

o(2*v)-

(lol: o € 23)

(2"
(v o)

=V o by definition of e
%Y

¢: ¢ € D} by (5)
=Y [Y]
= ZBe[Y].

A similar but simpler argument shows that e preserves complements. [

13.2. The Balcar—Franék theorem

We have seen in Example 9.21 that the power set algebra P(X ) of an infinite set
X has an independent subset of maximal cardinality 2! This subsection is
devoted to a vast generalization.

13.6. TueoreM (Balcar—Fran€k). Every infinite complete Boolean algebra A has
an independent subset of cardinality |Al.

Before embarking on the proof, let us indicate two easy consequences. Three
less obvious applications will be found in the following subsections.

13.7. CorOLLARY. For every infinite complete Boolean algebra A, [Ult A|=2'"!

Proor. Let U be an independent subset of A of size |A|. The subalgebra of A
generated by U is free over U, hence has 214! ultrafilters by Corollary 9.7, and
each of these extends to an ultrafilter of A. O

13.8. CoroLLARY. Let A and B be complete Boolean algebras and |B| <|A|. Then
there is an epimorphism from A onto B.

Proor. This is trivial if A is finite. Otherwise, let U C A be independent and of
size |A| and let f be a map from U onto B. By independence, f extends to an
epimorphism g from the subalgebra generated by U onto B, and g extends to an
epimorphism A from A onto B, by Sikorski’s extension theorem 5.9. [J

The proof of the Balcar-Fran¢k theorem is based on a number of lemmas
which fall naturally into four groups. The first group deals with decompositions of
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a complete Boolean algebra into a product of simpler factors and states that the
theorem holds for the product if it holds for each factor.

For a statement of the next lemma, call a subset F of a product II,_; X; of
arbitrary sets X; finitely distinguished if, for each finite subset {f;,..., f,} of F
with f;, . . ., f, pairwise distinct, there is some i € I such that f,(i), .. ., f,(i) are
pairwise distinct.

13.9. Lemma. For any family (X,),c; of infinite sets, there is a finitely distin-
guished subset of I1,.; X, of cardinality |Il,., X;|.

Proor. Denote by P the cartesian product II,., X;. Let I be well-ordered by a
relation < in such a way that

(7 i =j implies | X,| <|X]|.

We may assume that / is an ordinal, say v, and prove the lemma by induction on
v. There is nothing to prove if y=0 or y=1.

First, consider the case that vy is representable as the ordinal sum « + 8 where a
and B are ordinals less than y. Then one of the products Il, _, X; and Il _,_, X,
has cardinality |P|; without loss of generality, assume that II,_, X, does. By
induction hypothesis, let G CII,_, X, be finitely distinguished and of size | P|; fix
some h in II,_,_, X; and let

F={f€P: fl a€Gandf | (y\a)=h)}.

Clearly, F works 1or the lemma.
So we are left with the case that, for each a <y, the set y\a has order type y.
In particular, for k = |y|,

(8) for each a <y, y\a has cardinality « ,

and so has the set E of all finite non-empty subsets of y. Using an enumeration of
E of type k, define by induction and (8), for each e € E, an element i(e) of y such
that max(e) = i(e) and the i(e) are pairwise distinct. For e € E, put

p=IIx,.

i€e
The sets X; are infinite; so by (7) and our choice of i(e), there is a one-to-one map

me: Pe_—)Xi(e) .
Then let the map
**P—P

be such that, for g€ P,
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g*(i)=m,(g | e) if i=i(e) for some e€E E .

The following argument shows that this map is one-to-one and that

F={g*: geP}
is finitely distinguished: assume g,, ..., g, € P are pairwise distinct. Pick e € E
large enough such that g, | e,..., g, | e are distinct. Then, for i=i(e),
g1 (i), ..., g (i) are distinct since g (i) =m,(g, | e) and m, is one-to-one. [

13.10. CoroLLARY. Let, for i€1, U; be an infinite independent subset of a
Boolean algebra A,. Then 11,; A; has an independent subset of size |Il,c, U,|.

