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THE CONTRIBUTIONS OF ALFRED TARSKI
TO ALGEBRAIC LOGIC

J. DONALD MONK

One of the most extensive parts of Tarski’s contributions to logic is his work on
the algebraization of the subject. His work here involves Boolean algebras, relation
algebras, cylindric algebras, Boolean algebras with operators, Brouwerian algebras,
and closure algebras. The last two are less developed in his work, although his
contributions are basic to other work in those subjects. At any rate, not being
conversant with the latest developments in those fields, we shall concentrate on an
exposition of Tarski’s work in the first four areas, trying to put them in the
perspective of present-day developments.

For useful comments, criticisms, and suggestions, the author is indebted to Steven
Givant, Leon Henkin, Wilfrid Hodges, Bjarni Jonsson, Roger Lyndon, and Robert
Vaught.

Boolean algebras. Tarski’s main papers concerning Boolean algebras can be
divided into these categories:

1. Fundamentals. Several of Tarski’s papers in the 1930’s were concerned with the
foundations of the theory of Boolean algebras, a fact that was recognized by
Birkhoff in the first edition of his book, Lattice theory, in which he described M. H.
Stone and Tarski jointly as the creators of the modern theory of BA's. Clearly in the
modern spirit of the subject was Tarski [35]. This important paper may be
considered to have two main parts. In the first, he introduces the general infinite
distributive law and shows that every complete atomic BA is isomorphic to a power
set algebra. This may be considered as the beginning of the study of infinite
distributive laws; see below. In the second part of the paper, he proves the
fundamental theorem that any logic give rise to a Boolean algebra, in the familiar
way. This is the first appearence in the literature of the well-known and important
Lindenbaum-Tarski algebras. There is some historical controversy as to the
inventor of these algebras, although to one not directly involved it seems obvious
that Tarski was the sole inventor. See Henkin, Monk and Tarski [71™,p. 169,
footnote 2] and Surma [1982].

2. Logical questions. In Tarski [49*] the important result is stated that the
elementary theory of BA’s is decidable. His proof never appeared in print in detail,
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but it was presented in seminars in Berkeley. It is a classical, but somewhat involved,
elimination of quantifiers. The theorem has been considerably strengthened: the
elementary theory of BA’s with an w-sequence of ideals is decidable (Rabin [1969]).
On the other hand, the elementary theory of a BA with a subalgebra is undecidable
(Rubin [1976]; independently shown by McKenzie). There are several other known
results concerning decidability or undecidability of the theory of BA’s in various
languages. A survey is to appear in Weese [198-], [198-a].

3. In a series of abstracts, Tarski discussed the relative strengths of prime ideal
theorems for various kinds of BA’s and the axiom of choice. This work set the stage
for the later work of Halpern and others.

4. The deeper algebraic theory of BA’s was treated by Tarski in several papers. In
Mostowski and Tarski [39a] the notion of an interval algebra, or BA with an
ordered basis, was introduced, and their most important properties were es-
tablished. This turns out to be a very interesting class of BA’s, and it has been further
investigated by many people; for example, see Mayer and Pierce [1960], Rotman
[1972], and Rubin [1983]. See also Henkin, Monk and Tarski [71™]. In Tarski [37]
and Tarski [39], [45], notions of x-complete ideals and related topics were
introduced, starting an active area which might be called set-theoretical ideal
theory; for some recent developments, see, for example, Baumgartner, Taylor and
Wagon [1982]. Erdos and Tarski [43] proved the very useful result that min{k:
every set of pairwise disjoint elements in 2 has power <k} is always a regular
cardinal. Smith and Tarski [57] made a thorough study of distributive laws in BA’s;
this paper gives the central core of results known about such laws at the present
time. For a survey of recent developments, see Jech [198-]. In Erdés and Tarski
[43], [61b] and Keisler and Tarski [64], properties of BA’s associated with large
cardinals were discussed.

5. Measure algebras. Horn and Tarski [48c] is an important early paper in this
area.

Brouwerian algebras and closure algebras. Tarski’s work here was done in
collaboration with J. C. C. McKinsey, in the papers McKinsey and Tarski [44],
[46], [48]. The first of these papers studies closure algebras from the universal-
algebraic point of view. The second is mainly about Brouwerian algebras, but also
indicates their connections with closure algebras. The third paper applies the first
two in the study of intuitionistic and modal logic.

