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A cylindric algebra consists of a Boolean algebra endowed with an additional
structure consisting of distinguished elements and operations, satisfying a certain
system of equational axioms. The introduction and study of these algebras has its
motivation in two parts of mathematics: the deductive systems of first-order logic,
and a portion of elementary set theory dealing with spaces of various dimensions.
This paper investigates the relationships between the abstract notion of a cylindric
algebra and its source in elementary set-theoretic geometry.

The precise set-theoretic or geometric notion giving rise to the abstractly
defined notion of cylindric algebras is that of a cylindric set algebra. To see what
this amounts to, we start with any set U and ordinal « and form the
a-dimensional Cartesian space “U over U. The points of *U are the sequences of
length & whose components are in U, i.e., the functions ¥ mapping « into U.
Among the subsets of the space *U we distinguish the diagonal sets D,, for each
K, A< a, where

D,;, ={u€*U:ux =ul}.

And among the operations mapping subsets of “U to other such subsets we
distinguish the cylindrifications C, for each x < a, where for any X c “U,

C.X = {u € “U:for some x € X we have ul =xA for every A # x, A< }.

The set C, X is the cylinder generated by X in the kxth direction.
Using the diagonal sets D,; and cylindrifications C,, we now define a cylindric

t Alfred Tarski died in Berkeley on October 27, 1983, after the manuscript for this paper had been
conipleted. He was 82. The ideas of his which are incorporated in this paper were developed over the
years since 1948, or possibly even earlier. He introduced both of the other authors to these ideas, thus
<timulatine their own interest in the subiect.
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set algebra of dimension « with base U as a system of the form
A= <A’ u,n,~,0, U, Cx: Dxl>x,1<a

such that (4, U, N, ~, 0, *U) is a Boolean set algebra of subsets of “U, D,; € A
whenever k, A< &, and A is closed under each operation C,, x < a. We use the
notation Cs, to refer to the class of all cylindric set algebras of dimension a.
There are many equations that hold identically in every cylindric set algebra of
a given dimension; in addition to all of the Boolean identities, we may mention

CG0=0, XNCX=X, GXNCY)=CXNCY

as simple examples. Certain of these identities have been selected to serve as
axioms for the abstractly defined notion of cylindric algebras. Thus, a cylindric
algebra of dimension « (CA, for short) can be described as any system
(B, +,+, =, 0,1, ¢, dy3) x.2<a similar to Cs,’s which satisfies a certain set of
prescribed equational identities. The identities which serve as axioms for defining
CA,’s have been selected from all identities holding in every Cs, because they
are simple, and because for an important class of cylindric algebras (for o
infinite), the class of locally finite-dimensional CA,’s (Lf,’s for short), an
equation holds identically in all Lf,’s if and only if it holds in all Cs,’s. The
importance of Lf,’s, in particular Lf,’s, derives from the study of first-order
logic. Thus if T is any mathematical theory formulated in a first-order language,
then there is a natural way to associate an Lf, with 7. An Lf, is any CA, such
that, for each of its elements x, we have c,.x = x for all but finitely many x < a.

The book [5] is devoted to the abstract theory of cylindric algebras, and [6] to
the theory of cylindric set algebras and related structures. A cylindric algebra of
dimension « is representable if it is isomorphic to a subdirect product of cylindric
set algebras of dimension a. In this article we give various sufficient conditions for
representability, some of which are also necessary, and we describe some
constructions of non-representable cylindric algebras.

Although our work is based on [5] and [6], we have made efforts to keep our
discussion understandable for readers who have not made a thorough study of
those works, by repeating some definitions and giving extensive references to
results from [5] and [6] which we use.

We use Rp, for the class of all representable CA,’s, i.e., the class of all CA,’s
isomorphic to a subdirect product of Cs,’s.

For readers who are familiar with cylindric algebras we now describe the
contents of this article in more detail. We begin with a technical result, II.5,
which has two important corollaries. The first is that every Lf, with a=w is
representable (this result already has several proofs in the literature). It has many
important immediate consequences; e.g., Dc,cRp, for a=w, Rp,=
SNr,CA. .. for any «, Mn, < Rp,. The second corollary is a characterization of
representability in terms of embeddability in algebras with ‘thin’ elements (I1.13).
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an atomic algebra with all atoms rectangular (II.16). Third, we show that every
CA, of positive characteristic is representable (II.53). Our last major positive
representation result is that any CA, satisfying two additional simple equations is
representable (I1.65). We conclude the article with the description of three
methods for constructing non-representable CA,’s (the existence of non-
representable CA,’s is, however, known from the literature; see [5] and [10]).

This article is the second in a series which is to form a part of the second
volume of [5]. (The first is contained in [6]). For this reason we number
definitions, theorems, etc. by I1.1, II.2, etc.

Our first major result is a very strong sufficient condition for representability; it
is an algebraic version of the completeness theorem for first-order logic. Our
algebraic proof will be a version of Henkin’s proof of the completeness theorem.
Recall that his proof first starts by adjoining constants, which are used to
eliminate quantifiers (in a certain sense). So we start by discussing an algebraic
version of constants. There are at least three such versions. One can algebraically
express properties of the formula v,=¢, ¢ a constant; this is the method we
actually use. Or, one can concentrate on the operation of substituting a constant
for a variable in a formula; the corresponding algebraic notion of a special kind of
endomorphism is used extensively in Halmos’ related theory of polyadic-algebras,
and occurs as a derived notion in our development — see II1.3. Lastly, one can
think of a constant as a variable which one is not allowed to quantify; see the
proof of I1.7 and also Remarks IIL.9.

For the following definition, recall that CA, is the class of all cylindric algebras
of dimension a; six =c,(d,; -x) for all distinct x, A<a, and syx =x; and
Ay = {k<a:cyFy}.

Definition II.1. Let =2 and let A € CA,.

(i) For x < a, an element x of A is kx-thin if Ax c {kx}, x - six <d,; for some
Aea~{kx}and c,x =1.

(ii) A is rich if for every y € A such that Ayc 1 and y#0 there is a 0-thin
element x such that x - coy <y.

Remarks I1.2. It will be shown shortly that if x is x-thin, then x - six <d,, for
every Ae a ~ {k}. If A is a Cs, with base U and u € U, then x = {t € “U:10 = u}
is O-thin. (Cs, is the class of all cylindric set algebras of dimension a.) Thin
elements are an algebraic version of individual constants. Thus let A be a
language with an individual constant ¢. Let 2 be a consistent set of sentences in
A. Then (vo=c¢)/=3 is a O-thin element in the CA, Fm'Y/ =5 (cf. [5, 1.1.9,
1.1.10)).

We need two lemmas concerning thin elements. In the proof of these lemmas,
and throughout the rest of this article, we use some elementary arithmetic of
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and their derivation from the axioms for CA,’s is usually easy (see [5, Chapter 1,
exclusive of 1.8-1.11]).

Lemma I1.3. Suppose a =2, k<a, W is a CA,, and x is a k-thin element of .
Then:
(i) x - six <d,; for every A< a.
(ii) If A < a, then s3x is A-thin.
(iii) If A# K, then ¢, — ¢, (x - —d,;) = 1.
(lV) If)'+ K, YEA, and CA[x Yy Ct(x ‘ —y)lscx(x ' 'dxl)n then c‘(x : —y) =
- x(x °y)
(v) Under the assumptions of (iv) we have x - c,(x - y)=x - y.

Proof. (i) By II.1 choose u € ~{x} such that x - sjx <d,,. Applying s4 to both
sides of this inequality we get x - six <d,,, as desired.

(ii) We have s¥x -sisfx=s5x -x<d,,, Asixc{A}, and gsfx=c,x =1, so
s3x is A-thin.

(iii) By (i), we have x - —d,; - s5x =0, s0 ¢, (x - —d,;) - six =0, hence six <
—Cx(x - —d,;). Therefore

l=cx=8x=c—c(x - —d,,),
as desired.

(iv) The assumption yields ¢[x -y c(x-—=y)]: —c(x - —d,;) =0, hence
Ce(x ) ce(x - =y) - €3 — cx(x - —d,;) =0. Hence the desired result follows from
(iii), since ¢ (x - y) +cx(x - —y)=cx =1

(v) We have

X - c,(x 'y)=x * _Cx(x ' _y)=x -cﬁ(—x+y)
<x-(—x+y)=x-y<sx-c(x-y).
For the next lemma, recall that if I" is a finite subset of &, I'= {¥0, ..., y(x —
1)}, then cryX =Cyo* - * Cye—1)X-

Lemma I1.4. Suppose 2< a, I is a finite subset of «, and A is a CA,,. Suppose x
is a function with domain I such that x, is a kx-thin element of A for every x € I.
Furthermore, assume that the equality

CL[y *Z c.(y ' —Z)] ' Cx(cly ' —dxl) =0
holds for all distinct x, A<a and all y, z € A. Then for any y € A we have

C(n(’!:[rxx : -)’) = -C(n(H Xx ‘)’),

xel’

[1 x ‘C(n(kI;[rxx°}’)= I1 x - y.

xell xell
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From the following theorem we will be able to derive the main representation
theorem using two additional easy lemmas. Recall here that a CA, % is simple if
it has exactly two ideals; % € Lf, if Aa is finite for all ae A. A Cs, ¥ as in the
introduction is regular if for all ae A and all u,ve®U, if uea and Aalu=
Aa | v, then v € a; Csg® is the class of all regular Cs,’s. For a=w, a Csz®*NLf,
corresponds exactly to a model in some language; see [6, pp. 3, 57].

Theorem I1.5. Suppose 2< a, U is a simple rich Lf,, and for all distinct x, A< «
and all x, y € A the equality c;[x - y - ¢, (x - —y)] - —c(c2x - —d,;) =0 holds. Then
A is isomorphic to a Cs3E.

Proof. Let U be the set of all O-thin elements of A. We shall define an
isomorphism f of % onto a regular Cs, with base U. Because ¥ is simple, we will
only need to check the homomorphism conditions for f. For any a € A let

fa={ue ‘U:[] s‘,"u,sa}.
K€Aa
To check that f preserves —, first suppose that u € fa N f(—a). Since Aa =
A(—a), this implies that [1,¢a, 5%, =0. But c(az) [lceanS2 = [lrcas a2, =1,
contradiction. Second, we show that fa U f(—a) = *U. Suppose u € “U ~ fa. Thus
[xeaaSoty - —a ¥ 0, so by simplicity, ¢ az)(Ilkeas 2%y - —a) = 1. Then by I1.4 we
have c(any(IlxcaasUx -a)=0, 0 Il cpos%u,<—a and hence uef(—a), as
desired.
Next we show that f preserves -. Suppose first that u € f(a-b). Thus
Meca@ -5 Sty <a-b. Let I'= A(a - b) U Aa. Then [1,r s2u, <a, so
[T s, = crmnay [ 1 s <cr-ama=a,
K€Aa kel
and u € fa. Similarly, u € fb. Second, suppose that u € fa N fb. Then [, ¢4, 5%, <
a and [, cap 52, <b, 50 [Ireaouas S, <a - b. As above one argues to show that
H:eA(a-b) S‘A)'ux <a-b.
For cylindrifications, suppose that A < a, and first suppose that u € fc;a. We
may assume that A € Aa. Thus with b = ¢, a,

IT s%u, <ca.
xeAb

We want to find a O-thin element v such that u? € fa. Note that

CAC(M~<A))[( [1 s‘,’,u,) : 0]

x€Aa~{A}

o1, ) (L ) o

xeAa~{A}~Ab

= C(A-~m)( I1 s?rux\, =1;



28 L. Henkin, J.D. Monk, A. Tarski

it follows that the element x = ¢(as~(a))[(Ilxesa~(1) S¥x) - @] is non-zero and has
dimension set c{A}. Hence let v be a 0-thin element <sjx. Set «’ = u?. Then

[T sSur= 1[I %, -sv

K€Aa xeAa~{A}
= H s?,u,-c(Aa~(”)[( H Sgux)'a]
xeAa~{A)} xeAa~{1})
<a bylIL4,

as desired. Second, suppose that u € ¢,fa. Let v be a 0O-thin element such that
ul € fa. Thus

(1) IT %, -sfv=<a.
xeAa~{A}

Let I' = (Aa ~ Ac,a) U {A}. Applying cr to both sides of (1) we get

[T 5%, <c,a,
xeAb
hence u € fc,a, as desired.
Now for diagonal elements, suppose A, u < a; we may assume that A # u. First
suppose that u €fd,,. We may assume that % is non-discrete, and hence
Ad,, = {A, u}. Thus s3u, - s%u, <d,,. Hence

0 _— 0 0 0 —_ o0
Suly = C(s3uy - suu,) < cy(dy, * s5u,) = sy,
and so u, <u,. By symmetry u, =u,, so u € D,,. Second, suppose that u € D,,,,
so that u, = u,. Then
0 0 -0 A0
SalUy, * Syl = S3U; - SuSauy < d,,

since sju, is A-thin by I1.3(ii). Therefore u € fd,,,.
It is obvious that fa is regular for each a € A, so the proof is complete.

