CYLINDRIC ALGEBRAS
PART II
STUDIES IN LOGIC

AND

THE FOUNDATIONS OF MATHEMATICS

VOLUME 115

Editors

J. BARWISE, Stanford
D. KAPLAN, Los Angeles
H. J. KEISLER, Madison
P SUPPES, Stanford
A. S TROELSTRA, Amsterdam

NORTH-HOLLAND
AMSTERDAM • NEW YORK • OXFORD
CYLINDRIC ALGEBRAS

PART II

LEON HENKIN
Professor of Mathematics
University of California
Berkeley, California, U.S.A.

J. DONALD MONK
Professor of Mathematics
University of Colorado
Boulder, Colorado, U.S.A.

and

ALFRED TARSKI†
Professor of Mathematics
University of California
Berkeley, California, U.S.A.

NORTH-HOLLAND
AMSTERDAM • NEW YORK • OXFORD

1985
INTRODUCTION

The present volume continues and completes *Cylindric Algebras, Part I*. Substantial portions of this volume, including much of the opening chapter, can be read independently of its predecessor, and large portions of Part I are unnecessary for following the present material. For this reason we present here a brief, independent introduction to this book.

The concept of cylindric algebras was created to permit the use of algebraic methods in treating two related parts of mathematics. One of these is a very general kind of geometry associated with basic set-theoretic notions, and the other is the theory of deductive systems of mathematical logic. The two domains are connected because models of deductive systems give rise in a natural way to structures within the set-theoretical "spaces". The notion of a cylindric algebra can be considered as a common, algebraic abstraction from its two sources.

First we shall describe the set-theoretical source which gives rise to Chapter 3 (the first chapter in this book), and then we shall describe the logical source and its relation to the remainder of the book.

Given any ordinal α and set U, there are several elementary operations on subsets of the space $^\alpha U$ of α-termed sequences of elements of U which play a fundamental role in our theory. These are the familiar Boolean operations of union, intersection, and complementation with respect to $^\alpha U$, and the less familiar operations C_κ of *cylindrification* for each $\kappa < \alpha$: if $X \subseteq ^\alpha U$, then

$$C_\kappa X = \{ u \in ^\alpha U : \text{there is a } v \in X \text{ such that } u_\lambda = v_\lambda \text{ for all } \lambda \in \alpha \text{ with } \lambda \neq \kappa \}.$$

($C_\kappa X$ is the cylinder generated by translating X parallel to the κth axis of the space $^\alpha U$.) In addition, there are the important diagonal hyperplanes $D_{\kappa \lambda}$ for $\kappa, \lambda < \alpha$:

$$D_{\kappa \lambda} = \{ u \in ^\alpha U : u_\kappa = u_\lambda \}.$$

A *cylindric set algebra* is a collection of subsets of $^\alpha U$ closed under all of the Boolean and cylindric operations, having all diagonal hyperplanes as members. The abstract notion of a cylindric algebra is defined by equational axioms which hold in all cylindric set algebras. Part I was devoted to a comprehensive study of these arbitrary cylindric algebras.

In Chapter 3 (the first chapter) of the present work we study cylindric set algebras and related structures in their own right. The second part of this chapter is devoted to theorems on relationships between arbitrary cylindric algebras and the various kinds of set algebras — representation theorems, and construction methods for non—representable algebras. In the first two sections of Chapter 4, the
INTRODUCTION

The second source for the concept of cylindric algebras is first-order logic. The basic operations $+$, \cdot, $-$, c_e, d_{α} in cylindric algebras correspond to logical notions \forall, \exists, \exists_∞, $v_\infty = v_\lambda$. In fact, if Λ is a first-order language and Σ a set of sentences of Λ, define $\varphi \equiv \psi$ iff φ and ψ are formulas of Λ and $\varphi \leftrightarrow \psi$ is derivable from Σ. Then \equiv is an equivalence relation on the set F of all formulas of Λ, and there are operations $+$, \cdot, \neg, c_e, d_{α} on the set S of all equivalence classes of formulas which determine a cylindric algebra having S as its set of elements, with $(\varphi_1 \equiv \psi_1) + (\varphi_2 \equiv \psi_2) = (\varphi_1 \varphi_2) \equiv \psi_1 \psi_2$, $(\varphi \equiv \psi) \cdot (\varphi' \equiv \psi') = (\varphi \psi) \equiv \varphi' \psi'$, $\neg (\varphi \equiv \psi) = (\neg \varphi) \equiv (\neg \psi)$, $c_e(\varphi \equiv \psi) = (\exists v_\infty \varphi) \equiv \psi$, and $d_{\alpha}(\varphi \equiv \psi) = (v_\infty^e \equiv v_\lambda) \equiv \psi$ for all formulas φ, ψ and all $\alpha, \lambda < \omega$.

Section 4.3 is devoted to a careful explication of this connection between cylindric algebras and first-order logic.

There are other ways to algebraize ordinary first-order logic, and there are other logics to algebraize. A survey of some other algebraic logics is given in Chapter 5.

Throughout Part I various "promises" were made about material which would be found in Part II. These are located in this volume at the appropriate places, with the following exceptions, which mainly concern results whose proofs could not be reconstructed. (1) Cf. Part I, p. 258: we do not know whether the equational theory of \mathcal{M}_n's is decidable. See 4.2.1–4.2.6. (2) Cf. Part I, p. 311: the connection between the class L_∞^ω and infinitary languages is not discussed in this volume. (3) Cf. Part I, p. 389: the result mentioned in Remark 2.5.8 could not be reconstructed in its full form; see 4.3.32. (4) Cf. Part I, p. 348: we do not know whether, for $\omega \leq \alpha < \omega$, there are identities holding in all finite $\mathcal{C}A_\alpha$'s but not in all $\mathcal{C}A_\beta$'s. (5) Cf. Part I, p. 426: we do not know whether, if $\omega \leq \alpha < \omega$, there is a $\mathcal{C}A_\alpha$ \mathcal{K} and a $\mathcal{C}A_\beta$ \mathcal{E} such that \mathcal{K} is a generating subreduct of \mathcal{E} different from $\mathcal{R}r_\mathcal{E}$. Items (3)–(5) refer to results of Tarski whose proofs could not be reconstructed.

The first draft of this book was about two-thirds complete when the senior author and originator of the theory of cylindric algebras died. We hope that this volume will be found to conform to his high standards of scholarship and creativity.

Since the appearance of Part I, the theory of cylindric algebras has been advanced primarily by work of H. Andréka and I. Németi, whose many results appear throughout this volume; by R. Maddux, who greatly simplified the solution of a key decision problem and also settled the remaining open equational question (for $\mathcal{C}A_\alpha$'s); by D. Resek, who established a strong representation theorem for relativized cylindric algebras; and by M. Rubin, who proved the undecidability of the elementary theory of $\mathcal{C}A_\alpha$'s.

For extensive help in the actual writing of the book, the authors express their deep gratitude to Hajnal Andréka and István Németi. The typing of the manuscript was done by Andrea and Steven Monk. For help with corrections we are indebted to Balázs Bíró, Roger Maddux, Ildikó Sain, György Serény, and Andráska and Németi. The book was produced from camera-ready copy prepared on an IBM PC with an Epson FX–100 printer, using the Fancy Font typesetting software from Softcraft, Inc.
INTRODUCTION

Notational changes

We have kept the notation from Part I (with additions itemized at the end of the book), except for the following changes or simplifications. Parentheses in superscripts or subscripts are eliminated when no confusion is likely: thus, e.g., we write SgX, ΔX, \mathbb{R}^p in place of Sg^X, Δ^X, $\mathbb{R}^{(p)}$. We use the notation φ^X for the a-ary relation defined by φ in X, rather than the earlier notation $\varphi^{(X)}$. Because of some possibility of confusion, we retain the notation c_1^T for generalized cylindrification. To avoid second-level subscripts (subscripts on subscripts, etc.), we usually convert notations like f_i or p_{ij} to f_i or p_{ij} when used at a subscript or superscript level.

Throughout the book, proofs which are trivial are simply omitted.

L. Henkin, J. D. Monk

September, 1984
Berkeley, California,
and Boulder, Colorado.
CONTENTS

Chapter 3. REPRESENTABLE CYLINDRIC ALGEBRAS 1

3.1 Cylindric set algebras .. 3
3.2 Representation theory .. 59
Problems. ... 103

Chapter 4. NOTIONS OF LOGIC RELATED TO CYLINDRIC
ALGEBRAS ... 107

4.1 Model theory of cylindric algebras 109
4.2 Decision problems .. 131
4.3 Connections between logic and cylindric algebras 151
Problems. ... 179

Chapter 5. OTHER ALGEBRAIC VERSIONS OF LOGIC 181

5.1 Diagonal-free cylindric algebras ... 183
5.2 Projective algebras ... 205
5.3 Relation algebras ... 211
5.4 Polyadic algebras .. 225
5.5 Relativized cylindric algebras .. 245
5.6 Abstract algebraic logic and more algebraic logics 255
Problems. ... 273

BIBLIOGRAPHY .. 275

I. Bibliography of cylindric algebras and related
 algebraic structures ... 275
II. Supplementary bibliography .. 289

INDEX OF SYMBOLS ... 291

INDEX OF NAMES AND SUBJECTS ... 297
CHAPTER 3

REPRESENTABLE CYLINDRIC ALGEBRAS
3. REPRESENTABLE CYLINDRIC ALGEBRAS

In this chapter we discuss in detail the set-theoretically defined cylindric algebras and the relationships between them and the abstract cylindric algebras which were the focus of attention in Part I. The main notion in section 3.1 is that of a cylindric set algebra, already introduced in 1.1.5 and discussed in passing in later places in Part I. There are several other related notions, most of which were also introduced in Part I. Section 3.1 has an extensive discussion of the relationships between these notions and between the results of applying algebraic operators like H, S, and P to classes of them. Aside from the naturalness of these investigations, they also prepare the ground for section 3.2. In section 3.2 several representation theorems are proved: theorems that certain abstractly defined cylindric algebras are isomorphic to set algebras. Section 3.2 also has a lengthy discussion of several kinds of non-representable cylindric algebras.

3.1. CYLINDRIC SET ALGEBRAS

The discussion of set algebras which we now begin represents a somewhat condensed version of the book Henkin, Monk, Tarski, Andréka, Németi [81']. We introduce most of the basic notions found there, prove the main positive results, and state without proof the main negative results. That book has two parts: Henkin, Monk, Tarski [81'] and Andréka, Németi [81']; for brevity we refer to these parts in this section by [HMT81] and [AN81] respectively.

In addition to cylindric set algebras, introduced in 1.1.5, we have considered several other kinds of set algebras; cf. 1.1.13, 2.2.11, and 2.3.15. We shall repeat here the definitions of these. To unify the treatment we introduce a very general kind of algebra, the cylindric-relativized set algebras. After the basic definitions, we give simple relationships between the classes, and then proceed to discuss various algebraic notions in their applications to our set algebras.

We begin with the definition of the main notions with which we will be concerned in all of Part II: cylindric-relativized set algebras, cylindric set algebras, generalized cylindric set algebras, representable cylindric algebras, and regular cylindric set algebras.

DEFINITION 3.1.1. (i) If $f \in {}^aU$, $\kappa < \alpha$, and $u \in U$, then f^u_κ is the member of aU such that $(f^u_\kappa)\lambda = f\lambda$ if $\lambda \neq \kappa$, while $(f^u_\kappa)\kappa = u$. For typographical reasons we sometimes write $f(\kappa/u)$ in place of f^u_κ.

(ii) Let a be an ordinal and V a set of a-termed sequences. The base of V is $\bigcup_{x \in V} Rg x$, which we denote by U in what follows. For all $\kappa, \lambda < \alpha$ we set

$$D_{\lambda}^{(\kappa)} = \{ y \in V : y_\kappa = y_{\lambda} \},$$
and we let $C^{[V]}_\kappa$ be the mapping of $S_b V$ into $S_b V$ such that, for every $X \in V$,

$$C^{[V]}_\kappa X = \{ y \in V : y_\kappa' \in X \text{ for some } u \in U \}.$$

(When V is implicitly understood we shall write simply D_κ or C_κ.)

(iii) A is an α-dimensional cylindric-relativized field of sets iff there is a set V of α-termed sequences such that A is a non-empty family of subsets of V closed under all the operations u, v, \sim and $C^{[V]}_\kappa$ (for each $\kappa < \alpha$), and containing as elements the subsets $D^{[V]}_\kappa$ (for all $\kappa, \lambda < \alpha$).

(iv) \mathcal{K} is a cylindric-relativized set algebra of dimension α iff there is a set V of α-termed sequences such that

$$\mathcal{K} = (A, u, n, v, 0, V, C^{[V]}_\kappa, D^{[V]}_\kappa),$$

where A is an α-dimensional cylindric-relativized field of sets with unit element V. C_{α} is the class of all cylindric-relativized set algebras of dimension α.

For the remaining parts of this definition we assume that A is a cylindric-relativized field of sets and \mathcal{K}, with universe A, is a cylindric-relativized set algebra, both with dimension α and unit element V. The base of V is also called the base of A and \mathcal{K}.

A cylindric algebra \mathcal{B} is called a α-dimensional cylindric algebra of sets if $V = \mathcal{B}$. The class of all cylindric set algebras of dimension α is denoted by C_{α}.

(vii) A, respectively \mathcal{K}, is called an α-dimensional generalized cylindric set algebra of sets, respectively set algebra, if V has the form $\bigcup_{i \in I} Y_i$, where $Y_i \neq 0$ for each $i \in I$, and $Y_i \cap Y_j = 0$ for any two distinct $i, j \in I$. The symbol G_{α} denotes the class of all generalized cylindric set algebras of dimension α.

(viii) A is a cylindric algebra if it is isomorphic to a generalized cylindric set algebra. Thus G_{α} is the class of all α-dimensional representable cylindric algebras.

In 1.1.13 we gave extensive motivation for some of the concepts in 3.1.1. Thus cylindric set algebras form the simplest concrete kind of cylindric algebras. For $\alpha \geq 2$, G_{α} coincides with the class of subdirect products of cylindric set algebras (by 3.1.77 below) and is thus the most natural abstract class of cylindric algebras corresponding to the concrete ones; much of our work in this part will be concerned with this class of representable algebras. (For $\alpha = 1$, a relatively less interesting case, G_{α} does not correspond to the intuitive notion of representable algebra; see 3.1.17, 3.1.70.) Regular locally finite set algebras were implicitly discussed in 2.3.15. They are the most well-behaved algebras from the point of view of representation theory. It turns out that any representable CA is isomorphic to a subdirect product of regular cylindric set algebras (by 3.1.107). As we shall see, the class $G_{\infty} \cap nL_{\alpha}$ of regular locally finite cylindric set algebras plays a very important role in
representation theory and in the relationship of set algebras to logic.

Now we define some subsidiary notions which will be important in establishing the main results about the above algebras and are also interesting in their own right.

Definition 3.1.2. Let \mathcal{X} be a cylindric-relativised set algebra with universe A, dimension a, base U, and unit element V.

(i) If $A = Sb V$, then we denote \mathcal{X} by $\mathcal{X} = Sb V$; A and \mathcal{X} are called respectively a full cylindric-relativised field of sets and a full cylindric-relativised set algebra.

(ii) Let W be a set and β an ordinal. $^\beta \mathcal{W}$ is then called the Cartesian space with base W and dimension β. Moreover, for every $p \in ^\beta W$ we set

\[^\beta W(p) = \{ z \in ^\beta W : \{ t \in ^\beta V : t \neq p_t \} \text{ is finite} \}, \]

and we call $^\beta W(p)$ the weak Cartesian space with base W and dimension β determined by p.

(iii) W, respectively \mathcal{X}, is called an a-dimensional weak cylindric field of sets, respectively set algebra, if there is a $p \in a U$ such that $V = a U(p)$. The class of all a-dimensional weak cylindric set algebras is denoted by \mathcal{W}_a.

(iv) A, respectively \mathcal{X}, is called an a-dimensional generalized weak cylindric field of sets, respectively set algebra, if V has the form $\bigcup_{i \in I} a Y_i$, where $p_i \in a Y_i$ for each $i \in I$ and $a Y_i \cap a Y_j = 0$ for any two distinct $i, j \in I$. We use $\mathcal{G}_{a, W}$ for the class of all generalized weak cylindric set algebras of dimension a.

In order to finish defining our basic notions, we need the following lemma.

Lemma 3.1.3. Suppose $a \geq 2$ and

\[\bigcup_{i \in I} a Y_i = \bigcup_{j \in J} a Z_j, \]

with $a Y_i \cap a Y_k = 0$ for distinct $i, k \in I$, and $a Z_j \cap a Z_l = 0$ for distinct $j, l \in J$.

Then $\{ a Y_i : i \in I \} = \{ a Z_j : j \in J \}.$

Proof. By symmetry it suffices to take any $i \in I$ and find $j \in J$ such that $a Y_i \cap a Z_j = 0$. Choose $j \in J$ so that $p_i \in a Z_j$. We claim

(1) $Y_i \subseteq Z_j$.

For, let $y \in Y_i$. Then $(p_i)_y \in a Y_i$, so choose $k \in J$ with $(p_i)_y \in a Z_k$. Thus $(p_i)_y \in Z_j \cap Z_k$. Then $(p_i)_y \in a Z_j \cap a Z_k$, so $j = k$. Thus $y \in Z_j$, as desired to prove (1).

Now let $r \in a Y_i$ be arbitrary. Thus by (1), $r \in Z_j$. Clearly then $r \in Z_j$, as desired.

Remark 3.1.4. Lemma 3.1.3 does not extend to $a = 1$, since clearly $\bigcup_{i \in I} a Y_i = a (\bigcup_{i \in I} Y_i)$ in this case, but it is trivially true for $a = 0$.

Definition 3.1.5. Let \mathcal{X}, with universe A, be a $\mathcal{G}_{a, W}$ with unit element $\bigcup_{i \in I} a Y_i$, where $a Y_i \cap a Y_j = 0$ for distinct $i, j \in I$. Assume $a \geq 2$. The sets Y_i are called the
subbases of A, or \mathcal{K} (this is justified by 3.1.3). We call A, or \mathcal{X}, normal if $Y_i = Y_j$ or $Y_i \cap Y_j = 0$ for all $i, j \in I$; widely distributed if $Y_i \cap Y_j = 0$ for all distinct $i, j \in I$; compressed if $Y_i = Y_j$ for all $i, j \in I$. The class of all normal, widely distributed, or compressed Gw_{a}^κ is denoted respectively by $\text{Gw}_{a}^{\kappa_{n}}$, $\text{Gw}_{a}^{\kappa_{d}}$ or $\text{Gw}_{a}^{\kappa_{m}}$. If $\mathcal{K} \subseteq \text{Gw}_{a}$ and κ is a cardinal, we denote by \mathcal{K}_{κ} the class of all $\mathcal{X} \in \mathcal{K}$ all of whose subbases have power κ, by $\mathcal{K}_{<\kappa}$ the class of all those whose subbases have power $<\kappa$, and by $\mathcal{K}_{\kappa}^{\omega}$ all $\mathcal{X} \in \mathcal{K}$ with all subbases infinite.

DEFINITION 3.1.6. If \mathcal{K} is a class of cylindric algebras, we let $\mathcal{RIK} = \{ \mathcal{K}_{b} : b \in \mathcal{K}, b \in B \}$ (cf. 2.2.1).

REMARKS 3.1.7. Having defined our basic notions, we summarize the main results established in this section. The inclusions holding among the various classes of set algebras are indicated in Figure 3.1.8 for $a > 0$; if we consider the classes of isomorphic images of the various set algebras, then the diagram collapses as indicated in Figure 3.1.9. The inclusions in each case are in general proper inclusions. In case $2 \leq a < \omega$ the classes W_{a} and C_{a} coincide, and so do G_{a} and G_{a}; furthermore, under this assumption each member of any of these classes is regular. I_{a} coincides with the class of isomorphs of subdirect products of G_{a}'s for $a \geq 2$. I_{a} and W_{a} are similarly related. Every G_{a} is isomorphic to a regular G_{a} and to a subdirect product of C_{a}'s. The main result of the section is that $\text{I}_{a} = \text{HSP}(\text{C}_{a}^{\omega} \odot \text{L}_{a})$ for $a \geq \omega$ (3.1.123). The situation with respect to algebraic operators on our classes is summarized in Figures 3.1.10 - 3.1.13.

![Figure 3.1.8](image)

FIGURE 3.1.8

$(a > 0)$
FIGURE 3.1.9
\((\alpha>0)\)

\[\begin{align*}
 \text{ICr}_{\alpha} & \\
 \text{IR(}\text{Cr}_{\alpha}) & \\
 \text{IG}_{\alpha} = \text{IG}_{\alpha}^{\text{reg}} = \text{IG}_{\alpha}^{\text{reg}} = \text{IG}_{\alpha}^{\text{reg}} = \text{IG}_{\alpha}^{\text{reg}} \\
 \text{IC}_{\alpha} & \\
 \text{IC}_{\alpha}^{\text{reg}} & \\
 \text{IW}_{\alpha} = \text{IW}_{\alpha}^{\text{reg}} \\
\end{align*} \]

FIGURE 3.1.10
\((\alpha \geq \omega)\)

\[\begin{align*}
 \text{IG}_{\alpha}^{\text{reg}} = \text{IG}_{\alpha} = \text{IG}_{\alpha} = \text{IG}_{\alpha}^{\text{reg}} = \text{HG}_{\alpha} = \text{HG}_{\alpha} = \text{HG}_{\alpha}^{\text{reg}} = \text{HG}_{\alpha}^{\text{reg}} \\
 \text{HC}_{\alpha} & \\
 \text{IC}_{\alpha} & \\
 \text{IC}_{\alpha}^{\text{reg}} & \\
 \text{IW}_{\alpha} & \\
\end{align*} \]
\[
H_\omega Cs_\alpha = I_\omega Cs_\alpha = H_\omega Cs_\alpha^{\text{sep}} = H_\omega Ws_\alpha
\]

\[
I_\omega Cs_\alpha^{\text{sep}}
\]

\[
I_\alpha Ws_\alpha
\]

FIGURE 3.1.11

\((\alpha \geq \omega)\)

\[
I Gws_\alpha = HSP Gws_\alpha = I Gs_\alpha = HSP Gs_\alpha = SPCs_\alpha = SP Ws_\alpha
\]

\[
HPCs_\alpha
\]

\[
HCS_\alpha
\]

\[
HCs_\alpha^{\text{sep}}
\]

\[
HWS_\alpha
\]

\[
IWS_\alpha
\]

FIGURE 3.1.12

\((\alpha \geq 2)\)
H_\omega W_\alpha = H_\omega C_\alpha = H_\omega C_\alpha^{\omega \alpha} = I_\omega C_\alpha = HP_\alpha W_\alpha = HP_\alpha C_\alpha^{\omega \alpha} = HSP_\alpha G_\alpha

I_\omega C_\alpha^{\omega \alpha} \quad P_\alpha C_\alpha^{\omega \alpha} \quad I_\omega W_\alpha \quad P_\alpha W_\alpha

FIGURE 3.1.13
(\alpha \geq \omega)

Now we begin the proper mathematical discussion in this section by giving, in 3.1.14 - 3.1.29, degenerate cases and simple properties of the notions introduced. Recall that we omit proofs which are trivial.

COROLLARY 3.1.14. Let \mathcal{X} be a \text{Crs}_\alpha with base \text{U} and unit element \text{V}.

(i) \text{V = 0 iff } |A| = 1.
(ii) If \text{V = } \{0\}, \text{ then } |A| = 2.
(iii) If \alpha = 0, \text{ then } V \subseteq \{0\}.
(iv) If \alpha > 0 and \text{U = 0}, \text{ then } V = 0.

Because of this corollary we will frequently make such assumptions as \alpha > 0, \text{U \neq 0}, or \text{V \neq 0}.

COROLLARY 3.1.15. If \alpha <\omega, \text{U is any set, and } p \in ^\alpha \text{U}, \text{ then } ^\alpha \text{U(p)} = ^\alpha \text{U}. \text{ Hence for } \alpha <\omega \text{ we have } G_\alpha = \text{Gw}_\alpha, \text{ if } 0 <\alpha <\omega \text{ we have } C_\alpha = W_\alpha U(\mathcal{X}_\alpha), \text{ where } \mathcal{X}_\alpha \text{ is the unique } C_\alpha \text{ with universe 1, and finally } C_0 = W_0.

COROLLARY 3.1.16. Let \alpha \geq 2. If \mathcal{X} is a \text{Gw}_\alpha with every subbase having only one element, then \mathcal{X} is a discrete \text{Gw}_\alpha.

COROLLARY 3.1.17. \text{Crs}_1 = \text{Gw}_1 = \text{G}_1 = \text{C}_1 = W_1 U(\mathcal{B}), \text{ where } \mathcal{B} \text{ is the } \text{Crs}_1 \text{ with universe 1}; \text{Crs}_0 = \text{Gw}_0 = \text{G}_0 = \{\mathcal{X}_1, \mathcal{X}_2\} \text{ and } \text{C}_0 = \text{W}_0 = \{\mathcal{X}_1, \mathcal{X}_2\}, \text{ where } \mathcal{X}_1 \text{ and } \mathcal{X}_2 \text{ are the unique } \text{Crs}_0 \text{ with universes 1 and 2 respectively. Further, every } \text{Crs}_0 \text{ is full, and the base of any } \text{Crs}_0 \text{ is 0}.

COROLLARY 3.1.18. If \mathcal{X} is a \text{C}_i \text{ or } \text{W}_i, \text{ } x \in A, \text{ and } x \neq 0, \text{ then } c_0 x = 1.

By 2.3.14, Corollary 3.1.18 simply expresses that any \text{C}_i \text{ or } \text{W}_i \text{ with more than one
element is simple. In fact, this is true for any finite dimension. The proof is trivial; the result is stated formally in 3.1.70 below.

COROLLARY 3.1.19. (i) For any \(a \), \(C_s a \subseteq G_s a \subseteq W_s a \subseteq A_a \).
(ii) For \(a \epsilon 1 \), \(C_r a \subseteq C_a \).
(iii) For \(a \epsilon 2 \), \(C_r a \not\subseteq C_a \).

PROOF. Both (i) and (ii) are trivial. To establish (iii), we construct \(\forall \in C_r a \sim C_a \) for \(a \epsilon 2 \) by choosing any set \(U \) with \(|U| > 1 \), taking \(V = aU - D_{01}^W \), where \(W = aU \), and letting \(\forall \) be the full \(C_r a \) with unit element \(V \) (3.1.2(i)). We have \(D_{01}^V = 0 \), so that \(V = D_{00}^V \neq C_{11}^W (D_{00}^V \cap D_{00}^W) = 0 \). Thus \(\forall \) fails to satisfy axiom (C_9), whence \(\forall \not\subseteq C_a \), and the proof is complete.

COROLLARY 3.1.20. If \(a \epsilon 2 \), then \(C_s a \subseteq G_s a \) and \(R C_s a \subseteq R C_s a = S R C_s a \); furthermore, \(C_s a \subseteq G_s a \) if \(a \epsilon 2 \) and \(C_s a = G_s a \) if \(a \epsilon 2 \).

It is also known that \(G_s a \subseteq R C_s a \) for \(a \epsilon 2 \); see [HMT81] 2.9.1-14. Also, it is known that although \(R C_s a = C_s a \) and \(R C_s a \subseteq C_s a \) for \(a \epsilon 1 \), see Henkin, Resek [75'] and [AN81]. See also 3.1.33 and 5.5.7.

COROLLARY 3.1.21. If \(a \epsilon 2 \), then \(C_s a \subseteq G_s a \subseteq R C_s a \) and \(C_s a \subseteq G_s a \subseteq G_s a \).

THEOREM 3.1.22. Let \(\forall \) be a \(G_s a \) with unit element \(U \epsilon \{ a U_i \} \), where \(\phi_i (a) \neq \phi_j (a) \) for all distinct \(i \neq j \). Assume that \(a U_i (a) \epsilon A \) for all \(i \epsilon I \), and \(a \neq 1 \).
Then for any \(X \epsilon A \) the following conditions are equivalent:
(i) \(X = a U_i (a) \) for some \(i \epsilon I \);
(ii) \(X \) is a minimal element of \(\forall \) (under \(\subseteq \)) such that \(X \neq 0 \) and \(\Delta X = 0 \).

PROOF. (i) \(\Rightarrow \) (ii). Clearly for any \(i \epsilon I \) we have \(0 \neq aU_i (a) \) and \(\Delta a U_i (a) = 0 \). Now suppose that \(0 \neq Y \subseteq aU_i (a) \) and \(\Delta Y = 0 \). Fix \(y \epsilon Y \), and let \(x \epsilon aU_i (a) \) be arbitrary. There is a finite \(\Gamma \subseteq x \) such that \((a \sim x) \) \(y \subseteq x \). Thus \(x \epsilon C_{(a)} Y = Y \) and hence \(Y = aU_i (a) \).

(ii) \(\Rightarrow \) (i). Assume (ii), and choose \(i \epsilon I \) such that \(X \eta aU_i (a) \neq 0 \). Since \(\Delta a U_i (a) = 0 \), we have \(\Delta (X \eta aU_i (a)) = 0 \) by 1.6.6. Hence by (ii), \(X = X \eta aU_i (a) \) while by the implication (i) \(\Rightarrow \) (ii) already established, \(aU_i (a) = X \eta aU_i (a) \). Thus (i) holds.

Now we discuss regular set algebras. For the classes \(C_s a \), \(W_s a \) and \(G_s a \) the definition assumes a simpler form.

COROLLARY 3.1.23. Let \(\forall \) be a \(C_s a \) with base \(U \), and let \(X \epsilon A \). Then the following conditions are equivalent:
(i) \(X \) is regular;
(ii) For all \(f \epsilon X \) and all \(g \epsilon aU \), if \(\Delta X f \leq g \) then \(g \epsilon X \).

PROOF. (i) \(\Rightarrow \) (ii): trivial. (i) \(\Rightarrow \) (ii). Assume (i) and the hypotheses of (ii). If \(0 \epsilon \Delta X \), the desired conclusion \(g \epsilon X \) obvious. Suppose therefore \(0 \epsilon \Delta X \). Then \(f_{g0}^X \epsilon X \) since \(0 \epsilon \Delta X \). Since \(\Delta \epsilon X \) \(f_{g0}^X \leq g \), by the definition of regularity we get \(g \epsilon X \).
The next two corollaries are proved in the same way as 3.1.23.

COROLLARY 3.1.24. Let \(\mathcal{A} \) be a \(W_{s_a} \) with unit element \(aU^{(p)} \), and let \(X \in A \). Then the following conditions are equivalent:

(i) \(X \) is regular;

(ii) For all \(f \in X \) and all \(g \in aU^{(p)} \), if \(\Delta X \cap f \subseteq g \) then \(g \in X \).

See also 3.1.26.

COROLLARY 3.1.25. Let \(\mathcal{A} \) be a \(G_{s_a} \), with unit element \(\bigcup_{i \in I} Y_i \), where \(Y_i \cap Y_j = 0 \) for \(i \neq j \), and let \(X \in A \). Then the following conditions are equivalent:

(i) \(X \) is regular;

(ii) For all \(i \in I \), all \(f \in X \cap \rho Y_i \), and all \(g \in \rho Y_i \), if \(\Delta X \cap f \subseteq g \) then \(g \in X \).

No analogous simplification of the notion of regularity for arbitrary \(G_{s_a} \)'s is known. Weak cylindric set algebras are always regular:

COROLLARY 3.1.26. \(W_{s_a}^{rs} = W_{s_a} \). Thus if \(\mathcal{A} \) is a \(W_{s_a} \) with unit element \(aU^{(p)} \), \(f \in X \cap A \), \(g \in aU^{(p)} \), and \(\Delta X \cap f \subseteq g \), then \(g \in X \).

PROOF. It suffices by 3.1.24 to prove the second statement; assume its hypothesis. Since \(f, g \in aU^{(p)} \), there is a finite \(\Gamma \subseteq \alpha \) with \((\alpha \cap \rho \Gamma) \cap f \subseteq g \). Hence \(\alpha \cap (\Gamma \cap \rho \Delta X) \cap f \subseteq g \), so that \(g \in c_{\lambda \cap \Gamma \cap \rho \Delta X} X \).

COROLLARY 3.1.27. If \(\alpha < \omega \), then \(C_{s_a} = C_{s_a}^{rs} \), \(W_{s_a} = W_{s_a}^{rs} \), \(G_{s_a} = G_{s_a}^{rs} \), and \(G_{\mathcal{A}_{s_a}} = G_{\mathcal{A}_{s_a}}^{rs} \).

COROLLARY 3.1.28. If \(\alpha \geq \omega \), then \(W_{s_a}^{rs} \cap C_{s_a}^{rs} \subseteq C_{s_a}^{rs} \) and \(C_{s_a}^{rs} \subseteq C_{s_a}^{rs} \subseteq G_{\mathcal{A}_{s_a}}^{rs} \).

PROOF. To produce a member of \(G_{s_a} \), let \(U \) and \(V \) be two disjoint sets each with at least two elements, and let \(p \in aU, q \in aV \) be arbitrary. Let \(\mathcal{A} \) be the full \(G_{s_a} \) with unit element \(aU^{(p)} \cap aV^{(q)} \). Then it is easily checked, along the lines of the proof of 3.1.26, that \(\mathcal{A} \in G_{s_a}^{rs} \), while clearly \(\mathcal{A} \notin W_{s_a}^{rs} \). If we let \(\mathcal{B} \) be the two--element \(C_{s_a} \) with unit element \(\{p\} \), we see that \(\mathcal{B} \in C_{s_a}^{rs} \cap G_{s_a} \) (provided that \(p \) has more than one element in its range). Finally, if \(U \) and \(V \) are as above and \(C \) is the minimal subalgebra of the full \(G_{s_a} \) with unit element \(aU \cup aV \), then \(C \in G_{s_a}^{rs} \).

COROLLARY 3.1.29. For \(\alpha \geq \omega \) we have \(C_{s_a}^{rs} \subseteq C_{s_a} \), \(G_{s_a}^{rs} \subseteq G_{s_a} \), and \(G_{\mathcal{A}_{s_a}}^{rs} \subseteq G_{\mathcal{A}_{s_a}} \).

PROOF. By 3.1.21 it suffices to exhibit a \(C_{s_a} \) which is not regular. Let \(\mathcal{A} \) be the full \(C_{s_a} \) with base \(2 \), and let \(p = (0, < \omega) \). Then \(\otimes^2(p) \in A \) and \(\Delta_0^{\otimes^2(p)} = 0 \). Hence \(\otimes^2(p) \) is not regular, since in a regular \(C_{s_a} \) the only elements \(X \) such that \(\Delta X = 0 \) are the zero element and the unit element.

REMARK 3.1.30. Analyzing the proof just given further, we see that \(\mathcal{A} \) is a \(C_{s_a} \).
which is not even isomorphic to a $\text{C}_{s_{\alpha}}^{\varnothing}$. From 3.1.107 it follows that any simple $\text{C}_{s_{\alpha}}$ is isomorphic to a $\text{C}_{s_{\alpha}}^{\varnothing}$; see also 3.1.70. In the other direction, Andréka and Némethi have shown that for $\alpha \geq \omega$, every non-minimal locally finite dimensional regular $\text{C}_{s_{\alpha}}$ is isomorphic to a non-regular $\text{C}_{s_{\alpha}}$; see [HMT81] 3.10.

We noted in 3.1.20 that every $\text{C}_{s_{\alpha}}$ is a subalgebra of a relativization of a $\text{C}_{s_{\alpha}}$. Thus the unit element of any $\text{C}_{s_{\alpha}}$ is an element of a $\text{C}_{s_{\alpha}}$ and vice versa (by 3.1.20). The next theorem gives an elementary characterization of unit elements of $\text{G}_{s_{\alpha}}$'s, $\text{G}_{s_{\alpha}}$'s, and $\text{C}_{s_{\alpha}}$'s, as elements of a larger $\text{C}_{s_{\alpha}}$ for certain α; this theorem was mentioned in 2.2.11.

THEOREM 3.1.31. Let \mathcal{X} be a $\text{C}_{s_{\alpha}}$ with base U, let $V \in \mathcal{A}$, and let \[F = \{X \in A: s_{\alpha}^{X}V_{s_{\alpha}^{X}} = X \text{ for all } \kappa, \lambda < \alpha\}. \]

Then we have:

1. For $\alpha \leq 1$, $F = A$.
2. For $\alpha = 2$, V is a Cartesian space (i.e., the unit element of a $\text{C}_{s_{2}}$) iff $V \in F$; V is equal to $^F U$ iff $V \in F$ and $c_{V}V = 1$.
3. For $3 \leq \alpha < \omega$, V is a unit element of a $\text{G}_{s_{\alpha}}$ iff $V \in F$; V is a unit element of a $\text{G}_{s_{\alpha}}$ with base U iff $V \in F$ and $c_{U}V = 1$.

PROOF. Condition (1) is obvious. Now we show that if V is a unit element of a $\text{G}_{s_{\alpha}}$, then $V \in F$, provided that $\alpha \geq 3$. This will establish parts of (iii) and (iv). Say \[V = \bigcup_{i \in I} a_{i}W_{i}^{(p)} \text{, where } a_{i}W_{i}^{(p)} = 0 \text{ for any } i, j \in I \text{ with } i \neq j. \]

Given any $\kappa, \lambda < \alpha$, we clearly have $V \subseteq s_{\alpha}^{V}V_{s_{\alpha}^{V}}V$. Now suppose $f \in s_{\alpha}^{V}V_{s_{\alpha}^{V}}V$; thus, say, \[f_{\mu} = a_{i}W_{i}^{(p)} \text{ and } f_{\mu} = a_{j}W_{j}^{(p)}. \]

Pick $\mu \in \alpha \setminus \{\kappa, \lambda\}$ and notice that $f_{\mu} \in W_{i}W_{j}$. There is a finite $\Gamma \subseteq \alpha$ such that \[(\alpha \setminus \Gamma) \uparrow = (\alpha \setminus \Gamma) \uparrow f_{\mu} \uparrow = (\alpha \setminus \Gamma) \uparrow p_{\mu} \].

If therefore we define g by stipulating that \[(\nu \in \Gamma), \text{ and } g_{\nu} = f_{\mu} \text{ for every } \nu \in \alpha \setminus \Gamma \text{, we get } g \in a_{i}W_{i}^{(p)}a_{j}W_{j}^{(p)}. \]

Consequently $i = j$ and $f \in a_{i}W_{i}^{(p)}V$. Hence $V = s_{\alpha}^{V}V_{s_{\alpha}^{V}}V$, and we conclude that $V \in F$, as desired.

Next we show that for $\alpha \geq 2$, every $V \in F$ is the unit element of a $\text{G}_{s_{\alpha}}$. (This portion of the proof is due to Andréka and Némethi.) This will finish the proof of (iv) and prove parts of (ii) and (iii). For each $f \in V$ let \[Y_{f} = \{u \in U: f_{u}^{0} \in V\}. \]

The following facts about Y_{f} show that V is the unit element of a $\text{G}_{s_{\alpha}}$.

1. If $f \in V$, then $f \in a_{\alpha}Y_{f}$.

For, if $\kappa < \alpha$, then $f \in V \subseteq s_{\kappa}^{V}V$, so $f_{\kappa}^{0} \in V$ and hence $f_{\kappa} \in Y_{f}$. Thus $f \in a_{\alpha}Y_{f}$ and (1) holds.

Next, clearly:

2. If $f \in V$ and $u \in Y_{f}$ then $Y_{f} = Y_{f}(U_{u})$.

3. If $f \in V$, $u \in Y_{f}$, and $\kappa < \alpha$, then $f_{\kappa}^{0} \in V$.

For, we may assume that $\kappa \neq 0$. Then $f^{\kappa}_{<\kappa} \in V \subset \mathcal{S}_{0}^{\kappa} V$, so $f^{\kappa}_{<\kappa} \in V$. Also, $f \in V \subset \mathcal{S}_{0}^{\kappa} V$, whence $f^{\kappa}_{<\kappa} \in V$. Hence $f^{\kappa}_{<\kappa} \subset V \subset \mathcal{S}_{0}^{\kappa} V = V$, as desired.

(4) If $f \in V$, $u \in Y_{F}$ and $\kappa < \alpha$, then $Y_{f} \subset Y_{f^{\kappa}_{<\kappa}}$.

For, by (2) we may assume $\kappa \neq 0$. Assume the hypothesis of (4), and consider any $v \in Y_{f}$. We have $f^{\kappa}_{<\kappa} \subset V \subset \mathcal{S}_{0}^{\kappa} V$, so $f^{\kappa}_{<\kappa} \in V$. Hence $f^{\kappa}_{<\kappa} \subset \mathcal{S}_{0}^{\kappa} V \subset \mathcal{S}_{0}^{\kappa} V = V$. Thus $v \in Y_{f^{\kappa}_{<\kappa}}$, as desired.

Now we claim:

(5) If $f \in V$ and $g \in {\mathcal{Y}}_{f}^{\kappa_{0}}$ then $g \in V$ and $Y_{f} \subset Y_{g}$.

For, let $f \in V$. For each $g \in {\mathcal{Y}}_{f}^{\kappa_{0}}$ let $n_{g} = \{g \in \kappa^{\kappa} : f \neq g\}$. We check the conclusion of (5) by induction on n_{g}. If $n_{g} = 0$, then $f = g$ and the conclusion is trivial. Assume inductively that $n_{g} > 0$. Fix $\kappa < \alpha$ such that $f \neq g_{\kappa}$. Applying the inductive hypothesis to g_{κ}^{κ} we infer that $g_{\kappa}^{\kappa} \in V$ and $Y_{f} \subset Y_{g_{\kappa}^{\kappa}}$. Now $g_{\kappa} \in Y_{f} \subset Y_{g_{\kappa}^{\kappa}}$ and $g_{\kappa}^{\kappa} \in V$, so by (3), $g \in V$. Also, $g_{\kappa} \in V$ and $g \in Y_{g_{\kappa}^{\kappa}}$, so by (4) $Y_{f} \subset Y_{g_{\kappa}^{\kappa}} \subset Y_{g}$. This finishes the inductive proof of (5).

Next,

(6) If $f, g \in V$ and $\mathcal{Y}_{f}^{\kappa_{0}} \subset \mathcal{Y}_{g}^{\kappa_{0}}$, then $\mathcal{Y}_{f}^{\kappa_{0}} \subset \mathcal{Y}_{g}^{\kappa_{0}}$.

In fact, $f \in \mathcal{Y}_{f}^{\kappa_{0}} \subset \mathcal{Y}_{g}^{\kappa_{0}}$, so by (5), $Y_{g} \subset Y_{f}$ whence $\mathcal{Y}_{f}^{\kappa_{0}} \subset \mathcal{Y}_{g}^{\kappa_{0}}$.

(7) If $f, g \in V$ and $\mathcal{Y}_{f}^{\kappa_{0}} \cap \mathcal{Y}_{g}^{\kappa_{0}} \neq 0$, then $\mathcal{Y}_{f}^{\kappa_{0}} \cap \mathcal{Y}_{g}^{\kappa_{0}} = 0$.

Indeed, let $h \in \mathcal{Y}_{f}^{\kappa_{0}} \cap \mathcal{Y}_{g}^{\kappa_{0}}$. Then by (5), $h \in V$ and $Y_{f} \subset Y_{h}$, hence $\mathcal{Y}_{f}^{\kappa_{0}} \cap \mathcal{Y}_{g}^{\kappa_{0}} \subset \mathcal{Y}_{h}^{\kappa_{0}}$. Therefore by (6), $\mathcal{Y}_{f}^{\kappa_{0}} \cap \mathcal{Y}_{g}^{\kappa_{0}} = 0$.

Now (1), (5) and (7) show that V is the unit element of a $\mathcal{G}_{\mathcal{S}}$, as desired.

Next note that for $2 \leq \alpha < \omega$, $\mathcal{S}_{\alpha^{\omega-1}} V = 1$ is equivalent to $\bigcup_{\mathcal{P} \in V} R_{\mathcal{P}} U \subset V$ if $V \in F$. This finishes the proof of (iii) and proves another part of (ii).

It remains only to take $\alpha = 2$ and prove the first part of (ii). The direction \Rightarrow is obvious. Now suppose $V \in F$. Then (1)–(7) above still apply. Note that $\mathcal{Y}_{f}^{\kappa_{0}} = \mathcal{Y}_{f}^{\kappa_{0}}$ for all $f \in V$. Furthermore, if $g, f \in V$ then $f^{\kappa} \in \mathcal{S}_{0}^{\kappa} V \subset \mathcal{S}_{0}^{\kappa} V = V$, and consequently $g \in Y_{f}$. By (1), $Y_{f} \neq Y_{g}$ and hence $\mathcal{Y}_{f} \cap \mathcal{Y}_{g} \neq 0$. Therefore $\mathcal{Y}_{f} = \mathcal{Y}_{g}$ by (7). Hence V is a Cartesian space, finishing the proof.

REMARKS 3.1.32. It can be shown that there is no similar abstract characterization of those elements of a \mathcal{S}_{α} which are unit elements of a (1) $\mathcal{G}_{\mathcal{S}}$ if $\alpha = 2$, (2) $\mathcal{G}_{\mathcal{S}}$ if $\alpha < \omega$, (3) $\mathcal{G}_{\mathcal{S}}$ if $\alpha < \omega$, (4) $\mathcal{G}_{\mathcal{S}}$ if $\alpha < \omega$. For (1) see [HMT81] 2.3. For (2), (3) and (4) see [AN81] 0.6 and 0.7. There is still no such characterization in cases (1), (2), (4) even if we consider elements of a full $\mathcal{G}_{\mathcal{S}}$, but there is one for (3):

For $\alpha < \omega$, an element V of a \mathcal{S}_{α} is a weak Cartesian space iff $V \neq 0$, $\mathcal{S}_{0}^{\kappa} \subset \mathcal{S}_{0}^{\kappa} V \subset \mathcal{S}_{0}^{\kappa} V$ for all $\kappa < \alpha$, and there is a $Y \in \mathcal{S}_{\alpha}$ such that $V \subset Y$. There is an abstract characterization of the unit elements X of \mathcal{S}_{α}'s which are elements of a
given \mathcal{C}_α, for $\alpha<\omega$:

$$X = \bigcap_{\alpha<\omega} \mathcal{C}_{(\alpha+n)}(d_n\cdot nX).$$

This is easily checked; it was noticed by Andréka and Némethi.

See also 3.1.34 and [AN81] 0.8.

REMARKS 3.1.33. Recall from 3.1.20 that for $\alpha \geq 2$, $\mathcal{C}_\alpha = \mathcal{SRC}_\alpha$. It is known that $\mathcal{C}_\alpha \neq \mathcal{RCC}_\alpha$ for every $\alpha \geq 1$; see [AN81] 2.3 for the case $\alpha = 2$; a simple modification works for other α — see 5.5.7. In [HMT81] 2.9–2.14 it is shown that $\mathcal{GWS}_\alpha \subseteq \mathcal{RCC}_\alpha$ for $\alpha \geq 2$, by a lengthy argument.

The following result of [AN81] 0.3 shows that \mathcal{GWS}'s play a distinguished role among all \mathcal{C}_α's.

THEOREM 3.1.34. Let V be a set of α–termed sequences. Then the following conditions are equivalent:

(i) V is the unit element of a \mathcal{GWS}_α;

(ii) the full \mathcal{C}_α with unit element V is a \mathcal{CA}_α;

(iii) every \mathcal{C}_α with unit element V is a \mathcal{CA}_α.

PROOF. Clearly (i) \Rightarrow (iii) \Rightarrow (ii). Assume (ii), let \mathcal{U} be the full \mathcal{C}_α with unit element V, and let U be the base of V. Let \mathcal{B} be the full \mathcal{C}_α with base U. Thus $V \in B$.

(1) If $\kappa, \lambda < \alpha$, then $V \subseteq \mathcal{S}_V^\alpha$ in \mathcal{B}.

This is clear from the definition of the operations in \mathcal{U}, since $c_\alpha e_{\alpha\lambda} = 1$ in \mathcal{U} because \mathcal{U} is a \mathcal{CA}_α. Now we consider two cases.

Case 1. $\alpha \geq 3$. Then by 3.1.31(iv) and (1), to show (i) it suffices to show that $\mathcal{S}_V^\alpha \mathcal{V}_\alpha \subseteq V$ for all distinct $\kappa, \lambda < \alpha$. So, suppose $\kappa, \lambda < \alpha$, $\alpha \neq \lambda$, and $q \in \mathcal{S}_V^\alpha \mathcal{V}_\alpha$. Thus $q^\alpha_{\lambda} \in V$ and $q^\alpha_{\mu} \in V$. Now choose $\mu \in \alpha$—$\{\kappa, \lambda\}$. Since $q^\alpha_{\lambda} \in V \subseteq \mathcal{S}_V^\alpha$ by (1), we have $q^\alpha_{\mu} \in V$.

Similarly $(q^n_{\mu}, q^n_{\lambda}) \in V$. Thus $q^n_{\mu} \in \mathcal{S}_V^{\alpha_n}$ and $q^n_{\lambda} \in \mathcal{C}_V^{\alpha_n}$. So $q^n_{\mu} \in \mathcal{C}_V^{\alpha_n} \cap \mathcal{S}_V^{\alpha_n}$. Therefore $q^n_{\mu} \cap q^n_{\lambda} \in \mathcal{C}_V^{\alpha_n}$. Clearly then $q = p \in V$, as desired.

Case 2. $\alpha \leq 2$. If $\alpha = 1$, then $\mathcal{C}_\alpha = \mathcal{GWS}_\alpha$ by 3.1.17. So assume that $\alpha = 2$. It suffices to show that V is an equivalence relation. Suppose $(u,v) \in V$; we show that $(v,u) \in V$. By (1) we have $(u,v) \in V$ and $(v,u) \in V$. Hence $(u,v) \in \mathcal{C}_2 \mathcal{V}_2((u,v))$, so $(u,v) \in \mathcal{C}_2 \mathcal{C}_2((u,v))$. It follows that $(v,u) \in V$. Finally, suppose that $(u,v) \in V$ and $(v,w) \in V$. We have $(w,v) \in V$ by what was just proved, so $(u,v) \in \mathcal{C}_2 \mathcal{C}_2((w,v))$, where $(w,v) \in V$ by (1) again. Hence $(u,v) \in \mathcal{C}_2 \mathcal{C}_2((w,v))$, so $(u,w) \in V$, as desired.

We give one more result on relativization, from [AN81] 2.2(i).
THEOREM 3.1.35. Suppose \(\mathcal{U} \in \text{Cr}_{a}^{\mathfrak{V}} \) and \(a \in \mathcal{U} \). Then \(\mathcal{B}_{a} \mathcal{U} \) is regular. (Cf. 2.2.1)

PROOF. Assume the hypothesis, and let \(\mathcal{B} = \mathcal{B}_{a} \mathcal{U} \) for brevity. Let \(b \in B \); we are to show that \(b \) is regular. It is easy to see that \(\Delta_{a}^\mathcal{U} b = \Delta_{a}^\mathcal{B} b \); cf. the proof of 2.2.12.

Suppose \(p \in b, q \in a, \) and \((1 \cup \Delta b) 1 \leq q. \) By the regularity of \(b \) in \(\mathcal{U} \) we get \(q \in b \), as desired.

Change of Base

Now in 3.1.36—3.1.54 we consider changing the base of a set algebra: Given a set algebra \(\mathcal{U} \) with base \(U \) and given a set \(W \), when is \(\mathcal{U} \) isomorphic to a set algebra with base \(W \)? Some results along this line will also be established later in this section after more machinery, in particular the ultraproduct construction, is available; see 3.1.105 and 3.1.112—3.1.115.

The simplest way of changing a base is to extend a one-one function from \(U \) onto \(W \). This gives algebraic versions of the trivial logical theorem that isomorphism implies elementary equivalence. The algebraic theorem is also trivial:

THEOREM 3.1.36. Let \(\mathcal{U} \) be a \(\text{Cr}_{a} \) with base \(U \) and unit element \(V \). Suppose \(f \) is a one-one function from \(U \) onto a set \(W \). For any \(X \in A \) let \(FX = \{ y \in ^{a}W : f^{-1} y \in X \} \). Then \(F \) is an isomorphism from \(\mathcal{U} \) onto a \(\text{Cr}_{a} W \) with base \(W \) and unit element \(FV \).

Furthermore:

(i) If \(\mathcal{U} \) is a \(\text{CS}_{a} \) then so is \(\mathcal{B} \).

(ii) If \(\mathcal{U} \) is a \(\text{WS}_{a} \) with unit element \(\alpha_{U}^{p} \), then \(\mathcal{B} \) is a \(\text{WS}_{a} \) with unit element \(\alpha_{W}^{f \alpha_{p}} \).

(iii) If \(\mathcal{U} \) is a \(\text{GS}_{a} \) with unit element \(\bigcup_{i \in I} \alpha_{S_{i}^{p}} \), where \(S_{i}^{p} S_{j}^{p} = 0 \) for \(i \neq j \), then \(\mathcal{B} \) is a \(\text{GS}_{a} \) with unit element \(\bigcup_{i \in I} \alpha_{f S_{i}^{p}} \), where \(f S_{i}^{p} f S_{j}^{p} = 0 \) for \(i \neq j \).

(iv) If \(\mathcal{U} \) is a \(\text{GWS}_{a} \) with unit element \(\bigcup_{i \in I} \alpha_{S_{i}^{p}} f_{j}^{p} \) where \(\alpha_{S_{i}^{p}} f_{j}^{p} = 0 \) for \(i \neq j \), then \(\mathcal{B} \) is a \(\text{GWS}_{a} \) with unit element \(\bigcup_{i \in I} \alpha_{f S_{i}^{p}} f_{j}^{p} \), where \(\alpha_{f S_{i}^{p}} f_{j}^{p} = 0 \) for \(i \neq j \).

Theorem 3.1.36 leads to the following definition.

DEFINITION 3.1.37. (i) Suppose \(f \) is a one-one function from a set \(U \) onto a set \(W \), and \(a \) is an ordinal. Then for any \(X \in a U \) we set

\[
(\tilde{f}) X = \tilde{f} X = \{ y \in ^{a}W : f^{-1} y \in X \}.
\]

(ii) Let \(\mathcal{U} \) and \(\mathcal{B} \) be \(\text{Cr}_{a} \)'s with bases \(U \) and \(W \) respectively. We say that \(\mathcal{U} \) and \(\mathcal{B} \) are base-isomorphic if there is a one-one function \(f \) mapping \(U \) onto \(W \) such that \(A \tilde{f} \) is an isomorphism from \(\mathcal{U} \) onto \(\mathcal{B} \).

REMARKS 3.1.38. For each \(a \geq 1 \) there are isomorphic \(\text{CS}_{a}^{\mathfrak{V}} \text{L}_{a} \)'s which are not base-isomorphic. In fact, once can take two infinite sets \(U, W \) with \(|U| = |W| \), and let \(\mathcal{U} \) and \(\mathcal{B} \) be the minimal subalgebras of \(\mathfrak{V} U \) and \(\mathfrak{V} W \) respectively. However, isomorphism and base isomorphism are closely connected if one of the bases is
finite; we discuss this case in these remarks. First we note the following algebraic version of the logical result according to which any two elementarily equivalent finite structures are isomorphic; it is due to Monk and is found in [HMT81] 3.6:

(1) If \(\mathfrak{A}, \mathfrak{B} \in \text{Cs}_n \), \(\mathfrak{A} \models \mathfrak{B} \), and the base of either \(\mathfrak{A} \) or \(\mathfrak{B} \) has power \(< \alpha \omega \), then \(\mathfrak{A} \) and \(\mathfrak{B} \) are base-isomorphic.

For \(\alpha \geq \omega \), in (1) the regularity assumption cannot be dropped, \(\text{Df}_\alpha \) cannot be replaced by \(\text{Dc}_\alpha \), \(\text{Cs}_\alpha \) cannot be replaced by \(\text{Gs}_\alpha \), \(\text{Wc}_\alpha \) or \(\text{Wss}_\alpha \), and the condition that one of the bases is finite cannot be removed. These facts are due to Andrèka and Németi; for the proofs, see [HMT81] 3.7, 3.10, 3.11 and [AN81] 3.5.

Next we show that for each \(\alpha \geq 3 \) there is a \(\text{Cs}_\alpha \) with an infinite base not isomorphic to a \(\text{Cs}_\alpha \) with a finite base. First suppose that \(3 \leq \alpha < \omega \). Then, we claim, the following equation \(\varepsilon \) holds identically in every \(\text{Cs}_\alpha \) with a finite base, but fails in some finite \(\text{Cs}_\alpha \) with an infinite base (this equation is due to Andrèka and Németi, and replaces a longer one originally used for this purpose):

\[
c_{(a-1)}X + c_{(a-2)}X d_0 + c_{(a-2)}X s_1^2 c_{(a-2)}X - s_1^1 c_{(a-2)}X = 1.
\]

To show this, let \(\mathfrak{A} \) be a \(\text{Cs}_\alpha \) with base \(U \) in which \(\varepsilon \) does not hold identically; we show that \(U \) is infinite; this will establish that \(\varepsilon \) holds in every \(\text{Cs}_\alpha \) with a finite base. Thus there is an \(X \in A \) such that the following conditions hold:

(2) \(c_{(a-1)}X = ^a U \);

(3) \(c_{(a-2)}X \subseteq \sim D_{a} \);

(4) \(c_{(a-2)}X n s_1^2 c_{(a-2)}X \subseteq s_1^1 c_{(a-2)}X \).

Now let \(R = \{ (u,v) : u \in X \} \). Then \(R \) is a binary relation on \(U \) satisfying the following conditions:

(5) For all \(u \in U \) there is a \(v \in U \) with \(uRv \);

(6) For all \(u \in U \), not(\(uRu \));

(7) \(R \) is transitive.

It follows that \(U \) is infinite, as desired.

Now we construct a finite \(\text{Cs}_\alpha \) \(\mathfrak{A} \) with an infinite base such that \(\varepsilon \) fails to hold in \(\mathfrak{X} \). Let \(\mathfrak{B} = (B, \leq) \), where \(B \) is the set of rational numbers and \(\leq \) is the usual ordering on \(B \). Let \(\Lambda \) be a discourse language for \(\mathfrak{B} \), with a sequence \(\langle v_i : \xi < \alpha \rangle \) of variables. Then \(\phi^B : \psi \) a formula of \(\Lambda \) is the universe of a \(\text{Cs}_\alpha \) \(\mathfrak{X} \) with infinite base \(B \). From the usual decision procedure for sentences holding in \(\mathfrak{B} \) we see that \(\mathfrak{X} \) is finite. Letting \(X = \phi^B \), \(\psi \) the formula \(v_0 < v_1 \), we see that \(\varepsilon \) fails in \(\mathfrak{X} \).

For \(\alpha \geq \omega \), let \(\mathfrak{A} \) be any \(\text{Cs}_\alpha \) with an infinite base. Then \(\mathfrak{X} \) has characteristic zero, while any \(\text{Cs}_\alpha \) with a finite base has characteristic greater than zero. So \(\mathfrak{X} \) is not isomorphic to a \(\text{Cs}_\alpha \) with a finite base.

Concerning these examples we make some remarks on the case \(\alpha \in 2 \). Any \(\text{Cs}_0 \) has base 0. Any finite \(\text{Cs}_1 \) is isomorphic to a \(\text{Cs}_1 \) with a finite base. In fact, let \(\mathfrak{A} \) be a
finite C_α, say with base U. For each non-zero $a \in A$ choose $u_a \in U$ so that $\langle u_a \rangle \in a$. Let $U' = \{u_a : a \in A\}$, and for any $a \in A$ let $f_a = an^U U'$. Then f is an isomorphism of \mathcal{A} onto a C_α with finite base U'. In 3.2.66 we show that any finite C_α (resp. C_β) is isomorphic to a C_γ (resp. C_δ) with a finite base.

Next we note:

(8) If \mathcal{A} and \mathcal{B} are $G_{\alpha,\beta}$, $\mathcal{B} \equiv \mathcal{A}$, and $|W| < \alpha \omega$ for some subbase W of \mathcal{B}, then $|W| = |W'|$ for some subbase W' of \mathcal{A}. (Here $\alpha \neq 2$.)

For, let $\kappa = |W|$. Then, in \mathcal{B},

$$\bigcap_{\lambda < \kappa} -D_{\lambda} a \cap C_\lambda \cup \{D_{\lambda} - D_{\lambda} \neq 0\}$$

In fact, $a W^{(p)}$ is included in the unit element of \mathcal{B} for some $p \in a W$, and any $q \in a W^{(p)}$ such that αq maps κ one-one onto W will be a member of the left side of (9). It follows that (9) also holds in \mathcal{A}, and this gives the desired set W'.

One cannot modify (8) by assuming that W is a subbase of \mathcal{A} and finding W' a subbase of \mathcal{B}, with all other conditions unchanged; see [HMT81] 3.4.

Finally we note that there are C_α's \mathcal{A} and \mathcal{B} with bases U, W respectively, with $\mathcal{A} \equiv \mathcal{B}$, $\alpha \omega |U| < \omega$, and $|U| \neq |W|$. Namely, let \mathcal{A} and \mathcal{B} be minimal C_α's with bases U and W, respectively, subject only to the condition $\alpha \omega |U|, |W|$. Then $\mathcal{A} \equiv \mathcal{B}$ by 2.5.30.

We now turn away from the case of finite bases. We consider the possibility of decreasing the base, and first we note that this is not always possible:

THEOREM 3.1.39. For any ordinal α and any non-empty set U there is a C_α, resp. $W_{\alpha,\beta}$ with base U such that if \mathcal{B} is a C_α with base W and $\mathcal{A} \equiv \mathcal{B}$, then $|U| \leq |W|$.

PROOF. First we construct a C_α with the indicated property. For each $u \in U$ let $x_u = \{x_{\alpha \omega} < u\}$, and let \mathcal{A} be the C_α with base U generated by $\{x_u : u \in U\}$. Suppose \mathcal{B} is a C_{α} with base W and $f \in Is(\mathcal{A}, \mathcal{B})$. Now $\{x_{\alpha \omega} : u \in U\}$ is a system of pairwise disjoint elements of \mathcal{A}, and $\{x_{\lambda \omega} : \lambda < \omega\}$ whenever $u \in U$ and $\lambda < \omega$. Hence for every $u \in U$ there is a $w \in W$ such that $\{x_{\alpha \omega} : u \in U\} \subseteq D_{\lambda \omega}$. If $|U| < \omega$, so $w \neq x_u$ if $u \neq v$. Hence $|U| \leq |W|$.

For the $W_{\alpha,\beta}$ part, we may assume that $\alpha \omega < \omega$. Fix $w \in U$, set $p = \{x_{\alpha \omega} < u\}$, and let \mathcal{A} be the $W_{\alpha,\beta}$ with unit element $a W^{(p)}$ generated by $\{p_{\alpha \omega} : u \in U\}$. Suppose \mathcal{B} is a C_α with base W and $f \in Is(\mathcal{A}, \mathcal{B})$. If $|U| < \omega$, say $|U| = \lambda$. Then $\{x_{\alpha \omega} : \lambda \omega < \nu, \lambda \neq \mu\} \neq 0$ in \mathcal{A}, hence in \mathcal{B}, so that there is a $g \in a W$ with $x_{\lambda \omega}$ one-one, whence $|U| \leq |W|$. Assume that $|U| \leq \omega$. Note that $\{p_{\alpha \omega} : \lambda \omega < \nu\} \subseteq D_{\lambda \omega}$ for all $\kappa, \lambda < \omega$. Hence for every $u \in U$, there exist $w, v \in W$ such that $\{x_{\alpha \omega} : u \in U\} \subseteq f(p_{\alpha \omega})$. So if we set $g = \{\langle w, v \rangle : \langle w, v, u, ... \rangle \in f(p_{\alpha \omega})\}$ for all $u \in U$, we have: 0 $\neq g \subseteq W \times W$, and $g u g u' = 0$ for $u \neq u'$. Hence $|U| \leq |W|$.

REMARK 3.1.40. By 3.1.65, the C_α constructed in 3.1.39 is regular.

We now prove a theorem giving important special cases in which it is possible to decrease the base; the theorem is due to Andrés, Monk, and Némethi. It is an algebraic version of the downward Löwenheim-Skolem theorem, and is proved as that theorem is proved in Tarski, Vaught [57]. It generalizes Lemma 5 in Henkin,
Monk [74']. Before giving the theorem, we need a definition and some lemmas.

DEFINITION 3.1.41. (i) Let \mathcal{U} and \mathcal{B} be Crs_a's with unit elements V_0 and V_1 and bases U_0 and U_1, respectively, and let $F \in \text{Is}(\mathcal{B},\mathcal{U})$. We call F a (strong) ext-isomorphism if $F = (X_nV_0 : X \in B)$ (resp. $F = (X_n^aW : X \in B)$ for some $W \subseteq U$); we then also call F^{-1} a (strong) sub-isomorphism of \mathcal{U} onto \mathcal{B}.

(ii) Let \mathcal{U} and \mathcal{B} be Crs_a's and $F \in \text{Is}(\mathcal{B},\mathcal{U})$. Then we call F a (strong) ext-base-isomorphism if $F = g \cdot h$ for some base-isomorphism h and some (strong) ext-isomorphism g; then also F^{-1} is called a (strong) sub-base-isomorphism.

This definition gives algebraic versions of the notions of elementary substructures, elementary extensions, and elementary embeddings. For more details, see section 4.3, especially towards its end. Note that a strong ext-isomorphism is an ext-isomorphism: if $F = (X_n^aW : X \in B)$ is a strong ext-isomorphism of \mathcal{B} onto \mathcal{U}, as in 3.1.41(i), then $V_0 = V_1 n^aW$ and $F = (X_nV_0 : X \in B)$. The following two trivial lemmas help to clarify these notions.

LEMMA 3.1.42. Let \mathcal{U} and \mathcal{B} be Crs_a's with unit elements V_0 and V_1, respectively.

(i) If \mathcal{U} is sub-isomorphic to \mathcal{B} and $X \in B$ is regular in \mathcal{B}, then X_nV_0 is regular in \mathcal{U}.

(ii) If $F \in \text{Is}(\mathcal{U},\mathcal{B})$, then F is a (strong) sub-base-isomorphism iff $F = g \cdot h$ for some base-isomorphism h and some (strong) sub-isomorphism g.

PROOF. Condition (i) follows immediately from the definitions. We prove only the (non-strong) direction \Rightarrow in (ii), since \Leftarrow is similar. So assume given a base-isomorphism h of \mathcal{B} onto some $\text{Crs}_a \mathcal{E}$ and a (strong) ext-isomorphism g of \mathcal{E} onto \mathcal{U}, with $F = h^{-1} \cdot g^{-1}$. Then $A^1 h^{-1}$ is a base-isomorphism of \mathcal{U} onto some $\text{Crs}_a \mathcal{D}$ with unit element $V_2 \subseteq V_1$. Let $k = (X_nV_2 : X \in B)$. Then it is easily checked that $k = (A^1 h^{-1}) \cdot g^{-1}$. Hence k is an ext-isomorphism, and $F = k^{-1} \cdot (A^1 h^{-1})$, as desired.

LEMMA 3.1.43. Suppose $\alpha \geq 1$. Let \mathcal{B} be a Crs_a with base U, suppose $W \subseteq U$, and suppose that $(X_n^aW : X \in B)$ is a strong ext-isomorphism of \mathcal{B} onto a $\text{Crs}_a \mathcal{U}$ with $|A| > 1$.

Then the following conditions hold:

(i) If \mathcal{B} is a Crs_a, then \mathcal{U} is a Crs_a with base W.

(ii) If \mathcal{B} is a Wrs_a with unit element a^U, then \mathcal{U} is a Wrs_a with unit element a^W for some $q \in a^U$.

(iii) If \mathcal{B} is a Grs_a with unit element $\bigcup_{i \in J} S_i$, where $S_i n S_j = 0$ for $i \neq j$, then \mathcal{U} is a Grs_a with unit element $\bigcup_{i \in J} S_i$, where $J = \{i \in I : S_i n W \neq 0\}$.

(iv) If \mathcal{B} is a Grs_a with unit element $\bigcup_{i \in J} S_i$, where $S_i n S_j = 0$ for $i \neq j$, then \mathcal{U} is a Grs_a with unit element of the form $\bigcup_{i \in J} (S_i n W)$, where $J \subseteq I$ and $q_i \in a^S n W$ for all $i \in J$.

REMARK 3.1.44. For each $\alpha \geq 0$ there is a regular Crs_a strongly sub-isomorphic to a non-regular Crs_a. Thus 3.1.42(i) holds only in the direction indicated. This example, due to Andréka and Németi, can be found in [HMT81] 3.17.
Now we are ready for the promised decreasing base theorem.

THEOREM 3.1.45. Let \(\mathcal{U} \) be a \(\text{Crs}_\alpha \) with unit element \(V \) and base \(U \). Let \(\kappa \) be an infinite cardinal such that \(|A| \leq \kappa \leq |U| \). Assume \(S \subseteq U \) and \(|S| \leq \kappa \). Then there is a \(W \) with \(S \subseteq W \subseteq U \) such that \(|W| = \kappa \) and:

1. Each of the following conditions (a)–(c) implies that \((Xn^aW; X \in A) \) is a strong \(\text{ext} \)-isomorphism of \(\mathcal{U} \) onto a \(\text{Crs}_\alpha \) \(\mathcal{B} \):

 - (a) \(\mathcal{U} \) is a \(\text{WS}_\alpha \) with unit element \(\text{a}t^{(p)} \); then we may assume that \(\text{Rgp} \subseteq W \) and \(\mathcal{B} \) is a \(\text{WS}_\alpha \) with unit element \(\text{a}W^{(p)} \);

 - (b) \(\kappa = \kappa^{\omega} \); then if \(\mathcal{U} \) is a \(\text{CS}_\alpha \) it follows that \(\mathcal{B} \) is a \(\text{CS}_\alpha \) with base \(W \);

 - (c) \(\mathcal{U} \) is a regular \(\text{GS}_\alpha \), and \(\kappa = \sum \omega^\alpha \), where \(\lambda \) is the least infinite cardinal such that \(|\Delta X| < \lambda \) for all \(X \in A \); then \(\mathcal{B} \) is a regular \(\text{GS}_\alpha \) with base \(W \), and is a \(\text{CS}_\alpha \) if \(\mathcal{U} \) is a \(\text{CS}_\alpha \).

2. (i) If \(\mathcal{U} \) is a \(\text{Gws}_\alpha \), then \(\mathcal{U} \) is \(\text{ext} \)-isomorphic to a \(\text{Gws}_\alpha \) with base \(W \).

3. (ii) If \(|\omega| < \kappa \), then \(\mathcal{U} \) is \(\text{ext} \)-isomorphic to a \(\text{Crs}_\alpha \) with base \(W \).

PROOF. We assume as given well-orderings of \(U \) and \(V \). (i)(a): First note that \(|\omega| \leq |A| \). There is a subset \(T_\beta \subseteq U \) such that \(|T_\beta| = \kappa \), \(\sum \text{Rgp} \subseteq T_\beta \), and \(Xn^aT_\beta \neq \emptyset \) whenever \(0 \neq X \in A \). Now suppose that \(0 < \beta < \kappa \) and \(T_{\gamma} \) has been defined for all \(\gamma < \beta \). Let \(M = \bigcup_{\gamma < \beta} T_{\gamma} \) and let

\[
T_\beta = M \cup \{ a \in U : \text{there exist } X \in A, \mu < \alpha, \text{ and } u \in aM^{(p)} \text{ such that } a \text{ is the first element of } U \text{ with property } u \mu \in X \}.
\]

Let \(W = T_\beta = \bigcup_{\gamma < \beta} T_{\gamma} \). By induction it is easily seen that \(|T_\beta| = \kappa \) for all \(\beta \leq \kappa \); in particular, \(|W| = \kappa \). Using 3.1.43, it is clear that to finish the proof of (1)(a) we only need to check that

1. \(C_\mu^{|V|}Xn^aW \subseteq C_\mu^{|V'|}(Xn^aW) \) for any \(\mu < \alpha \), and arbitrary \(X \in A \), where \(V' = Vn^aW \);

Here \(V' = aW^{(p)} \). Suppose \(u \in C_\mu^{|V'|}Xn^aW \). Thus \(u \in V = aU^{(p)} \), \(u \in aW \), and \(u \in X \) for some \(a \in U \). Since \(\{ \omega : a \neq \omega \} \) is finite, \(\text{Rgp} \subseteq T_\beta \), and \(u \in aW \), we infer that there is a \(\beta < \kappa \) such that \(u \in a(\bigcup_{\gamma < \beta} T_{\gamma})^{(p)} \). Thus there is an \(a' \in T_\beta \) such that \(u \in a'X \). Thus \(u \in Xn^aW \). Since clearly \(u \in V' \), it follows that \(u \in C_\mu^{|V'|}(Xn^aW) \).

1. (b): We make a very similar construction, starting with \(T_\alpha \subseteq U \) such that \(|T_\alpha| = \kappa \), \(S \subseteq T_\alpha \), and \(Xn^aT_\alpha \neq \emptyset \) whenever \(0 \neq X \in A \). To construct \(T_\beta \) we replace \(aM^{(p)} \) above by \(aM \) for \(V = Vn^aW \). The condition \(\kappa^{\omega} = \kappa \) is used to check that \(|T_\beta| = \kappa \) for all \(\beta \leq \kappa \). To check the crucial condition (1) it is enough to note that \(\alpha < \gamma \kappa \) because \(\kappa^{\omega} = \kappa \), and hence any \(u \in aM \) is in \(a^\gamma M_{\beta} \) for some \(\beta < \kappa \).

1. (c): The conclusion is clear if \(\mathcal{U} \) is discrete, so suppose \(\mathcal{U} \) is non-discrete. Then \(|\omega| \leq |A| \). Furthermore, we may assume that \(\alpha < 2 \), since the case \(\alpha = 1 \) is treated by (1)(a) (cf. 3.1.17). We define \(T_\beta \) as in (1)(b). Now \(T_\beta \) is defined as follows (with \(\beta < \kappa \) and \(M \) as above):

\[
T_\beta = M \cup \{ a \in U : \text{there exist } X \in A, \mu \in \Delta X, \nu \in a - \{ \mu \} \text{ and } u \in (\Delta X - \{ \mu \}) \circ \nu M \text{ such that} \}
\]
that a is the first element of U with the property that $v \in X$ for some $v \in V$ with $((\Delta X \sim \mu))u(v) \wedge v = u$ and $vu = a$.

The condition in $(i)(c)$ is used to check that $|T_p| = \kappa$ for all $\beta \leq \kappa$, and that $u \in \Gamma W$ with $|\Gamma| < \lambda$ implies that $u \in \Gamma T_\beta$ for some $\beta < \kappa$. Again only the condition (1) remains to be checked. If $\mu \not\in \Delta^X X$, then (1) is obvious, so assume that $\mu \in \Delta^X X$. Suppose $p \in C[p]\cdot X \cdot \alpha w$. Thus $p \in V$, and $p^n \in X$ for some $a \in U$; moreover, $p \in \alpha w$. Choose $v \in \alpha \mu$ and let $u = ((\Delta X \sim \mu))v(v) \wedge p$. Then $u \in \Delta X \sim \mu \nu(v) \cup \nu(v) \wedge T_\beta$ for some $\beta \leq \kappa$, so by the definition of T_β, $v \in X$ for some v such that $((\Delta X \sim \mu))v(v) \wedge u = u$ and $vu = T_\beta \subseteq W$. Then $v = w = p\cdot v$ so it follows since $X \in \mathfrak{G}_\alpha$ and $\alpha \geq 2$ that $p^n \in V$. Clearly $\Delta X \cdot \Delta^X \cdot \alpha w$, so by the regularity of X in \mathfrak{X}, $p^n \in X$. Hence $p^n \in X \cdot \alpha w$. So $p \in C[p]\cdot (X \cdot \alpha w)$, as desired in (1).

(ii): By the proof of $(i)(c)$ we may assume that $\alpha \geq 2$. Let the unit element of \mathfrak{X} be $U_{\epsilon \mu} \cdot T^{(p)}$, where $aT^{(p)} \cdot aT^{(p)} = 0$ for $i \neq j$. Choose $J \subseteq I$ with $|J| \leq \kappa$ such that $S \subseteq U_{\epsilon \mu} \cdot T_j$, $|U_{\epsilon \mu} \cdot T_j| \subseteq \kappa$, and $X\cdot U_{\epsilon \mu} \cdot T_j = 0$ for all non-zero $X \in A$. Now take any $j \in J$. The set $X\cdot U_{\epsilon \mu} \cdot T_j \subseteq X \cdot A$ is the universe of a $\mathfrak{G}_{\alpha \mu}$, as is easily checked; we denote this $\mathfrak{G}_{\alpha \mu}$ by C_j. Now if $|T_j| \leq \kappa$ let $X_j = T_j$. If $|T_j| > \kappa$, by $(i)(a)$ there is a set X_j such that $T_{\alpha \mu} \cdot U(S\cdot T_j) \subseteq X_j \subseteq T_j$, and $X_j = \kappa$, and $(\kappa \cdot X_j \cdot Y \subseteq C_j)$ is a strong ext-isomorphism of C_j onto a $\mathfrak{G}_{\alpha \mu}$ with unit element $\alpha X_j^{(p)}$. Let $V' = U_{\epsilon \mu} \cdot \alpha X_j^{(p)}$. Then it is easily checked that $(\kappa \cdot V': Y \subseteq A)$ is an ext-isomorphism of \mathfrak{X} onto a $\mathfrak{G}_{\alpha \mu}$ with base $W = U_{\epsilon \mu} \cdot X_j$ such that $S \subseteq W \subseteq U$ and $|W| = \kappa$, as desired.

(iii): Let Z_0 be a subset of V such that $|Z_0| \leq \kappa$, $S \subseteq U_{\epsilon \mu} \cdot Rg z$, $|U_{\epsilon \mu} \cdot Rg z| = \kappa$, and $X \cdot Z_0 = 0$ whenever $0 \neq X \in A$. If $\eta \in \omega$ and Z_η has been defined, let

$$Z_{\eta+1} = Z_{\eta} \cup \{x \in V: \text{there exist } q \in Z_{\eta}, X \in A, \text{ and } x < \kappa \text{ such that } x \text{ is the least element of } X \text{ with } v \in V \text{ and } (\sim (\mu))x \leq q\}.$$

Let $V' = U_{\epsilon \mu} \cdot Z_{\omega}$ and $W = U_{\epsilon \mu} \cdot Rg z$. It is easily checked that $(\kappa \cdot V': Y \subseteq A)$ is the desired ext-isomorphism.

REMARKS 3.1.46. None of the various conditions in the hypothesis of 3.1.45 can simply be omitted. The examples to show this, mainly due to Andráska and Németi, are found in [HMT81] 3.19, in [AN81] 3.7.3.8 and in Sain [82a],[84]. However, consider the condition

(*) A is generated by a set of power $\leq \kappa$.

If $|\kappa| \leq \kappa$, (*) is equivalent to $|A| \leq \kappa$, and so trivially (*) can replace $|A| \leq \kappa$ in the hypothesis of 3.1.45, as far as the conditions $(i)(b)$ and (iii) are concerned. Sain [82a],[84] has shown that the same replacement can be made in condition $(i)(c)$, but that $|A| \leq \kappa$ cannot be weakened to (*) in the case of $(i)(a)$ and (ii).

A question related to the changing base question is this: when is a $\mathfrak{G}_{\alpha \mu}$ with unit element $^\alpha W^{(p)}$ isomorphic to one with unit element $^\beta W^{(q)}$? The following theorem along these lines is a generalization of Lemma 6 of Henkin, Monk [74] due to Andráska and Németi.
THEOREM 3.1.47. Let \(\mathcal{U} \) (resp. \(\mathcal{U}' \)) and \(\mathcal{B} \) (resp. \(\mathcal{B}' \)) be (the full) \(W_{a_0} \)'s with unit elements \(V_0 \) and \(V_1 \), and bases \(U_0 \) and \(U_1 \), respectively. Consider the following conditions:

(i) \(\mathcal{U} \) and \(\mathcal{B} \) are base-isomorphic;

(ii) there exist \(p' \in V_0 \) and \(q' \in V_1 \) such that \(p'|p'^{-1} = q'|q'^{-1} \) and \(|U_0 \sim Rgp'| = |U_1 \sim Rgp'| \);

(iii) \(\mathcal{U}' \cong \mathcal{B}' \);

(iv) \(\mathcal{U}' \) is base-isomorphic to \(\mathcal{B}' \).

Then (i) implies (ii), while (ii), (iii) and (iv) are mutually equivalent.

PROOF. Say \(V_0 = a_{U_0}^{p} \) and \(V_1 = a_{U_1}^{q} \). Now (i) \(\Rightarrow \) (iv) and (iv) \(\Rightarrow \) (iii) are trivial. To prove (iii) \(\Rightarrow \) (ii) let \(f \) be an isomorphism from \(\mathcal{U}' \) onto \(\mathcal{B}' \). Choose \(q' \in V_1 \) such that \(f(p) = \{q'\} \). If \(p_\lambda = p_\alpha \) then \(\{p\} \subseteq D_{\alpha \lambda} \), so \(\{q'\} \subseteq D_{\alpha \lambda} \) and \(q'=q_\lambda \). By symmetry, \(p_\lambda q_\lambda = q'|q'^{-1} \). Also, it is easy to check that

\[
|U_0 \sim Rgp'| = |\{d \in A':d \text{ is an atom } \subseteq C_0(p) \cap \bigcap_{\alpha < \kappa} D_{\alpha \kappa} \sim \{p\}\}| \\
= |\{d \in B':d \text{ is an atom } \subseteq C_0(q) \cap \bigcap_{\alpha < \kappa} D_{\alpha \kappa} \sim \{q'\}\}| \\
= |U_1 \sim Rgp'|.
\]

Thus (ii) holds. It remains only to show that (ii) \(\Rightarrow \) (iv). Assume (ii), and let \(f = (\{p',q':\alpha \leq \kappa\}) \). Then \(f \) is a one-one function from a subset of \(U_0 \) into \(U_1 \), which can be extended to a one-one function \(f' \) from \(U_0 \) onto \(U_1 \). Thus by 3.1.36 and 3.1.37, \(f' \) is an isomorphism from \(\mathcal{U}' \) onto the full \(W_{a_0} \) \(\mathcal{B}' \) with unit element \(a_{U_1}^{f'(p)} \).

If \(\Gamma \) and \(\Delta \) are finite subsets of \(\alpha \) such that \((\Gamma \sim \Gamma) \subseteq p' \) and \((\alpha \sim \Delta) \subseteq q' \), clearly \((\alpha \sim (\Gamma \cup \Delta)) \subseteq (f' \circ p) \subseteq q \). Thus \(a_{U_1}^{f'(p)} = a_{U_1}^{q} \), as desired.

REMARK 3.1.48. It is easy to see that in 3.1.47, (ii) does not imply (i) in general. From the following interesting theorem of Andrëka and Németh it follows that the condition of base-isomorphism in (i) cannot be replaced by isomorphism.

THEOREM 3.1.49. If \(\mathcal{U} \in L_{a_0} W_{a_0} \), \(\mathcal{U} \) has base \(U \), and \(q \in a_{U} \), then \(\mathcal{U} \) is isomorphic to a \(W_{a_0} \) with unit element \(a_{U}^{q} \).

PROOF. Let \(\mathcal{U} \) have unit element \(a_{U}^{p} \). For any \(X \in A \) let

\[
f(X) = \{u \in a_{U}^{q}: \text{there is a } v \in X \text{ with } \Delta X \cup u \in v\}.
\]

Using the regularity of \(\mathcal{U} \) (3.1.26), it is easy to see that \(f \) is an isomorphism from \(\mathcal{U} \) into \(\mathcal{B} \), where \(\mathcal{B} \) is the full \(W_{a_0} \) with unit element \(a_{U}^{q} \). Now let \(\lambda < \alpha \) and \(X \in A \). If \(u \in f(c_{Y},X) \), choose \(v \in C_{Y}X \) so that \(\Delta C_{Y}X \cup u \subseteq v \). Define \(w \in a_{U} \) by setting, for any \(\lambda < \alpha \)

\[
w(\lambda) = \begin{cases} u(\lambda) & \text{if } \lambda \in \Delta X \\ v(\lambda) & \text{if } \lambda \notin \Delta X. \end{cases}
\]

Since \(\Delta X \) is finite, we have \(w \in a_{U}^{p} \). Now \(\Delta C_{Y}X \subseteq \Delta X \), so \(\Delta C_{Y}X \cup u \subseteq w \). Hence by
regularity \(w \in \mathbb{C}_s X \). Choose \(a \in U \) such that \(w_0^a \in X \). Now \(\Delta X \subseteq w_0^a \subseteq w_0^a \), so \(w_0^a \in fX \). Thus \(u \in \mathbb{C}_s fX \). This proves that \(f \mathbb{C}_s X \subseteq \mathbb{C}_s fX \). The converse is straightforward.

A result related to 3.1.47 and 3.1.49 is found in 3.1.113.

The notion of base isomorphism discussed above can be generalized to base homomorphisms. The generalization has some logical applications (see section 4.3).

The notion, and most of the results below, are due to Andréka and Némethi.

DEFINITION 3.1.50. Let \(\mathcal{A}, \mathcal{B} \in \text{Crs}_\alpha \) with bases \(U, U' \) and unit elements \(V, W \) respectively. Suppose that \(f \) maps \(U' \) into \(U \). We define \(\bar{f} = \mathcal{G} f \), a function with domain \(A \), as follows. For any \(x \in A \),

\[
\bar{f} x = \{ g \in W : f \circ g \in x \}.
\]

In case \(f \in \text{Hom}(\mathcal{A}, \mathcal{B}) \) we call \(\bar{f} \) a base—homomorphism from \(\mathcal{A} \) into \(\mathcal{B} \).

Note that a base—isomorphism function \(\bar{f} \) depends only on \(f \) and \(\alpha \), while a base—homomorphism function \(\bar{f} \) depends on \(f, \mathcal{A}, \) and \(W \). Nevertheless, base—isomorphisms are special cases of base—homomorphisms, by the following result.

THEOREM 3.1.51. Let \(f \) be a one—one function from \(U \) onto \(U' \), \(\mathcal{A} \) a \(\text{Crs}_\alpha \) with base \(U \), and \(\bar{f} \) a base—homomorphism from \(\mathcal{A} \) onto a \(\text{Crs}_\alpha \) with unit element \(W \). Let \(g = f^{-1} \). Then \(\bar{f} = \mathcal{G} g \).

The definition of base—homomorphism, while simple, leaves open the question concerning when the function \(\bar{f} \) really is a base—homomorphism. This is cleared up by the next result, for \(G \)'s, the case of most interest for us.

THEOREM 3.1.52. Let \(\mathcal{A}, \mathcal{B} \in \text{Gs}_\alpha \) with bases \(U, U' \) and unit elements \(V, W \) respectively, where \(V = \bigcup_{i \in I} \mathbb{C}^n S_i \), \(W = \bigcup_{i \in I} \mathbb{C}^n T_i \), \(S_i \cap S_k = 0 \) for distinct \(i, k \in I \), and \(T_i \cap T_j = 0 \) for distinct \(j, l \in I \). Let \(f \) map \(U' \) into \(U \). Then the following conditions are equivalent:

(i) \(f \in \text{Hom}(\mathcal{A}, \mathcal{B}) \).

(ii) For every \(j \in J \) there is an \(i \in I \) such that \(T_j \subseteq S_i \), and such that for all \(x \in A \), \(\kappa \in \alpha \), and \(y \in \mathbb{C}_\alpha x \), if \(f \circ y \in \mathbb{C}_\alpha x \) then there is an \(a \in f^* T_j \) such that \((f \circ y)_a^{x} \in z \).

In case \(\mathcal{A} = \mathbb{G} V \), the last part of (ii) can be replaced by the condition \(f^* T_j = S_i \).