Proor. By Lemma 13.9, let U be a finitely distinguished subset of II,., U;; we

show that U is independent in II,.; A;. For pairwise distinct elements u,, ..., u,
of U and arbitrary &, ..., g, €{+1, —1}, pick i €I such that u,(i), ..., u,(i)
are all distinct. Then by independence of U,,

(Byuy - oo - &,u,)(0) = guy (i) - - - - £,u,())>0,
SO guy - - - g,u, >0, O

By this corollary, an infinite complete Boolean algebra A has an independent
subset of size |A| if A is isomorphic to a product I1,., A;, where each A, is infinite
and has an independent subset of size | 4;|. Now the easiest way of decomposing
A into a product of simpler factors is to write

A=A | axA) —a,

where a is the sum of all atoms of A. Then A | a is atomic and hence, being
complete, isomorphic to the power set algebra P(A) for some cardinal A, by
Corollary 2.7. If A is infinite, then the Balcar—Frané€k theorem holds for A | a =
P(A) by Example 9.21. Thus, the proof of the Balcar—Franék theorem essentially
reduces to the case where A is atomless. The next lemma gives a more
sophisticated method for decomposing a complete Boolean algebra into simpler
factors.

13.11. DEriNiTiON. Let A be a Boolean algebra. An order preserving cardinal
function on A is a function ¢ which assigns a cardinal ¢(A | a) to each relative
algebra A | a of A such that ¢(A | b)=¢(A | a)if b=ain A. We write ¢(a)
for (A | a). A is ¢-homogeneous if ¢(a) = ¢(1) for each a € A\{0}.

There are several important examples of order preserving cardinal functions on
a complete Boolean algebra A, e.g. those defined by
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card(A | a)=|A | 4 (cardinality) ,
c(A } a)=sup{|D|: DC A | a a pairwise
disjoint family} (cellularity) ,
m(A | a@)=min{|Y|: YC A | adensein A | a}(density),
ind(A | a) =sup{|U|: U C A | a independent} (independence),
7(A | @) =min{|X|: XC A | a a set of complete
generators for A | a} (complete generation) .

The last one of these functions will be considered in McKenzie’s theorem 13.19; it
is order preserving since, for b=a, the canonical projection p, defined by
p»(x)=x-b is a complete epimorphism from A ' a onto A [ b.

13.12. LEmMA. Let ¢y, ..., ¢, be finitely many order preserving cardinal func-
tions on a complete Boolean algebra A. Then A is decomposable into a product

A=1l4,,

iel
where each A, is homogeneous for ¢,, ..., d,.
Proor. It suffices to show that
D={x€ A: x>0, A | x homogeneous for ¢,,..., d,}

is a dense subset of A; then let {a,: i € I'} be a partition of unity in A included in
D and put A;= A | a,. To prove denseness of D, let a >0 in A. We construct a
descending sequence

a=a,za, = -=a,>0

such that A | a; is ¢,-homogeneous: given a;, a,,, exists since ¢,,, is order
preserving and there is no infinite strictly descending sequence of cardinals.
Clearly, a, is an element of D. O

It is an essential part of our strategy for the proof of the Balcar—Fran¢k
theorem to generalize the notion of independence from subsets of A to sets of
partitions in A.

13.13. DEFINITION. Let A be a Boolean algebra. A set P of partitions of unity in
A is independent if, for n € w, pairwise distinct elements P,,..., P, of P and
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arbitrary p, € P;,...,p,EP,,

p- o p,>0.

This notion is closely related to that of independence for subsets (respectively
for families of subalgebras) of A. For example, let U C A be such that 0,1 & U
and —u & U for u € U, then U is independent, in the sense of Definition 9.3, iff
{{u, —u}: u€ U} is an independent set of partitions. On the other hand, if
(P,);c; is a family of distinct partitions, consider the subalgebras B, = ( P;) and
A;=(P,)"™ of A. Both B; and A, are atomic subalgebras of A with P, as their set
of atoms, and {P;: i € I} is an independent set of partitions iff (B,),c; (respective-
ly (A,);e;) is an independent family of subalgebras of A, as defined in 11.3.