Lemma I1.6. Suppose 2< a, U is a rich Lf,, and I is an ideal of A. Then N/I is
rich.

Proof. Suppose a€A, A(a/l)cl, and a/I#0. Then Ac(s,-nacl and
Ciaa~1y@ #0, so let x be a O-thin element <c(,,-yya. Clearly x/I is O-thin and
x/I<all

-For the proof of the next result, we use the follow notions. If a<f and % is a
CAg, then Rbd, is the CA, obtained from ¥ by deleting ¢, for @ < x < B and d,,
if a<xk<p or a<A<pB; Nr, is the subalgebra of Rd, with universe
{aeA:Aaca}.

Lemma IL.7. Suppose w<a and Aelf,. Then A can be isomorphically

L 270 ' 2 1L7TTCr
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Proof. By a simple transfinite argument it suffices to show that if 0 #a € A and
Aa c 1, then there is an extension B € Lf, of U such that x - coa <a for some
0-thin element x of B. To this end, let € be an Lf,,, such that % c Nr,E, by
[5, 2.6.49]. Let D =Rb,E, and let I =Ig™®{—co((a + —coa) - dos)}. Then AN
I={0}. In fact, suppose y e ANL Thus y-co((a+ —coa)-do,)=0, so y-—
coa=0 and y -sha=0. Since Aac a and Ay c a we have y - coa =0. Hence
y =0, as desired. Clearly also (@ + —coa) - do, ¢ I. Let x = (a + —coa) - dg,. Then
in ©/I we have that x/] is 0-thin and (x/1) - co(a/I) <a/l. This finishes the proof.

The main representation theorem now follows:
Theorem I1.8. For a = w we have Lf, < SPCsy®.

Proof. By I1.7 we may assume that our given ¥ € Lf, is rich, and by [5, 2.4.52]
and I1.6 that % is simple By [5, 1.11.7], the equations indicated in II.5 hold in .
Hence the conclusion follows by I1.5. (The proof of 1.11.7 is easy.)

Remarks I1.9. The result just established is due to Tarski. The proof is due to
Henkin. Tarski’s original proof can be sketched as follows, using the apparatus
developed in [5]. We start with a simple Lf, U, « = . First we neatly embed A
in a simple Lfs € such that |B| = B; it suffices to show that € € ICsg®. Using this
cardinality condition it is easy to construct an ultrafilter F on Bl B satisfying the
following condition.

(*) For all k <p and all x € B, if c,x € F, then s3x € F for some A € f ~ Ax.

Now we can define an equivalence relation = on f by setting k =1 iff d,; € F. Let
U be the set of all =-classes, and let ¢ € Y8 be a choice function: ¢u € u for all
u € U. Then the desired isomorphism f is defined by

fo={xePU:s}..beF)

for any b € B, where s is the substitution function introduced in [5, 1.11.13].

Proofs of I1.8 have appeared in the literature. Except for a different argument
avoiding neat embedding, the proof just sketched appears in [1]. A proof similar to
the one of ILS, using thin elements, is given in [13] and a proof using the
completeness theorem is carried out in [12]. Via the correspondence between
Lf,’s and polyadic equality algebras for infinite a (see [3]), representation
theorems for polyadic algebra yield I1.8 again; see [4].

Now we give the most important corollaries of II.8. Here we use various
notions introduced in [5]. These corollaries will not be used in the rest of his
article. The first one gives several characterizations of representability.

—— GIER B A - - .~ v -y Y £ A N "RTY. YN A
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SNr,CA,.p for each B = w. Moreover, A € CA, is representable iff every finite
reduct of U is representable.

Proof. The second two equalities are found in [5, 2.6.34 and 2.6.35]. For the first
equality, assume first @ < w. Then by [5, 2.6.48], 11.8, [6,1.7.4, 1.8.7],

SNr,CA, ., = SNr,Lf, .., c SNr,SPCs3%, = SN1,IGs,
=1Gs, = SNr,CA, ..,
giving the desired result. If @ = w, then by [5, 2.6.52], 1.8, [6, 1.7.16, 1.8.7],
SNr,CA, .., = SUpLf, < SUpIGs, =IGs, = SNr,CA, ..,

again giving the desired result. The last statement follows easily from [5, 2.6.47]
and the above.

Theorem II.10 extends to =0 and a=1; the arguments here are rather
trivial, and will be given separately in I1.54, I1.55. Now we give some additional
sufficient conditions for representability which follow from II.8.

Theorem II.11. Let o = w and U € CA,,. Then each of the following conditions is
sufficient for U to be representable:
(i) Aelf,.

(ii) A € Dc,.

(iii) A € Ss,.

(iv) For every finite I' c « and every non-zero x € A there exist distinct
K, A€ a ~ I such that x - d,; #0.

(v) For every finite sequence p without repeating terms and with range included
in «, and for every non-zero x € A there exist a function h and x < a such that h is
an endomorphism of RDPYA, x e « ~Rg p, ¢ oh = h, and hx #0.

(vi) U is of characteristic x > 0.

(vii) For every xk < a and every x € A, ¢,X = X <a SiX.

Proof. By [5, 2.6.49, 2.6.50, 2.6.54], and IL.10.

Condition II.11(vi), that A has non-zero characteristic, remains a sufficient
condition for representability when a < w; see I1.51.

Theorem I1.12. Every monadic-generated CA, is representable; hence every
minimal CA,, is representable.

Proof. By [5, 2.6.56] and I1.10.

- v L . T, B . vt -y ”» -, »~ . L~
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assumption a = @ which is present in II.8, needed there because of Lemma II.7.
This leads to the following characterization of representability for 2 < o < w, due
to Henkin and Tarski, announced in [7]. For the notion of Gs,, see [6, I.1.1 and
1.6.3]; IGs, coincides with Rp, for a =2.

Theorem I1.13. Suppose 2< a <w and A is a CA,. Then A is representable iff A
can be embedded in a rich CA, B such that in ‘B all of the equations

a(x -y e(x-=y)) —cx - —dgy)=0
hold, for all distinct x, A< a and all x, y € B.

Proof. The direction < is immediate from 2.4.52, 11.6, and IL.5. For =, suppose
that U is representable. Say % =€, where € is a Gs, with unit element V. Let B
be the full Gs, with unit element V. It suffices to show that B is rich and the
indicated equations hold in 8. Say V =J,; *U, where U NU;=0#U; for
distinct i, j € I. Suppose 0# b € B and Ab < 1. Choose ¢; € “U; for all i € I so that
t,ebif bN*U;#0. Let
x=J{s € “U;: s0=10}
iel
It is easily checked that x is O-thin and x - cob < b. Thus B is rich. That the given

equations hold in B is immediate from [6, 1.8.6. and 1.11.7], but this can also be
checked directly. This finishes the proof.

Now we turn to another characterization of representability, involving rectan-
gular atoms. It depends on the following theorem which is of independent
interest. Theorems I1.14 and I1.16 are due to Henkin and Tarski, announced in
[7]. For the notion of a rectangular element, see [5, 1.10.6]; Gws, is defined in [6,
1.1.1], and in [6, 1.7.14] it is shown that IGws, = Rp, for a =2. We also need the
following notions; see [6]. Given an ordinal «, a set U, and a subset V ¢ “U we
define

CYIX = {x e V:y € X for some y with (e ~ {x}) 1 xcy},
D, ={xeV:xx=xA}

for any XcV and x,A<a. A Crs, is an algebra A=(A4,U, N, ~,
0, V, Cl¥), D) x.1<a closed under the indicated operations. If A consists of all
subsets of V, we call ¥ full.

Theorem I1.14. Let A be any atomic CA,,, a =2. Then the following conditions
are equivalent:

(i) Every atom of U is rectangular.

(ii) There is an isomorphism of U onto a Gws,’B that carries each atom of A to
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Discussion I1.15. We shall only prove, below, that (i) implies (ii), as the converse
is very easy to check.

To see the idea of our proof, consider first the case where o < @, and where
is simple. We wish to represent % isomorphically as a Cs, with some base U.
Thus the unit set of A is a hypercube, *U, and our isomorphism will be
determined by assigning to each atom x of U a single point (ay, . .., a,_,) € “U.

Our idea is to take for U the set of atoms on the ‘principal diagonal’ d of U,
d =1, <adx:- Then for any atom x of U and any x <a, we will get the
component a, € U by forming the hyperplane c(,-())x and intersecting it with d.
This mapping of atoms x of U to points (ay, ..., a,_;) of “U is one-one and
onto, because any (ay, . . ., a,—) € *U will be the coordinates of a unique atom
x of ¥, obtained by intersecting all of the hyperplanes ¢, (x})@x-

Of course we cannot use such a construction in case « = , since in that case U
has no principal diagonal d and no hyperplanes ¢, ())x. Furthermore, we are
not restricting ourselves to the case where U is simple. Nevertheless, we can
incorporate the geometric ideas of the preceding paragraph in the desired proof,
as follows.

Proof of 11.14, (i) implies (ii). We define a binary relation E on At % X a by the
following rule, where At is the set of all atoms of . For any a, b € At ¥ and
E,nea, (a, EYE(b, n) iff there is some finite I'c o with &, n € I" such that
Car~(&)@ * dr = Cr~ b - dr. (Recall that dr =[l, scr dia.) It is clear that E is
reflexive and symmetric, but it is also transitive. For if (a, E)E(b, n)E{c, £),
then we have finite I, Acawith§, nel, n, L €A,

Cr~End  Ar =Cr~mpb - dr,  Ca~mpb * da = Ca~(z)C - da.

Putting ®=T"U A, so that &, n, { € &, if we apply ¢(o-r) to both sides of the
first equation we get Co-(£)d dr =Co~nnb - dr hence co_(£)a-do=
Cio~(nnb * do. Similarly co— ()0 - do = c(o~(z))¢ * do. Thus (a, E)E(c, L), as
desired.