Boolean algebras with operators. Tarski developed this subject in joint work with
Bjarni Jonsson; see Jonsson and Tarski [51a] and [52]. The subject is still alive, and
there have been later papers on this subject by Henkin, Monk, and others. The
natural algebraic notion of a BA with operators can be considered to be a general
algebraic framework for many extensions of classical sentential logic. The main,
very useful, result in the two papers is the extension of certain operators on a BA to
operators on the power set of its Stone space, and the preservation of certain kinds
of sentences by this extension. In connection with this main theorem, the notion of a
complex algebra is introduced; the theorem can be formulated as saying that every
BA with certain kinds of operators can be embedded in the complex algebra of a
certain relational structure. Below we explain exactly what this means for the
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complex algebras of groups, which is essentially a familiar construction to
mathematicians. Applications of the main theorem are discussed for closure
algebras, cylindric algebras, and relation algebras. It is likely that recent work on
dynamic algebras and on general algebraic logics could be simplified and helped by
the use of results about BA’s with operators; see Kozen [1979] and Andréka,
Gergely and Németi [1977].

Relation algebras. The theory of binary relations, introduced by Peirce, was first
extensively developed developed on the arithmetic level by E. Schroder [1890]. The
purely algebraic theory originates with Tarski [41]. A relation algebra, for brevity an
RA, is by definition an algebraic structure A = {4, +,-, —,0,1,;,%,1") such that
(A, +,-,—,0,1> is a BA, ; is a binary, and “ a unary, operation on 4, and 1’€ 4,
subject to certain equational postulates:

(1) (x;y);z = x;(y;2),
(2) (x+ysz=x524+ yz,
(3) x 1" =x,

4) x“Y = x,

(5) (x + )7 =x"+y"
(6) (x;3)” = y";x¥,
(7 xV[=(;))] -y =0.

This is an abstraction from the following concrete case: 4 is a collection of binary
relations on some set U, closed under the Boolean operations v, n, \ (com-
plementation relative to U x U), with {(x,u): ue U} € A, and closed under the
relation-theoretic operations | (relative product) and ~* (conversion):

R|S = {(u.w): 3v[(u,v) € R and (v,w) € §]},
R~ = {(u,v): (v,u) € R}.

Of course, |, "' and {(u, u): u € U} correspond to;, “ and 1’,and the postulates (1)~(7)
are easily seen to hold in this concrete case. An RA is representable if it is isomorphic
to a subdirect product of concrete ones. The arithmetic of relation algebras is very
rich. Its most extensive development is found in Chin and Tarski [51]. Probably all
of the concrete relation algebraic identities found in the books of Schroder can be
proved to hold in any RA. The algebraic theory of relation algebras is treated in
Jonsson and Tarski [S1a], [52]. In particular, they prove some representation
theorems (relations algebras are isomorphic to some almost concrete ones), and
discuss complex algebras for relation algebras. For clarity, take the group notion
first. Given a group G, we can form a relation algebra %; = (G,u,n,\,0,G,;,", ")
in which X; Y = X - Y(complex product), X = X !, and 1’ = {e} (e the identity of
G). This relation algebra has the special property that x; y = 0 implies that x = 0 or
y = 0; an RA with this property is called integral. Jonsson and Tarski left open the
question whether every representable integral RA is embeddable in the complex
algebra of a group. McKenzie [ 1970] answered this question negatively: the class of
RA’sembeddable in the complex algebra of groupsis not even finitely axiomatizable
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over the class of integral representable relation algebras. The main result in Jonsson
and Tarski [52] about complex algebras of RA’s is that an RA is representable iff it
is isomorphically embeddable in the complex algebra of a generalized Brandt
groupoid. The notion of a Brandt groupoid comes up in finite combinatorics. Thus
here, for perhaps the first time, we see the interplay of algebraic logic and finite
combinatorics—a recurrent theme in this area (see below).

One of the deepest results concerning RA’s was obtained by Tarski quite early,
but never published: the equational theories of RA’s and of representable RA’s are
undecidable—see Tarski [41], [53*b]. His proof directly translated set theory into
RA’s (essentially), and forms a basis for his later work with Givant (see below). A
much simpler proof was recently obtained by Maddux [1978].