PROOF. (i) \(\Rightarrow \) (ii). Suppose that \(j \in J \), \(i, k \in I \), \(i \neq k \), \(a, b \in T_j \), \(a \neq b \), \(f \in \alpha \), and \(\kappa \in \alpha \). Set \(g = (a, b, b,...) \). Then \(g \in W \) but \(f \circ g \notin V \), contradicting \(\bar{f} V = W \). Now fix \(j \in J \). Choose \(i \in I \) so that \(f^* T_j \subseteq S_i \). Suppose that \(a, b \in T_j \), \(a \neq b \), and \(f \neq f \). Let \(g \) be as above. Then \(f \circ g \in D_{01} \) but \(g \notin D_{01} \), contradicting \(\bar{f} D_{01} = D_{01} \). Thus \(T_j \subseteq S_i \) is one—one. Next, suppose that \(x \in A \), \(\kappa \in \alpha \), \(y \in \mathbb{C}_\alpha x \), and \(f \circ y \in \mathbb{C}_\alpha x \). Thus \(y \in \mathbb{C}_\alpha x = \mathbb{C}_\alpha f \), so choose \(b \in T_j \) so that \(y_b \in f \). Thus \(f \circ y_b \neq f \circ y_b \). Note that \(f^* T_j = S_i \) implies that this last part of (ii) holds. Now assume that \(\mathcal{A} = \mathbb{G} V \). Let \(a \in S_i \) and choose \(b \in T_j \). Let \(y = (b, b, b,...) \), \(z = (a, f, f, f,...) \). Then \(y \in \mathbb{C}_\alpha z = \mathbb{C}_\alpha f \), so choose \(c \in T_j \) such that \(y_c \in f(x) \). Thus \(f \circ y_c \neq x \), hence \(f \circ a \neq a \), as desired.
(ii) \(\Rightarrow\)(i). Clearly \(\hat{f}\) preserves the Boolean operations. Now suppose \(g \in fD_{\alpha'}\). Then \(f \circ g \in D_{\alpha'}\). Say \(g \in D_{\alpha'}\), and choose \(i\) as in (ii). Since \(T_i \uparrow f\) is one-one, we get \(g_k = g_i\), hence \(g \in D_{\alpha'}\). Thus \(fD_{\alpha'} \subseteq D_{\alpha'}\), and the converse is obvious.

Now let \(x \in A\), \(\kappa \in \alpha\). Suppose that \(g \in fC_x\). Thus \(f \circ g \in C_x\). Say \(g \in C_x\). By (ii), choose \(b \in T_j\) so that \((f \circ g)^b = x\). Thus \(f \circ g^b \in x\) and \(g^b \in f^b\), so \(g \in C_x f^b\). The converse is similar.

Lemma 3.1.53. Let \(\alpha \geq 2\). Let \(A, B \in G_{\alpha}\), with bases \(U, U'\) and unit elements \(V, W\) respectively, \(f\) a function from \(U'\) into \(U\), and \(f\) a base-homomorphism of \(A\) into \(B\). Suppose \(a \in \alpha\), \(|A| \leq \omega\), and \(a\) is regular. Then \(fa\) is regular.

Proof. Suppose that \(g \in fa, h \in W\), and \((\Delta f \uparrow a) \subseteq g \subseteq h\). Say \(g, h \in C_x\), and choose \(i\) by 3.1.52. Recall from 2.3.2 that \(\Delta f \circ \Delta a\). Define \(k \in S_i\) by setting \((\Delta f \uparrow a) \subseteq k \subseteq f^g\), \(\alpha = (\Delta f \uparrow a) \subseteq k \subseteq f^g\). Now \(f \circ g \in a\), so by the regularity of \(a\) we get \(k \in a\). Since \(a \circ \Gamma \subseteq k \subseteq f^g\), it follows that \(f \circ g \in C_x\). Therefore, \(h \in fC_x a \subseteq C_x f^g a = fa\), as desired.

The condition \(|A| \leq \omega\) in Lemma 3.1.53 is needed; see [AN81], p. 223.

We use this lemma to prove the next theorem, which shows that base-homomorphisms arise naturally when considering the set-function associated with a point-function.

Theorem 3.1.54. (Ferenczi) Let \(\alpha \geq 2\). Let \(A, B \in G_{\alpha}\), with bases \(U, U'\) and unit elements \(V, W\) respectively. Suppose that \(f\) maps \(W\) into \(V\). Then the following conditions are equivalent:

(i) \(f^{-1} x \in \text{Hom}(\mathbb{S} V, \mathbb{S} W)\), and \(f^{-1} x\) is regular for any regular \(x \in V\) with \(|\Delta x| \leq \omega\).

(ii) There is a \(g\) mapping \(U'\) into \(U\) such that \(f = (g \circ x : y \in W)\) and \(f^{-1} x\) is the base-homomorphism \(g \in \text{Hom}(\mathbb{S} V, \mathbb{S} W)\).

Proof. (i) \(\Rightarrow\)(ii). For any \(w\) let \(k_w = (w : x \leq \alpha)\). We claim that for each \(w \in U'\), \(f_k w\) is a constant function. Assume, on the contrary, that \(k \in \alpha\), and \((f_k w) \neq (f_k w)\). Thus \((f_k w) \in D_{\alpha'}\), so \(k_w \in f^{-1} x (f k_w) \in D_{\alpha'}\), a contradiction.

Hence we may define \(g\) mapping \(U'\) into \(U\) by the condition \(f_k w = k_{g w}\) for any \(w \in U'\). Now suppose that \(y \in W\) and \(\kappa \leq \alpha\); we show that \((f y) \kappa = g(y)\). Let \(a = (x \in V : x = (f y) \kappa)\). Thus \(\Delta a \subseteq \kappa\) and \(a\) is regular. Hence \(f^{-1} a\) is regular. Now let \(W = \bigcup_{x \in S_\kappa} a\), with \(S_\kappa S_\kappa = 0\) for \(i \neq k\), and choose \(i\) so that \(y, k_y \in S_\kappa\). Then \((\Delta f^{-1} \uparrow a) \subseteq y \subseteq (k_y)\), and \(y \in f^{-1} a\), so \((k_y) \subseteq f^{-1} a\), hence \(k_y \in f^{-1} a\). Therefore \(k_{g y} = f k_y \in a\), so \((f y) \kappa = g(y)\). The rest of (ii) is now clear.

(ii) \(\Rightarrow\)(i). Obvious, using Lemma 3.1.53 for the regularity assertion.

We prove our main algebraic result concerning base homomorphisms in 3.1.111, after we have more properties of \(G_{\alpha}\)'s available.
Subalgebras

Now we discuss subalgebras of set algebras. The following theorem is trivial.

Theorem 3.1.55. If \(K \in \{ \text{Crs}_a, \text{Cs}_a, \text{Gs}_a, \text{Crs}^{\alpha \beta}, \text{Ws}_a, \text{Gws}_a, \text{Gws}^{nm}_a, \text{Gws}^{bl}_a, \text{Gws}^{cm}_a, \ldots \text{Gws}_a \} \), then \(SK = K \).

Now we want to show the extent of classes of regular set algebras by proving several theorems to the effect that regular elements generate regular set algebras. (This is not true in full generality, however; see 3.1.66.) These results, except for 3.1.64, are in [AN81] section 1; for 3.1.64, see [HMT81] 4.1. We begin with a definition.

Definition 3.1.56. Let \(\mathcal{U} \in \text{CA}_a \). (i) An element \(x \in A \) is small iff for every infinite \(\Delta \subseteq \alpha \) and every finite \(\Delta \subseteq \alpha \) there is a finite \(\theta \subseteq \Gamma \) such that \(c^\theta_{\Delta \subseteq \alpha} x = 0 \). We denote by \(Sm^\mathcal{U} \) the set of all small elements of \(\mathcal{U} \).

(ii) Assume also \(\Gamma \subseteq \alpha \). We set

\[
I_\Gamma^\mathcal{U} = \{ x \in A : \text{for every finite } \Delta \subseteq \alpha \text{ there is a finite } \theta \subseteq \alpha \text{ such that } c^\theta_{\Delta \subseteq \alpha} x = 0 \},
\]

\[
Dm_\Gamma^\mathcal{U} = \{ x \in A : |\Delta \subseteq \alpha | < \omega \}.
\]

Finally, we denote by \(Dm_\Gamma^\mathcal{U} \) the subalgebra of \(\mathcal{U} \) with universe \(Dm_\Gamma^\mathcal{U} \).

The last part of this definition is justified by 2.1.4. Note that if \(x \in A \) and \(\Delta x \) is finite, then \(x \) is small. As usual, we omit the superscripts \(\mathcal{U} \) in \(Sm^\mathcal{U} \), etc., when no confusion is likely.

Lemma 3.1.57. Let \(\mathcal{U} \in \text{CA}_a \) and \(\Gamma \subseteq \alpha \). Then:

(i) \(I_\Gamma \) is an ideal of \(\mathcal{U} \).

(ii) \(I_\Gamma \cap Dm_\Gamma = \{ 0 \} \).

(iii) \(Sm - Dm_\Gamma \subseteq I_\Gamma \).

Proof. (i) Clearly \(y \leq x \in I_\Gamma \) implies \(y \in I_\Gamma \) and \(x \in I_\Gamma \), \(\kappa < \alpha \) imply \(c_\Gamma x \in I_\Gamma \). Now suppose \(x, y \in I_\Gamma \). Let \(\Delta \) be a finite subset of \(\alpha \). Then choose finite \(\theta, \theta_2 \subseteq \alpha \cup \Gamma \) such that \(c^\theta_{\Delta \subseteq \alpha} x = 0 \) and \(c^\theta_{\Delta \subseteq \alpha} c^\theta_{\xi \subseteq \Delta} y = 0 \), using the assumption \(x, y \in I_\Gamma \). Now we use the general law

\[
(*) \ c^\theta_{\xi \subseteq \Delta} (u \uplus v) \leq c^\theta_{\xi \subseteq \Delta} u \uplus c^\theta_{\xi \subseteq \Delta} v,
\]

valid in any \(\text{CA}_a \) for all \(u, v \) and all finite \(\xi \subseteq \alpha \), to get

\[
c^\theta_{\Delta \subseteq \alpha} c^\theta_{\Delta \subseteq \alpha} (x \uplus y) = c^\theta_{\Delta \subseteq \alpha} c^\theta_{\Delta \subseteq \alpha} (c^\theta_{\Delta \subseteq \alpha} x + c^\theta_{\Delta \subseteq \alpha} y) \leq c^\theta_{\Delta \subseteq \alpha} (c^\theta_{\Delta \subseteq \alpha} c^\theta_{\Delta \subseteq \alpha} x + c^\theta_{\Delta \subseteq \alpha} c^\theta_{\Delta \subseteq \alpha} y) = c^\theta_{\Delta \subseteq \alpha} c^\theta_{\Delta \subseteq \alpha} y = 0,
\]

as desired. Thus \(I_\Gamma \) is an ideal.

(ii) Let \(y \in I_\Gamma \cap Dm_\Gamma \); we show that \(y = 0 \). Set \(\Delta = \Delta y \setminus \Gamma \); then \(|\Delta| < \omega \) since \(y \in Dm_\Gamma \).
Because \(y \in I \Gamma \) we can find a finite \(\Theta \alpha \Gamma \) such that \(c_{\Theta\alpha}^I c_{\Theta\alpha}^I y = 0 \). But \(\Delta_{\Theta\alpha} y \subseteq \Gamma \), so \(c_{\Theta\alpha}^I c_{\Theta\alpha}^I y = c_{\Theta\alpha}^I y \). Thus \(y \leq c_{\Theta\alpha}^I y = 0 \), as desired.

(iii) Let \(x \in S m \leq Dm_{\Gamma} \) be arbitrary. Since \(x \notin Dm_{\Gamma} \), we have \(|\Delta x \setminus \Gamma| \leq \omega \). In order to show that \(x \in I \Gamma \), let \(\Delta \) be an arbitrary finite subset of \(\alpha \). Then because \(x \) is small, choose a finite subset \(\Theta \) of \(\Delta \setminus \Gamma \) such that \(c_{\Theta\alpha}^I c_{\Theta\alpha}^I x = 0 \). This shows that \(x \in I \Gamma \).

The following general fact from the algebraic theory of \(CA_a \)'s will also be needed:

Lemma 3.1.58. Let \(\mathcal{A} \) be a \(CA_a \) generated by a set \(X \). Suppose \(B \) is a subuniverse of \(\mathcal{A} \) and \(I \) is an ideal of \(\mathcal{A} \) such that \(B n I = \{0\} \). Then \(B \subseteq S p(X \setminus I) \).

Proof. \(\mathcal{A}/I \) is generated by \(\{b/l b \in X \setminus I\} \), and \(\{b/l b \in B\} \) is one—one, so the lemma is clear.

Lemma 3.1.59. Let \(\mathcal{A} \in CA_a \) be generated by \(X \subseteq S m \mathcal{A} \), and suppose that \(\Gamma \subseteq \alpha \). Then \(Dm_{\Gamma} = S p(X \setminus I \Gamma) \).

Proof. Assume the hypothesis. Since \(Dm_{\Gamma} \in S \mathcal{A} \), we clearly have \(S p(X \setminus I \Gamma) \subseteq Dm_{\Gamma} \). On the other hand, by 3.1.57 and 3.1.58 we have \(Dm_{\Gamma} \subseteq S p(X \setminus I \Gamma) \subseteq S p(X \setminus Dm_{\Gamma}) \), as desired.

To proceed further, we need to generalize the notion of regularity.

Definition 3.1.60. Let \(\mathcal{A} \) be a \(CRs_a \) with unit element \(V \), and suppose that \(x \in A \) and \(\Gamma \in \alpha \). We say that \(x \) is \(\Gamma \)-regular in \(\mathcal{A} \) if for all \(q \in x \) and all \(p \in V \), if \((\Gamma u \Delta x) \uparrow q \leq p \) then \(p \in x \).

Thus \(x \) is regular in \(\mathcal{A} \) iff it is \(1 \)-regular in \(\mathcal{A} \). Also note that if \(\Gamma \subseteq \Delta \alpha \) and \(x \) is \(\Gamma \)-regular in \(\mathcal{A} \), then \(x \) is also \(\Delta \)-regular in \(\mathcal{A} \).

Lemma 3.1.61. Suppose \(e \in \Gamma \alpha \), \(|\Gamma| \geq 1 \), \(\mathcal{A} \) is a \(Gws_a \), and \(x \in A \) is \(\Gamma \)-regular in \(\mathcal{A} \). Then \(x \) is also \((\Gamma \setminus \{e\}) \)-regular in \(\mathcal{A} \).

Proof. Let \(V \) be the unit element of \(\mathcal{A} \). Clearly we may assume that \(e \in \Delta x \). Suppose \(q \in x \), \(p \in V \), and \((\Gamma \setminus \{e\}) u \Delta x \uparrow q \leq p \). Since \(|\Gamma| > 1 \), there is a \(b \in R q n R q p \). Now \(\gamma e \in \gamma V \) \(z = z \), and \((\Gamma u \Delta x) \gamma \epsilon \gamma z \epsilon V \). Hence \(p \epsilon \gamma z \) by the \(\Gamma \)-regularity of \(x \). Thus \(p \in \gamma \epsilon \gamma z = z \), as desired.

By Lemma 3.1.61 and the comment before it, if \(x \) is regular in a \(Gws_a \) \(\mathcal{A} \), then it is \(\Gamma \)-regular for every non-empty \(\Gamma \).

Lemma 3.1.62. Suppose \(\mathcal{A} \in Gws_a \) and \(0 \neq \Gamma \alpha \). Then \(\Gamma \)-regular elements generate \(\Gamma \)-regular elements in \(Dm_{\Gamma} \).

Proof. Assume the hypothesis. Obviously if \(x \) is \(\Gamma \)-regular then so is \(-x \). Now suppose that \(x, y \in Dm_{\Gamma} \) are both \(\Gamma \)-regular. Set \(\Delta = \Gamma \Delta x \Delta y \). Since \(|\Delta \setminus \Gamma| < \omega \) because \(x, y \in Dm_{\Gamma} \), it suffices by 3.1.61 to show that \(x+ y \) is \(\Delta \)-regular; this, however, is
obvious. Clearly \(D_{\omega} \) is \(\Gamma \)-regular for all \(\omega < \alpha \).

Finally, suppose \(\kappa < \alpha \), \(x \in D_{\omega} \), and \(x \) is \(\Gamma \)-regular. Set \(\Delta = \Gamma \Delta x \); again it is enough to show that \(C_{\Delta} x \) is \(\Delta \)-regular. Suppose \(q \in C_{\Delta} x \), \(p \in V \), and \((\Delta \Delta x) \) \(q \in p \),
where \(V = \bigcup_{i \in \omega} W_{i}^{(r_{i})} \) is the unit element of \(\mathcal{U} \), with \(a_{W_{i}^{(r_{i})}} n_{W_{i}^{(r_{i})}} = 0 \) for \(i \neq j \), \(W_{i} = W_{j}^{0} \) or \(W_{i} \cap W_{j} = 0 \) for all \(i, j \). Say \(q \in a_{W_{i}^{(r_{i})}} \), \(p \in a_{W_{j}^{(r_{j})}} \), \(q \in x \). Since we may assume that \(\omega \geq 2 \), normality gives \(W_{i} = W_{j}^{0} \) and \(q \in \omega_{W_{i}^{(r_{i})}} \). Hence \(p \in a_{W_{j}^{(r_{j})}} \). Since \((\Gamma \Delta x) q_{\Delta} \in p_{\Delta} \), we get \(p_{\Delta} \in x \). Hence \(p \in C_{\Delta} x \), as desired.

We can now state the main theorem giving many regular set algebras.

THEOREM 3.1.63. Let \(\mathcal{U} \in G_{\omega}^{\infty} \) be generated by a set \(X \subseteq S_{m} \mathcal{U} \) of regular elements. Then \(\mathcal{U} \) is regular.

PROOF. Assume the hypothesis. Let \(a \in A \) and set \(\Gamma = 1 \Delta a \). Obviously \(a \in D_{\omega} \), and by 3.1.59, \(a \in S_{A}(X \cap D_{\omega}) \). By the remark following 3.1.61, every element of \(X \Delta D_{\omega} \) is \(\Gamma \)-regular. Hence \(a \) is \(\Gamma \)-regular by 3.1.62. Therefore \(a \) is regular.

COROLLARY 3.1.64. If \(\mathcal{U} \) is a \(C_{\omega} \) generated by a set of regular elements with finite dimension sets, then \(\mathcal{U} \) is regular.

COROLLARY 3.1.65. Every \(G_{\omega}^{\infty} \) generated by a set of atoms is regular.

PROOF. To apply 3.1.63 to \(\mathcal{U} \in G_{\omega}^{\infty} \) we want to show that every atom \(a \) of \(\mathcal{U} \) is small and regular. Suppose \(\Gamma \) is an infinite subset of \(\Delta a \) and \(\Delta a \) is a finite subset of \(\alpha \). Then \(\Delta a = \alpha \) by 1.10.5(ii), and \(a \in c_{\omega} c_{\omega} \Delta a \), and so by 1.10.5(i), \(\Delta a \in c_{\omega} c_{\omega} \Delta a \), using also 1.10.3(i). Choose \(\kappa \in \Gamma \Delta a \). Then \(\Delta a \in c_{\omega} c_{\omega} \Delta a \), so \(c_{\omega} c_{\omega} \Delta a = 0 \), as desired.

To show that \(a \) is regular, we may assume that \(a \in \omega \). By 1.10.5(ii), \(\Delta a = \alpha \) or \(\Delta a = 0 \). If \(\Delta a = \alpha \), trivially \(a \) is regular. Suppose \(\Delta a = 0 \); thus by 1.10.5(ii), \(a \in c_{\omega} c_{\omega} \Delta a \). Then \(a \) is a union of sets \(w \in W \) with \(W \) a singleton, hence \(a \) is regular by normality of \(\mathcal{U} \).

REMARK 3.1.66. Generalizations of the above results can be found in [AN81] section 4. We note that regular elements do not always generate regular algebras. For example, let \(\omega \preceq \omega \) and let \(\mathcal{B} \) be the full \(C_{\omega} \) with base \(\omega \). Set \(X = \{ x \in ^{\omega} \omega : \forall \text{odd } \kappa < \omega, x \preceq \omega \} \). Clearly \(X = \{ x \in ^{\omega} \omega : \forall \text{odd } \kappa < \omega, x \preceq \omega \} \) and \(X \) is regular. Let \(\mathcal{U} = C_{\omega}^{\mathcal{B}}(X) \).

Now \(C_{\omega} X = \{ x \in ^{\omega} \omega : \forall \text{odd } \kappa < \omega, x \preceq \omega \} \), and \(X \) is regular. Let \(\mathcal{U} = C_{\omega}^{\mathcal{B}}(X) \).

Now \(C_{\omega} X = \{ x \in ^{\omega} \omega : \forall \text{odd } \kappa < \omega, x \preceq \omega \} \), and \(X \) is regular. Let \(\mathcal{U} = C_{\omega}^{\mathcal{B}}(X) \).

Thus \(\Delta c_{\omega} X = 0 \), while \(0 \neq c_{\omega} X \neq 1 \). Hence \(C_{\omega} X \) is not regular. This example is extensively generalized in the above reference. In particular, the following result relevant to 3.1.64 is established: If \(\mathcal{E} \) is a full \(G_{\omega}^{\infty} \), then \(\mathcal{E} \) is normal if every subalgebra of \(\mathcal{E} \) generated by a set of locally finite dimensional regular elements is regular.

In the example just given we used the following obvious result:

THEOREM 3.1.67. If \(\mathcal{U} \) is a regular \(C_{\omega} \), then \(Z \mathcal{U} = \{ 0, 1 \} \).

REMARKS 3.1.68. We state without proof some results about generators in set
algebras. First we consider generation by a single element, a topic which was discussed several places in Part I: 2.1.11, 2.3.22, 2.3.23, and 2.6.25. In particular, following 2.1.11 the following result was stated, the proof being easily obtained from the proof of 2.1.11:

(1) If $2 \leq \alpha < \omega$ and $\kappa < \omega$, then the full C^α_{κ} with base κ is generated by a single element.

Andréka and Neméti [79a'] solved Problem 2.3 of Part I by showing:

(2) For each $\alpha > 0$ there is a simple finitely generated C^α_{ω} not generated by a single element.

Comer, Andréka, and Németi proved the following (see [HMT81], Comer [83a']):

(3) If $\alpha < \omega$ and \mathcal{U} is a C^α_{ω} with base of cardinality $\lambda \geq \alpha + 1$, then \mathcal{U} is generated by a single element.

It is not known, in general, if the bound $\alpha + 1$ in (3) is best possible. If \mathcal{U} has base of cardinality $> 1.5 \alpha$, then \mathcal{U} is not generated by a single element (see (8)–(10) below). J. Larson [83'] and [83a'] has further shown the wide extent of C^α_{ω}'s with single generators by showing:

(4) For each $\alpha \geq 2$ there are at least continuum many pairwise non–isomorphic one–generated C^α_{ω}'s.

By 2.6.72 this result gives the maximum number of L^α_{ω}'s with at most continuum many generators, for every α. Also in Larson [83a'] the following result is given, by an easy argument:

(5) For each $\alpha \geq 2$ there are $2^{\omega \cdot \omega}$ pairwise non–isomorphic one–generated C^α_{α}'s.

Concerning set algebras other than C^α_{ω}'s, Andréka and Németi [81a'] established the following strong result. For $2 \leq \alpha < \omega$, let

$$ f\alpha = \text{the smallest } \beta \text{ such that there is a system } (U_\gamma : \gamma < \beta) \text{ of pairwise disjoint sets with } \omega \geq |U_\gamma| > 1 \text{ for all } \gamma < \beta \text{ such that the full } G^\alpha_{\omega} \text{ with unit element } \bigcup_{\gamma < \beta} U_\gamma \text{ is not generated by a single element.} $$

Then their result is:

(6) For all α with $2 \leq \alpha < \omega$, $f\alpha = 2^\delta - 2^\xi + 1$, where $\delta = 2^\omega - 1$ and $\xi = 2^\alpha - 1$.

Now we turn to questions about the number of generators in a set algebra. Henkin proved the following (see [HMT81] 4.7):

(7) If $1 \leq \alpha, \beta < \omega$, then there is a C^α_{ω} \mathcal{U} with base of size $\alpha \cdot \beta$ which cannot be generated by $< \log_2 \beta$ elements.
For $C_\mathbb{S}_2$'s, similar results were obtained by G. Bergman [82'] using an interesting notion of rank. These results suggest the following definition. For $2 \leq \alpha, \beta < \omega$ let

$$q(\alpha, \beta) = \text{the smallest } \gamma < \omega \text{ such that every } C_\mathbb{S}_\alpha \text{ with base } \beta \text{ can be generated by } \gamma \text{ elements.}$$

Thus the results (3) and (7) can be succinctly formulated as saying $q(\alpha, \beta) = 1$ for $\beta \leq \alpha + 1$ and $q(\alpha, \alpha + \beta) \leq \log_2 \beta$. Andréka and Németi, in unpublished work, have shown:

(8) $q(\alpha, \beta) \geq 2$ if $\beta \geq 1.5\alpha$.

(9) $q(2, \varepsilon) = \text{least integer } \geq \log_2 (\varepsilon - 1)$ for $\beta > 2$.

(10) $q(\alpha, \alpha + \beta) = \text{least integer } \geq \log_2 (\beta + \beta(\alpha - 1))$.

Cf. Németi [83a'], Pálffy [80']

Finally, Erdos, Faber and Larson [81'] showed:

(11) There is a countable $C_\mathbb{S}_2$ not embeddable in any finitely generated $C_\mathbb{S}_2$.

REMARKS 3.1.69. In 3.1.101 we show that the following classes are closed under directed unions: $I G_\mathbb{S}_a$ and $IG_\mathbb{S}_a$ (for arbitrary α), $I C_\mathbb{S}_a$ and $IW_\mathbb{S}_a$ (for $\alpha < \omega$) and $IG_\mathbb{S}_a nL_\mathbb{S}_a$ (for arbitrary α). In [AN81] 4.14 the authors show that for $\alpha < \omega$, $IG_\mathbb{S}_a nL_\mathbb{S}_a$ and $IG_\mathbb{S}_a nD_\mathbb{S}_a$ are not closed under directed unions; in Andréka, Németi [84'] this negative result is extended to the class $IW_\mathbb{S}_a$.

Homomorphisms

We now give four elementary results about simple set algebras.

THEOREM 3.1.70. (i) Any $C_\mathbb{S}_a nL_\mathbb{S}_a$ with non-empty base is simple.

(ii) Any simple $C_\mathbb{S}_a nL_\mathbb{S}_a$ is isomorphic to a $C_\mathbb{S}_a nL_\mathbb{S}_a$.

(iii) Any $W_\mathbb{S}_a nL_\mathbb{S}_a$ is simple.

(iv) For $\alpha < \omega$, any $C_\mathbb{S}_a$ with non-empty base is simple.

PROOF. Only (ii) needs a proof. Let X be a simple $C_\mathbb{S}_a nL_\mathbb{S}_a$, say with base U. Fix any $p \in U$. For any $X \in A$ and $q \in U$ we set $g(q, X) = \{q \in X \mid u(p) \in X \}$. Then we set, for any $X \in A$, $g(q, X) = \{q \in X \mid u(p) \in X \}$. To show that f is a homomorphism, first suppose that $X \subseteq Y$ and $q \in f X$. Set $\Gamma = X \Delta Y$. Then $g(q, Y) = \{q \in X \mid u(p) \in X \}$. Next, suppose that $q \in f(X \cup Y)$. Let $r = f(X \cup Y)$. Since $(X \cup Y) \subseteq Y$, we get $q \in Y$. So f preserves u. Clearly it preserves $-$ and diagonal elements. Now suppose that $\kappa \leq \alpha$ and $X \in A$; we show that $f \mathbb{C}_\kappa X = \mathbb{C}_\kappa f X$. If $\kappa \leq X$, clearly $f \mathbb{C}_\kappa X = f X$ and the result follows. Assume that $\kappa \geq X$. First let $q \in f \mathbb{C}_\kappa X$. Thus $g(q, \mathbb{C}_\kappa X) = \mathbb{C}_\kappa X$. Let $\Gamma = X \Delta \mathbb{C}_\kappa X$. Thus Γ is finite. Set
r = (Γ, l) u (u × Γ) 1 g(q, C, X). Then r ∈ C, X also. Say r_x = g(q_x, X), and so g_x ∈ fX, hence g ∈ C, fX. Conversely, suppose that g ∈ C, fX: say g_x ∈ fX, so that g(q_x, X) ∈ C, X. Now

\[\{ΔC, X u (u × ΔX)\} 1 g(q_x, X) ∈ g(q, C, X), \]

so g(q, C, X) ∈ C, X X C, X = C, X and hence g ∈ fC, X.

By the simplicity of C, f is an isomorphism. Clearly f* C is regular.

COROLLARY 3.1.71. Let C, ∈ C, uW, with base U, |U| ≠ 0. Then the minimal subalgebra of C, is simple. The characteristic of C, is |U| if |U| < αω, while it is 0 if |U| ≥ αω.

COROLLARY 3.1.72. Let C, be a Gw, s with subbases (U, i ∈ I), each U, ≠ 0, I ≠ 0, and α ≥ 1. Then the minimal subalgebra of C, is simple if either (1) for all i, j ∈ I we have |U,| = |U,| < αωω, in which case C, has characteristic |U,| (for any i ∈ I) or (2) for all i ∈ I we have |U,| ≥ αωω, in which case C, has characteristic 0.

REMARKS 3.1.73. Theorem 3.1.70(i) does not extend to arbitrary C, nL, a's, or to C, aGw, s; 3.1.70(iii) does not extend to W, aGw, s; 3.1.70(iv) does not extend to G, s and Gw, s; and 3.1.71 does not extend to G, s and Gw, s for α ≥ 2. For these counterexamples, some due to Andrèka and Németi, see [HMT81] 5.5 and [AN81] section 5. The proof of Theorem 3.1.70(ii) is due to Andrèka and Németi.

REMARKS 3.1.74. We summarize the situation concerning closure of our classes under homomorphisms; see 3.1.10 and 3.1.11. The positive results are indicated in those two diagrams; the non-trivial ones are found in the following theorems:

(1) H, C, ∈ H, Cs, (due to Andrèka and Németi; see [HMT81] 5.6(4)).
(2) H, W, s ∈ H, s (1), where 1 is the one-element C, (due to Monk; see [HMT81] 6.16(2)).
(3) H, C, ∈ H, Cs, (due to Andrèka, Monk, and Németi; see [HMT81] 1.5.6(5) and [AN81] 5.3).
(4) H, W, s ∈ H, s (due to Monk; see [HMT81] 5.6(5)).
(5) I, C, ∈ H, W, s (see [AN81] 5.4(v)).
(6) G, s ∈ H, s (also if 2 ≤ α < ω).

This statement (6) is clear: the minimal subalgebra of any C, ∈ H, s is simple or of power 1 by 3.1.70(i), while it is easy to construct a G, for which this is not true.

(7) H(C, nL, a) ∈ H, s (due to Andrèka and Németi; see [AN81] 5.7).

It remains open whether H, s = H, aGw, s.
Now in 3.1.75 through 3.1.82 we discuss products of set algebras. We first make a definition extending part of 2.2.1.

DEFINITION 3.1.75. Let \mathcal{A} be a Csa with unit element V and let $W \subseteq V$. Then $r_{W}^{\mathcal{A}}$ is the function with domain A such that for any $a \in A$, $r_{W}^{\mathcal{A}}a = W \cap a$.

Using this notation, we can conveniently formulate a general result which specializes to give the most important connection between Gs's and Cs's, and between Gws's and Ws's.

THEOREM 3.1.76. Let \mathcal{B} be a full Gws with unit element $\bigcup_{i \in I} V_{i}$, where $V_{i} \cap V_{j} = 0$ for $i, j \in I$ and $i \neq j$, and $\Delta V_{i} = 0$ for all $i \in I$. For each $i \in I$ let \mathcal{A}_{i} be the full Csa with unit element V_{i}. Then $\mathcal{B} \approx P_{i \in I} \mathcal{A}_{i}$. In fact, there is a unique $f \in \text{Is}(\mathcal{B}, P_{i \in I} \mathcal{A}_{i})$ such that $r_{\mathcal{B}}^{\mathcal{B}} = p_{i} \cdot f$ for each $i \in I$.

PROOF. Clearly there is a unique f mapping B into $P_{i \in I} \mathcal{A}_{i}$ and satisfying the final condition. Clearly f is one-one and onto. By 2.3.26, $r_{\mathcal{B}}^{\mathcal{B}} \in \text{Ho}(\mathcal{B}, \mathcal{A}_{i})$ for each $i \in I$, so $f \in \text{Hom}(\mathcal{B}, P_{i \in I} \mathcal{A}_{i})$ by 0.3.6(ii).

COROLLARY 3.1.77. For $x \geq 2$ we have $\text{IGs}_{x} = \text{SPCS}_{x}$ and $\text{SPCS}_{x}^{eg} \subseteq \text{IGs}_{x}^{eg}$.

PROOF. Suppose $\mathcal{C} \in \text{Gs}_{x}$; say \mathcal{C} has unit element $\bigcup_{i \in I} U_{i}$, where $U_{i} \cap U_{j} = 0$ for distinct $i, j \in I$ and $U_{i} \neq 0$ for all $i \in I$. Let $V_{i} = ^{a}U_{i}$ for each $i \in I$, and let $\mathcal{R}, \mathcal{A}, f$ be as in 3.1.76. Clearly $\Delta^{\mathcal{A}} V_{i} = 0$ for all $i \in I$ since $x \geq 2$. Hence $C_{1}f$ is an isomorphism of \mathcal{C} onto a subdirect product of Cs_{x}'s, as desired.

Conversely, suppose $\mathcal{C} \subseteq P_{i \in I} \mathcal{A}_{i}$ each \mathcal{A}_{i} a Csa with base $U_{i} \neq 0$. We may assume that $U_{i} \cap U_{j} = 0$ for distinct $i, j \in I$. Let $V_{i} = ^{a}U_{i}$ for each $i \in I$, and again let \mathcal{R}, \mathcal{A} and f be as in 3.1.76. Clearly $C_{1}f^{-1}$ is an isomorphism of \mathcal{C} onto a Gs_{x}. For the last part of the theorem we assume the notation of the preceding paragraph, with each \mathcal{A}_{i} regular. To show that $f^{-1}C_{1}$ is a regular Gs_{x}, we use 3.1.25. Hence suppose $c \in C_{i}$, $i \in I$, $h \in f^{-1}\cap^{a}U_{i}$, $g \in ^{a}U_{i}$ and $\Delta(f^{-1}c) \cap^{a}g$. Note that $f^{-1}c = \bigcup_{j \neq i}^{a}c_{j}$. Clearly $\Delta^{\mathcal{A}}c_{i} \subseteq \Delta(\bigcup_{j \neq i}^{a}c_{j})$. Hence, by regularity of \mathcal{A}_{i} we get $g \in f^{-1}c_{i}$, as desired.

REMARK 3.1.78. If $\mathcal{C} \in \text{Gs}_{x}^{eg}$, the first part of the proof of 3.1.77 does not necessarily give $C_{1}f \in \text{Isom}(\mathcal{C}, P_{i \in I} \mathcal{A}_{i})$, \mathcal{B} a system of regular Cs's. In fact, there is a Gs_{x}^{eg} \mathcal{C} with unit element as in the proof above such that for all $i \in I$, $r_{\mathcal{C}}^{\mathcal{C}} \in \text{IGs}_{x}^{eg}$, see [AN81] 6.1. Nevertheless, it is true that $\text{SPC}_{x}^{eg} = \text{IGs}_{x}^{eg}$; in fact, also $\text{IGs} = \text{IGs}_{x}^{eg}$; see 3.1.107. Analogously to 3.1.77 we have:
COROLLARY 3.1.79. For $\alpha \geq 2$ we have $\text{IGws}_\alpha = \text{SPWs}_\alpha$.

COROLLARY 3.1.80. For $\alpha \geq 2$ we have $\text{PGs}_\alpha = \text{IGs}_\alpha$ and $\text{PGws}_\alpha = \text{IGws}_\alpha$.

COROLLARY 3.1.81. Let $\mathcal{U} \in \text{IGs}_\alpha$, $|A| > 1$ and $\alpha < \omega$. Then the following conditions are equivalent:
(i) $\mathcal{U} \in \text{ICs}_\alpha$;
(ii) \mathcal{U} is simple.

PROOF. By 3.1.77 and 3.1.70(iv) (treating $\alpha < 2$ separately).

REMARKS 3.1.82. We now discuss closure of our classes of set algebras under H, S, and P; the facts are summarized in Figures 3.1.12 and 3.1.13 for $\alpha \geq 2$. The non-trivial positive relationships in these figures are proved in the following places below: $\text{IGs}_\alpha = \text{IGws}_\alpha$ in 3.1.107; $\text{IGs}_\alpha = \text{HSPG}s_\alpha = \text{HSPGws}_\alpha$ in 3.1.108; $\text{WS}_\alpha \subseteq \text{ICs}_\alpha$ in 3.1.102; $\text{Gws}_\alpha \subseteq \text{ICs}_\alpha$ for $\alpha \geq \omega$ in 3.1.106; $\text{ICs}_\alpha \subseteq \text{WS}_\alpha$ in 3.1.139. Before considering various counterexamples, we indicate the situation for $\alpha \leq 1$:

(1) For $\alpha \leq 1$ the classes are just five in number, increasing under inclusion in the following order:
(a) $\text{IWs}_\alpha = \{ \mathcal{U} \in \text{CA}_\alpha; \mathcal{U}$ is simple $\}$;
(b) $\text{ICs}_\alpha = \{ \mathcal{U} \in \text{CA}_\alpha; \mathcal{U}$ is simple or $|A| = 1 \}$;
(c) $\text{PCs}_\alpha = \{ \mathcal{U} \in \text{CA}_\alpha; \mathcal{U}$ is a product of simple CA_α's $\}$;
(d) HPCs_α;
(e) $\text{HSPCs}_\alpha = \text{CA}_\alpha = \text{SPWs}_\alpha$.

Now we mention various counterexamples associated with 3.1.12 and 3.1.13, and indicate where they can be found.

(2) $\text{HWs}_\alpha \not\subseteq \text{PCs}_\alpha$ for $\alpha \geq \omega$; see [HMT81] 6.8(2) and 5.6(5).
(3) $\text{CS}_\alpha \not\subseteq \text{PWs}_\alpha$ and $\text{CS}_\alpha \not\subseteq \text{PCs}_\alpha$ for $\alpha \geq \omega$ (see [AN81] 6.2(ii),(i)).
(4) $\text{PWs}_\alpha \not\subseteq \text{HCs}_\alpha$ for $\alpha \geq \omega$; see [HMT81] 6.8(4).
(5) $\text{SPCs}_\alpha \not\subseteq \text{HPCs}_\alpha$; see [HMT81] 6.8(5); the counterexample is due to Andréka, Monk and Németi.
(6) $\text{CS}_\alpha \not\subseteq \text{SPDc}_\alpha$ and $\text{WS}_\alpha \not\subseteq \text{SPDc}_\alpha$ for all $\alpha > 0$; see [HMT81] 6.8(7) for the counterexample due to Andréka and Németi.

In connection with (6) the following general fact about L_α’s and D_α’s should be noted: $\text{D}_\alpha \not\subseteq \text{SPDL}_\alpha$ (hence $\text{SPDc}_\alpha \not\subseteq \text{SPDL}_\alpha$) for all $\alpha \geq \omega$; see [HMT81] 6.8(8).

(7) $\text{PWs}_\alpha \not\subseteq \text{IWs}_\alpha$ (an immediate consequence of 3.1.85).

Among the questions about 3.1.12 left open by the above counterexamples, the most important seems to be whether $\text{ICs}_\alpha \not\subseteq \text{HPW}s_\alpha$. The answer to this question (obtained by Andréka and Németi) is, consistently, no; see Sain [82a]’.
Concerning 3.1.13, note:

(8) $H \circ W_\alpha Z \mathbb{P}_\alpha C_{\alpha}^{reg}$; see [AN81] 6.2(vi).

Now we discuss direct indecomposability and related notions.

THEOREM 3.1.83. Every full W_α is subdirectly indecomposable.

PROOF. Let \mathcal{A} be a full W_α with unit element $^{\alpha}U^{(p)}$. We apply 2.4.44. Given $0 \neq y \subseteq A$, choose $f \in y$. Then there is a finite $\Gamma \subseteq \alpha$ such that $(\alpha - \Gamma)f \subseteq p$. Thus $(p) \subseteq C_{\Gamma}^{\alpha}$. Hence by 2.4.44, \mathcal{A} is subdirectly indecomposable.

COROLLARY 3.1.84. Any subdirectly indecomposable C_α is isomorphic to a W_α.

PROOF. By 3.1.17, 3.1.20, and 3.1.79.

COROLLARY 3.1.85. Every W_α is weakly subdirectly indecomposable.

PROOF. By 0.3.58(ii), 2.4.47(i), and 3.1.83.

COROLLARY 3.1.86. Let $\mathcal{A} \in IGW_\alpha$. Then the following two conditions are equivalent:

(i) $\mathcal{A} \in IW_\alpha$;

(ii) $\mathcal{A} \subseteq \mathcal{B}$ for some subdirectly indecomposable $\mathcal{B} \in IGW_\alpha$.

PROOF. (i) implies (ii) by 3.1.83. (ii) implies (i) by 3.1.79.

COROLLARY 3.1.87. Any regular C_α with non-empty base is directly indecomposable.

PROOF. By 3.1.67 and 2.4.14.

REMARKS 3.1.88. Throughout these remarks let $\alpha \geq \omega$.

(1) Examples (1) and (11) in 2.4.50 are W_α's which are respectively subdirectly indecomposable but not simple, and weakly subdirectly indecomposable but not subdirectly indecomposable.

(2) We show in 3.1.110 that any direct factor of a C_α is isomorphic to a C_α; this contrasts with the situation for homomorphic images (see 3.1.74(3)).

(3) The full C_α with base of any cardinality ≥ 2 is directly decomposable.

(4) A C_α^{reg} which is directly indecomposable by 3.1.87 but which is not weakly subdirectly indecomposable can be obtained by modifying Example (11) of 2.4.50; see [HMT81] 6.16(5).

(5) Example (1) in 2.4.50 can be similarly modified to yield a C_α^{reg} \mathcal{A} which is subdirectly indecomposable but not simple; see [HMT81] 6.16(6).

(6) As noted by Andréka and Németi, example (11) in 2.4.50 can be modified to yield a C_α^{reg} \mathcal{A} which is weakly subdirectly indecomposable but not subdirectly indecomposable; see [HMT81] 6.16(7) and [AN81] 6.3.

(7) Andréka and Németi have shown that the converse of Theorem 3.1.87 fails: there is a directly indecomposable C_α not isomorphic to a C_α^{reg}; see [HMT81] 6.16(8).
(8) It follows from 3.1.107 that any subdirectly indecomposable C_s is isomorphic to a regular C_s.

(9) Andréka and Némethi have shown that there is a $C_s\times\mathbb{N}$, which is not isomorphic to a product of directly indecomposable CA_s's; see [AN81] 6.2(i).

(10) In Andréka, Némethi [84] it is shown that there is a weakly subdirectly indecomposable $C_s^{\mathbb{N}}$ which is not isomorphic to a W_s.

It is open whether every weakly subdirectly indecomposable C_s is isomorphic to a regular C_s.

Ultraproducts

Now we turn to ultraproducts. After some technical lemmas we will be able to establish with the aid of ultraproducts the main properties of our classes of set algebras. The first very general lemma is due to Monk. For it and the other lemmas we need some notation.

DEFINITION 3.1.89. Let F be an ultralimit on a set I, $U = \{U_i : i \in I\}$ a system of sets, and α an ordinal.

(i) By an (F, U, α)-choice function we mean a function c mapping $\alpha \times (\mathbb{P}_{\subseteq I} U_i / \bar{F})$ into $\mathbb{P}_{\subseteq I} U_i$ such that for all $c_0 < \alpha$ and all $y \in \mathbb{P}_{\subseteq I} U_i / \bar{F}$ we have $c(c_0, y) \in y$.

(ii) If c is an (F, U, α)-choice function, then we define c^* mapping $\mathbb{P}(\mathbb{P}_{\subseteq I} U_i / \bar{F})$ into $\mathbb{P}_{\subseteq I} U_i$ by setting, for all $q \in \mathbb{P}(\mathbb{P}_{\subseteq I} U_i / \bar{F})$ and all $i \in I$,

$$(c^* q)_i = (c(c_0, q), c_0 < \alpha).$$

(iii) Let $A = (A_i : i \in I)$ be a system of sets such that $A_i \subseteq \mathbb{S}h(\mathcal{V}_i)$ for all $i \in I$, and let c be an (F, U, α)-choice function. Then there is a unique function $\text{Rep}(F, U, \alpha, A, c)$ (usually abbreviated by omitting one or more of the five arguments) mapping $\mathbb{P}_{\subseteq I} A_i / \bar{F}$ into $\mathbb{S}h(\mathbb{P}_{\subseteq I} U_i / \bar{F})$ such that, for any $a \in \mathbb{P}_{\subseteq I} A_i$,

$$\text{Rep}(a / \bar{F}) = \{q \in \mathbb{P}(\mathbb{P}_{\subseteq I} U_i / \bar{F}) : (i \in I : (c^* q)_i \in a_i) \in F\}.$$

LEMMA 3.1.90. Let F be an ultralimit on a set I, $U = \{U_i : i \in I\}$ a system of non-empty sets, and α an ordinal. Let c be an (F, U, α)-choice function. Further, let $\mathcal{X} \in \text{Crs}_{\alpha}$, where each \mathcal{X}_i has base U_i and unit element V_i, and set $V = \{V_i : i \in I\}$.

Then $\text{Rep}(c)$ is a homomorphism from $\mathbb{P}_{\subseteq I} \mathcal{X}_i / \bar{F}$ into a \mathcal{C}_{α}-structure. Furthermore, for every $0 \neq a / \bar{F} \in \mathbb{P}_{\subseteq I} A_i / \bar{F}$, there is a choice function c such that $\text{Rep}(c)(a / \bar{F}) \neq 0$. Namely, if $Z \in F$, $a \in \mathbb{P}_{\subseteq I} V_i$, $a_i \in a_i$ for all $i \in Z$, and $w = \langle (a_0 : i \in I) : \epsilon \alpha \rangle$, it follows that if c' is any (F, U, α)-choice function such that $c'(\epsilon, w, \bar{F}) = w$ for all $\epsilon \alpha \alpha$, then $\text{Rep}(c') (a / \bar{F}) \neq 0$.

PROOF. Let $f = \text{Rep}(c)$, $X = \mathbb{P}_{\subseteq I} U_i / \bar{F}$, $T = f(V / \bar{F})$. Clearly f preserves $+$. Now
let $\kappa, \lambda < \alpha$; we show that f preserves d_{α}. Note that $fd_{\alpha} \subseteq T$ since f preserves \cdot. Now let $q \in T$. Then $\{i \in I : (c^\kappa q)_i \in V_q \} \subseteq F$, and so

$q \in d_{\alpha} \iff \{i \in I : (c^\kappa q)_i \in D^Y_{\alpha} \} \subseteq F \iff \{i \in I : (c^\kappa q)_i = (c^\kappa q)_i \in F \iff (i \in I : \langle \varepsilon, q \rangle)_i = (\varepsilon, q)_i \subseteq F \iff q_i = q_i \iff q \in D^Y_{\alpha}$.

Now let $a \in P_{\varepsilon \in I} A_{\varepsilon}$. We show that f preserves $\varepsilon^\kappa a$. Clearly $f(-a/F) \subseteq T \setminus f(a/F)$. Now let $q \in T \setminus f(a/F)$. Thus $\{i \in I : (c^\kappa q)_i \in V_q \} \subseteq F$ and $\{i \in I : (c^\kappa q)_i \in a_i \} \not\subseteq F$, i.e., $\{i \in I : (c^\kappa q)_i \in V_q \setminus a_i \} \subseteq F$. Therefore $q \in f(-a/F)$.

Next, let also $\kappa < \alpha$; we show that f preserves c_α. First suppose that $q \in f(c, a/F)$. Let $M = \{i \in I : (c^\kappa q)_i \in C^W_{\alpha} \}$; thus $M \subseteq F$. Then there is an $s \in P_{\varepsilon \in I} U_{\varepsilon}$ such that $\langle (c^\kappa q)_i \rangle_{i \in M} \subseteq a_i$ for all $i \in M$. We show that $a_i \subseteq c(\varepsilon, a/F)$, where $u = a/F$. Let $Z = \{i \in I : i = (c(\varepsilon, a/F)) \}$. Then $Z \subseteq F$ since $c(\varepsilon, a/F) \subseteq a/F$. For any $i \in Z \cap M$ we have

$(c^\kappa q)_i = (c(\varepsilon, q)_i)_{\varepsilon < \alpha} = [(c^\kappa q)_i]_{\varepsilon < \alpha} \subseteq a_i$.

Thus, indeed, $a_i \subseteq f(a/F)$. Hence $q \in C^W_{\alpha} f(a/F)$. Second, suppose that $q \in C^W_{\alpha} f(a/F)$. Thus $q \in T$ and $(\alpha \setminus \varepsilon) \setminus q \subseteq (\alpha \setminus \varepsilon) \setminus p$ for some $p \in f(a/F)$. Let $M = \{i \in I : (c^\kappa p)_i \in a_i \}$; thus $M \subseteq F$. Also since $q \in T$ the set $Z = \{i \in I : (c^\kappa q)_i \in V_q \}$ is in F. Now let $i \in M \cap Z$. Then $(c^\kappa q)_i \in V_q$ and $(\alpha \setminus \varepsilon) \setminus (c^\kappa q)_i \subseteq (c^\kappa p)_i \subseteq a_i$, proving that $(c^\kappa q)_i \in C^W_{\alpha} a_i$. Thus $q \in f(c, a/F)$, since $M \cap Z \subseteq F$.

We have now verified that f is a homomorphism. For the second part of the conclusion of the lemma, assume its additional hypotheses. Let $q = (\omega x/F)_{\varepsilon < \alpha}$ and $f' = Rep(c')$. We show that $q \in f'(a/F)$ (hence $f'(a/F) \neq 0$, as desired). In fact, for any $i \in Z$ we have

$(c^\kappa q)_i = (c(\varepsilon, q)_i)_{\varepsilon < \alpha} = (c(\varepsilon, q)_i)_{\varepsilon < \alpha} = (x)_i = a_i$.

So $q \in f'(a/F)$, as desired.

Now we give some specialized versions of Lemma 3.1.90; they are due to Andréka and Németi. The first one does not put any restrictions on the choice function c or the ultrafilter F involved.

Lemma 3.1.91. Assume the hypotheses of 3.1.90, and let $\mathcal{B} = Rep(c)^* (P_{\varepsilon \in I} Y_{\varepsilon}/F)$. Then:

(i) If $\mathcal{U} \in Gw_{\alpha}$, then $\mathcal{B} \in Gw_{\alpha}$; moreover, for $\alpha \geq 2$, every subbase of \mathcal{B} has the form $P_{\varepsilon \in I} Y_{\varepsilon}/F$ for some system $(Y_{\varepsilon} : i \in I)$ such that $Y_{i \in I}$ is a subbase of $\mathcal{U}_{i \in I}$ for each $i \in I$.

(ii) If κ is a cardinal, $\alpha \geq 2$, $\lambda = |\kappa / F|$, and $\mathcal{U} \in (Gw_{\alpha})$, then $\mathcal{B} \in (Gw_{\alpha})$.

(iii) If $\alpha \geq 2$ and $\mathcal{U} \in Gw_{\alpha}^m$ then $\mathcal{B} \in Gw_{\alpha}^m$, and the base of \mathcal{B} is either $P_{\varepsilon \in I} U_{\varepsilon}/F$ or 0.

(iv) If $\alpha \geq 2$ and $\mathcal{U} \in Gw_{\alpha}^m$, then $\mathcal{B} \in Gw_{\alpha}^m$.

(v) If $\mathcal{U} \in Cs_{\alpha}$ then $\mathcal{B} \in Cs_{\alpha}$ and \mathcal{B} has base $P_{\varepsilon \in I} U_{\varepsilon}/F$.

Proof. Let $f = Rep(c)$. First suppose $\mathcal{U} \in Cs_{\alpha}$. Thus $V_{i \in I} \subseteq U_{i \in I}$ for each $i \in I$. We
need to prove that $f(V/F) = \mathcal{X}$, where $X = \mathcal{P}_\infty U_{i\neq j}$. Let $q \in \mathcal{X}$. Then $(c^2 q)_i^{\mathcal{G}} = V_i$ for all $i \in I$, so $q \in f(V/F)$. The converse being obvious, we thus have $\mathcal{B} \in \mathcal{G}_{\mathcal{G}^a}$ with base X. Thus (v) holds.

Next, suppose that $\mathcal{X} \in \mathcal{G}_{\mathcal{G}^a}$. Then for each $i \in I$ we can write

$$V_i = \bigcup \{ a Y_{ij}^{(p_j)} : j \in J_i \},$$

where $a Y_{ij}^{(p_j)} \cap a Y_{ik}^{(p_k)} = 0$ whenever $j \neq k$. Let $S_{ij} = a Y_{ij}^{(p_j)}$. Now for each $j \in \mathcal{P}_\infty J_i$, we set

$$W_j = \{ q \in \mathcal{X} : \{ i \in I : (c^2 q)_i^{S_{ij}} \in F \},$$

$$Q_j = \mathcal{P}_\infty Y_{ij}^{(p_j)} / F(U).$$

Now we claim

(1) $f(V/F) = \bigcup \{ W_j : j \in \mathcal{P}_\infty J_i \}$.

For, let $q \in f(V/F)$. Let $M = \{ i \in I : (c^2 q)_i^{S_{ij}} \in V_i \}$, so that $M \in F$. Choose $j \in \mathcal{P}_\infty J_i$ so that $(c^2 q)_i^{S_{ij}}$ for all $i \in M$. Thus $q \in W_j$, as desired. Clearly each $W_j \in f(V/F)$, so (1) holds.

(2) If $j, k \in \mathcal{P}_\infty J_i$ and $\bar{j} \neq \bar{k}$, then $W_j \cap W_k = 0$.

For, assume the hypothesis of (2) and let $q \in W_j$. Let $Z = \{ i \in I : (c^2 q)_i^{S_{ij}} \} \in F$ and let $H = \{ i \in I : (c^2 q)_i^{S_{ij}} \} \in F$. Then $Z \cap I \subseteq \{ i \in I : (c^2 q)_i^{S_{ij}} \} \notin F$, while $Z \in F$, so $H \notin F$. Thus $q \notin W_k$, as desired.

(3) For any $j \in \mathcal{P}_\infty J_i$, we have $W_j = \bigcup q \in W_j a Q_j^{[q]}$.

For, first let $q \in W_j$. Let $\kappa < \alpha$. Now $\{ i \in I : (c^2 q)_i^{S_{ij}} \in F \}$ and hence $\{ i \in I : (c^2 q)_i^{S_{ij}} \in F \}$, and further, since $c(q, q) \in q$, $q \in Q_j$. Thus \subseteq in (3) holds. For the other direction, it suffices to take $q \in W_j$, $\kappa < \alpha$, $u \in Q_j$, and show that $q \in W_j$. Let $M = \{ i \in I : (c^2 q)_i^{S_{ij}} \}$ and $Z = \{ i \in I : (c^2 q)_i^{S_{ij}} \} \in F$. Then $M \in F$ since $q \in W_j$ and $\zeta \in F$ since $u \in Q_j$ and $c(q, q) \in u$. So $M \in F$. Let $i \in M \cap Z$. Then

$$(c^2 q)_i^{S_{ij}} = (c(\lambda, q)_i^{S_{ij}}, \lambda < \alpha) = (c(\lambda, q)_i^{S_{ij}}, \lambda < \alpha)_{c(q, q)/} = [(c^2 q)_i^{S_{ij}}]^{\mathcal{G}^a}_{c(q, q)} \in S_{ij}.$$}

Thus $q \in W_j$, as desired.

Now (1), (2), (3) immediately yield that $\mathcal{B} \in \mathcal{G}_{\mathcal{G}^a}$ upon noting that $W_j = W_k$ if $j \neq k$; they also give all other parts of 3.1.91 except for the following two points.

First, the final assertion of (iii): assume the hypothesis of (iii), and suppose the base of \mathcal{B} is non-empty. By (1), choose $j \in \mathcal{P}_\infty J_i$ and $q \in W_j$. The base of \mathcal{B} is clearly contained in X; now assume $z \in X$. Then clearly $q \in W_j$ and so z is in the base of \mathcal{B}, as desired.

Second, we prove (iv); so we assume $z \in \mathcal{G}_{\mathcal{G}^a}$. By (2) and (3) it is
enough to assume that \(j, k \in P_{IC}J_i \) with \(j/\bar{F} \neq k/\bar{F} \) and show that \(Q_j n Q_k = 0 \) or \(Q_j = Q_k \). The assumption yields \(\{ i \in I : j i \neq k i \} \subseteq \{ i \in I : Y_{i,k} = Y_{i,k} \} \{ i \in I : Y_{i,j} n Y_{i,k} = 0 \} \), so the desired conclusion is clear. This finishes the proof of 3.1.91.

Lemma 3.1.92. Assume \(a \geq 2 \). Let \(K \in \{ Gw_s^{nm}, Gw_s^{cm}, G_s, C_s, W_s \} \) and let \(\mathcal{A} \in K \). Let \(F \) be an ultrafilter on \(I \), and \(U_i \neq 0 \) the base of \(\mathcal{A}_i \) for each \(i \in I \).

Then for every non-zero \(z \in P_{IC}J_i/\bar{F} \) there is an \((F, U, \alpha)\)-choice function \(c \) such that, with \(B = \text{Rep}(c)^*(P_{IC}/\mathcal{A}_i/\bar{F}) \), we have: \(B \in K \), \(\text{Rep}(c)(z) \neq 0 \), and \(B \) has base \(P_{IC}U_i/\bar{F} \).

Proof. The cases \(K = Gw_s^{cm} \) and \(K = C_f \) are given by 3.1.90 and 3.1.91. Throughout the rest of the proof we assume that \(V_i \) is the unit element of \(\mathcal{A}_i \) for each \(i \in I \), \(X = P_{IC}U_i/\bar{F} \), and \(Y_{l, p, s, w} \) and \(Q \) are as in the proof of 3.1.91. Say \(z = a/\bar{F} \).

First we take the case \(K = Gw_s^{nm} \). We may assume that there is an \(r \in P_{IC}J_i \) such that \(p_{i, r} \in a_i \) for all \(i \in I \). Now we define an equivalence relation \(= \) on \(P_{IC}J_i \) by setting, for all \(j, k \in P_{IC}J_i \),

\[
\ dewiff \{ i \in I : Y_{i,j} = Y_{i,k} \} \subseteq F.
\]

Let \(l \) be a function mapping \(P_{IC}J_i/\bar{F} \) into \(P_{IC}J_i \) such that \(l/z \) for all \(z \in P_{IC}J_i/\bar{F} \) and \(l(r/\bar{F}) = r \). Set \(l' = (p_{l,i,r} : i \in I : z \in P_{IC}J_i/\bar{F}) \). Now we claim (continuing the enumeration in the proof of 3.1.91):

(4) If \(z, w \in P_{IC}J_i/\bar{F} \), \(z \neq w \) and \(\kappa < \alpha \) then \((p_{l', i, r} z) / \bar{F} \neq (p_{l', i, r} w) / \bar{F} \).

In fact, then the set \(Z = \{ i \in I : Y_{i, j, w} \neq Y_{i, l, w} \} \) is in \(F \) and by normality, \(Y_{i, j, w} n Y_{i, l, w} = 0 \) for all \(i \in Z \). Hence \((l'z)_\kappa \neq (l'w)_\kappa \) for all \(i \in Z \) and all \(\kappa < \alpha \). Thus the conclusion of (4) holds.

By (4), there is an \((F, U, \alpha)\)-choice function \(c \) such that:

(5) \(c(\kappa, (p_{l', i, r} z) / \bar{F}) = p_{l', i, r} z \) for all \(\kappa < \alpha \) and \(z \in P_{IC}J_i/\bar{F} \).

Now let \(f = \text{Rep}(c) \). By 3.1.91(iv), \(B \in Gw_s^{nm} \). Note that if \(w = (p_{l, i, r} : i \in I : \kappa < \alpha) \), then for each \(\kappa < \alpha \), \(\kappa = p_{l, i, r}(r/\bar{F}) \) since \(l(r/\bar{F}) = r \). Hence by (5) the hypotheses in the second part of 3.1.90 are fulfilled, and we infer that \(f \neq 0 \). It remains only to show that the base of \(B \) is \(X \). It is obviously a subset of \(X \), so suppose \(t \in P_{IC}U_i \). Choose \(u \in P_{IC}J_i \) such that \(t_\kappa \in Y_{k, u} \) for all \(i \in I \). Set \(y = t/\bar{F} \) and let

\[
q = (p_{l, i, r}(u/\bar{F})) / \bar{F} : \kappa < \alpha_y^0 \).
\]

We claim that \(q \in f(\{ V_i : i \in I / \bar{F} \}) \), hence \(y \) is in the base of \(B \). To prove this, let \(u \in u/\bar{F} \). Thus \(w = v/\bar{F} \), so the set \(M = \{ i \in I : Y_{i, v} = Y_{i, w} \} \) is in \(F \). Also, \(c(0, y) \in y \), so the set \(N = \{ i \in I : c(0, y)_i = t_i \} \) is in \(F \). Now for any \(i \in M \cap N \) we have:
(c'q)_k = \langle c(q,w), k \rangle_{\kappa} < \alpha) = ((p_{j'}c'z(w\not=))_k : k < \alpha)_{\kappa}^{0}
abla_{Q_{j}k} \not= \emptyset \text{ by } (5)

= ((f'_w(w\not=))_k : k < \alpha)_{\kappa}^{0} = (p_{j'}c'z(k : \kappa)_{\kappa}^{0} \not\in \gamma_{i : \kappa}^{0} \cap \gamma_{j : \kappa}^{0})_{V_i}.

Thus \(q \in f((V_i : i \in I) / F) \), as desired. This completes the case \(K = Gw_{\kappa}^{n,m} \).

Next, suppose \(K = Gs_{\kappa} \). We retain the notation above. Note that if \(\alpha < \kappa \), and \(i \in I \), then \((p_{j'}c'z)_k = (f'_w)_k = P_{i,k} \not\in \gamma_{i : \kappa}^{0} \). Thus \(p_{j'}c'z \in p_{i,k} \not\in \gamma_{i : \kappa}^{0} \). Therefore \((p_{j'}c'z)_k \in \gamma_{i : \kappa}^{0} \). Also observe that if \(\alpha < \kappa \), and \(j \not= k \), then \(\lambda \not= \lambda(j \not=) \). For all \(\alpha < \kappa \), and \(i \in I \), and \((f'_w)_k \not\in \gamma_{i : \kappa}^{0} \). It follows that there is an \(\gamma_{i : \kappa}^{0} \)-choice function \(c_s \) satisfying not only (5) but also the following condition:

(6) If \(\kappa < \alpha \), then \(j \in P_{i,k} \gamma_{i : \kappa}^{0} \), and \(q \in Q_j \), then \(c(q,w) \in p_{i,k} \not\in \gamma_{i : \kappa}^{0} \).

Thus by the first part of this proof it remains only to show that \(\mathcal{B} \) is a \(Gs_{\kappa} \). Now we claim

(7) If \(j,k \in P_{i,k} \gamma_{i : \kappa}^{0} \), and \(j \not= k \), then \(Q_j \not\in \gamma_{i : \kappa}^{0} \).

In fact, assume \(y \in P_{i,k} \gamma_{i : \kappa}^{0} \). Let \(H = (i : i \in I) / F \), and \(y \in Y_{i,i,k} \). Clearly \(H \not\in F \) and hence \(y \not\in Q_i \). So (7) holds. Hence by (1) and (3) it suffices to show that \(\forall q \in f((V_i : i \in I) / F) \) for each \(j \in P_{i,k} \gamma_{i : \kappa}^{0} \). Let \(q \in Q_j \). Then for any \(\kappa < \alpha \), and \(i \in I \) we have by (6) \((c'q)_k = c(q,w)_k \in Y_{i,i,k} \not\in \gamma_{i : \kappa}^{0} \). So \((c'q)_k \not\in \gamma_{i,i,k} \not\in \gamma_{i : \kappa}^{0} \). Hence \(q \in f((V_i : i \in I) / F) \), as desired. This finishes the case \(K = Gs_{\kappa} \).

Only the case \(K = Ws_{\kappa} \) remains. Since \(Ws_{\kappa} \not\in Gw_{\kappa}^{n,m} \) by 3.91(1)(ii) the conclusion that the base of \(\mathcal{B} \) should be \(P_{i,k} \gamma_{i : \kappa}^{0} \) will follow from the other conditions. Let \(N = (i : |U_i| > 1) \). Let \(s \) and \(w \) be as in the last part of 3.90. Then it is easily seen that there is an \(\gamma_{i : \kappa}^{0} \)-choice function \(c_s \) satisfying the following two conditions:

(8) \(c(q,w) / F = w \) for all \(\kappa < \alpha \),

(9) \(c(q,w) \not= w \) whenever \(\kappa < \alpha \), \(y \in X \), \(y \not= w \), and \(i \in N \).

Again let \(f = \text{Rep}(c) \). By 3.90, \(f \not= \emptyset \). Now let \(q = (w/ \not\in F : \kappa < \alpha) \). We shall show that \(f(V_i / F) = \gamma^X_0 \). Note that \(q \in \gamma^X_0 \).

If \(N \not\in F \), then \(|X| = 1 \) and hence \(0 = f(V_i / F) \not\in \gamma^X_0 = (q) = \gamma^X_0 \), so \(f(V_i / F) = \gamma^X_0 \).

Assume that \(N \in F \). Let \(p \in \gamma^X_0 \), \(i \in N \), and \(\kappa < \alpha \). Then \((c'p)_k \not= \emptyset \) iff \(p_{i,k} \not\in \gamma_{i : \kappa}^{0} \), and hence \((c'p)_k \not\in \gamma_{i : \kappa}^{0} \). Since \(N \not\in F \) it follows that \(p \in f(V_i / F) \) iff \(p \in \gamma^X_0 \), as desired. This finishes the proof of 3.92.

Our next version of 3.90 concerns regularity.

LEMMA 3.93. Assume the hypotheses of 3.90. Let \(f = \text{Rep}(c) \). Also suppose \(a \in P_{i,k} A_i \) and for each \(i \in I \), \(a_i \) is regular in \(\mathcal{U}_i \), \(\Delta a_i \not\in \Delta f(a/\not\in F) \). Then \(f(a/\not\in F) \) is regular.

PROOF. We assume all the hypotheses. Let \(\Gamma = l u N f(a/\not\in F) \) and assume that \(p \in f(a/\not\in F) \), \(q \in f(V_i / F) \), and \(\Gamma p \not= q \). We want to show that \(q \in f(a/\not\in F) \). Let
\[H = \{ i \in I : (c^i p)_i \in a_i \text{ and } (c^i q)_i \in V \}; \]

thus \(H \in F \). By the definition of \(c^i \), for all \(i \in I \) we have \(\Gamma^1 (c^i p)_i \subseteq (c^i q)_i \). Thus for any \(i \in H \), the regularity of \(a_i \) implies that \((c^i q)_i \in a_i \). Since \(H \in F \), it follows that \(q \in f(a/F) \), as desired.

Two more extensions of 3.1.90 give algebraic versions of the upward Lowenheim-Skolem theorem; they are due to AndrÉka and Németh (see [HMT81] 7.12 and 7.23), generalizing results of Henkin, Monk [74'].

LEMMA 3.1.94. Let \(\mathcal{U} \) be a Crs\(_a\) with base \(U \) and unit element \(V \), and let \(F \) be an ultrafilter on a set \(I \). Let \(\epsilon \) be an \(\{ F, (U : i \in I, \alpha) \} \)-choice function, and let \(f = \text{Rep}(F, (U : i \in I, \alpha), (\mathcal{U} : i \in I, \epsilon)) \). Define \(\delta \in \mathcal{A}(I/F) \) and \(\epsilon \in U(I/F) \) by

\[\delta = (\langle a : i \in I/F : a \in A \rangle), \]

\[\epsilon = (\langle u : i \in I/F : u \in U \rangle). \]

We assume also that for every \(r \in V \) there is a \(Z \in F \) such that, for all \(\kappa \prec \alpha \), \(c(\kappa, r(\kappa)) \supseteq (\kappa : i \in Z) \). Finally, let \(g = f \circ \delta \) and \(\mathcal{B} = g^* \mathcal{U} \). Then:

(i) \(\epsilon \) is one-one, and \(\epsilon^* \) is a base-isomorphism from \(\mathcal{U} \) onto some Crs\(_a\).

(ii) \(r_{\mathcal{UV}}^\mathcal{B} \) is an ext-isomorphism of \(\mathcal{B} \) onto \(\epsilon^* \mathcal{U} \).

(iii) \(\delta \) is an isomorphism of \(\mathcal{U} \) onto \(I_{\mathcal{UV}} \).

(iv) \(g \) is a sub-base-isomorphism of \(\mathcal{B} \) onto \(\mathcal{B} \).

(v) \(\epsilon \) is a sub-base-isomorphism of \(\mathcal{U} \) onto \(\mathcal{B} \).

PROOF. (iii) is a special case of 0.3.67, and (i) is immediate from 3.1.36 and 3.1.37. By 3.1.90, \(f \) is a homomorphism. Hence \(g \) is a homomorphism. Thus it is now clear that (ii) and (iv) follow from (v). To establish (v), let \(a \in A \); we want to show that

1. \(g \mathcal{V} = \{ \epsilon \circ s : s \in a \} \).

First suppose \(q \in g \mathcal{V} \). Since \(q \in \mathcal{V} \), there is an \(s \in V \) such that \(q = \epsilon \circ s \). By the hypothesis of the lemma choose \(Z \in F \) such that \(c(\kappa, s(\kappa)) \supseteq (\kappa : i \in Z) \) for all \(\kappa \prec \alpha \). Let \(H = \{ i \in I : (c^i q)_i \in a_i \} \); thus \(H \in F \). Since \(HnZ \in F \), we can choose \(i \in HnZ \). Then

\[s = (\langle \kappa : \kappa < \alpha \rangle = (c(\kappa, (c_\kappa)_i : \kappa < \alpha) = (c(\kappa, q)_i : \kappa < \alpha) = (c^i q)_i \in a. \]

Thus \(q = \epsilon \circ s \) implies that \(q \) is in the right side of (1).

Second suppose \(q = \epsilon \circ s \) with \(s \in a \). Since \(a \subseteq V \), we have \(q \in \mathcal{V} \). Again by the hypothesis of the lemma \(Z \subseteq F \) be such that \(c(\kappa, s(\kappa)) \supseteq (\kappa : i \in Z) \) for all \(\kappa < \alpha \). Then \((c^i q)_i = s \in a \) for all \(i \in Z \), so \(q \in g \mathcal{V} \).

LEMMA 3.1.95. Assume \(\alpha \succ 0 \). Let \(\mathcal{U} \) be a Gws\(_a\) with base \(U \) and unit element \(V \), and let \(F \) be an \(|\alpha| \)-regular ultrafilter on some set \(I \). Then there is an \(\{ F, (U : i \in I, \alpha) \} \)-choice function \(c \) such that, if we let \(f, \delta, \epsilon, g \) and \(\mathcal{B} \) be as in 3.1.94 then in addition to (i)–(v) there we have the following conditions:
(vi) \(g \) is a strong sub—base—isomorphism;
(vii) \(I V = \sigma(\sigma(a I U) n I F) \);
(viii) the base of \(B \) is \(I U / F \);
(ix) \(A \in K \) implies \(B \in K \) for all \(K \in \{ W_{\omega}, C_{\omega}, G_{\omega}, G_{W_{\omega}} \} \).

PROOF. Assume the hypothesis. Say \(V = \bigcup_{J \in I} \sigma(\sigma(a J U) n J F) \), where \(0 = \sigma(\sigma(a J U) n J F) \) for distinct \(j, k \in J \). Let \(Y = (Y_{i} : i \in J) \) and \(X = I U / F \). Let \(R = \{(j, k) : i \in J; Y_{i} = Y_{j}\} \). Thus \(R \) is an equivalence relation on \(J \). Let \(K \) be a subset of \(J \) having exactly one element in common with each equivalence class under \(R \). Let \(L_{K} = \bigcup_{J \in I} \) exactly one element in common with each equivalence class under \(F((K \in I)) \), with \(\forall i \in I \in L \) for each \(j \in K \).

Now we define functions \(w = \sigma^{(1)}(U) \) and \(v = \sigma^{(1)}(J) \). Let \(y \in Y \). Choose \(k_{y} = k \in I \) such that \(y n_{P_{K}} Y_{k_{y}} = 0 \), and \(k \) constant if \(y = u \) for some \(u \in U \). Let \(wv \) be the unique element of \(L_{K}(k_{y}) \). Thus \(y n_{P_{K}} Y_{k_{y}} Y_{\neq 0} \), so we can pick \(wv \in y n_{P_{K}} Y_{k_{y}} \) with \(wv = (w, i \in I) \) if \(y = u \). Now \(w \) and \(v \) have the following properties:

- (1) \(wv \in y \) for all \(y \in X \);
- (2) \(wu = (w, i \in I) \) for all \(u \in U \);
- (3) for all \(y \in X \) and \(i \in I \) we have \((w, i) \in Y_{k_{y}} \);
- (4) if \(k, q \in R_{g} \) and \((i \in I; Y_{k} = Y_{q}) \in F \), then \(k = q \).

Since \(F \) is \(|\alpha| \)—regular, choose \(h \in \{ |\alpha| ; |\alpha| < \omega \} \) such that \((i \in I; x \in h) \in F \) for all \(x \in \alpha \). Now let \(c \) be the \((F; (U; i \in I, \alpha)) \)—choice function such that for all \(x \in \alpha \), \(y \in X \), and \(i \in I \),

\[
 c(x, y) = \begin{cases}
 1_{P_{K}}(wv) \text{ if } x \notin h, \text{ and } y = \sigma^{*} U, \\
 (w, i) \text{ otherwise.}
 \end{cases}
\]

Note that \(c(x, y) \in P_{\alpha I} Y_{k_{y}} \) for all \(x \in \alpha \) and \(y \in X \). Let \(f, \sigma, g \) and \(B \) be as in 3.1.94. Then (vi) is easily checked, using (2), and (vi) clearly follows from (vii). To prove (viii), let \(Z \) be the base of \(B \); we have to show \(Z = X \). It is obvious that \(Z \subseteq X \). Suppose \(x \in \sigma^{*} U \); say \(y = u \) with \(u \in U \); in fact say \(u \in Y_{i} \) with \(j \in J \). Now let \(q = (c_{\alpha}, x \in \alpha < \alpha^{\theta}) \). Thus \(q \in \sigma^{*} X \), and for any \(i \in I \) we have \((c_{q})_{y} = (p_{i})_{u} \in \sigma^{*}(\sigma^{2}) \subseteq U \) using (2) and the definition of \(c \). It follows that \(q \in \sigma^{*} V \), hence \(q \in Z \). Now let \(y \in X \in \sigma^{*} U \). Let \(q = (y \in \alpha < \alpha) \). Then for any \(i \in I \),

\[
 (c_{q})_{y} = (c(x, y) ; x \in \alpha \Leftrightarrow Y_{i}) \in P_{\alpha I} Y_{k_{y}} U ((w, i) \in h) \in \sigma^{*}(\sigma^{2}) \subseteq U.
\]

Hence again \(q \in \sigma^{*} V \) and \(y \in Z \). So (viii) holds.

Now we turn to the parts of (ix). The cases \(K = G_{W_{\omega}} \) and \(K = C_{\omega} \) are taken care of by 3.1.91. If \(A \) is regular, then so is \(B \) by 3.1.93 since \(g \) is an isomorphism. Next suppose \(K = G_{\omega} \). Thus for all \(j, k \in J \) we have \(Y_{j} = Y_{k} \) or \(Y_{j} = Y_{k} \in F \). For each \(r \in R_{g} \) we set \(Q_{r} = P_{\alpha I} Y_{r} / F \). Now

(5) if \(r, r' \in R_{g} \) and \(r \neq r' \), then \(Q_{r} n Q_{r'} = 0 \).

For, suppose \(y \in P_{\alpha I} Y_{r}, z \in P_{\alpha I} Y_{r'}, \) and \((i \in I; y_{i} = z_{i}) \in F \). Then \((i \in I; Y_{i} = Y_{r_{i}}) \in F \), so by (4) \(r = r' \).
(8) $g V \subseteq \bigcup_{r \in R_{gV}} a Q_r$.

For, let $q \in g V$. Thus the set $M = \{ i \in I : (c^i q)_i \in V \}$ is in F. We claim that $q \in a Q_{gV}$. For each $i \in M$ choose $j_i \in J$ so that $(c^i q)_i \in a Y_{j_i}$. Now for any $i \in M$ and $\kappa < \alpha$ we have $(c^i q)_{\kappa} \in Y_{j_i}$ and also $(c^i q)_{\kappa} = (c(\kappa, q))_{\kappa} \in Y_{(\kappa q)_h}$ by the note following the definition of c, so $Y_{j_i} = Y_{(\kappa q)_h}$. So for any $i \in M$ and $\kappa < \alpha$ we have $c(\kappa, q)_{\kappa} \in Y_{(\kappa q)_h}$, thus $q \in a Q_{gV}$ for any $\kappa < \alpha$, as desired.

(7) If $r \in R_{gV}$, $\kappa < \alpha$, and $y \in Q_r$, then $c(\kappa, y) \in P_{cI} Y_{\kappa}$. For, choose $z \in y \cap P_{cI} Y_{\kappa}$. By the remark after the definition of c we also have $c(\kappa, y) \in y \cap P_{cI} Y_{(\kappa q)_h}$. Thus the set $M = \{ i \in I : z_i = c(\kappa, y)_i \}$ is in F. Since $M \subset \{ i \in I : Y_{\kappa} = Y_{(\kappa q)_h} \}$, we infer from (4) that $\forall y = r$, so (7) follows.

(8) For all $r \in R_{gV}$ we have $a Q_r \subseteq g V$.

In fact, let $q \in a Q_r$. By (7) we have, for all $\kappa < \alpha$, $c(\kappa, q) \in P_{cI} Y_{\kappa}$. Hence for all $i \in I$, $(c^i q)_i = (c(\kappa, q)_i)_{\kappa < \alpha} \in a Y_{\kappa} \subseteq V$. Hence $q \in g V$.

By (5), (6), (8) we have $B \in G_{s_a}$.

In the case $K = W_{s_a}$, we redefine c. Let $\mathfrak{A} \in W_{s_a}$, say $V = a U^{\{ q \}}$. We may assume that $|\mathfrak{A}| = 1$. For each $u \in U$ and $\kappa < \alpha$ let $c(\kappa, u) = (u_i : i \in I)$. Now suppose $y \in X \cap a U$ and $\kappa < \alpha$. Choose $k_y \in y$ and let $Z_y = \{ i : k_y \neq p_c \}$. Thus $Z_y \in F$ since $y \neq c^p$. Let $c(\kappa, y) = Z_y \upharpoonright k_y \cup \{ u_y : i \in \alpha - Z_y \}$, where $u_y \in U \setminus \{ p_c \}$. Thus c is an $(F, \{ U : i \in I(\alpha) \})$-choice function, with the additional property

(9) for all $\kappa < \alpha$ and all $y \in X \cap \{ c^p \} = \{ p_c \}$ we have $p_c \notin R g(c, y)$.

Now to establish (vi)–(viii) as well as $B \in W_{s_a}$ it suffices to show that $g V = a X^{\{ c^p \}}$. First suppose $q \in a X^{\{ c^p \}}$. Let $i \in I$. Then $(c^i q)_i \in a U$, obviously. Let $\Gamma = \{ \kappa : \alpha - \kappa \neq c^p \}$. Then Γ is finite, and for $\kappa \in \alpha - \Gamma$ we have $(c^\kappa q)_\kappa = c(\kappa, c^p)_\kappa = c(p, c^p)_\kappa = p_c$. Thus $(c^\kappa q)_\kappa \notin a U^{\{ c^p \}} = V$. Hence $q \in g V$.

Conversely, suppose $q \in a X \setminus a X^{\{ c^p \}}$; we show that $q \notin g V$. Let $\Gamma = \{ \kappa : \alpha - \kappa \neq c^p \}$; thus Γ is infinite. For any $\kappa \in \Gamma$ and $i \in I$ we have $c(\kappa, c^p)_\kappa = p_c$ by (9). Therefore $(c^i q)_i \notin a U^{\{ c^p \}} = V$ for all $i \in I$, and consequently $q \notin g V$.

This completes the proof of 3.1.95.

REMARKS 3.1.96. Lemmas 3.1.90–3.1.93 are algebraic forms of the ád lema for ultraproducts. In [AN81] it is shown that various hypotheses in 3.1.90–3.1.95 are essential. Andréka and Németi also showed that these lemmas do not generalize to arbitrary reduced products.

Now we use the above lemmas to prove various closure properties of our classes of set algebras. First we consider closure under ultraproducts.

THEOREM 3.1.97. $U_{K} = 1K$ for $K \in \{ G_{s_a}, G_{s_a}, G_{s_a}^{m} \}$, if $\alpha \geq 2$.
3.1.98 CYLINDRIC SET ALGEBRAS (ULTRaproducts)

PROOF. By Lemmas 3.1.91 and 3.1.92 we have UpKcSPK for each class K considered. We have I0KcUpK in general, by 0.3.62, while SPKcIK for K e Gwsa, Gsa} by 3.1.77 and 3.1.79. One can show that SPGwsa^nm c IGwsa^nm by using 3.1.78.

THEOREM 3.1.98. UpCs a = ICs a for a<ω.

PROOF. This is true by 3.1.91(v) and 3.1.70(iv), since simplicity is an elementary property for a<ω (by 2.3.14).

THEOREM 3.1.99. For a = 1 we have UpGs a = IGs a.

PROOF. By 3.1.91(i), 3.1.17, and simplicity again.

REMARK 3.1.100. For a 2ω, ICs a and IWs a are not closed under ultraproducts (but see 3.1.109 below); this was first noticed by Monk [65]. In fact, let X be any Cs a whose base U satisfies 2 = |U|<ω. Let I = 2a, where a = 2ω, and choose an ultrafilter F over I such that |A/ F| = 2I (see, e.g., Chang, Keisler [73**]). Now X has characteristic |U|, and hence so does I/ F. But any Cs a of characteristic |U| has base of cardinality |U|, and hence has at most |I| elements. Thus I/ F # ICs a. The same construction works for WS a.

We can use the above results to show that some of the classes of isomorphs of our set algebras are closed under directed unions; see [HMT81] 7.10 and 7.11, and Andréka, Németi [75*].

THEOREM 3.1.101. UL e K whenever L is a non-empty subset of K directed by C, for K = ICs a if a<ω, and for arbitrary a, for K e {IGwsa, IGsa, IGs a^nm, IWs a,nLf a, ICs a^nm,nLf a}.

PROOF. This is immediate from 0.3.71 and 3.1.97–3.1.99 since SK = K, for all but the last two choices of K. Now we take the case K = IWs a,nLf a. If L is as indicated, then UL e IGws a by what has already been said, while UL is simple by 3.1.70(ii) and 0.2.36(i). Hence UL e IWs a,nLf a by 3.1.79 and 0.3.58(i).

Now assume K = ICs a^nm,nLf a. By the above we may assume that a 2ω. Also we may assume that |B|>1 for each B e L. For each B e L let f B be an isomorphism onto a regular Cs a X with non-empty base U B; further, let M B = {E e L : B e E}. Let F be an ultrafilter on L such that M B e F for each B e L. There is an isomorphism g of P B e L B/ F onto P B e L B/ F such that g(b/ F) = (f B b : B e L)/ F for all b e P B e L B. Let c be an (F, U, λ)–choice function, where U = (U B : B e L), and let f = Rep(c). By Lemmas 3.1.90 and 3.1.91(v), f is a homomorphism from P B e L B/ F onto a Cs a. Now for each b e P B e L B let

K' b = {b : b e B, B e L} \cup (U B : b e B, B e L),

and let h b = K' b/ F. Then h is an isomorphism of UL into P B e L B/ F (see the proof of
0.3.71.) Now let $E = (f \circ g \cdot h)^* \mathcal{U}$. We claim that $f \circ g \cdot h$ is an isomorphism, and $E \in C_{\alpha}^{\text{reg}} \mathcal{A} L_f$.

First note that each member of L is simple, by 3.1.70(i); hence $\mathcal{U} L$ is simple, by 0.2.35(ii). Thus $f \circ g \cdot h$ is an isomorphism. By 2.1.13, $E \in \mathcal{L} f$. To show that E is regular we apply 3.1.93. Let $b \in \mathcal{U}\mathcal{L} B$. Then for each $B \in L$, $f g(h \cdot b)_B$ is regular in $\mathcal{U} B$, and

$$\Delta f g(h \cdot b)_B = \Delta(h \cdot b)_B \subseteq \Delta b = \Delta f g h b$$

since $f \circ g \cdot h$ is an isomorphism. Therefore by 3.1.93, $f g h b$ is regular, as desired. This finishes the proof of 3.1.101.

In 3.1.69 we discussed possible extensions of 3.1.101.

Now we turn to four major facts about our set algebras: $W_s \subseteq IC_{\alpha}^{\text{reg}}$, $HG_{s} \subseteq IG_{\alpha}$, $IC_{\alpha} = IG_{s_{\alpha}}$ for $\alpha \in (\omega, \omega_1)$, and $I_{\omega} G_{s_{\alpha}} = I_{\omega} C_{\alpha}$ for $\omega \leq \alpha$. These results have many important corollaries which we state and discuss afterwards. We begin with $W_{s} \subseteq IC_{\alpha}^{\text{reg}}$, a result of Andréka and Némethi, generalizing the result $W_{s} \subseteq IC_{\alpha}$ of Henkin, Monk [74]; see [HMT81] 7.13.

THEOREM 3.1.102. $W_{s} \subseteq IC_{\alpha}^{\text{reg}}$.

PROOF. Let A be a W_{s} with unit element $V = n U^{[\alpha]}$. We shall modify the following proof in order to prove 3.1.105 below; for that reason we keep α arbitrary (although for $\alpha \in \omega$ Theorem 3.1.102 is trivial), and do things a little more generally than is needed here. Let $||x|| \leq |\mathcal{U} \omega|$, and let F be a $|\mathcal{L} \omega| - \text{regular ultrafilter over } L$ (for the notion of ω-regular ultrafilter see Chang, Keisler [73**]). Then, as is easily seen, there is a function $h \in \{\Gamma \subseteq |\mathcal{L} \omega| < \omega\}$ such that $\{i \in \Gamma : x \in H_i \} \in F$ for all $\Gamma \subseteq \omega$. Now let δ and ε be as in 3.1.94 and set $X = \lip U / \mathcal{F}$. Let c be an $(F, (U : i \in \delta, x) - \text{choice function satisfying the following condition:}$

1. For all $\delta \subseteq \alpha, i \in \delta$, and all $y \in X$, if $\delta \not\subseteq h_i$ then $c(\delta, y)_i = p x$; if $\delta \subseteq h_i$ and $y = e u$ with $u \in \mathcal{U}$ then $c(\delta, y)_i = u$.

Let $f = \text{Rep}(c)$. We shall show that $f \cdot \delta$ is the desired isomorphism. By 3.1.90 $f \cdot \delta$ is a homomorphism onto $C_{\alpha} \mathcal{E}$. Now we show that $f \cdot \delta V = \mathcal{U} X$, so that E is a C_{α}. Since $f \cdot \delta V \subseteq X$ trivially, we show the other inclusion. Let $q \in \mathcal{U} X$. It suffices to show that $(c(q)_i) \in \mathcal{V}$ for all $i \in \delta$. Now, let $i \in \delta$. Note that $(c(q)_i)^{n} U^{[\alpha]}$. If $\delta \not\subseteq h_i$, then (by (1)) we have $(c(q)_i)_x = c(\delta, q)_x = p x$. Since h_i is finite, it follows that $(c(q)_i)^{n} U^{[\alpha]}$, as desired.

To show that $f \cdot \delta$ is an isomorphism we apply 3.1.94; we have only one hypothesis of 3.1.94 left to check. Let $r \in V$. Then there is a finite $\Gamma \subseteq \alpha$ such that $\langle \alpha \Gamma \rangle \Gamma r = \langle \alpha \Gamma \rangle \Gamma p$. Let $Z = \{i \in \Gamma : x \in H_i \}$. By the choice of h we have $Z \subseteq F$. Let $\delta \subseteq \alpha$ and $i \in Z$; we show that $c(\delta, x)_i = \alpha x$ (as desired). If $\delta \subseteq \Gamma$, then $x \subseteq h_i$ and so $c(\delta, x, x)_i = \alpha x$ by (1). If $\delta \not\subseteq \Gamma$ then $\alpha x = p x$ and $c(\delta, x, x)_i = \alpha x$ by either clause of (1). Thus the hypotheses of 3.1.94 hold, and hence $f \cdot \delta$ is an isomorphism.