Now let U be the set of all equivalence classes of At % X a under E. Define a
map h of At into “U by setting (ha)& = (a, §)/E for each ae At ¥ and £ € a.
Let V be the range of k, and let € be the full Crs, with unit element V. For each
x € A let jx = {ha:a an atom <x}. To complete our proof it suffices to show that
€ is a Gws, and j is an isomorphism of % into €. (The proof below could be
simplified slightly by working with the atom structure of %, defined in [5, 2.7.32}.
But we do not want to assume acquaintance with that material.)

Before proceeding we note the foHowing fact about our relation E, which is
easily established:

(1) If a, b e At ¥ and x < a, then (a, k)E(b, k) iff there is a finite I c a such
that x ¢ I and cra = c(rb.
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(a,0)E(b, 0), so cqya=cqyb for some I'; we choose such a I' of smallest
cardinality. If I'=0, then a = b, as desired. Suppose I' #0, and choose §€I.
Since (a, E)E(b, &), choose a finite Ac a such that £¢ A and c(aya = c(4)b.
Then, using the fact that a and b are rectangular,

Crnayd =€ * Ca@ = c(nb  cab = carnab.

But EeI'~(I'NA), so [F'NA|<|I|, a contradiction. So a=b, and h is
one-one.

It follows easily that j is an isomorphism of B[ Y into BIE. (BI[D is the
Boolean part of © for any CA, D.) Next, suppose that x, A < a. To show that
jd, = DY), it suffices to assume that x #A. Suppose that a € At ¥, and first
suppose that a<d,;, (so that ha €jd,,). Then c,a-d,,=c,a-d,;=a-d,,, so
(a, x)E(a, A); hence (ha)x = (ha)A and ha € D'Y). Second suppose that ha €
DY). This {(a,x)E{a,A), so choose a finitt I'ca with kx,AeI’ and
Car~@n@ dr =Car~ppa-dr.  Then  Cir—(2)8 " dr =Cr—(x))@ * Cr=py@ * dr
(since a is rectangular) =c-(@-dr#0 (by [5, 1.10.13]). Hence 0#
@ - C(r~(x, 2dr = a - d,; using [5, 1.8.6). Thus a <d,;, as desired.

Next we show that j preserves c, for any kK <a. Let ae At¥, x € A. First
suppose that a <c,x, so that ha € jc,x. Choose b € At ¥ with b <x and a <c,b.
Then by [5, 1.10.3(i)], c.a =c,b. Hence by (1), (ha)A = (hb)A for all A# k. So
ha € CVjx, as desired. Second, suppose that ha € Cl)jx. Say b e At¥, b=z,
(a~{x}) 1 hachb. Since a=2, there is a A€ a~ {x}, hence (ha)i= (hb)A,
hence ¢(ra = ¢(ryb for some finite I = &. We choose such a I'" with |I'| minimum.
Suppose there is a u € I' ~ {k}. Then (ha)u = (hb)u, so by (1) there is a finite
A c a with c4ya = cayb. Since a and b are rectangular we easily get crna)a =
carnayb. Since |I'N A| < |I|, this is a contradiction. Thus I'c {kx}, so c.a = c,b.
Hence a <c,x and ha € jc, x, as desired.

Before proceeding, we note the following facts:

(2) If T is a finite subset of a, I' + a, and x € A, then C{{}jx = {ha:a is an atom
and there is an atom b < x such that (o« ~T') | ha c hb}.

For, C{{]jx = jcqnx = {ha:a is an atom <cx}. Hence if ha € C{f}jx, let b be
an atom <x such that a<cb. Then cHa=cHb, so by (1) we have
(a~T)1 ha chb. Conversely, suppose a and b are atoms, b<x, and (a~
I') 1 ha < hb. Choose k € « ~I'. Then (ha)x = (hb)k, so by (1) there is a finite
A c a such that c)a = c)b; using rectangularity we easily find that ca =
¢rb- Thus a < ¢, so ha € C{y]jx, as desired.

(3) Suppose a € At U, x < a, x is a function with domain «, (o« ~ {x})1 hacx, b
is an atom, b<ca for some finite I'c &, A<a, and xx = (hb)A. Then
xeV.

To prove this, we may assume that x, AeI. First suppose x =A. We have
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we have (@~ {kx}) ] hachc and (hc)x = (hb)x =xk. Thus hc =x, as desired.
Now suppose that x # A. Then there is an atom ¢ <¢,a * ¢(r—(x))(dxs * C(r~apyb);
say d is an atom <d,; * ¢(r~))b and ¢ < ¢ (xyd. Then (@ ~ {k}) 1 ha < hc, and
(hc)x = (hd)x = (hd)A = (hb)A = xk, using (1). So again hc =x, as desired.

Now it remains only to show that V is a Gws, unit element. First suppose that
a < w. For each a-atom k, let U, = {(ha)k :a is an atom <k, x < a}.

(4) If k and | are distinct «-atoms, then U, N U;=0.

For, suppose x € U, N U,. Say x = (ha)x = (hb)A with a and b atoms <k and /
respectively, and k, A< a. Thus (a, k)E(b, A), so there is a finite I' c a with
K, Ael and Cr~(x)a* dr = C(r.,{,\))b . dr. Hence Cr~{x)4 * C(r..(l})b #0 and so
k=1L

(5) V=U{"Ux:k an a-atom}.

For, if a is any atom, obviously ha € “Uy, with k =c,)a. Thus < holds. The
direction o follows from the following statement (with x = a):

(6) Suppose that k is an a-atom, a is an atom <k, k < «, x € *Uy, and xA = (ha)A
forall A€ a~k. Thenx V.

We prove (6) by induction on k. The case k =0 is trivial. Assume that it is true
for x — 1 (k >0), and assume its hypotheses. Let (e ~{k—1})1xcy, y(x —1)
= (ha)(x — 1), y € “U,. Thus yA = (ha)A for all Ae @ ~(x —1), so y € V by the
induction hypothesis. Then (3) yields x € V, as desired.

Second, we suppose that o = w. We define an equivalence relation = on V by
setting x=y iff x,yeV and |{k <a:xx #yk}|<w. For each =-class k, let
Y,={xx:xek,k<a}. Thus *Y$LNV cx/= for any xeV, and hence it
suffices to show that *Y¥L < V for any x € V. To do this it suffices to show:

(7) If I'is a finite subset of a, x€V, y € °Y,/m, and (¢ ~I') 1 xcy, thenyeV.

We prove (7) by induction on |I'|. The case I' =0 is trivial. Assume inductively
that I’ #0, and fix x € I'. Let z be the element of *Y,,. such that (o ~{x}) 1y c
z and zx = xk. Then z € V by the inductive hypothesis; say z = hb with b € At U.
Since yx € Y,/., there exist weV, a finite Aca, and a A<a such that
(@~ A) 1 x cw and yx = wA. Let v be such that (o ~ {x}) 1 w c v and vk = wA.
Then by (3),veV, sayv=hd. Let Q=IU AU {kx}. Then for any u € a ~ Q we
have yu =xu =zpu =wpu =vu. Hence Cigy{x} c ClE){hb} N C{E}{hd} by (2) so
cyb - c@d #0, hence co(xyd c,b#0. Let e be an atom <cg-(x)d - ¢;b.
Thus c,e=cb, so (a~{x})lhe=(a~{x})1hbcy. Also, cg-}€=
Cia~(xpd, s0 by (1) (he)x = (hd)x =wAi =yx. Thus y =he € V, as desired. This
finishes the proof of II.14.

Theorem II.16. For a =2, a CA, is representable iff it can be embedded in an



Representable cylindric algebras 35

The proof is immediate from I1.14.

Our next representation result, due to Henkin, is that every CA,, a <w, of
positive characteristic is representable; we have already noted in II.11 that this
applies for & = w. Recall from [5, 2.4.61] that a CA, has positive characteristic
provided that its minimal subalgebra is simple and there is a A < & N @ such that

C(A+l)(nx,u<1.x¢p - dxu) =0.

Remark I1.17. To establish this representation we need an auxiliary result, due
independently to Comer and Henkin, that for a<w a CA, of positive
characteristic can be provided with a substitution operator s satisfying the
conditions in [5, 1.11.12]. Since we do not need all the conditions of [5, 1.11.12],
we only check those parts actually needed. To establish this result it is convenient
to use the main theorem in Jonsson [8], which we repeat here for the reader’s
convenience. Suppose that / is any set. An elementary transformation of I is a
mapping of I into itself of the form [x/y] or [x/y, y/x] with x, y € I. Recall that
[x/y] is that mapping of I into J which sends x to y and z to z for all z € I ~ {x};
[x/y, y/x] sends x to y, y to x, and z to z for all z €I~ {x, y}. For brevity we
denote [x/y, y, x] by [x, y].

J6nsson’s theorem is as follows. Let (S, -, e) be a semigroup with identity e.
Suppose that we are given a mapping s from the elementary transformations of /
into S. Then the following conditions are equivalent:

(A) s extends to a mapping s from the set of all finite transformation of 7 into S
such that s*(0°7) =s"0°s* 7 for any two such transformations, and s*(/ 1 Id) =
e. (A transformation of I is just a mapping of I into I. A transformation o of / is
finite if {x € I:0x #x} is finite.)

(B) If x, y, z are distinct elements of / and y, u, z are distinct elements of / then
the following conditions hold:
(@) slx, y]=sly, x],
D) sfx, y]-sly, x]=e,
() sfx, y]-s[x, z]=s[y, z] - s[x, y],
(V) slx, y] - s[z/x] =s[z1y] - s[x, y],
(V) slx, y] - sly/x] = s[x/y),
(VD) s[y/x]-s[z/u] =s[z/u] - s[y/x],
(VII) s[y/x]-s[y/u)=s[y/u).

It is a lengthy proces to establish the auxiliary result of 11.17, and we break the
proof into a series of lemmas. For all the lemmas we assume that o« < w, and we
use K, A, 4, ... for ordinals <a. Some of the lemmas are true for arbitrary
CA,.’s, <, but for many we indicate by (A) the additional assumption that the
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from [5, Section 1.5] will be used without explicit citation. The proof is due to

Henkin and Monk.
We begin with a result in the spirit of [5, Section 1.5].

Lemma IL18. If x#A, {k,A}N{u,v,p,0}=0 |{u, v,p}=|n, v, o}|=3,
{Kr l} N {Y’ 6’ g, g} =0’ I{Y’ 6’ €}| = |{'}’, 6' E}I =3, and e= _dxl * dpp * dva :
d,, - ds;, then

e ,.s(k, A)cyc,(x - d,, - dyo) =€ ,s(k, A)cycs(x - dy, - dgg).

Proof. Clearly one of the following conditions holds: u+#1y, & or u#4, § or
v#vy, € or v# §, E. By symmetry, say u ¥ v, £ Then

e sk, A)cue,(x - d,, - d,o) =€ ,s(k, A)c,cy(x - dy,, - d,.)
=e- sk, A)cucy(x - d,, - d,.);

if p#y, this is equal to e-,s(x,A)c,(x-d,) which is equal to
e - ,s(x, A)cycs(x - dy. - dgg). If p =1, then it is equal to

e -, S(Kk, A)cuc,(x - dye - dye) =e - ,s(k, A)c,(x - d,.)
=e - s(k, A)cycs(x - dy, - dsg).
This finishes the proof.

Definition I1.19. We set
8po = H {—duv B, v<a, uFv, {“’ vin{p, o} =0},

€p = 8pp>»

Joo =dpg - €.
We give some properties of these notions which will be used later.