It turned out, surprisingly, that not every RA is representable. This was shown by
Lyndon [1950] (with a correction in Lyndon [1956]). Elegant constructions of
nonrepresentable RA’s were given in Jonsson [1959] and Lyndon [1961]. Lyndon’s
construction associates an RA U; with a projective geometry G, with U
representable iff G cannot be embedded in a geometry of higher dimension. This
construction led immediately to a proof that the class of representable RA’s is not
finitely axiomatizable over RA (Monk [1964]). Here the Bruck-Ryser theorem on
the nonexistence of projective planes of certain orders was used.

One of the biproducts of Tarski’s fundamental investigations in model theory was
the important result (in Tarski [55]) that the class of representable relation algebras
is a variety.

Early in the development of the theory of relation algebras, Tarski realized that
the ideas could be used to achieve a philosophically interesting basis for set theory in
which variables are not used and only equations occur (see Tarski [53%c]). He
returned to these ideas in the 70's, and spent the last years of his life developing with
S. Givant a lengthy monograph on this subject (Givant and Tarski [8—™]).

The ideas in the calculus of relations have turned out to have relevance in
theoretical computer science. In particular, the dynamic algebras of Kozen and
Pratt (see Kozen [1979]) embody a variation of RA’s in which there is an additional
operation of transitive closure. (See also the above discussion of BA’s with
operators.) Cf. here also Ng and Tarski [77*].

For an up-to-date account of RA’s, see Jonsson [19 ].

Cylindric algebras. Although relation algebras may be considered to be algebraic
versions of a (rather limited) portion of predicate logic, this connection is not
immediately obvious. RA’s are more directly motivated set-theoretically. Cylindric
algebras, on the other hand, are most convincingly motivated via full first-order
logic.

A cylindric algebra of dimension o (x an arbitrary ordinal)—a CA,—is by
definition an algebraic structure U = {4, +,+, —,0,1,¢,,d,; ) 1<, sSuch that (A4,
+,+, —0,1) is a BA, each ¢, is a unary operation on A, each d,; € 4, and the
following equational identities hold:

(1 ¢ 0=0,
(2) X+ CX = X,
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3) Ce(X  €y) = X * €Y,

4) CeC3X = C;C,X,

(5) doe =1,

(6) if x # A, pu, then d,, = c,(d,, - d,,),

(7) if k # Athen ¢ (d,; * x)+ ¢ (dy; + —x) = 0.

The logical motivation is this: given a theory I in a first-order language L, define ¢
= yiff ¢ and y are formulas such that I' - @ «» . This is an equivalence relation on
the set of all formulas, and the collection of equivalence classes forms a cylindric
algebra under operations such that [¢] + [¥] = [¢ v ¥], —[e] = [T¢], ck[¢]
= [Jv,p]and d,; = [v, = v,]. In analogy with Boolean algebras, this algebra could
be called the Lindenbaum-Tarski algebra of the theory I'. (The author suggests that
at least for this construction, Tarski's name be associated with Lindenbaum’s—see
above.) CA,’s can also be motivated set-theoretically: one considers a BA A of
subsets of *U for some set U, closed additionally under the following operations:

C.X = {ue*U:forsomeve X,u, =v,forall 1 # k} (cylindrification),
D, = {ue*U:u,=u;} (diagonal set).

CA,’s isomorphic to a subdirect product of such set algebras are called represen-
table. These concrete CA’s also arise in a natural, obvious fashion from models of
theories.