It remains to show that E is regular; but since $f \cdot \delta$ is an isomorphism, this is immediate from 3.1.93 and 3.1.26.
Our next result, $\text{HGWs}_{\alpha}\subseteq\text{IGs}_{\alpha}$, is one of the earliest results about set algebras, and is due to Henkin and Tarski. The original proof was circuitous, however, using the representation theory of section 3.2. The present more direct proof is due to Andréka and Németh; see [HMT81] 7.15.

THEOREM 3.1.103. $\text{HGWs}_{\alpha}\subseteq\text{IGs}_{\alpha}$.

PROOF. The case $\alpha<2$ is trivial, so assume $\alpha\geq2$. Let $\mathcal{A}\in\text{GWs}_{\alpha}$, and let L be an ideal of \mathcal{A}. We want to show that $\mathcal{A}/L\in\text{IGs}_{\alpha}$.

Case 1. $\alpha<\omega$. For each $z\in A$ let $kz=-c_{(\alpha)^{z}}$. Note that kz is zero—dimensional and $\mathfrak{M}_{kz}\mathcal{A}\in\text{IGs}_{\alpha}$. Let $\mathcal{B}=\langle\mathfrak{M}_{kz}\mathcal{A}:z\in L\rangle$. Let F be an ultrafilter over L such that $\{v\in L:v\geq z\}\in F$ for all $z\in L$. Now define \mathcal{h} mapping A into $\text{P}_{\in L}\mathcal{B}/\mathcal{F}$ by setting, for any $a\in A$,

$$\mathcal{h}a=\langle a,kz:z\in L\rangle/\mathcal{F}.$$

Now $\langle a,kz:a\in A\rangle\in\text{Hom}(\mathcal{A},\mathcal{B}_{z})$ for each $z\in L$, by 2.3.3, so $\langle\langle a,kz:z\in L\rangle:a\in A\rangle\in\text{Hom}(\mathcal{A},\text{P}_{\in L}\mathcal{B}_{z})$ by 2.3.6(ii). Hence by 2.3.6 we infer that $\mathcal{h}\in\text{Hom}(\mathcal{A},\text{P}_{\in L}\mathcal{B}_{z})/\mathcal{F}$. Now we claim that $\mathcal{h}^{*}\mathcal{A}\cong\mathcal{A}/L$; to show this it suffices to show that $\mathcal{h}^{-1}0=L$. If $a\in L$, then $a-c_{(\alpha)^{a}}z=0$ for all $z\in a$, so $\{v\in L:z\geq z\}\subseteq\{v\in L:a-kv=0\}$; since $\{v\in L:v\geq z\}\in F$, it follows that $\mathcal{h}a=0$. On the other hand, if $a\in A-L$ and $z\in L$ then $a+c_{(\alpha)^{z}}z$ and hence $a-kz\neq0$, thus $\mathcal{h}a\neq0$, as desired.

Thus $\mathcal{h}^{*}\mathcal{A}\cong\mathcal{A}/L$, so $\mathcal{A}/L\in\text{IGs}_{\alpha}$. By 3.1.97, $\mathcal{A}/L\in\text{IGs}_{\alpha}$.

Case 2. $\alpha\geq\omega$. Using 3.1.77 it is enough to take any $a\in A-L$ and find a homomorphism \mathcal{h} of \mathcal{A} onto a CS_{α} such that $\mathcal{h}a\neq0$ and $\mathcal{h}^{*}L=\{0\}$. Let

$$I=L\cdot\{\Gamma:z\in\Gamma\}$$

and let F be an ultrafilter on I such that $\{v_{\Delta}:\Delta\leq z\}\in F$ for all $z_{\Delta}\in I$. Let \mathcal{A} have base U and unit element

$$V=\bigcup\{\alpha Y_{i}^{(p)}:j\in J\},$$

where $\alpha Y_{i}^{(p)}\alpha Y_{j}^{(p)}=0$ for distinct $i,j\in J$. Let $X=\bigcup_{i\in\mathcal{F}}\mathcal{F}$. Since $a\in L$, there is a function $r\in I/\mathcal{F}$ such that $r(z_{\Gamma})\in a-c_{(\alpha)^{z}}z\Gamma$ for all $z_{\Delta}\in I$. Then there is a function $j\in J$ such that $r_{i}=\alpha Y_{j}^{(p)}$ for all $i\in\mathcal{F}$. Next we let

$$Q=\{k/\mathcal{F}:k\in\text{P}_{\in L}\mathcal{A}_{j}\}, \quad w=\langle\langle r_{i}:i\in I:s<s_{a}\rangle.$$

Let c be an $(F,(U_{i}\in\mathcal{J}_{\alpha})\text{—choice function}$ such that the following conditions hold.

1. If $\kappa<s_{a}$ and $y\in Q$, then $c(\kappa,y)\in\text{P}_{\in L}\mathcal{Y}_{j}$.
2. If $\kappa<s_{a}$, then $c(\kappa,wx)/\mathcal{F}=wx$.
3. If $\kappa<s_{a}$, $y\in X$, $(z_{\Gamma})\in I$, and $\kappa\notin\Gamma$, then $c(\kappa,y)_{\Gamma}=r(z_{\Gamma})_{\Gamma}$.

Let $f=\text{Rep}(F,(U_{i}\in\mathcal{J}_{\alpha},(A_{i}\in\mathcal{J}_{\alpha},c))$. Also let δ be as in 3.1.94. Then we claim that $f\delta$ is the desired homomorphism. First we note that by the second part of 3.1.90 and by (2), we have $f\delta a\neq0$. Next we show that $(f\delta)^{*}L=\{0\}$. Let $z\in L$. Set
The third of our major applications of ultraproducts, that $\text{I}_{\alpha\omega} = \text{I}_{\text{Gws}_{\alpha}^{\text{cm}}}$ for $\alpha \geq 0$ is due to Andréka and Németi; see [HMT81], proof of 7.17; it generalizes the result, due to Monk, that any direct factor of a C_{α} is isomorphic to a C_{α} (Corollary 3.1.110 below). Note that $\text{I}_{\alpha\omega} = \text{I}_{\text{Gws}_{\alpha}^{\text{cm}}}$ trivially if $\alpha < \omega$.

THEOREM 3.1.104 $\text{I}_{\alpha\omega} = \text{I}_{\text{Gws}_{\alpha}^{\text{cm}}}$. Moreover, any compressed Gws_{α} is sub-isomorphic to a C_{α}.

PROOF. Obviously $\text{C}_{\alpha} \simeq \text{Gws}_{\alpha}^{\text{cm}}$. Now let $\mathcal{U} \in \text{Gws}_{\alpha}^{\text{cm}}$, $\alpha \geq \omega$. Say the unit element of \mathcal{U} is V and its base is U. Let F be a $|\alpha|$-regular ultrafilter on α. Let ε and δ be as in 3.1.94. Let $X = ^{\omega}U/F$. Let c be an $(F, |U| ^{< \alpha}, \alpha)$-choice function such that

(1) for all $\varepsilon < \alpha$ and all $u \in U$, $c(\varepsilon, u) = (u, \varepsilon < \alpha)$.

Let $f = \text{Rep}(F, |U| ^{< \alpha}, \alpha, (A, |\alpha| < \alpha), c)$. Then the hypotheses of 3.1.94 are met, and hence f, δ is an isomorphism. Now by 3.1.91(iii) $(f, \delta)^* \mathcal{U} \in \text{Gws}_{\alpha}^{\text{cm}}$, and the base of $(f, \delta)^* \mathcal{U}$ is X. Let $W = ^{\omega}X/F$. If $W = 0$ we are finished, so assume that $W \neq 0$. Note that W itself is the unit element of some Gws_{α}. Now we claim

(2) $\mathcal{X} \succeq \mathcal{D}$ for some Gws_{α} \mathcal{B} with unit element W.

In fact, applying 2.3.20(ii) to the full Gws_{α} with unit element V and then restricting it to \mathcal{X} we find that $\mathcal{X} \succeq \mathcal{C}$ for some Gws_{α} \mathcal{C} with base U. By 3.1.102 \mathcal{C} is isomorphic to a C_{α} \mathcal{D}; looking at the proof of 3.1.102 we see that we may assume that the base of \mathcal{D} is X. Since $W \succeq ^{\omega}X$ is zero-dimensional, we get a Gws_{α} \mathcal{B} with unit element W such that $\mathcal{D} \succeq \mathcal{B}$, as desired in (2); let g be a homomorphism from \mathcal{X} onto \mathcal{B}.

By 0.3.6(ii), \mathcal{X} is isomorphic to a subalgebra of $\mathcal{B} * (f, \delta)^* \mathcal{X}$, and by 3.1.76 $\mathcal{B} * (f, \delta)^* \mathcal{X}$ is isomorphic to a C_{α} \mathcal{W}; in fact, the function $h = \langle g(u) / \bar{u} : u \in A \rangle$ is an isomorphism from \mathcal{X} into \mathcal{W}. It is easily checked that $\text{Hom}(V = \bar{a}$ for all $a \in A$, using 3.1.94(v), so the second statement of the theorem follows.
For the next result, \(\text{GwS}_a \subseteq \mathcal{I}_a \mathcal{C}_a \) for \(a \vDash \omega \), we need a lemma about increasing bases. The lemma is interesting in its own right; we discuss increasing bases further below. For this result, due to Andréka and Németi, see [HMT81] 7.19; it is a sharper form of part of 3.1.102.

THEOREM 3.1.105 Assume \(a \vDash 2 \). Let \(\mathcal{U} \) be a \(\text{W}_{\infty} \) with infinite base \(U \). Let \(\gamma \) be a cardinal such that \(|A| \cdot |U| \leq \gamma \leq \mathcal{P}(\mathcal{C}_a)^\gamma \), where \(\lambda \) is the least infinite cardinal such that \(|\Delta x| < \lambda \) for \(x \in A \). Then \(\mathcal{U} \) is sub-isomorphic to a \(\mathcal{C}_a^\mathcal{U} \) with base of power \(\gamma \).

PROOF. Let \(\mathcal{U} \) have unit element \(\alpha U^{(\mathcal{U})} \). Let \(I = \text{max}(\alpha, \gamma) \), and let \(F \) be a \(|I| \)-regular ultrafilter on \(I \). Introducing the notation in the proof of 3.1.102 we see from that proof that \(F^{\mathcal{U}} \) is an isomorphism of \(\mathcal{U} \) onto \(\mathcal{C}_a^\mathcal{U} \mathcal{B} \), and \(\mathcal{I} \mathcal{U} \mathcal{X} \) is sub-isomorphic to \(\mathcal{B} \). Also note that \(\mathcal{B} \) has base \(X \). By Proposition 4.3.7 of Chang, Keisler [73**] we have \(|X| = |I|^{<\gamma} \geq \gamma \). Hence we may apply 3.1.45(i)(c) to get a subset \(W \) of \(X \) such that \(\mathcal{E} U \subseteq \mathcal{W} \), \(|\mathcal{W}| = \gamma \), and such that \(\mathcal{E} \) is strongly ext-isomorphic to a \(\mathcal{C}_a^\mathcal{W} \mathcal{C} \) with base \(\mathcal{W} \). Thus \(\mathcal{I} \mathcal{U} \mathcal{X} \) is sub-isomorphic to \(\mathcal{C} \). The desired conclusion follows.

Our final major result on set algebras follows; it is due to Henkin and Monk [74*].

THEOREM 3.1.106. For \(a \vDash \omega \) we have \(\text{GwS}_a \subseteq \mathcal{I}_a \mathcal{C}_a \).

PROOF. Let \(\mathcal{U} \) be a \(\text{GwS}_a \), say with unit element \(\bigcup_{i \in I} V_i \), where \(V_i = \alpha U_i^{(\mathcal{U})} \) and \(U_i \) is infinite for all \(i \in I \), and \(V_i \cap V_j = 0 \) for distinct \(i, j \in I \). Choose \(i \in A \) so that \(a \cap V_i \neq 0 \) for all \(a \in A \). For each \(a \in A \) let \(\mathcal{B}_a \) be the full \(\text{GwS}_a \) with unit element \(V_a \) and set \(h_a = \mathcal{R}_a^{\mathcal{B}_a} \) (recall 3.1.75). Thus \(h_a \in \text{Hom}(\mathcal{U}, \mathcal{B}_a) \) for all \(a \in A \), and \(h_a a \neq 0 \) if \(a \neq 0 \). Let \(\varepsilon = \bigcup_{i \in I} |V_i| \bigcup |A| |a| \). Now let \(\mathcal{W}_a, \mathcal{A} \) be such that \(2^a = \bigcup_{a \in A} \mathcal{W}_a \), \(|\mathcal{W}_a| = 2^a \) for each \(a \in A \), and \(\mathcal{W}_a \cap \mathcal{W}_a = 0 \) for distinct \(a, a' \in A \). By 3.1.105 \(\mathcal{B}_a \) is isomorphic to a \(\mathcal{C}_a \mathcal{B}_a \) with base \(\mathcal{W}_a \), for each \(a \in A \); let \(j_a \in \text{Hom}(\mathcal{B}_a, \mathcal{C}_a) \) for each \(a \in A \). Choose \(x \in \mathcal{A} \) such that \(x_a \in j_a h_a a \) for each \(a \in A \). For each \(a \in A \) let \(X_a = x(2^a)^{x_a} \) and let \(X_0 = x(2^0)^{x_0} \bigcup \{X_a : a \in A \} \). Since \(a \leq x \), it is easy to see that for every \(a \in A \) there is a base isomorphism \(f_a \) of \(\mathcal{B}_a \) onto a \(\mathcal{C}_a \) with base \(2^a \) such that \(Rg_a L \leq I \mathcal{D} \). Thus \(x_a \in f_a j_a h_a \) for each \(a \in A \), and \(X_0 \cap X_0 = 0 \) if \(a \neq b \). For every \(a \in A \) let \(\mathcal{D}_a \) be the full \(\text{GwS}_a \) with unit element \(X_a \) and set \(g_a = f_a \mathcal{R}_a^{\mathcal{D}_a} \). Thus \(g_a = \mathcal{D}(\mathcal{U}, \mathcal{D}_a) \) for all \(a \in A \), and \(g_a a \neq 0 \) if \(a \neq 0 \). Hence \(\mathcal{I} \mathcal{D} \subseteq \mathcal{I}_a \mathcal{D}_a \subseteq \mathcal{I}_a \mathcal{C}_a \), as desired.

Now we give corollaries of the above results. First we have various characterizations of the class \(\text{IGs}_a \) of representable \(\text{CA}_a \)-spaces.

COROLLARY 3.1.107. \(\text{IGs}_a = \text{IGs}_a^{\mathcal{U}} = \text{IGwS}_a = \text{IGwS}_a^{\mathcal{U}} = \text{SPW}_a = \text{SPC}_a = \text{SPC}_a^{\mathcal{U}} \), for \(a \vDash 2 \).

PROOF. We have
\[IGw_\alpha \subseteq \text{SPW}_\alpha \subseteq \text{SPC}_\alpha^{\text{reg}} \subseteq \text{IGs}_\alpha^{\text{reg}} \subseteq \text{IGw}_\alpha^{\text{reg}} \subseteq IGw_\alpha \]

and
\[\text{SPC}_\alpha^{\text{reg}} \subseteq \text{SPC}_\alpha \subseteq \text{IGs}_\alpha \subseteq IGw_\alpha, \]

using 3.1.79, 3.1.102 and 3.1.77.

Another important corollary is that \(IGs_\alpha \) is algebraically closed (cf. 3.1.123).

COROLLARY 3.1.108. For \(\alpha \geq 2 \) we have \(IGs_\alpha = \text{HSPG}_\alpha = \text{HSPW}_\alpha = \text{HSPC}_\alpha = \text{HSPC}_\alpha^{\text{reg}}. \)

PROOF. We have
\[IGs_\alpha \subseteq \text{HSPW}_\alpha = \text{HSPC}_\alpha = \text{HSPC}_\alpha^{\text{reg}} \subseteq \text{HSPG}_\alpha = \text{HG}_\alpha \subseteq \text{IGW}_\alpha \subseteq IGs_\alpha \]

using 3.1.107, 3.1.77, and 3.1.103.

Another algebraically closed class is the important class \(l_\alpha C_\alpha \), for \(\alpha \geq \omega \) (see also the end of the section).

COROLLARY 3.1.109. For \(\alpha \geq \omega \) we have \(l_\alpha Gs_\alpha = \text{HSP}_\omega Gs_\alpha = \text{HSP}_\omega Gw_\alpha = l_\alpha Gw_\alpha = \text{HSP}_\omega W_\alpha = l_\alpha C_\alpha = \text{HSP}_\omega C_\alpha^{\text{reg}}. \)

PROOF. As for 3.1.108, using also 3.1.106.

Finally, we have a corollary relevant to our discussion of homomorphic images of set algebras (see 3.1.74).

COROLLARY 3.1.110. Any direct factor of a \(C_\alpha \) is isomorphic to a \(C_\beta \).

PROOF. For \(\alpha \ll \omega \) this is trivial, by 3.1.70(iv). For \(\alpha \geq \omega \) we can use 3.1.104 since for any \(CA_\alpha \) \(\mathcal{X} \) a direct factor of \(\mathcal{X} \) has the form \(\mathcal{R}_\beta \mathcal{X} \) for some \(\beta \in A \), by 2.4.8, and any zero-dimensional element in a \(Gw_\alpha^{\text{em}} \) is the unit element of a \(Gw_\alpha^{\text{em}} \).

We are now in a position to prove the main result on base homomorphisms (due to Andrèka and Németi). For a similar theorem see Lemma 7 in Németi [83b']. See 3.1.50 – 3.1.54.

THEOREM 3.1.111. Let \(\alpha \geq 2 \). Let \(\mathcal{X} \in IGs_\alpha \) and let \(\kappa \) be any cardinal.

(i) There is a \(B \in Gs_\alpha^{\text{reg}} \) such that for every \(C \in Gs_\alpha^{\text{reg}} \) and every \(h \in \text{Hom}(B, C) \), \(h \) is a base-homomorphism.

(ii) We may omit "\(\text{reg} \)" in (i).

(iii) In both (i) and (ii), if \(2^{\text{\Pi}1} \ll \kappa \) we may assume that \(B \in Gs_\alpha \).

PROOF. (i). We may assume that \(2^{\text{\Pi}1} \ll \kappa \). Then we shall construct \(B \subseteq Gs_\alpha \) satisfying (i). Clearly we can find \((C_i : i \in I) \) and \((f_i : i \in I) \) satisfying the following
conditions:

1. \(E_i \in \mathcal{C}_a^{\text{ord}} \) and \(f_i \in \text{Ho}(\mathcal{U}, \mathcal{E}_i) \) for each \(i \in I \).

2. If \(i, j \in I \), \(i \neq j \), and \(U_i, U_j \) are the bases of \(\mathcal{E}_i \) and \(\mathcal{E}_j \) respectively, then \(U_i \cap U_j = 0 \).

3. If \(\mathcal{D} \in \mathcal{C}_a^{\text{ord}} \) and \(g \in \text{Ho}(\mathcal{U}, \mathcal{D}) \), then there is an \(i \in I \) and a base–isomorphism \(h \in \text{Is}(\mathcal{E}_i, \mathcal{D}) \) such that \(g = h \circ f_i \).

Now for each \(a \in A \), let \(g_a = U_i \circ f_i \cdot a \). Then \(g \in \text{Ho}(\mathcal{U}, \mathcal{B}) \) for some \(\mathcal{B} \in \mathcal{C}_a^{\text{ord}} \), as is easily checked. Actually, \(g \) is an isomorphism. For, suppose \(0 \neq a \in A \). By 3.1.107, there is a \(\mathcal{C}_a^{\text{ord}} \) \(\mathcal{D} \) and an \(h \in \text{Ho}(\mathcal{U}, \mathcal{D}) \) with \(ha \neq 0 \). By Theorem 3.1.45(i)(c) we may assume that the base of \(\mathcal{D} \) has power \(2^{2^{a(1+2^{a(1+2^{a(1+2^a)})})}} \), which we know has size \(< \kappa \). Hence by (3) choose \(i \in I \) and a base–isomorphism \(k \in \text{Is}(\mathcal{E}_i, \mathcal{D}) \) such that \(h = k \circ f_i \). Thus \(f_i a \neq 0 \), as desired.

Now suppose that \(\mathcal{D} \in \mathcal{C}_a^{\text{ord}} \) and \(h \in \text{Hom}(\mathcal{B}, \mathcal{D}) \). Say \(\mathcal{D} \) has unit element \(V = \bigcup_{j \in J} U_j \), where \(U_j U_k \) for \(j \neq k \). Now fix \(j \in J \). Let \(k = \tau_W f_j \), where \(W = U_j \) (see Definition 3.1.75). Let \(l = k \circ h \circ g \). Say \(l = \tau_W f_j \). Thus \(l \in Ho(\mathcal{U}, \mathcal{D}) \), and \(E_i \in \mathcal{C}_a^{\text{ord}} \). Hence by (3) there is an \(i \in I \) and a base–isomorphism \(t \in \text{Is}(\mathcal{E}_i, \mathcal{E}_j) \) such that \(t = \tau_W f_j \). Say \(t = u_j \), where \(u_j \) is one–one function from the base of \(\mathcal{E}_j \) onto \(U_j \). Now set \(s = \bigcup_{j \in J} U_j \). Thus \(s \) maps the base of \(\mathcal{B} \) into the base of \(\mathcal{B} \). We claim that \(h = s \), finishing the proof. Let \(b \in B \) and \(v \in V \). Say \(ga = b \), \(j \in J \), and \(v \in U_j \). Let \(S \) be the base of \(\mathcal{E}_j \). Then

\[v \in S \text{ iff } s \circ v \in b \text{ iff } u_j \circ v \in b \text{ iff } u_j \circ v \in b \text{ iff } u_j \circ v \in b \text{ iff } v \in U_j \cdot s \text{ iff } v \in U_j \cdot s \text{ iff } v \in U_j \cdot s, \]
as desired.

This finishes the proof of (i). The proof of (ii) is obtained by obvious changes, using 3.1.45(i)(b) instead of 3.1.45(i)(c).

Now we prove some results about increasing a base of a set algebra. The first result is due to Andréka and Nemeti, in [HMTB81] 7.25, with the parts dealing with \(\mathcal{W}_a \) and \(\mathcal{C}_a^{\text{ord}} \) due to Henkin, Monk [74].

THEOREM 3.1.112. Assume \(\alpha \neq 1 \). Let \(\mathcal{U} \) be a Gws\(a \) with an infinite base \(U \), and suppose that \(|A|U|U| < K \). Then \(\mathcal{U} \) is strongly sub–isomorphic to a Gws\(a \) \(\mathcal{B} \) with base of cardinality \(\alpha \).

Moreover:

1. If \(\mathcal{U} \in \mathcal{K} \in \{ \mathcal{W}_a, \text{Gws}_a, \mathcal{C}_a^{\text{ord}}, \mathcal{G}_a^{\text{ord}} \} \), then \(\mathcal{B} \in \mathcal{K} \);
2. If \(\mathcal{U} \in \mathcal{C}_a^{\text{ord}} \) (resp. \(\mathcal{X} \in \mathcal{C}_a^{\text{ord}} \)) and \(\alpha = \kappa^{\alpha} \), then \(\mathcal{B} \in \mathcal{C}_a^{\text{ord}} \) (resp. \(\mathcal{X} \in \mathcal{C}_a^{\text{ord}} \)).

PROOF. The parts concerning \(\mathcal{W}_a \), \(\text{Gws}_a \), \(\mathcal{C}_a^{\text{ord}} \) and \(\mathcal{G}_a^{\text{ord}} \) are immediate from 3.1.42, 3.1.45, and 3.1.95. For the other parts, dealing with \(\mathcal{G}_a^{\text{ord}} \), \(\text{Gws}_a^{\text{ord}} \) and \(\mathcal{C}_a^{\text{ord}} \), we use a direct construction, not involving ultraproducts (which actually works for some other classes). Suppose \(\mathcal{U} \) is a Gws\(a \) say with base \(U \) and unit element \(V = \bigcup_{j \in J} \mathcal{U}_j^{(p_j)} \), where \(a_j \mathcal{U}_j^{(p_j)} \mathcal{U}_j^{(p_j)} = 0 \) for distinct \(j, k \in J \). Let \((Z_{\beta} : \beta < \xi) \) be a system of pairwise disjoint sets, with \(|Z_{\beta}| = |U| \) for all \(\beta < \xi \), and let \(f_\beta \) be a one–one function mapping \(U \)
onto Z_β for each $\beta < \gamma$; further, we assume that $Z_0 = U$ and $f_0 = U \cap \text{Id}$. Then for distinct $(\beta, \gamma), (\kappa, \delta) \in \kappa \times J$ we have $\alpha(f_\beta^*Y_{\gamma,j})(f_\kappa^*Y_{\delta,j}) = 0$. Let G be the full GWS$_\alpha$ with unit element $\bigcup_{\beta < \gamma}(f_\beta^*Y_{\gamma,j})(f_\kappa^*Y_{\delta,j})$. For each $x \in A$ let $g_x = \bigcup_{\beta < \gamma}(y \in Z_\beta; f_\beta^*y = x)$. It is easily checked that g is an isomorphism of \mathcal{A} onto a subalgebra C of G, and in fact $g = g(U \cap gZ)$ for all $x \in A$, i.e., g is a strong sub-isomorphism of \mathcal{A} onto C. In case $\mathcal{A} \in \text{GWS}_\alpha$, it is clear that $C \in \text{GWS}_\beta$, and also $\mathcal{A} \in \text{GWS}_{\gamma}$ implies $C \in \text{GWS}_{\alpha}$.

Finally, suppose $\mathcal{A} \in \text{GWS}_{\gamma}$. Suppose $x \in A$, $y \in gZ$, $z \in gV$, and $(\Delta gV \cap 1)z = x$. Say $y \in Z_\beta$ and $f_\beta^*y = x$, while $z \in Z_\gamma$ and $f_\gamma^*z = V$. Since $y_0 = x_0$, we have $\beta = \gamma$. Thus since $\Delta x = \Delta gZ$, because g is an isomorphism, we get $f_\beta^*z = x$ by the regularity of z, and hence $z \in gZ$.

We wish to strengthen the part of 3.1.112 dealing with C_{γ}. To this end we need the following result concerning changing the function p in the unit element $^\alpha(U^{(p)})$ in a W_{γ}. This result of Andrêka and Németi, found in [HMT81] 7.27, generalizes a result of Henkin, Monk [74].

THEOREM 3.1.113. Suppose $\alpha < \omega$. Let \mathcal{A} be a W_{γ} with unit element $^\alpha(U^{(p)})$, and let $q \in U^{(p)}$. Then \mathcal{A} is homomorphic to a W_{γ} with unit element $^\alpha(U^{(q)})$ with $U \subseteq Y$, where if $|U| < \omega$ or $|U \cap \text{Rg}| = |U| \leq |A|$ then one may take $Y = U$.

PROOF. We may assume that $|U| > 1$. Let $I = \{\Gamma \subseteq \alpha : |\Gamma| < \omega\}$, and let F be an ultrafilter on I such that $(\Gamma \in F; \Delta \cap \Gamma) \in F$ for all $\Delta \in I$. Let $X = U \cap F$. Choose $k \in \alpha$ so that $k \neq pc$ for all $\kappa < \alpha$. Let c be as in 3.1.94. Then there is an $(F, (i \in D, \alpha))$-choice function c such that for all $y \in X, \Gamma \in I$, and $\kappa \in \alpha \cap \Gamma$,

$$c(\kappa, y) = \begin{cases} pc & \text{if } y = \varepsilon q, \\ k & \text{otherwise.} \end{cases}$$

Now let $f = \text{Rep}(F, (U \cap D)_{\in D, \alpha}; (A : i \in D, \alpha))$. Thus by 3.1.90 f is a homomorphism from $[\mathcal{A}]^F$ onto some $C_{\gamma} \subseteq B$. Since the function δ of 3.1.94 is an isomorphism of \mathcal{A} into $[\mathcal{A}]^F$, $f \in \text{Hom}(\mathcal{A}, B)$. Now if $h \in \mathcal{A}$ and $\Gamma \in I$, then $(\kappa \in \alpha \cap \Gamma : (c^\kappa h)_{\Gamma} \neq pc) = (\varepsilon \in \alpha \cap \Gamma : c(\varepsilon, h_{\Gamma}) \neq pc) = (\varepsilon \in \alpha \cap \Gamma : h_{\Gamma} \neq q)$, so $(c^\kappa h)_{\Gamma} = 0$ if $h \in \mathcal{A}^{(q)}$. Thus B is a W_{γ} with unit element $^\alpha(U^{(q)})$. Choose $Y \subseteq U$ together with a function l mapping Y one-one onto X such that $l \in \Gamma$. By 3.1.36, l^{-1} induces an isomorphism l from B onto a W_{γ} with unit element $^\alpha(U^{(q)})$. Thus $l \circ f \circ \delta$ is the desired homomorphism.

If $|U| < \omega$, then $|U| = |X|$ and hence $Y = U$. Assume now $|U \cap \text{Rg}| = |U| \leq |A|$. By 3.1.45(i)(a), $t \circ f \circ \delta : \mathcal{X}$ is ext-isomorphic to a W_{γ} with unit element $^\alpha(U^{(q)})$ for some W with $|U| = |W|$, $U \subseteq W$. Thus there is a one-one function s mapping W onto U such that $s \circ q = q$. By 3.1.36, s induces an isomorphism u from $t \circ f \circ \delta$ into a W_{γ} with unit element $^\alpha(U^{(q)})$, and hence $u \circ f \circ \delta$ is the desired homomorphism for the last part of the theorem.

The following theorem and corollary are also due to Andrêka and Németi; see [AN81] 7.12 and 7.12.1.
THEOREM 3.1.114. Assume $\alpha \geq \omega$ and \mathcal{U} is a Gws$_\alpha$ with base U and unit element $V = \bigcup_{i \in I} Y_i^{(p)}$, $i = 0$, where $\alpha Y_i^{(p)}n^{\alpha Y_i^{(p)}} = 0$ for $i \neq j$, each Y_i infinite. Suppose $\kappa \geq |A|n(2^{|A|} + \sum_{i \in I} 2^{|Y_i^{(p)}|})$, $\kappa \geq \alpha$, $\kappa \geq |U|$. Then \mathcal{U} is subisomorphic to some $\mathcal{C} \subseteq \mathcal{C}_\alpha$. If \mathcal{U} is compressed, then we may assume that the sub-isomorphism is strong.

PROOF. By 3.1.79 and its proof, from 3.1.76 we can write $\mathcal{U} \cong _{C_{\alpha}, P_{\alpha}, \kappa, |B_i| \lambda} \mathcal{B}_i$, each \mathcal{B}_i a Ws$_\alpha$ with unit element $a_{Y_i^{(p)}}$. We use also the specific form of this isomorphism; $x \in A$ goes to $(xn\alpha Y_i^{(p)}, i \in I)$. Note that $|B_i| \leq |A|$ and $|B_i| \leq 2^{\omega (\alpha Y_i^{(p)})}$. By 3.1.45 and 3.1.95, \mathcal{B}_i is strongly sub-isomorphic to a Ws$_\alpha$ Ω_i with unit element $a_{Y_i^{(p)}}$, where $\kappa = |T_i| = |T_i \cap Rg(q_i)| = |T_i \cap Y_i^{(p)}|$. Set $r_i = r_i ' \in Z$ with $Z = a_{Y_i^{(p)}}$; thus $r_i ' \in Is(\Omega_i, \mathcal{B}_i)$. Now let S be any set such that $U \subseteq S$ and $|S - U| = \kappa$. Then for each $i \in I$ there is a one-one function k_i from T_i onto S such that $Y_i^{(p)}k_i \subseteq Id$. Let $z_i = z_i ' \in Z$. Thus $z_i $ is a strong sub-base-isomorphism of \mathcal{B}_i onto a Ws$_\alpha$ \mathcal{C}_i with unit element $a_{S_i^{(p)}}$. We now set $W = \bigcup_{i \in I} a_{S_i^{(p)}}$ and $Q = a_{S_i ' - W}$. We can write

$$Q = \bigcup_{j \in J} a_{S_i^{(p)}}(zn\alpha Y_i^{(p)})$$

with $a_{S_i^{(p)}}(zn\alpha Y_i^{(p)}) = 0$ for distinct $j, k \in J$. Now fix $\epsilon \in I$. Note that $\mathcal{C}_\epsilon \subseteq \mathcal{H}_\alpha$, \mathcal{C}_ϵ has unit element $a_{S_\epsilon^{(p)}}$, and $\kappa = |\mathcal{C}_\epsilon|$. (Since $|\mathcal{C}_\epsilon| = |B_i|$.) Now for any $j \in J$ we have $|S - Rg(q_j)| = \kappa$ since $\epsilon \neq \alpha$, so by 3.1.113 we have $\mathcal{C}_\epsilon \supseteq \mathcal{R}_j$ for some Ws$_\alpha$ \mathcal{R}_j with unit element $a_{S_j^{(p)}}$. Let $h_j \in Ho(\mathcal{U}, \mathcal{R}_j)$ for every $j \in J$. Finally, for any $x \in A$ set

$$kz = \bigcup_{i \in I} z_i '^n zn\alpha Y_i^{(p)})u \bigcup_{j \in J} h_j x$$

It is clear that k is an isomorphism from \mathcal{U} onto a Gws$_\alpha$ with base S. To show that k is a sub-isomorphism it suffices to take any $x \in A$ and show that $Vnkz = x$. First note that $Vnkz = Vn\bigcup_{i \in I} z_i '^n zn\alpha Y_i^{(p)})$ and, since $z_i '^n zn\alpha Y_i^{(p)}) \subseteq a_{S_i^{(p)}}$ for all $i \in I$, we further get

(1) $Vnkz = \bigcup_{i \in I} a_{Y_i^{(p)}}z_i '^n zn\alpha Y_i^{(p)})$

(Here we use the fact that $a_{Y_i^{(p)}}z_i '^n zn\alpha Y_i^{(p)}) = 0$ for $i \neq j$, which is easily checked.) Now for any $i \in I$ we have

$$a_{Y_i^{(p)}}z_i '^n zn\alpha Y_i^{(p)}) = a_{Y_i^{(p)}}z_i '^n zn\alpha Y_i^{(p)})$$

Thus from (1) we get $Vnkz = x$, as desired.

Finally, suppose that \mathcal{U} is compressed. Thus $Y_i = U$ for all $i \in I$. By the above reasoning, if $x \in A$ and $i \in I$ then $Vn z_i '^n zn\alpha Y_i^{(p)}) = a_{Y_i^{(p)}}z_i '^n zn\alpha Y_i^{(p)}) = zn\alpha Y_i^{(p)})$; hence $a_{U}nkz = a_{U}nkz = x$, so k is strong. This completes the proof of 3.1.114.

COROLLARY 3.1.115. Suppose $\alpha \geq \omega_1$ and κ and λ are infinite cardinals. Then:

(1) If $\kappa \geq 2^{\omega_1}$, then χ Gws$_\alpha \subseteq \chi \mathcal{C}_\alpha$.

(ii) If \(\mathcal{U} \) is a \(\lambda \)-Cs\(_\alpha \), and \(\alpha \geq 2^{\lambda^{(\alpha)}|\mathcal{A}|} \), then \(\mathcal{U} \) is strongly sub-isomorphic to some \(\lambda \)-Cs\(_\alpha \).

PROOF. (i) Assume the hypothesis, and let \(\mathcal{U} \in \lambda \text{ Gws}_{\alpha} \). If the unit element \(V \) of \(\mathcal{U} \) is as in 3.1.114, we may assume that \(|U| \leq |A| \), by picking \(J \subseteq I \), \(|J| \leq |A| \), with\(\alpha n \cup J \alpha Y_{\alpha}(\mathcal{U}) \neq \emptyset \) for all \(a \in A \sim \{0\} \), then relativizing to \(\bigcup_{a \in J} Y_{\alpha}(\mathcal{U}) \). Hence the hypotheses of 3.1.114 apply, and the desired result follows. (ii) is treated similarly.

REMARKS 3.1.116. We make some remarks about further results concerning ultraproducts of set algebras, in particular about various counterexamples.

1. The special hypotheses in 3.1.105 are necessary; see [HMT81] 7.30(a).
2. In 3.1.113 one cannot replace homomorphic by isomorphic, and the condition \(|U| \leq |A| \) is necessary; see [HMT81] 7.30(b),(c). On the other hand, it is not known if the condition \(|U| \leq |A| \) is needed.
3. Various results are known concerning increasing the sizes of subbases in a Gws\(_\alpha \) in addition to 3.1.114 and 3.1.115; see [HMT81] 7.26, 7.28.
4. In [AN81] 7.2 an example is given of a directed union of members of IGs\(_\alpha \) (a\(\geq \omega \)) which is not only not isomorphic to a Cs\(_\alpha \), but is not even isomorphically embeddable in an ultraproduct of Cs\(_\alpha \)'s.
5. In [AN81] 7.4 an algebra \(\mathcal{U} \in \text{Cs}_{\alpha}^{\text{up}} \) is constructed such that \(2 \mathcal{U} \neq \text{UpCs}_{\alpha}^{\text{up}} \), and an algebra \(\mathcal{B} \in \text{Ws}_{\alpha} \) is constructed such that \(2 \mathcal{B} \neq \text{Up}(\text{Gs}_{\alpha}^{\text{cm}})^{\text{up}} \).
6. Using ultraproducts, one can easily establish the following unpublished result of Richard Thompson, characterizing IWs\(_\alpha \)'s among IGs\(_\alpha \)'s: for any \(\mathcal{U} \in \text{IGs}_{\alpha} \), we have \(\mathcal{U} \in \text{IW}_{\alpha} \) iff the following condition holds: there is a function \(\Gamma \) mapping \(A \) into the collection of finite subsets of \(\alpha \) such that for every finite subset \(X \) of \(A \sim \{0\} \) we have \(\prod_{x \in X} c(\Gamma(x)) x \neq 0 \). This has as a corollary that for any countable \(\mathcal{U} \in \text{IGs}_{\alpha} \), \(\mathcal{U} \in \text{IW}_{\alpha} \) iff \(\mathcal{U} \) is weakly subdirectly indecomposable. For uncountable \(\mathcal{U} \) this is no longer true (cf. 3.1.88 (10)).

Reducts

Now we turn to our last main topic of this section, reducts and neat embeddings for set algebras. We give three methods for going from set algebras of one dimension to ones of another. The first method is given in the following lemma.

LEMMA 3.1.117. Let \(\mathcal{U} \) be a Crs\(_\alpha \) with base \(U \) and unit element \(V \). Let \(\alpha \) be an ordinal and let \(\rho \in ^{\alpha}\mathcal{U} \) be one-one. Fix \(x \in X \in A \). For each \(y \in ^{\alpha}U \) set
\[
y^\ast = ((\beta \mapsto R_{\rho}\beta) \, x) \, u(y \rho^{-1});\]
thus \(y^\ast \in ^{\beta}U \). For all \(Y \in A \) let \(f(Y) = \{y \in ^{\alpha}U : y^\ast \in Y\} \).

Then \(f \) is a homomorphism from \(R^{\rho}U \) onto a Crs\(_\alpha \), and \(f(X) \neq 0 \).

PROOF. Let \(W = f(V) \). Clearly \(f \) preserves \(+ \) and \(-\). Since \((x \rho)^\ast = x \), we have
3.1.118 CYLINDRIC SET ALGEBRAS
(REDUCTS)

$z \in \rho \in f X$; thus $f X \neq 0$. It is routine to check that f preserves d_{α} for all $\epsilon, \lambda \prec \alpha$. Now suppose that $Y \in A$, $\kappa \prec \alpha$, and $y \in W$. For brevity set $\mathbb{B} = \mathbb{B}^{\alpha}_\kappa$. To prove that $f \in \mathbb{B}^\kappa Y \subseteq \mathbb{C}_\kappa Y$, let $y \in f \mathbb{B}^\kappa Y$. Thus $y \in \mathbb{B}^\kappa Y$, that is, $y \in \mathbb{C}_\kappa Y$. Thus $y \in V$ and $(y')^\kappa \in Y$ for some $u \in U$. It is easily checked that $(y')^\kappa = (y')^\kappa;\epsilon$, hence $(y')^\kappa \in Y$, so $y \in V$ and therefore $y \in \mathbb{C}_\kappa Y$. The other inclusion is established similarly.

THEOREM 3.1.118. If α and β are ordinals with $\alpha \geq 2$, and $\rho \in \beta$ is one--one, then $R^\alpha_\beta Gw_s \subseteq IGw_s$ and $R^\alpha_\beta Gs_s \subseteq IGs_s$.

PROOF. By easy arguments, it suffices to show that $R^\alpha_\beta Ws_s \subseteq IGw_s$ and $R^\alpha_\beta Cs_s \subseteq IGs_s$. Take any $u \in Ws_s$; to show that $R^\alpha_\beta U \subseteq IGw_s$, it suffices by 2.4.39 and 3.1.79 to take any non--zero $X \in A$ and find a homomorphism f of $R^\alpha_\beta U$ into some W_s such that $f X \neq 0$. Say U has unit element $U^{(\rho)}$; and choose $x \in X$. For each $y \in U \cup \alpha$ let y^α be as in 3.1.117, and let f be defined as in 3.1.117. Thus by 3.1.117, f is a homomorphism from $R^\alpha_\beta U$ onto a $Cr_s \mathbb{B}$, and $f X \neq 0$. For each $y \in U \cup \alpha$ let $\Gamma_y = \{ \epsilon \in R : y^\alpha \neq \epsilon \}$. The following three statements are then easily checked:

1. $f (U^{(\rho)}) = \{ y \in U : \Gamma_y \prec \omega \}$
2. $\Gamma_y \prec \omega$ iff $\rho \prec \Gamma_y \prec \omega$, for any $y \in \alpha$.U
3. $\rho \prec \Gamma_y = \{ \epsilon \prec \alpha : y^\alpha \neq \epsilon \}$

From (1)–(3) it follows that $f (U^{(\rho)}) = \alpha^{(\rho)}$, as desired. The case Cs is easier.

In case $\rho \in \beta$ is onto β in 3.1.117, we have $y^\beta = y^\beta \rho$ and f is an isomorphism. This leads to the following obvious result.

THEOREM 3.1.119. Let α and β be ordinals and let $\rho \in \beta$ be one--one and onto. Then $R^\alpha_\beta K_\rho = I K_\alpha$ for all $K \in \{ Cr_s, Gw_s, Gw_s^{sm}, Gw_s^{smd}, Gw_s^{sm}, Gw_s^{sm}, Gs_s, Cs_s, Ws_s \}$.

Our second method for changing ordinals goes from smaller ordinals to larger ones in general; it is formulated in the following lemma.

LEMMA 3.1.120. Let U be a Cr_s with base U and unit element V. Let β be an ordinal, and let $\rho \in \beta$ be one--one and onto. Suppose $W \subseteq B U$ and the following conditions hold:

1. $V = \{ x \in U : z = y \rho \text{ for some } y \in W \}$
2. $\forall x \in W$, $\kappa \prec \alpha$, and $u \in U$ if $(y \rho)^{\kappa} \in V$, then $(y \rho)^{\kappa} \in W$.

Let \mathbb{B} be the full Cr_s, with unit element W, and let $f X = \{ y \in W : y \rho \in X \}$.

Then $f : Ism(U, R^\beta \mathbb{B})$, and $c^\beta f X = f X$ for all $X \in A$ and all $x \in U$.

PROOF. Clearly f preserves \pm. Now let $y \in W$ and $X \in A$. By (i) we have $y \rho \in V$. Hence $y \in f(V \sim X)$ iff $y \rho \in f X$ iff $y \in W \sim f X$. Thus f preserves \sim. If $0 \neq X \in A$, choose $x \in X$. By (i) there is a $y \in W$ such that $x = y \rho$. Hence $y \in f X$. This shows that f is one--one.

Clearly f preserves d_{α} for all $\epsilon, \lambda \prec \alpha$. Now suppose that $X \in A$, $\kappa \prec \alpha$, and $y \in f (X)$. We want to show that $y \in C_{r \kappa} X$. For the definition of f we have $y \in W$ and $y \rho \in C_{r \kappa} X$. Hence $y \rho \in V$ and $(y \rho)^{\kappa} \in X$ for some u. Since $(y \rho)^{\kappa} \in V$, our assumption (ii) yields $y \rho^{\kappa} \in W$. Since $(y \rho)^{\kappa} = y^{\kappa \rho}$, this shows that $y \rho^{\kappa} \in f X$, and
hence $y \in C_{\alpha}^{\beta} fX$. The converse is similar. Thus $f \in Ism(X, \mathcal{R}^\alpha \mathcal{B})$.

Now suppose $X \in A$, $\kappa \in \beta \sim \mathcal{R}_p$, and $y \in C_{\alpha}^{\beta} fX$. Thus $y \in W$ and $y^{\kappa}_\alpha \in fX$ for some ν. Hence $y^{\kappa}_\alpha \in W$ and $y^{\kappa}_\alpha \in fX$. Since $\kappa \notin \mathcal{R}_p$, we have $y^{\kappa}_\alpha \in fX$. Hence $y \in fX$. This shows that $C_{\alpha}^{\beta} fX = fX$, as desired.

THEOREM 3.1.121. Let α and β be ordinals, $2 \leq \alpha$, and let $\rho \in \mathcal{R}_p$ be one-one. Suppose $K \subseteq (\text{Gws}, \text{Gws}^{\text{nm}}, \text{Gws}^{\text{ns}}, \text{Gws}^{\text{sm}}, \text{Gws}^{\text{nmns}}, \text{Gw}, \text{Cs}, \text{Ws}, \text{Gs}^{\text{ns}}, \text{Cs}^{\text{ns}})$. Then $K_\alpha \subseteq \text{ISRd}_\rho K_\beta$.

PROOF. First suppose $K = \text{Gws}$. Let $\mathcal{U} \subseteq \text{Gws}_\alpha$. Say \mathcal{U} has base U and unit element $U_{\kappa \iota}^{\beta} Y_{\kappa \iota}$, where $\delta Y_{\kappa \iota}(\rho) n^\alpha \rho Y_{\kappa \iota}(\rho) = 0$ for $i \neq j$. For each $i \in I$ choose $q_i \in \beta Y_{\kappa \iota}$ such that $q_i \rho = p_i$, and set $W = \bigcup_{\kappa \iota \in I} \beta Y_{\kappa \iota}(q_i)$. Clearly $\delta Y_{\kappa \iota}(q_i) n^\beta Y_{\kappa \iota}(q_i) = 0$ for $i \neq j$. The conditions (i) and (ii) in 3.1.120 are easily verified. Thus 3.1.120 yields $\mathcal{U} \subseteq \text{ISRd}_\rho \text{Gws}$, as desired. This argument also takes care of $K \subseteq (\text{Gws}^{\text{nm}}, \text{Gws}^{\text{ns}}, \text{Gws}^{\text{sm}}, \text{W}_s)$. If $\mathcal{U} \subseteq \text{Gw}_\alpha$, say \mathcal{U} has unit element $U_{\kappa \iota}^{\beta} Y_{\kappa \iota}$, where $Y_{\kappa \iota} n^{\alpha} Y_{\kappa \iota} = 0$ for distinct $i, j \in I$. We set $W = \bigcup_{\kappa \iota \in I} \beta Y_{\kappa \iota}$ and use 3.1.120 again. $K = \text{Cs}$ follows in the same way. For regularity, with \mathcal{B} as in 3.1.120 we take $E = \mathcal{S}_\theta \mathcal{B}^\theta fA$ and use Lemma 3.1.62 with $\Gamma = R_\gamma$.

Specializing 3.1.121 and its proof to the case $\alpha \leq \beta$ and $\rho = 1 \text{Id}$ we get:

THEOREM 3.1.122. Suppose $2 \leq \alpha \leq \beta$ and $K \subseteq (\text{Gws}, \text{Gws}^{\text{nm}}, \text{Gws}^{\text{ns}}, \text{Gws}^{\text{sm}}, \text{Gws}^{\text{ns}}, \text{Gw}, \text{Cs}, \text{Ws}, \text{Gs}^{\text{ns}}, \text{Cs}^{\text{ns}})$. Then $K_\alpha \subseteq \text{ISN}_\rho K_\beta$.

Now we can combine ideas from the above two constructions to prove another of the basic results about set algebras, due to Henkin and Tarski; the proof is due to Monk:

THEOREM 3.1.123. For $\alpha > \omega$ we have $\text{ISG}_\alpha = \text{HSP}(C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A})$.

PROOF. The direction \geq follows from 3.1.178. To prove \leq we shall use 2.6.4 in the following way. Let $K = \text{SP}(C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A})$. We take any $\mathcal{U} \subseteq C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A}$, any $\gamma < \omega$, and any one-one $\rho \in \mathcal{R}_\gamma$ and find $\mathcal{E} \subseteq C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A}$ and $f \in \text{Hom}(\mathcal{R}_\rho \mathcal{U}, \mathcal{R}_\rho \mathcal{E})$ such that $fX \neq 0$. Then $\mathcal{R}_\rho \mathcal{E} \subseteq \mathcal{R}_\rho \mathcal{U}$, and so by 2.6.4(i) we get $\mathcal{E} \subseteq \text{SF} f\alpha \mathcal{A} \subseteq \text{HSP}(C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A})$. Then 3.1.127 finishes the proof.

So, suppose \mathcal{U}, X, Y, and ρ are as indicated. Let U be the base of \mathcal{U}, and fix $z \in X$. For any $y \in A U$ we let $y^\ast = ((\alpha \sim \mathcal{R}_p) 1 x) U (\mathcal{R}_p 1 y)$. Let \mathcal{B} be the full $C_{\alpha}^{\omega} \mathcal{L} f\alpha \mathcal{A}$ with base U. Clearly f preserves \mathcal{B} and \sim relative to y. It is easily checked that f takes $\mathcal{B} \subseteq \mathcal{R}_\rho \mathcal{U}$ to $\mathcal{B} \subseteq \mathcal{R}_\rho \mathcal{E}$. Take $Y \in \mathcal{A}$ and $\gamma < \omega$. We show that $f^{\delta} Y = C_{\gamma}^{\omega} f Y$. Set $y \in f C_{\alpha}^{\omega} Y$. Thus $y^\ast \in C_{\alpha}^{\omega} Y$. Clearly $(y^\ast)^{\delta} = (y^{\delta f})^\ast$. Thus $(y^{\delta f})^\ast \in f Y$, so $y^{\delta f} \in f Y$, hence $y \in C_{\alpha}^{\omega} f Y = C_{\gamma}^{\omega} f Y$. This proves that $f^{\delta} Y \subseteq C_{\gamma}^{\omega} f Y$. The converse is similar. Thus $f \in \text{Hom}(\mathcal{R}_\rho \mathcal{U}, \mathcal{R}_\rho \mathcal{E})$. Since $x^\ast = x$, we have $x \in f Y$; thus $f Y \neq 0$.

Next we claim that for any $Y \in \mathcal{A}$ we have $\Delta \mathcal{B} f Y \subseteq \mathcal{R}_\rho$. For, suppose $\kappa \in \alpha \sim \mathcal{R}_p$ and $y \in C_{\gamma}^{\omega} Y$. Thus $y^\ast \in f Y$ for some ν. Hence $(y^\ast)^{\delta} \in Y$. But $(y^\ast)^{\delta} = y^\ast$, so $y \in f Y$. This
proves the claim.

Also, \(fY \) is regular in \(B \) for any \(Y \in A \). For, suppose \(y \in fY \), \(z \in aU \), and \(\Delta Y \) for \(y \leq z \). Let \(\Gamma = Rg \circ \Delta Y \). Now \(y' \in Y \), and \((\alpha \sim \Gamma) y' \leq z' \). Hence \(z' \in C(\Gamma)Y = C(\Gamma)Y \), so \(z \in f(\Gamma)Y = C(\Gamma)Y \), as desired.

Now let \(\xi = \alpha \in B \{ fY : Y \in A \} \). By the above and 3.1.64, \(\xi \in C_{\alpha}^{\alpha} \cap \xi \). Clearly \(f \in \text{Hom}(R_{\gamma \beta}^{\alpha}, R_{\gamma \beta}^{\alpha}) \), as desired.

Our third, and last, construction method for changing dimension in set algebras is due to Andrěka and Németi, and the results using it are also due to them; see [AN81] 4.7.1.1, 4.7.1.2, 8.1.

DEFINITION 3.1.124. Let \(\alpha \) and \(\beta \) be ordinals, and let \(\rho \in \rho \beta \) be one–one. We define a function \(r^\rho \) with domain the class of all \(\beta \)-termed sequences such that, for any \(\beta \)-termed sequence \(f \),

\[
r^\rho f = ((f_{\rho}, (x \sim Rg) \cap f)_{\chi < \alpha}).
\]

Then \(r^\rho \) is the function whose domain is the class of all sets of \(\beta \)-termed sequences such that, for any such class \(X \),

\[
r^\rho X = (r^\rho)^{a}X.
\]

LEMMA 3.1.125. Let \(\alpha \) and \(\beta \) be ordinals with \(\alpha \succeq 2 \) and let \(\rho \in \rho \beta \) be one–one. Suppose \(\mathcal{A} \) is the full Gws \(p \) with unit element \(V = \bigcup_{x} Y_{x}^{\beta} \), where \(Y_{x}^{\beta} = Y_{x}^{\rho} \) for distinct \(i, j \in I \) Then

(i) \(\nu \beta r^\rho \) is one–to–one;

(ii) \(r^\rho \in \text{Is}(R_{\gamma \beta}^{\rho}, B \beta \text{sbr}^\rho) \); and

(iii) \(\text{sbr}^\rho \text{V} \) is a Gws \(\alpha \) with unit element \(\text{r}^\rho \text{V} = \bigcup_{x} Y_{x}^{\beta} \), where \(\alpha W_{x}^{\beta} \rho \alpha W_{x}^{\rho} = 0 \) for distinct \(x, y \in Y_{x}, x \in J \), and \(x = (x \sim Rg) \cap f \cap \beta \), and any \((x, y) \in Y_{x} \), \(\text{w} \in Y_{x} \), \(\text{w} = (x \sim Rg) \cap f \), and any \((x, y) \in Y_{x} \), \(\text{w} \in Y_{x} \), \(\text{w} = (x \sim Rg) \cap f \). Then \(\text{r}^\rho X \in \text{K}_{\alpha} \), then \(\text{r}^\rho \text{V} \in \text{K}_{\alpha} \).

(v) \(X \subseteq A \) is regular, then \(r^\rho X \) is regular.

PROOF. Clearly \(r^\rho \) is a one–one function, so (i) holds. Hence \(r^\rho \) is an isomorphism from \(R_{\gamma \beta}^{\rho} \) onto \(B \beta \text{sbr}^\rho \). Clearly \(r^\rho \) preserves for all \(\xi, \chi < \alpha \).

Next, let \(v \in \alpha \) and \(X \in A \). To show that \(r^\rho \text{X} = C_{\rho}^{\alpha} \text{r}^\rho \text{X} \), let \(f \in r^\rho \text{cX} \). Say \(f = r^\rho f \) with \(f \in C_{\rho}^{\alpha} X \). Then \(f_{\rho} \subseteq X \) for some \(u \). Note that \(r^\rho f_{\rho} \subseteq g_{\rho} \), where \(v = (u, (x \sim Rg) \cap f)_{\chi < \alpha} \). Hence \(g_{\rho} \subseteq r^\rho \text{X} \) and \(g \in C_{\rho}^{\alpha} \text{r}^\rho \text{X} \). Thus \(r^\rho \text{cX} = C_{\rho}^{\alpha} \text{r}^\rho \text{X} \). The converse is similar. Thus (ii) holds.

Now we turn to (iii). Let \(v \in r^\rho \text{V} \). Say \(g = r^\rho f \). \(f \in C_{\rho}^{\alpha} Y_{x}^{\beta} \). Set \(h = (x \sim Rg) \cap f \). Clearly then \(g \in C_{\rho}^{\alpha} W_{x}^{\beta} \). Let \(\Gamma = (\chi < \beta : f \neq (x \sim Rg) \cap f) \); so, \(\Gamma \) is finite. For \(\chi < \alpha \sim \rho \beta \Gamma \), we have \(g \in C_{\rho}^{\alpha} W_{x}^{\beta} \). Hence \(g_{\rho} \subseteq W_{x}^{\beta} \). Conversely, suppose \(g \in C_{\rho}^{\alpha} W_{x}^{\beta} \). Then there is a function \(f \) with domain \(\beta \) such that \(h \subseteq f \) and \(g = (f \rho, h) \) for every \(\chi < \alpha \). Hence \(f \in C_{\rho}^{\beta} Y_{x} \). Let \(\Delta = (\chi < \rho \beta Rg : f \neq (x \sim Rg) \cap f) \) and \(\Delta = (\chi < \beta : f \neq (x \sim Rg) \cap f) \). Thus \(\rho \Gamma \Delta \) is finite. For any \(\chi < \beta : (\rho \Delta) \Delta \) we have \(f_{\rho} = h_{\rho} = (x \sim Rg) \cap f_{\rho} \) if \(\chi \neq Rg \), and \(f_{\rho} = (x \sim Rg) \cap f_{\rho} \).
if \(\kappa \in Rg_0 \), since \((f, h) = g_0^{-1} \in (q_0 h) \kappa^{-1} = ((p_1) \kappa, h)\). So \(f \in \mathcal{Y}_i^{(pi)} \) and hence \(g = rb^0 f \in rd^0 V \). Hence we have checked that \(rd^0 V = \bigcup_{(j,k)} W_j^{(q_0)} \). Now suppose that \((i, h), (j, k)\) are distinct members of \(J \), and \(g \in n_i W_{1i}^{(q_0)} n_i W_{1j}^{(q_0)} \). Then since \(g_0 \in W_{1i} n_i W_{1j}^{(q_0)} \) we have \(h = k \). Now there is a function \(f \) with domain \(\kappa \) such that \(g \kappa = (f \kappa, h) \) for all \(\kappa < \alpha \) with \(h \in f \). By the arguments above, \(f \in \mathcal{Y}_i^{(pi)} \mathcal{Y}_j^{(pi)} \), so \(i = j \). Hence (iii) holds.

(iv) is easy. For (v), let \(X \in A \) be regular. Suppose \(g \in rd^0 X, h \in rd^0 V, (1u \Delta rd^0 X) \in g \in h \); we are to show that \(h \in rd^0 X \). Clearly \(\Delta rd^0 X = \mathcal{V} \Delta X \). Say \(g = rb^0 f, f \in X \), and \(h = rb^0 k, k \in V \). Now \(g_0 = h_0 \), so \((g \mathcal{V} R g_0 \mathcal{V} f = (g \mathcal{V} R g_0 \mathcal{V} k \in X \). It follows that \((g \mathcal{V} 0 \Delta X) \in f \in k \). Now by 3.1.61 and the remark after 3.1.60, \(X \) is \((\mathcal{V} 0)\) regular in \(X \), so it follows that \(k \in X \). Hence \(h \in rd^0 X \), as desired. This completes the proof of 3.1.125.

THEOREM 3.1.126. Let \(\alpha \) and \(\beta \) be ordinals with \(\alpha \geq 2 \) and let \(\rho \in \mathcal{Y}_\beta \) be one— one. Let \(K \in \{Gws, Gws^{ud}, Gws^{nm}, Gws^{eq}, Gs, Gs^{eq}\} \). Then \(IK_\alpha = SRd_{\alpha} IK_{\rho} \).

PROOF: By 3.1.121 and 3.1.125.

THEOREM 3.1.127. Let \(\alpha \) and \(\beta \) be ordinals with \(2 \leq \alpha \leq \beta \) and let \(K \in \{Gws, Gws^{ud}, Gws^{nm}, Gws^{eq}, Gs, Gs^{eq}\} \). Then \(IK_\alpha = SNr_{\alpha} IK_{\rho} \).

PROOF: By 3.1.122 and 3.1.125.

Finally we note the following easy consequence of 3.1.120 for \(Cs_\alpha \) s:

THEOREM 3.1.128. If \(1 \leq \beta \) then \(Cs_1 = SNr_{\alpha} Cs_\beta \).

REMARKS 3.1.129. We make some comments about possible improvements of these results on changing dimension.

(1) Various extensions of the important Theorem 3.1.123 are found in [AN81] 7.1 and 7.2. For example, \(I_\omega Cs_\alpha = SUP(Cs^{eq}_\alpha n LF_{\omega}) \) for \(\alpha \geq \omega \).

(2) A reduct of a \(Cs_\alpha \) is not necessarily isomorphic to a \(Cs_\beta \) (cf. 3.1.125 and 3.1.126).

(3) In connection with (2) we should mention the following interesting results of Andráka and Németi [AN81] 8.12: for \(\alpha \neq \beta \) we have: (a) \(ICs_\alpha n LF_{\beta} = SRd_{\alpha}(ICs^{eq}_\alpha n LF_{\beta}) \) iff \(2^\omega = 2^\beta \); (b) \(ICs_\alpha n LF_{\beta} = SNr_{\alpha}(ICs^{eq}_\alpha n LF_{\beta}) \) iff either \(\alpha \beta = \omega \) or \(2^\omega = 2^\beta \). Also in [AN81] 8.18 they show that if \(1 \leq \alpha \leq \beta \) then (c) \(IW_{\alpha} = SNr_{\alpha} IW_{\beta} \) and (d) \(ICs_\alpha = SNr_{\alpha} ICs_{\beta} \) iff \(\beta < \alpha + \omega \).
The classes \mathcal{G}_α

We now want to strengthen 3.1.106 and obtain similar but weaker results for the classes \mathcal{G}_α; these results are due to Andréka and Németi [AN81] 7.1, 3.14.

Definition 3.1.130. For κ a cardinal ≥ 1 and α an ordinal $\geq \omega$, let $\mathfrak{K}(\kappa, \alpha)$ be the subalgebra of $\mathfrak{B}(\kappa)$ with universe $(X: X \in \mathcal{K}_{\kappa}, |X| < \omega, X$ regular$)$.

This definition is justified by 3.1.64. The first lemma is of some independent interest. It is a generalization, due to, of Andréka, Németi [81] Lemma 7.1.1.

Lemma 3.1.131. Suppose $\alpha \geq \omega$ and \mathcal{U} is a simple non-discrete \mathfrak{L}_α. Then $\mathcal{U} \in \mathfrak{U}(\mathcal{U})$ for any $\mathcal{U} \neq 0$.

Proof. By 0.3.9(vi) and 0.3.72(i) we have $\mathcal{U} \in \mathfrak{U}(\mathcal{U})$. Hence by 0.3.70(ii) it suffices to show that $\mathcal{U} \in \mathfrak{U}(\mathcal{U})$. Let $I = \{ \Gamma: \Gamma \leq \alpha, 0 < |\Gamma| < \omega \}$ and let F be an ultrafilter on I such that $\{ \Delta \in I: \Gamma \leq \Delta \} \in F$ for every $\Gamma \in I$.

Now we define a function $\psi \in \psi^2 \mathcal{A}$. Let $\Gamma \in I$. Choose $\psi_{\Gamma: \lambda \in \alpha}$ so that the following conditions hold:

1. $\psi_{\lambda \Gamma} \neq 0$ for all $\lambda \in \Gamma$, and $\psi_{\lambda \Gamma} = 0$ if $\lambda \not\in \Gamma$.
2. $\sum_{\lambda \in \alpha} \psi_{\lambda \Gamma} = 1$;
3. $\psi_{\lambda \Gamma} \cdot \psi_{\mu \Gamma} = 0$ if $\lambda, \mu \in \Gamma$ and $\lambda \neq \mu$;
4. $\sum_{\lambda \in \alpha} \psi_{\lambda \Gamma} = \sigma_{\Gamma}$ for all $\lambda \in \Gamma$.

It is easy to find $\psi_{\lambda \Gamma: \lambda \in \alpha}$ with these properties, starting from elements $\delta_{\mu \Gamma}$, $\mu, \nu \in \alpha \cdot \Gamma$, and using the facts that $\sum_{\mu \in \Delta} \delta_{\mu \Gamma} = 1$ if Δ is infinite (since $\mathcal{U} \in \mathfrak{U}_{\alpha}$), and that \mathcal{U} is non-discrete. Now for any $\lambda \in \alpha$ we have

5. $\lambda \not\in \mathfrak{F}$;
6. $\Delta(\psi_{\Gamma \alpha}) = 0$.

Condition (5) holds since $\{ \Gamma: \lambda \in \Gamma \} \subseteq \{ \Gamma: \lambda \Gamma \neq 0 \}$ and $\{ \Gamma: \lambda \in \Gamma \} \in F$. For (6), $\{ \Gamma: \lambda \in \Gamma \} \subseteq \{ \Gamma: \lambda \in \Gamma \} \subseteq \{ \Gamma: \lambda \in \Gamma \} \in F$, yielding (6).

Now for any $\mathcal{U} \in \mathfrak{U}(\mathcal{U})$ let $\psi_{\mathcal{U}}$ be the member of $\mathfrak{U}(\mathcal{U})$ such that, for any $\Gamma \in I$,

$$(\psi_{\mathcal{U}}) \Gamma = \sum_{\lambda \in \alpha} \psi_{\lambda \Gamma} \cdot \psi_{\lambda \Gamma}$$

Finally, set $f \psi = \psi_{\mathcal{U}} / \mathfrak{F}$ for any $\mathcal{U} \in \mathfrak{U}(\mathcal{U})$. We claim that f is the desired isomorphism of $\mathfrak{U}(\mathcal{U})$ into $\mathfrak{U}/ \mathfrak{F}$. Clearly f preserves $+$, and so f does also. By (2) we have $(\epsilon I) \Gamma = 1$ for any $\Gamma \in I$, and so $f(1) = 1$. Also, clearly $f(0) = 0$. If $\psi_{\mathcal{U}} = 0$, by (3) it is clear that $f(\psi_{\mathcal{U}}) = 0$. Thus f preserves $-$. To show that f preserves σ_{α}, where $\lambda \in \alpha$, let $\psi_{\mathcal{U}} \in \mathfrak{U}(\mathcal{U})$. Then for any $\Gamma \in I$ with $\lambda \in \Gamma$ we have

$$\sigma_{\alpha}(\epsilon \psi_{\mathcal{U}}) = \sigma_{\alpha}(\sum_{\mu \in \Gamma} \psi_{\mu \Gamma} \cdot \psi_{\mu \Gamma}) = \sum_{\mu \in \Gamma} \psi_{\mu \Gamma} \cdot \sigma_{\alpha}(\psi_{\mu \Gamma}) \text{ (by (4))} = (\sigma_{\alpha} \psi_{\mathcal{U}}) \Gamma.$$
Hence \(c_\gamma y = f c_\gamma y \) since \(\{ \gamma \in I : \lambda \in \Gamma \} \subseteq I \).

If \(\lambda \in \mathcal{A} \) and \(\Gamma \subseteq I \), clearly \((d_{\lambda \gamma})^{\Gamma} = d_{\lambda \gamma} \), using (2). Thus \(f \) preserves \(d_{\lambda \gamma} \).

Finally, suppose \(y \in {}^\alpha \mathcal{A} \) and \(y \neq 0 \). Say \(y_\lambda = 1, \lambda \in \Gamma \). For any \(\gamma \in I \) with \(\lambda \in \Gamma \) we have, by (3),

\[
(z_\lambda)(z_\gamma)^{\inf} \cdot (y_\lambda : \gamma \in \Gamma') \in D / \Gamma'.
\]

Hence, using (5) and (6),

\[
(\gamma_\lambda)(z_\gamma)^{\inf} (y_\lambda : \gamma \in D / \Gamma') = z_\gamma / \Gamma' \neq 0.
\]

Hence \(f y \neq 0 \), as desired.

LEMMA 3.1.132. If \(\kappa \geq 2 \) is a cardinal and \(\omega \leq \alpha \), then \(\mathcal{G}_\alpha \subseteq \mathbf{S}\mathbf{U}\mathbf{P}(\mathcal{G}_\alpha n \mathbf{L}_\mathbb{F}) \).

PROOF. Let \(\mathcal{A} \in \mathcal{G}_\alpha \). By 3.1.122 and its proof there is an isomorphism \(f \) from \(\mathcal{A} \) into \(\mathbb{R}_\mathbb{F} \) for some \(\mathcal{G}_\beta \subseteq \mathbb{B} \). We may assume that \(f^{*} \mathcal{A} \) generates \(\mathbb{B} \). Let \(I = \{ \Gamma : \Gamma \subseteq \alpha, \Gamma \cup \omega \} \). For each \(\Gamma \subseteq I \) let \(\rho_\Gamma \) be a one-one function mapping \(a \) into \(a + \alpha \) such that \(\Gamma \upharpoonright \alpha \subseteq \alpha \) and \(\rho_\Gamma : (a + \Gamma) \subseteq (a + \alpha + \alpha) - a \). Let \(\mathcal{C}_\Gamma \) be the \(\rho_\Gamma \)-reduct of \(\mathbb{B} \) for each \(\Gamma \subseteq I \). Since \(f^{*} \mathcal{A} \) generates \(\mathbb{B} \) it is clear that \(\mathcal{C}_\Gamma \subseteq \mathbf{L}_\mathbb{F} \) for every \(\Gamma \subseteq I \); see the proof of 2.6.64. By 3.1.118 and its proof we have \(\mathcal{C}_\Gamma \subseteq \mathcal{G}_\alpha \) for any \(\Gamma \subseteq I \). Finally, it is clear that there is an isomorphism from \(\mathcal{A} \) into \(\mathbb{R}_\mathbb{F} / \mathbf{L}_\mathbb{F} \), where \(\mathbb{F} \) is any ultrafilter on \(I \) such that \(\{ \Delta : \Delta \subseteq \alpha \} \in \mathbb{F} \) for every \(\Delta \subseteq I \).

LEMMA 3.1.133. If \(\kappa \) and \(\lambda \) are cardinals with \(\omega \leq \lambda \leq \kappa \), and if \(\alpha \) is an ordinal \(\geq \omega \), then \(\mathcal{G}_\alpha \subseteq \mathbf{S}\mathbf{U}\mathbf{P}(\mathcal{G}_\alpha n \mathbf{L}_\mathbb{F}) \).

PROOF. In this proof we use natural extensions of some of our notions to sets \(\Gamma \) of ordinals; thus we speak of \(\mathcal{C}\mathbf{A}_\Gamma \)'s, \(\mathbb{R}_\mathbb{F} \) etc. Let \(\mathcal{A} \in \mathcal{G}_\alpha \). Note that \(\mathbb{R}_\mathbb{F} \subseteq \mathcal{G}_\alpha \) for every \(\mathcal{G}_\alpha \) by 3.1.118 and its proof. Let \(I = \{ \Gamma : \Gamma \subseteq \alpha, \Gamma \cup \omega \} \) and \(\mathbb{B} \) is a finitely generated subalgebra of \(\mathbb{R}_\mathbb{F} \). Then if \((\Gamma, \mathcal{B}) \subseteq I \) we have \(\mathcal{B} \subseteq \mathbb{L}_\mathbb{F} \) and hence by 3.1.46(1)(c) it follows that \(\mathcal{B} \subseteq \mathcal{G}_\alpha \). By 3.1.121 and its proof, \(\mathcal{G}_\alpha \subseteq \mathbf{S}\mathbf{U}\mathbf{P}(\mathcal{G}_\alpha) \), so we may choose \(\mathcal{C}_\mathbb{B} \subseteq \mathcal{G}_\alpha \) such that \(\mathcal{B} \subseteq \mathcal{R}_\mathbb{F} \mathcal{C}_\mathbb{B} \). Let \(\mathbb{F} \) be any ultrafilter on \(I \) such that \(\{ \Gamma : \Gamma \subseteq \alpha, \mathbb{B} \subseteq \mathcal{C}_\mathbb{B} \} \subseteq \mathbb{F} \) for every \(\Gamma \subseteq I \). Then it is easily seen that \(\mathbb{B} \) can be isomorphically embedded in \(\mathbb{C} / \mathbf{L}_\mathbb{F} \), as desired.

THEOREM 3.1.134. For any cardinal \(\kappa \geq 2 \) and any ordinal \(\omega \leq \alpha \) we have \(\mathcal{G}_\alpha \subseteq \mathbf{S}\mathbf{U}\mathbf{P}(\mathcal{G}_\alpha n \mathbf{L}_\mathbb{F}) \).

PROOF. For \(\kappa < \omega \) this result follows from the proof of 3.1.102. The present proof works also for \(\kappa < \omega \), however. Let \(I = \{ \Gamma : \Gamma \subseteq \alpha, \Gamma \cup \omega \} \) and let \(\mathbb{F} \) be an ultrafilter on \(I \) such that \(\{ \Gamma : \Gamma \subseteq \alpha, \Delta \cap \Gamma \} \subseteq \mathbb{F} \) for all \(\Delta \subseteq I \). Let \(\mathcal{A} \in \mathcal{G}_\alpha n \mathbf{L}_\mathbb{F} \); say the unit element of \(\mathcal{A} \) is \(0^{(\mathcal{A})} \). We now introduce some special notation. If \(\Gamma \subseteq I \) and \(q \in {}^\kappa \mathcal{A} \), we denote by \(p(\Gamma / q) \) the function \((\alpha - \Gamma) \mapsto \mathbf{P}(\Gamma / q) \). Now for any \(x \in A \) we set

\[
f = x u \{ q \in {}^\kappa \mathcal{A} : \{ \Gamma : \Gamma \subseteq \alpha, \mathbb{P}(\Gamma / q) \} \in \mathcal{F} \}.
\]

Clearly \(f \) preserves the Boolean operations, and is one-one. Now assume that \(\zeta < \alpha \) and \(q \in f \mathcal{C}_\zeta \) with \(x \in A \). If \(q \in {}^\kappa \mathcal{A}^{(\mathcal{A})} \), it is clear that \(q \in f \mathcal{C}_\zeta x \). Assume that \(q \notin {}^\kappa \mathcal{A}^{(\mathcal{A})} \). Let
$M = \{ \Gamma \in I : p[\gamma/q] \in c(x) \}$. Thus $M \in F$. We may assume that $\Delta x \Gamma \aqueq \Gamma$ for all $\Gamma \in M$. Fix $\Gamma \in M$, and choose $x \in \Gamma$ such that $(p[\gamma/q])^\Gamma_{\gamma} \in z$. We claim that $q^\Gamma \in f_{x}$, hence $q \in c_{q} f_{x}$, as desired. In fact, let $N = M \cap \{ \Omega \in I : \Gamma \subseteq \Omega \}$. Then $N \in F$, and for any $\Omega \in N$ we have

$$\Delta x \Gamma (p[\gamma/q])^\Gamma_{\gamma} = \Delta x \Gamma q^\Gamma = \Delta x \Gamma (p[\gamma/q])^\Omega_{\gamma}.$$

so by 3.1.24, 3.1.26 it follows that $p[\gamma/q]^\Omega_{\gamma} \in z$. This shows that $q^\Omega \subseteq f_{x}$. The other inclusion is easily established, and it is also easy to prove that f preserves diagonal elements. The proof is complete.

LEMMA 3.1.35. For any cardinal $\kappa \geq \omega$ and any ordinal $\alpha \geq \omega$ we have $I_{\alpha \omega} C_{\alpha} = H_{\alpha \omega} C_{\alpha}$.

PROOF. By 3.1.109 it suffices to prove the inclusion \subseteq. Let $\alpha \subseteq \omega$ C_{α}. By 3.1.112 we may assume that the base of α has power $\geq \kappa$. Then by 3.1.133 we have

$$\alpha \in \text{SUP}_{\alpha} C_{\alpha} = \text{SUP}_{\alpha} C_{\alpha}$$

By 3.1.77 and its proof

$$\text{HSP}_{\alpha} C_{\alpha}.$$}

THEOREM 3.1.36. For any cardinal $\kappa \geq \omega$ and any ordinal $\alpha \geq \omega$ we have:

$$\text{SUP}_{\alpha} C_{\alpha} = \text{SUP}_{\alpha} (Rf(\kappa)) = \text{SUP}_{\alpha} (\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}) = \text{HSP}_{\alpha} C_{\alpha}$$

$$= \text{HSP}(\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}).$$

For $\kappa \geq \omega$ these classes are all equal to $I_{\alpha \omega} C_{\alpha}$. For $\kappa < \omega$ they are all equal to $I_{\alpha} C_{\alpha}$.

PROOF. We have

$$\text{SUP}_{\alpha} C_{\alpha} \subseteq \text{SUP}_{\alpha} (\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}) \subseteq \text{SUP}_{\alpha} (\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}) \subseteq \text{SUP}_{\alpha} (\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}) \subseteq \text{SUP}_{\alpha} (\text{CSP}^{\alpha}_{\alpha} \text{NL}_{\alpha}) \subseteq \text{SUP}_{\alpha} C_{\alpha}.$$ If $\kappa < \omega$, then by 3.1.103 and its proof we have

$$\text{SUP}_{\alpha} C_{\alpha} \subseteq \text{HSP}_{\alpha} C_{\alpha} = H_{\alpha} C_{\alpha} \subseteq I_{\alpha} C_{\alpha}$$

and the desired conclusions follow easily. If $\kappa \geq \omega$ then $\text{HSP}_{\alpha} C_{\alpha} = H_{\alpha} C_{\alpha} \subseteq \chi C_{\alpha}$ for some $\chi < \kappa$ by 3.1.103 and its proof, and $\chi C_{\alpha} \subseteq \text{SUP}_{\alpha} C_{\alpha}$ by 3.1.133. Again the desired conclusions follow.

COROLLARY 3.1.37. For any $\alpha \geq \omega$ we have $I C_{\alpha} = H(Rf(\kappa, \alpha) : \kappa < \omega)$.

PROOF. By 3.1.123, 3.1.133, and 3.1.136, since
\[\mathbf{P}(\mathbb{C}_a^{\mathfrak{Fn}}) \subseteq \mathbf{P}\{\mathbb{Rf}(\mathfrak{r} \times \omega) : \mathfrak{r} < \omega\} \cup \mathbf{P}\{\mathbb{Rf}(\mathfrak{r} \times \omega) : \mathfrak{r} < \omega\} \cap \mathbf{S}_{\mathfrak{H}^0} \mathbb{G}_a \]
\[\subseteq \mathbf{HSP}\{\mathbb{Rf}(\mathfrak{r} \times \omega) : \mathfrak{r} < \omega\} \]
\[\supseteq \mathbf{HSP}\{\mathbb{Rf}(\mathfrak{r} \times \omega) : \mathfrak{r} < \omega\}. \]

Remark 3.1.38. On the basis of the results above on reducts, it is a trivial matter to verify the statement on p.343 of Part I to the effect that if \(\mathfrak{a} \prec \omega \) and \(\mathbb{H}_a \) is the class of all hereditarily non-discrete \(\mathbb{C}_a \)'s, then \(\mathfrak{B}_1 \mathbb{H}_a \) satisfies the conclusions of 0.4.54. In fact, by 0.5.17 it suffices to show that for each finite \(\mathbb{J} \subseteq \omega \) the class \(\mathfrak{B}_1 \mathbb{H}_a \) satisfies the conditions of 0.4.54; by 0.4.36 it is enough to check that \(\mathfrak{B}_1 \mathbb{H}_a \) has a finite member with more than one element, and this is clear from the proof of 3.1.117.

The following theorem is due to Andréka, Monk, and Németi.

Theorem 3.1.39. \(\omega \mathbb{C}_a \subseteq \mathbb{H}_a \mathbb{W}_a \).

Proof. We may assume that \(\mathfrak{a} \) is a limit ordinal. Using 0.2.16 and 3.1.112 it is enough to show that \(\mathbb{C} \in \mathbb{H}_a \mathbb{W}_a \), with \(\mathbb{C} = \mathbb{B}(\mathfrak{r}) \), and \(\mathfrak{r}^{[\omega]} = \mathfrak{r} < \omega \). Let \(p = (0 < \mathfrak{r} < \omega) \), \(\mathfrak{B} = \mathbb{B}(\mathfrak{r}^{[\omega]}) \), and for \(s < \mathfrak{r} \) let \(\text{maxind}(s) = (s < \mathfrak{r} : s < \mathfrak{r}) \). Let \(\mathcal{F} = \{ \mathfrak{f} : \mathfrak{f} < \omega, \mathfrak{f} \neq 0 \} \). There is a function \(T \) mapping \(\mathfrak{r}^{[\omega]} \) into \(\mathcal{F} \) such that (a) \(\forall \mathfrak{f} \in \mathcal{F} \, \forall s \in \mathfrak{r}^{[\omega]} : T(s) = \mathfrak{f} \), (b) if \(s < \mathfrak{r}^{[\omega]} \) \(\mathfrak{r} \in \mathfrak{r}_s, s(\text{maxindems}) = \mu \), then \(T(s) = T^*(s) \). To construct \(T \), for each \(\beta < \omega \) let \(\mu_\beta \) be a one-one function from \(\mathfrak{r} \) onto \(\{ (\Delta, \mu) : \Delta \in \mathcal{F} \cap \{ 0 \}, \mu \geq \mu \} \). Then for any \(s < \mathfrak{r}^{[\omega]} \) let \(T(s) = \Delta_0 \) if \(s \neq p \) and for some \(\beta < \omega \), \(\text{maxindems}(s) = \beta + 2 \), \(\mu_\beta = \beta + 2 \), and \(T^*(s) = (\Delta_0, s(\beta + 2)) \), \(T(s) = 0 \) otherwise. Then (a)–(c) are clear. Now for each \(\mathfrak{f} \in \mathcal{F} \) let \(g^\mathfrak{f}_\mathfrak{a} = F^{-1} g^\mathfrak{f} \mu_a \). Clearly \(g^\mathfrak{f} \in \text{Hom}(\mathfrak{B}, \mathfrak{B}) \). To show that \(g \) is one-one, suppose that \(\mathfrak{a} \neq 0 \) but \(g^\mathfrak{f} \in \mathfrak{a} \). Say \(\mathfrak{f} \in \mathfrak{a} \). Now if \(\mathfrak{f} \not\in \mathcal{F} \) and \(\mathfrak{r} > \mathfrak{f} \), then \(g^\mathfrak{f} \in \mathfrak{a} \), as is easily checked, using (b). Hence there exist \(m, \mathfrak{f} \in \mathfrak{a} \) such that \(g^\mathfrak{f} \in \mathfrak{a} \). Let \(\Delta = \mathfrak{f}_\mathfrak{a} \). Apply (a) to get \(t \in \mathfrak{r}^{[\omega]} \) such that \(T(t) = \mathfrak{f} \), \(\mathfrak{f} \in \mathfrak{a} \), and \(t(\text{maxindems}) = \mathfrak{f} \). Then \(T^*(t) = T^*(\mathfrak{r}) \), contradiction. For \(\mathfrak{f}_{\mathfrak{a}} \), we have \(g^\mathfrak{f}_{\mathfrak{a}} = g^\mathfrak{f}_{\mathfrak{a}} = g^\mathfrak{f} \), and \(g^\mathfrak{f}_{\mathfrak{a}} = g^\mathfrak{f} \), as is easily checked. (For the last equality, note that if \(s \in \mathfrak{r}^{[\omega]} \), then \(\mathfrak{r} \in \mathfrak{a} \), \(\mu_\beta = \mu_\beta \), for any \(\mu < \omega \), using (a)–(c).) Hence \(g \in \text{Isom}(\mathfrak{B}, \mathfrak{B}) \) as desired.
3.2. REPRESENTATION THEORY

Recall from Definition 3.1.1 (vi) that a cylindric algebra \mathcal{H} is representable if it is isomorphic to a \mathcal{G}_α. For $\alpha \geq 2$ this is equivalent to saying that \mathcal{H} is isomorphic to a subdirect product of \mathcal{C}_α's (by Theorem 3.1.77). We have emphasized in Part I the importance of this notion, which is the main topic of study in this volume. In this section we give the main representation theorems for cylindric algebras: sufficient conditions for representability, and abstract characterizations of \mathcal{G}_α. We also describe some constructions of non-representable \mathcal{C}_α's and briefly survey some other kinds of representability. Most of the results in this section will be found in Henkin, Monk, Tarski [84].

In more detail, the contents of this section are as follows. We begin with the main sufficient condition for representability: for $\alpha \omega$, every \mathcal{L}_α is isomorphic to a subdirect product of \mathcal{C}_α's. This result has many important corollaries, giving other sufficient conditions for representability and some characterizations of it. For example, it follows from this result and theorems of Part I that for $\alpha \omega$ every dimension-complemented \mathcal{C}_α is representable, while for any α, a \mathcal{C}_α is representable iff it can be neatly embedded in a $\mathcal{C}_\alpha^{\omega \omega}$. After this main result we give another equivalent condition for representability, involving rectangular atoms. Then we prove that a finite dimensional \mathcal{C}_α of positive characteristic is always representable; this is also true for α infinite but then it is a trivial corollary of our main result and 26.64 of Part I. The last main positive representation result applies to any \mathcal{C}_2 satisfying two special equations. Then we give several methods for constructing non-representable cylindric algebras. We close the section with a brief discussion of other possible ways of representing \mathcal{C}_α's, namely by \mathcal{C}_α's and by sheaves. Those comments extend our discussion at the end of Part I.

Main Theorems

The theorem that every \mathcal{L}_α for $\alpha \omega$ is representable is an algebraic version of the completeness theorem for first-order logic. See section 4.3 for a more extensive treatment of this connection. Our algebraic proof will be a version of Henkin's proof of the completeness theorem. Recall that his proof starts by adjoining constants, which are used to eliminate quantifiers (in a certain sense). So we start by discussing an algebraic version of constants. There are at least three such versions. One can algebraically express properties of the formula $\exists x \in c$, c a constant; this is the method we actually use. Or, one can concentrate on the operation of substituting a constant for a variable in a formula; the corresponding algebraic notion of a special kind of endomorphism is used extensively in Halmos' related theory of
polyadic algebras, and occurs as a derived notion in our development – see 3.2.4. Lastly, one can think of a constant as a variable which one is not allowed to quantify; see the proof of 3.2.7, and also Remark 3.2.9.

DEFINITION 3.2.1. Let \(\alpha \geq 2 \) and let \(\mathcal{U} \in \text{CA}_\alpha \). (i) For \(\kappa < \alpha \), an element \(x \) of \(A \) is \(\kappa \)-thin if \(\Delta x \sqsubseteq \{ \xi \} \), \(x \circ s_\xi^x z \circ d_\chi \) for some \(\lambda \in \alpha \setminus \{ \xi \} \), and \(c_\varepsilon x = 1 \).

(ii) \(\mathcal{U} \) is rich if for every \(y \in A \) such that \(\Delta y \subseteq 1 \) and \(y \neq 0 \) there is a \(0 \)-thin element \(x \) such that \(x \circ c_\varepsilon y \geq y \).

REMARKS 3.2.2. It will be shown shortly that if \(x \) is \(\kappa \)-thin then \(x \circ s_\xi^x z \circ d_\chi \) for every \(\lambda \in \alpha \setminus \{ \xi \} \). If \(\mathcal{U} \) is a Cs\(_\alpha \) with base \(U \), and \(u \in U \), then \(x = \{ t \in u \setminus \{ 0 \} : u = 0 \} \) is \(0 \)-thin. Conversely, if \(x \) is \(0 \)-thin and regular, then \(x = \{ t \in u \setminus \{ 0 \} : u = 0 \} \) for some \(u \in U \). Thin elements are an algebraic version of individual constants. Thus let \(\Lambda \) be a language with an individual constant \(c \). Let \(\Sigma \) be a consistent set of sentences in \(\Lambda \). Then \(\langle v_0 \varepsilon \rangle / \Sigma_0 \) is a \(0 \)-thin element in the \(\text{CA}_\alpha \) \(\mathfrak{m}^A / \Sigma_0 \) (cf. 1.19, 1.1.10).

We need two lemmas concerning thin elements.

LEMMA 3.2.3. Suppose \(\alpha \geq 2 \), \(\kappa < \alpha \), \(\mathcal{U} \in \text{CA}_\alpha \), and \(x \) is a \(\kappa \)-thin element of \(\mathcal{U} \). Then:

(i) \(x \circ s_\mu^x z \circ d_\chi \) for every \(\kappa < \alpha \);

(ii) if \(\kappa < \alpha \), then \(s_\mu^x z \) is \(\lambda \)-thin;

(iii) if \(\lambda \neq \kappa \), then \(c_\lambda - c_\varepsilon (x - d_\chi) = 1 \);

(iv) if \(\lambda \neq \kappa \), \(y \in A \), and \(c_\lambda [z \circ c_\varepsilon (x - y)] \subseteq c_\varepsilon (x - d_\chi) \), then \(c_\varepsilon (x - y) = c_\varepsilon (x - y) \);

(v) under the assumptions of (iv) we have \(x \circ c_\varepsilon (x \circ y) = x \circ y \).