Lemma I1.20. (1) f,o =f,,-
(i) If [{x, A, )| =3, then fu - stx = fy - $2(fue - X).
(iii) If |{x, A, u}| =3, then f,, - skx =0 iff fu - x =0.
(iv) (A) If p#o0, thene, -e,<d,,.

Lemma I1.21 (A). If p # 0, then f,, - ¢,Co(foo * X) = foo = X.
Proof. We only need to show <. Now f,, * ¢,Co(fpo - X) - ~x =0 iff c,(foo - —x)

¢,(foo - x)=0. Since ¢,(foo - =) Co(fpo"X)=55—x "€, 5px €, and ¢, €, <
d,., the desired conclusion follows.
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Proof. Again we only need to show <. We have

Joo " Cufoo * X) < dps - €, - €,Co(fo0 * X)
=dpo €, Cule, - 55x) =dpy - Cp(fiup - Cule, - 55%))

=dyo " Cp(fup * CuCo(fup * 55%)) =dpo -, (fup - 56x) <x (By 11.20),
as desired.

Lemma I1.23 (A). If |{k, A, p, 0}| =4, then
Joo = p8(K, A)CoCo(X * fo0) = foo * pS(K, A)sEx.
Proof. We have
foo " 080, A)CaCol® * fr0) = o * (K, A)(ip - Cols5x - €,)) by T1.20(ii))
=Joo * o5(K, A)(fip - Co(s5X - fi,))
=foo " oS(K, A)(fip - $5x)  (by I1.22)
=foo - pS(k, A)sox  (by I1.20(ii)).

Now we are ready to define sk, A], to be used as indicated in I1.17.

Definition I1.24 For x # A we set
sk, Alx=d; -x+ 2 —dy, - dy, -sfsf,x

p¥*K,A

+ D —dy-dy, - shskx

P#EK,A
+ 2 {—d - dy, - dyo - u5(K, A)cuc,(d,, - dyo - X):

{x, A}N{u, v, p, 0} =0, [{, v, p}| =3=|{, v, 0}{}

+ 2 Jfoo * p8(K, A)sox.
[{x,A,p,0}|=4

We list some immediate properties of sk, A):

Lemma I1.25. Assume x #A.
(i) s[k, A] preverves +.
(ii) s[x, A]J0=0.
(iii) (A) s[x, A]1=1.
(iv) s[x, A] =s[A, x].
) s[K, gy = dos.
(vi) If p #k, A, then sk, Ald,, = d,, and 5[k, A)d,, = d,,.
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Next we give some lemmas which will enable us to break further arguments
concerning s[k, A] into cases.

Lemma I1.26. If x # A, then d,, - s[k, Alx =d,; - x.
Lemma IL27. If |{k, A, p}| =3, then —d,; - dy, - s[Kk, Alx = —dy; - dy, - s3spx.

Proof. = is clear. Now let r=—d,; -d,, sishx. For o#k,k,p let
t=—dy, - dxp “dyo. Now —dy; dxp * oo * S:Sf,x <r; —dy - d‘p . d,'p . st,s:x =0;
and

A

t-sksix=t-shskx=t-s5s5)

ospxsr.

Next, suppose that {x,A}N{p, u,v,0}=0. Suppose |[{p,p, v}|=3=
l{p, u, o}|. Let t = —d,; - dy, - d,, * d,,. Then

t- p8(K, A)CpCuldyy * Ay - X) =1 - 53556, (dpy * g * X)
=t-s5sh(dpy - duo " X) <.

If on the other hand |{u,v,p}|=3=|{u,v,0}, then with ¢=-
dx).'dxp'dup'dva!

t- (K, A)c,cy(dy, - dyo - X) =1t - s554(dyp - dvo - X) <T.

Finally, suppose that {x, A, p} N {u, v, 0, T} =0and |{u, v, o}| =3=|{n, v, 7}|.
Let t = —d,; + d,, - d,, * d,.. Then

te,8(k, A)c,C,(dyo " dye " x) =1t - saskshcn(dye + dye - X)
=t-s4sksAc,(dyo * dyr  x) =1 - S555Cu(dyo - dye - X) <T.

By the cases in the definition of s[x, A]x the lemma follows: note that —d,, - d,,
has 0 intersection with the last sum.

By symmetry we obtain:
Lemma I1.28. If |{k, A, p}| =3, then —d,; - d,,, * 5[k, Alx = —d,; - d;, - sishx.

Lemma I1.29. Suppose {x, A} N{u, v, p, 6} =0and |{u, v, p}| =3={u, v, 0}
Then

—dy  dyp - dyo - S[K, A = —dy; - dy, - dyo * uS(K, A)cyey(x - dy, - d,,).
Proof. = is clear. Now let r be the right-side of the indicated equation. If

t=—de - d,, dy - dy,, then t - sishx =1t - sish(x - d,, - d,o) <t - r. Now suppose
n#K,A,u, v, 0, p,andlett=-d,, -d,, -d, .d,,. Then

te-sishx=1t-sishshx =1 sishshshx
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Finally, suppose also {x,A}N{y, d, ¢ &} =0 and |{y, §, e}|=3=|{y, 8, &}/
Then
—de dyp - dyg * dye - dsg - 5(K, A)eyes(x - dye - dsg)<r
by II.18, reasoning as in the proof of I1.27.
Lemma I1.30. If |{x, A, p, 0}| =4, then f,, - s[x, Alx =f,, - ,s(k, A)s"x.

Now we shall verify the conditions mentioned in I1.17. We assume (A). First
note by I1.26-I1.30 that s[x, AJx - s[x, ] —x =0 if x # A. Thus by I1.25(i)—(iii)
we have:

Lemma I1.31 (A). If x # A, then s[k, ] is a Boolean endomorphism.
Lemma I1.32 (A). If x # A, then s[k, AJc,x = sc,x.

Proof. By II.26-11.30 there are two non-trivial cases. First, suppose that
{x, A} {u, v,p,0}=0and [{n, v, p}| =3=|{n, v, 0}|. Lett=—~d,; - d,, - d,,.
Then

t-s[k, Aleex =t - ,s(k, A)cuc,(cex - d,, - d,,)
=t-s4sic,(d,, - cex)=1t-skc, x.
Second, suppose that |{k, A, p, 0}| =4. Then
fpo ) S[I(, A']Cxx =f;>o * ps(K: 1)Sﬁcxx

=foo = SRSpSGCX = foo * SkSECLX = foq - SkCyx.
Lemma I1.33 (A). If k # A, then s[k, A]os = s,
Lemma I1.34 (A). If x # A, then 5[k, AJs[x, Alx =x.
Proof. We proceed by cases according to the definition of s|x, Alx. Clearly

s[k, A(dys - x) =d,; - 5[k, Alx =d,, - x, using I1.25(v) and I1.26. If p+#xk, A
then, using I1.33,

>

s[k, A(—ds - dyp - s55p%) = ~dy - dy, - shx = —dy - dy, - x.
By symmetry, s[k, A|(=dy, - d), - sispx) = —d,, - d,, - x. Now suppose {k, 1} N
{u,v,p,0}=0and [{u, v, p}| =3=|{u, v, 0}|. Let 1= —d_, - d,, - d,,. Then
slx, AJ(z - us(x, A)c,c,(x - d,, - d,,))
=t ,8(k, A)cuc, (us(k, A)cucy(x - dyy - dyo) - dyyp - d,;)  (by 11.29)
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Finally, suppose that |{k, A, p, 0}| =4. Then
s[x, A](fpo * pS(K, A)s5x)
= foo * pS(K, A)s5,85(k, A)c,Co(x - £0) (by 11.23)
=f;:)o : ps(K’ A),,S(K, A’)Cpco(x 'f;w) =f;>o ’ Cpca(x fpo)
=X foo (by II.21).

In the next few lemmas we aim toward the result that c,s[k, A}x = sk, A]c,x
for |[{x, A, u}| =3, one of the hardest results to establish.

Lemma I1.35. If |{x, x, u}| =3, then d,; - c,s[x, A]x <s[k, AJc,x.
Lemma IL.36. If |{x, A, u, p}| =4, then —d,, - d,, - c,s[x, Ax <s[x, A]c,x.

Lemma IL.37. If |{x, A, u, p, 0, E}| =6=|{Kk, A, 4, p, 0, n}|, then

—dy; - dpg - doy, - 5[k, AJx <s[K, Ac,x.

Lemma IL38 (A). If [{x, A, pu, p, 0}| =35, then
—dyy * Ay * g * 8up * CuS[K, Alx < 5[k, A]c,x.

Proof. Let y = —d,; - d,, * dy - 8,p. First note that y-s[k, Alc,x =y - siskc,x.
Hence

y - c,(d,, - 5[k, Alx) =y - s[k, Alx <5k, Alc,x;
Y - €u(dya - s[k, AJx) =y - c,(ds - sisix)
<y - 854, K)c,c,(x - dyp) =y - u8(k, A)c,x <5k, Alc,x;
y - cu(dy, - s[k, Alx) =y - c,(d,, - uS(K, A)cucp(x - dyy - dyy))
=y - S(x, A)c,(x - dy,) = 5[k, Ac,x;
if v#k, A, u, p, 0, then y -'c,(d,, - s[k, A]x) <s[k, A]c,x similarly. Finally,
y- Cn(fpo * S[K, A]x) =y Cu(fpa * ps(K’ l)s‘;x)
<y-,s(k, A)sSc,x =y - shsisoc,x
=y - sishsfc,x =y - sishc,x.

Lemma I1.39 (A). If |{x, A, u}| =3, then f,, - c,s[x, A}x <s[k, A]c,x.

Proof. By I1.27 we have f,,, - s[x, AJc,x =f,, - sishc.x. Now
feu * Cu(dyy - S[K, Alx) = fo,, - s[k, AJx <s[K, A]c,x.
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Next,
j cu(dwl - 5[k, Alx) =ﬁru : Cu(dw\ ) sﬁs,‘ix)
= feu * uS (A, K)X = fop - uS(A, K)(fiu - x)  (by IL.20(ii))
= feu " uS(A; K)(fiu - a(fiw + x))  (by 11.22)
= fou * S38uCa (fa * X) = faw * S35 (fus + X)-
Now

fx). * sxcl(f;u : x) =fxl * s‘:cl(f;m * X)

=t e 520 = a(eu S du - stx)

v¥Ep
= fea * &a(fua - 55%) < shc,x
and hence f,, * ¢,(d,. - s[k, AJx) <s%shc,x by I1.20(ii). Finally, if p # x, A, u, then
feu * Culfup * S[K, Ax = fi - cu(fyp * uS(K, A)shx) ss{sﬁc,,x,

and the proof is complete.

Lemma I1.40 (A). If |{k, A, u, p, 0}| =5, then

—dys - Aup " Quo * 8po * CuS[K, AJx <s[k, A]c,x.

Proof. Let t=—d,; -d,, -d,, - 8§,,- Then
t-s[k, Ale,x =t -, s(k, A)c,co(cux - dy, - dyy5)
=t-,5(k, A)shc,x

=t-,5(k, A)sbc,x.

Now t-c,(d,, - s[k, Alx) =t - s[k, Ax <s[K, AJc,x. Similarly, ¢-c,(d,, - 5[k, A}x)
<s[k, AJc,x. Suppose v #k, A, u, p, 0.

t- cp(duv : S[K, A.]X) =t- C“(d,w . “S(K, A)c,,cp(x . dpv . dpa))
=t ,5(k, A)sosix <s[k, Ale,x.
Finally,
t- Cu(foo ~ S[K, Ax) =1 - ¢, (foo - p5(k, A)s5x) <s|[k, A]c,x.