Our second group of lemmas produces a large independent subset of A out of a
possibly small one plus one additional large partition, and reproves, in Corollary
13.15, the statement of Example 9.21.

13.14. LemMA. Let U be an infinite independent subset of a complete Boolean
algebra A and P a partition such that {P} U {{u, —u}: u€ U} is an independent
set of partitions. Then A has an independent subset of size |U|'""

Proor. For each pEP, {u-p:u€U} is an independent subset of A | p, by
independence of {P} U {{u, —u}: u€ U}, and has size |U|= w So by Lemma
13.10, A=I,., A | p has an independent subset of size |U|"". O

13.15. CoroLLARY. For each set X of cardinality k = w, P(X) has an independent
subset of size 2".
Proor. By Lemma 13.14, it is sufficient to find an independent set of partitions
{PYU{{u, —u}: u€ U} in P(X) such that |P| = k and |U| = . We may assume
that
X={(x, f)E « x*2: f(i) =0 for all but finitely many i Ew} ,
since the set on the right-hand side has cardinality «. Then let
P={p,a<k}, U={u,n€ow},
where
P ={x, HEX:x=0a}, u,={( fIEX: f(n)=1}. O
The third preparatory step for the Balcar—Fran¢k theorem consists in one single

lemma, producing independent subsets of complete Boolean algebras by essential-
ly the technique of Lemma 10.7.
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13.16. LEMMA (Vladimirov). Let A be complete and B a complete subalgebra of
A; assume that for no bEB”, BN A | b is dense in A | b. Then there is an
element u of A such thatb-u>0and b-—u>0 for each b€ B" (i.e. such that B
and (u) are independent subalgebras of A).

Proor. We claim that the set
D={deA":B"NA | d=¢}

is dense in A. For let a>0in A. If B"N A | a=0, then a € D, and we are

finished. Otherwise pick b € B such that 0<b =a. Since BN A | b is not dense

in A | b, there is a’ € A such that 0<a'<band B'NA | a’ =0, i.e. a' €ED.
For a € A, define as in Lemma 10.7

upr(a)=H{b€B:asb},

the least element of B lying above a. Then {upr(d): d € D} is dense in B. To
prove this, let bE B * By denseness of D, let d € D such that d =<b; then
upr(d) =upr(b) = b.

By Zorn’s lemma, fix E C D such that {upr(e): e € E} is a partition of unity in
B and, for e# e’ in E, upr(e) #upr(e’). We show that u =Y E works for the
lemma. For let b € B" and fix e € E such that b-upr(e)>0. If b-u =0, then
b-e=0, e<—b, upr(e)=—>b and b-upr(e) =0, a contradiction. On the other
hand, if b- —u =0, then using

—u= }EJE upr(e)- —e,

we conclude tht b-upr(e)- —e=0 and b-upr(e)<e. But b-upr(e) € B and
e€ D, so b-upr(e) =0 by definition of D, a contradiction. [

The proof of the Balcar—Franék theorem splits into two cases. In the first one,
the cellularity cA of A is attained and a large independent subset of A is
constructed from a single partition P of size cA and the preceding lemmas. Our
fourth and last preliminary step is a lemma which, in case cA is not atained,
replaces the partition P by a family P of independent partitions satisfying
sup{|P|: PE P} =cA. This lemma heavily relies on the Balcar—Vojtas theorem
3.14 on disjoint refinements.

13.17. LeMMA. Let A be a complete Boolean algebra such that k =cA is not
attained and A is cellularity-homogeneous. Then there is an independent set P of
partitions of A such that |P| = k and sup{|P|: P € P} = «.

Proor. We show that for any set Q of independent partitions such that |Q| <
and. for any cardinal T < k, there is a partition P of size at least 7 such tht Q U { P}
is still independent. A straightforward induction then gives P with the desired
properties.
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Given Q, let T be the closure of U @ under finite products. Now since k = cA
is not attained, |Q| < k for each Q € Q. The Erdds-Tarski theorem 3.10 shows
that « is regular. So U @ and T have size less than «, and we can write

T{0}={a,:a<pu}

for some cardinal u < k. Since u* <cA and A is cellularity-homogeneous, the
Balcar—Vojtas theorem 3.14 gives a disjoint refinement {b_: a <pu} of {a,: a <
u}, i.e. 0<b,=a, and the b, are pairwise disjoint. For each a < u, pick by
c(A | b,)=cA=k>r7a partition {c,z: B <7} of unity in A | b,,.