PROOF. (i) By 3.2.1 choose \(\mu \in \alpha \setminus \{ \xi \} \) such that \(x \circ s_\mu^x z \circ d_\chi \); thus \(c_\mu x = x \). Applying \(s_\mu^x \) to both sides of the inequality we get \(x \circ s_\mu^x z \circ d_\chi \), as desired.

(ii). We have \(s_\mu^x z \circ s_\mu^x z \circ z = s_\mu^x z \circ z \circ d_\chi \), \(\Delta x \subseteq \{ \} \), and \(c_\lambda s_\mu^x z = c_\varepsilon z = 1 \), so \(s_\mu^x z \) is \(\lambda \)-thin.

(iii). By (i) we have \(x - d_\chi \circ s_\mu^x z = 0 \), so \(c_\varepsilon (x - d_\chi) \circ s_\mu^x z = 0 \), hence \(s_\mu^x z \subseteq c_\varepsilon (x - d_\chi) \).

Therefore

\[
1 = c_\varepsilon x = c_\mu c_\varepsilon s_\mu^x z = c_\varepsilon (x - d_\chi),
\]

as desired.

(iv). The assumption yields \(c_\varepsilon (x \circ c_\varepsilon (x - y)) \subseteq c_\varepsilon (x - d_\chi) = 0 \), hence \(c_\varepsilon (x - y) \circ c_\varepsilon (x - d_\chi) = 0 \). Hence the desired result follows from (iii), since \(c_\varepsilon (x \circ y) + c_\varepsilon (x - y) = c_\varepsilon x = 1 \).

(v). We have

\[
 z \circ c_\varepsilon (x \circ y) = z \circ c_\varepsilon (x - y) \circ c_\varepsilon (x - y) \subseteq z \circ (x \circ y) = x \circ y \subseteq x \circ z \circ c_\varepsilon (x \circ y).
\]

LEMMA 3.2.4. Suppose \(\alpha \), \(\Gamma \) is a finite subset of \(\alpha \), and \(\mathcal{U} \in \text{CA}_\alpha \). Suppose \(x \) is a function with domain \(\Gamma \) such that \(x \) is a \(\kappa \)-thin element of \(\mathcal{U} \) for every \(\kappa \in \Gamma \). Furthermore, assume that the equality

\[
c_\alpha [y \circ z \circ c_\varepsilon (y - z)] - c_\varepsilon (c_\alpha y - d_\chi) = 0
\]

holds.
holds for all distinct \(x, y \in \mathcal{A} \) and all \(y, z \in A \). Then for any \(y \in A \) we have
\[
 c_{(\Gamma)}(\cap_{x \in \mathcal{G}} z_x \cdot y) = -c_{(\Gamma)}(\cap_{x \in \mathcal{G}} z_x \cdot y) ; \quad \cap_{x \in \Gamma} z_x \cdot c_{(\Gamma)}(\cap_{x \in \mathcal{G}} z_x \cdot y) = \cap_{x \in \Gamma} z_x \cdot y.
\]

Proof. This lemma is an obvious generalization of 3.2.3 (iv), (v).

From the following theorem we will be able to derive the main representation theorem using two additional easy lemmas.

Theorem 3.2.5. Suppose \(2 \leq \alpha \), \(\mathcal{A} \) is a simple rich \(L_\alpha \), and for all distinct \(x, y \in \mathcal{A} \) and \(x, y \in A \) the equality \(c_{(\mathcal{A})}(x \cdot y, c_{(\mathcal{A})}(x \cdot y)) = c_{(\mathcal{A})}(c_{(\mathcal{A})}(x \cdot y, c_{(\mathcal{A})}(x \cdot y))) \) holds. Then \(\mathcal{A} \) is isomorphic to a \(\mathcal{B}_\alpha^{\mathcal{A}} \).

Proof. Let \(U \) be the set of all \(0 \)-thin elements of \(\mathcal{A} \). We shall define an isomorphism \(f \) of \(\mathcal{A} \) onto a regular \(\mathcal{B}_\alpha \) with base \(U \). Because \(\mathcal{A} \) is simple, we will only need to check the homomorphism conditions for \(f \). For any \(a \in A \) let
\[
 f(a) = \{ u \in U : \cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq a \}.
\]

To check that \(f \) preserves \(\cap \), first suppose that \(u \in f(a)(-a) \). Since \(\Delta a = \Delta(-a) \), this implies that \(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x = 0 \). But \(c_{(\Delta a)}(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) = \cap_{x \in \Delta a} c_{(\Delta a)} s^0_{\mathcal{A}} u_x = 1 \), contradiction.

Second, we show that \(f(a)(-a) = U \). Suppose \(u \in U \cap f(a)(-a) \). Then \(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq -a \), so by simplicity, \(c_{(\Delta a)}(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \cdot -a) = 1 \). Then by 3.2.4 we have \(c_{(\Delta a)}(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \cdot a) = 0 \), so \(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq -a \) and hence \(u \in f(a)(-a) \), as desired.

Next we show that \(f \) preserves \(\cup \). Suppose first that \(u \in f(a \cup b) \). Thus \(\cap_{x \in \Delta(a \cup b)} s^0_{\mathcal{A}} u_x \leq a \cup b \). Let \(\Delta = \Delta(a \cup b) \cup a \Delta a \). Then \(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq a \), so
\[
 \cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x = c_{(\Delta \cup a \Delta a)}(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) \leq c_{(\Delta \cup a \Delta a)}(a) = a,
\]

and \(u \in f(a) \). Similarly, \(u \in f(b) \). Second, suppose that \(u \in f(a \cup b) \). Then \(\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq a \) and \(\cap_{x \in \Delta b} s^0_{\mathcal{A}} u_x \leq b \), so \(\cap_{x \in \Delta a \Delta b} s^0_{\mathcal{A}} u_x \leq a \cup b \). As above one argues to show that \(\cap_{x \in \Delta(a \cup b)} s^0_{\mathcal{A}} u_x \leq a \cup b \).

For cylindrifications, suppose that \(\lambda < \alpha \) and first suppose that \(u \in f(c_{(\lambda)}) \). We may assume that \(\lambda \in \Delta a \). Thus
\[
 \cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x \leq c_{(\lambda)} a, \text{ with } b = c_{(\lambda)} a.
\]

We want to find a \(0 \)-thin element \(v \) such that \(u \cdot v \in f(a) \). Note that
\[
 c_{(\Delta a \sim (\lambda))}((\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) \cdot a)
 = c_{(\Delta a \sim (\lambda))}((\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) \cdot (\cap_{x \in \Delta a \sim (\lambda)} s^0_{\mathcal{A}} u_x) \cdot c_{(\lambda)}((\cap_{x \in \Delta a \sim (\lambda)} s^0_{\mathcal{A}} u_x) \cdot a))
 = c_{(\Delta a \sim (\lambda))}((\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) \cdot 1) \quad \text{ (with } b = c_{(\lambda)} a)\;
\]

it follows that the element \(z = c_{(\Delta a \sim (\lambda))}((\cap_{x \in \Delta a} s^0_{\mathcal{A}} u_x) \cdot a) \) is non-zero and has dimension set \(\leq (\lambda) \). Hence let \(v \) be a \(0 \)-thin element \(s^0_{\mathcal{A}} z \). Set \(u \cdot v = u \cdot v \). Then
\[\Pi_{a \in \Delta A \sim (\lambda)} \mathcal{S}^0_{u_a} \leq \Delta \mathcal{S}^0_{v_a} \leq a \]

as desired. Second, suppose that \(u \in c_a / a \). Let \(v \) be a 0-thin element such that \(u_v \in / a \). Thus

\[\Pi_{a \in \Delta A \sim (\lambda)} \mathcal{S}^0_{u_a} \leq a. \]

Let \(\Gamma = (\Delta / \Delta c_a) u (\lambda) \). Applying \(c_{\Gamma} \) to both sides of (1) we get

\[\Pi_{a \in \Delta a} \mathcal{S}^0_{u_a} \leq c_a, \text{ with } b = c_a. \]

hence \(u \in c_a / a \), as desired.

Now for diagonal elements, suppose \(\lambda, \mu \in c_a \); we may assume that \(\lambda \neq \mu \). First suppose that \(u \in \mathcal{S} \). We may assume that \(\mathcal{X} \) is non-discrete, and hence \(\Delta d_{\lambda, \mu} = (\lambda, \mu) \). Thus \(s_{\lambda}^0 u_a, s_{\mu}^0 u_a \leq d_{\lambda, \mu} \). Hence

\[s_{\lambda}^0 u_a = c_\lambda s_{\lambda}^0 u_a, s_{\mu}^0 u_a \leq c_\mu (d_{\lambda, \mu} s_{\mu}^0 u_a) = s_{\mu}^0 u_a, \]

and so \(u_\lambda \leq u_\mu \) by applying \(s_{\mu}^0 \). By symmetry \(u_\mu = u_\lambda \), so \(u \in \mathcal{D}_{\lambda, \mu} \). Second, suppose that \(u \in \mathcal{D}_{\lambda, \mu} \), so that \(u_\mu = u_\lambda \). Then

\[s_{\lambda}^0 u_a, s_{\mu}^0 u_a = s_{\mu}^0 u_a, s_{\lambda}^0 u_a \leq d_{\lambda, \mu} \]

since \(s_{\lambda}^0 u_a \) is \(\lambda \)-thin by 3.2.3(ii). Therefore \(u \in \mathcal{S} \).

It is obvious that \(\mathcal{S} \) is regular for each \(a \in A \), so the proof is complete.

Lemma 3.2.6. Suppose \(2 \mathcal{S} \), \(\mathcal{X} \) is a rich \(\mathcal{L}_a \), and \(I \) is an ideal of \(\mathcal{X} \). Then \(\mathcal{X} / I \) is rich.

Proof. Suppose \(a \in A \), \(\Delta (a / I) \leq 1 \), and \(a / I \neq 0 \). Then \(\Delta c_{\Delta a / a} \leq 1 \) and \(c_{\Delta a / a} \neq 0 \), so let \(x \) be a 0-thin element \(\leq c_{\Delta a / a} \). Clearly \(x / I \) is 0-thin and \(x / I \leq a / I \).

Lemma 3.2.7. Suppose \(\mathcal{S} \mathcal{X} \) and \(\mathcal{X} \in \mathcal{L}_a \). Then \(\mathcal{X} \) can be isomorphically embedded in a rich \(\mathcal{L}_a \).

Proof. By a simple transfinite argument it suffices to show that if \(0 \neq a \in A \) and \(\Delta a \leq 1 \) then there is an extension \(\mathcal{E} \in \mathcal{L}_a \) of \(\mathcal{X} \) such that \(x \in \mathcal{E} \) for some 0-thin element \(x \) of \(B \). To this end, let \(\mathcal{E} \) be an \(\mathcal{L}_a \) such that \(\mathcal{X} \in \mathcal{R}_a \mathcal{E} \), by 2.6.49. Let \(\mathcal{D} = \mathcal{R}_a \mathcal{E} \), and let \(I = I_{\mathcal{D}} ((a + c_\mathcal{X}) d_{\mathcal{D}}) \). Then \(\mathcal{A} / I = \{ 0 \} \). In fact, suppose \(y \in \mathcal{A} / I \). Thus \(y c_\mathcal{X} ((a + c_\mathcal{X}) d_{\mathcal{D}}) = 0 \), so \(y c_\mathcal{X} = 0 \) and \(y d_{\mathcal{D}} = 0 \). Since \(\Delta a \leq 1 \) and \(\Delta y \mathcal{X} a \) we have \(y c_\mathcal{X} = 0 \). Hence \(y = 0 \), as desired. Clearly also \((a + c_\mathcal{X}) d_{\mathcal{D}} \notin I \). Let \(x = (a + c_\mathcal{X}) d_{\mathcal{D}} \). Then \(x / I \) we have that \(x / I \) is 0-thin and \((x / I) c_\mathcal{X} (a / I) \notin I / I \). This finishes the proof.
The main representation theorem now follows:

THEOREM 3.2.8. For $\alpha \geq \omega$ we have $Lf_\alpha \subseteq \text{SPC}_\alpha^{\text{fin}}$.

PROOF. By 3.2.7 we may assume that our given $\mathcal{U} \subseteq Lf_\alpha$ is rich, and by 2.4.52 and 3.2.8 that \mathcal{U} is simple. By 1.11.7, the equations indicated in 3.2.5 hold in \mathcal{U}. Hence the conclusion follows by 3.2.5.

REMARKS 3.2.9. The result just established is due to Tarski, while the proof is due to Henkin. Tarski's original proof can be sketched as follows, using the apparatus developed in Part I. We start with a simple Lf_α, $\alpha \geq \omega$. First we neatly embed \mathcal{U} in a simple Lf_β, \mathcal{B} such that $|\mathcal{B}| = \beta$; it suffices to show that $\mathcal{B} \in \text{IC}_\beta^{\text{fin}}$. Using this cardinality condition it is easy to construct an ultrafilter F on $\mathcal{B} \subseteq \mathcal{B}$ satisfying the following condition:

\[(*) \text{ For all } \kappa < \beta \text{ and all } z \in B, \text{ if } c_{\kappa} z \in F \text{ then } s^z_{\kappa} z \in F \text{ for some } \lambda \in \beta \sim \Delta z. \]

Now we can define an equivalence relation $=_{\beta}$ on β by setting $\kappa =_{\beta} \lambda$ iff $d_{\kappa \lambda} \in F$. Let U be the set of all $=_{\beta}$-classes, and let $\varphi \in U \beta$ be a choice function: $\varphi u \in u$ for all $u \in U$. Then the desired isomorphism f is defined by

\[fb = \{ z \in U \beta; s^z_{\kappa} b \in F \} \]

for any $b \in B$, where s^+ is the substitution function introduced in 1.11.13.

Proofs of 3.2.8 have appeared in the literature. The proof just sketched, except for the neat embedding part, essentially appears in Andréka, Németi [75']. A proof similar to the one of 3.2.5, using thin elements, is given in Monk [78'], and a proof using the completeness theorem is carried out in Monk [76**]. Via the correspondence between Lf_α's and polyadic equality algebras for infinite α (see Galler [57] and also section 5.4), representation theorems for polyadic algebras yield 3.2.5 again; see Halmos [57a].

Now we give the most important corollaries of 3.2.8. The first one gives several characterizations of representability.

THEOREM 3.2.10. Let $\alpha \geq 2$. Then $\text{Igs}_\alpha = \text{SPC}_\alpha^{\text{fin}} = \text{SNr}_\alpha \text{CA}_{\alpha \omega} = \bigcap_{\beta \geq \omega} \text{SNr}_\alpha \text{CA}_{\alpha \beta} = \text{SNr}_\alpha \text{CA}_{\alpha \beta}$ for each $\beta \geq \omega$. Moreover, $\mathcal{U} \subseteq \text{CA}_\alpha$ is representable iff every finite reduct of \mathcal{U} is representable.

PROOF. The last two equalities are in 2.8.34 and 2.8.35, the first in 3.1.107. For the second equality, assume $\alpha < \omega$. Then by 2.6.48, 3.1.107, 3.1.127, and 3.2.8,

\[\text{SNr}_\alpha \text{CA}_\omega = \text{SNr}_\alpha Lf_\omega \subseteq \text{SNr}_\alpha \text{SPC}_\omega^{\text{fin}} = \text{SNr}_\alpha \text{Igs}_\omega = 1 \text{G}_\omega \subseteq \text{SNr}_\alpha \text{CA}_\omega, \]

giving the desired result. If $\alpha \geq \omega$, then by 2.6.52, 3.1.108, 3.1.127, and 3.2.8,

\[\text{SNr}_\alpha \text{CA}_{\alpha \omega} = \text{SUP} Lf_\omega \subseteq \text{SUP} \text{Igs}_\omega = 1 \text{G}_\omega \subseteq \text{SNr}_\alpha \text{CA}_{\alpha \omega}, \]

taking desired. The last statement follows easily from 2.8.47 and the above.
Theorem 3.2.10 does not extend verbatim to $\omega \leq 1$; we treat this rather trivial case separately in 3.2.54 and 3.2.55. Now we give some additional sufficient conditions for representability which follow from Theorem 3.2.8.

THEOREM 3.2.11. Let $\omega \leq \alpha$ and $\mathcal{A} \in \mathcal{C}_\alpha$. Then each of the following conditions is sufficient for \mathcal{A} to be representable:

(i) $\mathcal{A} \in \mathcal{L}_{\alpha}$;
(ii) $\mathcal{A} \in \mathcal{D}_{\alpha}$;
(iii) $\mathcal{A} \in \mathcal{S}_{\alpha}$;
(iv) for every finite $\Gamma \subseteq \alpha$ and every non-zero $x \in A$ there exist distinct $\xi, \lambda \in \alpha \sim \Gamma$ such that $\mathcal{A} \cdot d_{\xi, \lambda} \neq 0$;
(v) for every finite sequence ρ without repeating terms and with range included in α, and for every non-zero $x \in A$ there exist a function h and $\xi \prec \alpha$ such that h is an endomorphism of $\mathcal{R}^\omega \mathcal{A}$, $\xi \in \alpha \sim Ryo$, $c^*_\xi h = h$, and $hx \neq 0$;
(vi) \mathcal{A} is of characteristic $\xi \prec 0$;
(vii) for every $\xi \prec \alpha$ and every $x \in A$, $c^*_\xi x = \Sigma_{\xi \in \delta} c^*_\xi x$.

PROOF. By 2.6.49, 2.6.50, 2.6.54, and 3.2.10.

Condition 3.2.11(vi), that \mathcal{A} has non-zero characteristic, remains a sufficient condition for representability when $\omega \leq \alpha$; see 3.2.53.

THEOREM 3.2.12. Assume that $\omega \geq 2$. Every monadic-generated \mathcal{C}_α is representable; hence every minimal \mathcal{C}_α is representable.

PROOF. By 2.6.56 and 3.2.10.

Now we return to the basic theorem 3.2.5. Its formulation does not have the assumption $\omega \leq \alpha$ which is present in 3.2.8, needed there because of Lemma 3.2.7. This leads to the following characterization of representability for $2 \leq \omega$, due to Henkin and Tarski.

THEOREM 3.2.13. Suppose $2 \leq \alpha < \omega$ and \mathcal{X} is a \mathcal{C}_α. Then \mathcal{X} is representable iff \mathcal{X} can be embedded in a rich \mathcal{C}_α \mathcal{B} such that in \mathcal{B} all of the equations

$$c_\lambda (x \cdot y \cdot c_\lambda (x \cdot y)) - c_\lambda (c_\lambda (c_\lambda (-d_\alpha)) = 0$$

hold, for all distinct $\lambda \prec \alpha$ and all $x, y \in B$.

PROOF. The direction \Rightarrow is immediate from 2.4.52, 3.2.6, and 3.2.5. For \Rightarrow, suppose that \mathcal{X} is representable. Say $\mathcal{X} \simeq \mathcal{C}$, where \mathcal{C} is a \mathcal{G}_α with unit element V. Let \mathcal{B} be the full \mathcal{G}_α with unit element V. It suffices to show that \mathcal{B} is rich and the indicated equations hold in \mathcal{B}. Say $V = \bigcup_{s \in I} a U_i$, where $U_i \setminus U_j = 0 \neq U_i$ for distinct $i, j \in I$. Suppose $0 \neq b \in B$ and $\Delta s \leq 1$. Choose $t_i \in a U_i$ for all $i \in I$ so that $t_i \in b$ if $b \cap a U_i \neq 0$. Let

$$z = \bigcup_{s \in I} (s \cap a U_i : s \in t_i 0).$$

It is easily checked that z is 0-thin and $z \cdot c_\theta b \leq b$. Thus \mathcal{B} is rich. That the given
equations hold in \mathfrak{B} is immediate from 3.1.122 and 1.11.7, but this can also be checked directly. This finishes the proof.

Now we turn to another characterization of representability, involving rectangular atoms. For the notion of rectangular element, see 1.10.6. The characterization depends on the following theorem which is of independent interest. Theorems 3.2.14 and 3.2.15 are due to Henkin and Tarski.

THEOREM 3.2.14. Let \mathcal{X} be any atomic \mathfrak{C}_a, $a \geq 2$. Then the following conditions are equivalent:

(i) Every atom of \mathcal{X} is rectangular.

(ii) There is an isomorphism of \mathcal{X} onto a Gws \mathfrak{B} that carries each atom of \mathcal{X} to a singleton element of \mathfrak{B}.

DISCUSSION 3.2.15. We shall only prove, below, that (i) implies (ii), as the converse is very easy to check.

To see the idea of our proof, consider first the case where $\omega < \omega_1$ and where \mathcal{X} is simple. We wish to represent \mathcal{X} isomorphically as a \mathfrak{C}_a \mathfrak{B} with some base U. Thus the unit set of \mathfrak{B} is a hypercube aU, and our isomorphism will be determined by assigning to each atom α of \mathcal{X} a single point $(a_0, \ldots, a_{a-1}) \in \ ^aU$.

Our idea is to take for U the set of atoms on the "principal diagonal" d of \mathfrak{B}, $d = \prod_{\xi, \lambda < \alpha} d_{\lambda, \xi}$. Then for any atom a of \mathcal{X} and any $\xi < \alpha$, we will get the component $a_{\xi} \in U$ by forming the hyperplane $c(a_{\xi})d_{\xi}^\alpha$ and intersecting it with d. This mapping of atoms a of \mathcal{X} to points (a_0, \ldots, a_{a-1}) of aU is one-one and onto, because any $(a_0, \ldots, a_{a-1}) \in \ ^aU$ will be the coordinates of a unique atom α of \mathcal{X}, obtained by intersecting all of the hyperplanes $c(a_{\xi})d_{\xi}^\alpha$.

Of course we cannot use such a construction in case $a \geq \omega_1$, since in that case \mathcal{X} has no principal diagonal d and no hyperplanes $c(a_{\xi})d_{\xi}^\alpha$. Furthermore, we are not restricting ourselves to the case where \mathcal{X} is simple. Nevertheless, we can incorporate the geometric ideas of the preceding paragraph in the desired proof, as follows.

PROOF of 3.2.14. (i) \Rightarrow (ii). We define a binary relation E on $At\mathcal{X} \times \alpha$ by the following rule, where $At\mathcal{X}$ is the set of all atoms of \mathcal{X}. For any $a, b \in At\mathcal{X}$ and $\xi, \eta \in \alpha$, $(a, \xi)E(b, \eta)$ if there is some finite $\Gamma \subseteq \alpha$ with $\xi, \eta \in \Gamma$ such that $c_{\Gamma \setminus \xi}(\xi)\delta_{\Gamma} = c_{\Gamma \setminus \eta}(\eta)\delta_{\Gamma}$. (Recall that $\delta_{\Gamma} = \prod_{\xi, \lambda \in \Gamma} d_{\lambda, \xi}$.) It is clear that E is reflexive and symmetric, but it is also transitive. For if $(a, \xi)E(b, \eta)E(c, \zeta)$, then we have finite $\Gamma, \Delta \subseteq \alpha$ with $\xi, \eta \in \Gamma, \eta, \zeta \in \Delta$, $c_{\Gamma \setminus \xi}(\xi)\delta_{\Gamma} = c_{\Gamma \setminus \eta}(\eta)\delta_{\Gamma}$, $c_{\Delta \setminus \eta}(\eta)\delta_{\Delta} = c_{\Delta \setminus \zeta}(\zeta)\delta_{\Delta}$. Putting $\delta = \Gamma \cup \Delta$, so that $\xi, \eta, \zeta \in \delta$, if we apply $c_{\delta \setminus \xi}(\xi)\delta_{\delta}$ to both sides of the first equation we get $c_{\delta \setminus \xi}(\xi)\delta_{\delta} = c_{\delta \setminus \eta}(\eta)\delta_{\delta}$, hence $c_{\delta \setminus \xi}(\xi)\delta_{\delta} = c_{\delta \setminus \eta}(\eta)\delta_{\delta}$. Similarly $c_{\delta \setminus \eta}(\eta)\delta_{\delta} = c_{\delta \setminus \zeta}(\zeta)\delta_{\delta}$. Thus $(a, \xi)E(c, \zeta)$, as desired.

Now let U be the set of all equivalence classes of $At\mathcal{X} \times \alpha$ under E. Define a map h of $At\mathcal{X}$ into aU by setting $(ha)\xi = (a, \xi)/E$ for each $a \in At\mathcal{X}$ and $\xi \in \alpha$. Let V be the range of h, and let \mathfrak{B} be the full \mathfrak{C}_a with unit element V. For each $a \in A$ let $j_a = (ha : a$ an atom $\leq a)$. To complete our proof it suffices to show that \mathfrak{B} is a Gws \mathfrak{B} and j is an isomorphism of \mathcal{X} into \mathfrak{B}. (The proof below could be simplified slightly
by working with the atom structure of \(\mathcal{K}\), defined in 2.7.32. But we do not want to assume acquaintance with that material.)

Before proceeding we note the following fact about our relation \(E\), which is easily established:

(1) If \(a, b \in \mathcal{A}\mathcal{H} \) and \(\kappa < \alpha\), then \((a, \kappa) E (b, \kappa)\) iff there is a finite \(\Gamma \leq \alpha\) such that \(\kappa \notin \Gamma\) and \(c_\Gamma a = c_\Gamma b\).

Now we show that \(\lambda\) is one-one. Suppose that \(h a = h b\). In particular, \((a, 0) E (b, 0)\), so \(c_\Gamma a = c_\Gamma b\) for some \(\Gamma\), by (1); we choose such a \(\Gamma\) of smallest cardinality. If \(\Gamma = \emptyset\), then \(a = b\), as desired. Suppose \(\Gamma \neq \emptyset\), and choose \(\xi \in \Gamma\). Since \((a, \xi) E (b, \xi)\), choose a finite \(\Delta \subseteq \alpha\) such that \(\xi \notin \Delta\) and \(c_\Delta a = c_\Delta b\). Then, using the fact that \(a\) and \(b\) are rectangular,

\[c_\Gamma \cap \Delta a = c_\Gamma a, c_\Delta a = c_\Gamma b, c_\Delta b = c_\Gamma \cap \Delta b.\]

But \(\xi \in \Gamma \cap (\Gamma \setminus \Delta)\), so \(|\Gamma \setminus \Delta| < |\Gamma|\), a contradiction. So \(a = b\), and \(h\) is one-one.

It follows easily that \(j\) is an isomorphism of \(\mathcal{A}\mathcal{H}\) into \(\mathcal{A}\mathcal{E}\). Next suppose that \(\kappa, \lambda < \alpha\). To show that \(j d_{\alpha, \lambda} = D_{\alpha, \lambda}[^V]\), it suffices to assume that \(\kappa \neq \lambda\). Suppose that \(a \in \mathcal{A}\mathcal{H}\), and first suppose that \(a \not\subseteq d_{\alpha, \lambda}\) (so that \(h a \in j d_{\alpha, \lambda}\)). Then \(c_\alpha a \cdot d_{\alpha, \lambda} = c_\alpha a \cdot d_{\alpha, \lambda} = c_\alpha a \cdot d_{\alpha, \lambda}\), so \((a, \alpha) E (a, \lambda)\); hence \((h a) \lambda = (h a) \lambda\) and \(h a \in D_{\alpha, \lambda}[^V]\). Second suppose that \(h a \in D_{\alpha, \lambda}[^V]\). Thus \((a, \lambda) E (a, \alpha)\), so choose a finite \(\Gamma \subseteq \alpha\) with \(\kappa, \lambda \in \Gamma\) and \(c_\Gamma a \cdot d_\Gamma = c_\Gamma a \cdot d_\Gamma\). Then \(c_\Gamma (\Gamma \cap (\alpha \setminus (\kappa, \lambda))) a \cdot d_\Gamma = c_\Gamma (\Gamma \cap (\alpha \setminus (\kappa, \lambda))) a \cdot d_\Gamma\). Then \(c_\Gamma (\Gamma \cap (\alpha \setminus (\kappa, \lambda))) a \cdot d_\Gamma\) (since \(a\) is rectangular) \(= c_\Gamma (\Gamma \cap (\alpha \setminus (\kappa, \lambda))) a \cdot d_\Gamma \neq 0\) by (1.10.3). Hence \(0 \neq a \cdot c_\Gamma (\Gamma \cap (\alpha \setminus (\kappa, \lambda))) a \cdot d_\Gamma = a \cdot d_{\alpha, \lambda}\) using 1.8.6. Thus \(a \not\subseteq d_{\alpha, \lambda}\), as desired.

Next we show that \(j\) preserves \(c_\alpha\) for any \(\kappa < \alpha\). Let \(a \in \mathcal{A}\mathcal{H}\), \(x \in A\). First suppose that \(a \subseteq c_\alpha x\), so that \(h a \in j c_\alpha x\). Choose \(b \in \mathcal{A}\mathcal{H}\) with \(b \subseteq x\) and \(a \subseteq c_\alpha b\). Then by 1.10.3(i), \(c_\alpha a = c_\alpha b\). Hence by (1), \((h a) \lambda = (h b) \lambda\) for all \(\lambda \neq \kappa\). So \(h a \in c_\alpha j x\), as desired. Second, suppose that \(h a \in c_{\alpha, \lambda}^\Gamma j x\). Say \(b \in \mathcal{A}\mathcal{H}\), \(b \subseteq x\), \((\kappa \sim \alpha) \in \Gamma\) \(1 a \subseteq h b\). Since \(a \geq 2\), there is a \(\lambda \in \kappa \sim (\alpha)\), hence \((h a) \lambda = (h b) \lambda\), hence \(c_\Gamma a = c_\Gamma b\) for finite \(\Gamma \subseteq \alpha\). We choose such a \(\Gamma\) with \(|\Gamma|\) minimum. Suppose there is a \(\mu \in \Gamma \cap (\alpha)\). Then \((h a) \mu = (h b) \mu\), so by (1) there is a finite \(\Delta \subseteq \alpha\) with \(c_\Delta a = c_\Delta b\), \(\mu \notin \Delta\). Since \(a\) and \(b\) are rectangular we easily get \(c_\Delta \cap \Delta \subseteq c_\Delta \cap \Delta\). Since \(|\Gamma \setminus \Delta| < |\Gamma|\), this is a contradiction. Thus \(\Gamma \subseteq (\alpha)\), so \(c_\alpha a = c_\alpha b\).

Hence \(a \subseteq c_\alpha x\) and \(h a \in j c_\alpha x\), as desired.

Before proceeding, we note the following facts:

(2) If \(\Gamma\) is a finite subset of \(\alpha\), \(\kappa \not\subseteq \alpha\), and \(x \in A\), then \(c_{\alpha, \alpha}^\Gamma j x = \{h a : a\) is an atom and there is an atom \(b \subseteq x\) such that \((\alpha \sim \Gamma) 1 a \subseteq h b\}\).

For, \(c_{\alpha, \alpha}^\Gamma j x = j c_{\alpha, \alpha}^\Gamma x = \{h a : a\) is an atom \(\subseteq c_{\alpha, \alpha}^\Gamma x\}\). Hence if \(h a \in c_{\alpha, \alpha}^\Gamma j x\), let \(b\) be an atom \(\subseteq x\) such that \(a \subseteq c_{\alpha, \alpha}^\Gamma b\). Then \(c_\Gamma a = c_\Gamma b\), by (1) we have \((\alpha \sim \Gamma) 1 a \subseteq h b\). Conversely, suppose \(a\) and \(b\) are atoms, \(b \subseteq x\), and \((\alpha \sim \Gamma) 1 a \subseteq h b\). Choose \(\kappa \in \alpha \sim (\alpha)\). Then \((h a) \kappa = (h b) \kappa\), so by (1) there is a finite \(\Delta \subseteq \alpha\) such that \(c_\Delta a = c_\Delta b\); using
rectangularity we easily find that $c_{\Gamma^0}^0 = c_{\Gamma^0}^1 b$. Thus $a \subseteq c_{\Gamma^0}^0 \subseteq c_{\Gamma^0}^1 b$, so $ha \in c_{\Gamma^0}^0 | b$, as desired.

(3) Suppose $a \in A \setminus \mathcal{A}$, $\kappa \leq \alpha$, z is a function with domain α, $(\alpha \sim \{\epsilon\}) \vdash ha \subseteq z$, b is an atom, $b \subseteq c_{\Gamma^0}^0 \subseteq c_{\Gamma^0}^1 a$ for some finite $\Gamma \subseteq \alpha$, $\lambda < \alpha$, and $xz = (hb) \lambda$. Then $z \in V$.

To prove this, we may assume that $\kappa \lambda \in \Gamma$. First suppose $\kappa = \lambda$. We have $c_{\alpha}^0 c_{\Gamma^0 \sim \{\epsilon\}}^0 b \neq 0$ since $b \subseteq c_{\Gamma^0}^0 a$; let c be an atom $b \subseteq c_{\Gamma^0}^0 a$ for some finite $\Gamma \subseteq \alpha$, $\lambda < \alpha$, and $xz = (hb) \lambda$. Then $z \in V$.

Now it remains only to show that V is $\mathcal{G}(a)$ unit element. First suppose that $a \subseteq \alpha$. For each a-atom k, let $U_k = (\langle h a \rangle \subseteq a$ is an atom $\subseteq k$, $\kappa < a \rangle$.

(4) If k and l are distinct a-atoms, then $U_k \cap U_l = 0$.

For, suppose $z \in U_k \cap U_l$. Say $z = (h a) \subseteq (h b) \lambda$ with a and b atoms $\subseteq k$ and l respectively, and $\kappa, \lambda < \alpha$. Thus $(a, \kappa) E(b, \lambda)$, so there is a finite $\Gamma \subseteq \alpha$ with $\kappa, \lambda \in \Gamma$ and $c_{\alpha}^0 c_{\Gamma^0 \sim \{\epsilon\}}^0 b \neq 0$ and so $k = l$.

(5) $V = \bigcup a U_k$.

For, if a is any atom, obviously $ha \in a U_k$, with $k = c_{\alpha}^0 a$. Thus \subseteq holds. The direction \supseteq follows from the following statement (with $\kappa = a$):

(6) Suppose that k is an a-atom, a is an atom $\subseteq k$, $\kappa \subseteq a$, $z \in a U_k$, and $z = (h a) \lambda$ for all $\lambda \subseteq a \sim \kappa$. Then $z \in V$.

We prove (6) by induction on κ. The case $\kappa = 0$ is trivial. Assume that it is true for $\kappa = 1$, ($\kappa = 0$), and assume its hypotheses. Let $(\alpha \sim \{\epsilon\}) \vdash (h a) \lambda \in V$, $y \subseteq a U_k$. Thus $\lambda = (h a) \lambda$ for all $\lambda \subseteq a \sim (\kappa = 1)$, so $y \subseteq V$ by the induction hypothesis. Then (8) yields $z \in V$, as desired.

Second, we suppose that $a \subseteq \omega$. We define an equivalence relation $= \subseteq V$ by setting $x = y$ if $x, y \subseteq V$ and $\{x \subseteq a : x \neq y\} < \omega$. For each a-class k, let $Y_k = \{x : x \subseteq k, \kappa \subseteq a \rangle$. Thus $Y_k \subseteq V \subseteq V$ for any $z \subseteq V$, and hence it suffices to show that $a Y_k \subseteq V$ for any $z \subseteq V$. To do this it suffices to show:

(7) If Γ is a finite subset of a, $x \subseteq V$, $y \subseteq a Y_{x \subseteq \Gamma}$, and $(\alpha \sim \Gamma) \vdash x \subseteq y$, then $y \subseteq V$.

We prove (7) by induction on $|\Gamma|$. The case $\Gamma = 0$ is trivial. Assume inductively that $\Gamma \neq 0$, and fix $\kappa \in \Gamma$. Let z be the element of $\alpha Y_{x \subseteq \Gamma}$ such that $(\alpha \sim \{\epsilon\}) \vdash z \subseteq x$ and $z = z \subseteq x$. Then $z \subseteq V$ by the inductive hypothesis; say $z = h b$ with $b \in A \setminus \mathcal{A}$. Since $y \subseteq Y_{x \subseteq \Gamma}$, there exist $w \subseteq V$, a finite $\Delta \subseteq a$, and a $\lambda < a$ such that $(\alpha \sim \Delta) \vdash x \subseteq w$ and $z = w \lambda$. Let v be such that $(\alpha \sim \{\epsilon\}) \vdash w \subseteq v$ and $v \subseteq w \lambda$. Then by (3), $v \subseteq V$, say $v = h d$. Let $\Omega = \Gamma \Delta \subseteq a \subseteq \{\epsilon\}$. Then for any $\mu \subseteq a \sim \Omega$ we have $y \mu = z \mu = z \mu = \mu \subseteq v \mu = \mu$. Hence $c_{\alpha}^0 \subseteq c_{\alpha}^0 (hb) \subseteq a c_{\alpha}^0 \subseteq (hd)$ by (2), so $c_{\alpha}^0 (hb) c_{\alpha}^0 (hd) \neq 0$, hence $c_{\alpha}^0 \subseteq a \subseteq c_{\alpha}^0 b \neq 0$.

Let e be an atom $\leq c_{\Omega \sim \{e\}} \subseteq c_e \subseteq b$. Thus $c_e e = c_e b$, so $(\sigma \sim \{e\}) \setminus he = (\sigma \sim \{e\}) \setminus hh \subseteq y$. Also, $c_{\Omega \sim \{e\}} e = c_{\Omega \sim \{e\}} y$, so by (1) $(he) e = (he) \subseteq w = y$. Thus $y = he \in V$, as desired. This finishes the proof of 3.2.14.

THEOREM 3.2.16. For $\alpha \geq 2$, a CA_α is representable iff it can be embedded in an atomic CA_α in which all atoms are rectangular.

The proof is immediate from 3.2.14. Theorem 3.2.16 can be given a formulation using atomic structures; see Remarks 2.7.45.

Positive Characteristic

Our next representation result, due to Henkin, is that every CA_α of positive characteristic is representable for $\alpha < \omega$; we have already noted in 3.2.11 that this applies for $\alpha \leq \omega$.

REMARK 3.2.17. To establish this representation result we need an auxiliary result, due independently to Comer and Henkin, that for $\alpha < \omega$ any CA_α of positive characteristic can be provided with a substitution operator s satisfying the conditions in 1.11.12. Actually we do not need all of the conditions of 1.11.12, so we just state those that we do need. To establish this result it is convenient to use the main theorem in Jónsson [62], which we repeat here for the reader's convenience. Suppose that I is any set. An elementary transformation of I is a mapping of I into itself of the form $[x/y]$ or $[x/y, y/z]$ with $x, y \in I$. Recall that $[x/y]$ is that transformation of I which sends x to y and y to x for all $z \in I \setminus \{x\}$; $[x/y, y/z]$ sends x to y, y to z, and z to x for all $z \in I \setminus \{x, y\}$. For brevity we denote $[x/y, y/z]$ by $[x, y]_I$.

Jónsson's theorem is as follows. Let (S, \cdot, e) be a semigroup with identity e. Suppose that we are given a mapping s from the elementary transformations of I into S. Then the following conditions are equivalent:

(A) s extends to a mapping s^* from the set of all finite transformations of I into S such that $s^*(\sigma \tau) = s^* \circ \sigma \tau$ for any two such transformations and $s^*(I \setminus I) = e$. (A transformation of I is just a mapping of I into I. A transformation σ of I is finite if $\{z \in I : \sigma(z) \neq z\}$ is finite.)

(B) If x, y, z are distinct elements of I and y, u, z are distinct elements of I then the following conditions hold:

(1) $s[x, y] = s[y, x]$,

(II) $s[x, y] \cdot s[y, z] = s[z, y] \cdot s[x, y]$,

(III) $s[x, y] \cdot s[y, x] = s[y, z] \cdot s[x, y]$, (IV) $s[x, y] \cdot s[z, x] = s[z, y] \cdot s[x, y]$,

(V) $s[y, z] \cdot s[z, u] = s[z, u] \cdot s[y, z]$,

(VI) $s[y, z] \cdot s[z, u] = s[z, u] \cdot s[y, z]$, (VII) $s[y, z] \cdot s[y, u] = s[y, u]$. (VIII) $s[y, z] \cdot s[z, u] = s[z, u] \cdot s[y, z]$.

It is a lengthy process to establish this auxiliary result, and we break the proof into a series of lemmas. For all of the lemmas we assume that $\alpha < \omega$, and we use $\kappa, \lambda, \mu, \ldots$ for ordinals $< \alpha$. Some of the lemmas are true for arbitrary CA_α's, $\alpha \leq \omega$, but for many we indicate by (A) the additional assumption that the CA_α involved has positive characteristic. To check some of the lemmas, results from section 1.5 will be used without explicit citation. The proof is due to Henkin and Monk.
We begin with a result in the spirit of section 1.5.

LEMMA 3.2.18. If \(\kappa \neq \lambda, \{ \gamma, \delta, \epsilon, \zeta \} = 0, \| \mu, \nu, \rho \| = \| \mu, \nu, \sigma \| = 3, \{ \kappa, \gamma \} \notin \{ \gamma, \delta, \epsilon, \zeta \} = 3, \) and \(e = -d_{\kappa}, e_{\mu} s_{\nu} x d_{\gamma}, d_{\delta}, d_{\lambda}, \) then \(e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\mu}, d_{\nu}) = e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\mu}, d_{\nu}). \)

PROOF. Clearly one of the following conditions holds: \(\mu \neq \gamma, \epsilon, \) or \(\mu \neq \delta, \zeta, \) or \(\nu \neq \gamma, \epsilon, \) or \(\nu \neq \delta, \zeta. \) By symmetry, say \(\mu \neq \gamma, \epsilon. \) Then

\[
 e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\mu}, d_{\nu}) = e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\mu}, d_{\nu});
\]

if \(\rho \neq \gamma, \) this is equal to \(e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\gamma}, d_{\nu}) \) which is equal to \(e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\gamma}, d_{\nu}). \) If \(\rho = \gamma, \) then it is equal to

\[
 e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\mu}, d_{\nu}) = e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\gamma}, d_{\nu}) = e_{\gamma} s(\kappa, \gamma) c_{\mu} c_{\nu} (x d_{\gamma}, d_{\nu}).
\]

This finishes the proof.

DEFINITION 3.2.19. We set

\[
 g_{p_{\rho}} = \prod(-d_{\mu}, \mu, \mu' < \alpha, \mu \neq \nu, \{ \mu, \nu \} \notin \{ \alpha, \beta \} = 0);
\]

\[
 e_{p_{\rho}} = g_{p_{\rho}};
\]

\[
 f_{p_{\rho}} = d_{p_{\rho}} e_{p_{\rho}}.
\]

We give some properties of these notions which will be used later.

LEMMA 3.2.20. (i) \(f_{p_{\rho}} = f_{p_{\rho}}. \)

(ii) If \(\| \kappa, \lambda, \mu \| = 3, \) then \(f_{\mu} s_{\mu}^{\nu} x = f_{\mu} s_{\mu}^{\nu} (f_{\mu} s_{\mu}^{\nu} x). \)

(iii) If \(\| \kappa, \lambda, \mu \| = 3, \) then \(f_{\mu} s_{\mu}^{\nu} x = 0 \) iff \(f_{\mu} s_{\mu}^{\nu} x = 0. \)

(iv) (A) If \(\rho \neq \sigma, \) then \(e_{p_{\rho}} e_{p_{\sigma}} = d_{p_{\rho}}. \)

LEMMA 3.2.21 (A). If \(\rho \neq \sigma, \) then \(f_{p_{\rho}} c_{p_{\rho}} c_{p_{\rho}} (f_{p_{\rho}} x) = f_{p_{\rho}} x. \)

PROOF. We only need to show \(x. \) Now \(f_{p_{\rho}} c_{p_{\rho}} c_{p_{\rho}} (f_{p_{\rho}} x) \) iff \(c_{p_{\rho}} (f_{p_{\rho}} x) c_{p_{\rho}} (f_{p_{\rho}} x) = 0. \) Since \(c_{p_{\rho}} (f_{p_{\rho}} x) c_{p_{\rho}} (f_{p_{\rho}} x) = s_{p_{\rho}}^{\mu} x e_{p_{\rho}} s_{p_{\rho}}^{\mu} x e_{p_{\rho}} e_{p_{\rho}} = d_{p_{\rho}}, \) the desired conclusion follows.

LEMMA 3.2.22 (A). If \(\| \rho, \sigma, \mu \| = 3, \) then \(f_{p_{\rho}} c_{p_{\rho}} (f_{p_{\rho}} x) = f_{p_{\rho}} x. \)

PROOF. Again we only need to show \(x. \) We have

\[
 f_{p_{\rho}} c_{p_{\rho}} (f_{p_{\rho}} x) \triangleq d_{p_{\rho}} c_{p_{\rho}} (f_{p_{\rho}} x)
\]

\[
 = d_{p_{\rho}} c_{p_{\rho}} (e_{p_{\rho}} s_{p_{\rho}}^{\mu} x) = d_{p_{\rho}} c_{p_{\rho}} (f_{\mu} c_{\mu} c_{\mu} (e_{p_{\rho}} s_{p_{\rho}}^{\mu} x)) = d_{p_{\rho}} c_{p_{\rho}} (f_{\mu} c_{\mu} c_{\mu} (e_{p_{\rho}} s_{p_{\rho}}^{\mu} x)) = d_{p_{\rho}} c_{p_{\rho}} (f_{\mu} c_{\mu} c_{\mu} (e_{p_{\rho}} s_{p_{\rho}}^{\mu} x)) (\text{by 3.2.21}),
\]
as desired.

Lemma 3.2.23 (A). If $|\{\kappa, \lambda, \rho, \sigma\}| = 4$, then $f_{\rho^0, \rho} s(\kappa, \lambda) c_{\rho^0}(x: f_{\rho^0}) = f_{\rho^0, \rho} s(\kappa, \lambda) s_{\rho}^0 x$.

Proof. We have

$$f_{\rho^0, \rho} s(\kappa, \lambda) c_{\rho^0}(x: f_{\rho^0}) = f_{\rho^0, \rho} s(\kappa, \lambda)(f_{\rho^0, \rho} c_{\rho^0}(s_{\rho}^0 x: f_{\rho^0}))$$

(by 3.2.20(ii))

$$= f_{\rho^0, \rho} s(\kappa, \lambda)(f_{\rho^0, \rho} c_{\rho^0}(s_{\rho}^0 x: f_{\rho^0}))$$

(by 3.2.22)

$$= f_{\rho^0, \rho} s(\kappa, \lambda) s_{\rho}^0 x$$

(by 3.2.20(ii)).

Now we are ready to define $s(\kappa, \lambda)$, to be used as indicated in 3.2.17.

Definition 3.2.24. For $\kappa \neq \lambda$ we set

$$s(\kappa, \lambda) x = d_{\kappa, \lambda} x + \Sigma_{\rho \subseteq \kappa, \lambda} d_{\rho, \lambda} d_{\kappa, \rho} s_{\rho}^0 s_{\rho}^0 x$$

$$+ \Sigma_{\rho \subseteq \kappa, \lambda} d_{\rho, \lambda} d_{\kappa, \rho} s_{\rho}^0 x$$

$$+ \Sigma_{\rho \subseteq \kappa, \lambda} d_{\rho, \lambda} s_{\rho}^0 s_{\rho}^0 x$$

$$+ \Sigma_{\rho \subseteq \kappa, \lambda} d_{\rho, \lambda} s_{\rho}^0 x$$

We list some immediate properties of $s(\kappa, \lambda)$; for (v)–(vii) see 3.2.26–3.2.30.

Lemma 3.2.25. Assume $\kappa \neq \lambda$.

(i) $s(\kappa, \lambda)$ preserves $+$.

(ii) $s(\kappa, \lambda) 0 = 0$.

(iii) (A) $s(\kappa, \lambda) 1 = 1$.

(iv) (A) $s(\kappa, \lambda) s(\lambda, \kappa) = s(\lambda, \kappa)$.

(v) $s(\kappa, \lambda) d_{\kappa, \lambda} = d_{\kappa, \lambda}$.

(vi) If $\rho \neq \kappa, \lambda$, then $s(\kappa, \lambda)d_{\rho, \kappa} = d_{\rho, \kappa}$ and $s(\kappa, \lambda)d_{\rho, \lambda} = d_{\rho, \lambda}$.

(vii) If $|\{\kappa, \lambda, \rho, \sigma\}| = 4$, then $s(\kappa, \lambda)d_{\rho, \sigma} = d_{\rho, \sigma}$.

Next we give some lemmas which will enable us to break further arguments concerning $s(\kappa, \lambda)$ into cases.

Lemma 3.2.26. If $\kappa \neq \lambda$, then $d_{\kappa, \lambda} s(\kappa, \lambda) x = d_{\kappa, \lambda} x$.

Lemma 3.2.27. If $|\{\kappa, \lambda, \rho\}| = 3$, then $-d_{\kappa, \lambda} d_{\kappa, \rho} s(\kappa, \lambda) x = -d_{\kappa, \lambda} d_{\kappa, \rho} s_{\kappa}^0 s_{\rho}^0 x$.

Proof. It is clear. Now let $r = -d_{\kappa, \lambda} d_{\kappa, \rho} s_{\kappa}^0 s_{\rho}^0 x$. For $\sigma \neq \kappa, \lambda, \rho$, let $t = -d_{\kappa, \lambda} d_{\kappa, \rho} d_{\kappa, \sigma}$. Now $-d_{\kappa, \lambda} d_{\kappa, \rho} d_{\kappa, \sigma} s_{\rho}^0 s_{\kappa}^0 x \leq r$; $-d_{\kappa, \lambda} d_{\kappa, \rho} d_{\kappa, \sigma} s_{\rho}^0 s_{\kappa}^0 x = 0$; and $t s_{\kappa}^0 s_{\kappa}^0 x = t s_{\kappa}^0 s_{\kappa}^0 x \leq r$.

Next, suppose that $\{\kappa, \lambda\} \cap \{\rho, \mu, \nu, \sigma\} = 0$. Suppose $|\{\rho, \mu, \nu\}| = 3 = |\{\rho, \mu, \nu\}|$. Let $t = -d_{\kappa, \lambda} d_{\kappa, \rho} d_{\kappa, \sigma} d_{\mu, \sigma}$. Then
3.2.28
REPRESENTATION THEORY
(POSITIVE CHARACTERISTIC)

\[
\tau \cdot s(\kappa, \lambda) c_\mu c_\nu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) = t \cdot s^a_\mu c_\mu (d_{\mu^\varphi} d_{\mu^\varphi} \cdot x) = t \cdot s^a_\mu c_\mu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) \leq r.
\]

If on the other hand \(|\{\mu, \nu, \varphi\}| = 3 = |\{\mu, \nu, \sigma\}|, \text{ then with } t = -d_{\kappa, \varphi} d_{\mu, \varphi} d_{\nu, \sigma},
\]

\[
t \cdot s(\kappa, \lambda) c_\mu c_\nu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) = t \cdot s^a_\mu c_\mu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) \leq r.
\]

Finally, suppose that \(|\{\kappa, \lambda, \rho\}| = 0 \text{ and } |\{\mu, \nu, \sigma\}| = 3 = |\{\mu, \nu, \tau\}|. \text{ Let } t = -d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \varphi}. \text{ Then}
\]

\[
t \cdot s(\kappa, \lambda) c_\mu c_\nu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) = t \cdot s^a_\mu c_\mu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) = t \cdot s^a_\mu c_\mu (d_{\mu^\varphi} d_{\nu^\varphi} \cdot x) \leq r.
\]

The lemma follows.

By symmetry we obtain:

LEMMA 3.2.28. If \(|\{\kappa, \lambda, \rho\}| = 3, \text{ then } -d_{\kappa, \lambda} d_{\mu, \rho} s(\kappa, \lambda) x = -d_{\kappa, \lambda} d_{\mu, \rho} s^a_\mu x.

LEMMA 3.2.29. Suppose \(|\{\kappa, \lambda\}| = |\{\mu, \nu, \varphi\}| = 0 \text{ and } |\{\mu, \nu, \sigma\}| = 3 = |\{\mu, \nu, \tau\}|. \text{ Then}
\]

\[-d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \varphi} s(\kappa, \lambda) x = -d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \tau} s(\kappa, \lambda) c_\mu c_\nu (x d_{\mu, \rho} d_{\nu, \varphi}).
\]

PROOF. \(z\) is clear. Now let \(t\) be the right-side of the indicated equation. If
\[
t = -d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \varphi} s(\kappa, \lambda) x = -d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \tau} s(\kappa, \lambda) c_\mu c_\nu (x d_{\mu, \rho} d_{\nu, \varphi}),
\]

Then \(t \cdot s^a_\mu x = t \cdot s^a_\mu s^a_\mu x = t \cdot s^a_\mu s^a_\mu s^a_\mu x = t \cdot s^a_\mu s^a_\mu s^a_\mu x = t \cdot s^a_\mu s^a_\mu s^a_\mu x \leq r.

Finally, suppose also \(|\{\kappa, \lambda\}| = |\{\gamma, \delta, \epsilon\}| = 0 \text{ and } |\{\gamma, \delta, \epsilon\}| = 3 = |\{\gamma, \delta, \epsilon\}|. \text{ Then}
\]

\[-d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \varphi} d_{\nu, \tau} s(\kappa, \lambda) c_\mu c_\nu (x d_{\mu, \rho} d_{\nu, \tau}) \leq r
\]

by 3.2.18.

LEMMA 3.2.30. If \(|\{\kappa, \lambda, \rho, \sigma\}| = 4, \text{ then } f_{\rho, \sigma} s(\kappa, \lambda) x = f_{\rho, \sigma} s(\kappa, \lambda) s^a_\mu x.

Now we shall verify the conditions mentioned in 3.2.17. First note by 3.2.26–3.2.30 that \(s(\kappa, \lambda) x s(\kappa, \lambda) x \leq 0 \text{ if } \kappa \neq \lambda. \text{ Thus by 3.2.25(i)–(iii) we have:}

LEMMA 3.2.31 (A). If \(\kappa \neq \lambda, \text{ then } s(\kappa, \lambda) \text{ is a Boolean endomorphism.}

LEMMA 3.2.32 (A). If \(\kappa \neq \lambda, \text{ then } s(\kappa, \lambda) c_\mu x = s^a_\mu c_\mu x.

PROOF. By 3.2.26–3.2.30 there are two non–trivial cases. First, suppose that \(|\{\kappa, \lambda\}| = |\{\mu, \nu, \rho\}| = 0 \text{ and } |\{\mu, \nu, \sigma\}| = 3 = |\{\mu, \nu, \tau\}|. \text{ Let } t = -d_{\kappa, \lambda} d_{\mu, \rho} d_{\nu, \varphi}. \text{ Then
\[ts[\kappa, \lambda]c_\kappa x = t_\mu s(\kappa, \lambda)c_\mu c_\kappa (c_\mu x d_{\mu,\rho} d_{\nu,\sigma}) = t s'_\kappa s'_\lambda c_\mu (d_{\mu,\rho} c_\kappa x) = t s'_\kappa c_\mu x. \]

Second, suppose that \(|\{\kappa, \lambda, \mu, \sigma\}| = 4\). Then
\[
fs_{\rho,\sigma} s(\kappa, \lambda)c_\kappa x = fs_{\rho,\sigma} s(\kappa, \lambda) s'_{\rho,\sigma} c_\kappa x
= fs_{\rho,\sigma} s'_{\rho,\sigma} s'_{\rho,\sigma} c_\kappa x
= fs_{\rho,\sigma} s'_{\rho,\sigma} c_\kappa x.
\]

Lemma 3.2.33 (A). If \(\kappa \neq \lambda \), then \(s(\kappa, \lambda)c_\kappa x = s(\kappa, \lambda)c_\kappa .\)

Lemma 3.2.34 (A). If \(\kappa \neq \lambda \), then \(s(\kappa, \lambda)c_\kappa x = x.\)

Proof. We proceed by cases according to the definition of \(s(\kappa, \lambda)c_\kappa x.\) Clearly \(s(\kappa, \lambda)(d_{\kappa, \lambda} x) = d_{\kappa, \lambda} s(\kappa, \lambda)c_\kappa x = d_{\kappa, \lambda} x,\) using 3.2.25(v) and 3.2.26. If \(\rho \neq \kappa, \lambda, \) then, using 3.2.33,
\[s(\kappa, \lambda)(-d_{\kappa, \lambda} \cdot d_{\rho, \sigma} s'_{\rho,\sigma} c_\kappa x) = -d_{\kappa, \lambda} \cdot d_{\rho, \sigma} s'_{\rho,\sigma} c_\kappa x = -d_{\kappa, \lambda} c_\kappa x.\]

By symmetry, \(s(\kappa, \lambda)(-d_{\kappa, \lambda} \cdot d_{\rho, \sigma} s'_{\rho,\sigma} c_\kappa x) = -d_{\kappa, \lambda} \cdot d_{\rho, \sigma} s'_{\rho,\sigma} c_\kappa x.\) Now suppose \(\{\kappa, \lambda\} \cap \{\mu, \nu, \sigma\} = 0 \) and \(|\{\mu, \nu, \sigma\}| = 3 = |\{\kappa, \lambda\}|.\) Let \(t = -d_{\kappa, \lambda} \cdot d_{\rho, \sigma} d_{\nu,\sigma}.\) Then
\[s(\kappa, \lambda)(t_\mu s(\kappa, \lambda)c_\mu c_\kappa (x d_{\mu,\rho} d_{\nu,\sigma})) =
= t_\mu s(\kappa, \lambda)c_\mu c_\kappa (x d_{\mu,\rho} d_{\nu,\sigma}) (by 3.2.29)
= t_\mu s(\kappa, \lambda)c_\mu c_\kappa (x d_{\mu,\rho} d_{\nu,\sigma}) = t x.\]

Finally, suppose that \(|\{\kappa, \lambda, \mu, \sigma\}| = 4\). Then
\[s(\kappa, \lambda)(fs_{\rho,\sigma} s(\kappa, \lambda) s'_{\rho,\sigma} x) = fs_{\rho,\sigma} s(\kappa, \lambda) s'_{\rho,\sigma} s(\kappa, \lambda) c_\kappa (x f_{\rho,\sigma}) (by 3.2.23 and 3.2.20)
= fs_{\rho,\sigma} s(\kappa, \lambda) s(\kappa, \lambda) c_\kappa (x f_{\rho,\sigma})
= fs_{\rho,\sigma} c_\kappa (x f_{\rho,\sigma}) = x f_{\rho,\sigma} (by 3.2.21).\]

In the next few lemmas we aim toward the result that \(c_\mu s(\kappa, \lambda)c_\mu x = s(\kappa, \lambda)c_\mu x \) for \(|\{\kappa, \lambda, \mu\}| = 3\), one of the hardest results to establish.

Lemma 3.2.35. If \(|\{\kappa, \lambda, \mu\}| = 3\), then \(d_{\kappa, \lambda} \cdot c_\mu s(\kappa, \lambda)c_\mu x \).

Lemma 3.2.36. If \(|\{\kappa, \lambda, \mu, \rho\}| = 4\), then \(-d_{\kappa, \lambda} \cdot c_\mu s(\kappa, \lambda)c_\mu x \).

Lemma 3.2.37. If \(|\{\kappa, \lambda, \mu, \rho, \sigma, \xi\}| = 6 = |\{\kappa, \lambda, \mu, \rho, \sigma, \eta\}|,\) then \(-d_{\kappa, \lambda} \cdot d_{\rho, \sigma} \cdot c_\mu s(\kappa, \lambda)c_\mu x \).
LEMMA 3.2.38 (A). If \(\{\epsilon_i, \lambda, \mu, \rho, \sigma \} = 5 \), then \(-d_{\epsilon_i} \cdot d_{\epsilon_i} \cdot d_{\mu} \cdot d_{\rho} \cdot g_{\mu} \cdot c_{\mu} s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x\).

PROOF. Let \(y = -d_{\epsilon_i} \cdot d_{\epsilon_i} \cdot d_{\mu} \cdot d_{\rho} \cdot g_{\mu} \). First note that \(y \cdot s(\epsilon_i) c_{\mu} x = y \cdot s(\epsilon_i) c_{\mu} x\). Hence

\[
\begin{align*}
y \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) &= y \cdot s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x; \\
y \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) &= y \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) = y \cdot s(\epsilon_i) c_{\mu} x \leq s(\epsilon_i) c_{\mu} x; \\
y \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) &= y \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) = y \cdot s(\epsilon_i) c_{\mu} x \leq s(\epsilon_i) c_{\mu} x;
\end{align*}
\]

if \(\nu \neq \epsilon_i, \lambda, \mu, \rho, \sigma \), then \(y \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) \leq s(\epsilon_i) c_{\mu} x\) similarly. Finally,

\[
\begin{align*}
y \cdot c_{\mu}(f_{\rho} \cdot s(\epsilon_i) x) &= y \cdot c_{\mu}(f_{\rho} \cdot s(\epsilon_i) x) \\
y \cdot s(\epsilon_i) s_{\mu}^{\rho} c_{\mu} x &= y \cdot s_{\mu}^{\rho} s(\epsilon_i) s_{\mu}^{\rho} c_{\mu} x = y \cdot s_{\mu}^{\rho} s_{\mu}^{\rho} c_{\mu} x = y \cdot s_{\mu}^{\rho} s_{\mu}^{\rho} c_{\mu} x.
\end{align*}
\]

LEMMA 3.2.39(A). If \(\{\epsilon_i, \lambda, \mu\} = 3 \), then \(f_{\epsilon_i} \cdot c_{\mu} s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x\).

PROOF. By 3.2.27 we have \(f_{\epsilon_i} \cdot s(\epsilon_i) c_{\mu} x = f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} c_{\mu} x\). Now \(f_{\epsilon_i} \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) = f_{\epsilon_i} \cdot s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x\). Next,

\[
\begin{align*}
f_{\epsilon_i} \cdot c_{\mu}(d_{\epsilon_i} \cdot s(\epsilon_i) x) &= f_{\epsilon_i} \cdot c_{\mu}(d_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} x) \\
&= f_{\epsilon_i} \cdot s(\mu, \epsilon_i) x = f_{\epsilon_i} \cdot s(\mu, \epsilon_i)(c_{\mu} x) \quad \text{(by 3.2.20(ii))} \\
&= f_{\epsilon_i} \cdot s(\mu, \epsilon_i)(f_{\epsilon_i} \cdot c_{\mu} x) \quad \text{(by 3.2.22)} \\
&= f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} c_{\mu}(f_{\epsilon_i} \cdot c_{\mu} x) = f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} c_{\mu}(f_{\epsilon_i} \cdot c_{\mu} x).
\end{align*}
\]

Now

\[
\begin{align*}
f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} c_{\mu}(f_{\epsilon_i} \cdot c_{\mu} x) &= f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} c_{\mu}(f_{\epsilon_i} \cdot c_{\mu} x) = f_{\epsilon_i} \cdot c_{\mu}(f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} x) = f_{\epsilon_i} \cdot c_{\mu}(f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} x) = f_{\epsilon_i} \cdot c_{\mu}(f_{\epsilon_i} \cdot s_{\mu}^{\epsilon_i} x) \leq s(\mu) c_{\mu} x,
\end{align*}
\]

and hence \(f_{\epsilon_i} \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) \leq s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} c_{\mu} x\) by 3.2.20(ii). Finally, if \(\rho \neq \epsilon_i, \lambda, \mu \), then

\[
\begin{align*}
f_{\epsilon_i} \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) &= f_{\epsilon_i} \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) = f_{\epsilon_i} \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) = f_{\epsilon_i} \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) \leq s_{\mu}^{\epsilon_i} s_{\mu}^{\epsilon_i} c_{\mu} x,
\end{align*}
\]

and the proof is complete.

LEMMA 3.2.40 (A). If \(\{\epsilon_i, \lambda, \mu, \rho, \sigma\} = 5 \), then \(-d_{\epsilon_i} \cdot d_{\mu} \cdot d_{\rho} \cdot g_{\rho} \cdot c_{\mu} s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x\).

PROOF. Let \(t = -d_{\epsilon_i} \cdot d_{\rho} \cdot d_{\rho} \cdot g_{\rho} \). Then

\[
\begin{align*}
t \cdot s(\epsilon_i) c_{\mu} x &= t \cdot s(\epsilon_i) c_{\mu} x = t \cdot s(\epsilon_i) c_{\mu} x = t \cdot s(\epsilon_i) c_{\mu} x = t \cdot s(\epsilon_i) c_{\mu} x.
\end{align*}
\]

Now \(t \cdot c_{\mu}(d_{\mu} \cdot s(\epsilon_i) x) = t \cdot s(\epsilon_i) x \leq s(\epsilon_i) c_{\mu} x\). Similarly, \(t \cdot c_{\mu}(d_{\rho} \cdot s(\epsilon_i) x) \leq s(\epsilon_i) c_{\mu} x\). Suppose
\[t \cdot \delta_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = t \cdot \delta_{\mu}(d_{\mu\nu} \cdot \sigma s(\nu|\lambda)c_{\mu} z \cdot d_{\mu\nu} \cdot d_{\mu\nu}) \]
\[= t \cdot \sigma s(\nu|\lambda) s^{\delta}_{\mu} z \cdot s(\nu|\lambda)c_{\mu} z. \]

Finally,
\[t \cdot \sigma_{\mu}(f_{\mu\nu} \cdot s(\nu|\lambda)z) = t \cdot \sigma_{\mu}(f_{\mu\nu} \cdot \sigma s(\nu|\lambda)s^{\delta}_{\mu} z) \cdot s(\nu|\lambda)c_{\mu} z. \]

The following lemma is established in a very similar manner:

Lemma 3.2.41 (A). If \(|\{\nu, \nu, \mu, \rho, \sigma, \nu\}| = 5\) then \(-d_{\nu\nu} \cdot d_{\nu\nu} \cdot d_{\nu\nu} \cdot c_{\mu} s(\nu|\lambda)z \cdot s(\nu|\lambda)c_{\mu} z.\)

Lemma 3.2.42 (A). If \(|\{\nu, \nu, \mu, \rho, \sigma\}| = 4\), then \(f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z \cdot s(\nu|\lambda)c_{\mu} z.\)

Proof. We have
\[f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z = f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z = f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z = f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z.\]

Now note that \(f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z = \Sigma_{\nu \mu} f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z).\) We have
\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot s(\nu|\lambda)c_{\mu} z;\]
\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot s(\nu|\lambda)c_{\mu} z;\]

\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot s(\nu|\lambda)c_{\mu} z.\]

Similarly, if \(\nu \neq \nu, \nu, \mu, \rho, \sigma, \) then
\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = f_{\mu\nu} \cdot c_{\mu}(f_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot c_{\mu} z.\]

Lemma 3.2.43 (A). If \(|\{\nu, \nu, \nu, \mu, \rho\}| = 5\), then \(f_{\mu\nu} \cdot c_{\mu} s(\nu|\lambda)z \cdot s(\nu|\lambda)c_{\mu} z.\)

Proof. We have
\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = f_{\mu\nu} \cdot c_{\mu}(f_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot c_{\mu} z.\]

Hence
\[f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) = f_{\mu\nu} \cdot c_{\mu}(f_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot c_{\mu} z.\]

Finally, \(f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot s(\nu|\lambda)c_{\mu} z.\)

If \(\nu \neq \nu, \nu, \mu, \rho, \) then \(f_{\mu\nu} \cdot c_{\mu}(d_{\mu\nu} \cdot s(\nu|\lambda)z) \cdot s(\nu|\lambda)c_{\mu} z.\)

Now by 3.2.35–3.2.43 we have

Lemma 3.2.44 (A). If \(|\{\nu, \mu\}| = 3\), then \(c_{\mu} s(\nu|\lambda)z \cdot s(\nu|\lambda)c_{\mu} z.\)
Lemma 3.2.45 (A). If \(|\{\kappa, \lambda, \mu\}| = 3\), then \(c_{\mu} s_{\lambda}^\kappa z = s_{\kappa} s^\kappa z\).

Proof. Applying 3.2.44 to \(s_{\lambda}^\kappa z\) in place of \(z\), and using 3.2.34, we obtain
\[c_{\mu} s_{\lambda}^\kappa z \leq s_{\lambda}^\kappa c_{\mu} s_{\lambda}^\kappa z\]. Applying \(s_{\lambda}^\kappa\) to both sides and using 3.2.34 we get
\(s_{\lambda}^\kappa c_{\mu} z \leq c_{\mu} s_{\lambda}^\kappa z\) Combining this with 3.2.44 gives the desired result.

Lemma 3.2.46 (A). If \(|\{\kappa, \lambda, \mu\}| = 3\), then \(s_{\lambda}^\kappa s_{\mu}^\kappa z = s_{\lambda} s_{\mu}^\kappa z\).

Proof. \(s_{\lambda}^\kappa s_{\mu}^\kappa z = c_{\mu} s_{\lambda}^\kappa ((d_{\lambda}^\kappa)^{-1} s_{\mu}^\kappa z) = c_{\mu} (d_{\lambda}^\kappa)^{-1} s_{\mu}^\kappa z = s_{\lambda} s_{\mu}^\kappa z\), using 3.2.45.

Lemma 3.2.47. If \(\kappa \neq \lambda\), then \(c_{\kappa} s_{\lambda}^\kappa z \leq s_{\lambda}^\kappa c_{\kappa} z\).

Proof. We have \(c_{\kappa}(d_{\kappa} s_{\lambda}^\kappa z) = c_{\kappa}(d_{\kappa} s_{\lambda}^\kappa z) \leq s_{\lambda}^\kappa c_{\kappa} z\). If \(\rho \neq \kappa\), then \(c_{\kappa}(d_{\kappa} s_{\lambda}^\kappa z) = c_{\kappa}(d_{\kappa} s_{\lambda}^\kappa z) \leq s_{\lambda}^\kappa c_{\kappa} z\).

If \(\{\kappa, \lambda\} \cap \{\mu, \nu, \rho\} = 0\) and \(|\{\mu, \nu, \rho\}| = 3\), then, with \(t = d_{\nu}^\mu d_{\rho}^\nu d_{\rho}^\nu\),
\(c_{\kappa}(t s_{\lambda}^\kappa z) = c_{\kappa}(t s_{\lambda}^\kappa z) c_{\rho} s_{\mu}^\kappa c_{\mu} s_{\lambda}^\kappa z) \leq c_{\kappa}(t s_{\lambda}^\kappa c_{\mu} s_{\lambda}^\kappa z) \leq s_{\lambda}^\kappa c_{\kappa} z\).

Finally, if \(|\{\kappa, \lambda, \mu, \nu\}| = 4\) then
\(c_{\kappa}(s_{\mu}^\kappa s_{\lambda}^\kappa z) = c_{\kappa}(s_{\mu}^\kappa s_{\lambda}^\kappa z) \leq s_{\lambda}^\kappa c_{\kappa} z\).

Lemma 3.2.48 (A). If \(\kappa \neq \lambda\), then \(c_{\kappa} s_{\lambda}^\kappa z = s_{\lambda}^\kappa c_{\kappa} z\).

Proof. Applying 3.2.47, with \(\kappa\) and \(\lambda\) exchanged, to \(s_{\lambda}^\kappa z\), we get \(c_{\kappa} z s_{\lambda}^\kappa c_{\kappa} s_{\lambda}^\kappa z\), using 3.2.25(iv), 3.2.34. Hence \(s_{\lambda}^\kappa c_{\kappa} z \leq c_{\kappa} s_{\lambda}^\kappa z\). Then 3.2.47 yields the desired result.

Lemma 3.2.49 (A). If \(\kappa \neq \lambda\), then \(c_{\kappa} s_{\lambda}^\kappa z = s_{\lambda}^\kappa c_{\kappa} z\).

Proof. By 3.2.32 and 3.2.48.

The last lemma needed in order to apply Jónsson's theorem in 3.2.17 requires a lengthy proof:

Lemma 3.2.50 (A). If \(|\{\kappa, \lambda, \mu\}| = 3\), then \(s_{\kappa} s_{\mu} s_{\lambda} z = s_{\kappa} s_{\mu} s_{\lambda} z\).

Proof. We have
\[s_{\kappa} s_{\mu} s_{\lambda} (x d_{\lambda} d_{\mu} z) = x d_{\lambda} d_{\mu} s_{\kappa} s_{\mu} s_{\lambda} z = x d_{\lambda} d_{\mu} s_{\kappa} s_{\mu} s_{\lambda} z;\]
1) \(s_{\kappa} s_{\mu} (x d_{\lambda} d_{\mu} z) = s_{\lambda} (d_{\mu}^{-1} s_{\mu} s_{\kappa} z) = d_{\mu}^{-1} s_{\mu} s_{\kappa} z;\)
2) \(s_{\kappa} s_{\mu} (x d_{\lambda} d_{\mu} z) = s_{\lambda} (d_{\mu}^{-1} s_{\mu} s_{\kappa} z) = d_{\mu}^{-1} s_{\mu} s_{\kappa} z;\)
3) \(s_{\kappa} s_{\mu} (x d_{\lambda} d_{\mu} z) = s_{\lambda} (d_{\mu}^{-1} s_{\mu} s_{\kappa} z) = d_{\mu}^{-1} s_{\mu} s_{\kappa} z;\)
\[s[\epsilon, \lambda]s[\kappa, \mu](x \cdot d_{\beta, \gamma} \cdot -d_{\kappa, \lambda}) = d_{\epsilon, \kappa} \cdot -d_{\mu, \lambda} \cdot s[\nu, \omega] \cdot s[\mu, \omega] \text{ by symmetry from (3)}; \]

\[s[\lambda, \omega]s[\kappa, \lambda](x \cdot d_{\beta, \gamma} \cdot -d_{\lambda, \omega}) = d_{\omega, \lambda} \cdot -d_{\mu, \lambda} \cdot s[\nu, \omega] \cdot s[\mu, \omega] \text{ by symmetry from (1)}. \]

Now let \(t = -d_{\epsilon, \kappa} \cdot -d_{\omega, \lambda} \cdot -d_{\mu, \omega} \). Suppose \(\rho \neq \epsilon, \lambda, \mu \). Then

1. \(s[\epsilon, \lambda]s[\epsilon, \mu](x \cdot t \cdot d_{\rho, \sigma}) = s[\epsilon, \lambda](t \cdot d_{\mu, \rho} \cdot s[\epsilon, \mu]) \cdot x = t \cdot d_{\mu, \rho} \cdot s[\epsilon, \mu](x) \text{ by symmetry from (3)}; \)

2. \(s[\lambda, \mu]s[\kappa, \lambda](x \cdot t \cdot d_{\rho, \sigma}) = s[\lambda, \mu](t \cdot d_{\mu, \rho} \cdot s[\kappa, \rho]) \cdot x = t \cdot d_{\mu, \rho} \cdot s[\kappa, \rho](x) \text{ by symmetry from (1)}; \)

3. \[s[\epsilon, \lambda]s[\epsilon, \mu](x \cdot t \cdot d_{\rho, \sigma}) = s[\epsilon, \lambda](t \cdot d_{\mu, \rho} \cdot s[\epsilon, \mu]) \cdot x \]

 \[= t \cdot d_{\mu, \rho} \cdot s[\epsilon, \mu](x) \text{ by symmetry from (3)}; \]

 \[= s[\lambda, \mu]s[\lambda, \mu](x \cdot t \cdot d_{\rho, \sigma}) \text{ by symmetry from (4)}; \]

4. \[s[\epsilon, \lambda]s[\epsilon, \mu](x \cdot t \cdot d_{\rho, \sigma}) = s[\lambda, \mu]s[\lambda, \mu](x \cdot t \cdot d_{\rho, \sigma}) \text{ by symmetry from (6)}; \]

Now suppose that \(\{\epsilon, \lambda, \mu\} \cap \{\nu, \omega, \sigma, \tau\} = \emptyset \) and \(|\{\nu, \rho, \sigma\}| = 3 \). Let \(y = t \cdot d_{\nu, \rho} \cdot d_{\rho, \sigma} \).

Then

\[s[\epsilon, \lambda]s[\epsilon, \mu](x \cdot y) = s[\epsilon, \lambda](y \cdot s[\epsilon, \mu] \cdot s[\epsilon, \mu]) \cdot c_{\rho}(x \cdot d_{\nu, \rho} \cdot d_{\rho, \sigma}) \]

\[= y \cdot s[\epsilon, \lambda] \cdot s[\epsilon, \mu] \cdot s[\epsilon, \mu] \cdot c_{\rho}(x \cdot d_{\nu, \rho} \cdot d_{\rho, \sigma}) \]

\[= y \cdot s[\epsilon, \lambda] \cdot s[\epsilon, \mu] \cdot s[\epsilon, \mu] \cdot c_{\rho}(x \cdot d_{\nu, \rho} \cdot d_{\rho, \sigma}) \text{ by 1.5.18} \]

\[= s[\lambda, \mu]s[\lambda, \mu](x \cdot y) \text{ by symmetry}. \]

Finally, suppose that \(\{\epsilon, \lambda, \mu\} \cap \{\sigma, \tau\} = \emptyset \) and \(\rho \neq \sigma \). Then, using 3.2.23,

\[s[\epsilon, \lambda]s[\epsilon, \mu](x \cdot f_{\rho, \sigma}) = s[\epsilon, \lambda](f_{\rho, \sigma} \cdot s[\epsilon, \mu] \cdot c_{\rho}(x \cdot f_{\rho, \sigma})) \]

\[= f_{\rho, \sigma} \cdot s[\epsilon, \lambda] \cdot s[\epsilon, \mu] \cdot c_{\rho}(x \cdot f_{\rho, \sigma}) \]

\[= f_{\rho, \sigma} \cdot s[\epsilon, \lambda] \cdot s[\epsilon, \mu] \cdot c_{\rho}(x \cdot f_{\rho, \sigma}) \text{ by symmetry}. \]

Finally we are ready for the auxiliary result of Comer and Henkin:

THEOREM 3.2.51. Suppose \(\alpha \in \mathcal{U} \) and \(\mathcal{U} \) is a CA\(\alpha \) of positive characteristic. Then there is a function \(s \) assigning to every \(\tau \in \mathcal{U} \) an endomorphism \(s_{\tau} \) of \(\mathfrak{H} \) such that the following conditions hold for any \(\sigma, \tau \in \mathcal{U} \) and \(\epsilon, \lambda, \mu \in \alpha: \)

(i) \(s_{\alpha \cdot \sigma} = s_{\alpha} \cdot s_{\sigma} \);

(ii) \(s_{\sigma} = A \cdot Id \) if \(\sigma = a \cdot Id \);

(iii) \(s_{\alpha \cdot (\lambda \cdot \mu)} = s_{\epsilon} \cdot s_{\lambda} \cdot s_{\mu} \);

(iv) \(s_{\epsilon \cdot d_{\epsilon \cdot \lambda \cdot \mu}} = d_{\epsilon \cdot d_{\epsilon \cdot \lambda \cdot \mu}} \);

(v) if \((a \cdot (\epsilon \cdot \lambda \cdot \mu)) \cap 0 \subseteq \tau \) then \(s_{\epsilon \cdot c_{\epsilon \cdot \lambda \cdot \mu} \cdot x} = s_{\epsilon \cdot c_{\epsilon \cdot \lambda \cdot \mu} \cdot x} \);

(vi) if \(\epsilon \in R_{\rho, \sigma} \), then \(c_{\rho, \sigma} \cdot x = s_{\rho, \sigma} \cdot x \);

(vii) if \(\sigma \cdot \tau \in \{\epsilon \} = \{\lambda \} \), then \(c_{\rho, \sigma} \cdot x = s_{\rho, \sigma} \cdot c_{\rho, \sigma} \).

PROOF. By 3.2.18–3.2.50 and Jónsson's theorem in 3.2.17 we obtain a function \(s \) assigning to every \(\tau \in \mathcal{U} \) an endomorphism \(s_{\tau} \) of \(\mathfrak{H} \) such that (i)–(iii) hold and
3.2.52 REPRESENTATION THEORY
(POSITIVE CHARACTERISTIC)

\(s_{\kappa \lambda} = s_{\kappa \lambda} \) for any distinct \(\kappa, \lambda < \alpha \). Now (iv) follows from 3.2.25(v)−(vii). For (v), we may assume that \(\alpha \geq 2 \). Choose \(\lambda \in \alpha - \{\kappa\} \). Then \(s_{\kappa \lambda} = \tau_{s_{\kappa \lambda}} \), and hence

\[
s_{\alpha} s_{\kappa \lambda} x = s_{\alpha} s_{\kappa \lambda} c_{\kappa \lambda} x = s_{\alpha} s_{\kappa \lambda} c_{\kappa \lambda} x = s_{\alpha} c_{\kappa \lambda} x.
\]

For (vi), choose \(\lambda \in \alpha - \{\kappa\} \). Then \(s_{\kappa \lambda} \circ \sigma = \sigma \), so

\[
c_{\kappa \lambda} s_{\alpha} x = c_{\kappa \lambda} s_{\alpha} \circ \sigma = c_{\kappa \lambda} s_{\alpha} \circ \sigma = c_{\kappa \lambda} s_{\alpha} x = s_{\kappa \lambda} s_{\alpha} x = s_{\alpha} x.
\]

Finally, for (vii) note that \(([\kappa, \lambda] \circ \sigma)^{-1} (\lambda) = \{\lambda\} \). Hence \([\kappa, \lambda] \circ \sigma \) can be written as a composition of replacements and transpositions none of which involves \(\lambda \). Hence by 3.2.45 we have \(c_{\kappa \lambda} s_{\alpha \lambda} x = s_{\kappa \lambda} s_{\alpha \lambda} c_{\kappa \lambda} x \), hence \(c_{\kappa \lambda} s_{\alpha \lambda} x = s_{\kappa \lambda} s_{\alpha \lambda} x \). Hence by 3.2.34 and 3.2.49, \(c_{\kappa \lambda} s_{\alpha \lambda} x = s_{\kappa \lambda} c_{\kappa \lambda} x \), as desired.

The following result is closely related to 3.2.51, but will not be needed for the positive characteristic representation theorem.

THEOREM 3.2.52. Let \(\mathcal{A} \) be a \(CA_{\alpha+2} \) and \(\mathcal{U} = \mathbb{R} \otimes \mathcal{A} \). Then there is a function \(s \) assigning to every finite transformation \(\sigma \circ \alpha \) an endomorphism \(s_{\sigma} \) of \(\mathcal{U} \) such that the conditions of 3.2.51 hold for all finite transformations \(\sigma, \tau \circ \alpha \) and all \(\kappa, \lambda < \alpha \).

PROOF. This time for distinct \(\kappa, \lambda < \alpha \) we let \(s_{\kappa \lambda} = s_{\kappa} s_{\lambda} \), for all \(x \in A \). The conditions in 3.2.17 and 3.2.51 follow easily using results in section 1.5.

Both 3.2.51 and 3.2.52 express relationships between cylindric and polyadic algebras. In this connection, see also section 5.4. Andréka, Comer and Németh have proved the following theorem relevant to these considerations: one can define a substitution function as above in every \(CA_{\alpha+2} \mathcal{G}_{\alpha} \), for \(\alpha < \omega \); this result does not extend even to \(CA_{\omega+2} \mathcal{G}_{\omega} \).

Now we turn to the promised representation theorem of Henkin.

THEOREM 3.2.53 Let \(\mathcal{U} \) is a subdirect product of \(CA_{\alpha} \)'s of positive characteristic, then \(\mathcal{U} \) is representable.

PROOF. By 2.4.62 we may assume that \(\mathcal{U} \) is simple. By 3.2.51 we have available a substitution operation \(s \) satisfying (i)−(vii) there. Let \(\kappa \) be the characteristic of \(\mathcal{U} \). Thus \(d(\kappa, \kappa) \neq 0 \), and so there is an ultrafilter \(F \) on \(\mathbb{N} \) such that \(d(\kappa, \kappa) \in F \).

(Recall that \(d(\kappa, \kappa) = \prod_{\xi < \kappa} d_{\xi} \).) Now for any \(x \in A \) let

\[
f x = \{ \tau \in \mathfrak{c}_{\kappa} : s_{\kappa} x \in F \}.
\]

From this definition it is clear that \(f \) preserves \(+ \) and \(-\). Since \(\mathcal{U} \) is simple, it suffices to show that \(F \) preserves \(d_{\tau} \) and \(c_{\tau} \) for all \(\tau < \alpha \). We have \(\tau \in f d_{\tau} \) iff \(s_{\tau} d_{\tau} \in F \) iff \(d_{\tau} \tau \in F \) iff \(\tau = \tau \), since \(-d_{\mu} \in F \) for all distinct \(\mu, \nu < \kappa \). Thus \(f \) preserves \(d_{\tau} \).

To show that \(f \) preserves \(c_{\tau} \), we need several steps.

(1) If \(\kappa \leq \tau \) and \(c_{\tau} x \in F \), then \(s_{\tau} x \in F \) for some \(\nu < \kappa \).
For, \(c_{t}x = c_{t}(x, \Sigma_{u,T < t, \mu, u}d_{\mu} + x) \Sigma_{u,T < t, \mu, u}d_{\mu} \cdot c_{t}x + \Sigma_{u,T < t, \mu, u}d_{\mu} \cdot c_{t}x \). Since \(d_{\mu} \notin F \) for all distinct \(\mu, u < T \), the conclusion of (1) follows. Let \(V = x \).

(2) If \(t \prec x \) and \(r \in fc_{t}x \), then \(r \in C_{t}^{[V]}/fz \).

For, under the hypothesis of (2) we have \(s_{t}c_{t}x \in F \). Let \(s = r_{t}^{1} \). Then \(\sigma^{-1}(s) = \{ t \} \), \((\alpha \sim \{ t \}) \) \(r \leq \sigma \), so by 3.2.51(v) and (vi) we get \(s_{t}c_{t}x = s_{t}c_{t}x = c_{s_{t}}x \). Hence by (1) choose \(\eta < \kappa \) with \(s_{t}^{\eta}s_{s_{t}}x \notin F \). Thus \([\kappa/\eta] \sigma \in fz \) and \((\alpha \sim \{ t \}) \) \(r \leq \sigma^{-1}(\kappa/\eta) \cdot \sigma \), so \(r \in C_{t}^{[V]}/fz \).

(3) If \(\varepsilon \leq t \prec x \) and \(r \in fc_{t}x \), then \(r \in C_{t}^{[V]}/fz \).

The proof is similar to that of (2), using \(s = r_{t}^{1} \).

(4) If \(t \prec x \) and \(r \in C_{t}^{[V]}/fz \), then \(r \in fc_{t}x \).

For, say \(r_{t}^{1} \in fz \), with \(\eta < \kappa \). Let \(s = r_{t}^{1} \). Then \(s, x \in F \), so \(s_{t}c_{t}x \in F \). But \(s_{t}c_{t}x \in F \) by 3.2.51(v), so \(s_{t}c_{t}x \in F \), hence \(r \in fc_{t}x \). This completes the proof of 3.2.53.

Next we consider representability for \(CA_{\alpha} \)'s and \(CA_{\gamma} \)'s, both cases being rather trivial. Note from 3.1.17 that \(GS_{\alpha} \) does not have its intended meaning as the class of representable \(CA_{\alpha} \)'s, for \(\alpha \neq 1 \). Instead, the class \(SPC_{\alpha} \) is more appropriate.

THEOREM 3.2.54. \(CA_{0} = SPC_{0} \).

PROOF. The inclusion \(\subseteq \) is all that needs to be shown. By 2.4.52 it suffices to take the case of a simple \(CA_{0} \). Thus \(|A| = 2 \), so \(\mathcal{U} \) is clearly isomorphic to a \(C_{0} \) (see 3.1.17).

THEOREM 3.2.55. \(CA_{1} = SPC_{1} \).

PROOF. Again only \(\subseteq \) needs to be shown, and it suffices to take a simple \(CA_{1} \). Thus by 2.3.14 the cylindrification \(c_{0} \) is given by: \(c_{0} = 0 \), \(c_{0} = 1 \) if \(\alpha = 0 \). By the Boolean representation theorem, say \(f \) is an isomorphism from \(\mathcal{M} \) onto a field of subsets of some set \(U \). Define \(g_{a} = \{(u) : u \in fa\} \) for all \(a \in A \). Clearly \(g \) is an isomorphism from \(\mathcal{U} \) onto a \(C_{1} \).

COROLLARY 3.2.56. For \(\alpha \neq 1 \) we have \(CA_{\alpha} = SPC_{\alpha} = SNR_{\alpha}CA_{\alpha} \).

PROOF. By 3.1.128, 3.2.54, and 3.2.55.
3.2.57 REPRESENTATION THEORY (REPRESENTATION OF CA₂′s)

Representation of CA₂′s

Our last two positive representation results in this section concern CA₂′s. The first result is that any CA₂ is isomorphic to a Crs₂. This theorem is a corollary of the proof of the second result; it has been given a shorter independent proof by Andréka and Németi. They used it to give a somewhat simpler proof of the second result too. See also section 5.5. To formulate the other result, recall from 2.6.42 that for each \(\alpha \geq 2 \) there is a CAₙ in which the equation

\[c₁(x·y·c₂(x·−y))·c₃(x·−d₀₁) = 0 \]

fails; on the other hand, by 2.6.41 this equation holds for every representable CAₙ.