The following lemma is established in a very similar manner:

Lemma I1.41 (A). If |{x, A, u, p, 0, v}| =6 then
—dyy - dyp * Aoy * Buo * CuS[K, Alx <s[x, Ac,x.

Lemma .42 (A). If |{x, A, u, p}| =4, then f,, - c,s[k, A}x <s[K, Ac,x.
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Proof. We have
fup - SIK, Aleux =fup - us(k, A)c,x
= fup * S[A, K]c,x
= fup * uS(A, K)C, X,
Now note that f,, - c,s[k, AJx = L s, fup - €u(dyy - s[k, A]x). We have
fup = Cu(dyp - S[K, Alx) = fp - S[K, Ax <5[K, AJc,x;

Jup " Cu(@yx - s[x, Alx) =fup - €u(dyx - S;S:}x)
<s[k, Alc,x;

fup = €u(dya - s[k, Alx) <s[k, A]c,x similarly. Finally, if v # k, 4, u, p, then
fup : Cu(duv * S[K: 2']"7) =f;tp ' cu(f;av * S[K: A']x)
=f;‘P : cl‘(f;"’ ’ l‘s(x’ l)s‘:'x) ss[x) A]Cpx-
Lemma 143 (A). If |{x, A, p, 0}| =4, then f,, - c,s[k, A}x <s][k, A]c,x.

Proof. We have
fpo ' S[K, l]c“x =f;:o * pS(K, A)sgcux =f;m : "S(K, A’)’gcux
=foo * p5(A, K)$OC,X.
Hence
Joo * cu(dyy - s[x, AJx) = foo - uS (K, A)x =s[x, A]cux;
foo * Cul(dya - s[x, xJx) <s[k, A]c,x similarly. Further,
foo * Cu(dyup * S[K, AJx) = foo - €u(dyp - uS(K, A)CcuCp(x - d,,p - dyys))
<s[k, AJc,x.
If v#K,4,p,0, foo-cudy sk, Alx)<s[k, Alc,x similarly. Finally, f, -
Cu(foo - S[K, AJx) = fo0 - 5[k, Alx <s5[K, A]c,x by I1.22.
Now by I1.35-11.43 we have:
Lemma I1.44 (A). If |{x, A, u}| =3, then c,s[x, A}x <s[k, A]c,x.
Lemma I1.45 (A). If |{x, A, u}| =3, then c,s[x, A}x =s[k, A]c,x.

Proof. Applying I1.44 to s[kx, A]x in place of x, and using II.34, we obtain
c,x <s[k, Alc,s[k, A]x. Applying s[k, A] to both sides and using I1.34 we get
sk, Alc,x <c,s[x, A]x. Combining this with II.44 gives the desired result.

o e & s B A & - ) - . .y . . - . . P
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Proof. s[k, Alskx = c,s[x, A)(d,, - x) = ¢, (d,s - 5[k, A]x) =s¥s[x, A]x, using I1.45.
Lemma I1.47. If x # A, then c,.s[k, A]x <sjc,x.

Proof. We have ¢, (d,, - s[k, Alx) =c,(d,, - x) <sic,x. If p# kK, A, then
Cx(—dys  dyp - s[Kk, Ax) = (—dy; - dy, - s55hx) <5s5cix;
cx(—da - dyp - 5[k, AJx) = ¢ (—dyy - dy, - sE5%X)

<S¢ (—day - dy, - speix) <sjox.

If {x,A}Nn{u,v,p,0}=0 and |{u, v, p}|=3=|{u, v, 0}/, then, with t=
_dn\ °dup 'dvo’

et~ S[K, A]-x) = x(t ’ ,,S(K, A’)Cucv(dup “dyo - X))
s (t-sicu(ax - d,,)) <sicx.
Finally, if [{k, A, p, 0}| =4, then
c(foo * 5[k, AJx) = cc(foo - p5(K, A)s8x)
< ¢ (foo - SESIS5C1X) <5%c; x.
Lemma I1.48 (A). If k # A, then c,s[k, A]x =s5c,x.
Proof. Applying I1.47 with x and A exchanged to s[x, Alx, we get ¢;x =<

skc,s[k, Alx, using 11.25(iv), 11.34. Hence sic,x <c,s[k, AJx. Then I1.47 yields
the desired result.

Lemma I1.49 (A). If x # A, then c,s[k, Alx = 5[k, A]c;x.

Proof. By I1.32 and I1.48.

The last lemma needed in order to apply J6nsson’s theorem in II.17 requires a
lengthy proof:

Lemma I1.50 (A). If |{k, A, u}| =3, then s[x, Als[k, ulx =s[A, uls[x, A]x.

Proof. We have
s[x, Alsx, p)(x - dys - dyy) = x - dyy - dy, = S[A, pls[k, Alx - d,; - d,,;
(1) s[x, A5, e - des - —diy) = STk, A)(dya - —d - sE50)
=d,, - —d, - sisix;
(2) sl pkbslx, AJ(x - dyx - —d,) =5[A, p](did - —d,, - x)

—_ As.
=0Gxr " _dln 'S{S‘x,
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3) ST, uIsTx, A)(x - dey - —dos) =T, 1)(dy - s - S355%)
=dyy + —dyy - Sh8px;
s[k, Als[k, pl(x - di, - —dya) =dyx - —dy; - spsix by symmetry from (3);
s[A, pls[k, A)(x - dy, - —dix) = dys * —dux - SpShX by symmetry from (1).
Now, let t = —d,; - —dy; - —dy, - —d;,. Suppose p ¥k, A, u. Then
(4) slx, Abs[x, u)(x -1+ dep) = 5[k, ANt - d,,, - stsx)
=t-d,, - siskshx;
(5) slh, ulsx, Al(x - £ - dep) = s[A, p)(¢ - dyp - shsx)
=t-d,, - siskskx;
6) slK, AlsTx, wlx - £ - dy,) = sk, ANt -y, - sl k)
=t-dy, - s5shs[k, plx) =t - dy, - 5[k, p)(dur - 55%)
=t-d,, -sksishx  (by I1.48)
=s[A, uks[x, Al(x -1 dy,) by symmetry from (4);
s[x, Als[x, u](x - t-d,,)=1t-d;, - skskshx
=s[A, uls[x, A}(x -t-d,,) by symmetry from (5), (6).

Now suppose that {x, A, u} N{v, p, 0, 7} =0 and [{v, p, o}|=3=|{v, p, 7}|.
Lety=t-d,, -d,. Then

S[K’ l]S[K, “](x ' y) =S[K! A](y : VS(K, l‘)cvcp(x dyo - dpr))
=y VS(K’ A)CVCP(VS(K, “)Cvcp(x * dvo * dpr) ' dvo * dpt)
=y 8(k, A)ys(x, p)e,co(x - dyo - dpe)
=y - ,s(4, pu)ys(x, A)c,cp(x - dyo - dpe) by [5, 1.5.18]
=s[A, uJs[x, AJ(x -y) by symmetry.
Finally, suppose that {k, A, u} N {p, 0} =0 and p # 0. Then, using I1.23,
s[x, Als[x, p](x - foo) = slx, AJ(foo * pS(K, 1)CoColx * fo0))
=fpa ' pS(K, ).)s‘,’;ps(x, “)cpco(x fpo)
=f;w y ps()'» ﬂ.)pS(K, A)CPC.,(I 'ﬁ)o)
=s[A, pJs[x, A}(x -y) by symmetry.
Finally we are ready for the auxiliary result of Comer and Henkin:
Fheorem I1.51. Suppose a <w, and A is a CA, of positive characteristic. Then

there is a function s assigning to every T € “a an endomorphism s, of 8l U such that
the following conditions hold for any o, T € “a and k, A€ a:
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(i) s,=A1ldifo=a1ld.
(1i) Spesn) = S3-
(lV) stdxl = dnr.tl-
(v) If (a ~ {x}) 1 0= 7, then s,¢.x = 5.C,X.
(vi) If x ¢ Rg 0, then ¢, 5,x = s,x.
(vii) If o~ "*{x} = {4}, then c,s,x =s,C;x.

Proof. By 11.18-11.50 and J6nsson’s theorem in II.17 we obtain a function s
assigning to every 7 € “a an endomorphism s, of B[ U such that (i)—(iii) holds and
Six,2= S|k, A] for any distinct x, A < . Now (iv) follows from II.25(v)—(vii). For
(v), we may assume that a =2. Choose A€ o ~ {kx}. Then o°[k/A] =7°[K/A],
and hence

SoCxX = S83CkX = S gofw/alCxX = SpCyX.
For (iv), choose A € @ ~ {kx}. Then [k/A]°0 =0, s0
CaSoX = CeS(xiajoX = CxSiSoX = S)5oX = SoX.

Finally, for (vii) note that ([, A]e0)™"*{1} = {1}. Hence [k, 2] 0 can be writeen
as a composition of replacements and transpositions none of which involve A.
Hence by I1.45 we have x; 5[, ajeoX = S(x,ap0C2X, hence ¢;s[k, Als,x = 5[k, Als,cix.
Hence by 11.49, c¢,s5,x =s,¢3x, as desired.

The following result is closely related to I1.51, but will not be needed for the
positive characteristic representation theorem.

Theorem I1.52. Let € be a CA, ., and A=Nx, €. Then there is a function s
assigning to every finite transformation o of o an endomorphism s, of Bl A such
that the conditions of 11.51 hold for all finite transformations, o, v of « and all
K, A< a.

Proof. This time for distinct x, A < a we let s[k, A]x = ,s(k, A)x, for all x € A.
The conditions in I1.17 and II.51 follow easily using results in [5, Section 1.5].

Both II.51 and II.52 express relationships between cylindric and polyadic
algebras. In this connection, see also [3]. Also, substitutions are definable in any
Gs, with all subbases of size <a + 1, for & < w; this is a result of Andréka and
Németi.

Now we turn to the promised representation theorem of Henkin.

Theorem I1.53. Let a<w. If A is a subdirect product of CA,’s of positive
characteristic, then % is representable.
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available a substitution operation s satisfying (i)-(vii) there. Let x be the
characteristic of . Thus d(x X x) #0, and so there is an ultrafilter F on Bl %A
such that d(x X k) € F. (Recall that d(x X k) =1z ,(x,z0y — d&,.) Now for any
x€A let

fx={t€k:s,x € F}.

From this definition it is clear that f preserves + and —. Since ¥ is simple, it
suffices to show that f preserves dg, and c; for all §, n <a. We have 7 € fd, iff
S¢dg, € F iff d¢ ., € F iff & = 1), since —d,, € F for all distinct u, v<k. Thus f
preserves dg,.

To show that f preserves cg, we need several steps.

(1) If xk <E<a and csx € F, then stx € F for some 1 < k.

For,

c5x=c§(x- > dpv+x-2d,‘5)= > dyy - cex + D, s5x.

B, V<K, pu¥v U<k BV<K,u¥*v U<k

Since d,, ¢ F for all distinct u, v <k, the conclusion of (1) follows. Let V = “k.
(2) If E<x and 7 € fcgx, then T € CYVx.