The basic ideas of the theory of cylindric algebras were developed by Tarski in
collaboration with his students L. H. Chin and F. B. Thompson, in 1948-1952. In
addition to relation algebras, precursors are the projective algebras of Everett and
Ulam [1946]. Shortly after the invention of CA,’s, L. Henkin made notable
contributions to the subject. Later, extensive work was done by J. D. Monk, S.
Comer, H. Andréka, and 1. Németi. Tarski himself continued to make many
technical contributions to the subject until about 1970. The theory of CA,’s is
expounded primarily in three substantial monographs: Henkin, Monk and Tarski
[71™ + 85™], and Henkin, Monk, Tarski, Andréka and Németi [81™]. We indicate
some highlights of the development:

(A) The CA,’s defined from logic as above have two pecularities: « is infinite, and
the algebras are locally finite-dimensional (for every x, there is a finite I' < « such
that ¢, x = x for all k € «\I'). The main representation theorem for CA,’s is that
every locally finite-dimensional infinite dimensional CA,, is representable. There is a
close connection between this result and the completeness theorem for first-order
logic. In particular, each is rather easily derivable from the other. The representation
result is due to Tarski, but the first published proof of the result is found in Henkin
[1956], using the completeness theorem. For Tarski’s original proof, in a somewhat
simpler form, see Andréka and Németi [1975] (although they did not know Tarski’s
proof).

(B) For any dimension greater than 1 there are nonrepresentable CA,’s. This was
realized by Tarski at an early stage in the development of the subject. In fact, for
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2 3 the class of representable CA,’s is not finitely axiomatizable over CA, (Monk
[1969], using a form of the finite Ramsey theorem in a rather complicated way).

(C) The class of representable CA,’s can be characterized by two equations in
addition to the CA, equations (Henkin and Tarski [61a]). This result and the
construction of nonrepresentable cylindric algebras can be conveniently proved
using the complex algebras associated with CA’s.

(D) Theequational theory of CA,’s and of representable CA,’s is undecidable if 3
< a < o (this is due to Tarski, except for the case of CA,; that case, and a simpler
proof of the whole result, are due to Maddux [1980]).

(E) The equational theories of CA,’s and of representable CA,’s are decidable
(Henkin and D. Scott; this appears in Henkin, Monk and Tarski [85™] for the first
time).

(F) By extending the notion of a first-order language, one can show that every
CA, is isomorphic to the CA, of formulas with respect to some language; this was
noticed by Henkin and Tarski at an early stage. A proof and a lengthy account of the
connections of cylindric algebras with logic are found in Henkin, Monk and Tarski
[85™]. In particular, the development of the theory of cylindric algebras has singled
out two new kinds of languages: ones with only finitely many variables, correspond-
ing to CA,’s with « finite (see Henkin [1966] for the first extensive treatment of such
languages), and what could be called the finitary logic of infinitary relations—
languages which have infinitely long atomic formulas, but only the usual finitary
connectives (see Henkin [1956]). The latter languages correspond exactly to
cylindric algebras of infinite dimensions.

(G) As for relation algebras, there are some connections with theoretical
computer science which are still in the developmental stage; see Imielinski and
Lipski [1984] and Plotkin [1984].

(H) A little-developed aspect of the theory of cylindric algebras concerns the
analysis of the Lindenbaum-Tarski algebras of well-known theories. Tarski was
especially interested in this topic. He stressed the usefulness of such analyses,
suggesting in particular that this should be carried out in detail for the theory of real-
closed fields, algebraically expressing his well-known decision method. Essentially
the only substantial theorem in this area is the theorem of D. Myers [1976]
characterizing the CA, of formulas (with no axioms).

(I) It has been shown that relation algebras correspond in a definable fashion to
certain three-dimensional CA,’s, in principle reducing the theory of RA’s to that of
CAy’s. This is a result of Maddux [1978], extending a partial result of Monk [1961].

(J) Very recently, starting with the book Henkin, Monk, Tarski, Andréka and
Németi [81™], the study of cylindric algebras has entered a technical phase which is
hard to describe in an historical article such as this. Some of the results and
problems are rather difficult, and even require some advanced set-theoretical
techniques.

(K) There are many other algebraic versions of predicate logic, invented after
cylindric algebras were. Many relationships are known concerning these versions; a
survey of various kinds of algebraic logics and their relationships with cylindric
algebras is found in Chapter 5 of Henkin, Monk and Tarski [85™]. We mention two
important cases: the polyadic algebras of Halmos [1962] and diagonal-free CA,’s.
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The relational systems associated with the latter by the complex algebra con-
struction are especially interesting: such a relational system is just a nonempty set
together with an a-indexed system of commuting equivalence relations on the set.
Polyadic algebras form a convenient algebraic framework for discussing the
infinitary L, languages.
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