Of course the same two statements hold if we replace 0 and 1 by arbitrary distinct \(\kappa, \lambda < \alpha \).

The second result is that if the above equation and its symmetric form with 0 and 1 interchanged hold in a CA₂ \(\mathcal{A} \), then \(\mathcal{A} \) is representable. These two results are due to Henkin and Tarski, but the basic idea of the proof goes back to Everett, Ulam [48]. We shall derive both results from a rather technical lemma, 3.2.59. For it we need some preparation.

LEMMA 3.2.57. For any non-empty set \(U \) there is a partition \(\mathcal{P} \) of \(2^U \) such that \(|\mathcal{P}| = |U|, \ D_{0₁}^{[W]} \in \mathcal{P}, \) where \(V = 2^U \) and \(Cₖ^{[W]} X = 2^U \) for each \(X \in \mathcal{P} \) and each \(\kappa < 2 \).

PROOF. Let \(\circ \) be a group operation on \(U \). For each \(u \in U \) let \(X_u = \{(v, u·v) : v \in U\} \). If \((v, w) \in X_u \), then \(w = u·v = u·v, \) hence \(u = w \). Given any \((v, w) \in 2^U \) we have \((v, w) \in X_u \), where \(u = w·v^{-1}. \) Clearly \(X_u = 2^U \) for all \(u \in U \).

Thus \(\{X_u : u \in U\} \) is a partition of \(2^U \), and \(|\{X_u : u \in U\}| = |U| \). If \(e \) is the identity of the group \(\langle U, \circ \rangle \), then \(X_e = D_{0₁}^{[W]} \). Finally, let \(u \in U \); we show that \(Cₖ X_u = Cₖ X_e = V \). Let \((v, w) \in V \) be arbitrary. Then \((v, u·v) \in X_u \) and \((v, u·v) \in X_u \), so \((v, w) \in Cₖ X_u \), as desired.

LEMMA 3.2.58. Suppose \(|U| = |U′| \geq \kappa > 0, \kappa \) a cardinal, and \(V = U \times U′ \). Then there is a partition \(\mathcal{P} \) of \(V \) such that \(|\mathcal{P}| = \kappa \), \(D_{0₁}^{[W]} \in \mathcal{P} \) if \(U = U′ \) and \(\kappa > 1 \), and \(Cₖ^{[W]} X = Cₖ^{[W]} V = V \) for all \(X \in \mathcal{P} \).

PROOF. Let \(\mathcal{P} \) be as in 3.2.57. Choose \(\mathcal{P}′ \subseteq \mathcal{P} \) with \(|\mathcal{P}′| = \kappa \) and \(D_{0₁}^{[W]} \in \mathcal{P}′ \), where \(W = 2^U \), and fix \(X \in \mathcal{P}′ \) with \(X \neq D_{0₁}^{[W]} \) if \(\kappa > 1 \). Let \(Y = Xu \cup _{Z \in \mathcal{P}′, Z \neq X} Y \). Let \(f \) be a one-one function from \(U′ \) onto \(U \), with \(f = U′ \) \(\text{Id} \) if \(U = U′ \). For each \(X \in \mathcal{P}′ \) let \(X^* = \{(u, v) : u \in U, v \in U′, (u, f(v)) \in X\} \). Finally, let \(\mathcal{P} = \{X^* : X \in \mathcal{P}′\} \). Clearly \(\mathcal{P} \) is as desired.

LEMMA 3.2.59. Let \(\mathcal{A} \) be a simple complete atomic CA₂. An atom \(a \in \text{At} \mathcal{A} \) is said to be defective if the following condition holds:

\[(*) \quad Cₖ a·cₖ·a \neq D_{0₁}, \quad \text{and there exist } \kappa, \lambda < 2 \text{ and } x, y, z \in A \text{ such that } \{\kappa, \lambda\} = 2, x \leq cₖ a, \text{ and } cₖ(x·y)cₖ(x·z)cₖ(x·y·z) \neq 0.\]

Let \(I \) be the set of all defective atoms of \(\mathcal{A} \). Then \(\mathcal{A} \) is isomorphic to a Crs₂, whose unit
element has the form \(\hat{2}U = \bigcup_{i \in \mathcal{I}} (\hat{2}X_i \cdot D_0^{[T]} \), where \(U \) is some set, with \(X_i \subseteq U \) for all \(i \in \mathcal{I} \), \(X_i \cap X_j = 0 \) for \(i \neq j \), and \(T = \hat{2}U \). Furthermore, \(U \) is finite if \(\mathcal{I} \) is.

PROOF. Let \(\text{Dat} = \{ a \in At\mathfrak{I}; a \leq \text{d}_0 \} \). An element \(a \in \text{Dat} \) is small if \(c_0 \cdot a \cdot c_0 \cdot a \leq \text{d}_0 \); otherwise it is big. Note that if \(a \) is small then \(a = c_0 \cdot a \cdot c_0 \cdot a \), since \(c_0 \cdot a \cdot c_0 \cdot a = c_0 \cdot (a \cdot d_0) \cdot c_0 \cdot (a \cdot d_0) \cdot d_0 = a \). For \(a, b \in \text{Dat} \), we set \(A_{ab} = \{ z \in At\mathfrak{I}; z \leq c_0 \cdot a \cdot c_0 \cdot b \} \). In figure 3.2.60 we illustrate these notions.

![Diagram](image)

FIGURE 3.2.60
Now we establish some properties of A_{ab}:

(1) $A_{ab} \neq 0$ for all $a,b \in \text{Dat}$.

For, $c_0c_0(c_0c_0) = c_0(c_0a \cdot c_0b) = c_0c_0a \cdot c_0b = 1$ by simplicity.

(2) For all $a,b \in \text{Dat}$ and $z \in \text{AtX}$, $z \in A_{ab}$ iff $c_z = c_z a$ and $c_{c_z} = c_z b$.

For, $c_{c_z} a$, so $c_{c_z} c_z a$. But $c_z a$ is a $(1)-$atom by 1.10.3, so $c_z a = c_z a$. Similarly, $c_z b = c_z b$.

(3) For all $a,b,c,d \in \text{Dat}$, if $A_{ab} \cap A_{cd} \neq 0$, then $a = c$ and $b = d$.

For, say $z \in A_{ab} \cap A_{cd}$. Then, using (2),

$$a = d_{01} \cdot c_z (a - d_{01}) \quad \text{(since } a \neq d_{01})$$

$$= d_{01} \cdot c_z a = d_{01} \cdot c_z = d_{01} \cdot c_z c = c.$$

Similarly, $b = d$.

(4) $\text{AtX} = \bigcup_{a,b \in \text{Dat}} A_{ab}$.

For, let $z \in \text{AtX}$. By 1.10.4, $a = c_z \cdot d_{01}$ and $b = c_{c_z} \cdot d_{01}$ are atoms; thus $a,b \in \text{Dat}$. Clearly $c_z a = c_z b$ and $c_{c_z} b = c_{c_z} a$, so $z \in A_{ab}$ by (2).

Now for each $a \in \text{Dat}$ we let

$$X_a = \begin{cases} \{(a, z) : z \in \text{AtX}\} & \text{if } a \text{ is big, or small and defective,} \\ \{(a, 0)\} & \text{if } a \text{ is small and not defective.} \end{cases}$$

Set $U = \bigcup_{a \in \text{Dat}} X_a$, $T = \{^2 U\}$. With I as in the statement of the lemma, let $V = \{^2 U\} \cup \{^2 X_a \cdot X_d\}$. Thus

(5) $V = \bigcup_{a \in \text{Dat}} X_a \cdot X_b \cup \bigcup_{a \in \text{Dat}} \cdot I X_a \cdot X_b \cup \bigcup_{a \in \text{I}} ((X_a \cdot X_b) \cdot D_{01}[^1])$;

(6) $(X_a \cdot X_b) \cup (X_c \cdot X_d) \neq 0$ implies $a = c$ and $b = d$.

Now we shall define φ mapping AtX into SbV, by defining for all $a,b \in \text{Dat}$ its restriction $A_{ab}1_{\varphi}$. We shall do this so that the following conditions hold:

(7) if $a,b \in \text{AtX}$ and $a \neq b$, then $\varphi(a \cdot \varphi(b) = \varphi(a)$;

(8) if $a,b \in \text{Dat}$ and $a \neq b$, then $\bigcup_{a \in \text{AtX}} \varphi z = X_a \cdot X_b$;

(9) if $a \in \text{Dat}$, then $\bigcup_{a \in \text{AtX}} \varphi z = X_a \cdot X_a$;

(10) if $a \in I$, then $\bigcup_{a \in \text{AtX}} \varphi z = X_a \cdot X_a \cdot D_{01}[^1]$;

(11) $C_{01}[^1] \varphi z = V_n(U \cdot X_a)$ and $C_{01}[^1] \varphi z = V_n(X_a \cdot U)$ for all $z \in A_{ab}$.
We consider several cases. We call a large if it is big or defective.

Case 1. \(a \) and \(b \) are large, and \(a \neq b \). Thus \(|X_a| = |X_b| = |A_{ab}| \geq |A_{ab}| > 0 \). By 3.2.58, let \(A_{ab} \) be a one-one function from \(A_{ab} \) onto a partition of \(X_a \times X_b \) such that \(C_0 \) for all \(x \in A_{ab} \), where \(W = X_a \times X_b \). Clearly (7)–(11) hold.

Case 2. \(a \) is big, \(a = b \). Thus \(c_0 \), \(a \), \(d_0 \) hold, so \(|A_{aa}| > 1 \). Hence by 3.2.58 we can carry through the construction in Case 1 with \(\varphi = D_{01} \) n \((X_a \times X_a) \), clearly (7)–(11) hold.

Case 3. \(a \) is defective, \(a \neq b \). Then \(A_{aa} = \{ a \} \), and we set \(\varphi = (X_a \times X_a) \) n \(D_{01} \). Clearly (7)–(11) hold.

Case 4. \(a \) is non-definite, or \(b \) small non-definite. Say \(a \) is small non-defective. We shall show that \(c_0 \) is a atom. Let \(x = c_0 \), suppose that \(x \) is not an atom. Say \(x = y+z \) where \(0 \neq y, z \) and \(y+z = 0 \). Since \(a \) is small and non-defective we have \(c_0 \), \(y \), \(z \), \(c_0 \), \(y+z = 0 \). But \(\varphi = c_0 \), \(b \), and similarly \(c_0 \), \(z \), \(c_0 \), \(b \), so \(c_0 \), \(b \), contradiction.

Thus \(A_{ab} = (c_0 a \times c_0 b) \). We set \(\varphi = (c_0 a \times c_0 b) \times X_a \). Clearly (7)–(11) hold.

This finishes the definition of \(\varphi \). By (1)–(11), \(\varphi \) is a one-one function from \(A_{ab} \) onto a partition of \(H \). Hence if we let

\[
fx = \bigcup \{ \varphi(a) : a \in A_{ab} \}
\]

for all \(x \in A \), we obtain an isomorphism of \(B \times A \) into the BA \(B \times B \), because \(B \) is complete and atomic. It remains to check that \(f \) preserves cylindrications and diagonal elements.

By symmetry we prove only that \(f \) preserves \(c_0 \). First suppose \((u, v) \in f c_0 x \). Say \((u, v) \in \varphi a \) with \(a \in c_0 x \). Then there is a \(b \in A_{ab} \) with \(b \in c_0 x \) and \(a \in c_0 b \). By (4), say \(a \in c_0 c_0 \in e \in D_{ab} \), and \(b \in c_0 \). Then \(c_0 = c_0 a = c_0 b = c_0 c_0 \), so \(e = t \). Since \((u, v) \in \varphi a \), by (8)–(10) we have \(u \in X_e \), hence \((u, v) \in \\bigcup \{ U \} \times X_e \) and so by (11),

\[
(u, v) \in C_0 \varphi c_0 \in C_0 f x,
\]

as desired. Conversely, suppose \((u, v) \in C_0 f x \). Say \((u, v) \in f \varphi a \) with \(a \in c_0 x \), \(a \in A_{ab} \), \(b \in c_0 \). Say \((u, v) \in \varphi e \), \(e \in A_{ab} \). Then \(u \in X_e \), \(v \in X_e \), so \(e = t \). Since \(c_0 = c_0 c_0 \), we have \(c_0 c_0 x \), hence \((u, v) \in f c_0 x \), as desired.

To show that \(f \) preserves \(d_{01} \), first suppose that \((u, v) \in f d_{01} \). Say \((u, v) \in \varphi a \) with \(a \in A_{ab} \), \(a \in A_{ab} \). Thus \(a \in D_{ab} \), \(a \in A_{ab} \). If \(a \) is big, then by Case 2, \(u = v \); if \(a \) is small and defective then \(u = v \) by Case 3; and if \(a \) is small and non-definite then \(u = v \). Thus \((u, v) \in D_{ab} \). Conversely, suppose that \((u, v) \in D_{ab} \). Thus \(u = v \). Say \((u, v) \in \varphi a \), where \(a \in A_{ab} \). Say \(a \in A_{ab} \).

By construction it is clear that \(b = c = a \), and hence \(a \in D_{ab} \). This completes the proof of 3.2.59.

Theorem 3.2.61. \(C_{A_2} \subseteq C_{S_2} \).

Proof. By the semisimplicity of \(C_{A_2} \)'s (2.4.58) and simply proved facts about \(C_{S_2} \), it suffices to show that an arbitrary simple \(C_{A_2} \) is isomorphic to a \(C_{S_2} \). By
2.7.15 and 2.7.17, $\mathcal{L} \subseteq \mathcal{B}$ for some simple complete atomic CA_2 \mathcal{B}. The desired result now follows from 2.3.59.

REMARKS 3.2.62. As was mentioned earlier, Theorem 3.2.61 has been given a direct proof by Andréka and Németi. The theorem gives a general geometric representation theorem for CA_2's; see the end of this section. We know from 2.6.41 and 2.6.42 that not every CA_2 is representable. Thus there is a simple CA_2 \mathcal{K} which is not isomorphic to a CS_2. By 3.2.61, \mathcal{K} is isomorphic to a CSR_2 with unit element V. The set V does not have the form 2U, but the diagonal element $D_{01}^{[W]}$ consists of various elements of the form (u,v). It is also possible to represent \mathcal{K} isomorphically as a field of subsets of some set 2U with the natural cylindrifications $C_\kappa^{[T]}$, $T=^2U$, $\kappa<2$, but with an equivalence relation on U in place of $D_{01}^{[T]}$. In fact, in the proof of 3.2.59, Case 3, one simply takes $\varphi_a = X_\alpha \cdot X_a$, and otherwise the proof of 3.2.59 remains the same.

To establish our other representation theorem concerning CA_2's we need two elementary lemmas.

LEMMA 3.2.63. Suppose $\alpha \geq 2$, $\kappa, \lambda < \alpha$, $\kappa \neq \lambda$, and the equation

(i) $c_\kappa(x \cdot y \cdot c_\lambda(x \cdot y)) \cdot c_\kappa(c_\lambda x \cdot d_\kappa) = 0$

holds in a CA_α \mathcal{L}. Then the following condition holds for all $x,y,z \in A$:

(ii) If $c_\kappa x \cdot s_\kappa^\alpha c_\kappa x \cdot d_\kappa$, then $c_\kappa(x \cdot y) \cdot c_\kappa(x \cdot z) = c_\kappa(x \cdot y \cdot z)$.

PROOF. Assume the hypothesis of the lemma and of (ii). Then $c_\kappa x \cdot d_\kappa \cdot s_\kappa^\alpha c_\kappa x$, and so for any $w \in A$ we have

$c_\kappa(x \cdot w \cdot c_\kappa(x \cdot w)) \cdot s_\kappa^\alpha c_\kappa x \cdot d_\kappa c_\kappa x;\\ c_\kappa(x \cdot w \cdot c_\kappa(x \cdot w)) \cdot c_\kappa(d_\kappa c_\kappa x \cdot c_\kappa x) = 0;\\ c_\kappa(c_\kappa(x \cdot w) \cdot c_\kappa(x \cdot w) \cdot d_\kappa) = c_\kappa x \cdot c_\kappa x = 0;\\ c_\kappa x \cdot c_\kappa x \cdot c_\kappa x = 0;\\ c_\kappa(x \cdot w) \cdot c_\kappa(x \cdot w) = c_\kappa x \cdot c_\kappa x \cdot c_\kappa x = 0;\\ c_\kappa(x \cdot w) \cdot c_\kappa(x \cdot w) = c_\kappa x \cdot c_\kappa x \cdot c_\kappa x = 0.

Hence if we let $f = c_\kappa(x \cdot w)$ for all $w \in A$, we see that f is a homomorphism from \mathcal{L} into $\mathcal{L}(y \cdot x)$, with $y = c_\kappa x$. Hence the conclusion of (ii) follows.

LEMMA 3.2.64. Suppose $\alpha \geq 2$, $\kappa, \lambda < \alpha$, and $\kappa \neq \lambda$. Let \mathcal{L} be a CA_α. Then 3.2.63 (ii) holds for all $x,y,z \in A$ iff the following inequality holds for all $x,y,z \in A$:

(*) $c_\kappa(x \cdot y) \cdot c_\kappa(x \cdot z) \leq c_\kappa(x \cdot y \cdot z)$.

PROOF. Clearly (*) implies 3.2.63(ii). Now assume that 3.2.63(ii) holds for all $x,y,z \in A$, and let $x,y,z \in A$ be arbitrary. Set $v = c_\lambda x \cdot s_\lambda c_\lambda x \cdot d_\lambda$, $x_1 = x \cdot c_\kappa c_\lambda u$, $x_2 = x \cdot c_\lambda c_\kappa u$. Then
\[c_\lambda x \cdot s_i^e c_\lambda x \cdot -d_{\lambda e} = c_\lambda x \cdot s_i^e c_\lambda x \cdot -d_{\lambda e} \cdot -c_\lambda c_\lambda u = u \cdot -c_\lambda c_\lambda u = 0; \]

hence by 3.2.63(ii) we have

(1) \[c_\lambda (x \cdot y) \cdot c_\lambda (x \cdot z) \leq c_\lambda (x \cdot y \cdot z). \]

Since \(z \leq c_\lambda c_\lambda u \), we have \(c_\lambda x \cdot z \leq c_\lambda c_\lambda u \) and hence

(2) \[c_\lambda (x \cdot y) \cdot c_\lambda (x \cdot z) \leq c_\lambda c_\lambda u. \]

Now note that \(c_\lambda x \cdot c_\lambda z = 0 = c_\lambda x \cdot c_\lambda z \). Hence

\[
\begin{align*}
\lambda (x \cdot y) \cdot \lambda (x \cdot z) &= (\lambda (x \cdot y) + \lambda (x \cdot z)) \cdot (\lambda (x \cdot y) + \lambda (x \cdot z)) \\
&= \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) \\
&= \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) + \lambda (x \cdot y) \cdot \lambda (x \cdot z) \\
&\leq c_\lambda c_\lambda u + c_\lambda (x \cdot y) \cdot c_\lambda (x \cdot z) \\
&\leq c_\lambda c_\lambda u + c_\lambda (x \cdot y \cdot z),
\end{align*}
\]

as desired.

We are now ready for the second representation theorem for \(CA_\lambda \)'s:

THEOREM 3.2.65. The following are equivalent, for any \(\mathcal{A} \in CA_\lambda \):

(i) \(\mathcal{A} \in SNr_\lambda CA_\lambda \);

(ii) for any \(x, y \in A \), the following two equations hold:

\[c_\lambda (x \cdot y) \cdot c_\lambda (x \cdot -y) \cdot -c_\lambda (c_\lambda x \cdot -d_{\lambda e}) = 0; \]

\[c_\lambda (x \cdot y) \cdot c_\lambda (x \cdot -y) \cdot -c_\lambda (c_\lambda x \cdot -d_{\lambda e}) = 0. \]

(iii) \(\mathcal{A} \) is representable.

PROOF. (i) \(\Rightarrow \) (ii) by 2.6.41 and its proof, and (iii) \(\Rightarrow \) (i) by 3.1.122. To show that

(ii) \(\Rightarrow \) (iii) it suffices to take the case \(\mathcal{A} \) simple, by 2.4.52 and 3.1.108. Let \(\mathcal{B} = \mathbb{B} \mathfrak{m} \mathcal{A} \).

By 2.7.16, 2.7.17, 3.2.63, and 3.2.64, \(\mathcal{B} \) is a simple complete and atomic \(CA_\lambda \) in which the inequalities 3.2.64(*) hold for \(\lambda \neq \lambda, \lambda \in \mathbb{E} \); hence also the implications 3.2.63(ii) hold.

It suffices to show that \(\mathcal{B} \) is isomorphic to a \(CS_n \). By 3.2.59 it suffices to show that for an arbitrary atom \(a \) of \(\mathcal{B} \), \(a \) is not defective. So assume that \(c_\lambda a \cdot c_\lambda a \leq d_{\lambda e} \), \(\lambda \in \mathbb{E} \), \(x \cdot y \cdot z \in B \), and \(0 \neq x \leq c_\lambda a \). Then \(c_\lambda x \cdot s_i^e c_\lambda x = c_\lambda a \cdot c_\lambda (d_{\lambda e} \cdot c_\lambda x) = c_\lambda a \cdot c_\lambda x \leq d_{\lambda e}, \)

as desired. This finishes the proof.

Note that the proof of 3.2.65 also gives the following result: if \(\mathcal{A} \) is a simple complete atomic \(CA_\lambda \) in which the implications 3.2.63(ii) hold, then \(\mathcal{A} \in IC_{CS_2} \).

Finally, we mention the following corollary, proved using the last statement in Lemma 3.2.59. (It is also true with \(GS_n \) replaced by \(CS_2 \).)

COROLLARY 3.2.66. Any finite \(GS_2 \) is isomorphic to a \(GS_2 \) with a finite base.
Non-representable algebras

REMARK 3.2.67. In the next part of this section we shall describe various methods for constructing non-representable CA_a's. In Part I we gave one such method: The method of splitting elements, pp. 386–394, pp. 407–408. Here we shall describe six more methods: permutation models (3.2.68), dilation (3.2.69), twisting (3.2.71), and three methods proceeding from combinatorial structures—quasigroups (3.2.72), projective geometries (3.2.75), and graphs (3.2.76). The first three methods are due to Henkin, and the last three to Monk.

CONSTRUCTION 3.2.68. (Permutation models). First we describe the general framework and then we make a specific construction. Let U be a non-empty set and \mathfrak{A} the full CS_a with base U, where a is arbitrary. Recall from 3.1.36 and 3.1.37 that to every permutation f of U there corresponds a base-automorphism \tilde{f} of \mathfrak{A}. Throughout this construction, if G is a set of permutations of U we shall denote by \tilde{G} the set of all \tilde{f} for $f \in G$. If B is any CA_a and H is a set of automorphisms of B, then we let $F_x H B = \{ b \in B : f b = b \text{ for all } f \in H \}$. Clearly $F_x H B$ is a subuniverse of B. We denote by $F_{xH} B$ the subalgebra of B with universe $F_x H B$. The permutation model method for constructing a CA_a consists in choosing suitable U, H, G as above, forming $C = F_{xH} B$, selecting an appropriate $c \in C$, and finally forming $R(c, C)$.

We shall now give a particular construction of this kind. We assume that $\exists a$. Let W be a set such that $a \not\in W$ and $|a| = |W|$; say that a is a one-one function from a onto W. Thus $r \subset a W$ for all $r \subset a$. For each $r \subset a$ let $\alpha r = r$ and $\alpha r = r$. Given a permutation τ of a we define a permutation τ' of W by setting $\tau' x = (\tau x)'$ for all $x \subset a$.

Let $U = a \cup W$, and let \mathfrak{A} be the full CS_a with base U. Set $G = \{ \tau : \tau \text{ is a permutation of } a \}$. For each $r \subset a U$ let $s^r = \{ g : s, g \in G \}$. Clearly $s^r \subset C$ for each $s \subset a U$. Let

$$ V = (a \cup \{ \tau : \tau \subset c \}) - U \cup (s^r : a \subset s \text{ is not one-one}). $$

Thus $V \subset C$. Finally, let $D = R(c, C)$. We shall show that D is a non-representable CA_a.

To show that D is a CA_a, it suffices by 2.2.3 to check (C_4) and (C_5). To prove (C_4) it suffices to show the following:

(1) If $r, s \in V$ and $s \subset a$, then $c_r \in C_r \subset C$ such that $c_r \in s$.

To prove (1), we may assume that $r = s$. The inclusion c is obvious. For 2, suppose $t \in V$, $u, v \in U$, and $t^u \in s$. If $t^u \in V$ the desired conclusion is clear, so assume that $t^u \notin V$. This implies that $t u \neq u$ and $t u \neq at$ for any $a \subset a - \{r, s\}$. Let τ be the transposition $[au / at, at / au]$ of a and let $g = \tau u$. Then $g \in G$. Let $r = g t^u ; s = s'$. Now if $\mu = a - \{r, s\}$ then, by the remark above, $u = t \mu = t \mu$. Furthermore, $at^u r = ar = a g = g a = at^u$. Therefore $t^u \in V$ and $t^u s = t^u s' = r \in s'$. Thus $c_r \subset C_r \subset C$.

Condition (C_5) is obvious, so D is a CA_a. To show that D is not representable, we consider the following inequality, first discussed in Thompson [52], and mentioned in
1.5.22:

\[
(2) \quad c_z \circ c_y \circ c_{\mu z} \equiv c_z c_{c_{\mu z}} (c_{\mu z} (c_z \circ c_y) \cdot c_z (c_z \circ c_{\mu z}))
\]

Here \(\kappa, \lambda, \mu \) are arbitrary distinct ordinals \(< \alpha \). It is easy to check that (2) holds in every representable \(CA_\alpha \). We show that it fails in \(D \). For simplicity take \(\kappa = 0, \lambda = 1, \mu = 2 \). We let

\[
\begin{align*}
 z &= (1', 1, 2, 3, \ldots)^	op, \\
 y &= (0, 2', 2, 3, \ldots)^	op, \\
 x &= (0, 1, 0', 3, \ldots)^	op, \\
 f &= a_1 \cdot \text{Id}.
\end{align*}
\]

Clearly \(f \in c_z \circ c_y \circ c_{\mu z} \) in \(D \). Suppose \(f \) is in the right side of (2). We then obtain elements \(u, v, w, a, b, c, m, n, p, q, r, s \in U \) and \(g_0, \ldots, g_5 \in G \) with the following properties:

\[
\begin{align*}
 f_{uvcw}^{012} &\equiv c_z (c_z \circ c_y) \cdot c_z (c_z \circ c_{\mu z}), \\
 f_{uv}^{012} &\equiv c_z \cdot c_y, \\
 g_{uvcw}^{012} &= g_0 (1', 1, 2, 3, \ldots), \\
 f_{uv}^{012} &= g_2 (0', 2', 2, 3, \ldots), \\
 f_{uvcw}^{012} &= g_2 (1', 1, 2, 3, \ldots), \\
 f_{uv}^{012} &= g_2 (0', 2', 2, 3, \ldots), \\
 f_{uvcw}^{012} &= g_2 (0, 1, 0', 3, \ldots).
\end{align*}
\]

Therefore \(g_0, \ldots, g_5 \) permute \((0, 1, 2) \), and \(u = g_01', v = g_22', w = g_02' \), so \(u, v, w \in W \). Since \(f_{uvcw}^{012} \in V \), it follows that \(|\{u, v, w\}| \leq 2 \). By symmetry, say \(u = v \). Then \(g_21' = u = v = g_22' = (g_22')' = c = (g_22)' = g_22', \) contradiction.

CONSTRUCTION 3.2.69. (Dilation) The method in 3.2.68, aside from the use of permutations, was relativization. Since we relativized an atomic \(CA_\alpha \), we can say that we deleted atoms. Here we want to do the opposite, add atoms.

First we explain the general procedure. We start with some \(CA_\alpha \) \(\mathcal{B} = \langle B, T_\kappa, E_{\kappa \lambda} \rangle_{\kappa, \lambda < \alpha} \); recall from 2.7.38 that a \(CA_\alpha \) is a relational structure which is the atom structure of some complete and atomic \(CA_\alpha \). Suppose \(a_\kappa \in'' B \), and the following two conditions hold (recall that \(T_\kappa \) is an equivalence relation on \(B \) for every \(\kappa < \alpha \)):

1. \((a_\kappa / T_\kappa) \cap (a_\kappa / T_\kappa) \neq \emptyset \) for all \(\kappa, \lambda < \alpha \);
2. \(a_\mu \notin E_{\kappa \lambda} \) if \(\kappa, \lambda, \mu \) are distinct ordinals \(< \alpha \).

Then we choose some element \(\mathfrak{n} \in B \) and form a relational structure \(\mathfrak{B}' \equiv (B', T'_\kappa, E'_{\kappa \lambda})_{\kappa, \lambda < \alpha} \) as follows. We set \(B' = Bu(\mathfrak{n}) \). For any \(\kappa < \alpha \), \(T'_\kappa \) is an equivalence relation on \(B' \), \(T'_\kappa \cap (B \cdot B) = T_\kappa \), and for any \(b \in B \), \(b T'_\kappa a \). Finally, \(E'_{\kappa \lambda} = E_{\kappa \lambda} \) for \(\kappa \) and \(\lambda \) distinct ordinals \(< \alpha \), while \(E'_{\kappa \kappa} = B' \) for all \(\kappa < \alpha \). We claim that \(\mathfrak{B}' \) is a \(CA_\alpha \). To prove this it suffices to check the conditions of 2.7.40. Of these conditions, (i), (iii) and (v) are obvious. To prove (ii) it suffices to show that \(T'_\kappa T'_\lambda \cap T'_\mu T'_\kappa \) for distinct \(\kappa, \lambda < \alpha \). Assume that \(b (T'_\kappa T'_\lambda)c \) say \(b T'_\kappa s_\kappa a_\lambda \). We may assume that \(\mathfrak{n} \in \{ b, c, c \} \). By symmetry it suffices to consider the following two cases. Case 1. \(b, c \in B \), \(c = \mathfrak{n} \). Thus \(b T'_\kappa s_\kappa a_\lambda \), and by (1) there is a \(g \in B \) with \(a_\kappa T'_\kappa b T'_\kappa a_\lambda \), so
by (ii) for B, $bT'_h T^*_x a$ for some $h \in B$. Hence $bT'_h hT^*_x n$, as desired.

Case 2. $b,c \in B$, $c = n$. Thus $bT^*_x a$ and $cT^*_x a$. By (1), $aT^*_x gT^*_x a$ for some $g \in B$. Hence by (ii) for B, $bT^*_x hT^*_c$ for some $h \in B$, as desired.

Now we check 2.7.40(iv). Assume $\kappa, \lambda, \mu < \alpha$ and $\mu \neq \kappa, \lambda$. Suppose $bT'_h c \in E'_{x \mu} nE'_{x \mu}$. If $\kappa = \lambda$, obviously $b \in E'_{x \kappa}$. Assume $\kappa \neq \lambda$. If $b \in B$, obviously $b \in E'_{x \kappa}$. Suppose $b = n$. Thus $aT^*_\mu c \in E'_{x \mu} nE'_{x \mu}$, so $a \in E'_{x \lambda}$, contradicting (2). We have now shown that $T'_\mu (E'_{x \mu} nE'_{x \mu}) \subseteq E'_{x \kappa}$.

That $E'_{x \kappa} \subseteq T'_\mu (E'_{x \mu} nE'_{x \mu})$ is clear if $\kappa \neq \lambda$. To check this for $\kappa = \lambda$ it suffices to show that $n \in T'_\mu E'_{x \mu}$. Since $a \in E'_{x \mu} T'_\mu E'_{x \mu}$, choose $b \in E'_{x \mu}$ with $aT^*_\mu h$. Thus $nT'_\mu h$, so $n \in T'_\mu E'_{x \mu}$. This finishes the general description.

Now we shall construct a non-representable C_α using the method of dilation. Assume that $3 \leq \alpha < \omega$. Let W, G and C be as in 3.2.68. Let $B = \exists \theta \exists \xi \exists \zeta \exists \mu \exists \nu \exists \rho \exists \sigma \exists \tau \exists \kappa \exists \lambda$.

For each $\kappa < \alpha - 1$ let a_κ be the member of a_{α} such that, for all $\mu < \alpha$,

$$s_{\alpha, \mu} = \begin{cases} \mu & \text{if } \mu \neq \kappa, \\ \mu - 1 & \text{if } \kappa < \mu < \alpha, \end{cases}$$

and let $s_{\alpha, -1}$ be such that for all $\mu < \alpha$,

$$s_{\alpha, -1, \mu} = \begin{cases} \mu & \text{if } \mu < \alpha - 1, \\ 0 & \text{if } \mu = \alpha - 1. \end{cases}$$

Let $a_\kappa = s_\kappa$ for each $\kappa < \alpha$. We now check the conditions (1), (2). For (1), it suffices to take distinct $\kappa, \lambda < \alpha$. Say $\kappa < \lambda$. We treat only the case $\kappa + 1 < \lambda < \alpha - 1$ and leave the other possibilities to the reader. Let t be the member of a_{α} such that, for all $\mu < \alpha$,

$$t_\mu = \begin{cases} \mu & \text{if } \mu \neq \kappa, \\ \mu - 1 & \text{if } \kappa < \mu < \lambda, \\ \lambda & \text{if } \mu = \lambda, \\ \mu - 1 & \text{if } \lambda < \mu < \alpha. \end{cases}$$

Clearly $rT^*_\mu a_\kappa$. Let r be the cyclic permutation $(\kappa, \lambda - 1, \lambda - 2, \ldots, \kappa + 1)$ of α and set $g = r \cup \tau'$. Then $g \circ a_\kappa \in a_\kappa$ and for any $\mu < \alpha$,

$$(g \circ a_\kappa)_\mu = \begin{cases} \mu & \text{if } \mu < \kappa, \\ \lambda - 1 & \text{if } \mu = \kappa, \\ \mu - 1 & \text{if } \kappa < \mu < \lambda, \\ \lambda & \text{if } \mu = \lambda, \\ \mu - 1 & \text{if } \lambda < \mu < \alpha. \end{cases}$$

Thus $rT^*_\mu a_\kappa$, as desired. So we take (1) as established. Condition (2) is obvious.

Thus by the general procedure we obtain a $C_\alpha \in B = (B', T'^*_x, E'^*_x)_{\lambda \leq \kappa}$ by adjoining a new element n. Let $D = \exists \xi \exists \tau'$. Thus D is a C_α by 2.7.39. We show that D is non-representable by considering a new equation, which is an algebraic version of the associativity of relative product of binary relations. To formulate it, let C be an
arbitrary CA_γ, $3 \leq \delta$. We define a binary operation \cdot on E by setting, for any $x, y \in E$,

$$x \cdot y = c_2(s_2^1 c_2 x \cdot s_2^0 c_2 y).$$

Note that if \mathcal{B} is a CA_δ with base X and $x, y \in F$, then

$$x \cdot y = \{z \in X : \text{there exists } u \in X \text{ with } s_u^1 \in c_2 x \text{ and } s_u^0 \in c_2 y\},$$

which shows the relationship of \cdot with relative product; see also section 5.3. This also shows that the equation

$$\text{(3)} \quad x;\{y; z\} = (x; y);z$$

holds in every representable CA_γ. Now we shall show that it does not hold in \mathcal{D}.

To this end, let $x = (0,0',1,2,3,\ldots)^\gamma$, $y = (0',1,1,2,3,\ldots)^\gamma$, $z = (1,0,1,2,3,\ldots)^\gamma$. Note that $s_2^1 c_2 y = c_1(d_{12} c_2 y) = c_0 y$ and similarly $s_2^0 c_2 x = c_0 z$. Hence

$$\text{(4)} \quad x;\{y; z\} = c_2(s_2^1 c_2 x \cdot s_2^0 c_2 (c_1 y \cdot c_2 z)),$$

$$\text{(5)} \quad (x; y);z = c_2(s_2^1 c_2 (s_2^1 c_2 x \cdot s_2^0 c_2 y) \cdot c_2 z).$$

(All of the operations above are in \mathcal{D}. For simplicity we treat n as well as each element e for $s \in^n U$ as an atom of \mathcal{D}.) Now we claim

$$\text{(6)} \quad \text{If } t \in^n U \text{ and } x;\{y; z\}, \text{ then } t_0 = t_1.$$

For, $d_{12} c_2 x = (0,0',0',2,3,\ldots)^\gamma$, hence $a_n s_2^1 c_2 x$ and so $n \not\leq s_2^1 c_2 x$. It follows that there is a $u \in U$ such that $t_u^0 \in s_2^1 c_2 x$. Now $c_1 y \cdot c_0 z = (0,0,1,2,3,\ldots)^\gamma$, so $d_{12} c_2 (c_1 y \cdot c_0 z) = (0',0,0',2,3,\ldots)^\gamma$. Therefore $s_2^1 c_2 x \cdot s_2^0 c_2 (c_1 y \cdot c_0 z) = (0,0',0',2,3,\ldots)^\gamma$. Hence

$$t_0 = t_1,$$

as desired.

$$\text{(7)} \quad (0,1,0,2,3,\ldots)^\gamma \not\leq c_0 n,$$

(7) follows. By (6) and (7) we have $n \not\leq x;\{y; z\}$. Now we show that $n \not\leq (x; y);z$, so that (3) fails. Clearly $n \not\leq c_0 x$. Now $d_{12} c_2 x = (0,0',0',2,3,\ldots)^\gamma$ and $d_{02} c_2 y = (0',1,0',2,3,\ldots)^\gamma$. Hence $s_2^1 c_2 x \cdot s_2^0 c_2 y = (0,1,0',2,3,\ldots)^\gamma$, and hence $d_{12} c_2 (s_2^1 c_2 x \cdot s_2^0 c_2 y) = (0,1,1,2,3,\ldots)^\gamma$. Thus $n \not\leq s_2^1 c_2 (s_2^1 c_2 x \cdot s_2^0 c_2 y)$. So

$$n \not\leq (x; y);z,$$

as desired.

REMARK 3.2.70. By combining many algebras using ultraproducts we can obtain infinite dimensional CA_γ's in which the equation 3.2.69(3) fails. This is a general method, enabling one always to restrict oneself to the case $\alpha < \omega$ when considering such equations. The method is essentially described in the proof of 2.6.4, but we sketch it here. Suppose $\alpha < \omega$. Let $I = (\Gamma \setminus \Gamma \cap \alpha)$ and $|\Gamma| < \alpha$. For each $\Gamma \in I$ let $\rho_\Gamma = |\Gamma|$ and let ρ_Γ be a one-one function from β_Γ onto Γ such that $3 \rho_\Gamma \in \rho_\Gamma$; moreover, let $M_\Gamma = \{ \Delta \in I : \Gamma \subseteq \Delta \}$. Furthermore, let 2_Γ be a CA_{ρ_Γ} in which 3.2.69(3) fails. Let E_Γ be
an algebra similar to CA_a' such that $A = \mathbb{B} \mathcal{E} E_\pi$, for each $\pi \in I$ (extending 2.61 in the natural way). Let U be an ultrafilter on I such that $M_T \in U$ for every $\pi \in I$. Then $P_{T^\pi} \mathcal{E} E_\pi / U$ is easily seen to be the desired algebra.

CONSTRUCTION 3.2.71. (Twisting) This method, roughly speaking, consists of starting from a complete atomic CA_a \mathcal{A}, selecting atoms $a, b \in A$ and an ordinal $\kappa \prec \alpha$, and redefining c_π on a and b by interchanging the action of c_π on a and b, in part ("twisting").

Again we describe first the general framework; this description is due to Andréka and Némethi. Suppose given a CA_a $\mathcal{B} = (B, T_\lambda, E_\mu; \lambda \prec \alpha)$, $x, y \in B$ with not $(x T_\pi y)$, and two partitions $z / T_\kappa = X_0 \cup Y_0$, $y / T_\kappa = Y_0 \cup Y_1$, $X_0 \cap X_1 = Y_0 \cap Y_1$, and the following conditions hold; for brevity we write $M = (x / T_\kappa) \cup (y / T_\kappa)$:

1. $(M / T_\kappa) \prec (X_0 / T_\kappa) \cup (Y_0 / T_\kappa) \cup (X_1 / T_\kappa) \cup (Y_1 / T_\kappa)$ for all $\lambda \prec \alpha - \{\epsilon\}$.
2. If $x / T_\kappa \prec \{\epsilon\}$ and $a \in M$, then there is a $b \in M - \{a\}$ such that $a T_\epsilon b$.
3. If $i \in 2$ and $\lambda, \mu \prec \alpha$, then: $X_\lambda n E_\kappa n E_\mu \neq 0$ iff $Y_\lambda n E_\kappa n E_\mu \neq 0$.

Then we form a new relational structure $\mathcal{B}' = (B, T'_\lambda, E'_\mu; \lambda \prec \alpha)$ as follows: $T'_\lambda = T_\lambda$ if $\lambda \neq \epsilon$, while T'_ϵ is the equivalence relation on B with equivalence classes k / T_κ for $(k / T_\kappa) n M = 0$, along with $X_0 \cup Y_0$ and $X_1 \cup Y_0$. We claim that \mathcal{B}' is a CA_a, and again we use 2.7.40. Conditions (i) and (iii) are obvious. To prove (ii) it suffices to show that $T'_\lambda / T_\kappa = T'_\lambda / T_\kappa$ for an arbitrary $\lambda \prec \alpha - \{\epsilon\}$. We first claim

4. $T'_\lambda \subset T_\lambda / T_\kappa$.

For, let $a T'_\lambda b$. The non-trivial cases are illustrated by assuming that $a \in X_0$ and $b \in Y_1$. By (2) there is a $c \in M - \{b\}$ with $c T_\lambda b$, and then by (1) we have $c \in X_1$. Thus $a T_\epsilon c T_\lambda b$, as desired.

5. $T_\kappa \subset (T_\lambda / T_\kappa) n (T'_\lambda / T_\kappa)$.

For, let $a T_\lambda b$. We may assume that $a, b \in M$, say $a, b \in z / T_\kappa$. If $a, b \in X_0$ or $a, b \in X_1$, then $(a, b) \in T_\kappa$ and so $(a, b) \in T_\kappa$ is in the right side of (5). By symmetry it is enough to treat still $a \in X_0$, $b \in X_1$. By (2), say $a T_\lambda c \neq a$. Thus by (1), $c \in Y_0$ and hence $c T_\epsilon b$ and so $a (T_\lambda / T_\kappa) b$. Similarly $a (T'_\lambda / T_\kappa) b$. So, (5) holds.

Using (4) and (5), we can now establish $T'_\lambda / T_\kappa = T'_\lambda / T_\kappa$:

$T_\lambda / T_\kappa \leq T'_\lambda / T_\kappa = T'_\lambda / T_\kappa = T_\lambda / T_\kappa$;

similarly, $T_\lambda / T_\kappa \leq T'_\lambda / T_\kappa$.

To prove 2.7.40(iv) it suffices to show that

6. $T'_\lambda (E_\kappa n E_\mu) = T'_\lambda (E_\kappa n E_\mu)$ if $\kappa \neq \lambda, \mu$.

To show (6), suppose first that \(a \in T_{\iota}^*(E_{\lambda \alpha} \otimes E_{\lambda \mu}) \); say \(a T_{\iota}^* b \in E_{\lambda \alpha} \otimes E_{\lambda \mu} \). The non-trivial cases are illustrated by \(a \in X_0, b \in Y_1 \). Thus \(Y_1 \otimes E_{\lambda \alpha} \otimes E_{\lambda \mu} \neq 0 \), so by (3), \(X_1 \otimes E_{\lambda \alpha} \otimes E_{\lambda \mu} \neq 0 \). Obviously, then, \(a \in T_{\iota}^*(E_{\lambda \alpha} \otimes E_{\lambda \mu}) \). The converse is similar.

To prove 2.7.40(v), it suffices to show that \(T_{\iota}^*(E_{\lambda \alpha} \otimes E_{\lambda \beta}) \leq I \) for \(\iota \neq \lambda \). Suppose, on the contrary, that \(a T_{\iota}^* b, a \neq b, \) and \(a, b \in E_{\lambda \beta} \). Since \(B \) satisfies 2.7.40(v), the only way this could possibly happen is when, say, \(a \in X_0 \) and \(b \in Y_1 \). But then by (3) we get \(X_1 \otimes E_{\lambda \beta} \neq 0 \), contradicting (v) for \(B \).

We have thus shown that \(B' \) is a \(C_{\alpha} \).

Now we give a specific construction. Assume that \(3 \leq \alpha < \omega \). Let \(B \) be the full \(C_{\alpha} \) with base \(2 \alpha - 2 \), and let \(G \) be the set of all permutations of \(2 \alpha - 2 \) of the form \([0, 1, \ldots, 0, 1, \ldots, 0, 1, \ldots, 0, 1, \ldots, 0] \) for \(0 < \alpha < \omega \). Set \(\mathcal{X} = \mathcal{E} \cap \mathcal{B} \) (see 3.2.68). Let \(\mathcal{E} = \langle \mathcal{A}, T_{\iota}, E_{\lambda \alpha} \rangle_{\iota, \lambda, \alpha} \) be the atom structure of \(\mathcal{X} \). We apply the above general procedure to \(\mathcal{E} \), the ordinal \(1 < \alpha \), the elements \(x = (3, 0, 0, 4, 6, 8, \ldots, ...) \), \(y = (3, 1, 1, 4, 6, 8, \ldots, ...) \), and the following partitions of \(x/T_{\iota} \) and \(y/T_{\iota} \) (note that \(\not{\otimes}(x T_{\iota} y) \)):

\[
\begin{align*}
X_0 &= \{(3, i, 0, 4, 6, 8, \ldots, \ldots): i \in 2\}, \\
X_1 &= \{(3, \lambda, 0, 4, 6, 8, \ldots, \ldots): 2 \leq \lambda < 2 \alpha - 2\}, \\
Y_0 &= \{(3, i, 1, 4, 6, 8, \ldots, \ldots): i \in 2\}, \\
Y_1 &= \{(3, \lambda, 1, 4, 6, 8, \ldots, \ldots): 2 \leq \lambda < 2 \alpha - 2\}.
\end{align*}
\]

It is tedious but routine to check that (1)–(3) hold. We let \(D \) be the \(C_{\alpha} \) obtained by our general process.

Thus \(\mathcal{E} \cap \mathcal{D} \) is a \(C_{\alpha} \). We now show that it is not representable. To do this we first consider the equation

\[(7) \; \; \; \varsigma s(0, 1) c_2 z = \varsigma s(1, 0) c_2 z. \]

As is easily checked, it holds identically in every representable \(C_{\alpha} \). We show that it fails in \(\mathcal{E} \cap \mathcal{D} \). (See 1.5.14 and the comments following it.) Take \(z = (0, 3, 0, 4, 6, 8, \ldots, \ldots) \). Then

\[
\varsigma s(0, 1) c_2 z = s_2^z s_0^0 z c_2 z = s_0^0 \varsigma_0^0 c_0 (0, 3, 3, 4, 6, 8, \ldots, \ldots)^{\gamma} = c_2 (0, 3, 3, 4, 6, 8, \ldots, \ldots)^{\gamma};
\]

\[\varsigma s(1, 0) c_2 z = s_2^z s_1^0 z c_2 z = s_1^0 \varsigma_1^0 c_0 (0, 3, 0, 4, 6, 8, \ldots, \ldots)^{\gamma} = c_2 (3, 3, 0, 4, 6, 8, \ldots, \ldots)^{\gamma}. \]

Since clearly \((3, 1, 1, 4, 6, 8, \ldots, \ldots) \not{\otimes} c_2 (3, 0, 3, 4, 6, 8, \ldots, \ldots) \), we see that (7) does fail in \(\mathcal{E} \cap \mathcal{D} \). \(\mathcal{E} \cap \mathcal{D} \) can also be used to show the failure of two further similar equations (8) and (9) which follow.

\[(8) \; \; \; \varsigma s(0, 1) z s(0, 1) c_2 z = c_2 z. \]
Again it is easy to check that (8) holds identically in every representable \(\mathcal{C}A_\alpha \). It fails in \(\mathcal{C}mD \) with the same element \(z \) as above. It is in fact routine to check that

\[zs(0,1)zs(0,1)c_2z = c_2(1,3,1,4,6,8,\ldots)z, \]

while clearly \((0,3,0,4,6,8,\ldots) \not\in c_2(1,3,1,4,6,8,\ldots)z \). Finally, assume that \(4 \leq \alpha \), and consider the equation

\[zs(0,1)zs(0,3)c_2z = zs(1,3)zs(0,1)c_2z. \]

Again it is easy to check that this equation holds in every representable \(\mathcal{C}A_\alpha \). Let \(z = (4,3,0,0,6,8,\ldots)z \). Then one can check that

\[zs(0,1)zs(0,3)c_2z = c_2(3,0,3,4,6,8,\ldots)z, \]

\[zs(1,3)zs(0,1)c_2z = c_2(3,1,1,4,6,8,\ldots)z, \]

so (9) does fail in \(\mathcal{C}mD \).

In all of the above the indices \(0,1,2,3 < \alpha \) played a special role. Of course one can modify the construction of \(D \) in an obvious way to take care similarly of other indices.

The above three constructions use ideas that have been well-developed in our previous work: starting with a set algebra in each case, deletions, additions or modifications are made. The remaining constructions which we shall discuss use new ideas which relate cylindric algebras to more familiar algebraic or combinatorial structures.

CONSTRUCTION 3.2.72. (Quasigroups) We first describe this construction in general, and then give two specific constructions: \(\mathcal{C}A_\alpha \)'s using quasigroups (following Monk [74']) and \(\mathcal{C}A_\alpha \)'s using Boolean groups.

Suppose that \(\alpha \) and \(\beta \) are ordinals with \(\alpha \geq 3 \), \(U \) is a non-empty set, and \(W \subseteq \mathcal{P}U \), \(f \in W \). Also assume that \(\Gamma_\alpha \subseteq \beta \) for each \(\kappa < \alpha \). We now define a relational structure \(\mathcal{K} = (W,T_\alpha,E_\alpha)_{\kappa < \alpha} \). For any \(\kappa < \alpha \) we let \(xTy \) iff \(x,y \in W \) and \(\Gamma_\kappa x \leq y \). Further, let \(E_{\kappa \lambda} = W \) for any \(\kappa < \alpha \), while for \(\kappa \neq \lambda \) and \(\kappa,\lambda < \alpha \) we let

\[E_{\kappa \lambda} = \{ y \in W : (\prod_{\mu \neq \kappa,\lambda} \Gamma_\mu)1f \leq y \}. \]

Now we make the following additional assumptions:

1. \(T_\kappa | T_\lambda = T_\lambda | T_\kappa \) for all \(\kappa,\lambda < \alpha \).
2. For all distinct \(\kappa,\lambda < \alpha \) and all \(u,v \in W \), there is a \(w \in W \) such that \(\Gamma_\kappa u \leq w \) and \((\prod_{\mu \neq \kappa,\lambda} \Gamma_\mu)1v \leq w \).
3. For all distinct \(\kappa,\lambda,\mu < \alpha \) and all \(u,v \in W \), if \((\prod_{\nu \neq \kappa,\lambda} \Gamma_\nu)1u \leq v \) and \((\prod_{\nu \neq \kappa,\mu} \Gamma_\nu)1u \leq v \) then \((\prod_{\nu \neq \mu} \Gamma_\nu)1u \leq v \).
4. For all distinct \(\kappa,\lambda < \alpha \) and all \(u,v \in W \), if \((\Gamma_\kappa u \prod_{\mu \neq \kappa,\lambda} \Gamma_\mu)1u \leq v \), then \(u = v \).
Under these assumptions we claim that \mathcal{K} is a CA_κ. To prove this we shall again apply 2.7.40. Conditions (i), (ii), (iii) are obvious. As to condition (iv), we first show that $W = T^*_\nu E_{\alpha}$ if κ and λ are distinct ordinals $< \alpha$. Let $z \in W$ be arbitrary. By condition (2) choose $w \in W$ such that $\Gamma^\alpha_\kappa 1 z \in w$ and $(\bigcap_{\mu<\kappa} \Gamma^\mu_\lambda) 1 f \subseteq w$. Thus $z T^\mu_\nu \in E_{\alpha,\lambda}$. Next, suppose that $\kappa, \lambda, \mu < \alpha$ are distinct. To show that $E_{\alpha,\lambda} \subseteq T^*_\mu (E_{\alpha,\mu} \cap E_{\mu,\lambda})$, let $z \in E_{\alpha,\lambda}$ be arbitrary. By (2) choose $w \in W$ so that $\Gamma^\mu_\lambda 1 z \in w$ and $(\bigcap_{\mu<\nu} \Gamma^\nu_\mu) 1 f \subseteq w$. Since $\bigcap_{\nu<\kappa} \Gamma^\nu_\mu \subseteq \Gamma^\mu_\mu$, we also have $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f = (\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 z \subseteq w$. Hence by (3), $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f \subseteq w$. Thus $z T^\mu_\nu \in E_{\alpha,\mu} \cap E_{\mu,\lambda}$, as desired. To show that $T^*_\mu (E_{\alpha,\mu} \cap E_{\mu,\lambda}) \subseteq E_{\alpha,\lambda}$, suppose $z \in T^*_\mu (E_{\alpha,\mu} \cap E_{\mu,\lambda})$. Say $z T^\mu_\nu \in E_{\alpha,\mu} \cap E_{\mu,\lambda}$. Thus $\Gamma^\mu_\mu 1 z \subseteq w$, $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f \subseteq w$, and $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f \subseteq w$. Hence by (3), $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f \subseteq w$. Since $\bigcap_{\nu<\kappa} \Gamma^\nu_\mu \subseteq \Gamma^\mu_\mu$, it follows that $(\bigcap_{\nu<\kappa} \Gamma^\nu_\mu) 1 f \subseteq z$, i.e. $z \in E_{\alpha,\lambda}$, as desired. It remains only to check (v). So, suppose $\kappa, \lambda < \alpha$, $\kappa \neq \lambda$, $x, y \in E_{\alpha,\lambda}$, and $z T^\mu_\nu y$. It is clear that (4) then yields $z = y$, as desired.

Now we apply this general construction to a quasigroup as follows. Let $G = (G, \cdot)$ be an arbitrary quasigroup. Recall that this means that \cdot is a binary operation on G such that for any $a, b \in G$, the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions in G. We consider \cdot as a subset of G^2. Fix some element f of \cdot. We now apply the above construction with $3, 3, G, \cdot, f, (\cdot)$ in place of $\alpha, \beta, U, W, f, \Gamma^\alpha_\kappa$ (for each $\kappa < 3$). To see that we get a CA_3, we need to check conditions (1)–(4). In fact, it is trivial to check them; note in particular that $T^*_\mu TX = 2 W$ for all distinct $\kappa, \lambda < 3$. We formulate the main property of the CA_3's so constructed in the following theorem. (Recall that a loop is a quasigroup with identity, i.e., with an element e such that $e \cdot a = a \cdot e = a$ for all $a \in G$.) For the purpose of this theorem we denote the CA_3's with \mathcal{K} as above, by $\text{Em}_{\mathcal{K}}$. Theorem 3.2.73. Let $G = (G, \cdot)$ be a loop with identity element e, and let $f = (e, e, e)$. Then $\text{Em}_{\mathcal{K}}$ is representable if G is a group.

Proof. For the direction \Rightarrow, we assume that G is not a group and show that $\text{Em}_{\mathcal{K}}$ is not representable. For this purpose we shall again use the equation 3.2.69(3), which we know holds in all representable CA_3's. Since G is not a group, there are elements $a, b, c \in G$ such that $a \cdot (b \cdot c) \neq (a \cdot b) \cdot c$. Let $z = (e, e, c)$, $y = (c, b, b)$, $z = (a, a, e)$. Then it is easily checked that 3.2.69(3) fails.

For the direction \Leftarrow, we shall assign to each $g \in \cdot$ a subset F_g of G^3:

$$F_g = \{z \in G^3 : g = z_1 z_2^{-1}, \text{ and } g = z_2 z_3^{-1}\}.$$

Note that if $z \in F_g$, then $g_2 = g_1 z_2^{-1}$; thus g is uniquely determined by any element of F_g. Hence $F_g \cap F_{g'} = 0$ for distinct members g, g' of G. Furthermore, $F_g \neq 0$ for any $g \in \cdot$; for example, $(e, e, c, c) \in F_g$. Also, $\bigcup_{g \in \cdot} F_g = G^3$, for if $z \in G^3$ then $z \in F(z_1 z_2^{-1}, z_2 z_3^{-1}, z_3 z_4^{-1})$. Therefore F maps \cdot onto a partition of G^3, and F is one-one. Hence there is an isomorphism H of $\text{Em}_{\mathcal{K}}$ into $\text{Em}_{\mathcal{K}}$ such that

$$HX = \bigcup_{g \in X} F_g$$
for each \(X \in \mathcal{B} \mathfrak{c} \mathfrak{m} X \mathfrak{g} \). Now we show that \(H \) preserves \(c_0 \); the argument is similar for \(c_1 \) and \(c_2 \). Suppose first \(x \in Hc_0X \) with \(X \in \mathcal{B} \mathfrak{c} \mathfrak{m} X \mathfrak{g} \). Say \(x \in Fg \) with \(g \in c_0X \), and \(gT_0h \) for some \(h \in X \). Thus \(g_0 = x_1x_2^{-1}, \ g_1 = x_2x_0^{-1}, \) and \(g_2 = h_0 \). Let \(a = h_1x_2 \). Now \(x_2x_1^{-1} = g_0 = h_0 \), and \(x_2(x_0^g)^{-1} = x_2a^{-1} = h_1 \); hence \(x_0^g \in FH \). Therefore \(x_0^g \in HX \) and so \(x \in C_0HX \). Conversely, suppose that \(x \in C_0HX \); say \(x_0^g \in HX \) and \(x_0^g \in FH \) with \(h \in X \). Then \(h_0 = x_2x_1^{-1} \) and \(h_1 = x_2a^{-1} \). Let \(g = (h_0,h_1a^{-1},h_0h_1a^{-1}) \). Then \(g \in c_0X \), \(g_0 = h_0 = x_1x_2^{-1} \), and \(g_1 = h_1a^{-1} = x_2a^{-1}a_0^{-1} = x_2x_0^{-1} \). So \(x \in Fg \). Thus \(x \in Hc_0X \), as desired.

Finally, we check that \(H \) preserves \(d_0 \); other diagonal elements are treated similarly. We have \(x \in Hd_0 \) if \(x \in Fg \) for some \(g \in d_0 \). Now \(g \in d_0 \) iff \(g_2 = e \), so \(x \in Hd_0 \) iff \(x_1x_2^{-1} \cdot x_2x_0^{-1} = e \), which is true iff \(x_0 = x_1 \), i.e., iff \(x \in D_0 \).

This finishes the proof.

CONSTRUCTION 3.2.74. We now specialize the general construction of 3.2.72 in a more complicated way in order to get certain \(CA \)’s. Let \(\Theta = (G,+), \) an arbitrary Boolean group, i.e., an (abelian) group with every element of order 2. In the construction 3.2.72 we take \(a = 4, \ b = 6, \ U = G \). The sets \(\Gamma_0, \Gamma_1, \Gamma_2, \Gamma_3 \) are given as follows:

\[
\Gamma_0 = \{0,1,2\}, \quad \Gamma_1 = \{0,3,4\}, \\
\Gamma_2 = \{1,3,5\}, \quad \Gamma_3 = \{2,4,6\}.
\]

We let

\[
W = \{x \in G^5 : x_0 + x_1 = x_2, \ x_0 + x_2 = x_3, \ x_1 + x_3 = x_5, \ \text{and} \ x_2 + x_4 = x_5 \}.
\]

Pick any element \(f \) of \(W \). This specifies everything needed to obtain the relational structure \(\mathcal{K} \) described in 3.2.72. It is easy to check that \(\mathcal{K} \) is a \(CA \) by checking 3.2.72(1)−(4). Actually \(\mathfrak{c} \mathfrak{m} \mathcal{K} \) is representable, and this gives another way to prove that \(\mathcal{K} \) is a \(CA \). In fact, for any \(X \in \mathcal{B} \mathfrak{c} \mathfrak{m} \mathcal{K} \) let

\[
HX = \{u \in G^4 : \text{there is an } x \in X \text{ such that } u_0 + u_1 = x_2 + f_5, \ u_0 + u_2 = x_4 + f_4, \\
u_0 + u_3 = x_1 + f_3, \ u_1 + u_2 = x_2 + f_2, \ u_1 + u_3 = x_3 + f_1, \ \text{and} \ u_2 + u_3 = x_5 + f_0 \}.
\]

Then it is easy to check that \(H \) is an isomorphism from \(\mathfrak{c} \mathfrak{m} \mathcal{K} \) onto a \(CS_4 \) with base \(G \).

In our construction of non-representable \(CA \)'s so far, the non-representability was shown by finding a specific equation holding in all representable algebras but failing in the constructed one. Of course, for any non-representable \(CA \) there is some such equation, since the representable \(CA \)'s form an algebraically closed class. In our remaining constructions we shall prove non-representability in a different way; for these constructions it is an interesting open problem to find such equations.

CONSTRUCTION 3.2.75 (Projective geometries) This construction has been carried out in detail in Monk [74], generalizing Monk [65]. Since we will not use this construction later in this work, we content ourselves with describing the construction.
and stating without proof its main properties.

A **projective geometry** is a pair $\mathcal{G} = (P,L)$ consisting of a non-empty set P (of "points") and a non-empty set L of subsets of P (called "lines"), subject to certain conditions; see, e.g., Seidenberg [92**]. From \mathcal{G} we construct a $\text{CA}_3 \mathcal{B}_\mathcal{G}$ as follows. $\mathcal{B}_\mathcal{G}$ is the Boolean algebra of all subsets of $W_\mathcal{G}$, where $W_\mathcal{G}$ consists of all pairs (R,f) satisfying the following conditions:

1. R is an equivalence relation on 3;
2. f maps $\{(i,j): i,j < 3, i \not\equiv j\}$ into P;
3. For all $i,j < 3$, if $i \equiv j$ then $fij = fji$;
4. For all $i,j,k < 3$, if $i \equiv j \equiv k$, then $fij = fik$;
5. If $311d = R$, then either $f01 = f02 = f12$, or else $f01, f02, f12$ are distinct collinear points.

The operations on $\mathcal{B}_\mathcal{G}$ are defined as follows. Suppose $i,j < 3, 3 = \{i,k,l\}$, and $X \subseteq W_\mathcal{G}$.

We define

$$c_{ij}X = \{(R,f) \in W_\mathcal{G} : \text{there is an } (S,g) \in X \text{ such that } R \cap (3\setminus\{i\}) = S \cap (3\setminus\{i\})$$

and if $k \equiv l$ then $fkl = gkl$,

$$d_{ij} = \{(R,f) \in W_\mathcal{G} : i \equiv j\}.$$

The following is then routine to check (see Monk [74']):

1. $\mathcal{B}_\mathcal{G}$ is a CA_3.

Every projective geometry has a **dimension**. If \mathcal{G} is a n-dimensional and is a subspace of an $(n+1)$-dimensional space $\mathcal{G}',$ we say that \mathcal{G} is a **hyperplane** in \mathcal{G}'. The following two facts are established in Monk [74']:

2. If \mathcal{G} is a hyperplane in some space \mathcal{G}', then $\mathcal{B}_\mathcal{G}$ is a representable CA_3.
3. If \mathcal{G} is finite and $\mathcal{B}_\mathcal{G}$ is representable, then \mathcal{G} is a hyperplane in some space \mathcal{G}'.

Condition (3) enables one to specify various non-representable CA_3's. Thus if \mathcal{G} is one-dimensional and is not a line in a projective plane, then $\mathcal{B}_\mathcal{G}$ is non-representable. There are infinitely many integers n such that there is no projective plane with a line of size n, so this gives many non-representable CA_3's. Similarly, a projective plane \mathcal{G} is a hyperplane in some three-dimensional space \mathcal{G}' satisfies Desargue's condition. So a finite projective plane \mathcal{G} satisfies that condition iff $\mathcal{B}_\mathcal{G}$ is representable. Recall that it is an open problem whether there is a projective plane with exactly 11 points on every line. Thus if we apply our construction to $\mathcal{G} = \{(1,1)\}$ we obtain a $\text{CA}_3 \mathcal{B}_\mathcal{G}$ whose representability is equivalent to this problem. Note that the construction of $\mathcal{B}_\mathcal{G}$ does not involve notions of projective geometry in this case.

CONSTRUCTION 3.2.76 (Graphs). We now give a construction, following Monk [69], which enables us to establish in section 4.1 one of the main model-theoretic results about cylindric algebras: for $3 \leq n < \omega$, the class of representable CA_n's is not finitely axiomatizable. For variants on this construction, see also Demaree [70].
Johnson [69], Monk [70], and Monk [74]. The construction is similar to that in 3.2.75.

Assume that $3 \leq a, b < \omega$ with $a - 1 \leq b$. We shall define a cylindric atom structure $\Theta^a_{ab} = \langle G^a_{ab}, T_c, E^a_{ab}, \kappa \rangle$ of dimension a and the associated $CA_a \Theta^a_{ab}$. Then we shall prove some theorems about their representability, culminating in Theorem 3.2.85, giving non-representable CA_a's with a neat embedding property. First of all, G^a_{ab} consists of all pairs (R, f) satisfying the following conditions:

1. R is an equivalence relation on a;
2. f maps $\{ \langle \lambda, \kappa \rangle : \kappa, \lambda < a, \kappa R \lambda \}$ into b;
3. For all $\kappa, \lambda < a$, if $\kappa R \lambda$ then $f \kappa = f \lambda$;
4. For all $\kappa, \lambda, \mu < a$, if $\kappa R \lambda R \mu$ then $f \kappa = f \lambda R \mu$;
5. For all $\kappa, \lambda, \mu < a$, if $\kappa R \lambda R \mu$ then $|\{ f \kappa, f \lambda, f \mu \}| \neq 1$.

Note that in graph-theoretic terminology, a member (R, f) of G^a_{ab} amounts to an edge-coloring of a^2 with b colors and with no monochromatic triangles. Thus, e.g., for certain a, b there is no f such that $(a, 1d, f) \in G^a_{ab}$, by Ramsey's theorem. If there is no such f, then our algebra Θ^a_{ab} turns out to be of positive characteristic and hence is representable by 3.2.53.

Now for $\kappa < a$ and $(R, f), (S, g) \in G^a_{ab}$ we define

$$(R, f) T_c (S, g) \iff R \eta^a(\alpha \sim (\kappa)) = S \eta^a(\alpha \sim (\kappa)) \text{ and for all } \lambda, \mu \in a \sim (\kappa),$$

if $\lambda R \mu$ then $f \lambda = f \mu$.

For any $\kappa, \lambda < a$ we set

$$E^a_{ab} = \{ \langle R, f \rangle \in G^a_{ab} : \kappa R \lambda \}.$$

This finishes the definition of Θ^a_{ab}. We set $\Theta^a_{ab} = \exists \Theta^a_{ab}$. Now we show that Θ^a_{ab} is a CA_a (and hence Θ^a_{ab} is a CA_a), by checking the conditions (i) - (v) of 2.74. Of these conditions, (i), (iii) and (v) are obvious.

To prove (ii) we shall prove the following more general statement, which will also be useful later.

(6) Suppose $(R, f) \in G^a_{ab}$. For any $\Omega \subseteq a$ let $M_{\Omega} = \{ (S, g) \in G^a_{ab} : S \eta^a(\alpha \sim \Omega) = R \eta^a(\alpha \sim \Omega) \}$, and for all $\lambda, \mu \in a \sim \Omega$, if $\lambda R \mu$ then $f \lambda = f \mu$. Now suppose $\Gamma \subset a$ and $\kappa \in a \sim \Gamma$. Then $T^\kappa_c(M_{\Gamma}) = M(T^\kappa_c(\Gamma_{\{ \kappa \}})).$

Now (ii) follows from (6), since if $\kappa \lambda < a$ and $\kappa \not\in \lambda$ then $T^\kappa_c T^\lambda_c(\langle R, f \rangle) = T^\kappa_c M(\lambda) = M(\kappa, \lambda) = T^\kappa_c M(\lambda) = T^\kappa_c T^\lambda_c(\langle R, f \rangle)$, and so, since (R, f) is arbitrary, $T^\kappa_c \Gamma = T^\lambda_c \Gamma$.

The inclusion \subseteq in (6) is clear. Now suppose $(S, g) \in M(T^\kappa_c(\Gamma_{\{ \kappa \}}))$. We want to find $(T, k) \in G^a_{ab}$ such that $(S, g) T_c (T, k) \in MT$. We set

$$T = \{ S \eta^a(\alpha \sim (\kappa)) \} U(\{(\kappa, \lambda) : \kappa, \lambda < a \sim (\Gamma \cup \{ \kappa \}) \text{ and we have } \kappa R \lambda S \})$$

$$U(\{(\kappa, \lambda) : \kappa, \lambda < a \sim (\Gamma \cup \{ \kappa \}) \text{ and we have } \kappa R \lambda S \}).$$

It is easily checked that T is an equivalence relation on a. Now suppose $\nu, \rho < a$ and $\nu \neq \rho$. If $\nu, \rho \neq \kappa$ we let $k_{\nu \rho} = g_{\nu \rho}$. Suppose $\nu = \kappa$. If $\kappa T \neq \kappa$ for some σ we let
$k_{\rho \beta} = k_{\rho \nu} = g_{\rho \nu}$ (clearly this does not depend on the choice of α). If there is no such α, but $\rho_\xi \in \alpha \sim \{U(\xi)\}$ for some ξ, we let $k_{\rho \beta} = k_{\rho \nu} = f_{\rho \xi}$ (clearly this does not depend on the choice of ξ). Still if there is no such α, let $\Omega = \{\eta \colon \nu \not\in \eta\}$, and there is no ξ with $\eta \xi \in \alpha \sim \{U(\xi)\}$ and $\Theta = \{\eta \colon \nu \not\in \eta\} \sim \Omega$. Choose $\langle k_{\nu \eta} \colon \eta \in \Omega \rangle$ so that for all $\eta, \eta' \in \Omega$, $k_{\eta \eta'} = k_{\nu \eta'}$ iff $\eta \in \Theta$ and $\eta' \in \Theta$ then $k_{\eta \eta'} = k_{\nu \eta'}$. This is possible since $\alpha_1 < \beta$. Finally, for any $\eta \in \Omega$ let $k_{\nu \eta} = k_{\nu \eta}$. This finishes the definition of k. It is routine to check the desired properties of (T, k). Thus (6) holds and 2.7.40(ii) is established.

Next we check (iv). The inclusion \geq is clear. Now suppose $(R, f) \in E_{\omega}$. Let

$$S = \{R \eta \in (x \sim \{\mu\}) \cup \{\langle \mu, \nu \rangle : \epsilon R \nu \} \cup \{\langle \nu, \mu \rangle : \epsilon R \nu \}$.$$

It is easily verified that S is an equivalence relation on α. Now suppose $x_{\rho \beta}$ with $\nu, \rho \not\in \alpha$. If $x_{\rho \beta} = x_{\mu \beta}$, let $h_{\rho \beta} = f_{\rho \xi}$. If $x_{\rho \beta} = x_{\mu \beta}$ let $h_{\mu \beta} = h_{\nu \beta} = f_{\mu \xi}$. It is checked that $(S, h) \in G^{' \beta}_x$ and $(R, f) \in G^{' \beta}_{x, h}$ as desired.

This verifies all the conditions of 2.7.40, and hence $\Theta_{\geq} \in C_{\alpha} \alpha$ and $\Theta_{\geq} \in C_{\alpha} \alpha$.

Condition (6) implies that $\Theta_{\geq} \in C_{\alpha} \alpha$ simple. In fact, given any $(R, f) \in G^{' \beta}_{x, h}$, by induction (6) yields that

$$(7) \ c_{\xi}(R, f) = MT \ for \ every \ \Gamma \subset \alpha.$$

Hence $c_{\alpha}(R, f) = Ma$; but clearly $Ma = G^{' \beta}_{x, h}$; simplicity of $\Theta_{\geq} \in C_{\alpha}$ follows by 2.3.14.

THEOREM 3.2.77. Suppose $3 \leq \alpha \leq \beta < \omega_1$ and $\beta - 1 < \gamma < \omega_1$. Then Θ_{\geq} is neatly embeddable in Θ_{γ}.

PROOF. For each $X \in G^{' \beta}_{x, h}$ let

$$FX = \{(R, f) \in G^{' \beta}_{x, h} \mid \text{there is an } (S, g) \in X \text{ such that } S = R \eta \in \alpha \text{ and for all } \xi, \lambda < \alpha, \text{ if } \epsilon \xi \lambda \text{ then } f_{\xi \lambda} = g_{\xi \lambda}\}.$$

Clearly F is an isomorphism from $\mathcal{B}_{\Theta_{\gamma}}$ into $\mathcal{B}_{\Theta_{\gamma}}$, F preserves d_{α} for all $\lambda < \alpha$, and $c_\epsilon FX = FX$ for all $X \in G^{' \beta}_{x, h}$ and all $\epsilon < \beta < \alpha$. It remains to show that F preserves c_ϵ for $c < \alpha$. So, suppose $X \in G^{' \beta}_{x, h}$.

First suppose $(T, h) \in c_\epsilon FX$; say $(T, h) \in (S, g) \in F((R, f))$ with $(R, f) \in X$. Let $U = T \eta \in \alpha$ and for all $\mu \gamma < \alpha$ with $\mu \gamma \in \alpha$ let $k_{\mu \gamma} = h_{\mu \gamma}$. Then $(T, h) \in F((U, h))$, and $(U, h) T_{\mu} (R, f)$ (as is easily checked), so $(T, h) \in FC_{\epsilon X}$.

Second, suppose $(T, h) \in FC_{\epsilon X}$. Say $(T, h) \in F((S, g))$ and $(S, g) T_{\mu} (R, f) \in X$. Let

$$U = \{T \eta \in \alpha \sim \{\xi \} \cup \{\langle \xi, \xi \rangle : \text{for some } \mu \in \alpha - \{\xi \}, \epsilon R \mu T_{\xi}\}$$

$$\cup \{\langle \xi, x \rangle : \text{for some } \mu \in \alpha - \{\xi \}, \epsilon R \mu T_{\xi}\}.$$

It is easily checked that U is an equivalence relation on β. Now suppose $x^{' \beta}_{\rho \beta}$, with $\rho \not\in \beta$. If $\rho \not\in \alpha$, let $k_{\rho \beta} = h_{\rho \beta}$. Suppose $\rho \in \alpha$. If $\epsilon R \mu \not\in \alpha$ for some μ, let $k_{\rho \beta} = f_{\rho \xi}$; this does not depend on the choice of ξ. Let $\Omega = \{\eta \in \beta - \alpha : \eta \not\in \Omega \}$ for all $\xi < \alpha$. Choose $(k_{\eta \eta} \colon \eta \in \Omega)$ so that $k_{\eta \eta} = k_{\eta \eta}$ for all $\eta \in \Omega$ and $\eta' < \alpha$ and so that if $\eta \not\in \Omega$, then $k_{\eta \eta} = k_{\eta \eta}$ iff $\eta \not\in \Omega$. Then
it is routine to check that $(U, k) \in G'_{\beta}$, and $(T, h) T_x(U, k) \in F(\langle R, f \rangle)$. This finishes the proof of 3.2.77.

Now we shall modify the algebras \mathfrak{A}_{β} in order to obtain stronger results below.

CONSTRUCTION 3.2.78. Suppose $3 \leq \alpha, \beta < \omega$ and $\beta \geq \alpha - 1$. We set $K_{\alpha \beta} = \{ (R, f) \in G'_{\alpha \beta}; R \lambda^2(\alpha < 3) = Id \lambda^2(\alpha < 3) \}$, and for all $\kappa, \alpha < \alpha$, if $3 \leq \kappa < \alpha$ then $f \lambda \kappa = \kappa \lambda$. Then we set $\mathfrak{A}_{\alpha \beta} = \mathfrak{A}_{\alpha} \mathfrak{A}_{\beta}$, where $\alpha = K_{\alpha \beta}$. We claim that $\mathfrak{A}_{\alpha \beta}$ is a CA_{3}. In fact, clearly $c_{\alpha} K_{\alpha \beta} = K_{\alpha \beta}$ for all $\kappa < 3$, so $\mathfrak{A}_{\alpha \beta}$ is a homomorphic image of \mathfrak{A}_{β} and hence is a CA_{3}. Moreover, $\mathfrak{A}_{\alpha \beta}$ is simple. For, if $(R, f) \in K_{\alpha \beta}$ then

$c_{\alpha \beta} \{ (R, f) \} = c_{\alpha \beta} \{ (R, f) \} \cap K_{\alpha \beta}$

$= M_{\beta \alpha} K_{\alpha \beta}$ by 3.2.76(7)

$= K_{\alpha \beta},$

and simplicity follows by 2.3.14.

COROLLARY 3.2.79. If $3 \leq \alpha < \omega$ and $\kappa < \omega$, then $\mathfrak{A}_{\beta} \mathfrak{A}_{\alpha + \kappa}$ can be neatly embedded in a $CA_{3(\kappa + 1)}$.

PROOF. By 3.2.77 there is a neat embedding F of $\mathfrak{A}_{\beta} \mathfrak{A}_{\alpha + \kappa}$ into $\mathfrak{A}_{\beta + 1, \alpha + \kappa}$. Let ρ be the function mapping $3 + \kappa + 1$ into $\alpha + \kappa + 1$ defined by the following conditions: $\rho \lambda = \lambda$ for all $\lambda < 3$; $\rho \lambda = \alpha + \lambda - 3$ for all $\lambda \in (3 + \kappa + 1, \infty)$. Let $\mathfrak{B} = \mathfrak{A}_{\beta} \mathfrak{A}_{\rho} \mathfrak{A}_{\alpha + \kappa}$. Thus \mathfrak{B} is a $CA_{3(\kappa + 1)}$. It is easily verified that F is a neat embedding of $\mathfrak{A}_{\beta} \mathfrak{A}_{\alpha + \kappa}$ into \mathfrak{B}, as desired.

LEMMA. 3.2.80. Suppose $3 \leq \alpha, \beta < \omega$ and $\beta \geq \alpha - 1$. Suppose F is an isomorphism of \mathfrak{A}_{β} onto a CA_{α} with base U. For each $\gamma < \beta$ let $N_{\gamma} = \{ (R, f) \in K_{\alpha \beta}; 0 \leq 1 R 2 \}$ and $f 01 = \gamma$. Then

(i) For all $u, v \in U$ with $u \neq v$ all $\gamma < \beta$, and all $(R, f) \in N_{\gamma}$, if $(u, v, u) \in F(\langle R, f \rangle)$ then $(u, v, u) \in F(\langle S, g \rangle)$ for some $(S, g) \in N_{\gamma}$.

(ii) For all $u, v \in U$ with $u \neq v$ there is a unique $\gamma < \beta$ such that $(u, v, u) \in F(\langle R, f \rangle)$ for some $(R, f) \in N_{\gamma}$.

Furthermore, for any $u, v \in U$ with $u \neq v$ let $k(u, v)$ be the γ given by (ii) and (i). Then k is an edge coloring of the complete graph on U with β colors, without a monochromatic triangle, i.e., there do not exist distinct $u, v, w \in U$ such that $k(u, v) = k(u, w) = k(v, w)$.

PROOF. (i): Clearly $(u, v, u) \in F(d_{12}, c_{2}(d_{01}, c_{0}(d_{02}, c_{2}(\langle R, f \rangle))))$; say $(u, u, u) \in F(\langle S, g \rangle)$ with $(S, g) \in d_{12}, c_{2}(d_{01}, c_{0}(d_{02}, c_{2}(\langle R, f \rangle))))$. Clearly $(S, g) \in N_{\gamma}$, so (i) holds. (ii): Clearly in \mathfrak{A}_{β} we have $-d_{01}, d_{12} = U_{\gamma < \beta} N_{\gamma}$, so (ii) holds.

Now for the final conclusion, suppose $u, v, w \in U$ are distinct and $k(u, v) = k(u, w) = k(v, w) = \gamma$. Say $(u, u, v) \in F(\langle R, f \rangle)$, $(u, u, w) \in F(\langle S, g \rangle)$, $(v, v, w) \in F(\langle T, h \rangle)$, with $(R, f), (S, g), (T, h) \in N_{\gamma}$. Then $d_{2}(3 + 3)_{-} c_{2}(\langle R, f \rangle)_{-} c_{1}(\langle S, g \rangle)_{-} c_{0}(d_{01}, c_{1}(\langle T, h \rangle)) = 0$ by the "triangle" part of the definition of G'_{α}, but
\[(u,v,u) \in \tilde{\delta}(3\times3)\mathcal{C}_2F((R,f))\mathcal{C}_2F((S,g))\mathcal{C}_2(D_0\mathcal{C}_2F((T,h)))\],

a contradiction.

REMARK 3.2.81. We shall now make use of the following sharpened form of part of Ramsey's theorem, due to Greenwood, Gleason [55**]:

(1) If \(G\) is a finite set, and the complete graph on \(G\) is edge colored with \(\beta\) colors, \(3\beta < \omega\), with no monochromatic triangles, then \(|G| \geq 3^\beta\).

This result gives the following corollary to 3.2.80.

COROLLARY 3.2.82. Suppose \(3 \leq \alpha, \beta < \omega\) and \(\beta \geq \alpha - 1\). Suppose \(\Phi_{gf}\) is isomorphic to a \(C_{S_3}\) with base \(U\). Then \(|U| \geq 3^\beta\).

Now we shall obtain a lower bound for \(|U|\):

LEMMA 3.2.83. Suppose \(3 \leq \alpha, \beta < \omega\) and \(\beta \geq \alpha - 1\). Suppose \(\Phi_{gf}\) is isomorphic to a \(C_{S_3}\) with base \(U\). Then \(|U| \geq (\beta - 2)^{2\alpha - 6}\).

PROOF. Let \(F\) be an isomorphism from \(\Phi_{gf}\) onto a \(C_{S_3}\) with base \(U\). We shall use the notation of 3.2.80. First we shall obtain a lower bound for \(|k^{1*}\gamma|\) for an arbitrary \(\gamma < \beta\). Let \(R\) be the equivalence relation on \(\alpha\) associated with the partition whose only non-singleton class is \(\{1,2\}\). Then we set

\[M = \{(R,f) \in K_3^{\beta}: f(1) = \gamma \text{ and for all } \kappa \in \alpha-3, \{f0, f1, f2\} \cap \{\kappa, \gamma\} = \emptyset\}.

Note that if \(g\) is the function from \((\kappa, \lambda) : \kappa, \lambda \in \alpha-3, \kappa \neq \lambda\) into \(\beta\) such that \(g_{\kappa\lambda} = g_{\lambda\kappa} = \kappa\) whenever \(3 \leq \kappa < \lambda < \alpha\), then for any \(\mu, \nu \in F_{\kappa \alpha-3}[\beta \sim (\kappa, \gamma)]\) there is a unique \(f \geq g\) such that \((R,f) \in M\) and \(f0, f1, f2\) while \(f1 = \mu \kappa\) and \(f1 = \nu \kappa\) for all \(\kappa \in \alpha-3\). Thus

\[|M| \geq (\beta - 2)^{2\alpha - 6}.

Now for any \((R,f) \in M\) let \(G(R,f) = \{(u,v) : u, v \in U, u \neq v, (u,v,u) \in F((R,f))\} \) or \((u,v,u) \in F((R,f))\), clearly \(G(R,f) \neq 0\). Next, we claim that if \(G(R,f) \cap G(R,g) \neq 0\) then \(G(R,f) = G(R,g)\). To show this we may assume that \(f \neq g\). Since \(F((R,f)) \cap F((R,g)) = 0\), this means that there are distinct \(u, v \in U\) such that \((u,v,u) \in F((R,f))\) and \((u,v,u) \in F((R,g))\). To show that \(G(R,f) = G(R,g)\) it suffices to show that for all \(u, v \in U\), \((u,v,u) \in F((R,f))\) iff \((u,v,u) \in F((R,g))\). Now it is easy to check the following:

\[d_{12}c_2(d_{02}c_0(d_{01}c_i((R,g))));\]

\[(u,v,u) \in F((R,f)) \cap F[d_{12}c_2(d_{02}c_0(d_{01}c_i((R,g))))].\]

Hence \((R,f) = d_{12}c_2(d_{02}c_0(d_{01}c_i((R,g)))),\) from which the above easily follows.

Clearly also for any \((R,f) \in M\) there are at most two \((S,g) \in M\) such that \(G(R,f) = G(S,g)\). All of these facts show that \(|k^{1*}\gamma| \geq |M|/2\). Hence, using (1),

\[|X \leq U : |X| = 2| = \Sigma_{\gamma < \beta} |k^{1*}\gamma| \geq (\beta/2)(\beta - 2)^{2\alpha - 6} \geq (\beta - 2)^{2\alpha - 5}.
\]
Hence $|U| \leq (\beta - 2)^{\omega - 3}$, as desired.

Note that 3.2.82 and 3.2.83 imply that certain of the algebras $\mathfrak{G}_{\alpha \delta}$ are non-representable; by 3.1.108 and 3.1.126, the same applies to $\mathfrak{R}_{\beta \gamma} \mathfrak{G}_{\alpha \delta}$ and to $\mathfrak{G}_{\alpha \delta}$ itself. For example, a simple computation shows that $(11 - 2)^{12 - 2} > 3 \cdot 111$, so $\mathfrak{G}_{12,13}$ is non-representable. Similarly, $\mathfrak{G}_{23,13}$ and $\mathfrak{G}_{20,22}$ are non-representable. Thus using 3.2.79 and 3.2.77, $\mathfrak{R}_{\beta \gamma} \mathfrak{G}_{13,13}$ is a non-representable \mathbf{CA}_3 neatly embeddable in a \mathbf{CA}_4, and $\mathfrak{G}_{20,22}$ is a non-representable \mathbf{CA}_{20} neatly embeddable in a \mathbf{CA}_{23}. Now we generalize these considerations.

COROLLARY 3.2.84. For every $\kappa \in \omega$ there is an $\alpha \in \omega - 3$ such that $\mathfrak{R}_{\beta \gamma} \mathfrak{G}_{\alpha, \alpha + \kappa}$ is a non-representable \mathbf{CA}_3.

PROOF. By 3.1.108 it suffices to find an α such that $\mathfrak{G}_{\alpha, \alpha + \kappa}$ is non-representable. Let $\alpha = 10 \cdot (\kappa + 4)$. Suppose $\mathfrak{G}_{\alpha, \alpha + \kappa}$ is representable, say it is isomorphic to a \mathbf{CS}_2 with base U. Note the following:

$$3 \cdot (\kappa + 4)! < \alpha + \kappa - 2,$$
$$\alpha + 5 \cdot (\kappa + \alpha) < (\alpha + \kappa - 2)^2,$$
$$\alpha + 5 \cdot (\kappa + \alpha - 1) < (\alpha + \kappa - 2)^2.$$

Hence by 3.2.82 and 3.2.83,

$$|U| \leq 3 \cdot (\alpha + \kappa)! = 3 \cdot (\kappa + 4)! \cdot (\kappa + 5) \cdot \ldots \cdot (\kappa + \alpha) < (\alpha + \kappa - 2)^{\alpha - 3} \leq |U|,$$

contradiction.

This corollary gives one of the main results about non-representable \mathbf{CA}_α's:

THEOREM 3.2.85. If $3 \leq \alpha < \omega$ and $\kappa < \omega$, then there is a non-representable \mathbf{CA}_α which can be neatly embedded in a $\mathbf{CA}_{\alpha + \kappa}$.

PROOF. By 3.2.84, choose $\beta \in \omega - 3$ so that $\mathfrak{R}_{\beta \gamma} \mathfrak{G}_{\beta + \alpha, \alpha + \kappa} \mathbb{B}$ is a non-representable \mathbf{CA}_3. By 3.2.79, say $\mathfrak{R}_{\beta \gamma} \mathfrak{G}_{\beta + \alpha, \alpha + \kappa} \subseteq \mathbb{B}$ a $\mathbf{CA}_{\alpha + \kappa}$. Let $\mathbb{A} = \mathfrak{R}_{\gamma} \mathbb{B}$. Clearly \mathbb{A} is as desired.

Our final task concerning these constructions is to extend 3.2.85 to the case $\alpha \geq \omega$; first we need a lemma.