For, under the hypothesis of (2) we have s.c:x € F. Let 0 =75. Then 0™ '*{x} =
{E}, («a~{E})11<o0, so by IL51(v) and (vi) we get §.C.X =S5,CeX = CySoX.
Hence by (1) choose n<kx with sys,xeF. Thus [k/n]coefx and (a~
{EV) 1 tcx/n]°0, so T e Cefx.

(3) If k<& <« and 7 € fcgx, then 1€ CYMfx.

The proof is similar to that of (2), using o = 7£

(4) If §< a and v € CVYx, then 1 € fcgx.

For, any 7,€fx, with n<k. Let o=15 Then s,xeF, so s,c; € F. But

SoCex = s.Cgx by I1.51(v), so s,cgx € F, hence 7 € Fcgx. This completes the proof
of I1.53.

Theorem I1.53 has been generalized by Andréka and Németi: they show that if
a<wand ¢, (x -d(a X a))-d(a X a)=x-d(a+ @) for all k<« and all x, then
U is representable (the hypothesis of I1.53 is equivalent to d(a X a) =0).

Next we consider representability for CAy’s and CA,’s, both cases being rather
trivial.

Theorem I1.54. Every CA, is representable.

Proof. By [5, 2.4.52] it suffices to take the case of a simple CAy U. Thus |A| =2,

P> e a
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Theorem I1.55. Every CA, is representable.

Proof. Again it suffices to take a simple CA, 2. Thus by [5, 2.13.14] the
cylindrification ¢, is given by: ¢0=0, cpa=1 if a#0. By the Boolean
representation theorem, say f is an isomorphism from B[ % onto a field of subsets
of some set U. Define ga={{u):uefa} for all aeA. Clearly g is an
isomorphism from % onto a Cs,.

Corollary I1.56. For a <1 we have CA, = SPCs, = SNr,CA, +,,-
Proof. By [6, 1.8.6], I1.54, and II.55.

Our last two positive representation results in this section concern CA,’s. The
first result is that any CA, is isomorphic to a Crs,. To formulate the other result,
recall from [5, 2.6.42] that for each a =2 there is a CA, in which the equation

ci(x -y - colx - —y)) - —co(€1x * —dpy) =0

fails to hold identically; on the other hand, by [5, 2.6.41] this equation holds for
every representable CA,. Of course the same two statements hold if we replace 0
and 1 by arbitrary distinct x, A<a. The second result is that if the above
equation and its symmetric form with 0 and 1 interchanged hold in a CA, ¥, then
U is representable. These two results are due to Henkin and Tarski, announced in
[7). The underlying idea goes gack to Evertt and Ulam [2]. We shall derive both
results from a rather technical lemma, I1.59. For it we need some preparation.

Lemma I1.57. For any non-empty set U there is a partition P of *U such that
|?|=|U|, D{'e P, where V =2U, and CY'X=2U for each X € P and each
k<2

Proof. Let o be a group operation on U. Foreach u e U let X, = {(v, ucv):ve
Uy. If (v,w)eX,NX,, then x=wucv=u'ov, hence u=u'. Given any
(v, w) € 2U we have (v, w) € X,,, where u =wev~"'. Clearly X, #0 for all u € U.
Thus {X,:u € U} is a partition of U, and |[{X,:u € U}| = |U|. If e is the identity
of the group (u,°), then X, = D[\ Finally, let u € U; we show that G X, =
C,X,=V. Let (v, w) € V be arbitrary. Then (u"'ow, w) € X, and (v, ucv) € X,
so (v, w) € GX, N C X, as desired.

Lemma I1.58. Suppose |U|=|U'|=x>0, k a cardinal, and V =U X U'. Then
there is a partition P of V such that |P|=x, D}{'e @ if U=U" and x> 1, and
VX =C"'X=V forall X e P.

Proof. Set W="°U. Let ? be as in I1.57. Choose ?' c P with |#?'|=k and

----- -



48 L. Henkin, J.D. Monk, A. Tarski

let #"=(P?" ~{X})U{Y}. Let F be a one-one function from U’ onto U, with
f=U11d if U=U'. For each X let X*={{u,v):uelU, veU, and (4, fv) e
X}. Finally, let 2 = {X*:X € ?"}. Clearly 2 is as desired.

Lemma I1.59. Let A be a simple complete atomic CA,. An atom a € At is said
to be defective if the following condition holds:

(*) coa - cya <dy,, and there exist k, A<2 and x, y, z € A such that {k, A} =2,
x<ca,and ;(x-y)-c(x-2)-—c(x-y-x)#0.

Let I be the set of all defective atoms of . Then ¥ is isomorphic to a Crs, whose
unit element has the form *U ~\J;o; *X; ~ DY), where U is some set, W =2U,
XNX;=0fori#jand X,c U foralliel.

Proof. Let Dat={a € At¥A:a<dy}. An element a € Dat is small if cya - c,a <
dy,; otherwise it is big. Note that if a is small, then a =cya-c,a, since
coa-ca=cola-dy)-cy(a-dy)-dyy=a. For a,beDat we set A, ={z€
AtU:z<c,a-cob}. In Fig. I1.60 we illustrate these notions. Now we establish
some properties of A4,,:

(1) A, #0 forall a, b € Dat.
For, c;¢i(cya - cob) = co(cya - cycob) = cocya - ¢1cob = 1 by simplicity.
(2) Ao ={a} if ais small

For, if be A,,, then b=<dy and so b=b -dyy,=b -coa-c,a-dy;=b - a, hence
a=bh.

(3) Foralla,beDatand ze At¥, z€ A, if c;z =c,a and cyz = cob.

For, < is clear. =: z <c¢,a, so0 ¢,z <c,a. But ¢c,a is a {1}-atom by [5, 1.10.3], so
¢,z = ¢,a. Similarly, coz = cyb.

(4) Foralla,b,c,deDat, if Ay, NAy#0, thena=cand b=d.
For, say z € A, N A.;. Then, using (3),
a=dgy - cy(a-dy) (since a <d,,)

=d01 cC14 =do1 < C12 =d01 *CiC=C.

Similarly, b = d.
(5) At%= U Ag.
a,beDat

For, let ze AtYU. By [5, 1.10.3], a=c¢,z - dy, and b =cyz - dy, are atoms; thus
a, b € Dat. Clearly c,a =c,z and cob =cyz, 50 z € A, by (3).
Now for each a € Dat we let

X = {{(a, x):x e At} if a is big, or small and defective,
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Fig. I1.60. a and d are big atoms, b and c are small.

Set U=sepat Xo, W=2U. With I as in the statement of the lemma, let
V=U~ Uael (IXa -~ D[)‘lvl) Thus

©OV=_, U XxX%U U XxX%UU(XxX)NDE;

a,beDat,a%b
(7) (X, X X,) N (X, X X;)#0 implies a =c and b = d.

Now we shall define ¢ mapping At ¥ into Sb V, by defining for all @, b € Dat its
restriction A,, 1 ¢. We shall do this so that the following conditions hold:

(8) If x,y € A,y and x # y, then ¢x N ¢y =0+ ¢x.
(9) Ifa,beDatand a#b, then \J ¢z=X, X X,.
zeAy

(10) If a e Dat ~ I, then H Pz=X, X X,.
(11) Ifa €, then LJ-¢2=X,XX,0D[,‘1V].

(12) Clpz=VNU X X,) and C¥lyz=VN(X, X U) forall z e A,,.
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Case 1. a and b are large, and a #b. Thus |X,| = |X,| =|At¥|=|4,,|>0. By
I1.58, let A,, 1 ¢ be a one—one function from A,, onto a partition of X, X X, such
that C{l¢z =Clpz=X,x X, for all zeA,, where Y=X,XxX, Clearly
(8)-(12) hold.

Case 2. a is big, a=b. Thus c,a - coa <dy,, so |A,.|>1. Hence by 11.58 we
can carry through the construction in Case 1 with ¢a = D} N (X, X X,).

Case 3. a defective, a =b. Then A,, = {a}, and we set ¢a = (X, X X,) N D{Y.
Clearly (8)—(12) hold.

Case 4. a small non-defective; or b small non-defective. Say a small non-
defective. We shall show that c,a - ¢cob is an atom. Let, x = ¢,a - ¢ob and suppose
that x is not an atom. Say x =y + z where 0#y, z and y - 2 =0. Since a is small
and non-defective we have cpy - coz <co(y - z) =0. But y <cob 50 coy = cob, and
similarly coz = cob, so cob =0, contradiction.

Thus A, = {c1a - cob}. We set ¢(c,a - cob) = X, X X,. Clearly (8)-(12) hold.

This finishes the definition of ¢. By (1)-(12) ¢ is a one-one function from
At U onto a partition of V. Hence if we let

fx=U{pa:a<x,aeAtU}

for all x € A, we obtain an isomorphism of B[ ¥ into the BA of all subsets of V. It
remains to check that f preserves cylindrifications and diagonal elements.

By symmetry we prove only that f preserves c,. First suppose (u, v) € fcox. Say
(u,v) € pa with a<cyx, a € AtA. Then there is a b e AtU with b<x, and
a<cob. By (5), say a<c,c - coe with c, e € Dat, and b <c,s - ¢yt with s, t € Dat.
Then coe = coa =cob =cot, s0 e=t. Since (u,v) € ¢pa, by (8)-(12) we have
velX,, hence (4, v) e VN (U X X,) and so by (12),

(u, v) e CH b = CHV 1,

as desired. Conversely, suppose (u, v) e Cl'}fx. Say (w,v)efx, (w,v) € ¢a
with a<x, ae AtU, ae A, with b, ceDat. Say (u,v) € ¢e, ecA,. Then
veX, velkX, so c=t Since ¢yt =coa <cox, we have e <cyx, hence (u,v)e€
feox, as desired.

To show that f preserves dy,, first suppose that {u, v) € fd,,. Say (u, v) € ¢a
with a=<d,,, a€ AtU. Thus aeDat and ae A,,. If a is big, then by Case 2,
u=v; if a is small and defective, then u =v by Case 3; and if a is small and
non-defective, then ¢a = X, X X, by Case 4, and |X,| =1 by (2), so u =v. Thus
(u, v) € Df{\. Conversely, suppose that (u, v) € Df}). Thus u =v. Say (u, v) e
¢a, where a € At U. Say a € A,.. By construction it is clear that b =c, and then
a = b. This completes the proof of I1.59.

Theorem I1.61. CA, c ICrs,.

pr— - -—— r ” D . . " - - . - & . . a o A eF o



Representable cylindric algebras 51

to a Crs,. By [5, 2.7.15 and 2.7.17], A c € for some simple complete atomic
CA, Y. The desired result now follows from I1.59.

Remark I1.62. Theorem II1.61 gives a general geometric representation theorem
for CA;’s. We know from [5, 2.6.41 and 2.6.42] that not every CA, is
representable. Thus there is a simple CA, % which is not isomorphic to a Cs,. By
I1.61, ¥ is isomprhic to a Crs, with unit element V. The set V does not have the
form U, but the diagonal element D}’ consists of elements of the form (u, u).
It is also possible to represent 2 isomorphically as a field of subsets of some set
2U with the cylindrifications CY), x <2, but with an equivalence relationn on U
in place of DY), where V =2U. In fact, in the proof of I1.59, Case 3, one simply
takes ¢a = X, X X,, and otherwise the proof remains the same.

Andréka and Németi have given a direct proof of I1.61, and used it to give a
somewhat shorter proof of 11.65 below.

To establish our other representation theorem concerning CA,’s we need two
lemmas.