We define a partition P of unity of size 7 by letting

P={x,: B<7}.
where, for 0< B8 <7,

XB=ZC

a<p op

and X P=1 is guaranteed by putting

x0=(— ) ba)+ X Coo -

a<uy a<pu

To prove independence of Q U {P}, assume Q,,..., Q, € Q are distinct and

q; € Q, for 1=i=n; let x, € P. Then by independence of @, g, - -¢q, is a

non-zero element of T, say ¢, -** - ¢, = a,, and
0<c,p=b, xg=a, xg=¢q;" """ "¢, x5. U

Proof of Theorem 13.6. Let A be an infinite complete Boolean algebra; we shall
find an independent subset of A of cardinality |A|.

As in the remark following Corollary 13.10, write A= B X C, where B is
atomic and C is atomless. If |B| =|A|, then B is infinite; by Corollary 2.7 and
Corollary 13.15, B has an independent subset of size |A| and so has A, B being a
homomorphic image of A. Otherwise |C|=|A|, and it suffices to find an
independent subset of C of size |C|. We can thus assume A to be atomless; in
particular A | a is infinite for each a in A = A\{0}. We also assume, by 13.12
and 13.10, that A is homogeneous for the order preserving cardinal functions c
(cellularity) and = (density). Let, for the rest of the proof,

K =CA, A=TA.

Case 1. cA is attained.

Then | A| = A“. For |A| < A" follows from 4.9 and 10.5. To show |A|= A", pick
a partition P of size k and note that, for each a€EP, A=mA=7n(A | @)=
|A T al.
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Let u be minimal satisfying u“=A". So uw <A, and v <pu implies v < pu —
otherwise, A“ = u" = (v*)* = v, a contradiction.

Let us now find an independent subset of size |A| = A", breaking up the proof
into the cases u =2 and p >2. This is easy if u = 2. In this case, fix a partition P
of A of size « and consider the complete subalgebra D of A generated by P. Then
D is isomorphic to P(k), hence has an independent subset of cardinality 2" = | A|
by 13.15, and we are finished.

Now assume that 2 < u and thus that 2“ < u. By Lemma 13.14, it suffices to
find an independent set P U {Q} of partitions such that |Q| =k, |P|=pu and
|P| =2 for P € P. To do this, first pick Q satisfying | Q| = «. P is then constructed
by induction: suppose we have already constructed a set Q of independent
partitions such that |@| < u; we claim that there is an element u of A such that
Q U {{u, —u}} is still independent. Consider the complete subalgebra D of A
generated by U Q; then by 10.5,

IDI=(@]-©) =[Q]"-2"<pu=r=mA.

By Vladimirov’s lemma 13.16 and wr-homogeneity of A, there is some u € A such
that d-u >0 and d - —u >0 for each non-zero d in D. Clearly, this u works for
our claim.

Case 2. cA is not attained.

It follows, as in Case 1, that |A| = A~"; let u be minimal satisfying u~" = A~
Again v < p implies »~ < u —here we use regularity of k, ensured by the
Erdos—Tarski theorem 3.10. By Lemma 13.17, fix an independent set P of
partitions such that |P| = «, say

P={P,:a<k}
and, for k, =|P,|,

K =SUp K, .

a<k

If u =2, consider for a < k the complete subalgebra D, of A generated by P, .
Then D, is isomorphic to P(x,) and (D,),.,. is an independent family of
subalgebras of A. By 13.15, let U, be an independent subset of D, such that
|U,| =2". Clearly, ,

uv=Uvu

a<k o

is an independent subset of A and has cardinality

Y 2%=2"=)""=|A4|.

a<k

Now assume that 2 < u and thus that k <2~ < u. We indicate how to find, for
a < k, a set Q@ of partitions such that |Q_| = u, each Q € @, has size 2 and, with
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the partitions P, chosen above, {P,: a <k}U U __, @, is independent. Starting
out with {P_: a <k}, construct as in Case 1 by induction and using Vladimirov’s
lemma 13.16, a set Q of partition of size 2 such that |Q| = p and {P,: a <k} U Q
is independent. Then choose pairwise disjoint subsets @, of @, for a < k, such
that each Q, has cardinality p and Q=U__, Q,.