LEMMA 3.2.86. Suppose $3 \leq \alpha \leq \beta < \omega$ and $\kappa < \omega$. Then $\mathfrak{G}_{\alpha, \alpha + \kappa} = \mathfrak{R}_{\beta} \mathfrak{G}_{\alpha, \alpha + \kappa}$ for some $x \in G_{\beta, \beta + \kappa}$ such that for all distinct $t, \eta < \alpha$, $\eta x, c_\alpha x \in \mathcal{B}$.

PROOF. Let

$$x = \{(R, f) \in G_{\beta, \beta + \kappa}: R = (Rn^2) \cup (Id \cap (\beta - \alpha)), \text{ for all } \mu, \nu \alpha \text{ with } \mu \mathbb{R} \nu \text{ we have } f_{\mu, \nu} \in \alpha + \kappa, \text{ and for all } \mu \in \beta - \alpha \text{ and } \nu < \mu \text{ we have } f_{\mu, \nu} = \mu + \kappa\}.$$
First we check that \(c_\xi x c_\eta x \leq x\), where \(\xi \prec \alpha, \xi \neq \eta\). Suppose \((R, f) \in c_\xi x c_\eta x\), say \((R, f) T_\{S, g\} \in x\) and \((R, f) T_\{T, h\} \in x\). Clearly \(R = (R \cap \alpha^2) \cup (Id \cap (\beta - \alpha))\). Suppose \(\mu \in \beta - \alpha\) and \(\nu < \omega\). If \(\nu \neq \xi\), then \(f \mu = g \mu = \mu + \xi\). If \(\nu = \xi\), then \(f \mu = h \mu = \mu + \xi\). To finish showing that \((R, f) \in x\) it clearly suffices to assume that \(R \eta\) and show that \(f \eta \in \alpha + \xi\). Suppose this is not true; then \(f \eta = \mu + \xi\) for some \(\mu \in \beta - \alpha\). Then \(f \eta = f \mu = f \eta \mu\), contradicting the fact that \((R, f) \in G_{\beta, \beta + \xi}\).

Thus \(c_\xi x c_\eta x = x\). It is clear that \(x \leq c_\xi (d_{\eta} x)\).

Now we define a function \(F\) mapping \(G_{\beta, \beta + \xi}\) into \(x\). For any \((S, g) \in G_{\beta, \beta + \xi}\), let \(F(S, g) = (R, f)\), where \(R = Su(\{n(\beta - \alpha)\})\), \(g \leq f\), and for all \(\mu \in \beta - \alpha\) and all \(\nu < \omega\) we have \(f \mu = f \mu + \mu = \mu + \xi\). Clearly \((R, f) \in x\). In fact, it is clear that \(F\) is a one-one mapping of \(G_{\beta, \beta + \xi}\) onto \(x\). Let \(H_{X} = F^* X\) for any \(X \in G_{\beta, \beta + \xi}\). It is easily checked that \(H\) is the desired isomorphism of \(G_{\beta, \beta + \xi}\) onto \(\mathcal{R}_\beta \mathcal{R}_\beta G_{\beta, \beta + \xi}\).

THEOREM 3.2.87. If \(3 \leq \alpha\) and \(\kappa < \omega\), then there is a non-representable \(CA_{\alpha}\) which can be neatly embedded in a \(CA_{\alpha + \kappa}\).

PROOF. Since 3.2.85 disposes of the case \(\alpha < \omega\), we assume \(\alpha \geq \omega\). By 3.2.84 choose \(\beta \in \alpha - \beta\) so that \(\mathcal{R}_\beta \mathcal{R}_\beta G_{\beta, \beta + \xi}\) is non-representable. Thus by 3.1.118 \(G_{\beta, \beta + \xi}\) is also non-representable. Now let \(I = \{\Gamma; \beta \leq \Gamma \leq \alpha\} \) and \([\Gamma] < \omega\).

For each \(\Gamma \in I\) let \([\Gamma] = \gamma_{\Gamma}\) and let \(\rho_{\Gamma}\) be a one-one function from \(\gamma_{\Gamma}\) onto \(\Gamma\) such that \(\beta \mathcal{R} \gamma_{\Gamma}\). Let \(X_{\Gamma}\) be an algebra similar to \(CA_{\beta}\) such that \(\mathcal{R}^{\beta} X_{\Gamma} = X_{\gamma_{\Gamma}}\), extending Definition 2.6.1 in the natural way. For each \(\Gamma \in I\) let \(M_{\Gamma} = \{\delta \in I; \delta \subseteq \Delta\}\), and let \(F\) be an ultrafilter on \(I\) such that \(M_{\Gamma} \in F\) for every \(\Gamma \in I\). Set \(B = \mathcal{P}_{\Gamma \in I} / F\). We claim that \(B\) is the \(CA_{\alpha}\) desired in the theorem.

It is straightforward to check that \(B\) is a \(CA_{\alpha}\). To show that \(B\) is neatly embeddable in a \(CA_{\alpha + \kappa}\), first by 3.2.77 for each \(\Gamma \in I\) choose a \(CA_{\alpha + \beta + \kappa}\) such that \(G_{\gamma_{\Gamma}} \subseteq \mathcal{R}^{\beta} \gamma_{\Gamma} \subseteq \mathcal{R}^{\beta} \Gamma_{\Gamma}\). Let \(\mathcal{U}_{\Gamma}\) be a one-one function with domain \(\gamma_{\Gamma} + \kappa\) such that \(\rho_{\Gamma} \subseteq \gamma_{\Gamma}\) and \(\rho_{\Gamma}(\gamma_{\Gamma} + \xi) = \alpha + \xi\) for each \(\xi < \kappa\). Let \(X_{\Gamma}\) be an algebra similar to \(CA_{\alpha + \kappa}\) such that \(\mathcal{R}^{\beta} X_{\Gamma} = \mathcal{R}^{\beta} \Gamma_{\Gamma}\). Then it is easily seen that \(\mathcal{P}_{\Gamma \in I} X_{\Gamma} / F\) is a \(CA_{\alpha + \kappa}\) in which \(B\) is neatly embeddable.

It remains only to show that \(B\) is non-representable. By 3.1.118 it suffices to show that \(\mathcal{R}^{\beta} B\) is non-representable. Now for each \(\Gamma \in I\) choose \(\alpha \in A_{\Gamma}\) such that \(G_{\beta, \beta + \xi} = \mathcal{R}^{\beta} \alpha \cup \mathcal{R}^{\beta} \xi,\xi \gamma_{\Gamma} \subseteq \mathcal{R}^{\beta} \gamma_{\Gamma}\), using 3.2.86, with \(c_{\xi} \alpha \subseteq c_{\xi} (d_{\gamma_{\Gamma}} \alpha)\) for all distinct \(\xi \eta \prec \beta\), and let \(\mathcal{U}_{\Gamma}\) be the indicated isomorphism. Let \(x = a / F\) and let \(H_{B} = (F_{B} b; \Gamma \in I) / F\) for every \(b \in G_{\beta, \beta + \xi}\). It is easy to see that \(H\) is an isomorphism from \(G_{\beta, \beta + \xi}\) into \(\mathcal{R}^{\beta} B\). Since \(c_{\xi} x = c_{\xi} (d_{\gamma_{\Gamma}} x)\) for all distinct \(\xi \eta \prec \beta\), by 2.2.10 and 2.6.38 we infer that \(\mathcal{R}^{\beta} B\) is non-representable. This completes the proof of 3.2.87.

Note the following interesting consequence of 3.2.10 and 3.2.87: if \(3 \leq \alpha\) and \(\kappa < \omega\), then for some \(\lambda < \omega\) there is a \(CA_{\alpha}\) \(\mathcal{K}\) such that \(\mathcal{K}\) can be neatly embedded in some \(CA_{\alpha + \lambda}\) but not in a \(CA_{\alpha + \kappa + \lambda}\).
The last three constructions of non-representable algebras given above illustrate an important connection between combinatorial structures and algebraic logic. This connection was first developed, for relation algebras, by Jónsson and Lyndon. For recent work in this area see, e.g., Comer [76'] and [83b'].

Other representations

We close this section with some comments on other possible ways of representing cylindric algebras. See also the concluding pages of Part I, where representation by complex algebras is discussed, and section 4.3, where representation in terms of first-order logic is considered.

REMARKS 3.2.88. The class ICrs_α of cylindric—relativized set algebras has entered into our discussion so far in an auxiliary role, since its members are not in general cylindric algebras. Still, we may ask about representability of CA_ν's as cylindric—relativized set algebras. Recall from Theorem 3.2.61 that every CA_ν is so representable. This result does not extend to any $\alpha>2$. For example, the algebras in Construction 3.2.71 are not isomorphic to cylindric—relativized set algebras, since the equations (7)–(9) there, which fail to hold in those algebras, are easily seen to hold in all cylindric—relativized set algebras which are cylindric algebras. Algebras in Construction 3.2.72 (from quasigroups) can also be used for this purpose, for $\alpha=3$. The class $\text{CA}_\alpha\cap\text{ICrs}_\alpha$ may be considered to be a class of concrete cylindric algebras, and we can ask about properties of $\text{CA}_\alpha\cap\text{ICrs}_\alpha$ — a natural class of abstract cylindric algebras. In this connection we mention a result of D. Resek [75'], which adds considerable interest to this class.

Suppose that α is an ordinal, $n\in\omega-2$, $\kappa\in\omega_\alpha$ is one—one, and $\lambda\in\alpha-Rgc$. The κ,λ—merry—go—round identity is the equation

$$(1) s_\lambda^\kappa s_{\kappa(1)}^{(n-2)}s_{\kappa(1)}^{(n-3)}s_{\kappa(0)}^{(n-4)}z = s_\lambda^\kappa s_{\kappa(1)}^{(n-3)}s_{\kappa(1)}^{(n-4)}s_{\kappa(0)}^{(n-5)}s_{\kappa(1)}^{(n-6)}z.$$

Then the result from Resek [75'] states that $\text{ICrs}_\alpha\cap\text{CA}_\alpha$ is the variety characterized by the cylindric algebra axioms along with all possible merry—go—round identities. Unfortunately, the proof is too long to be included here.

More recently, Richard Thompson has shown that the merry—go—round identities can be replaced in Resek's theorem by the following two instances:

$$(2) s_\lambda^\kappa s_\mu^\nu s_\lambda^\kappa z = s_\lambda^\mu s_\lambda^\kappa z \text{ for all distinct } \kappa,\lambda,\mu<\alpha,$$

$$(3) s_\lambda^\kappa s_\mu^\nu s_\lambda^\kappa z = s_\lambda^\mu s_\lambda^\nu s_\lambda^\kappa z \text{ for distinct } \kappa,\lambda,\mu,\nu<\alpha.$$

Note that thus $\text{ICrs}_\alpha\cap\text{CA}_\alpha$ is finite schema axiomatizable in the sense of section 4.1.

REMARKS 3.2.89. Another kind of representation for cylindric algebras which has appeared in the literature involves sheaf—theoretic notions first applied in ordinary algebra in Pierce [67*]. The notion was applied to cylindric algebras by Comer [72']. A sheaf of CA_ν's is a quadruple (X,S,π,\mathcal{U}) with the following properties:

$$(1) X \text{ and } S \text{ are topological spaces and } \pi \text{ is a local homeomorphism from } S \text{ onto } X.$$
(2) \(\mathcal{U} = \{ A_x : x \in X \} \) is a system of \(\mathcal{CA}_a \)'s, and \(A_x = \pi^{-1}\{ x \} \) for each \(x \in X \).

(3) The operations on the algebras of \(\mathcal{U} \) are continuous.

A section of \((X,S,\pi,\mathcal{U}) \) is a continuous function \(\sigma \) from \(X \) to \(S \) such that \(\pi \circ \sigma = X \). These sections form a natural \(\mathcal{CA}_a \).

The central result of Comer [72] is that corresponding to every \(\mathcal{CA}_a \) there is an especially simple sheaf \((X,S,\pi,\mathcal{U}) \) such that \(\mathcal{E} \) is isomorphic to the \(\mathcal{CA}_a \) of its sections.
PROBLEMS

We include here not only natural questions which were already raised in this chapter, but also some (but not all) problems mentioned in Henkin, Monk, Tarski Andréka, Németi [81]; again the two parts of this book will be denoted by [HMT81] and [AN81]. We mention in passing the status of the problems in that book.

PROBLEM 3.1. For which infinite cardinals \(\kappa, \lambda \) is it true that \(C_\alpha \subseteq \mathfrak{I}, C_\beta \mathfrak{J} \)?

With regard to this problem see 3.1.45 and 3.1.46; it coincides with Problem 17 of [AN81]. The related Problem 1 of [HMT81] has been solved affirmatively by Richard Thompson (unpublished).

PROBLEM 3.2. Let \(\alpha \geq \omega \). If \(\mathfrak{A} \in C_\alpha^{\omega\omega} \) and \(\mathfrak{B} \approx \mathfrak{A} \), is there a \(C \in C_\alpha^{\omega\omega} \) which is \(\text{ext-base-isomorphic} \) to both \(\mathfrak{A} \) and \(\mathfrak{B} \)?

This problem is related to the logical fact that elementarily equivalent structures always have a common elementary extension. See [AN81] 3.10; the problem is formulated as number 6 in that article. Also related to it are Problems 3 and 4 there (still open), and Problem 5, solved affirmatively in Sain [82], [84].

PROBLEM 3.3. If \(4 \leq \alpha \leq \omega \), is there a \(C_\alpha \) with base \(\alpha + 2 \) not generated by a single element?

For an extensive discussion of this problem, see 3.1.68 and the references cited there.

PROBLEM 3.4. For \(2 \leq \alpha, \beta \leq \omega \) let \(q(\alpha, \beta) \) be the smallest \(\gamma < \omega \) such that every \(C_\alpha \) with base \(\beta \) can be generated by \(\gamma \) elements. Give an arithmetic characterization of this function \(q \).

Again, cf. 3.1.68. For related problems (still open), see [HMT81] Problem 2 and [AN81] Problem 8.

PROBLEM 3.5. For \(\alpha \geq \omega \), is \(HC_\alpha = HC_\alpha^{\omega \omega} \)?

Cf. 3.1.74 for this problem. Of course the equality in Problem 3.5 is equivalent to the inclusion \(C_\alpha \subseteq HC_\alpha^{\omega \omega} \). Note from 3.1.139 that only \(C_\alpha \)'s with finite bases need to be considered. The problem is number 4 in [HMT81]. Some related problems restricting to infinite bases are solved positively, namely Problems 5, 7, 8 of [HMT81];
see 3.1.139 again. The related problem 6 in [HMT81] was solved consistently negatively by Andréka and Németh; see Sain [82'] and 3.1.82.

PROBLEM 3.6. If $\lambda > 0$ and $x \geq \omega$, is $\mathcal{C}_a \geq_{HP} \mathcal{C}_a$?

This is the first part of Problem 12 of [AN81]. Németh (unpublished) has shown that the answer is consistently yes, namely it is true if there are no uncountable measurable cardinals.

PROBLEM 3.7. If $1 < \kappa \leq \omega, \mathcal{X} \in \mathcal{C}_a \cap \mathcal{D}_a$, and \mathcal{X} has only finitely many subbases, is $\mathcal{X} \in \mathcal{I}_a$?

This is Problem 9 of [AN81]; see also 4.14–4.18 there.

PROBLEM 3.8. For $\alpha \geq \omega$, is every weakly subdirectly indecomposable \mathcal{C}_a isomorphic to a $\mathcal{C}_a^{\uparrow 2}$?

Cf. 3.1.88; this is Problem 9 of [HMT81]. The related Problem 10 was solved in Andréka, Németh [84'], while the related Problem 13 of [AN81] is open.

PROBLEM 3.9. Let $|\mathcal{X}| > \omega$. Is the class of weakly subdirectly indecomposable $\mathcal{L}_a \mathcal{G}_a$ the same as the class of directed unions of members of \mathcal{I}_a?

The conclusion of this problem is valid for $|\mathcal{X}| = \omega$, as has been shown by Andréka and Németh (unpublished).

PROBLEM 3.10 For which values of α and β do we have $\mathcal{R}_a(\mathcal{C}_a^{\uparrow 2} \cap \mathcal{D}_a) \subseteq \mathcal{I}_a$, $\mathcal{R}_a(\mathcal{C}_a \cap \mathcal{D}_a) \subseteq \mathcal{I}_a$, or $\mathcal{R}_a(\mathcal{C}_a^{\uparrow 2} \cap \mathcal{D}_a) \subseteq \mathcal{I}_a$?

Cf. [AN81] 8.10(4). This problem coincides with Problems 19 and 29 there.

PROBLEM 3.11. Suppose $\omega \leq \alpha < \beta, \mathcal{X} \in \mathcal{G}_a \mathcal{R}_a$, and every $b \in B$ is regular (in \mathcal{X}). Is $\mathcal{G}_a^{\uparrow 2} B$ regular?

This is Problem 29 of [AN81].

PROBLEM 3.12. For $\alpha \geq \omega$, give an elementary characterisation of regularity of an element of a \mathcal{G}_a.

Cf. here 3.1.23–3.1.25. In [AN81] 1.6.2, a simple characterisation of regularity of every element of a \mathcal{G}_a is given. (In its simplest version, that result says that a \mathcal{G}_a \mathcal{X} is regular if every element $a \in Z(\mathcal{X})$ satisfies the same simple regularity condition given in 3.1.23 – 3.1.24.)

PROBLEM 3.13. Let $\omega \leq \alpha < \beta$. Is $\mathcal{I}_a^{\uparrow 2} \mathcal{C}_a^{\uparrow 2}$?

For this problem see [AN81] 8.18, 8.18.1. The related problems 18,24,26,27,28 there are open; 3.13 is a part of Problem 27.
PROBLEM 3.14. For various non-representable algebras discussed in 3.2.76 – 3.2.87, find explicit equations which hold in all representable algebras but fail in those algebras. For various such algebras \(\mathcal{A} \), find explicit \(\kappa \in \omega \) such that \(\mathcal{A} \) cannot be neatly embedded in a CA of \(\kappa \) more dimensions.

See the comment following 3.2.74.

We briefly indicate the status of the other problems from [HMT81] and [AN81] which are relevant to this chapter but were not mentioned above. Problems 3 and 10 of [HMT81] were solved negatively in Andréka, Németi [84"], while Problem 11 is open. Problems 1, 11, 14, 15, 16, 20, 21, 22, and 25 of [AN81] are still open. (The first part of 11 is solved by 3.1.139, however.) Problem 2 was solved positively by Andréka and Németi (unpublished), Problem 7 negatively by Németi (unpublished). Problem 10 was solved negatively by Andréka, Comer, Németi [83"] for \(\alpha < \omega \) it is still open for \(\alpha \in \omega \).
CHAPTER 4

NOTIONS OF LOGIC RELATED TO CYLINDRIC ALGEBRAS
4. NOTIONS OF LOGIC RELATED TO CYLINDRIC ALGEBRAS

In this chapter we apply logical notions to cylindric algebras and also indicate the connections between logic and cylindric algebras. The applications of logical notions to CA's are of the usual sort when discussing any algebraic structures: we consider their model theory, and then various decision problems, in sections 4.1 and 4.2 respectively. The connections between logic and cylindric algebras discussed in section 4.3 present a new aspect of the theory of these algebras as opposed to more common algebraic structures. Cylindric algebras were designed primarily to algebraically reflect logical properties, and in that section we explore this motivating connection in some depth.

4.1 MODEL THEORY OF CYLINDRIC ALGEBRAS

In this section we study cylindric algebras from a model-theoretic point of view. Of greatest interest are various equational classes of cylindric algebras, but we also consider universal and elementary classes. The class \(\text{IG}_a \) of representable CA's deserves special attention. We have already seen, in 3.1.108, that for \(\omega \geq 2 \), \(\text{HSPG}_a = \text{IG}_a \) and hence \(\text{IG}_a \) is an equational class. Also, by 3.2.65 \(\text{IG}_a \) is also characterized by only finitely many equations, although \(\text{IG}_a \neq \text{CA}_a \). Two of the main results of this section are that for \(3 \leq \omega < \omega \), \(\text{IG}_a \) cannot be characterized by finitely many equations, while for \(\omega \geq \omega \), \(\text{IG}_a \) cannot be characterized by a finite schema of equations of the kind defining the class \(\text{CA}_a \). We do give a rather complicated system of equations for \(\text{IG}_a \), and also a simpler but non-standard schema for deriving all the equations holding in the class \(\text{IG}_a \).

Beyond these main results we consider for many of the classes \(K_a \) of CA's which we have introduced the questions concerning the nature of the smallest equational, universal, and elementary classes containing \(K_a \). Some such questions were considered in Part I; see, e.g., 2.6.53. Here we proceed systematically, and recall in due course those model-theoretic results mentioned earlier, as well as giving many additional results.

We begin by introducing some abbreviations which will be useful below.

DEFINITION 4.1.1. If \(\text{K} \) is any class of similar structures, then \(\text{EqK} \) is the smallest equational class containing \(\text{K} \), \(\text{UnK} \) the smallest universal class, and \(\text{EIK} \) the smallest elementary class.

REMARK 4.1.2. We have \(\text{EqK} = \text{HSPK} \), \(\text{UnK} = \text{SUPK} \), and \(\text{EIK} = \text{UFUPK} \); see section 0.3.
Non-finite axiomatizability

Now we give the first main non-finitizability result, due to Monk [89].

THEOREM 4.1.3. For \(3 \leq \omega < \omega\), \(IG_n\) is not finitely axiomatizable.

PROOF. By 3.2.85, for each \(\kappa < \omega\) choose \(U_\kappa \in CA_{\omega} \sim IG_{n}\) and \(\mathfrak{B}_\kappa \in CA_{\omega, k}\) such that \(U_\kappa \in \mathfrak{R}_{\kappa} \mathfrak{B}_\kappa\). We can also find an algebra \(C_\kappa\) similar to \(CA_{\omega, k}'s\) such that \(\mathfrak{B}_\kappa \in \mathfrak{R}_{\kappa} C_\kappa\) (in the sense of 2.6.1, extended in a natural way to structures merely similar to \(CA_{\omega, k}'s\)), for each \(\kappa < \omega\). Let \(F\) be a non-principal ultrafilter over \(\omega\). Then \(P_{\varepsilon \kappa} C_\kappa / F\) is a \(CA_{\omega}\), as is easily checked, and \(P_{\varepsilon \kappa} U_\kappa\) can be neatly embedded in \(P_{\varepsilon \kappa} C_\kappa / F\). Thus by 3.2.10, \(P_{\varepsilon \kappa} U_\kappa \in IG_{n}\). This shows that \(CA_{\omega} \sim IG_{n}\) is not closed under ultraproducts, and the theorem follows.

Now for \(\alpha \geq \omega\) it is clear that \(CA_{\alpha}\), \(IG_{n}\) and most of our other equational classes of \(CA_{\alpha}'s\) are not finitely axiomatizable. The reason behind this is simple: there are infinitely many operations, all subject to certain non-trivial equational conditions, while a finite set of equations can only make restrictions on finitely many operations. Nevertheless, our axioms for \(CA_{\alpha}'s\) in 1.1.1 are finite, in a two-sorted sense: one sort for the ordinals \(< \alpha\), the other sort for the usual first-order situation. We now want to make this more precise, in order to formulate our second non-finitizability result.

DEFINITION 4.1.4. (i) Suppose \(\alpha\) is any ordinal. We denote by \(L_\alpha\) a discourse language for \(CA_{\alpha}\) (see p. 43 of Part I). The non-logical symbols of \(L_\alpha\) will be denoted by the bold-face counterparts of the symbols used for the operations in a \(CA_{\alpha}\); thus, e.g., \(+_{\alpha}, \cdot_{\gamma, \gamma'}\) correspond to \(+, \cdot_{\gamma, \gamma'}\). \(T_{\mu} \alpha\) is the set of terms of \(L_\alpha\) and \(E_{\psi} \alpha\) the set of equations of \(L_\alpha\).

(ii). Suppose \(\alpha\) and \(\beta\) are ordinals and \(\gamma \in \alpha \beta\). We define \(\gamma^*\) mapping \(T_{\mu} \alpha\) into \(T_{\mu} \beta\) as follows. \(\gamma^* \sigma = \sigma \gamma\) for each \(\kappa < \omega\). For any terms \(\sigma, \tau\) of \(L_\alpha\) and any \(\kappa, \lambda < \alpha\) we set

\[
\begin{align*}
\gamma^* (\sigma + \tau) &= \gamma^* \sigma + \gamma^* \tau; \\
\gamma^* (\sigma \cdot \tau) &= \gamma^* \sigma \cdot \gamma^* \tau; \\
\gamma^* (\neg \sigma) &= \neg \gamma^* \sigma; \\
\gamma^* 0 &= 0; \\
\gamma^* 1 &= 1; \\
\gamma^* \epsilon_{\gamma, \gamma'} &= \epsilon_{\gamma, \gamma'} \gamma^* \sigma; \\
\gamma^* d_{\gamma} &= d_{\gamma \cdot \gamma'}.
\end{align*}
\]

(iii) Suppose \(K\) is a class of algebras similar to \(CA_{\alpha}'s\). We say that \(K\) is finitizables by a finite schema of equations provided that there is a finite set \(E \subseteq E_{\psi} \alpha\) such that \(K = M \{ \gamma^* \sigma \gamma^* \sigma \cdot \sigma \pi \tau \in E \} \gamma \in \alpha \gamma, \gamma \tau \gamma\); if such a set \(E\) exists but is not necessarily finite, we say that \(K\) is finitizes by a countable schema of equations.

The definition 4.1.4(ii),(iii) for finite schemas is taken from Monk [89]. It has
been generalized in Andräka, Németi [80a].

THEOREM 4.1.5. For $\omega \geq \omega$, CA_{ω} is axiomatizable by a finite schema of equations.

PROOF. For the desired finite set $E \subseteq E_{0}$ we can take the 8 equations for Boolean algebras given in section 1.1 together with the instances of $(C_{1})-(C_{7})$ in 1.1.1 in which $\kappa = 0$, $\lambda = 1$, $\mu = 2$, and the instance $d_{11} \ast e_{1} \ast (d_{11} \ast d_{11})$ of (C_{8}).

THEOREM 4.1.6. For $\omega \geq \omega$, IG_{ω} is axiomatizable by a countable schema of equations.

PROOF. Let $E = \emptyset \cap G_{\omega} \cap E_{0}$, the set of all equations holding in G_{ω}. We claim that E satisfies the condition in 4.1.4(iii) with $K = IG_{\omega}$. To show this, first suppose $\mathcal{U} \in G_{\omega}$. Let $\sigma \tau \in E$ and $\gamma \in \mathcal{U}$, γ one-one. By 3.1.18, $\text{Re}^{\mathcal{U}} = E$ is representable. Hence $\sigma \tau$ holds in \mathcal{U}. But $(\gamma \tau)^{\mathcal{U}} = \rho^{\mathcal{U}}$ for any term ρ of \mathcal{L}_{ω}, so $\gamma \sigma \gamma^{\tau}$ holds in \mathcal{U}. (Here we write $\rho^{\mathcal{U}}$ instead of $\rho^{\mathcal{E}}$, etc.). Thus $IG_{\omega} \subseteq \text{Md}(\gamma \sigma \gamma^{\tau} : \sigma \tau \in E, \gamma \in \mathcal{U})$ holds one-one). The opposite inclusion is established similarly, by showing that for any member \mathcal{U} of the right side and any one-one $\gamma \in \mathcal{U}$, $\text{Re}^{\mathcal{U}} \in IG_{\omega}$.

Now we give our second non–finitizability result:

THEOREM 4.1.7. For $\omega \geq \omega$, IG_{ω} is not axiomatizable by a finite schema of equations.

PROOF. Suppose on the contrary that $E \subseteq E_{0}$ is finite and $IG_{\omega} = \text{Md}(\gamma \sigma \gamma^{\tau} : \sigma \tau \in E, \gamma \in \mathcal{U})$, γ one-one). By 3.2.87, for each $\epsilon \in \omega$ let $\mathcal{U}_{\epsilon} \in CA_{\omega} \sim IG_{\omega}$ and let $\mathcal{U}_{\epsilon} \in CA_{\omega}$ be such that $\mathcal{U}_{\epsilon} \subseteq \text{Re}^{\mathcal{E}}$. Also, for each $\epsilon \in \omega$ let \mathcal{E}_{ϵ} be any algebra similar to CA_{ω} such that $\mathcal{U}_{\epsilon} \subseteq \text{Re}^{\mathcal{E}_{\epsilon}}$.

Choose $\lambda \leq \omega$ and terms $\sigma_{0}, \ldots, \sigma_{\lambda-1}, \tau_{0}, \ldots, \tau_{\lambda-1}$ in \mathcal{L}_{ω} such that $E = \{ \sigma_{0} \ast \tau_{0}, \ldots, \sigma_{\lambda-1} \ast \tau_{\lambda-1} \}$. Then for each $\epsilon \leq \omega$, since $\mathcal{U}_{\epsilon} \not\subseteq IG_{\omega}$, there is a one-one $\mathcal{E}_{\epsilon} \in \mathcal{U}_{\epsilon}$ such that the formula

$$\forall_{\delta} \forall_{\varepsilon} (\exists \gamma \ast (\gamma^{\varepsilon})^{\mathcal{U}_{\epsilon}} = \gamma^{\varepsilon})$$

does not hold in \mathcal{U}_{ϵ}. For each $\epsilon < \omega$ choose $\gamma^{\epsilon} \in \mathcal{E}_{\epsilon}$ such that γ^{ϵ} is one-one and $\gamma^{\epsilon} = (\gamma^{\varepsilon})^{\mathcal{U}_{\epsilon}}$ for all δ such that δ_{ε}, δ_{ε}, or δ_{ε} occurs in the formula (for some η), and let $\delta = (\gamma^{\epsilon} \ast \varepsilon) \ast (\delta^{\varepsilon} \ast \varepsilon) \ast (\delta^{\varepsilon} \ast \varepsilon)$. Now we let $\mathcal{U}_{\epsilon} = \text{Re}^{\mathcal{U}_{\epsilon}}$ and $\mathcal{E}_{\epsilon} = \text{Re}^{\mathcal{E}_{\epsilon}}$. Note that

(1) $\sigma_{0} \ast \tau_{0} \ast \ldots \ast \sigma_{\lambda-1} \ast \tau_{\lambda-1}$

does not hold in \mathcal{U}_{ϵ} for any $\epsilon < \omega$. Let F be any non–principal ultrafilter on ω. Then the formula (1) fails to hold in $P_{\epsilon} \ast \mathcal{U}_{\epsilon} / F$; since it is a conjunction of members of E, it follows that $P_{\epsilon} \ast \mathcal{U}_{\epsilon} / F$ is non–representable. But $P_{\epsilon} \ast \mathcal{U}_{\epsilon} / F$ can be neatly embedded in the $CA_{\omega + \omega}$ $P_{\epsilon} \ast \mathcal{E}_{\epsilon} / F$, contradicting 3.2.10.

Theorem 4.1.7 is due to Monk [69]. It is one of the most important model–
theoretic results about CA_n's. If it had turned out, contrary to 4.1.7, that IGS_n is axiomatizable by a finite schema of equations, such a schema would probably have been taken as the definition of the class CA_n, relegating our present class CA_n to a minor role.

Nevertheless, IGS_n is an equational class, and it is natural to try to describe in a simple fashion a set of equations characterizing it. We give three descriptions of such sets; as will be seen, each description is somewhat unsatisfactory. The first description is found in Monk [69], and generalizes a method used by Ralph McKenzie to characterize the class of involuted semigroups (A_i,\cdot) isomorphic to algebras (A_i,\cdot) of binary relations.

Equations characterizing IGS_n

DEFINITION 4.1.8. Suppose $3 \leq \alpha$ and Γ is a finite subset of α; say $|\Gamma| = \kappa$. We define a sequence λ^α of natural numbers by recursion: $\lambda^\alpha_0 = 1$, and for $\mu < \omega$, $\lambda^\alpha_{\mu+1} = \lambda^\alpha_\mu + (\mu+1)^2\cdot\kappa \cdot (\lambda^\alpha_{\mu})^\alpha$. Let $\Gamma = (\nu_0, \ldots, \nu_{\kappa-1})$ with $\nu_0 < \cdots < \nu_{\kappa-1}$, and for brevity set $\sigma^{(\alpha,\Gamma)} = \epsilon_{\nu_0} \cdots \epsilon_{\nu_{(\kappa-1)}}$.

$\sigma^{(\alpha,\Gamma)} \rightarrow (\sigma, \cdot, \tau) \lor (\tau, \cdot, \sigma)$ for any terms σ, τ in L_n^α.

$V^\alpha_\mu = \sigma^{(\alpha,\Gamma)}$ for any $\mu < \omega$.

Now for any $\mu < \omega$ and any $\psi \in \mu^{+1}Sb^\alpha(\lambda^\alpha_\mu)$ we let σ^α_ψ be a formal sum of the following terms, where $V = V^\alpha_\mu$ and $\lambda = \lambda^\alpha_\mu$:

0;

$-c_{(\alpha,\Gamma)}[\nu, \Theta(\psi)]$ if $\nu < \rho \leq \mu$ and $\psi = \psi$;

$-c_{(\alpha,\Gamma)}[\nu, \Psi(\nu_0)]$ if $\nu, \nu, \rho \leq \mu$ and $\psi = \psi$;

$-c_{(\alpha,\Gamma)}[\nu, \Theta(\nu_0)]$ if $\nu \leq \mu$, $\rho \leq \mu$, and there is a $\tau \leq \mu$ such that $\nu, \rho < \tau$ and $\psi = \psi$;

$-c_{(\alpha,\Gamma)}[\nu, \Theta(\nu_0)]$ if $\nu \leq \mu$, $\rho \leq \mu$, and there is a $\tau \leq \mu$ such that $\nu, \rho < \tau$ and $\psi = \psi$;

$-c_{(\alpha,\Gamma)}[\nu, \Theta(\nu_0)]$ if $\nu \leq \mu$, $\rho \leq \mu$, and there is a $\tau \leq \mu$ such that $\nu, \rho < \tau$ and $\psi = \psi$.

Next, for each $\mu < \omega$ let ψ^α_Γ be the following equation:

$\Pi(\sigma^\alpha_\psi; \psi \in \mu^{+1}Sb^\alpha(\lambda^\alpha_\mu)) = 0$.

Finally, let Δ_n be the set of equations in L_n implicit in 1.1.1 such that $CA_n = \text{Md} \Delta_n$.

We note that for $3 \leq \alpha < \omega$, the set $\{\psi^\alpha_\Gamma; \mu \in \omega\} \cup \Delta_n$ is an explicit, effectively given set; under a natural Godel numbering, it corresponds to a primitive recursive set of natural numbers. The same applies to the set $\{\psi^\alpha_\Gamma; \mu \in \omega, \Gamma \subseteq \omega, |\Gamma| < \omega\} \cup \Delta_n$.

THEOREM 4.1.9. If $3 \leq \alpha < \omega$, then $IGS_n = \text{Md} \{\psi^\alpha_\Gamma; \mu \in \omega\} \cup \Delta_n$.

PROOF. We omit the superscript α on λ, ψ, etc. in what follows. To prove the
includes if it suffices to take an arbitrary \(\mu \in \omega \), an arbitrary \(C_{\alpha} \subset \mathcal{A} \), say with non-empty base \(U \), and show that \(\phi_{\mu} \) holds in \(\mathcal{A} \). For all \(\xi, \eta < \alpha \) let \(C_\xi = C_{\xi}^{[V]} \) with \(V = V_{\mu}^{\eta} \) and \(D_{\xi}^{[\eta]} = D_{\xi}^{[\eta]} \). Let \(C_\xi \) with \(V' = V_{\mu}^{\eta} \) and \(D_{\xi}^{[\eta]} = D_{\xi}^{[\eta]} \). Let \(a_\eta, \ldots, a_\mu \in A \); we wish to show that under this assignment of values to the free variables \(v_\eta, \ldots, v_\mu \) of \(\phi_{\mu}, \phi_{\xi} \) is true in \(\mathcal{A} \). To do this we first construct functions \(\psi_\xi \in \nu^{\mu} U \) for each \(\nu \in \mu \) by induction. Recall that \(\lambda_1 = 1 \); we let \(\psi_0 \in U \) be arbitrary. Now assume that \(\nu < \mu \) and \(\psi_\nu \) has been defined so that

\[
(1) \text{ if } \rho, \gamma < \tau \leq \nu, \xi < \alpha, \text{ and } C_\xi \not\models a_\xi, \text{ then } C_\xi((a_{\rho} \cdot n^\alpha(\psi_\xi^{\rho \cdot a_{\rho}})) \cdot n^\alpha(\psi_\xi^{\rho \cdot a_{\rho}}) = a_\rho \cdot n^\alpha(\psi_\xi^{\rho \cdot a_{\rho}}))
\]

Then we can pick a non-empty subset \(S \) of \(U \) with at most \((\nu + 1)^2 \cdot \alpha \cdot (\lambda_\nu)^2\) elements such that if \(\rho, \gamma < \nu, \xi < \alpha, C_\xi \not\models a_\xi, \text{ and } \tau < \in \alpha, n^\alpha(\psi_\xi^{\rho \cdot a_{\rho}}) = C_\xi((a_{\rho} \cdot n^\alpha(\psi_\xi^{\rho \cdot a_{\rho}}))) \), then there is a \(u \in S \) such that \(\psi_\xi = u_{\rho} \). Let \(\psi_\nu \) be \(\psi_\xi \) together with a map from \(\lambda_\nu \cdot a_\nu \) onto \(S \). Clearly then (1) holds with \(\nu \) replaced by \(\nu + 1 \). This finishes the construction of the functions \(\psi_\nu \), \(\nu \leq \mu \).

Now let \(\psi = \psi_\mu \), and set

\[
(2) \psi = \{(x \in a_\xi : x = x_{\tau < \nu} : t \in a_\nu) : v \leq \mu\}.
\]

Thus \(\psi \subseteq \mathcal{A}^{[\mu]} n^\alpha(\psi_{\lambda_\nu}^{\mu}) \). Now we can complete the proof of the inclusion \(\subseteq \) by showing that \(\phi_\psi \) is zero under our assignment. To do this we look at the five kinds of terms making up \(\phi_\psi \) that are not formally 0.

\textbf{Case 1.} Suppose \(\nu < \rho \leq \mu \) and \(\psi_\mu \not\models \psi_\rho \). First suppose that \(\psi_\mu \cdot n^\alpha(\psi_\rho) \not\models 0 \), say \(\xi \in \psi_\mu \cdot n^\alpha(\psi_\rho) \). Then by (2), \(x_{\tau < \nu} \in a_\nu \cdot n^\alpha(\psi_\rho) \), hence \(a_\nu \not\models a_\rho \), hence \(-C(x_{\tau < \nu} = a_\nu, 0) = 0 \) as desired.

Second, if \(a_{\rho \cdot a_{\lambda_\mu}} \cdot \psi_\mu \cdot n^\alpha(\psi_\rho \cdot a_{\lambda_\mu}) \not\models 0 \), (2) yields \(u_{\rho \cdot a_{\lambda_\mu}} \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \). Then \(a_{\rho \cdot a_{\lambda_\mu}} \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \).

\textbf{Case 2.} \(\nu, \rho, \tau \leq \mu \) and \(\psi_\rho \not\models \psi_\tau \cdot \psi_\rho \). This is treated like Case 1.

\textbf{Case 3.} \(\xi < \alpha, \nu < \rho < \tau \leq \mu \), and \(\psi_\mu \cdot n^\alpha(\psi_\rho) \cdot n^\alpha(\psi_\tau) \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \cdot n^\alpha(\psi_\tau)\). Then

\[
as_{\rho \cdot a_{\lambda_\mu}} \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \cdot n^\alpha(\psi_\tau) \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \cdot n^\alpha(\psi_\tau) = 0.
\]

so (1) yields \(C(x_{\tau < \nu} = a_\nu) \). Hence \(C(x_{\tau < \nu} = a_\nu) \) as desired.

\textbf{Case 4.} \(\xi, \eta < \alpha, \nu \leq \mu \), and \(D_{\xi \cdot a_{\lambda_\mu}} \cdot \psi_\tau \cdot n^\alpha(\psi_\rho) \cdot \psi_\rho \cdot n^\alpha(\psi_\tau) \). Then \(t_{\xi \cdot a_{\lambda_\mu}} \cdot n^\alpha(\psi_\rho) \cdot \psi_\rho \cdot n^\alpha(\psi_\tau) \). Hence \(C(x_{\tau < \nu} = a_\nu) \) as desired.

\textbf{Case 5.} \(\nu, \rho < \mu \), \(u \cdot n^\alpha(\psi_\mu) \cdot n^\alpha(\psi_\rho) \cdot \psi_\rho \). Since \(u \not\models 0 \), \(u_{\rho \cdot a_{\lambda_\mu}} \not\models \psi_\rho \), we have \(u_{\rho \cdot a_{\lambda_\mu}} \not\models \psi_\rho \cdot n^\alpha(\psi_\rho) \). Then \(u_{\rho \cdot a_{\lambda_\mu}} \cdot n^\alpha(\psi_\rho) \cdot \psi_\rho \). The desired conclusion follows.

This finishes the proof of the inclusion \(\subseteq \) in the theorem. For \(\subseteq \), it suffices by 0.1.27(ii), 0.3.71, and 2.4.53 to show that if \(\mathcal{A} \) is a countable simple \(CA_a \) which is a model of \(\{\phi_\mu : \mu \in \omega\} \), then \(\mathcal{A} \) is representable. Let \((a_\alpha, a_\eta, \ldots) \) be an enumeration of the elements of \(A \). Then
(3) for every \(\mu < \omega \) there exists a \(\psi \in \omega^{\mu+1} \text{Sh}(\alpha_{\mu}) \) such that the following conditions hold (with \(C_{1} = C_{1}^{V} \), \(D_{1} = D_{1}^{V} \) for \(V = V_{\omega}^{\mu} \)):

(a) if \(\nu < \rho \leq \mu \) and \(a_{\nu} = -a_{\rho} \), then \(\psi_{\nu} = \Delta_{\mu} \psi_{\rho} \);

(b) if \(\nu, \rho, \tau \leq \mu \) and \(a_{\tau} = a_{\nu} + a_{\rho} \), then \(\psi_{\tau} = \psi_{\nu} \psi_{\rho} \);

(c) if \(\xi < \alpha_{\nu}, \nu < \tau \leq \mu \), and \(a_{\nu} = a_{\rho} \), then \(\psi_{\nu} \psi_{\alpha_{\nu}} \psi_{\alpha_{\nu} \psi_{\rho}} = C_{1} \psi_{\nu} \alpha_{\nu} \psi_{\alpha_{\nu} \psi_{\rho}} \);

(d) if \(\xi < \alpha_{\nu}, \nu \leq \mu \), and \(a_{\nu} = d_{\xi} \), then \(D_{1} \psi_{\nu} \Delta_{\mu} \psi_{\alpha_{\nu}} = \psi_{\nu} \);

(e) if \(\rho, \nu < \mu \), \(z \in \psi_{\rho}, y \in \psi_{\nu}, \xi < \alpha_{\nu}, y_{0} = z_{1}, \) and \(a_{\nu} = d_{\alpha_{\nu}} \), then \(z_{1} \psi_{\nu} \in \psi_{\rho} \).

This follows since \(\psi_{\nu} \mu_{\nu} \) under our assignment. If \(\psi \) satisfies (3) and \(\mu' \leq \mu \), then \(\psi_{\nu} \mu_{\nu}, \nu \leq \mu' \) satisfies (3). Hence by König's lemma there is a \(\psi \in \omega^{\mu} \text{Sh}(\alpha_{\mu}) \) such that the following conditions hold (with \(C_{1} = C_{1}^{V} \), \(D_{1} = D_{1}^{V} \) for \(V = V_{\omega}^{\mu} \)):

(4) if \(\nu < \rho \leq \omega \) and \(a_{\rho} = -a_{\nu} \), then \(\psi_{\rho} = \psi_{\omega} \psi_{\nu} \);

(5) if \(\nu \leq \tau < \omega \) and \(a_{\nu} = a_{\rho} + a_{\tau} \), then \(\psi_{\nu} = \psi_{\nu} \psi_{\rho} \psi_{\tau} \);

(6) if \(\xi < \alpha_{\nu}, \nu < \mu \), and \(a_{\nu} = a_{\rho} \), then \(\psi_{\nu} = C_{1} \psi_{\nu} \alpha_{\nu} \psi_{\alpha_{\nu} \psi_{\rho}} \);

(7) if \(\xi < \alpha_{\nu}, \nu < \mu \), and \(a_{\nu} = d_{\xi} \), then \(D_{1} \psi_{\nu} \Delta_{\mu} \psi_{\alpha_{\nu}} \psi_{\alpha_{\nu} \psi_{\rho}} = \psi_{\nu} \);

(8) if \(\rho, \nu < \mu \), \(a_{\nu} = d_{\alpha_{\nu}}, z \in \psi_{\rho}, y \in \psi_{\nu}, \xi < \alpha_{\nu}, y_{0} = z_{1}, \) and \(a_{\nu} = d_{\alpha_{\nu}} \), then \(z_{1} \psi_{\nu} \in \psi_{\rho} \).

Now we define a binary relation \(E \) on \(\omega \) by letting \(\mu E \nu \) iff \(\mu, \nu < \omega \) and there exist \(\rho < \omega \) and \(x \in \psi_{\rho} \) such that \(a_{\rho} = d_{\alpha_{\nu}} \) and \(x_{0} = \mu \), \(x_{1} = \nu \). Now \(E \) is an equivalence relation on \(\omega \). For, given \(\mu < \omega \), choose \(\rho < \omega \) with \(a_{\rho} = d_{\alpha_{\nu}} \) and let \(z \in D_{\alpha_{\nu}} \) with \(z_{0} = x_{1} = \mu \). By (7) we have \(x \in \psi_{\rho}, \mu E \mu \). Thus \(E \) is reflexive on \(\omega \). Next, suppose \(\mu E \nu \); let \(\rho \) and \(x \) be as above. Fix \(y \in D_{\alpha_{\nu}} \) with \(y_{0} = \mu = y_{1} \). Thus \(y \in \psi_{\rho} \) by (7). Then by (8), \(y_{0} \in \psi_{\rho} \), i.e. \(\nu E \mu \). So \(E \) is symmetric. Finally, suppose that \(\mu E \nu \). Say \(\xi < \omega, x \in \psi_{\xi}, y \in \psi_{\xi}, a_{\xi} = a_{\rho}, x_{0} = \mu, x_{1} = \nu, y_{0} = \nu, y_{1} = \rho \). Thus \(y_{0} = z_{1} \), so \(z_{1} \psi_{\rho} \in \psi_{\rho} \), i.e., \(\nu E \mu \). So \(E \) is transitive. Thus \(E \) is an equivalence relation on \(\omega \).

Let \(k \) be a function mapping \(\omega / E \) into \(\omega / E \) such that \(k(\xi / E) \in \xi / E \) for every \(\xi < E \). Set \(U = \omega / E \). Now for any \(b \in A \) we set

\[
fb = \{ u \in \omega U : \text{for some } \mu < \omega \text{ we have } a_{\mu} = b \text{ and } k \ast u \in \psi_{\mu} \}.\]

We claim that \(f \) is the desired isomorphism from \(\mathbb{A} \) onto a \(C_{\alpha} \) with base \(U \). To show that \(f(\beta + c) = fbfc \), first suppose \(u \in fuba \); say \(u \in fb \). Say \(\mu < \omega \), \(a_{\mu} = b \), and \(k \ast u \in \psi_{\mu} \). Choose \(\nu, \rho < \omega \) so that \(a_{\nu} = c \) and \(a_{\rho} = b + c \). Then by (5) \(\psi_{\nu} = \psi_{\nu} \psi_{\rho} \psi_{\nu} \), so \(k \ast u \in \psi_{\rho} \). Hence \(u \in f(\beta + c) \). Therefore \(fuba \subseteq fbfc \). The other inclusion is established similarly. And it is similarly checked that \(f \) preserves \(\ast \) and \(\eta \) for each \(\xi < E \). Finally, suppose \(\xi = \eta \). Then \(D_{\xi} \subseteq fd_{\eta} \) by (7). Suppose \(u \in fd_{\eta} \). Say \(\mu < \omega \), \(a_{\mu} = d_{\eta} \) and \(k \ast u \in \psi_{\mu} \). We may assume that \(\xi \neq \eta \). If \(\xi = \eta \), then \((k \ast u)(E, k \ast u) \), hence \(u_{0} = u_{1} \) and \(u \in D_{\eta} \), as desired. Suppose \(|\{ \eta \in [0,1) \} | = 1 \), say \(\xi = 0 \) while \(\xi \neq 0, 1 \). Now \(d_{\alpha_{\xi}} = c_{\xi} c_{\alpha_{\xi} c_{\xi} d_{\alpha_{\xi}}} \). We have \(u_{\alpha_{\xi}} \in D_{\alpha_{\xi}} \subseteq fd_{\eta} \) by (7), and \(u_{\alpha_{\xi}} \in C_{\alpha_{\xi}} \subseteq d_{\xi} \). Since \(f \) preserves \(\ast \) and \(\eta \), it follows that \(u_{\alpha_{\xi}} \in fd_{\xi} \). Hence \(k \ast u_{\alpha_{\xi}} \in \psi_{\mu} \) for some \(\mu < \omega \) with \(a_{\mu} = d_{\xi} \). Thus \(u_{\alpha_{\xi}} \in D_{\alpha_{\xi}} \), as desired. If \(\xi = \eta \), we proceed similarly, using the identity \(d_{\xi} = c_{\xi} c_{\xi} c_{\xi} d_{\xi} = c_{\xi} c_{\xi} c_{\xi} d_{\xi} \). This checks that \(f \) preserves \(d_{\xi} \), and hence is a homomorphism. Since \(\mathbb{A} \) is simple, \(f \) is an isomorphism. The proof of 4.1.9 is complete.
THEOREM 4.1.10 If \(\omega \leq \alpha \), then \(\text{IG}_{\alpha} = \text{Md}(\{\varphi_x^\Gamma; \mu \in \omega, \Gamma \leq \alpha, \|\Gamma\|<\omega\}|\Delta_x) \).

PROOF. By 4.1.9, 3.1.126, and 2.6.47.

The second explicit characterization of the equations holding in \(\text{IG}_{\alpha} \) depends on a characterization of the elementary theory of \(L_\alpha \)'s. \(\sigma \geq \omega \); these results are due to Andräka, Németi [81], solving a problem stated on p. 418 of Part I.

DEFINITION 4.1.11. Let \(\alpha \) be any ordinal. (i) For any formula \(\varphi \) of \(L_\alpha \) we let \(\text{Occ}\varphi = \{\xi : \varepsilon < \alpha, \text{ and } \varepsilon, \eta_\varepsilon, \text{ or } \delta_\varepsilon, \text{ occurs in } \varphi \text{ for some } \lambda < \alpha\} \).

(ii) Let \(A\varepsilon_\alpha \) consist of the axioms for \(C_\alpha \)'s along with all sentences of \(L_\alpha \) of the following form:
\[
\forall v_0 \ldots \forall v_\eta (\exists v_0^\varphi(v_0, c_{\xi, v_1}, \ldots, c_{\eta, v_\xi}) \Rightarrow \exists v_0^\varphi(c_{\xi, v_1}, c_{\eta, v_1}, \ldots, c_{\eta, v_\xi})),
\]
where \(\varphi \) is any formula of \(L_\alpha \) with free variables among \(v_0, \ldots, v_\xi \), and \(\xi < \alpha \sim \text{Occ}\varphi \).

Our objective is to show that for \(\alpha \geq \omega \), \(\text{E}L_\alpha = \text{E}D_{\alpha} = \text{Md} A\varepsilon_\alpha \), and that an equation \(\varepsilon \) holds in \(\text{IG}_\alpha \) iff \(A\varepsilon_\alpha \vDash \varepsilon \).

LEMMA 4.1.12. If \(\alpha \geq \omega \), then \(D_{\alpha} = A\varepsilon_\alpha \).

PROOF. Let \(\mathcal{K} \) be a \(D_{\alpha} \), and let \(\varphi, \varepsilon, \xi, \eta, \delta \) be as in 4.1.11(ii). Assume that \(a_0, a_1, \ldots, a_\xi \in \mathcal{K} \) satisfy \(\varphi(v_0, c_{\xi, v_1}, \ldots, c_{\eta, v_\xi}) \) when assigned to \(v_0, \ldots, v_\xi \) respectively. Since \(\mathcal{K} \in D_{\alpha} \), choose \(\eta < \alpha \sim (\text{Occ}\varphi \cup \{\xi\}) \cup \Delta_{\alpha}, \cup \Delta_{\xi}, \cup \vdots \cup \Delta_{\xi} \). Let \(\tau \) be the transposition \([\eta/\eta, \eta/\xi] \) of \(\alpha \), and consider the substitution operator \(s_{\varepsilon} \) given by 1.11.9. Now \(s_{\varepsilon} \) is an automorphism of the reduct of \(\mathcal{K} \) to denotations of symbols occurring in \(\varphi \). Hence clearly \(\varphi(v_0, \ldots, v_\xi) \) holds in \(\mathcal{K} \) under the assignment of \(s_0 a_0, s_1 c_{\xi, a_1}, \ldots, s_\xi c_{\xi, a_\xi} \) to \(v_0, \ldots, v_\xi \) respectively. Now if \(1 \leq \lambda \leq \xi \) then \(s_\lambda c_{\xi, a_\lambda} = s_\lambda c_{\xi, a_\lambda} = c_{\xi, a_\lambda} = c_{\xi, a_\lambda} \) by 1.11.12(iv),(i). Also, \(s_0 a_0 = s_{\xi, c_{\xi, a_0}} = c_{\xi, a_0} \) by 1.11.12(vi). Hence \(\varphi(v_0, \ldots, v_\xi) \) holds in \(\mathcal{K} \) under the assignment of \(s_0 a_0, s_1 a_1, \ldots, a_\xi \) to \(v_0, \ldots, v_\xi \) respectively, as desired.

LEMMA 4.1.13. Let \(\alpha \geq \omega \). Suppose that \(\varphi \) is a formula of \(L_\alpha \) with free variables among \(v_0, \ldots, v_\xi, \Gamma \leq \alpha \sim \text{Occ}\varphi \), and \(\|\Gamma\|<\omega \). Then \(A\varepsilon_\alpha \vdash \forall v_0 \ldots \forall v_\xi (\exists v_0^\varphi(v_0, c_{\xi, v_1}, \ldots, c_{\xi, v_\xi}) \Rightarrow \exists v_0^\varphi(c_{\xi, v_1}, \ldots, c_{\xi, v_\xi})). \)

PROOF. We proceed by induction on \(\|\Gamma\| \). The case \(\Gamma = 0 \) is trivial. Assume the lemma true for \(\Gamma \), and let \(\Delta = \Gamma \cup \{\xi\} \) with \(\xi \not\in \Gamma \). Suppose \(\exists v_0^\varphi(v_0, c_{\xi, v_1}, \ldots, c_{\xi, v_\xi}) \) holds in some \(\mathcal{K} \) of \(A\varepsilon_\alpha \) under an assignment of \(a_0, \ldots, a_\xi \) to \(v_0, \ldots, v_\xi \). Then \(\exists v_0^\varphi(v_0, c_{\xi, v_1}, \ldots, c_{\xi, v_\xi}) \) holds in \(\mathcal{K} \) under the assignment of \(c_{\xi, a_0}, \ldots, c_{\xi, a_\xi} \) to \(v_0, \ldots, v_\xi \) so by the inductive hypothesis, \(\exists v_0^\varphi(c_{\xi, v_0}, \ldots, c_{\xi, v_\xi}) \) holds in \(\mathcal{K} \) under that assignment. Thus \(\exists v_0^\varphi(c_{\xi, v_0}, c_{\xi, v_1}, \ldots, c_{\xi, v_\xi}) \) holds in \(\mathcal{K} \) under the assignment of \(c_{\xi, a_0}, \ldots, c_{\xi, a_\xi} \) to \(v_0, \ldots, v_\xi \) Hence \(\mathcal{K} = A\varepsilon_\alpha \) yields that \(\exists v_0^\varphi(c_{\xi, v_0}, c_{\xi, v_1}, \ldots, c_{\xi, v_\xi}) \) holds under this assignment. Therefore \(\exists v_0^\varphi(c_{\xi, v_0}, \ldots, c_{\xi, v_\xi}) \) holds in \(\mathcal{K} \) under the assignment of \(a_0, \ldots, a_\xi \) to \(v_0, \ldots, v_\xi \) as desired.
THEOREM 4.1.14. Let $\alpha \geq \omega$. Then $\text{EIL} \alpha = \text{EIL} \alpha \alpha = \text{Md} \alpha \alpha$, and every $\text{Dc} \alpha \alpha$ is elementarily equivalent to some $\text{Lf} \alpha \alpha$.

PROOF. It suffices by Lemma 4.1.12 to show that every model \mathcal{M} of $\alpha \alpha$ is elementarily equivalent to some $\text{Lf} \alpha \alpha$. Let \mathcal{B} be a $|\alpha|^+$-saturated elementary extension of \mathcal{M} (see Chang, Keisler [73**]). Let \mathcal{C} be the subalgebra of \mathcal{B} with universe $\{b \in B : |b| < \omega\}$ (clearly this set is a subuniverse of \mathcal{B}). It suffices to show that \mathcal{C} is an elementary subalgebra of \mathcal{B}. To this end, let φ be a formula of \mathcal{L} with free variables among v_0, \ldots, v_ξ, and suppose $\exists v_0 \varphi(v_0, \ldots, v_\xi)$ holds in \mathcal{B} under an assignment of elements a_0, \ldots, a_ξ of C to v_0, \ldots, v_ξ. We want to find $c \in C$ such that $\varphi(c, a_0, \ldots, a_\xi)$ holds in \mathcal{C} under the assignment of c, a_0, \ldots, a_ξ to v_0, \ldots, v_ξ. Let $\Gamma = 0 \in c \varphi \exists v_0 \Delta a_0 \Delta a_\xi \ldots \Delta a_\xi$. Thus Γ is finite. Let

$$\Delta = \{\varphi(v_0, k_0, \ldots, k_\xi) \mid c_\xi v_0 = v_0, \xi \in \alpha \sim \Gamma\},$$

where k_0, \ldots, k_ξ are constants denoting a_0, \ldots, a_ξ respectively. Any element $c \in B$ which satisfies Δ will clearly be in C, and will be as desired. Thus it remains only to show that Δ is finitely satisfyable in $(\mathcal{B}, a_0, \ldots, a_\xi)$. Thus let Ω be a finite subset of Δ. Let $\Lambda = \{\xi \in \alpha \sim \Gamma : c_\xi v_0 = v_0 \in \Omega\}$. For any $\lambda, 1 \leq \lambda \leq \zeta$, we have $c_{(\lambda)} a_\lambda = a_\lambda$, since $\Delta_\lambda \subseteq \Gamma$. Thus $\exists v_0 \varphi(c_{(\lambda)} v_0, \ldots, c_{(\lambda)} v_\xi)$ holds in \mathcal{B} under the assignment of a_0, \ldots, a_ξ to v_0, \ldots, v_ξ. Hence by 4.1.13 the formula $\exists v_0 \varphi(c_{(\lambda)} v_0, \ldots, c_{(\lambda)} v_\xi)$ holds under the same assignment. So choose $a_0 \in B$ such that $\varphi(c_{(\lambda)} v_0, \ldots, c_{(\lambda)} v_\xi)$ holds in \mathcal{B} under the assignment of a_0, \ldots, a_ξ to v_0, \ldots, v_ξ. Then $c_{(\lambda)} a_\lambda$ satisfies all members of Ω in $(\mathcal{B}, a_0, \ldots, a_\xi)$, as desired.

COROLLARY 4.1.15. If $\alpha \geq \omega$ and ϵ is an equation in \mathcal{L}_α, then $\text{IGS}_\alpha \models \varepsilon$ iff $\text{Ax} \alpha \models \varepsilon$.

PROOF. \Rightarrow: Since $\text{EIL} \alpha \epsilon \subset \text{IGS}_\alpha$ by 3.2.8, this follows from 4.1.14. \Leftarrow: By 2.6.52, 3.2.10 we have $\text{IGS}_\alpha \models \text{HSP} \text{L}_\alpha$, so again the result follows from 4.1.14.

COROLLARY 4.1.16. If $\alpha < \omega$ and ϵ is an equation in \mathcal{L}_α, then $\text{IGS}_\alpha \models \epsilon$ iff $\text{Ax} \alpha \models \epsilon$.

PROOF. By 3.1.126, $\text{IGS}_\alpha \models \epsilon$ iff $\text{IGS}_\alpha \models \epsilon$, so the result follows from 4.1.15.

REMARK 4.1.17. $\alpha \alpha$ is given by a rather simple collection of schemas for first order sentences, and so any of the usual proof systems for valid first order sentences yields a simple method for generating all equations holding in all representable $\alpha \alpha$'s.

Now we turn to our third method for describing the equations holding in IGS_α. It is the simplest of the three, but involves a non-standard equational calculus described in the following definition.

DEFINITION 4.1.18. Let α be any ordinal. A term α of $\mathcal{L}_{\alpha+\omega}$ is special if the only variables occurring in it are of the form v_ξ, $\xi < \omega$. For any special term α we define $\text{Dim} \alpha$ by induction on the length of α: $\text{Dim} v_\xi = \alpha$, $\text{Dim} 0 = \text{Dim} 1 = 1$, $\text{Dim} a_\lambda = (\epsilon, \lambda)$ for any $\epsilon, \lambda < \alpha + \omega$, $\text{Dim} (\alpha + \tau) = \text{Dim} \alpha \cup \text{Dim} \tau = \text{Dim} (\alpha + \tau)$, $\text{Dim} (\alpha - \tau) = \text{Dim} \alpha$, $\text{Dim} (\epsilon, \rho) = \text{Dim} (\epsilon, \rho)$.
A special equational sequence is a finite sequence $\epsilon_0, \ldots, \epsilon_k$ of equations in $L_{a+\omega}$ such that for all $\lambda \leq \kappa$ one of the following holds:

1. there exist $i, \eta < \omega$ such that $\epsilon_\kappa = \epsilon_\eta \cdot v_{\eta+1} = v_\eta$;
2. ϵ_κ is an axiom for $CA_{a+\nu}$'s, as naturally formalized from section 1.1, using the variables v_1, v_2, v_3;
3. there is a term σ of $L_{a+\omega}$ such that $\epsilon_\kappa = \sigma \cdot \sigma$;
4. there exist μ, λ and terms σ, τ, ρ such that $\epsilon_\mu = \sigma \cdot \tau, \epsilon_\nu = \tau \cdot \rho, \epsilon_\lambda = \sigma \cdot \rho$;
5. there exist $\mu, \nu < \lambda$ and terms σ, τ, ρ such that $\epsilon_\mu = \sigma \cdot \tau, \epsilon_\nu = \tau \cdot \rho, \epsilon_\lambda = \sigma \cdot \rho$;
6. there exist $\mu < \lambda, i < \omega$, and a term σ such that ϵ_λ is obtained from ϵ_μ by replacing all occurrences of $v_{\mu+1}$ in ϵ_μ by σ;
7. there exist $\mu < \lambda, i < \omega$, and a term σ with $\text{Dim} \sigma \subseteq \alpha$ such that ϵ_λ is obtained from ϵ_μ by replacing all occurrences of $v_{\mu+1}$ in ϵ_μ by σ;
8. there exist $\mu < \lambda$ and terms σ, τ, ν such that $\epsilon_\mu = \tau \cdot \rho, \epsilon_\lambda = \sigma \cdot \nu$, where ν is obtained from σ by replacing an occurrence of τ by ρ.

We write $\text{I}_{eq} \sigma$ if there is a special equational sequence $\epsilon_0, \ldots, \epsilon_k$ such that $\epsilon_k \models \sigma$.

LEMMA 4.1.19. Let α be any ordinal, and let σ and τ be terms of $L_{a+\omega}$. Then

$$\text{I}_{eq} \sigma = \tau \iff \text{for every } CA_{a+\omega} \mathcal{N} 	ext{ and every } f \in \text{F} \text{ such that } \Delta f(2\xi) \subseteq \alpha \text{ for all } \kappa < \omega \text{ we have } \sigma[f] = \tau[f].$$

PROOF. \Rightarrow. It suffices to show that for every special equational sequence $\epsilon_0, \ldots, \epsilon_k$, every $\lambda \leq \kappa$, and every f as above, $\sigma[f] = \tau[f]$, where ϵ_λ is $\sigma \cdot \tau$. This is easily done by induction on λ, and we leave it to the reader. \Leftarrow. Suppose that $\text{I}_{eq} \sigma \models \tau$. We show that the statement on the right also fails. Let \mathcal{B} be the absolutely free algebra similar to $CA_{a+\nu}$'s built from the set of terms of $L_{a+\omega}$. Thus, e.g., $c_i \cdot c_i = c_i$ for any $i < \omega$ and any term σ. Set $R = \{(\sigma, \tau) : \text{I}_{eq} \sigma \models \tau\}$. It is easily verified that $R \in Co \mathcal{B}$ and \mathcal{B}/R is a $CA_{a+\nu}$. Let $\mathcal{M} = \mathcal{B}/R$. For any $i < \omega$ let $f_i = v_i/R$. Thus $\mathcal{M} \models \text{F}$, and it is clear that $\Delta f(2i) \subseteq \alpha$ for all $i < \omega$. Also it is easy to check that $\rho[f] = \rho/R$ for any term ρ. Since $\alpha/R \models \tau[R]$, we have $\sigma[f] = \tau[f]$, as desired.

THEOREM 4.1.20. Let α be any ordinal, and let σ and τ be special terms of $L_{a+\omega}$ such that $\text{Occ} (\sigma \cdot \tau) \subseteq \alpha$. Then $\text{I}_{eq} \sigma \models \tau \iff \text{I}_{eq} \sigma \models \tau$.

PROOF. Assume that $\text{I}_{eq} \sigma \models \tau$, and let $\mathcal{N} \in \text{I}_{eq} \sigma$. By 3.1.127, say $\mathcal{N} \models \text{R}_a \mathcal{B}$, where \mathcal{B} is a $CA_{a+\nu}$. Let $f \in \text{F}$ be arbitrary. By Lemma 4.1.19 we have $\sigma[f] = \tau[f]$, and so $\sigma[f] = \tau[f]$, as desired.

Assume that $\text{I}_{eq} \sigma \models \tau$. In order to apply 4.1.19, assume that \mathcal{N} is a $CA_{a+\omega}$ and $f \in \text{F}$ with $\Delta f(2\xi) \subseteq \alpha$ for all $\kappa < \omega$. Let $\mathcal{B} = \text{R}_a \mathcal{N}$, and let $g \in \text{F}$ be arbitrary such that $f(2\kappa) = g(2\kappa)$ for all $\kappa < \omega$. By 3.2.10 we have $\mathcal{B} \models \text{I}_{eq} \sigma$. Hence $\sigma[g] = \tau[g]$. But no variable $v_{2\kappa+1}, \kappa < \omega$, occurs in $\sigma \cdot \tau$. Hence $\sigma[f] = \tau[f] = \sigma[g] = \tau[g] = \sigma[f]$, as desired.

Another result involving the notion of a finite schema of equations, due to Németi [81], Theorem 13, goes to the very core of the motivation for our set of axioms for
CAα's. We can summarize that motivation as follows: (1) The axioms should be simple and natural. (2) For each α ∈ ω, CAα should be axiomatizable by a finite schema of equations, the same finite set for each α. (3) For each α ∈ ω, IGμα n λ μα = CAα n L μα, and IGμ = HSPDμ = SNμ CAα+ω. (4) The equational axioms should apply to α < ω also. Now (2), (3), (4) have a purely mathematical character, while (1) is vague. The result to be presented now shows that if only (2) and (3) are considered, then there are many other possible axioms. To formulate the theorem we introduce some notation which will not be used later. We shall be considering classes K similar to CAα's but not contained in CAα. We let Algα be the class of all algebras similar to CAα's. If (Kα:α an infinite ordinal) is a system of classes with Kα ⊆ Algα for each α, then it is said to be uniformly axiomatizable by a finite schema of equations provided that there is a finite set E ∈ Ev such that for each α ∈ ω, Kα = Md(γ α ∈ E, γ ∈ ωα, γ one-one). (This definition, which involves a class-indexed system of classes, can easily be rephrased in terms of a system of equations so as to be set-theoretically precise.) Let K ∈ Algα, a ∈ A. Then Δα is defined as in 1.8.1. We call K locally finite-dimensional, in symbols K ∈ MFα, if |Δα| < ω for all a ∈ A. K is dimension-complemented, in symbols K ∈ APrα, if a ∼ Δα is infinite for every a ∈ A. If ω ≤ α ≤ β and K ∈ Algβ, the neat α-reduct 0αK is defined as in 2.6.28. Note, however, that it is not generally true that 0αK is closed under the relevant operations. We let 0αK = (0αK n K ∈ K, 0αK ∈ Algα) for any K ⊆ Algα.

THEOREM 4.1.21. Let Z be the set of integers. Then there is a system ((Kα:α an infinite ordinal): n ∈ Z) with the following properties:

(i) For each n ∈ Z, (Kα:α an infinite ordinal) is uniformly axiomatizable by a finite schema of equations.

(ii) For every α ∈ ω, Kα = CAα.

(iii) If α ∈ ω, m, n ∈ Z, and m < n, then Km−1 n Kα = Km−1 n Kα.

(iv) If α ∈ ω and m ∈ Z, then IGα n m = Km n Alfα and IGα = HSP(Km n Alcα).

(v) If ω ≤ α ≤ ω ≤ β, m ∈ Z, and K ∈ Kβ m then 0αK ∼ Kβ m.

PROOF. We first set Kα = CAα for each α ∈ ω; then (iv) and (v) for m = 0 are clear. Now suppose that (Kα:α ∈ ω) has been defined, where m ≥ 0, so that the relevant conditions (i)–(v) hold; we define (Km−1:α ∈ ω). Say that E ∈ Ev is a finite set of equations given by (i) for m. Now IGm−1 n Kα by (iv), and by 4.1.7 IGm−1 n Kα is not axiomatizable by a finite schema of equations. Hence there is an equation e ∈ Ev such that Gm−1 e but E ∼ e. Let (Km−1:α ∈ ω) be determined by the finite schema Ev(e). The conditions (i)–(v) remain clear.

Now we must define (Km:α ∈ ω) for m > 0. Let F consist of the six equations described in (B0)(B2) of section 1.1, together with equations (Ci)(C2) of 1.1.1 where k = 0, λ = 1, μ = 2, and the instance d1 = e d1 d1 of (C1). For each m ∈ ω−1 let Gm consist of the two equations...
MODEL THEORY OF \(\text{CA}_\alpha \)'s
(VARIETIES OF \(\text{CA}_\alpha \)'s)

For each \(m > 0 \) let \((K^m_\alpha : \alpha \geq \omega) \) be determined by the finite schema \(F \cup G_m \). To check (iii), suppose that \(\alpha \geq \omega \), \(m, n \in \omega \), and \(m < n \). Clearly \(K^m_\alpha \subseteq K^n_\alpha \). Now let \(\mathfrak{A} = \mathfrak{B}(\alpha) \), \(f = a \setminus Id \), \(y = c_0 \ldots c_{m-1}(f) \). Let \(\mathfrak{B} \) be the member of \(\text{Alg}_\mathfrak{A} \) which is just like \(\mathfrak{A} \) with one exception: the operation \(- \) is changed, only on the element \(y \), by setting \(-y = (f) \). To check that \(\mathfrak{B} \in K^n_\alpha \sim K^m_\alpha \), note that \((C_i) \) holds in \(\mathfrak{B} \) since \((f) \leq -d^\lambda \) for any distinct \(\kappa, \lambda < \omega; \) \(\mathfrak{B} \not\in K^m_\alpha \) since

\[
c_0 \ldots c_{m-1}(f) \cdot -c_0 \ldots c_{m-1}(f) = (f);
\]

and \(\mathfrak{B} \in K^n_\alpha \) since \(-\mathfrak{A} = -\mathfrak{A} \) for any \(a \) different from \(y \). Thus (iii) holds. Next we claim

(1) If \(\alpha \geq \omega \) and \(m \in \omega \) then \(K^m_\alpha \cdot \text{NA}_\alpha \subseteq \text{CA}_\alpha \).

For, assume that \(\mathfrak{A} \in K^m_\alpha \cdot \text{NA}_\alpha \) and \(x \in A \); we show that \(x^+ - x = 1 \) and \(x - x = 0 \) (hence \(\mathfrak{A} \in \text{CA}_\alpha \)). For, \(\alpha \sim \Delta z \) is infinite, so \(x = c_0 \ldots c_m \cdot x \) for some distinct \(\kappa_0 \ldots \kappa_m < \alpha \) so \(x^+ - x = 1 \) and \(x - x = 0 \) by the assumption \(\mathfrak{A} \in K^m_\alpha \). Thus (1) holds.

From (1) it is clear that \(\text{IG}^m_\alpha \text{NA} = K^m_\alpha \text{NA}_\alpha \) and \(\text{IG}_\alpha = \text{HSP}(K^m_\alpha \text{NA}_\alpha) \) for any \(\alpha \geq \omega \) and any \(m \in \omega \).

Next note that if \(\mathfrak{A} \in K^m_{\alpha \sim \omega} \) then if \(\Gamma \leq \omega \) and \(|\omega| \geq |\Gamma| \) we have \(\text{NA}_\alpha \mathfrak{A} \subseteq \text{CA}_\alpha + \Gamma \), and \(\mathfrak{A} \subseteq \text{NA}_\alpha \mathfrak{A} \mathfrak{A} + \Gamma \), where we understand \(\text{NA}_\alpha \mathfrak{A} + \Gamma \) and \(\text{CA}_\alpha + \Gamma \) in the natural senses extending the "official" notions. Hence \(\mathfrak{A} \subseteq \text{SNR}_\alpha \text{CA}_\alpha + \omega \). Therefore \(\text{IG}_\alpha = \text{SNR}_\alpha K^m_{\alpha \sim \omega} \), and also (v) holds. This completes the proof of 4.1.21.

Varieties of \(\text{CA}_\alpha \)'s

Now we turn to a detailed study of equational, universal, and elementary classes of \(\text{CA}_\alpha \)'s. It is natural to begin with the consideration of the lattice of equational classes, or varieties of \(\text{CA}_\alpha \)'s. Recall from 2.3.11 that every \(\text{CA}_\alpha \) has a distributive congruence lattice. Hence several properties of varieties of \(\text{CA}_\alpha \)'s follow on general grounds. See, e.g., Jónsson \[67^{**}\] and Baker \[77^{**}\]. For \(\alpha < \omega \), every subdirectly indecomposable \(\text{CA}_\alpha \) is simple; this simplifies the study of the varieties. Now, starting with the case \(\alpha = 0 \), we recall that \(\text{CA}_0 = \text{BA}_0 \) and there are exactly two varieties of \(\text{BA}_0 \)'s, namely the class \(\text{BA}_0 \) itself, and the class of all one-element \(\text{BA}_0 \)'s. Next we consider the case \(\alpha = 1 \). The following simple description of the lattice of varieties of \(\text{CA}_1 \)'s is due to Monk \[70\]

THEOREM 4.1.22. The lattice of varieties of \(\text{CA}_1 \)'s forms a chain of order type \(\omega + 1 \).
PROOF. Recall from 2.3.14 that $\mathcal{A} \subseteq \mathcal{C}_\infty$ is simple iff $|\mathcal{A}| > 1$ and the cylindrification c_∞ is given by the following simple rule:

$$c_\infty x = \begin{cases} 1 & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

for all $x \in A$. Now for each $x, \omega \sim 1$ let \mathcal{A} be a simple \mathcal{C}_∞ with exactly 2^∞ elements, and set $K_x = HSP(\mathcal{A})$. Furthermore, let K_x be the class of all one-element \mathcal{C}_∞'s. Clearly then $K_x \subseteq K_{x+1} \subseteq \cdots \subseteq \mathcal{C}_\infty$. By Jonsson [67**] 3.4, all of these classes are distinct. We finish the proof by taking an arbitrary variety L of \mathcal{C}_∞'s and showing that it is equal to one of these. Assume that $L \neq K_x$. Then L has simple members. If all simple members of L are finite, then by an ultraproduct argument, L has a simple member of largest cardinality 2^∞. Clearly then $L = K_x$. Hence suppose that some simple member of L is infinite. Taking subalgebras of this member of L, we see that all finite simple \mathcal{C}_∞'s are in L. But every \mathcal{C}_∞ is the union of its finitely generated subalgebras, and every finitely generated \mathcal{C}_∞ is finite, by 2.1.10, so $L = \mathcal{C}_\infty$.

REMARKS 4.1.23. Each of the classes K_x, K_{x+1}, \ldots mentioned in the proof of 4.1.22 can be characterized by a single equation in addition to $(C_0) - (C_1)$. For K_0 and K_1, we can take $v_1 = v_0$ and $c_{y}v_1 = v_0$, respectively. For K_ω with $\omega \sim 2$, we can take

$$\prod_{\alpha \in \omega} c_{\alpha}(v_\alpha \oplus v_\alpha) = 0,$$

where $\nu = 2^\omega + 1$ and again \oplus abbreviates $(-\tau \tau) + (-\tau \tau)$.

Lucas [76] has given a characterization of the lattice of universal classes of \mathcal{C}_∞'s. In particular, he showed that every universal class of \mathcal{C}_∞ is finitely axiomatizable.

Turning to the case $\omega \sim 2$, we shall give only one result about varieties of \mathcal{C}_∞'s, due to J. Johnson (unpublished): there are at least 2^ω varieties of \mathcal{C}_∞'s. For ω countable, there are thus exactly 2^ω of them. Further investigations of the lattice of varieties of \mathcal{C}_∞'s have not been made. First we assume that $\omega \geq \omega$.

THEOREM 4.1.24. If $\omega \geq \omega$, then there are at least 2^ω varieties of \mathcal{C}_∞'s.

PROOF. For each $x, \omega \sim 2$ let c_∞ be the following term in the language L_γ:

$$c_{\infty+1}y(t(x+1))(x+1) + c_{\infty}y(t(x+1)).$$

Clearly then for any \mathcal{C}_∞, the equation $c_\infty = 1$ holds in \mathcal{A} iff \mathcal{A} has no quotient of characteristic κ. For each $1 \in \omega \sim 2$, let $K_\gamma = \mathcal{C}_\infty \text{Mod}(c_\infty = 1 : \kappa \in \Gamma)$. Clearly $K_\gamma \neq K_\Delta$ if $\Gamma \neq \Delta$, so the proof is complete.

To extend this theorem to the case $\omega \sim 2$ we need two lemmas. The first one is proved just as 2.6.32(ii) was.
LEMMA 4.1.25. If $\alpha \leq \beta$ and K is a variety of CA_β's, then $\mathsf{SNr}_\beta K$ is a variety of CA_α's.

To proceed, we need the following lemma, which is a special case of Lemma 3 in Comer [69a].

LEMMA 4.1.26. Suppose $2\alpha < \omega$ and $|U_0| < |U_1| \cdot \omega$. Let \mathcal{A}_i be the full CS_α with base U_i for each $i < 2$. Then \mathcal{A}_0 cannot be isomorphically embedded in \mathcal{A}_1.

PROOF. Suppose, on the contrary, that $f \in \mathsf{Ism}(\mathcal{A}_0, \mathcal{A}_1)$. For each $u \in U_0$ and $v \in U_1$, let $a_u = (\{u : \delta < \omega\})$ and $b_v = (\{v : \delta < \omega\})$. Then a_u is an atom of \mathcal{A}_0 and $a_u \leq d_{\alpha}$; b_v is an atom of \mathcal{A}_1 and $b_v \leq d_{\alpha}$. Furthermore, $\Sigma_{u \in U_0} a_u = d_{\alpha}^{\mathcal{A}_0}$ and $\Sigma_{v \in U_1} b_v = d_{\alpha}^{\mathcal{A}_1}$. Therefore $\Sigma_{u \in U_0} f_{a_u} = d_{\mathcal{A}_1}$, and so there exist $u \in U_0$ and distinct $v, w \in U_1$ such that $f_{a_u} \cdot b_v \neq 0 \neq f_{a_u} \cdot b_w$. Now we set

$$x = c_{\alpha < \{x\}}(f_{a_u} \cdot b_v)^{-1} \cdot 1_{\mathcal{A}_0 \times \mathcal{A}_0}c_{\alpha < \{x\}}(f_{a_u} \cdot b_w).$$

Now

$$x \leq c_{\alpha < \{x\}}f_{a_u} \cdot 1_{\mathcal{A}_0 \times \mathcal{A}_0}c_{\alpha < \{x\}}f_{a_u} = f(c_{\alpha < \{x\}}a_u \cdot 1_{\mathcal{A}_0 \times \mathcal{A}_0}c_{\alpha < \{x\}}a_u) = fa_u$$

and

$$x \leq c_{\alpha < \{x\}}b_v \cdot c_{\alpha < \{x\}}b_w \leq d_{\alpha}. $$

But $a_u \leq d_{\alpha}$, so it follows that $x = 0$. But

$$c_{\alpha < \{x\}}c_{\alpha < \{x\}}f_{a_u} \cdot b_v \cdot 1_{\mathcal{A}_0 \times \mathcal{A}_0}c_{\alpha < \{x\}}f_{a_u} \cdot b_w = 1$$

since \mathcal{A}_1 is simple. This is a contradiction.

Now we can extend 4.1.24 to $\alpha < \omega$.

THEOREM 4.1.27. If $\alpha < \omega$ and \mathcal{A}_α is a variety of CA_α's for every $\Gamma < \omega$. To show that these are distinct, it suffices to show the following:

(1) For every $\kappa < \omega$ let \mathcal{A}_κ be the full CS_κ with base κ. Then $\mathcal{A}_\kappa \in \mathsf{SNr}_\kappa \mathcal{K}_\Gamma$ iff $\kappa \notin \Gamma$.

To prove (1), if $\kappa \notin \Gamma$, then the full CS_κ with base κ is clearly a member of \mathcal{K}_Γ. By 3.1.117, \mathcal{A}_κ is a homomorphic image of $\mathcal{A}_\kappa \mathcal{B}$, so $\mathcal{A}_\kappa \in \mathsf{SNr}_\kappa \mathcal{K}_\Gamma$ by 4.1.25. Conversely suppose $\mathcal{A}_\kappa \in \mathsf{SNr}_\kappa \mathcal{K}_\Gamma$; but suppose that $\kappa \in \Gamma$. Say $\mathcal{A}_\kappa \in \mathcal{A}_\kappa \mathcal{B}$ with $\mathcal{B} \in \mathcal{K}_\Gamma$. Thus \mathcal{B} has no quotient of characteristic κ. Let I be a maximal ideal in \mathcal{B}. Then \mathcal{B}/I is simple,
so by 3.2.11 \(\mathcal{W} / I \) is isomorphic to a \(\mathcal{C}_\omega \mathcal{C} \). Let \(U \) be the base of \(\mathcal{C} \). By the above, \(|U| \neq \omega \). Let \(f : Ho(\mathcal{W}, \mathcal{C}) \rightarrow Ho(\mathcal{W}_1, \mathcal{C}) \). By 3.1.117, there is a homomorphism \(g \) from \(\mathcal{W}_1 \) onto a \(\mathcal{C}_\omega \mathcal{D} \) with base \(U \). Since \(\mathcal{W}_1 \) is simple, \(A, 1(g; f) \) is an isomorphism from \(\mathcal{W}_1 \) into \(\mathcal{D} \). Clearly \(\alpha \prec \kappa \) (otherwise \(\mathcal{W}_1 \), hence \(\mathcal{D} \), would have characteristic \(\kappa \), hence \(|U| = \kappa \)). Since \(|A_1| > |D| \), we have \(\omega \prec |U| \). This contradicts 4.1.26.

REMARK 4.1.28. Theorems 4.1.24 and 4.1.27 clearly also extend to varieties of \(\mathcal{I}G_s \).

Miscellaneous results

Now we shall consider successively most of the classes \(K \) of \(\mathcal{C}_\alpha \mathcal{C}_\beta \)'s which we have introduced, indicating what \(EqK, UnK \), and \(ElK \) look like in each case. We begin with \(K = Lf_\alpha \) and restrict to \(\alpha \leq \omega \), since \(Lf_\alpha = \mathcal{C}_\alpha \mathcal{A}_\alpha \) for \(\alpha > \omega \), by 1.11.3(ii).

THEOREM 4.1.30. If \(\alpha \leq \omega \), then \(EqLf_\alpha = \mathcal{I}G_s = UnLf_\alpha \).

PROOF. By 2.6.52 and 3.2.10 we have \(EqLf_\alpha = SNr_\alpha \mathcal{C}_\alpha \mathcal{A}_\alpha = \mathcal{I}G_s = SUPLf_\alpha \).

REMARK 4.1.30. By 2.6.52 we also have \(EqK = \mathcal{I}G_s \mathcal{A}_\alpha = UnLf_\alpha \) for any class \(K \) such that \(Lf_\alpha \leq K : SNr_\alpha \mathcal{C}_\alpha \mathcal{A}_\alpha \). In particular for the important class \(Dc_\alpha \) (still assuming \(\alpha > \omega \)). We have already observed above that \(Elf_\alpha = ElDc_\alpha \), for \(\alpha > \omega \), and \(Elf_\alpha \) has been described in a simple fashion; see 4.1.14.

THEOREM 4.1.31. For \(\alpha \leq \omega \) we have \(UnLf_\alpha = Elf_\alpha \).

PROOF. See 2.6.53.

Now we turn to the class \(M_\alpha \) of minimal \(\mathcal{C}_\alpha \mathcal{C}_\beta \)'s. Note that \(M_\alpha \) consists of the one- and two-element \(\mathcal{B}A \)'s, while \(\mathcal{S}PC_\alpha = \mathcal{C}_\alpha \mathcal{B}A \). Hence \(EqM_\alpha = \mathcal{C}_\alpha \mathcal{A}_\alpha \). For \(\alpha > 0 \) we have the following unpublished result of Andreka and Nemeti:

THEOREM 4.1.32. If \(\alpha \geq 1 \) then \(EqM_\alpha \leq \mathcal{S}PC_\alpha \).

PROOF. We have \(EqM_\alpha \leq \mathcal{S}PC_\alpha \) by 3.2.12. First take the case \(2 \leq \alpha < \omega \). Here we can use the equation \(c_{(a)} \cdot z = c_{(\beta)} \cdot z \), recalling 2.1.22. The case \(a = 1 \) is clear. It remains to consider the case \(\alpha > 2 \). The following proof actually works for any \(\alpha > 3 \). (For this proof, cf. 3.1.38.) Let \(\delta \) be the term \(e_{(3)}(\delta \cdot z + -s_1^2 \cdot s_2^2 \cdot s_3 \cdot z + s_1^2 \cdot z) \) and \(\rho \) the term \(e_{(0)}(\delta \cdot z + -s_1 \cdot z) \). Then let \(\tau \) be the term \(\delta \cdot \rho \cdot e_{(3)} \cdot z \). We claim that \(\tau = 0 \) holds in \(M_\alpha \) but not in \(\mathcal{I}G_s \).
4.1.33 MODEL THEORY OF \(\mathcal{C}_\alpha \)'s
(MISCELLANEOUS RESULTS)

To show that \(r = 0 \) holds in \(\mathfrak{M}_\alpha \), by 3.2.12 it suffices to take any \(\mathcal{A} \in \mathfrak{M}_\alpha \mathfrak{N} \mathfrak{C}_\alpha \) and show that it holds in \(\mathcal{A} \). Suppose not, and choose \(a \in A \) such that \(\tau(a) \neq 0 \). Say \(\mathcal{A} \) has base \(U \). Choose \(u \in \tau(a) \). Now we define

\[
R = \{(r,s) \in U^2 ; u_s^{(1)} \in c_r a\}.
\]

Now \(R \) is transitive. For assume that \(rRsRt \). Thus \(u_s^{(1)} \in c_r a \) and \(u_t^{(1)} \in c_s a \), so \(u_t^{(2)} \in c_r a \). Since \(u \in \delta(a) \), it follows that \(u_t^{(2)} \in c_r a \). Hence \(u_t^{(1)} \in c_r a \), i.e., \(rRt \), as desired. Also \(R \) is antireflexive. For, \(u \in \delta(a) \), and so for any \(r \in U \) we have \(u_r^{(1)} \notin c_r a \) and so \(rRr \). Next, DoR = U, for if we are given \(r \in U \) then \(u_r^{(1)} \in c_r a \) since \(u \in \mathfrak{C}_\alpha c_r a \), and so there is an \(s \in U \) with \(u_s^{(1)} \in c_r a \), hence \(rRs \).