Lemma I1.63. Suppose a =2, kx, A< a, x # A, and the equation
() alx-y-clx-—y)): —clax-—d,)=0

holds in a CA, U. Then the following condition holds for all x, y, z € A:
(ii) If cax - s§ex <dya, then co(x - y) - ce(x - 2) <celx -y - 2).

Proof. Assume the hypothesis of the lemma and of (ii). Then ¢;x - —d,, <
s% —c,x, and so for any w € A we have

ax -we-c(x - —w))<sc(ax-—d,)<si-qx,
G(x-w-ce(x - =w)) - ce(desr - c1x) =0,

G(Ce(x -w) - ce(x - —w)) - dyy - x =0,
C(x-w)-ce(x-—w)-x =0,

C(ee(x-w) ce(x-=w)-x)=0,
Ce(xw)ce(x-—w) c,;x=0,

Ce(Xx W) ce(x-=w)=0.

Hence, if we let fw =c,(x - w) for all w e A, we see that f is a homomorphism
from BI A into VIR, A, with y = c,x. Hence the conclusion of (ii) follows.

Lemma II.64. Suppose =2, x,A<a, and k#A. Let A be a CA,. Then
I1.63(ii) holds for all x,y,z€ A iff the following inequality holds for all
Xx,y,Z€EA:
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Proof. Clearly (*) implies I1.63(ii)). Now assume that II.63(ii) holds for all
x,y,2z€A, and let x,y,z€A be arbitrary. Set u=cx -sicx - —dyx, x,=
X+ CeCald, X=X+ —C,Cu. Then
CaXa* S3C X3 =y = C X * S3CX * —dyy - —CeCUu=u+ —cC C;u=0;
hence, by I1.63(ii), we have
(1) CK(XZ'Y)'Cx(x2'2)scx(x2'y 'Z).
Since x; <c,c,u, we have ¢, x; <c,c,u and hence
(2) Ce(x1°Y) - (X1 - 2) S uu

Now note that ¢, x, - ¢, x> =0=c,x; - c;x,. Hence

Ce(x - y) - clx - 2) = (Cel(x1 - y) + ce(x2° ¥)) - (Ce(x1 - 2) + Co(x2 - 2))
=Ce(X1°y) - X1+ 2) + (X1 - y) * C(x2- 2)
F e y) - el 2) + elx2-y) - el - 2)
=Ce(X1°y) (X1 - 2) + (X2 0 y) - Cul(x2* 2)
Sc QU+ C(x0y-2)
scqutc(x-y-z),

as desired.
We are now ready for the second representation theorem for CA,’s:

Theorem I1.65. The following are equivalent, for any U € CA,:
(i) U € SNr,CA,. ‘
(ii) For any x, y € A, the following two equations hold:

ci(x -y - colx * =) - —colcyx - —dpy) =0,
Colx -y - €1(x - =y)) - —€1(Cox * —doy = 0.
(iii) A is representable.

Proof. (i)=> (ii) by [5, 2.6.41 and its proof], and (iii) > (i) by [6, 1.8.6). To show
that (ii) = (iii) it suffices to take the case ¥ simple, by [5, 2.4.52]. Let B =Cm A.
By [5, 2.7.16, 2.7.17], 11.63, and I1.64, ‘B is a simple complete and atomic CA, in
which the inequalities I1.64(*) hold for x #A, k, A €2; hence also the implica-
tions I1.63(ii) hold. It suffices to show that B is isomorphic to a Cs,. By I1.59 it
suffices to show that for an arbitrary atom a of B, a is not defective. So assume
that cpa - ca<dy, {K,A}=2, x,y,z€B, and 0#x <c,a. Then c.x - s.c,x =
Cx@ - C3(dys " Cr@) =ca-caa<dy. Hence by IL63(ii), (x-y) - ca(x-2)<
ci(x -y - z), as desired. This finishes the proof of I1.65.

Remark I1.66. In the rest of this paper we shall describe various methods for

T
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method of splitting elements, pp. 386-394, pp. 407-408. Other methods are
found in [9], [10], [11]. Here we shall describe three more methods: permutation
models (I1.67), dilation (11.68), and twisting (II1.70). These methods, due to
Henkin, are like those in [5], in that to establish the non-representability we
exhibit explicit equations holding in all Rp,’s but not in the ones constructed. In
[9], [10], [11], the non-representability is recognized by other means.

Construction I1.67 (Permutation models). First we describe the general frame-
work and then we make a specific construction. Let U be a non-empty set and U
the full Cs, with base U, where « is arbitrary. Recall from [6, 1.3.1, 1.3.5] that to
every permutation f of U there corresponds a base-automorphism f of .
Throughout this construction, if G is a set of permutations of U we shall denote
by G the set of all ffor feG. If Bis any CA, and H is a set of automorphisms of
B then we let FxyB={(beB:fb=>b for all feH}. Clearly Fx;B is a
subuniverse of 8. We denote by §x, B the subalgebra of B with universe Fxy B.
The permutation model method for constructing a CA, consists in choosing a
suitable U, %, G as above, forming € =Frx A with K=G, selecting an
appropriate ¢ € C, and finally forming RI, €.

We shall now give a particular construction of this kind. We assume that 3 < a.
Let W be a set such that a "W =0 and || =|W|; say that ' is a one—one
function from « onto W. Thus k' € W for all ¥ < a. For each x < «a let akx = x and
ax' = k. Given a permutation 7 of o we define a permutation 7' of W by setting
7'k = (1)’ for all k < a.

Let U=aUW, and let ¥ be the full Cs, with base U. Set G={rUt':Tisa
permutation of @, and |[{k < a@:1k #k}|<w}. Let € =Fry A, H=G. For each
se®Ulets” ={gos:geG}. Clearly s~ € C for every s € “U. Let

V=(a1Id)"UU{s :acsis not one-one}.

Thus V € C. Finally let © = RI,, €. We shall show that D is a non-representable
CA.,.

To show that D is a CA,, it suffices by [5, 2.2.3] to check (C,) and (C). To
prove (C,) it suffices to show the following:

(1) If x, A<a and s €V, then cOc{®s™ = {te V :there exist u, v e U such that
thes™).

To prove (1), we may ssume that x #A. The inclusion < is obvious. For o,
suppose t€ V, u, v € U, and 2 es™. If t* € V, the desired conclusion is clear, so
assume that t; ¢ V. This implies that 7, # au and ¢, #atA for any u € @ ~ {x, A}.
Let 7 be the transposition [au/atA, atA/au)] of a, and let g=1U t’. Thus g€ G.
Let r=geot®; so res”. Now, if ue a~{k, A}, then by the remark above,
ru = gty = tu. Furthermore, at;, x = ark = agu = atA = atjA. Therefore ¢,, € V and
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Condition (Cg) is obvious, so D is a CA,. To show that D is not representable,
we consider the following inequality, first discussed in Thompson [14], and
mentioned in [5, 1.5.22}:

(1) X Gy C,2Z = CKCAC“(C,‘(CAI * cxy) * CA(Cux * sz) ) C,((C“y * C;.Z))

Here k, A, u are arbitrary distinct ordinals <a. It is easy to check that (1) holds
in every representable CA,. We show that it fails in ©. For simplicity take x =0,
A=1, u=2. We let

x=(1,1,2,3,...)",
y=(0,2,2,3,...)7,
z=(0,1,0,3,...)",
f=alld
Clearly f ecox - c1y - ¢,z in D. Suppose f is in the right side of (1). We then

obtain elements u, v, w,a,b,c,m,n,p,q,r,s€U and g, ..., gs€ G with the
following properties:

12 12

ww € C2(€1X * CoY) * €1X * €32) - co(C2Y - €12), wa € C1X * CoY,
12 12

ubw € C2X * CpZ, cow ECYY * €12,

foma=80°(1,1,2,3,...), fuz=g°(0,2,23,...),
W =g,0(1,1,2,3,...), fA2=g:(0,1,0,3,...),
02 =04°(0,2,2,3,...), f2=g,2(0,1,0,3,...).

Therefore go,...,8s permute {0,1,2}, and u=gol’, v=g2', w=gy0', so
u, v, we W. Since fus €V, it follows that |{u, v, w}|<2. By symmetry, say
u=v. Thengol' =u=v=g,2"'=(g,2) =a'=(ge2)' = go2', contradiction.

Construction I1.68 (Dilation). The method in I1.67, aside from the use permuta-
tions, was relativization. Since we relativized an atomic Cs,, we can say that we
deleted atoms. Here we want to do the opposite, add atoms.

First we explain the general procedure. We start with some Ca, B=
(B, Ty, Ex1)x,1<a; recall from [5, 2.7.38] that a Ca, is a relational structure which
is the atom structure of some complete and atomic CA,. Suppose a € “B, and the
following two conditions hold (recall that 7, is an equivalence relation on B for
every kK < a):

(1) (a,/T)N(ay/T,)#0 forallx, A<a;
(2) a, ¢ E,, if x, A, p are distinct ordinals <a.
Then we choose some element n¢ B and form a relational structure B’ =

(B', Ty, Ex3)x,2<a as follows. We set B'=BU {n}. For any x<a, T. is an
equivalence relation on B’, T,N(B X B)=T,, and for any be B, bT.n iff
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bT,a,. Finally, E,, = E,, for x and A distinct ordinals <a, while E,, = B’ for all
k < o. We claim that 8’ is a Ca,. To prove this it suffices to check the conditions
of [5, 2.7.40]. Of these conditions, (i), (iii) and (v) are obvious. To prove (ii) it
suffices to show that T, |T,cT;|T, for distinct x, A<a. Assume that
b(T,|T;)c, say bT,eT;c. We may assume that n € {b, e, c}. By symmetry it
suffices to consider the following two cases.

Case 1. b,ee B, c=n. Thus bT,.eT,a;, and by (1) there is a g€ B with
a,T,gT,a;,, so by (ii) for B, bT,hT.a, for some heB. Hence bT;hT.n, as
desired.

Case 2. b,ce B, e=n. Thus bT,a, and cT,a,. By (1), a,T,gT,.a;, for some
g € B. Hence by (ii) for B, bT,hT,c for some h € B, as desired.

Now we check [5, 2.7.40(iv)]. Assume x, A, u<a and p#k, A. Suppose
bT,ceE,,NE,. If xk=A, obviously b € E,;. Assume kx # 4. If b € B, obviously
b e E,,. Suppose b =n. Thus a,T,c € E,, NE,;, so a, € E,;, contradicting (2).
We have now shown that T,*(E,,NE,;) c E,,.

That E,, < T,*(E,, N E,;) is clear if x # . To check this for x = A it suffices
to show that ne T, 'E,,. Since a, € E,, = T,E,,, choose b€ E,, with a,T,b.
Thus nT,b, so n € T,*E,,. This finishes the general description.

Now we shall construct a non-representable CA,, using the method of dilation.
Assume that 3<a<w. Let W, G and € be as in I1.67. Let B = At €, the atom
structure of €. So B € Ca,; we write B = (B, T,, E,; ), 1<« as above. For each
k < a —1 let 5, be the member of “« such that for all u < a,

7} if u<k,

s —
xH {u-—l if k<u<a,

and let s,_, be such that for all u < a,

u fu<a-—1,

s°—lu={0 ifu=a—1.