For a <k, consider the subalgebra A , of A generated by P, UU Q,; (4,),-,.
is an independent family of (non-complete) subalgebras of A. It was mentioned as
being one of the consequences of 5.11 that there is, for each a < «, a subalgebra
D, of A such that A, C D, and D, is isomorphic, over A, to the completion of
A,; note that D, is complete in its own right but not necessarily a complete
subalgebra of A. By denseness of A, in D, the family (D, ), ., of subalgebras of
A is still independent. Inside of D,, we apply Lemma 13.14 to {P,} U @, and
obtain an independent subset U, of D, of size

U] =10, = w.

Again

is independent and has cardinality

Lope=p=]4]. O

a<k

13.3. Two applications of the Balcar—Franék theorem

We apply the Balcar—Franék theorem to prove a theorem on independent sets
of complete generators in complete algebras, and another one on independence in
Boolean algebras satisfying the countable separation property. For the first one,
let us recall the cardinal invariant 7 (complete generation) quoted in the proof of
the Balcar-Franék theorem as an example of an order preserving cardinal
‘function.

13.18. DeriNITION. For every complete Boolean algebra A,
A =min{|X|: X C A a set of complete generators for A} .

The Balcar-Fran€k theorem states that in every infinite complete Boolean
algebra A there is an independent subset U which is large in the sense of
cardinality, i.e. |U|=|A|. Does A also have an independent subset X which is
large in the sense that X completely generates A? Indeed it has, and we can
prescribe the cardinality of X, the obvious restriction being that 7A < |X|=<|A]|.
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13.19. Tueorem (McKenzie). Let A be an infinite complete Boolean algebra and
\ a cardinal such that TA < A< |A|. Then A has an independent subset X of size A
which completely generates A.

Proor. Let us first prove the following Claim. By the way, this gives an easy
proof, which is in fact Pierce’s original proof from Pierce [1958], of Theorem 12.2
for complete algebras.

Claim. There is a partition of unity {a,: n € o} in A such that |4|=|A | a,|
for all n € w.

To prove this, we may assume that A= B X C, where B is atomic, say
B=P(Y), and C is atomless. If |B| = | A|, then let Y=U,__Y, be a partition of
Y such that |Y,|=|Y]| for each n € w, and define a,=(Y,, 1), a,=(Y,,0) for
n>0. Otherwise |C| = |A|. In this case, fix by Lemma 13.12 a partition of unity
{c;:i €I} in C such that each C | ¢, is homogeneous for the order preserving
cardinal function assigning |C | c| to ¢ € C. For each i € I, there is a partition
{¢;;;n€w} in C | c,;, since C is atomless. Put ¢, =X,., c,, for n € w, and let
a,=(1, cy), a,= (0, c,) for n>0. This choice of the a, finishes the proof of the
Claim.

To prove our theorem, choose by 74 = A a set

{b,:1=a<A}

of complete generators of A, possibly with repetitions. Take a partition of unity
{a,: n€ w} as guaranteed in the Claim. By the Balcar—Fran¢k theorem and
A=<|A|=|A | a,|, each A | a, has an independent subset

(U iIE @, a<A}CA | a,

nia*
consisting of pairwise distinct elements. Let then
X={x,, i€w,a<A},
where
Xio=a;+ 5 {U: n € 0, n> i},
X =ba-ai+2 {unia:nEQ,n>i} forl=a.

We show that X is a set of complete generators of A: it generates each a;, since
for n>0,

Z{ai:iEw,izn}=Z{xiO:iEw