By these three properties of \(R \) there is a one-one \(v \in \aleph^U \) such that \(v \in \mathcal{A}^U \), for all \(\kappa \in \omega \). Now by 2.1.17 and 3.1.70 there is a finite \(\Gamma \subseteq \alpha \) such that \(c_\alpha \in \mathcal{S}_\mathcal{G} \mathcal{B} \mathcal{N} B \), where \(B = \{d_\kappa : \kappa \in \Gamma \} \). Let \(W = \{u \in \mathcal{A} : \kappa \in \Gamma \} \). Thus \(W \) is a finite subset of \(U \). Hence we may choose \(\epsilon < \omega \) such that \(v_\epsilon, v_\lambda \notin W \). Set \(r = v_\epsilon, s = v_\lambda \). Thus \(rRs \) and so \(u_r^{(1)} \in c_r a \).

Now for any \(\mu, \nu \in \Gamma \) we have \(u_r^{(1)} = d_\mu \) iff \(u_s^{(1)} = d_\mu \), by the choice of \(\epsilon \) and \(\lambda \). Hence for any \(b \in \mathcal{S}_\mathcal{G} \mathcal{B} \mathcal{N} B \) we have \(u_r^{(1)} = b \) iff \(u_s^{(1)} = b \). Therefore \(u_r^{(1)} \in c_r a \). But then \(sRs \), hence \(rRr \), contradiction.

It remains only to show that \(r = 0 \) does not hold in \(\mathfrak{G}_\alpha \). Let \(\mathcal{A} \) be the full \(\mathcal{C}_\alpha \) with base \(\omega \), and set \(a = \{u \in \omega : u < u \} \). It is easily checked that \(\tau(a) = 1 \).

THEOREM 4.1.33. \(\mathfrak{M}_\alpha \) is not an equational class.

PROOF. If \(\mathcal{A} \in \mathfrak{M}_\alpha \) and \(|A| > 1 \), then \(\mathcal{A} * \mathcal{A} \not\subseteq \mathfrak{M}_\alpha \). The theorem follows.

THEOREM 4.1.34. If \(a < \omega \), then \(\mathfrak{M}_\alpha \) is a universal class.

PROOF. By 2.4.69, there is an upper bound \(\prod_{\kappa < \omega} \Pi_{\kappa}^{(1)} \) for \(|A| \), for any \(\mathcal{A} \in \mathfrak{M}_\alpha \), where \(\pi(\kappa, a) = \pi \alpha \) is defined in 2.4.68. Hence the theorem follows by a general model-theoretic argument.

This theorem does not extend to the case \(a = \omega \), since we have already observed in 2.4.59 that \(\mathfrak{M}_\alpha \) is not closed under ultraproducts for \(a = \omega \):

THEOREM 4.1.35. For \(a = \omega \), \(\mathfrak{M}_\alpha \) is not an elementary class.

THEOREM 4.1.36. \(\mathfrak{U} \mathfrak{M}_\alpha \subseteq \mathfrak{E} \mathfrak{M}_\alpha \).

PROOF. By 4.1.33 and 4.1.34 we may assume that \(a = \omega \). Now the universal sentence

\[
\forall x (x \in \omega \Pi_0 = 0 \lor x \in \omega \Pi_1 = 1)
\]

holds in every \(\mathfrak{M}_\alpha \), by 2.1.20, but it fails in \(\mathcal{A} * \mathcal{A} \subseteq \mathfrak{E} \mathfrak{M}_\alpha \) for any two-element
discrete $\mathcal{U} \in \text{Mn}_\alpha$.

The next theorem is due to Andréka, Németi [81'] 8.21.2.

Theorem 4.1.37. $\text{ElMn}_\alpha \subseteq \text{UnMn}_\alpha$ for $\alpha \in \omega$.

Proof. Recall from 2.1.20 that the sentence

$$\forall x (d(x) \rightarrow x = c^2_{d_{\alpha}})$$

holds in every Mn_α, where $\alpha(x)$ expresses that x is an atom. Hence we can prove 1.1.37 by finding a subalgebra \mathcal{U} of an ultrapower of some Mn_α such that \mathcal{U} has an atom different from $c^2_{d_{\alpha}}$. Let \mathfrak{E} be an $\text{Mn}_\alpha \text{nCS}$ with base 2. Let $I = \{\Gamma \subseteq \alpha : |\Gamma| < \omega\}$, and let F be an ultrafilter over I such that $(\Omega \in I, \Omega \in \mathfrak{F}) \in F$ for every $\Omega \in I$. Let $\mathfrak{E} = \mathfrak{E}/F$. For each $\Gamma \in I$ let $x_{\Gamma} = d_{\Gamma}$, and set $y = x/F$. Let $\mathcal{U} = \mathfrak{E}(y)$. We claim that y is an atom of \mathcal{U} different from $c^2_{d_{\alpha}}$. Now $c^2_{d_{\alpha}} = 0$ in \mathfrak{E}, and hence also in \mathcal{U}. Clearly $y \neq 0$, so $y \notin c^2_{d_{\alpha}}$. To show that y is an atom in \mathcal{U} we shall make use of the fact that \mathcal{U} is representable (by 3.1.97). Let f be an isomorphism of \mathcal{U} into a $\text{CA}_\alpha \mathcal{P}_{<J} \mathcal{D}_J$, each \mathcal{D}_J a WS_α, say with base U_J. Note that $c_{d_J}(3 \cdot 3) + c_{d_J}(2 \cdot 2) = 0$ in \mathfrak{E}, hence in \mathcal{U}, hence in each \mathcal{D}_J. So $|U_J| = 2$. We may assume that $(\mathfrak{E}/f)^* \mathcal{U} = \mathcal{D}_J$ for each $j \in J$. Let $K = \{j \in J : (f_J)_j \neq 0\}$. Note that $y \notin d_{\sigma_j}$ for all $\sigma, \lambda < \alpha$. Hence for any $j \in K$, $(f_J)_j$ has the form $((u : \omega < \alpha))$ for some $u \in U_J$. Since \mathcal{D}_J is generated by $(f_J)_J$, it follows that for any $j, k \in K$ there is an isomorphism g_{jk} of \mathcal{D}_j onto \mathcal{D}_k such that $g_{jk}(f_J)_j = (f_f)_k$. Now suppose $0 \neq z \neq y$, with $z \in A$. Choose $j \in K$ such that $(f_J)_j \neq 0$. There is a term τ in \mathcal{D}_J with one variable x such that $z = \tau(x)$. Then $(f_J)_j = \tau((f_f)_j)$ for every $j \in K$. Now let $k \in K$ be arbitrary. We have $(f_J)_j = (f_f)_j = \tau((f_f)_j)$, so, applying g_{jk}, $(f_f)_j = \tau((f_f)_j)$. Hence $(f_f)_j = (f_f)_k$. Therefore $z = y$, as desired.

Remark 4.1.38. Andréka and Németi [81'] have also shown that $\text{SPMn}_\alpha = \text{HSPMn}_\alpha$ for $\alpha < \omega$, and $\text{SPMn}_\alpha \neq \text{SPUpMn}_\alpha$ for $\alpha \in \omega$. It is not known if $\text{HSPMn}_\alpha = \text{SPUpMn}_\alpha$ or $\text{SPUpMn}_\alpha = \text{HSPMn}_\alpha$ for $\alpha \in \omega$.

Now we turn to the class Ss_α of semisimple CA_α's, which is only of interest for $\alpha \in \omega$, since $\text{Ss}_\alpha = \text{CA}_\alpha$ for $\alpha < \omega$ by 2.4.53. By 2.6.50 and 2.6.53 we have:

Theorem 4.1.39. If $\alpha \in \omega$, then $\text{EqSs}_\alpha = \text{IGS}_\alpha = \text{UnSs}_\alpha$.

By 2.4.59 we have:

Theorem 4.1.40. If $\alpha \in \omega$, then $\text{Ss}_\alpha \subseteq \text{ElSs}_\alpha$.

The argument used to prove 4.1.37 also yields the following, making use of 2.4.54(ii):

Theorem 4.1.41. If $\alpha \in \omega$, then $\text{ElSs}_\alpha \subseteq \text{UnSs}_\alpha$.
The next classes we consider are $\text{SRd}_\alpha \text{CA}_\beta$, where $\alpha < \omega$. By 2.6.8 and 2.6.9 we have $\text{CA}_\alpha = \text{SRd}_\alpha \text{CA}_\beta$ if $\alpha \leq \omega$. By 2.6.14(i) we have $\text{EqSRd}_\alpha \text{CA}_\beta \subseteq \text{CA}_\alpha$ if $2 \leq \alpha < \omega$ and $\beta > \alpha$. We restrict our further discussion to the case $2 \leq \alpha < \omega$. Since clearly $\text{UpRd}_\alpha \text{CA}_\beta = \text{Rd}_\alpha \text{CA}_\beta$ whenever $\alpha < \beta$, we have $\text{UnSRd}_\alpha \text{CA}_\beta = \text{SRd}_\alpha \text{CA}_\beta$. On the other hand, by 2.6.61 we have $\text{EqSRd}_\alpha \text{CA}_\beta \neq \text{SRd}_\alpha \text{CA}_\beta$ whenever $2 \leq \alpha < \omega$ and $\alpha + 2 < \beta$ (it is not known whether this extends to the case $\beta = \omega + 1$). This implies that $\text{SRd}_\alpha \text{CA}_\beta \neq \text{IGs}_\alpha$ whenever $3 \leq \alpha < \omega$ and $\alpha < \beta$, by 2.6.10(i).

It is natural to also consider the class $\text{Rd}_\alpha \text{CA}_\beta$ itself. Clearly $\text{Rd}_\alpha \text{CA}_\beta = \text{CA}_\alpha = \text{BA}$ for every ordinal β. For $\alpha > 0$ we have the following two results of Andréka and Németi [81'], 8.5.

Theorem 4.1.42. If $0 < \alpha < \omega$ and $\alpha < \beta$, then $\text{EIRd}_\alpha \text{CA}_\beta \subset \text{CA}_\alpha$.

Proof. First we suppose $\alpha > 1$. We consider the following sentence φ of \mathcal{L}_α:

$$\exists x (e_x \neq x) \rightarrow \exists x (e_x \neq x \land x = x \land \ldots \land e_{\alpha - 1} x = x)$$

We claim that φ holds in $\text{Rd}_\alpha \text{CA}_\beta$ but not in CA_α. Suppose $E \in \text{CA}_\alpha$ and $\mathcal{U} = \text{IRd}_\alpha E$. Assuming \mathcal{U} is non-discrete, so is E, and $d_{\alpha - 1} E$ satisfies the conclusion of φ. Thus φ holds in $\text{Rd}_\alpha \text{CA}_\beta$. If we take \mathcal{U} to be a $\text{Mn}_\alpha \text{CA}_\alpha$ with base 2, then φ fails in \mathcal{U} by 2.1.22.

For $\alpha = 1$ we can take the sentence $\exists x (e_x \neq x) \rightarrow \exists x (e_x \neq 1)$.

Theorem 4.1.43. If $\omega < \alpha < \beta$, then $\text{EIRd}_\alpha \text{CA}_\beta = \text{CA}_\alpha$.

Proof. It suffices to show that any CA_α, \mathcal{U} is elementarily equivalent to a member of $\text{Rd}_\alpha \text{CA}_\beta$. Let $I = \{ \Gamma : \Gamma \subset \beta, |\Gamma| < \omega \}$. Let F be an ultralower on I such that $\{ \delta : \Gamma \in I \}$ $|\delta| \in F$ for all $\Gamma \in I$. For each $\Gamma \in I$, let $\rho |\Gamma|$ be a one-one function from Γ into α such that $(\rho \alpha) |I| \subset |\rho| |\Gamma|$. Furthermore, let $\mathcal{U}_{\beta |\Gamma}$ be an algebra similar to CA_β, such that for all $x, \lambda \in \Gamma$,

$$c_{x \beta |\Gamma} = c_{\rho |\Gamma}(x)$$

and $d_{x \beta |\Gamma} = d_{\rho |\Gamma}(x \lambda |\Gamma)$. It is easily verified that $\text{P} \Theta_{\rho |\Gamma} / \bar{F}$ is a CA_β, and $(\langle a : \Gamma \in I / \bar{F} : a \in A \rangle)$ is an isomorphism from \mathcal{U} onto an elemental subalgebra of $\text{Rd}_\alpha \text{P} \Theta_{\rho |\Gamma} / \bar{F}$.

Next we discuss the classes $\text{SNr}_\alpha \text{CA}_\beta$. For $\beta > \alpha + \omega$ we have $\text{SNr}_\alpha \text{CA}_\beta = \text{IGs}_\alpha$ by 3.2.10, for $\alpha = 1$ we have $\text{SNr}_\alpha \text{CA}_\beta = \text{CA}_\alpha$, for any $\beta \geq \alpha$ by 2.6.39, while $\text{CA}_\alpha \subset \text{SNr}_\alpha \text{CA}_\beta = \text{IGs}_\alpha$ for any $\beta > 2$ by 3.2.65. Each class $\text{SNr}_\alpha \text{CA}_\beta$ is a variety by 2.6.32(ii). If $\alpha \leq \beta < \gamma$, then $\text{SNr}_\alpha \text{CA}_\beta \subseteq \text{SNr}_\alpha \text{CA}_\gamma$. We know that $\text{SNr}_\alpha \text{CA}_{\alpha + \omega} = \cap_{\kappa < \alpha} \text{SNr}_\kappa \text{CA}_{\alpha + \kappa}$, and the ω-sequence $\text{SNr}_\alpha \text{CA}_{\alpha + \omega} \subseteq \text{SNr}_\alpha \text{CA}_{\alpha + \omega + 1} \subseteq \ldots$ is not eventually constant for any α; see 2.6.34 and 3.2.10. It is still open whether all these classes are distinct (Problem 2.12 of Part I). (The abstract Maddux [77'] asserts a solution, but this claim has been withdrawn by the author; the statement in Henkin, Monk, Taršky [81'], p. 127, was based on this abstract, and so is also erroneous.)
Concerning the classes \(\mathcal{N}_\alpha \mathcal{C}_\beta \) themselves, we should first mention that \(\mathcal{H} \mathcal{N}_\alpha \mathcal{C}_\beta = \mathcal{N}_\alpha \mathcal{C}_\beta \) whenever \(\alpha \geq \beta \), \(\mathcal{S} \mathcal{N}_\alpha \mathcal{C}_\beta = \mathcal{N}_\alpha \mathcal{C}_\beta \) whenever \(\alpha \geq 1 \) and \(\alpha \geq \beta \), while \(\mathcal{S} \mathcal{N}_\alpha \mathcal{C}_\beta \neq \mathcal{N}_\alpha \mathcal{C}_\beta \) whenever \(1 < \alpha < \beta \). These are results of Némethi [83c'] which solve Problem 2.11 of Part I. Andrérka and Némethi [81'] 8.6 showed that \(\mathcal{N}_\alpha \mathcal{C}_\beta \subseteq \mathcal{E} \mathcal{N}_\beta \mathcal{C}_\beta \) whenever \(2 < \beta \); their proof is too long to include here. Finally, \(\mathcal{E} \mathcal{N}_\alpha \mathcal{C}_\beta \subseteq \mathcal{S} \mathcal{N}_\alpha \mathcal{C}_\beta \) for all \(2 \leq \alpha < \beta \) by Andrérka, Némethi [81'] 8.8(i); again we omit the proof because of its length. It is open whether \(\mathcal{N}_\lambda \mathcal{C}_\lambda \) is an elementary class for \(3 \leq \alpha < \beta \).

The remaining classes we consider are various classes of set algebras considered in section 3.1. We begin with the class \(\mathcal{C}_\alpha \) for \(\alpha < \omega \). For \(2 \leq \alpha < \omega \) we have \(\mathcal{E} \mathcal{C}_\alpha = \mathcal{I} \mathcal{G}_\alpha \) by 3.1.108. and \(\mathcal{I} \mathcal{C}_\alpha = \mathcal{U} \mathcal{C}_\alpha \subseteq \mathcal{E} \mathcal{C}_\alpha \) by 3.1.70 and 3.1.107.

Still taking \(\alpha < \omega \), it is natural to look at the classes \(\mathcal{C}_\lambda \) for various \(\lambda \). If \(\lambda < \omega \) then every \(\mathcal{C}_\lambda \) has power at most \(2^\lambda \), where \(\lambda = \kappa^\alpha \), so we get:

THEOREM 4.1.44. If \(0 < \alpha, \kappa < \omega \), then \(\mathcal{I}_\kappa \mathcal{C}_\alpha \) is a universal class.

Clearly we have \(\mathcal{I}_\kappa \mathcal{C}_\alpha \subseteq \mathcal{E} \mathcal{C}_\alpha \) for \(0 < \kappa < \omega \). Furthermore:

THEOREM 4.1.45. If \(2 \leq \alpha < \omega \) and \(0 < \kappa < \omega \), then \(\mathcal{E} \mathcal{C}_\alpha = \mathcal{I}_\kappa \mathcal{G}_\alpha \).

PROOF. By 3.1.77 and its proof we have \(\mathcal{S} \mathcal{P}_\alpha \mathcal{C}_\alpha = \mathcal{I}_\kappa \mathcal{G}_\alpha \). Now by the first part of the proof of 3.1.103 we have \(\mathcal{H}_\alpha \mathcal{G}_\alpha \subseteq \mathcal{S} \mathcal{P}_\alpha \mathcal{G}_\alpha \), and by the proof of 3.1.92 we have \(\mathcal{S} \mathcal{P}_\alpha \mathcal{G}_\alpha \subseteq \mathcal{I}_\kappa \mathcal{G}_\alpha \), so the theorem follows.

Theorem 4.1.45 does not extend to \(\alpha = 1 \); see 3.1.17.

Now we consider \(\alpha < \omega \), but \(\kappa \geq \omega \). Clearly \(\mathcal{I}_\omega \mathcal{C}_\alpha \) is not a variety. The following result is due to Andrérka and Némethi.

THEOREM 4.1.46. Suppose \(0 < \alpha < \omega \) and \(\kappa \geq \omega \). Then \(\mathcal{E} \mathcal{I}_\kappa \mathcal{C}_\alpha = \mathcal{U} \mathcal{C}_\alpha = \mathcal{I}_\omega \mathcal{C}_\alpha \).

PROOF. Clearly \(\mathcal{E} \mathcal{I}_\kappa \mathcal{C}_\alpha \subseteq \mathcal{U} \mathcal{C}_\alpha \subseteq \mathcal{I}_\omega \mathcal{C}_\alpha \). Hence it suffices to take an arbitrary \(\mathcal{X} \subset \mathcal{C}_\alpha \) and show that \(\mathcal{X} \) is elementarily equivalent to some \(\mathcal{C}_\alpha \subseteq \mathcal{C}_\alpha \). By 3.1.112, \(\mathcal{X} \) is isomorphic to some \(\mathcal{C}_\alpha \mathcal{C}_\alpha \) with base of power \(\geq \kappa \). Since \(\alpha < \omega \), the language \(\mathcal{L}_\alpha \) is countable. Hence \(\mathcal{C}_\alpha \) has a countable elementary substructure \(\mathcal{D} \). Note that \(\mathcal{D} \) is a \(\mathcal{C}_\alpha \) with the same base as \(\mathcal{C}_\alpha \). Hence by 3.1.45(i)(b), \(\mathcal{D} \) is isomorphic to a \(\mathcal{C}_\alpha \), as desired.

THEOREM 4.1.47. If \(1 < \alpha < \omega \) and \(\kappa \geq \omega \), then \(\mathcal{I}_\omega \mathcal{C}_\alpha \subset \mathcal{I}_\omega \mathcal{G}_\alpha = \mathcal{H} \mathcal{S}_\kappa \mathcal{C}_\alpha \).

PROOF. Clearly \(\mathcal{I}_\omega \mathcal{C}_\alpha \subset \mathcal{I}_\omega \mathcal{G}_\alpha \). Now, using the same results cited in the proof of 4.1.45, we have

\[
\mathcal{H} \mathcal{S}_\kappa \mathcal{C}_\alpha = \mathcal{H}_\alpha \mathcal{G}_\alpha \subseteq \mathcal{S} \mathcal{P}_\alpha \mathcal{C}_\alpha \\
\supseteq \mathcal{I}_\omega \mathcal{G}_\alpha = \mathcal{S} \mathcal{P}_\alpha \mathcal{C}_\alpha \\
= \mathcal{S} \mathcal{P}_\alpha \mathcal{C}_\alpha \quad \text{by 4.1.46} \\
\subseteq \mathcal{H} \mathcal{S}_\kappa \mathcal{C}_\alpha.
\]
This finishes the proof.

Now we take $\alpha \geq \omega$. Here we discuss the following classes: $C_{\alpha}, C_{\alpha}^{eq}, W_{\alpha}, C_{\alpha}^{eq}*nL_{0}, s_{\alpha}, C_{\alpha}^{eq}*nL_{0}$ for various κ.

By 3.1.108 we have $EqC_{\alpha} \equiv IG_{\alpha}$ for all $\alpha \geq 2$. The following characterization of UnC_{α} is due to Andreka and Nemethi [81'] 7.1:

THEOREM 4.1.48. For $\alpha \geq \omega$ we have:

$$UnC_{\alpha} = 1(\mathcal{U} \in GS_{\alpha}; |A| \geq 2 \text{ or } \mathcal{U} \text{ has characteristic } \kappa \neq 1) = IG_{\alpha} nMd((\forall x(x = 0 \vee x = 1 \vee c(\bar{d}(2 \star 2) = 1) \setminus c(\bar{d}(x \star \kappa) = 0 \vee c(\bar{d}(x \star \kappa) = 1 \setminus \kappa \in \omega - 2)) \}.

PROOF. The second equality is clear, as is the part \subseteq of the first inclusion. Now suppose $\mathcal{U} \in GS_{\alpha}$ with characteristic $\kappa \neq 1$. Thus $\mathcal{U} \in _{< \omega} GS_{\alpha}$ if $\kappa < \omega$, and $\mathcal{U} \in _{= \omega} GS_{\alpha}$ if $\kappa = 0$.

By 3.1.136 it follows that $\mathcal{U} \in SU_{\omega}C_{\alpha}$, as desired.

From 4.1.48 it follows, of course, that $UnC_{\alpha} \equiv EqC_{\alpha}$ for $\alpha \geq \omega$. We do not know whether $UnC_{\alpha} = ElC_{\alpha}$. Note that IC_{α} is not an elementary class, since it is not closed under ultraproducts (see 3.1.100).

Next we consider the class C_{α}^{eq}. By 3.1.107 we have $EqC_{\alpha}^{eq} = IG_{\alpha}$ for any $\alpha \geq \omega$. The argument for 4.1.48 we have $UnC_{\alpha}^{eq} = UnC_{\alpha}$ for $\alpha \geq \omega$. Andreka and Nemethi have observed that $ElC_{\alpha}^{eq} \subseteq UnC_{\alpha}^{eq}$. To prove this we need the following two general theorems about cylindric algebras.

THEOREM 4.1.49. Let $\alpha \geq \omega$, and suppose that \mathcal{U} is a CA$_{\alpha}$ of characteristic $\kappa > 0$.

Suppose $x \in A$ is an atom. Then for any finite $\Gamma \subseteq \alpha$, $c_{\Gamma}x$ is a finite sum of atoms.

PROOF. Clearly it suffices to take the case $|\Gamma| = 1$; say $\Gamma = \{ \gamma \}$. By 3.2.11 we may assume that \mathcal{U} is a GS_{α}. We claim that $c_{\gamma}x$ is a sum of at most κ atoms. Suppose this is not the case. Then there exist non-zero pairwise disjoint elements $y_{\delta}, \ldots, y_{\delta} \in C_{\gamma}x$. Since $\alpha \geq \omega$ and $0 < \kappa < \omega$, there is a $\Gamma \subseteq \omega - 1$ with $|\Gamma| = \kappa + 2$ such that $x \leq \bar{d}^{\Gamma}$; say $\Gamma = \{ \delta_{0}, \ldots, \delta_{\kappa} \}$; let $\Omega = \{ \delta_{0}, \ldots, \delta_{\kappa} \}$ and $\delta = \bar{d}_{\delta+1}$. Now we set

$$z = \Pi_{\delta \leq \delta} c_{\Omega}(c(\Omega) y_{\delta} \cdot d_{\delta, \delta + 1}).$$

Note that

$$c_{\Omega}x = \Pi_{\delta \leq \delta} c_{\Omega}(c_{\Omega} y_{\delta} \cdot d_{\delta, \delta + 1}) = \Pi_{\delta \leq \delta} c_{\Omega} y_{\delta} \leq x$$

since $c_{\Omega}y_{\delta} = c_{\Omega}x$ for each $\delta \in \Omega$ (by 1.10.3, since $c_{\Omega}x$ is a $\{ \gamma \}$-atom). Thus $z \neq 0$. Let $u \in z$ (recall that \mathcal{U} is a GS_{α}). Take any $\xi \leq \delta$. Then by the definition of z there is a $w_{\xi} \in y_{\xi}$ such that $(\alpha - (\{ \gamma \} \cup \Omega)) \cup u \subseteq w_{\xi}$ and $w_{\xi} \gamma = u_{\delta}$. Since $y_{\xi} \leq c_{\Omega}x \leq \bar{d}^{\Gamma}$, we have $w_{\xi} z = w_{\delta} = u_{\delta}$ for every $\gamma \in \Omega$. Thus for distinct $\delta, \delta' \leq \delta$ the functions w_{ξ} differ
only possibly at \(y \). Since \(y_1 \cdot y_i = 0 \), it follows that \(w_i \neq w_1 \cdot y \). Thus \(w_i \neq w_i \cdot y_i \) for \(i \neq 1 \), so \(w \in \bigcap i \in \omega \omega \cdot D_i \cdot y_i \), contradicting \(A \) being of characteristic \(\kappa \).

Corollary 4.1.50. Let \(\omega \leq \omega \), and suppose that \(A \) is a \(CA_{\omega} \) of characteristic \(\kappa > 0 \). If \(\Delta \omega A \) exists, then \(\Delta \omega A \omega A \) exists.

Proof. For any \(\langle \omega \rangle \leq \omega \) we have

\[
\zeta \omega A \omega A = \sum \omega \omega \cdot A \omega A \zeta \omega \omega \cdot A \omega A
\]

by 4.1.49.

Theorem 4.1.51. If \(\alpha \leq \omega \), then \(\operatorname{EC}_{\alpha}^{\tau \omega} \subseteq \operatorname{Un} \operatorname{Cs}_{\alpha}^{\tau \omega} \).

Proof. Let \(p = (0) \cdot \omega \cdot \alpha \), and let \(\mathbb{A} \) be the full \(\mathcal{W}_{\alpha} \), with unit element \(a \omega \omega \). Set \(B = \mathfrak{A} \mathfrak{A} \cdot \{ p \} \). By 3.1.102, \(B \in \operatorname{Cs}_{\alpha}^{\tau \omega} \). Let \(F \) be any non-principal ultrafilter on \(\omega \), and set \(C = B / F \). Let \(y \in \mathcal{C} \) such that \(y_1 = d_{i \cdot 1} \) for every \(i \cdot 1 \), and set \(z = y / F \). Let \(x = (0) \cdot \omega \cdot \omega \cdot x / F \). Finally, let \(D = \mathfrak{A} \mathfrak{A} \cdot \{ x, y \} \). We claim that \(D \in \operatorname{Un} \operatorname{Cs}_{\alpha}^{\tau \omega} \). Since \(D \in \operatorname{Su} \operatorname{ Cs}_{\alpha}^{\tau \omega} \), clearly \(D \in \operatorname{Un} \operatorname{Cs}_{\alpha}^{\tau \omega} \). To show that \(D \not\subseteq \operatorname{EC}_{\alpha}^{\tau \omega} \), we consider a natural sentence \(\varphi \) in \(\mathcal{L}_{y} \) that expresses the statement "for all \(y \), if the characteristic is 2 and \(u \) is the sum of all atoms, then \(u = 0 \) or \(u = 1 \)". By 4.1.50 and 3.1.87, \(\varphi \) holds in the class \(\operatorname{Cs}_{\alpha}^{\tau \omega} \). Hence it suffices to show that \(\varphi \) fails in \(D \). Note that \(0 \neq y \neq 1 \), \(A y = 0 \), and \(D \) has characteristic 2. So, it suffices to show that \(y \) is the sum of all atoms of \(D \). Now \(x \leq y \), and \(\mathcal{K}_{y} D \cong D / I_{y} \). Under the natural homomorphism from \(D \) onto \(D / I_{y} \), both \(x \) and \(y \) go to 0, so \(\mathcal{K}_{y} \mathcal{D} \in \mathcal{M}_{\alpha} \). By 2.1.20, \(\mathcal{K}_{y} \mathcal{D} \) is atomless. Thus it suffices to show that \(\mathcal{K}_{y} \mathcal{D} \) is atomic. Now

\[
(1) \{ x, y \} \subseteq \{ z \in D ; \text{for some } u \in \mathcal{S}_{y} \mathfrak{A} \cdot \{ x \} \text{ we have } z \cdot y = u \cdot y \} \subseteq \mathcal{S}_{u} \mathcal{D}.
\]

This is easily established, the fact that \(A y = 0 \). From (1) it easily follows that \(\mathcal{K}_{y} \mathcal{D} = \{ y \cdot z ; u \in \mathcal{S}_{y} \mathfrak{A} \cdot \{ x \} \} \). Now \(\mathcal{S}_{y} \mathfrak{A} \cdot \{ x \} \) is isomorphic to \(\mathfrak{B} \), and \(\mathfrak{B} \) is subdirectly indecomposable. It follows easily that \(\mathcal{K}_{y} \mathcal{D} \) is also subdirectly indecomposable. Hence from 2.4.48 we infer that, in \(D \), \(y \subseteq \sum \{ x \in \mathcal{K}_{y} \mathcal{P} ; | \mathcal{P} | \subseteq \omega, | \mathcal{P} | < \omega \} \). By 4.1.48 it follows that \(y \subseteq \Delta \omega \mathcal{D} \), as desired.

Note again that for \(\alpha \leq \omega \), \(\operatorname{Cs}_{\alpha}^{\tau \omega} \subseteq \operatorname{EC}_{\alpha}^{\tau \omega} \) by 3.1.100. This finishes the discussion of the class \(\operatorname{Cs}_{\alpha}^{\tau \omega} \).

Turning to \(\mathcal{W}_{\alpha} \) we note that by 3.1.108 we have \(\operatorname{Eq} \mathcal{W}_{\alpha} = \operatorname{IG}_{\alpha} \) for \(\alpha \leq \omega \). By the proof of 4.1.51 we have \(\operatorname{EI} \mathcal{W}_{\alpha} \subset \operatorname{Un} \mathcal{W}_{\alpha} \) for \(\alpha \leq \omega \). Andréké and Németi [81] 7.3.7 have noticed that \(\operatorname{EI} \mathcal{W}_{\alpha} \subset \operatorname{EC}_{\alpha}^{\tau \omega} \) for \(\alpha \leq \omega \).

Theorem 4.1.52. \(\operatorname{EI} \mathcal{W}_{\alpha} \subset \operatorname{EC}_{\alpha}^{\tau \omega} \) for \(\alpha \leq \omega \).

Proof. \(\mathcal{S} \) is given by 3.1.102. Now let \(\varphi \) be a natural sentence of \(\mathcal{L}_{\alpha} \) which expresses the statement: "if the characteristic is 2, then the algebra is either atomic or atomless". We show that \(\varphi \) holds in \(\mathcal{W}_{\alpha} \) but not in \(\operatorname{Cs}_{\alpha}^{\tau \omega} \). First let \(\mathcal{A} \) be any \(\mathcal{W}_{\alpha} \).
of characteristic 2; we may assume that the unit element of \mathcal{A} has the form $^2y^2$. Suppose x is an atom of \mathcal{A}, and y is an arbitrary non-zero element of \mathcal{A}; we show that there is an atom $\forall y$. This will show that \forall holds in \mathcal{A}. Now

(1) x is a singleton.

In fact, (1) follows from the following observation:

(2) If $f \in x$, $g \in x$, $\xi < \alpha$, and $f_\xi = g_\xi$, then $f = g$.

To prove (2), suppose $\eta < \alpha$. If $x \supset d_\eta$, then $f_\eta = f_\xi = g_\xi = g_\eta$. If $x \subseteq d_\eta$, then $f_\eta = 1 - f_\xi = 1 - g_\xi = g_\eta$. So $f = g$.

Say by (1) $x = \{f\}$. Let $h \in y$. Then there is a finite $\Gamma \subseteq \varphi$ such that $(\alpha \supset \Gamma)f = h$. It follows that $c_{\Gamma}x \forall y \neq 0$. Clearly $c_{\Gamma}x$ is finite, so there is indeed some atom $\exists c_{\Gamma}x \forall y \neq 0$, as desired.

Now we construct a $\mathcal{A}_\alpha^\varphi$ in which φ fails. Choose $\Gamma \subseteq \varphi$ such that Γ and $\alpha \supset \Gamma$ are infinite. Let $x = \{0; \xi < \alpha\}$ and $y = \{g \in \mathcal{A}; g_\xi = 1\text{ for all } \xi \in \Gamma\}$. Let \mathcal{B} be the full \mathcal{A}_α with base 2 and $\mathcal{B} = \mathcal{B}_2^\aleph_0(x, y)$. Note that x and y are small (see 3.1.56). Hence by 3.1.83, \mathcal{B} is regular. Obviously x is an atom of \mathcal{B}. Now we show that there is no atom $\exists y$; this will then establish that φ fails in \mathcal{B}. Suppose that x is an atom of \mathcal{B} and $x \forall y$. Choose $p \in x$, and let $V = \{2^{p_\xi}\}$. Then $nV \in H_0(\mathbb{V})$ for some $\mathcal{A}_\alpha \mathcal{C}$. Since $p_\xi = 1$ for all $\xi \in \Gamma$ and Γ is infinite, we have $x \forall V = 0$. Hence \mathcal{E} is generated by $\{y \in V\}$. Since $\Delta(y \in V) = \Gamma$ and $\alpha \supset \Gamma$ is infinite, we have $\mathcal{E} \subseteq \mathcal{A}_\alpha$. But $0 \neq V \subseteq \mathcal{A}$ is an atom of \mathcal{E}. This contradicts 1.1.18(ii).

Now we turn to the important class $\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha$. By 3.1.123 we have $\text{Eq}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha) = 1_{\mathcal{N}_\mathcal{L}_\alpha}$ for $\alpha \geq \omega$ and by the proof of 4.1.48 we have $\text{Un}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha) = \text{Un} \mathcal{N}_\alpha$. By 4.1.51 and 3.1.136, $\text{El}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha) \subseteq \text{Un} \mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha$; and by 3.1.100 it is clear that $\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha \subseteq \text{El}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha)$. We also note that $\text{El}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha) \subseteq \text{El}_{\mathcal{L}_\alpha}$, for example, $c_{\mathcal{L}_\alpha}(2 \cdot 2) = 0$ or $c_{\mathcal{L}_\alpha}(2 \cdot 2) = 1$ holds in any $\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha$ but not in every \mathcal{L}_α. Also note from 3.1.70(ii) that any $\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha$ with more than one element is simple; hence using 3.1.134, $\text{I}(\mathcal{A}_\alpha^\varphi \mathcal{N}_\mathcal{L}_\alpha) = \text{I}(\mathcal{N}_\mathcal{L}_\alpha)$ $\forall \mathcal{X} \subseteq \mathcal{A}_\alpha$ for $\alpha \geq \omega$. All of these facts are for $\alpha \geq \omega$.

Next we consider \mathcal{A}_α for $1 < \alpha < \omega$ but $\alpha \geq \omega$. By 3.1.136 we then have $\text{Eq}(\mathcal{A}_\alpha) = \text{Un} \mathcal{A}_\alpha = 1_{\mathcal{A}_\alpha}$. We do not know whether $\text{Un} \mathcal{A}_\alpha = \text{El} \mathcal{A}_\alpha$. Of course $\text{El} \mathcal{A}_\alpha \subseteq \text{El} \mathcal{A}_\alpha$.

Taking $\alpha \geq \omega$ and $\lambda \geq \omega$, by 3.1.136 we have $\text{Eq}(\mathcal{A}_\alpha) = \text{Un} \mathcal{A}_\alpha = 1_{\mathcal{A}_\alpha}$. Again we do not know whether $\text{Un} \mathcal{A}_\alpha = \text{El} \mathcal{A}_\alpha$, but clearly $\lambda \subseteq \mathcal{A}_\alpha \subseteq \mathcal{A}_\alpha$.

For $\alpha \geq \omega$ and $\xi < \omega$ by 3.1.136 we have $\text{Eq}(\mathcal{A}_\alpha^\varphi \mathcal{L}_\alpha) = \text{Un} \mathcal{A}_\alpha^\varphi \mathcal{L}_\alpha = 1_{\mathcal{A}_\alpha}$. For $\alpha \geq \omega$, both classes are equal to $1_{\mathcal{A}_\alpha}$. It is open whether $\text{Un} \mathcal{A}_\alpha^\varphi \mathcal{L}_\alpha = \text{El} \mathcal{A}_\alpha^\varphi \mathcal{L}_\alpha$, but clearly $\mathcal{A}_\alpha^\varphi \mathcal{L}_\alpha \subseteq \mathcal{L}_\alpha$.

To conclude this section we discuss an algebraic form of relativization which was alluded to in 2.2.23.
DEFINITION 4.1.53. For terms \(\sigma \) in \(\mathcal{L}_\omega \) not involving the variable \(v_c \) we define a new term \(\sigma^r \):
\[
\begin{align*}
\sigma^r & = v_1 \cdot v_0 \\
(\sigma \cdot \tau)^r & = \sigma^r \cdot \tau^r \\
(\epsilon, \sigma)^r & = (\epsilon, \sigma^r) \cdot v_0 \\
(\sigma + \tau)^r & = \sigma^r + \tau^r \\
(\neg \sigma)^r & = -\sigma^r \cdot v_0 \\
d_\chi^r & = d_{\chi^r} \cdot v_0
\end{align*}
\]

THEOREM 4.1.54. Suppose \(\sigma \vdash \omega \) and \(\text{CA}_\alpha \models \sigma = \tau \), where \(\sigma \) and \(\tau \) are terms not involving \(v_c \). Let \(\mathcal{A} \) be a \(\text{CA}_\alpha \), and assume that \(x \in A \) and \(\Delta x \leq 1 \). Let \(b = \prod_{i < \omega} a_{\xi^r} \). Suppose \(a \vDash \text{RI}_\lambda \mathcal{A} \) and \(a_0 = b \). Then \((\sigma^r)^\mathcal{A} a = (\tau^r)^\mathcal{A} a \).

PROOF. Let \(\mathcal{B} = \text{RI}_\lambda \mathcal{A} \). Note that \(\mathcal{B} \models \text{CA}_\alpha \) by 2.2.10. It is enough to show that \(\mathcal{B} a = (\sigma^r)^\mathcal{A} a \) for every term \(\rho \) not involving \(v_c \). This is straightforward, and we leave it to the reader.

Using this theorem one can somewhat simplify the proofs of 2.2.20–2.2.22.
4.2. DECISION PROBLEMS

We consider here some natural decision problems for \(\text{CA}_\alpha \)'s. We restrict ourselves to the case \(\alpha \leq \omega \), where there are natural notions of effectiveness. Mainly we are concerned with decidability or undecidability of the equational or the full first-order theories of \(\text{CA}_\alpha \) or \(\text{IGS}_\alpha \). The main results are: (1) the equational theories of \(\text{CA}_\alpha \) and of \(\text{IGS}_\alpha \) are decidable; (2) if \(3 \leq \alpha \leq \omega \) and \(\text{IGS}_\alpha \models K \leq \text{CA}_\alpha \) then the equational theory of \(K \) is undecidable; (3) the elementary theory of \(\text{CA}_\alpha \) is undecidable.

We begin, however, with a minor result:

THEOREM 4.2.1. If \(\beta < \omega \), then the first-order theory of \(\text{Mn}_\beta \) is decidable.

PROOF. By 2.1.17, any \(\text{Mn}_\beta \) has at most \(2^\lambda \) elements, where \(\lambda = 2^\kappa \) and \(\kappa = \beta^+ + \kappa \). Hence the conclusion is obvious.

We do not know whether 4.2.1 extends to \(\alpha = \omega \). We present one small result along these lines; it depends of the following lemma.

LEMMA 4.2.2. Let \(\sigma \) and \(\tau \) be terms of \(\mathcal{L}_\omega \). Then \(\text{Mn}_\omega \models \sigma = \tau \) iff for all \(\alpha < \omega \), if \(\text{Occ}(\sigma = \tau) \subseteq \alpha \) then \(\text{Mn}_\alpha \models \sigma = \tau \). (Recall from 4.1.11 the definition of \(\text{Occ}(\sigma = \tau) \).)

PROOF. \(= \) Assume that \(\text{Mn}_\omega \models \sigma = \tau \), \(\alpha < \omega \), \(\text{Occ}(\sigma = \tau) \subseteq \alpha \), and \(A \in \text{Mn}_\beta \). By 2.6.57 choose \(B \in \text{Mn}_\beta \) such that \(A \subseteq \text{Rt}(B) \). Thus \(B \models \sigma = \tau \), so \(A = \sigma = \tau \), as desired.

\(\Leftarrow \) Assume that \(\text{Mn}_\beta \not\models \sigma = \tau \). Then by 2.1.16 and 2.4.52 there exist \(A \in \text{Mn}_\omega \) and \(x \in \text{\#A} \) such that \(A \) is simple and \(\sigma = \tau \). Let the variables occurring in \(\sigma = \tau \) be among \(v_0, \ldots, v_{n-1} \), where \(\lambda \in \omega \). We may assume that \(x_i = v_i \) for all \(\lambda \in \omega \). By 2.1.17 there is an \(\alpha < \omega \) such that \(\text{Occ}(\sigma = \tau) \subseteq \alpha \) and \(x_0, \ldots, x_{n-1} \in \text{Sg}(d_{i, \beta}) \{ i, n < \beta \} \). Let \(B \) be the minimal subalgebra of \(\text{Rt}(A) \). Then \(A = \sigma = \tau \), as desired.

As an immediate corollary of 4.2.2 and the proof of 4.2.1 we have:

COROLLARY 4.2.3. \(\{ \sigma = \tau : \sigma \) and \(\tau \) are terms of \(\mathcal{L}_\omega \) and \(\text{Mn}_\omega \not\models \sigma = \tau \} \) is recursively enumerable.

For \(\alpha \leq \omega \) we do not know whether the equational theory of monadic—generated \(\text{CA}_\alpha \)'s is decidable. This is asserted as Theorem 22 for \(\alpha < \omega \) in Monk [64a], but we have not been able to reconstuct the proof. The following two lemmas and corollary give some information about this question. The lemmas are proved like 4.2.2.
LEMMA 4.2.4. Suppose $\alpha \leq \omega$. Let M^α be the class of all monadic-generated CA_α's, and for each $\kappa < \omega$ let M^κ_α be the class of all CA_α's generated by some set X with $|X| = \kappa$ and $\Delta x \subseteq \{0\}$ for all $x \in X$. Then for any $\alpha < \omega$ and any terms σ, τ of L_α we have $M^\alpha \models \sigma = \tau$ iff for all $\kappa < \omega$ $M^\kappa_\alpha \models \sigma = \tau$.

LEMMA 4.2.5. Assume the notation of 4.2.4. For any terms σ, τ of L_ω we have $M^\omega \models \sigma = \tau$ iff for all $\kappa < \omega$ and all $\alpha < \omega$, if $Oce(\sigma = \tau) \subseteq \alpha$ then $M^\kappa_\alpha \models \sigma = \tau$.

COROLLARY 4.2.6. Assume the notation of 4.2.4. For any $\alpha < \omega$ the set \{ $\sigma = \tau$: $M^\alpha \not\models \sigma = \tau$ \} is recursively enumerable.

Equations in CA_α's

Now we turn to CA_α's. The first main result, due to Henkin, is an almost immediate consequence of 2.5.4.

THEOREM 4.2.7. The equational theory of CA_α is decidable.

PROOF. For any equation $\sigma = \tau$ in L_α let $\kappa(\sigma, \tau)$ be the number of symbols in $\sigma = \tau$, and $\lambda(\sigma, \tau) = 9\kappa(\sigma, \tau) + 1$. Then the theorem clearly follows from the following statement:

(*) If $\not\models \sigma = \tau$, then $\sigma = \tau$ fails in some CA_α with at most 2^μ elements, with $\mu = 2^{\lambda(\sigma, \tau)}$.

For, to prove (*), say \mathcal{U} is a CA_α, $x \in ^\omega A$, and $\sigma^\mathcal{U} x \not\models \tau^\mathcal{U} x$. Let

$X = \{ x_i: v_i \text{ occurs in } \sigma = \tau \} \cup \{ x_\ell: c_\ell \rho \text{ is a subterm of } \sigma \text{ or } \tau \text{ for some } \ell = 0, 1 \}.$

Clearly $|X| \leq \kappa(\sigma, \tau)$. Let \mathcal{B} satisfy the conditions of 2.5.4. Thus $|B| \leq 2^\mu$. Let $y \in ^\omega B$ such that $y_i = x_i$ if v_i occurs in $\sigma = \tau$. Clearly $\sigma^\mathcal{B} y = \sigma^\mathcal{U} x \not\models \tau^\mathcal{U} y$, as desired.

To prove that the equational theory of IGS_α is decidable, a result of Dana Scott [62'], we need a result analogous to 2.5.4. It turns out to be much harder to prove than 2.5.4.

LEMMA 4.2.8. Let \mathcal{U} be a CS_α and X a finite subset of A. Then there is an IGS_α \mathcal{B} satisfying the following conditions:

1. \mathcal{B} is finite, and in fact $|B| \leq \kappa_5$, where $\kappa_0 = 2^{2\kappa_1}, \kappa_1 = 2^{\kappa_0}, \kappa_2 = \kappa_1 + 2^{\kappa_1}, \kappa_3 = 2^{2\kappa_2 + 1}, \kappa_4 = 2^{\kappa_3},$ and $\kappa_5 = 2^{\kappa_3 + 2^{\kappa_4}}$.

2. There is a one-one function f from $Xu(d_{01})$ into \mathcal{B} such that $f d_{01} = d_{01}$, $f(x + y) = f x + f y$ if $x, y, x + y \in Xu(d_{01})$, $f(-x) = -f x$ if $x \not\in Xu(d_{01})$, and $f(c_\ell x) = c_\ell f x$ if $x, c_\ell x \in Xu(d_{01})$, for any $\ell = 2$.

PROOF. For any $CA_\alpha \in \mathcal{B}$ we define
(1) \(\text{Thin}_0 \mathcal{C} = \{ x \in C : c(x,c) \neq d_0, z \neq d_0 \}. \)

\(\text{Thin}_0 \mathcal{C} \) is defined similarly, interchanging 0 and 1. Note:

(2) If \(\mathcal{C} \) is a \(C_s \) with base \(U \), then \(\text{Thin}_0 \mathcal{C} = \{ x \in C : \text{for some } u \in U \text{ we have } x \in (u) \times U \}. \)

An analogous statement is true for \(\text{Thin}_1 \mathcal{C} \).

Now we begin the construction. We apply 2.5.4 to \(\mathcal{C} \) and \(\mathcal{X} \) to obtain a \(CA_2 \) \(\mathcal{X}_1 \) with the following properties (and other properties in that proof):

(3) \(|A_1| \leq 1 \);

(4) \(X \subseteq A_1 \) and \(\mathcal{U}_1 \subseteq \mathcal{U} \);

(5) \(d_{01} = 0 \) and if \(x \in X \), then \(c^X_\lambda x = c^X_\lambda x \) for \(\lambda = 0,1 \).

The cylindrifications of \(\mathcal{C} \) and \(\mathcal{X}_1 \) will be denoted by \(c^\mathcal{C}_\lambda \) and \(c^\mathcal{X}_\lambda \) respectively, for \(\lambda = 0,1 \). Now we let

\[X' = A_1 u \{ c(x,c_0 z) : z \in A_1, n \text{ Thin}_0 \mathcal{X}, z \in A_1 \} u \{ c(x,c_0 z) : z \in A_1, n \text{ Thin}_1 \mathcal{X}, z \in A_1 \}. \]

Thus \(|X'| \leq 2 \). Now we apply 2.5.4 to \(\mathcal{C} \) and \(X' \) to obtain a \(CA_2 \) \(\mathcal{X}_2 \) with the following properties: (and other properties in that proof):

(6) \(|A_2| \leq 1 \);

(7) \(X' \subseteq A_2 \) and \(\mathcal{U}_2 \subseteq \mathcal{U} \);

(8) \(d_{01} = 0 \) and, if \(x \in X' \), then \(c^\mathcal{X}_\lambda x = c^\mathcal{X}_\lambda x \) for \(\lambda = 0,1 \).

Note from the proof of 2.5.4 that \(\mathcal{X}_2 \) is simple. The cylindrifications of \(\mathcal{X}_2 \) will be denoted by \(c^\mathcal{X}_\lambda \) for \(\lambda = 0,1 \). Now

(9) \(x \in \text{Thin}_0 \mathcal{X}_2 \) iff \(x \in A_1, c(x,c) \in A_1 \), and \(x \in \text{Thin}_0 \mathcal{X}_2 \).

For \(= \) and \(\neq \), obviously \(x \in A_1 \) and \(x \in \text{Thin}_0 \mathcal{X}_2 \). Since \(c(x,c) \in A_1 \) we have \(c(x,c) \in \text{Thin}_0 \mathcal{X}_2 \). Also \(c(x,c) \in \text{Thin}_1 \mathcal{X}_2 \), and \(c(x,c) \in c(x,c) \). Hence \(c(x,c) = c(x,c) \in A_1 \) by (2) (both \(c(x,c) \) and \(c(x,c) \) have the form \(\{ u \} \times U \), \(U \) the base of \(\mathcal{X}_1 \)). For \(\neq \), we have \(c(x,c) = c(x,c) \) and, by a statement at the end of the proof of 2.5.4, \(c(x,c) = c(x,c) \). Hence, clearly, \(x \in \text{Thin}_0 \mathcal{X}_2 \). A statement analogous to (9) holds for \(\text{Thin}_1 \mathcal{X}_2 \).

Next we claim:

(10) If \(x \in A_1, n \text{ Thin}_0 \mathcal{X}_2 \) and \(x \in A_2 \), then \(c_0(x,c_0 z) \in A_2 \).

To prove (10), assume that \(x \in A_1, n \text{ Thin}_0 \mathcal{X}_2 \), \(z \neq 0 \). For every \(z \in A \) let \(T z = c_0(x,c_0 z) \). Since \(c_0(x,c_0 z) = 1 \), it follows from 3.2.3 that \(T \) is an endomorphism of \(\mathcal{U}_1 \). (This can also easily be checked directly.) Also, the following are easy to check:
(11) If \(u \in A \) then \(Tc \cdot u = c \cdot u \).

(12) If \(u \in A \) then \(Tc \cdot u = 1 \) or \(Tc \cdot u = 0 \).

Now to prove (10), recall from the proof of 2.5.4 that \(A = S^g \cdot (Y \cdot (u \cdot s^*) \cdot Y \cdot (s^*) \cdot Y) \), where \(Y = X \cdot u \cdot c \cdot x \cdot u^* \cdot c^* \cdot X^* \) (since \(d_1 : x \cdot x \)). Thus, since \(T \) is an endomorphism of \(\mathfrak{A} \) and \(\mathfrak{A} : \mathfrak{A} \) it suffices to show that \(T : x \cdot A \) for any \(x \in Y \cdot (s^*) \cdot Y \cdot (s^*) \cdot Y \). By (11) and (12) it suffices to prove this for any \(x \in X \); recalling the definition of \(X \), we may assume that \(x \in A \). Then \(Tx = c \cdot (x \cdot c \cdot x) \in X \cup A \), as desired. So (10) holds. A corresponding statement holds for \(\text{Thin}_\mathfrak{A} \). Next note:

(13) If \(z \neq d_1 \), then \(z \in \text{Thin}_\mathfrak{A} \) iff \(z \in \text{Thin}_\mathfrak{A} \).

For, \(c^2 \cdot c^2 \cdot (d_1 \cdot c^2 \cdot z) = c^2 \cdot c^2 \cdot z \cdot c^2 \cdot (d_1 \cdot c^2 \cdot z) \), so (13) is clear.

Now we shall construct a \(C \); the \(C \) we are after will be \(\mathfrak{C} \) (cf. 2.7.38). Let \(D = \{ z \in \text{Thin}_\mathfrak{A} \} \cdot \mathfrak{A} \cup \{ z \neq d_1 \} \) and \(z \neq A \). Let \(g \) be a one-one function mapping \(D \) onto a set \(D' \) disjoint from \(\mathfrak{A} \) (the set of atoms of \(\mathfrak{A} \)). Let \(C = \mathfrak{A} \cdot u \cdot D' \). We now define equivalence relations \(T_0, T_1 \) on \(C \) by specifying their equivalence classes. Assume that \(\lambda < 2 \). For each \(z \in D \) we let the following be a \(T_\lambda \)-class:

\[\{ x \in \mathfrak{A} : c^2 \cdot x = c^2 \cdot z \} \cdot u \cdot (g) \cdot (z) \]
4.2.8 DECISION PROBLEMS
(EQUATIONS IN \(\mathbb{CA}_\mathbb{N} \))

Finally, suppose \(a, b \notin \mathbb{AT}_\mathbb{N} \), say \(a = g \cdot c \), \(b = g' \cdot c' \), with \(z, z' \in D \). Then \(z(T_0 | T_1)z' \), so \(a(T_0 | T_1) b \). Thus (14) holds. Hence \(\mathbb{E} \) is a \(\mathbb{CA}_\mathbb{N} \) and hence \(\mathbb{B} \) is a \(\mathbb{CA}_\mathbb{N} \), which by (14) is simple. We denote the operations of \(\mathbb{B} \) with primes: \(c_0, c_1, \ldots, c_{d_0} \), etc.

Now to prove that \(\mathbb{B} \in \mathbb{IC}_\mathbb{N} \), we shall apply the remark after 3.2.65. To this end, assume that \(x, y, z \in B \) and \(c_1(x \cdot s_0 \cdot c'_z) \in d_0 \); we shall prove that \(c_1(x \cdot y) \cdot c_0(z \cdot x) \in c_0(x \cdot y) \cdot z \). By symmetry this establishes \(\mathbb{B} \in \mathbb{IC}_\mathbb{N} \). Let \(a \in c_1(x \cdot y) \cdot c_0(z) \); say \(aT_0b \in zn \) and \(aT_0c \in zn \). It suffices to show that \(b = c \).

(15) \(b, c \in \mathbb{AT}_\mathbb{N} \) and for all \(u \in D \), \(c_1^1 = c_1^2 = c_1^3 \).

For, otherwise say \(u \in D \) and \(bT_0u \). Then \(gu \in c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \) but \(gu \notin d_0 \), contradiction.

(16) \(c_1^1, c_1^2 \in \mathbb{Thin}_\mathbb{N} \).

In fact, if \(u \in \mathbb{AT}_\mathbb{N} \) and \(u \in c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \), then \(u \in c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \), so \(u \in d_0 \); thus \(c_1^1 \in \mathbb{Thin}_\mathbb{N} \) and similarly \(c_1^2 \in \mathbb{Thin}_\mathbb{N} \).

Now let \(u = d_0 \) and \(u = d_0 \).

(17) \(u, v \in A_1 \).

For, if \(u \notin A_1 \), then \(u \in D \) (since \(c_1^1 = c_1^2 \in \mathbb{Thin}_\mathbb{N} \)), by (16), and \(c_1^1 = c_1^2 \), contradicting (15). Similarly for \(v \).

Now \(bT_0c \), hence \(c_1^0 \cdot d_0 \). Furthermore, \(c_1^1 \cdot d_0 \cdot c_1^0 \cdot c_1^2 = c_1^1 \cdot c_1^2 \cdot c_1^0 \cdot c_1^2 \).

Now \(c_1^0 \cdot d_0 \cdot c_1^0 \cdot c_1^2 = c_1^0 \cdot d_0 \cdot c_1^0 \cdot c_1^2 \).

Thus \(c_1^0 \cdot d_0 \cdot c_1^0 \cdot c_1^2 = c_1^0 \cdot d_0 \cdot c_1^0 \cdot c_1^2 \).

But \(b \in \mathbb{Thin}_\mathbb{N} \), as is easily checked, so \(b = c \), as desired. Thus \(\mathbb{B} \in \mathbb{IC}_\mathbb{N} \).

It remains to check (ii) of the lemma. First we show:

(18) \(x \in D \), then \(c_1^1 \notin \mathbb{Thin}_\mathbb{N} \) (recall that \(c_1^1 \) is defined for all members of \(A \), and \(x \in A_2 \subseteq A \).

For, if \(c_1^1 \in \mathbb{Thin}_\mathbb{N} \), then \(c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \in \mathbb{Thin}_\mathbb{N} \), hence \(c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \) by (2); so \(x = d_0 \cdot c_1^1 \cdot s_0^1 \cdot c_1^0 \cdot x \in A_1 \), contradicting \(x \in D \). So, (18) holds. By (18), for every \(x \in D \) we have \(c_1^1 \cdot c_1^0 \cdot x \), so there is a function \(h \) mapping \(D \) into \(\mathbb{AT}_\mathbb{N} \), such that \(hz \cdot c_1^1 \cdot c_1^0 \cdot x \), for all \(z \in D \). Now for any \(x \in A_2 \) we set

\[f = \{ a \in \mathbb{AT}_\mathbb{N} : a \leq x \} \]

We claim that \((X \mathbb{U}(d_0)) f = k \) as desired in the lemma. Clearly \(k \) preserves + and -, \(-d_0 = E_0 \), and \(k \) is one-one. Now assume that \(x \cdot c_1^1 \cdot x \in X \mathbb{U}(d_0) \); we show that \(c_1^0 \cdot f = f \cdot c_1^0 \cdot x \); the argument for \(c_1^1 \) is similar. Note that \(c_1^1 \cdot x = c_1^0 \cdot x \).

First suppose that \(u \in c_1^0 \cdot f \). Say \(uT_0v \in f \).

Case 1. \(u, v \in A_2 \). Then \(u \leq c_1^0 \cdot u = c_1^0 \cdot v \leq c_1^0 \cdot x = c_1^0 \cdot x \), so \(u \neq f \cdot c_1^0 \).

Case 2. \(u \leq A_2 \), \(v \notin A_2 \). Say \(w \in D \), \(gw = v \), \(h \cdot w \leq x \). Thus \(c_1^0 \cdot w \cdot x \neq 0 \) by the definition of \(h \).
so \(w \cdot c_0 x \neq 0 \), since otherwise \(c_0^w w \leq c_0 x \); hence \(w \leq c_0^w c_0 x = c_0 x \) so \(c_0^w w \leq c_0 x \). Now \(c_0^w = c_0^w w \), so \(u \leq c_0 x \) and \(u \in f c_0 x \).

Case 3. \(u \notin A_2 \), \(v \in A_2 \). Thus \(v \equiv x \). Say \(u = g w \) with \(w \in D \). Since \(u T_0 v \), we have \(c_0^w w = c_0^w v \). Thus \(w \leq c_0^w w = c_0^w v = c_0^v x = c_0^v x \), so \(h w \leq c_0^v w \leq c_0^v x = c_0 x \). Hence \(u \in f c_0 x \).

Case 4. \(u, v \notin A_2 \). Since \(u T_0 v \), we have \(u = v \). Say \(g w = v \), \(w \in D \), \(h w \leq x \). Then \(h w \leq c_0 x \), so \(u \in f c_0 x \).

Second, suppose that \(u \in f c_0 x \).

Case 1. \(u \in A_2 \). Thus \(u \leq c_0 x \). Thus \(u \cdot c_0 x = u \cdot c_0 x \neq 0 \), so \(c_0^w u \cdot x \neq 0 \); let \(v \in A f H_2 \) with \(v \leq c_0^w u \cdot x \). Then \(u T_0 v \in f x \), as desired.

Case 2. \(u \notin A_2 \). Say \(u = g w \), \(w \in D \), \(h w \leq c_0 x \). Since \(h w \leq c_0^w w \cdot c_0^w \cdot x \cdot d_{01} \), we get \(c_0^w w \cdot c_0^w w \cdot c_0 x \neq 0 \), hence \(w \cdot c_0^w x = c_0^w w \cdot x \neq 0 \). So \(c_0^w w \cdot x \neq 0 \). Let \(v \in A f H_2 \) with \(v \leq c_0^w w \cdot x \). Then \(u T_0 v \in f x \), as desired.

This completes the proof of 4.2.8.

THEOREM 4.2.9. The equational theory of \(\text{IG}_{\omega} \) is decidable.

PROOF. As for 4.2.7, using 4.2.8 in place of 2.5.4.

Equations in \(\text{CA}_a^\omega, 3 \leq a < \omega \)

Our second major result of this section is that if \(3 \leq a \leq \omega \) and \(\text{IG}_{\omega} \subseteq \text{K} \subseteq \text{CA}_a \), then the equational theory of \(\text{K} \) is undecidable. For \(a \leq 4 \), and for \(\text{K} = \text{IG}_{\omega} \), this result is due to Tarski. The remaining cases are due to R. Maddux [80], and we follow his proof, which applies to the general situation. The original proof of Tarski is much longer, using the notion of pairing elements in relation algebras and involving extensive relation–algebraic computations. The decision result upon which the present proof is based, due to Post [47**] and Markov [47**], is that the word problem for semigroups is recursively unsolvable. In this respect we shall follow the notation of Davis [58**].

DEFINITION 4.2.10. Let \(0 < a < \omega \). We define \(\mathbb{E}_a = \langle S_a, \cdot \rangle \), where \(S_a \) is the set of all non-zero finite sequences of elements of \(a \) and \(\cdot \) is the binary operation of concatenation.

Here we have deviated from Davis [58**] by not allowing the empty sequence. In fact, the modification appears to be necessary in order to carry out the proof of Theorem 4.5, p.98, there (it is needed below). Clearly:

THEOREM 4.2.11. If \(0 < a < \omega \), then \(\mathbb{E}_a \) is \(\text{K} \)-freely generated by \(a \), where \(\text{K} \) is the class of all semigroups.

DEFINITION 4.2.12. Let \(0 < a < \omega \) and let \(T \subseteq S_a \times S_a \). We define the binary relation \(\sim_T \) on \(S_a \) by setting, for any \(f, g \in S_a \), \(f \sim_T g \) iff there exist finite sequences \(h, k \) of elements of \(\omega \) (\(h = 0 \) or \(k = 0 \) possible) and a pair \((l, m) \in T \) such that \(f = h \cdot T^k \) and \(g = h \cdot m \cdot k \), or \(f = h^l \cdot m \cdot k \) and \(g = h \cdot l \) \cdot k \). Furthermore, \(f \equiv_T g \) iff there is a finite sequence \(n_0, \ldots, n_x \),...
such that \(f = n_3 \cdot \cdots \cdot n_1 \cdot f = g \).

Let \(\mathfrak{B}_n \) be the algebra introduced in 0.4.19 (the absolutely free algebra with \(n \) generators and a single binary operation). For any \(X \subseteq \mathcal{F}_n \), \(\mathfrak{B}_n \), we set

\[
\sim_X = \{(x, y) \in \mathcal{F}_n \times \mathcal{F}_n : f x \sim_T f y, \text{ where } f \text{ is the homomorphism from } \mathfrak{B}_n \text{ into } \mathfrak{G}_a \text{ such that } f_\iota = \iota \text{ for all } \iota < \alpha \text{ and } T = \{(f x, f y) : (x, y) \in X\})\}.
\]

We need two elementary facts about the relation \(\sim \).

THEOREM 4.2.13. If \(0 < \alpha < \omega \) and \(X \subseteq \mathcal{F}_n \times \mathcal{F}_n \), then \(\sim_X = \{(R : R \in \mathcal{C}_\mathcal{F}_n, \mathfrak{B}_n / R \text{ is a semigroup, and } X \subseteq R\} \).

PROOF. \(\subset \): suppose that \(x \sim_X y \), \(f \) and \(T \) are as in 4.2.12, and \(R \) is as above. Since \(\mathfrak{B}_n / R \) is a semigroup, choose by 4.2.11 \(g \in \text{Hom}(\mathfrak{G}_a, \mathfrak{B}_n / R) \) such that \(g = \iota / R \) for all \(\iota < \alpha \). Thus \(g f = u / R \) for all \(u \in \mathcal{F}_n \). Now if \(u, v \in \mathcal{F}_n \) and \(f u \sim_T f v \), say \(f u = h \cdot f_k u \) and \(f v = h \cdot f_m v \) with \((\iota, h) T m \). Say \(\iota = \iota' \), \(m = m' \), \(l' T m' \). Thus \(l' \mathcal{F}_n \mathcal{F}_n \), so \(g f_{\iota'} = g f_{l' / R} = m' / R = g f m' = g m' \). Hence \(g f u = g f v \). So we have shown that \(f u \sim_T f v \) implies that \(g f u = g f v \). Since \(f \) maps onto \(\mathcal{F}_n \), this implies that \(g f = g f y \), i.e., \(x R y \), as desired.

\(\supset \): It suffices to show that \(\sim_X \subseteq \text{CoB}_n \), \(\mathfrak{B}_n / \sim_X \) is a semigroup, and \(X \subseteq \sim_X \). To show that \(\sim_X \subseteq \text{CoB}_n \), suppose \(z \sim_X y \) and \(z \in \mathcal{F}_n \); we show that \(z, z \sim_X y, z \); by symmetry, this is enough. Now \(f(x, z) = f x z \) and \(f(y, z) = f y z \). Since \(f x \sim_T f y \), it is clear that \(f x z \sim_T f y z \). Hence \(x, y, z \sim_X \). Next, to show that \(\mathfrak{B}_n / \sim_X \) is a semigroup, suppose that \(x, y, z \in \mathcal{F}_n \). Then \(f(x, y, z) = f x y z = f((x, y) \cdot z) \), so \(x, y, z \sim_X (x, y) \cdot z \), as desired. Finally, suppose that \(x R y \). Then \(f(x, y) T(f y) \), so \(x \sim_T f y \), hence \(x \sim_X y \), as desired.

REMARK 4.2.14. Let \(0 < \alpha < \omega \), and let \(\mathcal{K} \) be the class of all semigroups. Recalling 0.4.65, we see that for any \(X \subseteq \mathcal{F}_n \times \mathcal{F}_n \) we have \(\sim_X = \text{Cr}_n^X \mathcal{K} \); \(\mathfrak{B}_n / \text{Cr}_n^X \mathcal{K} \) is freely generated under the set \(X \) of defining relations by the sequence \((\iota / \text{Cr}_n^X \mathcal{K} : \iota < \alpha) \).

THEOREM 4.2.15. If \(0 < \alpha < \omega \) and \(X \subseteq \mathcal{F}_n \times \mathcal{F}_n \), then for any \(f, g \in \mathcal{F}_n \) the following conditions are equivalent:

1. \(f \sim_X g \);
2. \(f \) is a homomorphism from \(\mathfrak{B}_n \) into some semigroup \(\mathcal{K} \), and if \(f h = f k \) for all \((h, k) \in X \), then \(f l = f g \).

The following is the form of the unsolvability of the word problem for semigroups which we shall use:

THEOREM 4.2.16. There exist \(0 < \alpha < \omega \) and a finite \(X \subseteq \mathcal{F}_n \times \mathcal{F}_n \) such that \(\sim_X \) is a non-recursive relation (under some standard Gödel numbering of the objects involved).

PROOF. By Theorem 4.5, p.98, of Davis [58**] choose \(0 < \alpha < \omega \) and a finite \(T \subseteq S_n \times S_n \) such that \(\sim_T \) is non-recursive. Choose
Lemma 4.2.17. Let \(\mathcal{A} \geq 3 \), and let \(\mathcal{X} \) be a CA\(_3\). Suppose \(x, y, z, w \in A \). Then

1. \(c(z;x) = x; c_z \)
2. \(x; c_z y = c_z (c_x; c; c_z d \cdot c_y) \).
3. \((x; y); c_z z = x (y; c_z z) \).
4. \(((z; y); z); c; w = (z; (y; z)); c; w \).

Proof. Condition (i) is clear. For (ii), we have

\[
x; c; y = c_z (c_z (d_2; c_x z) \cdot c_0 (d_0; d_2; c_x c_y))
= c_z (d_2; c_x z \cdot c_0 (d_0; d_2; c_x c_y))
= c_z (c_x z \cdot c_0 (d_0; d_2; c_x c_y))
= c_z (c_x z \cdot c_0 c_2 (d_0; d_2; c_x c_y)),
\]

as desired. For (iii), we have

\[
(x; y); c_z z = c_z (c_z (x; y) \cdot c_0 (d_0; d_2; c_x z)) \quad \text{by (ii)}
= c_z (c_z (s_2 c_x z \cdot s_0 c_y \cdot c_0 (d_0; d_2; c_x z))
= c_z (s_2 c_x z \cdot s_0 c_y \cdot c_0 c_2 (d_0; d_2; c_x z))
= c_z (s_2 c_x z \cdot s_0 c_y \cdot c_0 c_2 (d_0; d_2; c_x z))
= c_z (s_2 c_x z \cdot s_0 c_y \cdot c_0 c_2 (d_0; d_2; c_x z))
= x (y; c_z z) \quad \text{by (ii)}
\]

Finally,

\[
((x; y); z); c; w = (x; y); (z; c; w) \quad \text{by (iii)}
= (x; y); c_z (z; w) \quad \text{by (i)}
= x (y; c_z z) \quad \text{by (ii)}
= x (y; c_z z) \quad \text{by (i)}
= x (y; c_z z) \quad \text{by (iii)}
= (x; (y; z)); c_w \quad \text{by (iii)}
= (x; (y; z)); c_w \quad \text{by (iii)}.
\]
THEOREM 4.2.18. Suppose $3 \leq \alpha \leq \omega$ and $\text{IGs}_\Delta \subseteq K \subseteq \text{CA}_\Delta$. Then the equational theory of K is undecidable.

PROOF. We assume at first that $\alpha < \omega$; the case $\alpha = \omega$ will follow easily from this case, as we shall show at the end.

Suppose that $0 < \beta < \omega$. With each element x of $F\beta$ we associate a term τx of Σ_x involving only the variables $v_0, \ldots, v_{\beta - 1}$ as follows:

$$\tau x = v_i \text{ if } \{i \leq \beta; \quad (\tau(x; y)) = (\tau x; y),$$

for any $x, y \in \text{Fr}_\beta$. Here we use $\sigma; \tau$ as an abbreviation for $e_\sigma(e_i(d_{\sigma \cdot \tau} - e_\sigma \cdot c_\sigma \cdot d_{\sigma \cdot \tau})).$

We also need the following abbreviations:

$$e_\omega \sigma; \quad e_\omega \sigma; \quad \sigma \Theta \tau \text{ for } (\sigma; \tau) \Theta (\tau; \sigma);$$

$$\sigma \Delta \tau \text{ for } \sigma \Delta \tau \subseteq \tau.$$

Now we shall show:

(1) If $X \subseteq F\gamma \times F\beta$, X finite, and $x, y \in \text{Fr}_\beta$, then $x \preceq_X y$ iff the following inequality holds in K:

$$(\tau x; c_\beta e_\beta)(\tau y; c_\beta e_\beta) \leq \sum_{u, v \in X} c_{\alpha 0}(\tau u; \Theta \tau v).$$

For \equiv, assume that $x \equiv_X y$. By 2.4.53, it suffices to prove that the indicated equation holds an arbitrary simple $M \in \text{HSP}(K)$. Let $h \in \equiv A$. If $\tau M h \neq \tau M h$ for some $(u, v) \in X$, then the right side of the inequality is 1, and there is nothing to prove. Hence we may assume that $\tau M h = \tau M h$ for all $(u, v) \in X$. Now we set

$$R = \{(u, v) \in F\gamma \times F\beta; \text{ for all } a \in A \text{ we have } (\tau u; \tau v); c_\beta a = (\tau v; \tau u); c_\beta a\}.$$

We shall establish that $R \in \text{CoBf}_\Delta$. $\forall \beta / R$ is a semigroup, and $X \subseteq R$; by 4.2.13, this will show that $(x, y) \in R$ and hence under h the left side of the inequality (1) is 0, as desired. Clearly R is an equivalence relation on $F\beta$. To show that it is a congruence on $\forall \beta$, suppose that uRv and $w \in \text{Fr}_\beta$; we show that $(u \cdot w)R(v \cdot w)$; $(w \cdot u)R(w \cdot v)$ similarly. In fact, for any $a \in A$,

$$\tau(u \cdot w)^X h; c_\beta a = (\tau u; \tau w)^X h; c_\beta a$$

$$= (\tau u^M h; \tau w^M h); c_\beta a$$

$$= \tau w^M h; (\tau w^M h; c_\beta a) \text{ by 4.2.18(iii)}$$

$$= \tau v^M h; (\tau v^M h; c_\beta a) \text{ by 4.2.18(ii)}$$

$$= (\tau(v \cdot w))^M h; c_\beta a \text{ similarly.}$$

Thus $R \in \text{CoBf}_\Delta$. To show that $\forall \beta / R$ is a semigroup, suppose $u, v, w \in \text{Fr}_\beta$; we want to show that $((u \cdot v) \cdot w)R(u \cdot (v \cdot w))$. This is a clear consequence of 4.2.18(iv). Finally, suppose that uXv. Then $\tau u^M h = \tau v^M h$ by the above assumption, and so of course uRv.

We have now established the implication \(\Rightarrow \) in (1).

For \(\Leftarrow \), suppose that \(x \not\sim y \). By 4.2.15, let \(F \) be a homomorphism of \(\mathfrak{F}_x \) into a semigroup \(\mathfrak{X} \) such that \(Fu = Fv \) for all \((u,v) \in \mathfrak{X} \), while \(Fx \neq Fy \). Since any semigroup can be embedded in a semigroup with identity, we may assume that \(\mathfrak{X} \) has an identity \(e \). Let \(\mathfrak{B} \) be the full \(\mathbb{C}_x \) with base \(A \). Note that \(\mathfrak{B} \in \text{HSP} \mathfrak{K} \). We shall show that the inequality in the right side of (1) fails in \(\mathfrak{B} \); this then will establish \(\Leftarrow \). Let \(h \in \mathfrak{B} \) be any function satisfying the following conditions: for \(i \leq \beta \), \(h_i = \{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \} \), and \(h_\beta = \{ a \in ^o \mathfrak{A} : a_0 = Fx \} \). Now we claim

(2) for all \(u \in \mathfrak{F}_x \), \(\tau u \mathfrak{B} h = \{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \} \).

To show this it suffices to show that the set \(Y \) of \(u \in \mathfrak{F}_x \) for which the indicated equation holds is a subalgebra of \(\mathfrak{F}_x \) containing \(\beta \). Now obviously \(\beta \subseteq Y \). Suppose \(u, v \in Y \). Then

\[
\tau (u \cdot v) \mathfrak{B} h = (\tau u \mathfrak{B} h) \cdot (\tau v \mathfrak{B} h) = \{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \} \cdot \{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \} = \{ a \in ^o \mathfrak{A} : \text{there is a } b \in A \text{ such that } b = a_0 \cdot Fz \text{ and } a_i = b \cdot Fz \} \}
\]

(cf. 3.2.69)

\[
\tau (u \cdot v) \mathfrak{B} h = \{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \cdot Fz \}
\]

as desired. Thus (2) holds. Now we look at the inequality in (1). If \((u,v) \in \mathfrak{X} \), then \(Fu = Fv \), and so by (2) \(\tau u \mathfrak{B} h = \tau v \mathfrak{B} h \). It follows that

\[
(\Sigma_{(u,v) \in \mathfrak{X}} c_{(u,v)} (\tau u \mathfrak{B} \tau v)) \mathfrak{B} h = 0
\]

On the other hand,

\[
(\tau z c_{(v,y)} \mathfrak{B} h = (\tau z) \mathfrak{B} h \cdot c_{(v,y)} \mathfrak{B} h
\]

\[
\{ a \in ^o \mathfrak{A} : a_i = a_0 \cdot Fz \} \cdot c_{(a \in ^o \mathfrak{A} : a_0 = Fx)}
\]

\[
\{ a \in ^o \mathfrak{A} : \text{for some } s \in A, a_s = a_0 \cdot Fz \text{ and } Fz = Fx \}
\]

Similarly, \((\tau z c_{(v,y)} \mathfrak{B} h = \{ a \in ^o \mathfrak{A} : a_0 \cdot Fz = Fx \} \). Now fix some \(a \in ^o \mathfrak{A} \) with \(a_0 = e \). Then \(a \in (\tau z c_{(v,y)} \mathfrak{B} h \cdot (\tau z c_{(v,y)} \mathfrak{B} h \). Thus the equation in (1) fails to hold under \(h \). So, now we have established (1).

From 4.2.16 and (1) it follows that the equational theory of \(\mathfrak{K} \) is undecidable.

Now we take the case \(a = \omega \). Suppose \(\mathfrak{I} \in \mathfrak{K} \subseteq \mathfrak{C} \mathfrak{A}_\omega \). Then:

(3) If \(3 \leq \omega \), then \(\mathfrak{I} \in \mathfrak{K} \subseteq \mathfrak{C}(\mathfrak{R}_0, \mathfrak{H} \in \mathfrak{K}) \subseteq \mathfrak{C} \mathfrak{A}_\omega \).

For, let \(\mathfrak{B} \in \mathfrak{I} \). By 3.1.122, say \(\mathfrak{B} \in \mathfrak{R}_0 \mathfrak{M} \) with \(\mathfrak{H} \in \mathfrak{I} \). Then \(\mathfrak{H} \in \mathfrak{K} \). So, the first inclusion of (3) holds. The second one holds by 2.6.2.
The following is clear:

(4) If $3 \leq \omega$ and γ and ν are terms of L, then $K = \gamma = \nu$ if $S(\mathbf{K} \uparrow; H \cdot K) = \gamma = \nu$.

From (3), (4), and the result for all α with $3 \leq \omega$ (or even the case $\gamma = 3$) it follows that the equational theory of K is undecidable. This finishes the proof of 4.2.18.

COROLLARY 4.2.19. Let $3 \leq \omega \leq \nu \leq \omega$. The equational theory of each of the following classes is undecidable: L_α, S_α, D_α (if $\nu = \omega$). $N_\alpha, C_\alpha, R_\alpha, C_\alpha$.

Elementary theory of CA

Now we turn to another major result in this section. The undecidability of the elementary theory of CA_α (later will we see that the elementary theory CA_ω is also undecidable (in 4.2.25)). For CA_α, the result is due to M. Rubin [76]; the slightly weaker theorem that the elementary theory of a BA with a distinguished subalgebra is undecidable was obtained independently by R. McKenzie.

We begin with some preliminaries concerning Boolean algebras.

DEFINITION 4.2.20. For any $BA \mathcal{A}$ let $El \mathcal{A} = \{a \in A : \text{there exist } b, c \in A \text{ such that } \mathcal{R}_I^a \mathcal{A} \text{ is atomic, } \mathcal{R}_I^a \mathcal{A} \text{ is atomless, and } a = b + c\}$.

We count the one-element BA as both atomic and atomless. Thus $At \mathcal{A} \subseteq El \mathcal{A}$ for any $BA \mathcal{A}$, and $a \in El \mathcal{A}$ if \mathcal{A} has no atom $\leq a$.

LEMMA 4.2.21. For any $BA \mathcal{A}$, $El \mathcal{A}$ is an ideal in I. Also, if $a \in A$, then $\mathcal{A}/El \mathcal{A} = (\mathcal{R}_I^a \mathcal{A}/El(\mathcal{R}_I^a \mathcal{A}))/((\mathcal{R}_I^a \mathcal{A}/El(\mathcal{R}_I^a \mathcal{A}))$.

PROOF. The first statement is obvious. The isomorphism desired in the second statement is determined by the condition

$$f(x/El \mathcal{A}) = ((x \cdot a)/El(\mathcal{R}_I^a \mathcal{A}), (x - a)/El(\mathcal{R}_I^a \mathcal{A}))$$

for any $x \in A$.

LEMMA 4.2.22. There are formulas $\nu_0(v_0)$, $\nu_1(v_0)$, $\xi_2(v_0)$, $\xi_3(v_0, v_1)$, and $\xi_4(v_0)$ of L_ω, with the indicated free variables, such that for any $CA_\alpha \mathcal{A}$ and any $a, b \in A$ the following conditions hold:

(i) $x = a$ is an atom of \mathcal{A};
(ii) $x = a$ is an atom of $\mathcal{R}_I \mathcal{A};$
(iii) $x = a$ is an atom of $\mathcal{R}_I \mathcal{A};$
(iv) $x = a \cap b$ is an atom of $\mathcal{R}_I \mathcal{A};$
(v) $x = a$ is an atom of $\mathcal{A}/El \mathcal{A};$

The construction of these formulas is routine.
THEOREM 4.2.23. The elementary theory of CA_1 is undecidable.

PROOF. The proof will be based on the undecidability of the elementary theory of two equivalence relations; see, e.g., Monk [76**, p.295. Let L_∞ be a first order language with just two non-logical constants, binary relation symbols E_0, E_1. Γ is the standard set of axioms for two equivalence relations; thus an L_∞-structure $\mathcal{U} = (A, E_0, E_1)$ is a model of Γ iff E_0 and E_1 are equivalence relations with field A.

Now we describe some particular BA's which will be used below. Let \mathcal{X} be the BA of finite and cofinite subsets of ω, and let F_1 be the ultrafilter of \mathcal{X} consisting of the cofinite sets. Let \mathcal{B} be the free BA on ω generators $\langle x_i : i < \omega \rangle$, and let F_2 be the ultrafilter on \mathcal{B} generated by $\{ -x_i : i < \omega \}$. Now it is easy to see that the set

\[C = \{ (a, b) : a \in A, b \in B, \text{ and } a \in F_1 \text{ iff } b \in F_2 \} \]

is a subuniverse of $\mathcal{X} \times \mathcal{B}$; we denote the corresponding BA by \mathcal{C}. Now the following conditions clearly hold, for any $c \in C$:

1. $c \in A \cap C$ iff $c = (0, 0)$ for some $i \in \omega$;
2. $\mathcal{B} \subset C$ is atomless iff $c = (0, b)$ for some $b \in B \sim F_2$;
3. $\mathcal{B} \subset C$ is atomic iff $c = (a, 0)$ for some finite subset a of ω;
4. $E \mathcal{C} = \{ (a, b) : a \in A \sim F_1, b \in B \sim F_2 \}$, and $E \mathcal{C}$ is a maximal ideal in \mathcal{C}.

Next we want to describe a translation from L_∞ into L_∞. To this end we need the formulas $\varphi_1, \ldots, \varphi_5$ of Lemma 4.2.22. In terms of them it is easy to construct formulas $\varphi_i(v_0, v_1), \varphi_j(v_0, v_1)$, with the indicated free variables, such that for any CA_1, D and any $d, e \in D$, the following conditions hold:

6. $D, \varphi_i[d, e]$ iff $d / E \mathcal{B} \mathcal{D}$ and $e / E \mathcal{B} \mathcal{D}$ are atoms and there exist $d', e' \in D$ such that $d / E \mathcal{B} \mathcal{D} = d' / E \mathcal{B} \mathcal{D}, e / E \mathcal{B} \mathcal{D} = e' / E \mathcal{B} \mathcal{D}$, and for every atom a of $\mathcal{B} \mathcal{D}$, there is exactly one atom $\preceq a, d'$ iff there is exactly one atom $\preceq a, e'$;

7. similarly for φ_7, with "exactly one" replaced at both its occurrences by "exactly three".

Now we associate with each formula ψ of L_∞ a formula ψ^1 of L_1 by the following stipulations:

\[
\begin{align*}
(v_i = v_j)^1 &= \varphi_3(v_i, v_j); \\
(E_0 u_i v_j)^1 &= \varphi_3(u_i, v_j); \\
(E_1 u_i v_j)^1 &= \varphi_3(u_i, v_j); \\
\mathcal{T}^1 &= \mathcal{T}; \\
(\neg \psi)^1 &= \neg \psi; \\
(\psi \lor \psi)^1 &= \psi \lor \psi; \\
(\psi \land \psi)^1 &= \psi \land \psi; \\
(\forall u_i \psi)^1 &= \forall u_i (\varphi_4(u_i) \lor \psi).
\end{align*}
\]

Now let Δ consist of the following sentences of L_1:
4.2.23

DECISION PROBLEMS

(ELEMENTARY THEORY OF CA_1)

axioms for CA_1, expressed naturally;
\[\exists v_0 \varphi_4(v_0); \]
\[\forall v_0 \forall v_1 \forall v_2 \forall v_3 (v_0 = v_1) \land (v_2 = v_3) \land \varphi_6(v_0, v_2) \rightarrow \varphi_6(v_1, v_3); \]
\[\forall v_0 \exists v_4 \varphi_4(v_0) \rightarrow \varphi_6(v_0, v_0); \]
\[\forall v_0 \forall v_1 \varphi_6(v_0, v_1) \rightarrow \varphi_6(v_1, v_1); \]
\[\forall v_0 \forall v_1 \forall v_2 \forall v_3 \varphi_6(v_0, v_1) \land \varphi_6(v_1, v_2) \rightarrow \varphi_6(v_0, v_2); \]

similar sentences with \(\varphi_6 \) replaced by \(\varphi_7 \).

It suffices to show that \(\Delta \) is an undecidable theory in \(L_1 \). To do this, it suffices to prove the following statement.

8) For any sentence \(\varphi \) of \(L_4 \), \(\Gamma \models \varphi \) iff \(\Delta \models \varphi^4 \).

To prove \(\Rightarrow \) in (8), the easy direction, we need the following construction. Let \(\Delta \) be any model of \(\Delta \). We form an \(L_4 \)-structure \(\mathfrak{B} = (F, E_0, E_1) \) as follows:

\[
F = A(t(E_0/E_1), E_1) \\
E_0 = \{ (d/\mathfrak{E}_1, e/\mathfrak{E}_1) : D = \varphi_6[d, e] \} \\
E_1 = \{ (d/\mathfrak{E}_1, e/\mathfrak{E}_1) : D = \varphi_7[d, e] \}.
\]

It is easily checked that \(\mathfrak{B} \) is a model of \(\Gamma \). Now let \(l = (E_1/E_1)^* \); recall from 0.2.21 that \(l \in H(\mathfrak{E}_1, \mathfrak{E}_1/E_1) \). Then one can easily prove by induction on \(\psi \) that the following statement holds:

9) For any formula \(\psi \) of \(L_4 \) and any \(a \in \mathfrak{B}(\mathfrak{D} = \varphi_4[a]) \) we have \(\mathfrak{B} \models \psi[l \ast a] \) iff \(\mathfrak{D} \models \varphi^4[a] \).

From this the direction \(\Leftarrow \) in (8) is clear.

For the direction \(\Rightarrow \), we shall associate with each model \(\mathfrak{D} \) of \(\Gamma \) in which \(D \) is a non-zero ordinal \(\preceq \omega \) a model \(\mathfrak{C}_D \) of \(\Delta \). Say \(\mathfrak{D} = (\alpha, E_0, E_1) \), where \(E_0 \) and \(E_1 \) are equivalence relations on \(\alpha \), \(a \preceq \omega \). Now we shall use the constructions of \(BA \)'s mentioned at the beginning of this proof. For each \(\kappa \preceq \omega \) let \(y_\kappa = x_\kappa \Pi_{\lambda < \kappa} - x_\lambda \). Then the \(y_\kappa \)'s are non-zero, pairwise disjoint, and:

10) \(\Sigma_{\kappa < \omega} y_\kappa = 1 \).

This condition is easily checked. Furthermore:

11) If \(0 \neq x \in B \sim F_2 \), then \(1 \in \{ \kappa \preceq \omega : x \ast y_\kappa \neq 0 \} \preceq \omega \).

For, the first inequality is clear from (10). For the second inequality, we can write

\[x = \Sigma_{M \in \mathfrak{P}} (\Pi_{\kappa \in M} x_\kappa \cdot \Pi_{\kappa \in N - M} - x_\kappa) \]

for some finite \(N \preceq \omega \) and some \(\mathfrak{P} \subseteq Sb N \). Since \(x \notin F_2 \), we have \(\Pi_{\kappa \in M} x_\kappa \cdot \Pi_{\kappa \in N - M} - x_\kappa \notin F_2 \)

for all \(M \in \mathfrak{P} \), hence \(M \neq 0 \) for all \(M \in \mathfrak{P} \). Choose \(\lambda \in \omega \) with \(\lambda > \kappa \) for all \(\kappa \in \bigcup_{M \in \mathfrak{P}} M \).