Let a, =s, for each x <a. We now check the conditions (1), (2). For (1), it
suffices to take distinct x, A < a. Say x <A. We treat only the case k + 1 <A<
a — 1 and leave other possibilities to the reader. Let ¢ be the member of *a such
that for all u < a,

(u  ifusk,
pu—1 if xk<u<a,
| A ifu=24,
u-1 ifAi<u<a

tu=

Clearly " Tha,. Let t be the cyclic permutation (x, A-=1,A-2,...,kx+1) of
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and set g=1U 1. Then ges, €5, and for any u < a,

( p o if u<k,

A=1 if u=k,

@os)e={ p—1 ifx<p<A,

A ifu=A,

G 1 fA<u<a

Thus ¢t~ T,a,, as desired. So we take (1) as established. Condition (2) is obvious.
Thus by the general procedure we obtain a Ca, B' = (B’, Ty, EL;)x 1<a by

adjoining a new element n. Let © =Cm B'. Thus D is a CA, by [5, 2.7.39]. We

show that 9 is non-representable by considering a new equation, which is an

algebraic version of the associativity of relative product of binary relations. To

formulate it, let € be an arbitrary CA4, 3 < . We define a binary operation ; on
E by setting, for any x, y € E,

X3y = Co(85362% - 536,).
Note that if ¥ is a Csg with base X and x, y € F, then
x;y = {z € X : there exists u € X with z, € c,x and 20 e c,y},

which shows the relationship of ; with relative product. This also shows that the

equation

©) x;(y;2)=(x;y); 2

holds in every representable CAg. Now we shall show that it does not hold in D.
To this end, let x=(0,0,1,2,3,...)", y=(0,1,1,2,3,...)", z=

(1,0,1,2,3,...)". Note that s3c,y =c,(dy; " c,y) =c,y and similarly sic,z =

coz. Hence

(4)  x5(y52) = cals6:x - s362(c1y * €o2)),

(5) (x;¥); 2 = ca(s32(s2€2% - $3€2Y) - Co2).

(All of the operations above are in . For simplicity we treat n as well as each
element s~ for s € “U as an atom of D.) Now we claim

(6) If s e “UN(x;(y; 2)), then so=s5,.

For, dy, - ¢,x ={0,0",0',2,3,...)", hence a, % sjc,x and so n £ s3c,x. It follows
that there is a ue U such that s2esic,x-sicy(cyy - coz). Now c1y-coz =
(0,0,1,2,3,...)7, s0 dg-cicry-coz)=(0,0,0,2,3,...)". Therefore
s3cox + s%cx(cry < €02)=(0,0,0,2,3,...)". Hence so=s5,, as desired.

(7 (0,1,0,2,3,...)" <cpn.
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n%x;(y;z). Now we show that n<(x;y);z, so that (3) fails. Clearly n<
Coz. Now dyp-¢x=(0,0,0,2,3,...)" and dp,-c,y=(0',1,0,2,3,...)".
Hence sjcox -s%,y=1(0,1,0,2,3,...)7, and hence d,,-cy(sicox - s3c,y) =
(0,1,1,2,3,...)". Thus n <s3c,(s3¢,% - s%,y). So n<(x;y); z, as desired.

Remark I1.69. By combining many algebras using ultraproducts we can obtain
infinite-dimensional CA,’s in which the equation II1.68(3) fails. This is a general
method, enabling one always to restrict oneself to the case a<w when
considering such equations. The method is essentially described in the proof of [5,
2.6.4], but we sketch it here. Suppose = w. Let [={:3cI'caand I < w}.
For each I' e I let BI" = |I'| and let pI" be a one—one function from I onto I' such
that B 1 Id c pI'; moreover, let M- ={A€I:I' c A}. Furthermore, let A be a
CAgr in which I1.68(3) fails. Let B, be an algebra similar to CA,’s such that
A = RdPD B, for each I' € I (extending [5, 2.6.1] in the natural way). Let U be
an ultrafilter on I such that My € U for every I" € I. Then P, B,/U is easily seen
to be the desired algebra.

Constructing I1.70 (Twisting). This method, roughly speaking, consists of starting
from a complete atomic CA, ¥, selecting atoms a, b € A and an ordinal x < «,
and redefining ¢, on a and b by interchanging the action of c, on a in b, in part
(‘twisting’).

Specifically, suppose 3 < o < w. Let B be the full Cs, with base 2a — 2, and let
G be the set of all permutations of 2a —2 of the form [0/1, 1/0]°[2x/(2x +
1), 2k +1)/2x] for 0<k<a—1. Set A=FryB, H=G (see I1.67). Let
C=(AtYU, T, E,;)r.1<o be the atom structure of %. We consider the atoms
(3,0,0,4,6,8,...)" and (3,1,1,4,6,8,...)” of A and the ordinal 1< a. Let
T.=T, for all k € « ~ {1}, and let E,; = E,; for all x, A < a. Now we define T},
a certain equivalence relation on At%. Let M=T7T"{(3,0,0,4,6,8,...)",
(3,1,1,4,6,8,...)"}. If xe At A~ M, then the Ti-class of x is x/7;. Further,
we set

(3,0,0,4,6,8,...)/T'={(3,0,0,4,6,8,...)", (3,1,0,4,6,8,...)")
U{(3,x1,4,6,8,...) :2<sk<2a -2},

(3,1,1,4,6,8,...,) /Ti={(3,1,1,4,6,8,...)", (3,0, 1, 4,6,8,...)")
U{(3,k,0,4,6,8,...) :2<k<2a-2}.

Note the symmetry of this definition with respect to interchanging 0 and 1. This
gives us a new relational structure ® = (At Y, T,, E;)x.i1<o We claim that D is
a Ca, (see [5, 2.7.38]), and to see this we again want to check the conditions of
[5, 2.7.40]. Of these conditions, (i) and (iii) are obviious. For (v) we need to
check that if A#1, a, b € Ey;, and aTb, then a = b; this is clear by inspection.

' 7w asl oA e W
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and so T1*(E,; NEy) = T1(E, N Ey) = E,;. So we only need to check (iv) when
p=1 and x=A; so suppose k#1—we want to show that AtUA=T*E,,.
Since T:*{(3,0,0,4,6,8,...)", (3,1,1,4,6,8,...)"}=T1{(3,0,0,...,
4,6,8,...)7,(3,1,1,4,6,8,...)"} =M, this is clear.

It remains only to check (ii). So suppose A € @ ~ {1}. We need two auxiliary
statements.

(1) If aeAt¥, then (3,0,0,4,6,8,...)°(T| T)a iff (3,1,1,4,6,7,...)"
(T1| R)a.

To prove (1), by symmetry it suffices to take the direction =. Say
(3,0,0,4,6,8,...) T1bT,a. We seek b’ such that (3,1,1,4,6,8,...) T1b'T,a.
We carry though the proof in full for the case A=0, and leave the other
cases to the reader. If b=(3,0,0,4,6,8,...)", let b’=(2,0,0, 4, 6, 8, N B
thusb'Toaandb’'=(3,1,1,4,6,8,...) asdesired. Ifb=(3,1,0,4,6,8,...)",
let b'=(2,0,1,4,6,8,...)"; so b'Tha and b'=(3,0,1,4, ,8. D7
Ti(3,1,1,4,6,8,...)" as desired I b=(3,2,1,4,6,8,...)" Ilet
b'=(2,2,1,4,6,8,...)"=(3,3,0,4,6,8,...);if b=(3,3,1, 4, 6 8 ...)"
let b = 2,3,1,4,6 8,...)‘=(3,2,0468 )73 and if b=
(3,4,1,4,6,8,...)" with 4<spu<2a—-2 let b'=(2,u,1,4,6,8,...)"=
(3,4,0,4,6, 8,...)'.

@) If acAt¥, then (3,0,0,4,6,8,...) (T |T)a if (3,1,1,4,6,8,...)"
(T | T)a.

Again it suffices to show the direction =>. Say (3,0,0,4,6,8,...) T,bT1a. We
seek b’ such that (3,1,1,4,6,8,...) T,b'Tia. This time we carry out in detail
only the case A=3. Let s=(3,0,0,4,6,8,...). Thus b=(s})” for some
pu<2a—2. Using the member [0/1, 1/0][(24 — 2)/(2A — 1), (24 — 1/(2A — 2)] of
G we see that b =(s}3))” for some v <2a —2. Thus we can set b’ =b. So (2)
holds.

We also need the following corollary of (1):

(3) Ifae M and b € At ¥, then a(T1| T,)b iff there is a c € M with cT;b.

For, the implication = is clear. Suppose conversely that ¢ € M and c7, b. Without
loss of generality, say (3,0,0,4,6,8,...) Tic. Thus (3,0,0,4,6,8,...)"
(4| T)b, so by (1), a(T} | T)b.

Suppose now that a, b € At ¥; we want to show that a(T; | T,)b iff a(T;, | T})b.
By symmetry it suffices to consider the following three cases.

Case 1. a, b ¢ M. Then a(T; | T,)b iff a(T, | T)b iff a(T; | T,)b iff a(T; | T;b).

Case 2. a, b € M. By (3) we have a(T; | T,)b and a(T; | T})b.

Case3. acM, b¢M. Suppose first that a(T;|T})b. Thus a(T;|T;)b, so
aT,| T,b. Hence by (3) aTi| TI,b. Conversely, suppose that a(T;| T;)b. Then
there isaceM such that c7,b. Say wnthout loss of generallty (3,0, 0, 4

. L I M M A o~ PRI [—— e oo o A >
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(T | T1)b, so by (2), (3,1,1,4,6,8,...) (T, | T1)b and hence (3, 1, 1, 4, 6,
8,...) (Ty| T,)b. 1t follows that a(T; | T;)b, hence a(T; | T})b, as desired. We
have now shown that ® is a Ca,.

Thus Em D is a CA,. We now show that it is not representable. To do this we
first consider the equation

4) 25(0, 1)cax = ,5(1, 0)c,x.

As is easily checked, it holds identically in every representable CA,. We show
that it fails in Em D. (See [5, 1.5.14] and the comments following it.) Take
x=1{0,3,0,4,6,8,...)". Then

25(0, 1)cyx = 53 59s3¢,x = 535%,(0, 3,3,4,6,8,...)"
=55¢0(0,0,3,4,6,8,...)"
=¢,(3,0,3,4,6,8,...)";
25(1, 0)cox = 535§ 55¢,x = 5255 €(0, 3,0,4,6,8,...)"
=53¢,(3,3,0,4,6,8,...)"
=¢(3,1,1,4,6,8,...)".
Since clearly (3,1,1,4,6,8,...)¢c,(3,0,3,4,4,6,8,...)", we see that (4)

does fail in Em D. Em D can also be used to show the failure of two further
similar equations (5) and (6) which follow.

(5) 25(0, 1),5(0, 1)cox = cox.

Again it is easy to check that (5) holds identically in every representable CA,,. It

fails in €m ®© with the same element x as above. It is in fact routine to check that
28(0, 1)23(0, l)sz = Cz(l, 3, 1, 4, 6, 8, oo .)_,

while clearly (0,3,0,4,6,8,...)¢c,(1,3,1,4,6,8)". Finally, assume that

4 < o, and consider the equation

(6) 28(0, 1),5(0, 3)c,y = 25(1, 3),5(0, 1)c,y.

Again it is easy to check that this equation holds in every representable CA,. Let
y=(4,3,0,0,6,8,...)". Then one can check that

25(0, 1),5(0, 3)cy =¢,(3,0,3,4,6,8,...)",

25(1, 3)28(0, 1)cy =¢2(3,1,1,4,6,8,...),
so (6) does fail in Em D.

In all of the above the indices 0, 1, 2, 3 < a played a special role. Of course one
can modify the construction of © in an obvious way to take care similarly of other
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