On endomorphism bases

J. DONALD MONK

In the article Baldwin, Berman, Glass, Hodges [1], with which we assume acquaintance, the authors prove a general theorem about endomorphism bases and apply it in several situations. We give here several comments. First, their proof of the theorem gives a slightly stronger result (Theorem 1 below). Second, this stronger result does not extend to singular cardinals (Example 1). Third, there is a weaker result that does hold for singular cardinals of cofinality $>\omega$ (Theorem 2). Fourth, this result does not hold for singular cardinals of cofinality ω (Example 2). In Example 2 we also apply these theorems to Boolean algebras.

The proof of Theorem 1 in [1] clearly gives the following result:

THEOREM 1. In addition to the conclusion of Theorem 1 in [1] we have that for any mapping f from Y' into Y', the endomorphism f^* of A corresponding to f maps X into X.

EXAMPLE 1. Let κ be singular; say $\langle \mu_{\alpha} : \alpha < cf\kappa \rangle$ is a strictly increasing sequence of infinite cardinals with supremum κ . Let A be a free Boolean algebra with free generators $\langle a_{\alpha} : \alpha < cf\kappa \rangle$ and $\langle b_{\alpha\beta} : \alpha < cf\kappa, \beta < \mu_{\alpha} \rangle$. Let $Y = \{a_{\alpha} \cdot b_{\alpha\beta} : \alpha < cf\kappa, \beta < \mu_{\alpha}\}$. Then $X = \{a_{\alpha} : \alpha < cf\kappa\} \cup \{b_{\alpha\beta} : \alpha < cf\kappa, \beta < \mu_{\alpha}\}$ is an endomorphism base for A. We claim, however, that the conclusion of Theorem 1 fails. For, suppose that $Y' \in [Y]^{\kappa}$ is an endomorphism base, with the additional property mentioned. Then there exist distinct α , $\delta < cf\kappa$ and distinct β , $\gamma < \mu_{\alpha}$, $\varepsilon < \mu_{\delta}$ such that $a_{\alpha} \cdot b_{\alpha\beta}$, $a_{\alpha} \cdot b_{\alpha\gamma}$, $a_{\delta} \cdot b_{\delta\varepsilon} \in Y'$. Take a mapping f of Y' into Y' such that $f(a_{\alpha} \cdot b_{\alpha\beta}) = \alpha_{\alpha} \cdot b_{\alpha\beta}$ and $f(a_{\alpha} \cdot b_{\alpha\gamma}) = a_{\delta} \cdot b_{\delta\varepsilon}$. If f^* is the extension of f to an endomorphism of A, clearly f^* does not map X into X.

Now we formulate a notion which enables us to extend Theorem 1 in a weaker form to singular cardinals. We call a subset X of A a singular endomorphism base if $\kappa = |X|$ is singular, and there is a partition $\langle Y_{\alpha} : \alpha < cf \kappa \rangle$ of X such that for all $\tau : cf \kappa \to cf \kappa$ and all $f: X \to X$, if $f[Y_{\alpha}] \subseteq Y_{\tau \alpha}$ for all $\alpha < cf \kappa$, then f extends to an endomorphism f^* of A in a functorial way.

Presented by S. Burris. Received September 20, 1983. Accepted for publication in final form May 8, 1984.

THEOREM 2. Let A be a structure of countable type generated by an endomorphism base X. Suppose that κ is a singular cardinal with $cf\kappa > \omega$, and $Y \in [A]^{\kappa}$. Then there is a singular endomorphism base $Z \in [Y]^{\kappa}$ such that the indicated extensions map X into X.

Proof. We proceed as in the proof of Theorem 1 of [1], using the well-known double Δ -system lemma instead of the usual Δ -system lemma (see, e.g., Monk [2], Theorem 10.6). We then obtain $Z \in [Y]^{\kappa}$ and a partition $(W_{\alpha}: \alpha < cf_{\kappa})$ of Z such that for some term t, every element $b \in W_{\alpha}$, $\alpha < cf_{\kappa}$, can be written as $b = t^{A}(\bar{c}, \bar{d}_{\alpha}, \bar{e}_{b})$, where the \bar{c} , \bar{d} , \bar{e}_{b} are finite sequences of elements of X, all disjoint for various α and b. Given $\tau : cf_{\kappa} \to cf_{\kappa}$ and $f: Z \to Z$ such that $f[W_{\alpha}] \subseteq W_{\tau\alpha}$ for all $\alpha < cf_{\kappa}$, we define $g: X \to X$ by

$$gx = \begin{cases} i\text{-th term of } \overline{e}_{fb}, \text{ if } x \text{ is the} \\ i\text{-th term of } \overline{e}_{b}, \text{ for some } b \in Z, \\ i\text{-th term of } \overline{d}_{r\alpha}, \text{ if } x \text{ is the} \\ i\text{-th term of } \overline{d}_{\alpha}, \text{ for some } \alpha < cf\kappa \\ x \text{ otherwise.} \end{cases}$$

The rest of the proof is as for Theorem 1 of [1].

EXAMPLE 2. We apply both theorems to Boolean algebras, and show in particular that Theorem 2 does not hold for singular κ of cofinality ω . In [2], Corollary 10.9, it is shown that if $cf\kappa > \omega$, then any set of κ elements of a free BA contains an independent subset of size κ . The above results generalize this, according to the following

FACT. If X is a singular endomorphism base of a BA A, or an infinite endomorphism base of A, then X is independent.

Proof. We take only the case of a singular endomorphism base X, with notation as above. Suppose that Y and Z are disjoint finite subsets of X; we show that $\prod_{y \in Y} y \cdot \prod_{z \in Z} -z \neq 0$. Choose $\alpha < cf\kappa$ such that $|Y_{\alpha}| > 1$. Let $z : cf\kappa \to cf\kappa$ be such that $\tau\beta = \alpha$ for all $\beta < cf\kappa$. Choose $u, v \in Y_{\alpha}$ with $u \neq v$. Then let $f: X \to Y_{\alpha}$ be such that $f[Y] \subseteq \{u\}$ and $f[Z] \subseteq \{v\}$. The extension of f to an endomorphism of f shows that $\prod_{v \in Y} y \cdot \prod_{z \in Z} -z \neq 0$.

If A is a free BA and $\kappa \leq |A|$ is singular of cofinality ω , it is well-known that there is a subset $X \subseteq A$ of power κ with no independent subset of power κ . By the FACT, this shows that the condition $cf\kappa > \omega$ in Theorem 2 cannot be removed. To construct such a subset, let $\langle a_n : n \in \omega \rangle$ be a partition of A, and for each $n \in \omega$

let Y_n be a subset of the set of free generators not appearing in the canonical forms of any a_n , of power μ_n , where the μ_n are strictly increasing with supremum κ and the Y_n are pairwise disjoint. Then, as is easily seen,

$$X = \{a_n \cdot y : n < \omega, y \in Y_n\}$$

is the desired set.

REFERENCES

- [1] J. T. BALDWIN, J. BERMAN, A. M. W. GLASS and W. A. HODGES, A combinatorial fact about free algebras, Alg. Univ. 15 (1982), 145–152.
- [2] J. D. Monk, Independence in Boolean algebras, Per. Math. Hungar. 14 (1983), 269-308.

University of Colorado Boulder, Colorado U.S.A.