Then \(\{ \kappa \preceq \omega : x_\kappa \neq 0 \} \preceq \{0, \ldots, \lambda - 1\} \), so the second inequality follows.
Note that \(y \not\in F \), for all \(\sigma < \omega \). Hence \((0,y) \in C \) for all \(\sigma < \omega \). Let \((b_{i,\kappa}: t \in 2, \tau \in \alpha/E, \kappa \in \omega) \) be an enumeration of \(\{(0,y): \sigma < \omega\} \) without repetitions. Then by (3) and (11) we have:

(12) If \(\tau \in C \) and \(\mathfrak{N}(C) \) is atomless, then \(1 \leq |\{(t,\alpha,\kappa): t \in 2, \tau \in \alpha/E, \kappa \in \omega, \alpha \cdot b_{i,\kappa} \neq 0\}| < \omega \).

Next, for each \(\tau < \alpha \) let \(M_{t,\kappa}: t \in 2, \sigma \in \alpha/E, \kappa \in \omega \) be a partition of \(\alpha \mathfrak{C} \) such that, for any \(t \in 2, \tau \in \alpha/E, \kappa \in \omega \),

\[
|M_{t,\kappa}| = \begin{cases}
1 & \text{if } \tau = 0 \text{ and } \kappa \in \sigma, \\
2 & \text{if } \tau = 0 \text{ and } \kappa \notin \tau, \\
3 & \text{if } \tau = 1 \text{ and } \kappa \in \tau, \\
4 & \text{if } \tau = 1 \text{ and } \kappa \notin \tau.
\end{cases}
\]

Finally, for any \(\tau \in 2, \sigma \in \alpha/E, \lambda < \omega \) we let \(c_{t,\kappa} \) be that member of \(\alpha \mathfrak{C} \) such that, for any \(\tau < \alpha \),

\[
c_{t,\kappa} = b_{t,\kappa} + \sum_{\tau} M_{t,\kappa}.
\]

Thus, using (10).

(13) \((c_{t,\kappa}: t \in 2, \sigma \in \alpha/E, \kappa \in \omega) \) is a system of pairwise disjoint elements of \(\alpha \mathfrak{C} \) with sum 1.

Now let \(\mathfrak{G} = \alpha \mathfrak{C} \) and \(\mathfrak{G} = \mathfrak{G}_{\mathfrak{A}}(c_{t,\kappa}: t \in 2, \delta \in \alpha/E, \kappa \in \omega) \). For each \(\tau < \alpha \) let \(t_\tau \) be that member of \(F \) such that \(t_\tau = 1 \) and \(t_\mu = 0 \) if \(\mu \in \alpha \setminus \{\tau\} \). Note that \(\mathfrak{G} \) is isomorphic to \(\mathfrak{A} \). Also note the following concerning \(\mathfrak{G} \):

(14) If \(d, e \in G, \tau \in \alpha, \) and \(d \leq e \), then \(d \leq e \).

For, if \(c_{t,\kappa} \leq d \), then \(c_{t,\kappa} \leq e \), hence \(c_{t,\kappa} \leq e \) since \(c_{t,\kappa} \) is an atom. Since \(\{c_{t,\kappa}: t \in 2, \sigma \in \alpha/E, \kappa \in \omega\} \) is the set of atoms of \(\mathfrak{G} \), (14) follows.

Next, let

\[
I = \{(\Omega, d, e): \Omega \text{ is a finite subset of } \alpha, d \in \Omega, \text{ and } e \in G\}.
\]

For each \((\Omega, d, e) \in I \) we let \(s_{\Omega de} \) be the member of \(\alpha \mathfrak{C} \) such that, for any \(\lambda < \alpha \),

\[
s_{\Omega de} = \begin{cases}
d \lambda & \text{if } \lambda \in \Omega, \\
e \lambda & \text{if } \lambda \notin \Omega.
\end{cases}
\]

Let \(H = \{s_i: i \in I\} \). Note that if \(\alpha < \omega \) then \(H = \alpha \mathfrak{C} \). Now we claim

(15) \(H \in S \mathfrak{G} \).
To show this, let \((\Omega, d, e), (\Omega', d', e') \in I\). Then \(-s_{\Omega d e} = s_{\Omega u v}\) with \(u = -d\) for all \(\lambda \in \Omega\), and \(v = -e\). And \(s_{\Omega d e} + s_{\Omega d' e'} = s_{\Omega u v}\), where \(\Lambda = \Omega \cup \Omega', v = e + e', \) and \(u = \lambda G\) is defined as follows: for any \(\lambda \in \Lambda\),

\[
\begin{align*}
 u = & \left\{ \\
 & (d + d')\lambda & \text{if } \lambda \in \Omega \cup \Omega', \\
 & (d + e')\lambda & \text{if } \lambda \in \Omega \ominus \Omega', \\
 & (e + d')\lambda & \text{if } \lambda \in \Omega' \ominus \Omega.
\end{align*}
\]

So (15) holds. We denote by \(\Phi\) the BA with universe \(H\).

(16) \(G \lhd H\).

For, if \(e \in G\) then \(e = s_{G e} e \in H\). Next.

(17) For every \(z \in H\) there is a smallest \(y \in G\) such that \(z \lhd y\).

To prove (17), let \((\Omega, d, e) \in I\). We may assume, of course, that \(\Omega \neq \emptyset\). For each \(\epsilon \in \Omega\) let \(w_{\epsilon}\) be the member of \(\vec{G}\) such that, for any \(\lambda \in \epsilon\),

\[
w_{\epsilon} = \left\{ \\
 0 & \text{if } \lambda \in \Omega \ominus \{\epsilon\}, \\
 d & \text{if } \lambda = \epsilon, \\
 e & \text{if } \lambda \notin \Omega.
\]

Clearly \(w_{\epsilon} \in H\). We prove (17) first for an arbitrary \(w_{\epsilon}\). Say \(d_{\epsilon} = (u_{\epsilon}, v_{\epsilon})\).

Case 1. \(u\) is a finite subset of \(\omega\) and \(v \in B \sim F_{2}\). Let \(N = \{\epsilon, \sigma, \lambda) : \epsilon \in 2, \sigma \in \alpha / E_{\lambda}, \lambda \in \omega, \) and \((u, 0) \sim M_{\Sigma_{\epsilon}(\omega G)} \neq 0\) or \(b_{0} \epsilon (0, v) \neq 0\). Using (12), it is clear that \(N\) is finite. Therefore \(e + \Sigma s_{\epsilon, \rho, \lambda) \in N \epsilon (\omega G)\) (or merely \(\Sigma (\epsilon, \rho, \lambda) \in N \epsilon (\omega G)\), if \(= \alpha\)) is the smallest element of \(G\) which is \(\sim w_{\epsilon}\) (using (14)).

Case 2. \(u\) is a cofinite subset of \(\omega\) and \(v \in F_{2}\). Let \(N = \{\epsilon, \sigma, \lambda) : \epsilon \in 2, \sigma \in \alpha / E_{\lambda}, \lambda \in \omega, \) and \(\Sigma_{\epsilon}(\omega G) \leq (-u, 1)\), and \(b_{\epsilon} \epsilon (1, -v)\). Again, \(N\) is finite. This time \(e + \Sigma s_{\epsilon, \rho, \lambda) \in N \epsilon (\omega G)\) (or \(\Sigma (\epsilon, \rho, \lambda) \in N \epsilon (\omega G)\), if \(= \alpha\)) is the smallest element of \(G\) which is \(\sim w_{\epsilon}\).

Thus (17) holds for any \(w_{\epsilon}\). Now \(s_{\Omega d e} = \Sigma s_{\epsilon, \Omega} w_{\epsilon}\). For each \(\epsilon \in \Omega\) let \(y_{\epsilon} \in G\) be smallest such that \(w_{\epsilon} \lhd y_{\epsilon}\). Then \(\Sigma_{\epsilon \in \Omega} y_{\epsilon}\) is the smallest element of \(G\) which is \(\sim s_{\Omega d e}\).

Hence (17) holds.

Now for each \(z \in H\) let \(c_{\Omega} x\) be the smallest \(y \in G\) such that \(z \lhd y\), and let \(d_{\Omega} = 1^\Phi\).

We set \(\mathcal{E}_{\Omega}\) to be \(\Phi\) with the operation \(c_{\Omega}\) and the element \(d_{\Omega}\) adjoined. It is easily checked that \(\mathcal{E}_{\Omega}\) is a CA. Note that \(\mathcal{E}_{\Omega} \mathcal{D}_{\Phi} = \Phi\), the universe of \(\mathcal{E}_{\Omega}\) is \(H\), and \(\exists \mathcal{D}\mathcal{E}_{\Phi} = \mathcal{E}_{\Omega}\). Now the following conditions are easily checked:

(18) If \((\Omega, d, e) \in I\) and \(z = s_{\Omega d e}\), then the following conditions are equivalent: (a) \(\mathcal{R} \mathcal{I}_{\mathcal{D}_{\Phi}}\) is atomic (resp. atomless), (b) for all \(\epsilon \in \Omega\), the algebra \(\mathcal{R}_{\mathcal{I}_{\mathcal{D}_{\Phi}}} = \mathcal{R}\) is atomic (resp. atomless), and \(e = 0\) if \(\Omega \neq \emptyset\).

(19) \(z \in \mathcal{E} \mathcal{D}_{\mathcal{D}}\) iff there exist finite \(\Omega \subseteq \alpha\) and \(d \in \Omega C\) such that \(z = s_{\Omega d 0}\) and \(d \in \mathcal{E} \mathcal{D}\) for all \(\epsilon \in \Omega\).

Note that \(t_{\epsilon} \in H\) for all \(\epsilon \in \alpha\). Now by Lemma 4.2.22, (5), and (19) we have:
For any \(z \in H \) we have \(\mathcal{D} \models \varphi[z] \) iff there is a \(\kappa \in E \) such that \(z \otimes t_\kappa \in E \mathcal{O} \).

Note that the \(\kappa \) mentioned in (20) is unique. From (20) we obtain:

\begin{equation}
(21) \quad \mathcal{D} \models \exists v_0 \varphi_1(v_0).
\end{equation}

Now the most important properties of \(\mathcal{D} \) are given in the following statement and the similar statement (23) below.

(22) Suppose \(x, y \in H, \mathcal{D} \models \varphi[x], \mathcal{D} \models \varphi[y], \) \(x \otimes t_\kappa \in E \mathcal{O}, \) and \(y \otimes t_\lambda \in E \mathcal{O}, \) where \(\kappa, \lambda < \alpha. \) Then \(\mathcal{D} \models \varphi_3(x, y) \) iff \(\kappa E_\lambda. \)

First we show the direction \(\Rightarrow \); so suppose that \(\kappa E_\lambda. \) To check (6) we take \(x, y, t_\kappa, t_\lambda \) for \(d, e, d', d' \) respectively. Suppose that \(z \) is an atom of \(3b \mathcal{D} = \Theta. \) Thus \(z = \epsilon_{\mu \omega} \) for some \(\epsilon \in 2, \sigma \in \alpha \cap E_\kappa, \mu \in \omega. \) Thus for any \(\nu < \alpha \) we have

\begin{equation}
(t_\kappa \epsilon_{\mu \omega})^\nu = \begin{cases}
0 & \text{if } \nu \neq \kappa, \\
\epsilon_{\mu \omega} + \Sigma M_{\mu \omega} & \text{if } \nu = \kappa.
\end{cases}
\end{equation}

Hence there is exactly one atom \(\leq t_\kappa \epsilon_{\mu \omega} \) iff \(|M_{\mu \omega}| = 1 \) iff \(\tau = 0 \) and \(\kappa \in \sigma. \) Similarly, there is exactly one atom \(\leq t_\lambda \epsilon_{\mu \omega} \) iff \(\tau = 0 \) and \(\lambda \in \sigma. \) Since \(\kappa E_\lambda, \) it follows that there is exactly one atom \(\leq t_\kappa \epsilon_{\mu \omega} \) if \(\kappa E_\lambda, \) so there is exactly one atom \(\leq t_\lambda \epsilon_{\mu \omega} \). Thus \(\mathcal{D} \models \varphi_3(x, y) \) by (6).

Now we take the direction \(\Rightarrow \) in (22): assume that \(\mathcal{D} \models \varphi_3(x, y). \) Then we get elements \(d', e' \) as indicated in (6), with \(x, y \) in place of \(d, e. \) Thus \(d' \otimes t_\kappa \in E \mathcal{O}. \) By (19) there exist finite \(\Omega \subseteq \alpha \) and \(d \in \mathcal{L} \) such that \(d' \otimes t_\kappa = \sigma \otimes d_0 \) and \(d_\mu \in E \mathcal{C} \) for all \(\mu \in \Omega. \) We may assume that \(\kappa \in \Omega. \) For each \(\mu \in \Omega \) let \(d'_\mu = (u_\mu, v_\mu). \) Now \((d' \otimes t_\kappa)_\mu = (u_\mu, v_\mu, \kappa, \lambda) \) \(\kappa \in \Sigma \) and \((d' \otimes t_\lambda)_\mu = (-u_\mu, -v_\mu) \). Hence \(u_\mu \) is finite for \(\mu \in \Omega \), and cofinite for \(\mu = \kappa, \) by Lemma 4.2.22 and (5). Now let \(\sigma = \kappa / E_\kappa. \) For each \(\mu \in \alpha \setminus \{ \kappa \} \) there is a \(\iota \in \mu \) such that \(M_{\mu \omega}^\kappa d'_\mu = 0 \) for all \(\tau \in \omega \cup \iota \mu, \) and there is an \(\iota \in \mu \) such that \(M_{\mu \omega}^\kappa \leq d'_\mu \) for all \(\tau \in \omega \setminus \{ \iota \}. \) Now we can use the same reasoning for \(e', \) obtaining a finite \(\Lambda \subseteq \alpha \) and \(e \in \mathcal{C} \) such that \(e' \otimes t_\kappa = \lambda \rho_0 \) and \(e \in E \mathcal{C} \) for all \(\mu \in \Lambda, \) and also for each \(\mu \in \Lambda \setminus \{ \kappa \} \) obtaining a \(\iota \in \omega \) such that \(M_{\mu \omega}^\kappa e'_\mu = 0 \) for all \(\tau \in \omega \cup \iota \mu, \) and a \(\iota \in \omega \) such that \(M_{\mu \omega}^\kappa \leq e'_\mu \) for all \(\tau \in \omega \setminus \{ \iota \}. \) Now fix \(\tau \in \omega \) with \(\tau \in \mu \) for all \(\mu \in \Omega \) and \(\tau \in \Omega \) for all \(\mu \in \Lambda. \) Recall that \(\epsilon_{\mu \omega} \) is an atom of \(3b \mathcal{D} = \Theta. \) By the choice of \(\tau, \) for any \(\mu \in \alpha \setminus \{ \kappa \} \) we have \(\epsilon_{\mu \omega} (d'_\mu) = (0, w) \) for some \(w, \) while \(\epsilon_{\mu \omega} (d'_\mu) = (\Sigma M_{\mu \omega}^\kappa, w) \) for some \(w. \) Note that \(|M_{\mu \omega}^\kappa| = 1. \) Hence there is exactly one atom \(\leq \epsilon_{\mu \omega} (d'). \) Hence by (6) there is exactly one atom \(\leq \epsilon_{\mu \omega} (d'). \) Reasoning just as above, this means that \(|M_{\mu \omega}^\kappa| = 1. \) So \(\lambda \in \sigma \) and \(\kappa E_\lambda, \) as desired. So (22) holds. Similarly:

(23) Suppose \(x, y \in H, \mathcal{D} \models \varphi[y], \) \(x \otimes t_\kappa \in E \mathcal{O}, \) and \(y \otimes t_\lambda \in E \mathcal{O}, \) where \(\kappa, \lambda < \alpha. \) Then \(\mathcal{D} \models \varphi_3(x, y) \) iff \(\kappa E_\lambda. \)

Now we can check that \(\mathcal{D} \) is a model of \(\Delta. \) Of all the sentences in \(\Delta, \) only the one
expressing transitivity of \(\{(x,y): \mathcal{E}_\Sigma = \rho_{[x,y]} \} \), and the similar one for \(\varphi_z \), give any difficulties. So, suppose that \(\mathcal{E}_\Sigma = \rho_{[x,y]} \) and \(\mathcal{E}_\Sigma = \varphi_y[y,z] \). Thus by Lemma 4.2.22(v) we have \(\mathcal{E}_\Sigma = \varphi_{[x,y]} \), \(\mathcal{E}_\Sigma = \rho_{[y,z]} \), and \(\mathcal{E}_\Sigma = \varphi_z[z] \). By (20), there exist \(\epsilon, \lambda, \mu < \omega \) such that \(x \epsilon t_\epsilon \), \(y \epsilon t_\lambda \), and \(z \epsilon t_\mu \) are all members of \(E \mathcal{B} \). Thus by (22) we have \(x \epsilon t_\epsilon \), \(\mathcal{E}_\Sigma^{t_\epsilon} \), hence \(\epsilon \mathcal{E}_{t_\epsilon} \). Then (22) again yields \(\mathcal{E}_\Sigma = \varphi_{[x,y]} \), as desired. The corresponding property for \(\varphi_z \) is established similarly. Hence \(\mathcal{E}_\Sigma \) is a model of \(\Delta \).

Now with the essential use of (22) and (23) we can show:

(24) Suppose \(\epsilon \in \omega \), \(x \epsilon H \), and \(x \epsilon t_\epsilon \). Then for any formula \(\varphi \) of \(\mathcal{E}_\epsilon \) we have \(\mathcal{E} = \varphi_{[x]} \) iff \(\mathcal{E}_\Sigma = \varphi_{[x]} \).

This finishes the construction started after (9) above. Now we prove equality in (8). Let \(\mathcal{D} \) be any model of \(\Gamma \). By the downward Lowenheim-Skolem theorem we may assume that the universe of \(\mathcal{D} \) is some ordinal \(\sigma \subseteq \omega \). By the above construction, \(\mathcal{E}_\Sigma \) is a model of \(\Delta \), and \(\mathcal{E}_\Sigma = \varphi_{[x]} \), hence by (24) \(\mathcal{D} = \mathcal{E}_\Sigma \), as desired.

This finishes the proof of 4.2.23.

Remark 4.2.24. Comer [75a] has shown that the elementary theory of any of the varieties of \(\mathcal{C} \) mentioned in 4.1.21, except \(\mathcal{C}_1 \), itself, is decidable. And in Comer [69b] p.176 it is shown that the elementary theory of finite \(\mathcal{C}_1 \)'s is decidable.

Additional results

The following is a special case of the main theorem of Comer [69b].

Theorem 4.2.25. The elementary theory of \(\mathcal{C}_2 \) is undecidable.

Proof. Recall that equivalence relations \(E_0 \) and \(E \), on a set \(A \) are called disjoint provided that \(\{(x,y): (y \mathcal{E}_0) \cap (y \mathcal{E}) \} \leq 1 \) for all \(x \mathcal{E}_0 \). Let \(\Gamma \) be the theory of two disjoint equivalence relations (on the universe of the \(\mathcal{E}_\epsilon \)) introduced in the proof of 4.2.23. We shall make use of the fact that \(\Gamma \) is finitely inseparable, i.e., there is no recursive set containing \(\{\varphi: \varphi \text{ a sentence of } \mathcal{E}_\epsilon, \mathcal{E}_\epsilon = \varphi \} \) and disjoint from \(\{\varphi: \varphi \text{ a sentence of } \mathcal{E}_\epsilon, \mathcal{E}_\epsilon = \varphi \text{ in some finite model } \mathcal{N} \text{ of } \Gamma \} \) (see, e.g., Comer [69b]). Now adjoin a new individual constant \(k \) to \(\mathcal{E}_\epsilon \), forming a language \(\mathcal{E}_\epsilon^* \). Thus \(\mathcal{E}_\epsilon^* \)-structures are systems \((\mathcal{N}, a) \) with \(a \) similar to \(\mathcal{C}_2 \)'s, and \(a \in A \). Let \(\varphi(v_0) \) be the formula in \(\mathcal{E}_\epsilon^* \) expressing that \(v_0 \) is an atom \(\equiv k \). With each formula \(\varphi \) of \(\mathcal{E}_\epsilon \) we associate a formula \(\varphi' \) of \(\mathcal{E}_\epsilon^* \): \(\mathcal{E}_\epsilon \mathcal{C}_k v_0, v_j \) \(\equiv \varphi(v_j) \mathcal{A} \mathcal{C}_k v_i \equiv c_k v_j \) for \(k = 0, 1 \); \(v_i \equiv v_j \) \(\equiv v_0 \equiv v_j \) \(\equiv v_0 \equiv \mathcal{C}_k v_0 \) for \(k = 0, 1 \); (commutes with sentential connectives); and \((\forall \mathcal{C}_k v_0) \equiv \mathcal{C}_k (v_0) \equiv \varphi' \). Let \(\varphi^* \) be \(\exists \mathcal{E}_\epsilon \mathcal{C}_k (v_0) \equiv \varphi' \). Then clearly \(\mathcal{E}_\epsilon = \mathcal{E}_\epsilon^* \equiv \mathcal{E}_\epsilon^* \). If \(\mathcal{K} \) is any atomic \(\mathcal{C}_2 \) and \(0 \neq a \in A \), we define \(\mathcal{E}_{\mathcal{K}} = (B, \mathcal{E}_0, E_1) \) by setting \(B = \{ b \in A : (\mathcal{K}, a) \equiv \varphi(b) \} \) and \(E_1 = \{ (a, b) : b \in A : (\mathcal{K}, a) \equiv \varphi(b) \} \) for \(k = 0, 1 \). Now we show that if \(\mathcal{E} \) is any finite model of \(\Gamma \) then there is a finite \(\mathcal{C}_2 \) \(\mathcal{K} \) and \(0 \neq a \in A \) with \(\mathcal{E}_{\mathcal{K}} = \mathcal{E} \). Standard arguments then show that \(\Theta_0 \mathcal{C}_2 \) is undecidable. Let \(\mathcal{E} = (C, E_0, E_1) \); say the \(E_k \) classes are
\(K_0^k, \ldots, K_n^k, \ k = 0, 1\). Let \(n = \max(m_0,m_1)\) and \(X = \mathbb{E}b^{(\varepsilon_\eta)}\). For each \(e \in C\) let
\(f_c = \langle (i,j) \rangle\), where \(\langle i,j \rangle\) is the (unique) pair such that \(c \in K_i^k \cap K_j^0\). Let \(a = f^*C\). It is
easily verified that \(f \in Is(\mathcal{E}, \mathcal{P}_{\Delta_a})\), as desired.

REMARK 4.2.26. We conclude this section with a brief discussion of the recursive axiomatizability of certain elementary theories discussed in section 4.1. By the result of Resek [75] mentioned in 3.2.8, \(\Theta_\varepsilon(\text{Gr}_3, \text{NC}_A)\) is recursively axiomatizable by the equations mentioned there, since \(\text{Gr}_3, \text{NC}_A\) is the variety characterized by those equations. Similarly, \(\Theta_0\text{Gr}_3\) and \(\Theta_0\text{CS}_3\) are recursively axiomatizable (see the discussion of equations characterizing \(\text{Gr}_3\) in section 4.1.) By Theorem 4.1.14, \(\Theta_0\text{L}_a = \Theta_0\text{D}_0\) is recursively axiomatizable for \(\omega \in \omega\). There is one more major result along these lines, namely that \(\Theta_0\text{CS}_3\) is recursively axiomatizable. This result is due to Andreka, Nemeti [81'], 8.13.4 and 8.13.6. We now present their interesting proof of this fact. Their proof is similar to some other known proofs in this domain; see, e.g., Tarski [55'], comment after Theorem 2.4. and Schein [70'] (which is discussed in section 5.6).

DEFINITION 4.2.27. (i) A many-sorted Cs is a structure
\[
\mathfrak{R} = (A, U, V, I, \text{Proj}, E, C, D, +, -, 1)
\]
such that \(A, U, V, I\) are non-empty sets, \(\text{Proj}\) is a function mapping \(V \times I\) into \(U\), \(E \subseteq V \times A\), \(C\) is a function mapping \(I \times A\) into \(A\), \(D\) is a function mapping \(I \times I\) into \(A\), \(+\) is a binary, and \(-\) a unary, operation on \(A\), \(1 \in A\), and the following conditions hold for all \(a, b \in A\), \(u \in U\), \(z, y \in V\), and \(i, j \in I\):

\((M_1)\) If \(\text{Proj}(z, i) = \text{Proj}(y, i)\) for all \(i \in I\), then \(z = y\).

\((M_2)\) If for all \(z \in V\) \((zEa \iff zEb)\), then \(a = b\).

\((M_3)\) \(zEC(i, a) \iff\) there is a \(z\) such that \(zEa\) and for all \(j \in I \sim \{i\}\) we have
\[
\text{Proj}(z, j) = \text{Proj}(z, j).
\]

\((M_4)\) \(zED(i, j) \iff\) \(\text{Proj}(z, i) = \text{Proj}(z, j)\).

\((M_5)\) \(zE(-a) \iff\) it is not the case that \(zEa\).

\((M_6)\) \(zE1\).

\((M_7)\) There is a \(z \in V\) such that \(\text{Proj}(z, i) = u\) and for all \(l \in a \sim \{i\}\) we have
\[
\text{Proj}(z, l) = \text{Proj}(z, l).
\]

(ii) Let \(X\) be a \(\text{CS}_3\) with base \(U \neq 0\). We associate with \(X\) the many-sorted Cs
\[
\mathfrak{R}_X = (A, U, V, a, \text{Proj}, E, C, D, +, -, 1)
\]
defined as follows: \(V = aU\), \(\text{Proj}(z, x) = xz\) for any \(z \in V\), \(x < \alpha\), \(E = \{z; a; x \in V\}, a \in A\), \(x \in a\), \(C(x, a) = C_x a\) for any \(x < \alpha\) and \(a \in A\), \(D(x, \lambda) = D_x \lambda\) for any \(x, \lambda < \alpha\), \(- = +\), \(- = -\), and \(1 = 1\); clearly \(\mathfrak{R}_X\) is a many-sorted Cs.

(iii) Let \(\mathfrak{R}\) be a many-sorted Cs as in (i), and suppose that \(\xi\) is a one-one function mapping \(a\) onto \(I\). We associate with \(\mathfrak{R}\) and \(\xi\) an algebra \(\text{CA}_{\mathfrak{R}}\) similar to \(\text{CA}_\alpha\)'s as follows:

\[
\text{CA}_{\mathfrak{R}} = (A, +, -, 0, 1, C_x, D_x, \xi(\alpha))_{\alpha \in \Delta a},
\]
where \(A, +, -, 1\) come from \(\mathfrak{R}\), \(a, b = -(a + b)\) for any \(a, b \in A\), \(0 = -1\), \(C_x a = C^{\mathfrak{R}}(\xi, x, a)\) for any \(x < \alpha\) and \(a \in A\), and \(D_x = D^{\mathfrak{R}}(\xi, x, \lambda)\) for any \(x, \lambda < \alpha\).
LEMMA 4.2.28. Let $\alpha \geq 2$. If R is a many-sorted Cs and ι is a one-one function mapping α onto I, then $C_{MR_{\iota}}$ is isomorphic to a C_{S_α}.

PROOF. We assume notation as in 4.2.27(i),(iii). Let $W = \{ (\text{Proj}(x,z_1), \cdots , z_1) : x \in V \}$. Thus $W \subseteq s^{\alpha}$. Our object is to show that C_{MR} is isomorphic to a G_{α}^{CM} with unit element W; then 3.1.104 will give the desired result. Let B be the $C_{S_\alpha} \otimes_2 (\{ U \})$.

For any $x \in V$ let $f_x = (\text{Proj}(x_1, z_1), \cdots , z_1)$. For any $a \in A$ let $F_a = (f_x : x \in a)$. Note that f is one-one. By (M_1), (M_2) and (M_3) it now follows easily that f preserves $+$, \cdot, \cdot, 0, and 1 of C_{MR}, mapping into the C_{S_α} of all subsets of W. By (M_1), f is one-one. Next, (M_2) and (M_3) can easily be used to show that f preserves c_0 and d_1 too, for all $\alpha \leq \gamma$.

Next we claim

(1) $(s^\alpha)^R_0 W = W$.

For, first let $w \in W$; say $w = f_x$ with $z \in V$. By (M_1), choose $z \in V$ such that $\text{Proj}(x_1, z_1) = \text{Proj}(x_1, z_1)$ and $\text{Proj}(z, z_1) = \text{Proj}(z, z_1)$ for all $\mu \in \iota(x)$. Then $f_x \in W \otimes_0 (s_\alpha)^R_0$ and $\iota(z_1) \otimes_0 f_x \in W$. Thus W in (1) holds; W is proved similarly.

By (1) and 3.1.31. W is the unit element of a G_{s_α}. Next we show that $C_{MR_{\iota}}$ is compressed. To this end, write

$$W = \bigcup_{i,j} j^i Y_{i,j}$$

with $\cdots Y_{i,j}^n Y_{i,j}^{n'} = 0$ for distinct $i,j \in J$; take $i,j \in J$ and $u \in Y_{i,j}$ — we show that $u \in Y_{i,j}$. This will show that all $Y_{i,j}$'s are equal, as desired. Fix $w \in \cdots Y_{i,j}^n$; say $w = f_x$. By (M_2), choose $z \in V$ such that $\text{Proj}(z_1, 0) = w$ and $\text{Proj}(z_1, 0) = \text{Proj}(z_1, 0)$ for all $\mu \in \iota(0)$. Thus $(\alpha \leq 0) \otimes_0 f_x \in W_1$. Say $f_x = \cdots Y_{i,j}^{n'}$. Now $(f_x)^{\iota_1} \otimes_1 \cdots Y_{i,j}^{n'} Y_{i,j}^{n'}$, so $j = k$. Since $(f_x)^{\iota_1} \otimes_1 W$, it follows that $u \in Y_{i,j}$.

Thus $F_{MR_{\iota}} \in G_{C_{s_\alpha}}$. By 3.1.104. $F_{MR_{\iota}}$ is isomorphic to a C_{S_α}, as desired.

The following lemma is obvious.

LEMMA 4.2.29. Let $\alpha \geq 2$. If $\mathcal{A} \in C_{S_\alpha}$ and $\iota = \alpha \otimes_0 I$, then $C_{MR_{\iota}} = \mathcal{A}$.

DEFINITION 4.2.30. Let $\alpha \geq 2$. (i) M_{α} is a many-sorted language suitable for many-sorted Cs, having also individual constants k_α for each $\alpha \in \iota$. Its symbols are A, U, V, I, Proj, E, C, D, $+,-,1$, k_α, ι. If R is a many-sorted Cs as in 4.2.27(i), and ι is a one-one function from α onto I, then $(M_{\alpha}, \iota_\alpha)$ is the expansion of R to a possible model of M_{α}.

(ii) We define a function $\text{trans}_{\alpha} = \text{trans}$ which assigns to each term or formula α of L_{α} a term or formula, respectively, of M_{α}, as follows, where $\iota, k \leq \alpha$, $\iota, \mu, \delta, \nu, \sigma, \tau$ are terms of L_{α}, and ϕ and ψ are formulas of L_{α}:

\[
\begin{align*}
\text{trans}_w & = v_k \\
\text{trans} 0 & = -1 \\
\text{trans} 1 & = 1 \\
\text{trans}(\alpha \cdot \tau) & = \text{trans} \cdot \text{trans} \tau \\
\text{trans}(\psi \phi \psi) & = \text{trans} \psi \text{trans} \phi \\
\text{trans}(\phi \psi \phi) & = \text{trans} \phi \text{trans} \psi
\end{align*}
\]
\[
\begin{align*}
\text{trans}(\alpha + \gamma) &= \text{trans} \alpha + \text{trans} \gamma \\
\text{trans}(\alpha \cdot \gamma) &= -((\text{trans} \alpha + \text{trans} \gamma)) \\
\text{trans}(\neg \alpha) &= -\text{trans} \alpha \\
\text{trans} \Gamma &= \Gamma \\
\text{trans} \emptyset &= \emptyset \\
\text{trans} \exists \alpha \varphi &= \exists \alpha \text{trans} \varphi \\
\text{trans} \exists \alpha \varphi &= \exists \alpha \text{trans} \varphi \\
\text{trans} \exists \alpha \varphi &= \exists \alpha \text{trans} \varphi \\
\text{trans} \exists \alpha \varphi &= \exists \alpha \text{trans} \varphi
\end{align*}
\]

The following lemma is easy to check.

THEOREM 4.2.31. \(\Theta \alpha \mathcal{C}_a\) is recursively axiomatizable.

THEOREM 4.2.32. \(\Theta \alpha \mathcal{C}_a\) is recursively axiomatizable.

PROOF. (We assume implicitly that \(\alpha \models \omega\).) We may assume that \(\alpha = \omega\). Let \(\Gamma\) be the natural formulation of the axioms \((\mathcal{M}_x) - (\mathcal{M}_2)\) in the language \(\mathcal{L}_a\), together with all the sentences \(\text{Ik}_x\) for \(x \in \alpha\), and \(\neg k_x \equiv \neg k_x\) for \(x \in \alpha\). We claim that for any sentence \(\varphi\) of \(\mathcal{L}_a\),

\(\text{(1)}\) \(\mathcal{C}_a \models \varphi\) if \(\Gamma \models \text{trans} \varphi\).

\(\text{(1)}\) To prove (1), first suppose that \(\mathcal{C}_a \models \varphi\). To prove that \(\Gamma \models \text{trans} \varphi\), it suffices to show that every countable model \((\mathcal{M}, m)\) of \(\Gamma\) is a model of \(\text{trans} \varphi\). Here \(\mathcal{M}\) is a many-sorted \(\mathcal{C}_a\), while \(m_x\) is the denotation of \(k_x\) for each \(x \in \alpha\). Assume the notation of 4.2.27. Then \(|\alpha| = |\mathcal{L}| = |\Gamma|\), so we can choose a one-one function \(\tau\) from \(\alpha\) onto \(\mathcal{L}\) such that \((\varphi = m_x)\) for all \(x \in \text{Occ} \varphi\). (Recall the definition of \(\text{Occ} \varphi\) from 4.1.11.) Now by 4.2.28, \(\mathcal{C}_{\mathcal{M}} \in \mathcal{C}_a\) and hence our supposition above implies that \(\mathcal{G} \models \varphi\). Then by Lemma 4.2.31, \((\mathcal{M}, m_x) \models \text{trans} \varphi\). Hence obviously \((\mathcal{M}, m_x) \models \text{trans} \varphi\) as well.

Now suppose that \(\Gamma \models \text{trans} \varphi\), and let \(\mathcal{M} \in \mathcal{C}_a\). Then \((\mathcal{M}, x) \models \text{trans} \varphi\). Then by Lemmas 4.2.29 and 4.2.31 if follows that \(\mathcal{M} \models \varphi\), as desired. Thus (1) holds.

From (1) it follows that \(\Theta \alpha \mathcal{C}_a\) is recursively enumerable, and hence recursively axiomatizable.
4.3 CONNECTIONS BETWEEN LOGIC
AND CYLINDRIC ALGEBRAS

Cylindric algebras arise by abstracting from two more concrete mathematical situations: the set-theoretical operations on spaces of various dimensions, and ordinary first-order logic with its provability and model-theoretic notions. Having treated the set-theoretical source of \mathcal{CA}_α's in sections 3.1 and 3.2, we turn to the source in first-order logic now.

We shall begin the section with a careful description of the basic connections between logic and \mathcal{CA}_α's (4.3.1–4.3.31), culminating in the logical representation theorem mentioned in the preface to Part I, p.18: for $\alpha \geq \omega$, every L_α is isomorphic to a formula algebra associated with some theory (4.3.28). Then we shall describe various important facts concerning these connections: homomorphisms between L_α's correspond to interpretations between theories (4.3.38), isomorphisms to definitional equivalence (4.3.43), equations holding in all L_α's correspond to validity of sentences (4.3.55–4.3.64). In a concluding remark, 4.3.68, we summarize the section and state without proof some further connections.

Many of the theorems we give are very easy to prove and so their proofs are omitted.

The reader may wish to consult various papers in which this connections material is treated differently or further elaborated: Andréska, Gergely, Németi [77'], [81'], Andréska, Németi [75'], Andréska, Sain [81'], Gergely [80'], Griffin [73'], Henkin [67], Henkin, Tarski [61], Hoehnke [66], Monk [65'a], [71'], [76'], Németi [81'], [83'], Sanerib [69'].

As we have indicated several times in informal remarks, ordinary first-order logic corresponds only to a part of the theory of cylindric algebras — to L_α's for $\alpha \geq \omega$ and the set algebras restricted to L_α's. This is, indeed, the real source of the theory of \mathcal{CA}_α's and the most important connections are found here. We want to also indicate connections between certain more general logics and arbitrary \mathcal{CA}_α's. Two major novelties occur: for α finite we deal with logics supplied with only finitely many variables, while for α infinite we allow infinitely long atomic formulas (but only the usual two-place conjunctions and disjunctions, and quantification over single variables only). For ordinary first-order logic we have the completeness theorem available, and so we can use either the syntactic notion \vdash or the semantic one \models in defining various notions. For the more general logics we consider we do not in general have a completeness theorem, and thus for our purposes we must discuss both \vdash and \models for them. (Some completeness theorems exist; see Andréska, Gergely, Németi [77'] 4.4 and 6.3.)
Basic connections

Now we shall describe the basic notions — languages, formulas, proofs, models, satisfaction — for a certain general kind of logic, and at the same time go into their algebraic counterparts. We have described the basic notions of ordinary logic in the Preliminaries of Part I, but besides generalizing these we wish to modify our treatment slightly in order to have simpler formulations of results in this section. First of all, our languages will not have operation symbols. Exceptions are the first-order discourse languages for cylindric algebras (see section 4.1), which will play a small role here, and some languages illustrating some notions below. A language with operation symbols is equivalent in a sense with another language in which these operation symbols are replaced by relation symbols with rank increased by one. Operation symbols can be treated algebraically too, but we shall not enter into this.

The logical constants are as in Part I, p. 40; they are common to all of the languages which we consider. They form a set $C = \{A, K, N, Q, E, T, F\}$ of seven distinct objects. Next, we fix upon a sequence $(v_i; i \in \text{Ord})$ of distinct objects; we assume that $R_g v n C = 0$ and $V \rightarrow R_g v$ is a proper class, V being the universe of all sets, and Ord the class of all ordinals. The v_i's are the variables, and in a particular language the variables used will be a proper initial segment of the above list. Now we define a language to be a triple $\Lambda = (\alpha, R, \rho)$ such that α is ordinal, R and ρ are functions with the same domain β (a cardinal), R is a one-one function with $R_g R n (C u R_g v) = 0$, and $R_g v \subseteq \alpha + 1$. Here α specifies the length of the sequence $(v_i; i < \alpha)$ of variables, R is the sequence of relation symbols of Λ, and R_i has rank ρ_i for each $i < \rho$. Two special types of languages will be considered: an ordinary language, in which $\alpha \subseteq \omega$ and $R_g v \subseteq \omega$, and a full language, in which $R_g v \subseteq \{\alpha\}$.

For any language Λ we define $\land, \lor, \neg, \exists, \forall, \leftrightarrow, \forall$ as on pp. 40–42 of Part I. We write $\forall v_\kappa$ in place of the earlier notation, however; similarly for \forall. Atomic formulas, formulas, free and bound occurrences, and sentences are defined as usual (see p. 42 of Part I), making allowance for the possibility of relation symbols of infinite rank. Thus an atomic formula has either the form $v_\kappa = v_\lambda$ for $\kappa, \lambda < \alpha$ (an equation), or the form

$$R_i(v_0, \ldots, v_\eta, \ldots)_{\eta < \rho_i},$$

where $\kappa < \beta$ (a relational atomic formula). A formula is called restricted if all of its relational atomic subformulas have the form $R_i(v_0, \ldots, v_\eta, \ldots)_{\eta < \rho_i}$. It turns out that for most purposes in ordinary logic one can work exclusively with restricted formulas. This is illustrated by the validity of the following sentence, where R is a ternary relation symbol:

$$\forall v_1, \forall v_2 [R(v_1, v_2, v_3) \leftrightarrow \exists v_4 \exists v_5 v_2 = v_1 \land v_2 \land v_4 = v_1 \land$$

$$\exists v_1 \exists v_2 [v_3 = v_1 \land v_4 = v_2 \land R(v_0, v_1, v_2)]]).$$

Note that if φ is a restricted sentence in a full language $\Lambda = (\alpha, R, \rho)$ with $\alpha \subseteq \omega$, then all atomic subformulas of φ are equations.

For any language Λ, Φ_μ^Λ denotes the collection of all formulas of Λ, and Φ_μ^Λ, the
collection of all restricted formulas of Λ. Now we consider two algebras:

$$\mathfrak{Sm}_\Lambda = (\Phi_\Lambda, v, A, \neg, F, T, \exists v, v = v, \mu, \lambda, <, \alpha, \omega);$$

$$\mathfrak{Sm}_\beta = (\Phi_\beta, v, A, \neg, F, T, \exists v, v = v, \mu, \lambda, <, \alpha, \omega).$$

THEOREM 4.3.1. Let $\Lambda = (A, R, \rho)$ be a language, with $\text{Dom} R = \beta$, and let γ be the number of relational atomic formulas of Λ. Then:

(i) $\mathfrak{Sm}_\Lambda \cong \mathfrak{Sm}_\beta$;

(ii) $\mathfrak{Sm}_\beta \approx \mathfrak{Br}_\gamma$;

(iii) $\mathfrak{Sm}_\beta \approx \mathfrak{Fr}_\beta$, where there is an isomorphism from \mathfrak{Fr}_β onto \mathfrak{Sm}_β extending the function $R_\gamma (v_0, \ldots, v_n, \ldots) < \beta$.

In this theorem, \mathfrak{Fr}_β is the absolutely free algebra similar to $CA_{a, \beta}$'s, with β generators; the presubscript α is usually omitted.

REMARKS 4.3.2. Because of the infinitely long atomic formulas when $\alpha \geq \omega$, the formulas of a full language Λ are in general infinitely long. But in a restricted formula φ, in a full language, an atomic subformula $R_\gamma (v_0, \ldots, v_n, \ldots) < \alpha$ could be replaced just by R_γ for all practical purposes, since no information would be lost. Then all restricted formulas would have finite length. This idea has been carried out by Jaskowski [48']. In the generality considered here, the languages we have introduced have not been studied very much; but see Henkin, Tarski [61] and Andrén, Gergely, Németh [77'].

According to 4.3.1, absolutely free algebras are the algebraic counterpart of languages. In the case of \mathfrak{Sm}_β for a full language Λ, all features of Λ which are of interest can be decoded from its isomorphic image \mathfrak{Fr}_β. Some aspects of Λ are lost if Λ is not full, namely the rank of relation symbols, and more is lost if we consider \mathfrak{Sm}_β: substitution of variables in atomic formulas has no reflection in \mathfrak{Fr}_β. Further algebraic apparatus will enable us to reflect these aspects of Λ too; see below.

In 4.3.1 it is possible to have $\beta = 0$ (and hence $\gamma = 0$). The language then has no non-logical constants, and is uniquely determined by α. The free algebras considered in 4.3.1 then have the empty set of generators. In section 2.5 of Part I we did not treat this case. We can take for \mathfrak{Fr}_β the subalgebra of \mathfrak{Fr}_β generated by the empty set. Note that $\text{Hom} (\mathfrak{Fr}_\beta, \mathfrak{X}) = 0$ for every algebra \mathfrak{X} similar to $CA_{a, \alpha}$.

We turn to semantic notions. Let $\Lambda = (\alpha, R, \rho)$ be a language, with $\text{Dom} R = \beta$. A possible model for Λ is a pair $\mathfrak{M} = (M, R)$ where M is a non-empty set and R is a function with domain β assigning to each $\xi \in \beta$ a subset R_ξ of βM; we sometimes denote R_ξ by $R_\xi \mathfrak{M}$. With each formula φ of Λ we correlate the set $\varphi^{\mathfrak{M}} = \varphi^\mathfrak{M}$ of all \mathfrak{M} which satisfy φ in \mathfrak{M}; see Part I, pp. 42-44. In particular, if φ is $R_\tau (v_\eta, \ldots, v_\alpha, \ldots) < \rho$ then

$$\varphi^\mathfrak{M} = \{ \mathfrak{M} \in \mathfrak{M} : \mathfrak{M} \in \mathfrak{M} \tau \mathfrak{M} \}.$$
In the case of a restricted atomic formula $R_f(v_0, \ldots, v_\eta, \ldots)_{\eta<\alpha}$ in a full language, this takes the simpler form $\varphi^R = R_f^R$.

THEOREM 4.3.3. If Λ is a language and \mathcal{R} is a possible model of Λ, then \{\varphi^R : \varphi is a (restricted) formula of Λ\} is a cylindric field of sets of dimension α.

The proof of 4.3.3 is quite easy.

DEFINITION 4.3.4. If Λ is a language and \mathcal{R} is a possible model of Λ, then we denote by \mathcal{C}^R_α (resp. $\bar{\mathcal{C}}^R_\alpha$) the cylindric set algebra with universe \{\varphi^R : \varphi a (restricted) formula of Λ\}.

The following theorem is an algebraic version of the definition of satisfaction.

THEOREM 4.3.5. Let $\Lambda = (\alpha, R, \rho)$ be an ordinary language and \mathcal{R} a possible model of Λ. Then $\mathcal{C}^R_\alpha \in \mathcal{C}^R_\alpha$ to \mathcal{R}_α. Furthermore, there is a unique homomorphism h of \mathcal{Rm}_Λ onto \mathcal{C}^R_α such that for any $\xi<\text{DoR}$ and any $\kappa \in \mathcal{P}(\alpha)$, $h(R_f(v_0, \ldots, v_\eta, \ldots)_{\eta<\xi}) = \{a \in \mathcal{M} : a \uparrow \kappa \in R_{f}^R\}$, and $h\varphi = \varphi^R$, for every $\varphi \in \mathcal{Fm}_\Lambda$.

Because of substitutions in atomic formulas, it is difficult to give 4.3.5 a more algebraic form using the free algebra \mathcal{A}_α of 4.3.1. This is a case in which restricted formulas are useful.

THEOREM 4.3.6. Let Λ be an ordinary language. Then there is an $f \in \text{Hom}(\mathcal{Rm}_\Lambda^R, \mathcal{Rm}_\Lambda)$ such that $\varphi^R = (f\varphi)^R$ for every formula φ and every possible model \mathcal{R} of Λ.

PROOF. We define f as follows. Let φ be a formula of Λ. Then $f\varphi$ is obtained from φ by replacing every non-restricted relational atomic subformula

$R_f(v_0, \ldots, v_\eta, \ldots)_{\eta<\xi}$

of φ by the following formula, where v_0, v_ξ, v_η, $\eta<\xi$, are the first ρ variables not in the set $\{v_0, \ldots, v_{\rho-1}\}$:

$\exists v_0 \exists v_\xi \exists v_{\rho-1}[v_0 = v_0 \Lambda \ldots v_{\xi} = v_\xi \Lambda \ldots v_{\rho-1} = v_{\rho-1}]$.

Then the desired conclusions are easily checked.

COROLLARY 4.3.7. Let $\Lambda = (\alpha, R, \rho)$ be an ordinary language and \mathcal{R} a possible model of Λ. Then $\mathcal{C}^R_\alpha = \bar{\mathcal{C}}^R_\alpha$.

REMARK 4.3.8. By Corollary 4.3.7 we can work exclusively with restricted formulas in discussing the important set algebras \mathcal{C}^R_α, for Λ ordinary. We shall mainly be interested in the algebras \mathcal{C}^R_α even for Λ arbitrary.

Suppose that $\Lambda = (\alpha, R, \rho)$ is any language, with $\text{DoR} = \beta$, and \mathcal{R} is a possible model of Λ. Then by Theorem 4.3.1 there is a unique homomorphism $h \in \text{Hom}(\mathcal{Rm}_\Lambda, \mathcal{Rm}_\alpha)$ such that $h(R_f(v_0, \ldots, v_\eta, \ldots)_{\eta<\xi}) = \{a \in \mathcal{M} : a \uparrow \kappa \in R_{f}^R\}$ for all $\xi<\beta$. This fact will be used...
several times in what follows. By 4.3.1 it can be given a purely algebraic formulation: there is a unique \(h \in H(\mathfrak{F}^\alpha, \mathfrak{G}_a^\mathfrak{K}) \) such that \(h_t = \{ a \in M : \rho_t^f \models a \in R_t^\mathfrak{K} \} \) for all \(t < \beta \). This can be used to give a purely algebraic definition of the set algebra \(\mathfrak{G}_a^\mathfrak{K} \) associated with \(\mathfrak{R} \). Note that if \(\Lambda \) is a full language then the last property of \(h \) takes the even simpler form \(h_t^\beta = R_t^\mathfrak{K} \) for each \(t < \beta \).

The passage from a model \(\mathfrak{R} \) to the \(\mathfrak{C}_a \mathfrak{G}_a^\mathfrak{K} \) has an inverse, in a sense. The qualification comes about because this associated \(\mathfrak{C}_a \mathfrak{G}_a^\mathfrak{K} \) is not provided with any simple structure which enables one to recapture the actual distinguished relations of \(\mathfrak{R} \). This leads us to the notion of a \(\mathfrak{C}_a \mathfrak{G}_a \) with generators. The general idea of an algebra or \(\mathfrak{C}_a \mathfrak{G}_a \) with generators has been used successfully in Pigozzi [71'] for another purpose.

DEFINITION 4.3.9. A \(\mathfrak{C}_a \mathfrak{G}_a \) with generators is a pair \((\mathfrak{A}, x) \) such that \(\mathfrak{A} \) is a \(\mathfrak{C}_a \mathfrak{G}_a \) with non-empty base \(M \) and \(x \) is a function from some cardinal \(\beta \) onto a set of generators of \(\mathfrak{A} \).

Assume additionally that \(\Lambda = (a, R, \rho) \) is a language. We call \((\mathfrak{A}, x) \) suitable for \(\Lambda \) if the following three conditions hold: (a) \(\Delta \alpha = \beta \), (b) \(\Delta x \subseteq \rho \) for each \(t < \beta \), (c) for all \(t < \beta \) and all \(f, g \), if \(f \in M, g \in x_t \), and \(\rho_t^f \models g \), then \(f \in x_t \).

Now if \((\mathfrak{A}, x) \) is suitable for \(\Lambda \), we define a possible model \(\mathfrak{R} = (M, R) \) of \(\Lambda \) as follows: for each \(t < \beta \), \(R_t = \{ \rho_t^f : a \in x_t \} \).

Note that (b) follows from (c) in this definition; we retain (b) since it is simpler. Condition (c) expresses a kind of regularity.

THEOREM 4.3.10. Let \(\Lambda = (a, R, \rho) \) be a language, with \(\Delta \alpha = \beta \).

(i) Suppose that \(\mathfrak{K} \) is a possible model of \(\Lambda \). Let \(\mathfrak{A} = \mathfrak{C}_a^\mathfrak{K} \) and \(x = \{ (a \in M : \rho_t^f \models a \in R_t^\mathfrak{K} : t < \beta \} \). Then \((\mathfrak{A}, x) \) is a \(\mathfrak{C}_a \mathfrak{G}_a \) with generators which is suitable for \(\Lambda \), and \(\mathfrak{R} = (M, R) \).

(ii) Let \((\mathfrak{A}, x) \) be a \(\mathfrak{C}_a \mathfrak{G}_a \) with generators which is suitable for \(\Lambda \). Set \(\mathfrak{R} = \mathfrak{R} = (M, R) \). Then \(\mathfrak{A} = \mathfrak{C}_a^\mathfrak{K} \) and \(x = \{ (a \in M : \rho_t^f \models a \in R_t^\mathfrak{K} : t < \beta \} \).

REMARK 4.3.11. The above discussion provides an algebraic translation of the logical concept \(\mathfrak{K} \) is a possible model of \(\Lambda \). In complete form, the algebraic concept is a pair \((\mathfrak{A}, x) \) which is a \(\mathfrak{C}_a^\mathfrak{K} \mathfrak{G}_a^\mathfrak{K} \) with generators. In less complete form, it is just an arbitrary \(\mathfrak{C}_a \mathfrak{G}_a \). In considering algebraic translations of logical concepts and theorems, a situation of this kind usually arises: the complete algebraic notion involves \(\mathfrak{G}_a \)'s with generators, and regular set algebras. Then immediate generalizations are natural to consider: to generator-free notions or theorems, arbitrary \(\mathfrak{C}_a \)'s, and non-regular set algebras. We shall return to this idea several times below.

We now recall the definition of the semantical consequence relation \(\models \). Unlike in Part I, pp. 44–45, we shall distinguish carefully between this notion and the corresponding proof-theoretical notion \(\vdash \), since they are not identical for some of the situations we consider. Let \(\Lambda = (a, R, \rho) \) be a language. If \(\mathfrak{K} \) is a possible model of \(\Lambda \) and \(x \in M \), then we write \(\mathfrak{K} \models \varphi(x) \) for \(x \in \mathfrak{K} \). Furthermore, \(\mathfrak{K} \models \varphi \) if \(\mathfrak{K} \models \varphi(x) \) for all \(x \in M \); then \(\mathfrak{K} \) is called a model of \(\varphi \). If \(K \) is a class of possible models of \(\Lambda \), then \(\mathfrak{K} \models \varphi \) if \(\mathfrak{K} \models \varphi \) for all \(\mathfrak{K} \in \mathfrak{K} \). For any set \(\Sigma \) of formulas, \(M \models \Sigma = \text{Md} \Sigma \) is the class of all
models of Σ. If $\Sigma u(\varphi)$ is a set of formulas of Λ, then we write $\Sigma u(\varphi)$ if $\text{Md}\Sigma u(\varphi)$. Finally, $\models \varphi$ means $K \models \varphi$ where K is the class of all possible models of Λ. Note that there is apparently an ambiguity in the notation \models, in that the language Λ is not referred to. An easy argument shows, however, that in all of the above cases the meaning of \models is the same for all languages. It is more conventional to restrict $\Sigma u(\varphi)$ to the case in which $\Sigma u(\varphi)$ is a set of sentences, but we need the general case of formulas for our extended languages. Note that if Λ is an ordinary language, then $\Sigma u(\varphi)$ iff $\{(\varphi; \psi \in \Sigma)\} = [\varphi]$, where for any formula χ, $[\chi]$ is the closure of χ (see Part I, p.42).

We use these notions to define an important kind of cylindric algebras.

DEFINITION 4.3.12. Let Λ be a language and Σ a set of formulas of Λ. We set

$$\Sigma u(\varphi) = \{(\varphi; \psi; \varphi \text{ and } \psi \text{ are formulas of } \Lambda \text{ and } \Sigma u(\varphi) \iff \psi)\},$$

$$\Sigma u(\varphi, \psi) = \{(\varphi; \psi; \varphi \text{ and } \psi \text{ are restricted formulas of } \Lambda \text{ and } \Sigma u(\varphi) \iff \psi)\}.$$

THEOREM 4.3.13. Let Λ be a language and Σ a set of formulas of Λ. Then $\Sigma u(\varphi) \in \text{Cotm}^\Lambda$ and $\Sigma u(\varphi, \psi) \in \text{Cotm}^\Lambda$.

DEFINITION 4.3.14. Let Λ be a language and Σ a set of formulas of Λ. We set

$$\Sigma u(\varphi) = \text{Cotm}^\Lambda \setminus \Sigma u(\varphi),$$

$$\Sigma u(\varphi, \psi) = \text{Cotm}^\Lambda \setminus \Sigma u(\varphi, \psi).$$

We give some basic properties of these algebras.

THEOREM 4.3.15. Let Λ be an ordinary language and Σ a set of formulas of Λ. Then

(i) $\Sigma u(\varphi) \cong \Sigma u(\varphi, \psi)$.

(ii) There is a set Γ of restricted formulas such that $\Sigma u(\varphi) \cong \Sigma u(\varphi, \psi)$.

PROOF: obvious from Theorem 4.3.6.

Because of this theorem we now work just with the algebras $\Sigma u(\varphi)$.

LEMMA 4.3.16. If $\Lambda = (\alpha, \epsilon, \rho)$ is a language and Σ is a set of formulas of Λ, then $\Sigma u(\varphi) \in \text{SPCs}_{\alpha}$.

PROOF. Suppose that $0 \neq \pi \in \text{Fm}_{\alpha}$; it suffices to find a homomorphism g from $\Sigma u(\varphi)$ into C_{α} such that $g(\varphi) \neq 0$. Write $s = \varphi = \pi$ for some restricted formula φ of Λ. Since $\varphi \neq 0$, there is a model \mathfrak{M} of Σ and an $\epsilon \in \mathfrak{M}$ such that $\mathfrak{M} \models \varphi(\epsilon)$. Now if $\psi \neq \varphi$ then $\psi \neq \varphi$. Hence there is a function g from $\Sigma u(\varphi)$ into C_{α} such that $g(\psi(\epsilon)) = \varphi(\epsilon)$ for every restricted formula ψ of Λ. Clearly g is as desired.

We shall see below, in Theorem 4.3.28, that a converse of 4.3.16 holds: every C_{α} is isomorphic to $\Sigma u(\varphi)$ for some Λ and Σ.

THEOREM 4.3.17. Let $\Lambda = (\alpha, \epsilon, \rho)$ be a language, with $D\alpha = \beta$. Then $\Sigma u(\varphi) \cong \Sigma u(\varphi)$. (Recall that $\Sigma u(\varphi)$ is a dimension-restricted free algebra; see Part I, p.349.)
4.3.18 CONNeCTIONS WITH LOGIC
(BASIC CONNECTIONS)

PROOF. Assume $\alpha \geq 2$. By 3.1.107 we have $G_\alpha = SPCa_\alpha$. Hence by 2.6.34, 4.3.16, and section 0.4 it suffices to take $\kappa \in Ca_\alpha$ and $x \in A$ such that $\Delta_1 \leq \rho \kappa$ for all $\xi \leq \beta$ and find $h \in Hom(\mathcal{F}^A_{\alpha \rho}, \mathcal{K})$ such that, for any $\xi \leq \beta$, $h(R_{\xi}(v_0, \ldots, v_\gamma, \ldots))_{\beta < \gamma} = x_\xi$. Let $\mathcal{B} = \mathcal{E}^A_{x_\xi} R_{\xi}$. Then (\mathcal{B}, x) is a Ca_α with generators which is suitable for Λ. Let $\mathcal{M} = \mathcal{F}^A_{\alpha \rho}$. By Theorem 4.3.10(ii) we have $\mathcal{B} = \mathcal{E}^M_{x_\xi}$ and $x = \{a \in A: \exists a \in R_{\xi}^{\mathcal{M}} \in x_\xi \leq \beta\}$. Then by Theorem 4.3.1 choose $k \in Hom(\mathcal{F}^A_{\alpha \rho}, \mathcal{B})$ such that $kR_{\xi}(v_0, \ldots, v_\gamma, \ldots)_{\beta < \gamma} = x_\xi$ for all $\xi < \rho$. Then $k_x = \psi_\kappa$ for every restricted formula ϕ. Note that if $\phi = \psi$, then $\models \phi \leftrightarrow \psi$ and hence $k_x = k_y$. Hence the existence of the desired function h is clear.

COROLLARY 4.3.18. Let $\Lambda = (\alpha, R, \rho)$, with $Dom = \beta\rho$. (i) If Λ is an ordinary language, then $\mathcal{F}^A_{\alpha \rho} \mathcal{K} = \mathcal{B}_G\alpha$.

(ii) If Λ is a full language, then $\mathcal{F}^A_{\alpha \rho} \mathcal{K} \cong \mathcal{B}_G\alpha$.

A converse of Corollary 4.3.18 also holds; see 4.3.28.

Returning to the ideas of Remark 4.3.11, we may say that the complete algebraic form of a theory in a language is a pair (\mathcal{K}, x) such that \mathcal{K} is an L_α, and x is an indexed system of generators of \mathcal{K}; the natural generalisation is simply an arbitrary Ca_α. The complete algebraic form of a language itself is a dimension-restricted free algebra \mathcal{B}_α, with $\beta \subseteq \omega$ for all $\xi < \beta$, and generalisation yields the free algebras \mathcal{B}_α. Now we turn to the syntactic method of defining cylindric algebras. For ordinary logic one defines $\Gamma \models \varphi$ in a proof-theoretic way and then shows, as a form of the completeness theorem, that $\Gamma \models \varphi$ iff $\Gamma \vdash \varphi$. Thus (assuming the completeness theorem), this method does not yield any new cylindric algebras. We shall discuss the notion \models only in some methodological remarks in which the completeness theorem is not assumed.

For an arbitrary language we introduce a proof-theoretical notion \models_φ suitable for restricted formulas. Let $\Lambda = (\alpha, R, \rho)$ with $\text{Dom} = \beta\rho$. The set Λ^A of logical axioms for Λ consists of all restricted formulas of the following kinds, where φ and ψ are arbitrary restricted formulas and κ, μ arbitrary ordinals α:

1. φ, a propositional tautology,
2. $\forall v_\kappa \varphi \rightarrow (\forall v_\mu \varphi \rightarrow \forall v_\kappa \psi)$,
3. $\forall v_\kappa \varphi \rightarrow \varphi_\kappa$;
4. $\varphi \rightarrow \forall v_\kappa \varphi$, if v_κ does not occur free in φ;
5. $v_\kappa = v_\kappa$;
6. $\exists v_\kappa (v_\kappa = v_\kappa)$;
7. $v_\kappa = v_\mu \rightarrow (v_\kappa = v_\mu)$$\rightarrow (v_\kappa = v_\mu)$;
8. $v_\kappa = v_\mu \rightarrow [\varphi \rightarrow \forall v_\kappa (v_\kappa = v_\mu \rightarrow \varphi)]$ if $\kappa \neq \lambda$;
9. $\exists \varphi \rightarrow \forall v_\kappa \varphi$.

Now let $\Gamma \models_\varphi$ be a set of restricted formulas of Λ. We write $\Gamma \models_{\alpha \beta} \varphi$, or simply $\Gamma \models \varphi$, if φ belongs to every set Ω of restricted formulas such that $\Lambda^A \models_\alpha \Gamma \subseteq \Omega$, $\chi \in \Omega$ whenever $\varphi \rightarrow \chi \in \Omega$, and $\varphi \in \Omega$ whenever $\psi \in \Omega$ and $\kappa < \alpha$. As usual, the last two conditions are non-symbolically expressed by saying that Ω is closed under detachment and generalisation. We write $\Gamma \models_\varphi$ for $0 \models_\varphi$.

DEFINITION 4.3.19. Let Λ be a language, Γ a set of restricted formulas of Λ. We set

$$p^A_{\Gamma} = \{ \varphi, \psi \colon \varphi \text{ and } \psi \text{ are restricted formulas of } \Lambda \text{ and } \Gamma \models \varphi \leftrightarrow \psi \}. $$

THEOREM 4.3.20. Let Λ and Γ be as in 4.3.19. Then $p^A_{\Gamma} \in C_{0} \mathcal{M}^A$.

DEFINITION 4.3.21. Let Λ and Γ be as in 4.3.19. We set $p^A_{\Gamma} = \mathcal{M}^A_{p} / p^A_{\Gamma}$.

LEMMA 4.3.22. Let Λ and Γ be as in 4.3.18, with $\Lambda = (\alpha, \mathcal{R}, \rho)$. Then $p^A_{\Gamma} \in C_{\alpha}$.

PROOF. We write \vdash in place of $\vdash_{\mathcal{F}}$. We must check the postulates $(C_0) - (C_7)$ for cylindric algebras given on p.162 of Part 1. (C_0) is clear. For (C_1), recall that $0 \models \mathcal{F} = \equiv$. We have $\Gamma \vdash \neg \mathcal{F}$ by (1) above, so $\Gamma \vdash \forall \varphi \neg \mathcal{F}$, hence easily $\Gamma \vdash \exists \varphi F \leftrightarrow \mathcal{F}$, which proves (C_1). Now we will frequently use in this proof the fact that $\Gamma \vdash \varphi \leftrightarrow \psi$ implies that $\varphi = \equiv \psi = \equiv$. Applying this to (3) easily gives (C_2). To prove (C_3) we need several auxiliary statements. We use x, y for arbitrary elements of $p^F_{\mathcal{M}}$, φ, ψ for arbitrary restricted formulas of Λ, and α, β, γ for arbitrary ordinals $< \alpha$.

(a) If $x \leq y$, then $c_{x} x \leq c_{x} y$.

This is clear, since $\Gamma \vdash \varphi \leftrightarrow \psi$ implies $\Gamma \vdash \forall \varphi (\varphi \leftrightarrow \psi)$ and hence $\Gamma \vdash \forall \varphi \equiv \forall \varphi \psi$.

(b) $c_{x} c_{x} = c_{x}$.

For, $c_{x} c_{x} \leq c_{x} c_{x}$ by (C_2), which has already been established. We have $\Gamma \vdash \exists \varphi \varphi \equiv \forall \varphi \exists \varphi \varphi$ by (4), and this easily gives $c_{x} c_{x} \leq c_{x} c_{x}$.

Using (a) and (b) we can get half of (C_3):

(c) $c_{x} (x - c_{x} y) \leq c_{x} x - c_{x} y$.

For, $x - c_{x} y \leq x$, so $c_{x} (x - c_{x} y) \leq c_{x} x$ by (a). And $x - c_{x} y \leq c_{x} y$, so $c_{x} (x - c_{x} y) \leq c_{x} c_{x} y = c_{x} y$ by (a) and (b). Thus (c) holds.

For the other direction, note that (2) directly yields:

(d) $-c_{x} (x - y) \leq c_{x} x - x + c_{x} y$.

Using (C_2) we establish the following similarly to (b):

(e) $c_{x} (-c_{x} x) = -c_{x} x$.

It follows that

$$-c_{x} (x - c_{x} y) = -c_{x} (c_{x} y - x) \leq c_{x} (-c_{x} y) + -c_{x} x = -c_{x} y + -c_{x} x,$$

which gives the other half of (C_3).

Note the following consequence of (4):
(f) $c_x c_x z = c_x c_x z$.

Hence we have $x c_x c_x z$ by (C_2), $c_x z = c_x c_x c_x z = c_x c_x z$ by (a), (b), so $c_x c_x z = c_x c_x z$ by (f). Symmetry yields (C_4). (C_2) follows from (5).

Next note from (5) and (7) that $\Gamma - e_x = v_x \rightarrow v_x = e_x$. Hence

(g) $d_x = d_{x'x'}$.

Now using (g), (C_6) is a clear consequence of (6) if $\lambda = \mu$.

Next note a further consequence of (4):

(h) $c_{x'} d_{x', x} = d_{x'}$ if x', λ, μ are distinct.

Hence half of (C_9) for x', λ, μ distinct easily follows: $d_{x'} = d_{x'x} + d_{x'}$ by (7), hence $d_{x'} = d_{x'}$ using (g), so $c_{x'} = d_{x'}$ by (a), (h). Now note from (8):

(i) $d_{x'x'} c_{x'}(d_{x'x'} z) = z$ if $x' \neq x$.

Now assume that x', λ, μ are distinct. Then

$$d_{\lambda x'} c_{x'}(d_{x'x'} c_{x'}(d_{x'x'})) \leq c_{x'}(d_{x'x'} d_{x'x'})$$

by (i), and

$$c_{x'}(d_{x'x'} c_{x'}(d_{x'x'})) = c_{x'}(d_{x'x'} d_{x'x'})$$

by the first half of (C_9)

$$= c_{x'}(d_{x'x'} c_{x'}(d_{x'x'}))$$

by (h)

$$= c_{x'}(d_{x'x'} c_{x'}(d_{x'x'})) = c_{x'}(d_{x'x'} d_{x'x'}) = c_{x'} = 1 = 1,$$

and (C_9) follows. Finally, (C_7) follows from what we have shown: by (i) we have $d_{x'x'} = c_{x'}(d_{x'x'} z) = 0$, and (C_7), (C_3) yield (C_7).

Again, a converse of 4.3.22 holds; see 4.3.28. Lemma 4.3.22 yields a connection between our syntactical and semantical definitions of cylindric algebras and two completeness theorems:

Theorem 4.3.23. Let $\Lambda = (\alpha, \mathbb{R}, \rho)$ be a language and $\Gamma \vdash \varphi$ a set of restricted formulas of Λ, with $DoR = \beta$.

(i) If Λ is ordinary, then $\Phi \models \varphi$.

(ii) Suppose that α is infinite, and $\alpha - \rho$ is infinite for every $\xi < \beta$. Then $\Phi \models \varphi$.

(iii) Under either hypothesis (i) or (ii), if $\Gamma \vdash \varphi$ for a certain formula φ, then Γ has a model \mathcal{M} such that $\mathcal{M} \models \varphi$ for some $x \in M$; and $\Gamma \models \varphi$ if $\Gamma \models \varphi$, for every formula φ.

Proof. We indicate the proof for Λ ordinary; the hypothesis of (ii) is treated similarly. Clearly $\Phi \models \varphi$. Next we show that if $\Gamma \models \varphi$, then Γ has a model with the additional property indicated. Since $\mathcal{L}_a \subseteq \mathcal{SPC}_a^{\omega}$ by 3.2.8, there is a homomorphism h of $\Phi \models \varphi$ onto a \mathcal{C}_a^{ω}, $\mathcal{L}_a \mathcal{X}$ with non--empty base \mathcal{M}, such that
\(h(\psi) \neq 1 \). Let \(z_\xi = h(\tau_\xi(v_0, \ldots, v_{\xi-1}, \ldots)_{\xi < \beta}) \) for each \(\xi < \beta \). Thus \(\mathcal{K}, z \) is a \(\mathcal{C}_n \) with generators which is suitable for \(\Delta \). Let \(\mathfrak{M} = \mathfrak{M}_\beta^{\Delta} \). Then by 4.3.10(ii) we have \(\mathcal{K} = \mathfrak{M}_\beta^{\Delta} \), and clearly \(h(\phi) = \varphi^{\mathfrak{M}} \) for each \(\varphi \in \Phi^\Delta_\mathfrak{M} \). Since \(\varphi^{\mathfrak{M}} = 1 \) for each \(\varphi \in \Gamma \) it follows that \(\mathfrak{M} \) is a model of \(\Gamma \); and the desired property for \(\psi \) is clear too.

In the usual way one now obtains: \(\Gamma \vdash \varphi \) iff \(\Gamma' = \mathfrak{M} \) for every formula \(\varphi \). Hence clearly \(\mathfrak{M}_\beta^{\Delta} = \mathfrak{M}_\beta^{\Delta} \). This finishes the proof.

REMARK 4.3.24. In the proof of 4.3.23 we have used the representation theory to establish two unusual completeness theorems; the first one is due to Monk [65a]. One can also use our representation theorems to establish completeness theorems for more conventional proof systems. The proofs follow the same lines. If one deals with all formulas instead of just restricted ones, then one must use 4.3.6 and also the fact that \(\varphi \leftrightarrow f \varphi \) is provable, with \(f \) as in the proof of 4.3.6.

Conversely, completeness theorems imply representation theorems; see 4.3.29.

THEOREM 4.3.25. If \(\Delta = \langle \alpha, \mathbf{R}, \rho \rangle \) is any language and \(\mathbf{R} \models \epsilon \), then \(\mathfrak{M}_\beta^{\Delta} \models \mathfrak{M}_\beta^{\Delta} \).

PROOF. By Lemma 4.3.22 we have \(\mathfrak{M}_\beta^{\Delta} \in \mathcal{C}_n \), so by 2.5.37 it suffices to show that if \(\mathcal{K} \in \mathcal{C}_n \), \(a \in \Delta \), and \(\Delta \models \tau_\xi \) for all \(\xi < \beta \), then there is a \(h \in \text{Hom}(\mathfrak{M}_\beta^{\Delta}, \mathcal{K}) \) such that \(h(\tau_\xi(v_0, \ldots, v_{\xi-1}, \ldots)_{\xi < \beta}) = a_\xi \) for each \(\xi < \beta \). By Theorem 4.3.1(iii) there is an \(h \in \text{Hom}(\mathfrak{M}_\beta^{\Delta}, \mathcal{K}) \) such that \(h(\tau_\xi(v_0, \ldots, v_{\xi-1}, \ldots)_{\xi < \beta}) = a_\xi \) for each \(\xi < \beta \). Thus by Definition 4.3.19 it suffices to show that \(\varphi^{\mathfrak{M}} \neq 1 \) implies that \(h \varphi = 1 \); equivalently, we want to show that \(\vdash \varphi \) implies \(h \varphi = 1 \).

Let \(\Delta = \langle \varphi ; \varphi \in \Phi^\Delta_\mathfrak{M} \rangle \) and \(h \varphi = 1 \). It suffices to show that \(\Lambda h \varphi \subseteq \Delta \) and \(\Delta \) is closed under detachment and generalisation. To show that \(\Lambda h \varphi \subseteq \Delta \), we check only (1), (2), (4), and (8), the others being very easy. Suppose that \(\varphi \) is a propositional tautology but \(h \varphi \neq 1 \). Then there is a homomorphism \(\lambda \) from \(\mathbb{B} \) onto a two-element \(\mathbb{B} \) \(\mathbb{B} \) such that \(h \varphi = 0 \). But then \(\lambda h \) assigns to every \(\varphi \in \Phi^\Delta_\mathfrak{M} \) a value 0 or 1, and \(\lambda \varphi \), \(\lambda \neg \varphi \), \(\lambda \mathbf{R} \), \(\lambda \mathbf{L} \) are evaluated by the familiar truth tables. This contradicts \(\varphi \) being a propositional tautology. Next, given an instance of (2) we apply \(\lambda h \) to get

\[
\begin{align*}
\lambda h \varphi \cdot \lambda \neg \varphi & = c_\lambda (h \varphi, -h \varphi) + c_\lambda (-h \varphi) + c_\lambda (-h \varphi) \\
\lambda \neg \varphi \cdot \lambda \neg \varphi & = c_\lambda (-h \varphi, -h \varphi) + c_\lambda (-h \varphi) + c_\lambda (-h \varphi) \\
& = c_\lambda (-h \varphi, -h \varphi) + c_\lambda (-h \varphi) + c_\lambda (-h \varphi) = 1.
\end{align*}
\]

Concerning (4), one can easily show by induction on \(\varphi \) that \(h \varphi \neq c_\lambda h \varphi \) if \(v_\xi \) does not occur free in \(\varphi \); hence \(h \varphi = 1 \) for any instance \(\varphi \) of (4). Applying \(\lambda h \) to an instance of (8), we get

\[
-d \lambda + -h \varphi + -c_\lambda (d \lambda, -h \varphi) = -(d \lambda, h \varphi, c_\lambda (d \lambda, -h \varphi)) = -(d \lambda, h \varphi, d \lambda, -h \varphi) = 1.
\]

Thus \(\Lambda h \varphi \subseteq \Delta \). If \(\psi \in \mathfrak{M} \) and \(\psi \in \Delta \), then \(h \psi = 1 \) and \(h \psi = 1 \), so \(h \psi = 1 \) and \(\psi \in \Delta \). If \(\varphi \in \Delta \) and \(\epsilon \varphi \), then \(h \varphi = 1 \), so \(1 = c_\lambda h \varphi = h \mathbf{V} \varphi = 1 \) and hence \(\mathbf{V} \varphi \in \Delta \). This finishes the proof.
COROLLARY 4.3.26. If $\Lambda = (\alpha, R, \rho)$ is a full language, then $\mathcal{F}m^{\Lambda}_{T} \cong \mathcal{F}r_{\beta}CA_{\alpha}$, where $D_{\alpha}R = \beta$.

From these results it is rather easy to get our logical representation theorem. We need first a simple auxiliary result.

THEOREM 4.3.27. Let Λ be a language and $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda}$; suppose further that $t \in \{s, p\}$. Let F be a filter on $\mathcal{F}m^{\Lambda}_{T}[\Sigma]$, and set $T = \{ \varphi \in \Phi_{\mu_{T}}^{\Lambda} : \varphi / \equiv_{\Sigma} f \in F \}$. Then $\mathcal{F}m^{\Lambda}_{T}[\Sigma]/F \cong \mathcal{F}m^{\Lambda}_{T}[\Sigma/T]$.

PROOF. Denote equivalence classes under F by z/F. Then the desired isomorphism f is determined by the condition that $f((\varphi / \equiv_{\Sigma})/F) = \varphi / \equiv_{T}$; since $\varphi / \equiv_{\Sigma} \in F$ iff $\varphi \in T$, f exists and is an isomorphism.

Now we can prove the desired logical representation theorem:

THEOREM 4.3.28. (i) $CA_{\alpha} = \{ \mathcal{F}m^{\Lambda}_{T}[\Sigma] / \equiv_{\Sigma} : \Lambda$ is a (full) language, $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda} \}$. (ii) $IGS_{\alpha} = \{ \mathcal{F}m^{\Lambda}_{T}[\Sigma] / \equiv_{\Sigma} : \Lambda$ is a (full) language, $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda} \},$ for $\alpha \neq 2$. (iii) For $\alpha \omega$, $\mathcal{L}f_{\alpha} = \{ \mathcal{F}m^{\Lambda}_{T}[\Sigma] / \equiv_{\Sigma} : \Lambda$ is an ordinary language, $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda} \}$.

PROOF. We prove only (i), the statements (ii), (iii) being proved similarly. The inclusion \supseteq follows from Lemma 4.3.22. For \subseteq, let \mathcal{X} be any CA_{α}. Let $\Lambda = (\alpha, R, \rho)$ be a full language with $D_{\alpha}R = |\Lambda|$. Then by Corollary 4.3.26 there is a filter F on $\mathcal{F}m^{\Lambda}_{T}[\Sigma]$ such that $\mathcal{F}m^{\Lambda}_{T}[\Sigma]/\equiv_{\Sigma} \mathcal{X}$. Then by Theorem 4.3.27 there is a set $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda}$ with $\mathcal{F}m^{\Lambda}_{T}[\Sigma] \cong \mathcal{X}$, as desired.

REMARK 4.3.29. In 4.3.23 – 4.3.24 we observed that one can easily prove completeness theorems from representation theorems. The converse is also true. Thus, note that all parts of Theorem 4.3.28 were established by elementary arguments. The completeness theorem for $\vdash_{T} \Lambda$, if ordinary, yields that $\mathcal{F}m^{\Lambda}_{T}[\Sigma] \cong \mathcal{F}m^{\Lambda}_{T}[\Sigma]$, and hence by 4.3.28 $\mathcal{L}f_{\alpha} \subseteq IGS_{\alpha}$ if $\alpha \neq 2$. If a more conventional proof notion is used, this line of reasoning becomes somewhat more involved but still elementary; the main steps are analogs of 4.3.22 $(\mathcal{F}m^{\Lambda}_{T}[\Sigma] \in CA_{\alpha})$ and 4.3.25 $(\mathcal{F}m^{\Lambda}_{T}[\Sigma] \cong \mathcal{F}r_{\beta}CA_{\alpha})$.

REMARK 4.3.30. Theorem 4.3.27 can be extended to establish a one–one correspondence between filters and theories. We modify the notion of a theory from Part I, p.45, as follows. Let Λ be a language. An s–theory (resp. p–theory) in Λ is a set Σ of restricted formulas of Λ such that for any restricted formula φ, if $\Sigma \vdash_{r} \varphi$ (resp. $\Sigma \vdash_{p} \varphi$), then $\varphi \in \Sigma$. Note that every s–theory is also a p–theory. To establish the correspondence for proof notions we will need the following form of the well–known deduction theorem: if $\Gamma \vdash_{s} \psi$, then there is an $i \in \omega$ and a $\kappa \in \Lambda$ such that $\Gamma' \vdash_{p} \forall \psi_{1} \cdots \forall \psi_{k-1} \varphi \Rightarrow \psi$. This is proved in the usual way.

THEOREM 4.3.31. Let Λ be a language, $\Sigma \subseteq \Phi_{\mu_{T}}^{\Lambda}$, and $t \in \{s, p\}$. Let \mathcal{F} be the set of all filters in $\mathcal{F}m^{\Lambda}_{T}[\Sigma]$ and \mathcal{F} the set of all those t–theories in Λ which contain Σ. For each
$F \in \mathcal{F}$ let $fF = \{ \varphi \in \Phi \mid \varphi \in F \}$. Then f is a one-one function mapping \mathcal{F} onto \mathcal{F}. Furthermore, for each $F \in \mathcal{F}$ we have $\mathcal{M}_{\mathcal{L}}^\Lambda /F = \mathcal{M}_{fF}^\Lambda$.

Proof. Everything is routine (using 4.3.27) except checking that fF is a t-theory when F is a filter. Here we treat the cases $t = s$, $t = p$ separately.

First suppose that $t = p$; assume that $fF = \varphi$. By the deduction theorem and the fact that F is closed under each operation $c_\mathcal{L}$ we obtain $\varphi \in \omega \sim \{0\}$ and $\varphi \in fF$ such that $\vdash_{\mathcal{L}_c} \varphi_0 \wedge \cdots \wedge \varphi_{n-1} \Rightarrow \varphi$. It follows that

$$(\varphi_0/\sim \cdots \varphi_{n-1}/\sim \varphi/\sim) \leq \varphi/\sim,$$

so $\varphi/\sim \in F$ and hence $\varphi \in fF$, as desired.

Now take $t = s$; assume that $fF = \varphi$. Suppose that $\varphi \not\in fF$. Thus $\varphi/\sim \varphi$, and so $(\varphi/\sim)/F \not= 1$. Now by 4.3.16 and its proof there is a homomorphism h of $\mathcal{M}_{\mathcal{L}}^\Lambda /F$ into a $\mathcal{L}_c^{\mathcal{M}_{\mathcal{L}}^\Lambda}$ such that $h((\varphi/\sim)/F) \not= 1$. Let $x_\beta = h((\varphi_0/\sim \cdots \varphi_{n-1}/\sim \varphi/\sim))$ for each $\beta \in \Delta$ (where $\Delta = (\alpha, \mathcal{R}, \rho \alpha)$ with $DoR = \beta$). Thus (Δ, x) is a $\mathcal{L}_c^{\mathcal{M}_{\mathcal{L}}^\Lambda}$ with generators suitable for Λ (see 4.3.9). Let $\mathcal{M} = \mathcal{M}_{\Delta^{\mathcal{M}_{\mathcal{L}}^\Lambda}}$. Clearly $h((\varphi/\sim)/F) = \varphi^{\mathcal{M}}$ for every restricted formula φ. Hence \mathcal{M} is a model of fF, but not of φ, contradicting $fF = \varphi$.

This finishes our description of most of the basic connections between logic and $\mathcal{L}_c^{\mathcal{M}_{\mathcal{L}}^\Lambda}$'s. One further important basic connection — between formulas and terms — will be treated later.

An application

At this point we want to indicate how a logical theorem can be used to prove an algebraic result, namely the following theorem about free algebras.

Theorem 4.3.32. If $35 \alpha < \omega$ and $45 \beta < \omega$, then $\mathcal{M}_{\mathcal{L}}^\Lambda$ is not atomic.

Proof. We shall use a result of Ehrenfeucht, Fuhrken [71**]. They work in an ordinary language \mathcal{L} with ω variables $(\varphi, t < \omega)$ and with four non-logical constants: unary function symbols f_0, f_1, g and a binary relation symbol R. They construct a sentence φ in this language with the following properties:

1. The variables occurring in φ are $\varphi_0, \varphi_1, \varphi_2$.
2. φ is consistent.
3. If ψ is a formula of \mathcal{L} which has only the variables $\varphi_0, \ldots, \varphi_{n-1}$ in it, is consistent, and $\vdash \psi \Rightarrow \varphi$, then there is a formula χ with at most the variables $\varphi_0, \ldots, \varphi_{n-1}$ in it, such that $\varphi\mathcal{A}_\mathcal{X}$ and $\chi\mathcal{A}_\mathcal{X}$ are consistent.

Our theorem follows in a routine way from this result. Namely, let $\Lambda = (\alpha, \mathcal{R}, \rho)$ be a full language, with $DoR = \beta$. By Corollary 4.3.18 we have $\mathcal{M}_{\mathcal{L}}^\Lambda \cong \mathcal{M}_{\mathcal{L}}^\Lambda$. Hence it
suffices to show that $\mathfrak{M}^\mathbf{A}_{\rho_0}$ is not atomic. To do this we carry out in this special case the general procedure of replacing a language with function symbols by one without, converting to restricted formulas too. Since only finitely many variables are available, some care must be taken.

A possible model \mathfrak{M} of Λ is called normal if the following conditions hold:

1. $\mathfrak{M}^\mathbf{A}_{\rho_0} \leq \mathfrak{M}^\mathbf{L}_{\omega}$ for all $\kappa \in \alpha \sim 2$ and all $i < 4$, where $V = \mathfrak{M}^\mathbf{L}$.
2. $\mathfrak{M}^\mathbf{L}_{\rho} = \mathfrak{M}^\mathbf{L}$ for all $i \in \mathfrak{M}^\mathbf{L} \sim 4$.

Now for any $i < 4$ and any $\mu, \nu < \alpha$ one can associate a restricted formula $\mathfrak{R}^\mathbf{L}_{\mu, \nu}$ of Λ having only μ and ν free such that for any normal \mathfrak{M} and any $\sigma \in \mathfrak{M}^\mathbf{L}$, $\mathfrak{M} = \mathfrak{R}^\mathbf{L}_{\mu, \nu}[\sigma]$ iff $(a_1, a_2, a_3, \ldots) \in \mathfrak{R}^\mathbf{M}$. For example, take $\mu = 1$ and $\nu = 0$ (one of the hardest possibilities). Then we let $\mathfrak{R}^\mathbf{L}_{1, 0}$ be the following formula:

$$\exists v_2 (v_2 = v_0 \land \exists v_0 (v_0 = v_1 \land \exists v_2 (v_2 = v_1 \land \exists v_{a-1} \mathfrak{R}^\mathbf{L}_{1, 0}[v_0 \ldots v_{a-1}])))$$

Next, we associate with each formula φ of Ω with variables among v_0, \ldots, v_{a-1} a formula φ' of Λ, by induction, where t and r are terms of Ω with variables v_0, \ldots, v_a respectively:

$$
\begin{align*}
(\mathfrak{R}^\mathbf{L}_{\mu, \nu})' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} ; \\
(f_0^t = v_0)' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (t = v_0)' ; \\
(f_0^t = v_0)' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (t = v_0)' ; \\
(g^t = v_0)' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (t = v_0)' ; \\
(t = s)' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (t = s)' , \\
(t = r)' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (t = r)' , \\
(\mathfrak{R}^\mathbf{L}_{\mu, \nu})' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (\mathfrak{R}^\mathbf{L}_{\mu, \nu})' , \\
(\mathfrak{R}^\mathbf{L}_{\mu, \nu})' &= \mathfrak{R}^\mathbf{L}_{\mu, \nu} \land (\mathfrak{R}^\mathbf{L}_{\mu, \nu})' .
\end{align*}
$$

Next, let \mathfrak{M} be a possible model of Ω. We associate with it a possible model $\mathfrak{M}^\mathbf{A}$ of Λ: (with $\mathfrak{M}^\mathbf{L} = $)

$$
\begin{align*}
\mathfrak{M}^\mathbf{A} &= \mathfrak{M} ; \\
\mathfrak{M}^\mathbf{L}_0 &= \{ a \in \mathfrak{M}^\mathbf{L} : f_0^t = a_0 \} ; \\
\mathfrak{M}^\mathbf{L}_1 &= \{ a \in \mathfrak{M}^\mathbf{L} : f_1^t = a_0 \} ; \\
\mathfrak{M}^\mathbf{L}_i &= \{ a \in \mathfrak{M}^\mathbf{L} : f_i^t = a_0 \} ,
\end{align*}
$$

Clearly $\mathfrak{M}^\mathbf{A}$ is normal. Now the following is easy to check:

1. Let \mathfrak{M} be a possible model of Ω, $a \in \mathfrak{M}$, φ a formula of Ω with variables among v_0, \ldots, v_{a-1}. Then $\mathfrak{M} = \varphi[a]$ iff $\mathfrak{M}^\mathbf{A} = \varphi[a]$.

With each restricted formula φ of Λ we now associate a formula φ^* of Ω:
\[(R_0v_0\ldots v_{a-1})^* = f_0v_0 = v_i; \]
\[(R_0v_0\ldots v_{a-1})^* = f_1v_0 = v_i; \]
\[(R_0v_0\ldots v_{a-1})^* = g_0v_0 = v_i; \]
\[(R_0v_0\ldots v_{a-1})^* = Rv_0v_i; \]
\[(R_0v_0\ldots v_{a-1})^* = T \text{ if } i \in \beta \sim 4; \]
\[(v_i = v_k)^* = v_1 = v_k; \]
\[(\neg \psi)^* = \neg \psi^*; \quad F^* = F; \quad T^* = T; \]
\[(\varphi \land \psi)^* = \varphi^* \land \psi^*; \quad (\varphi \lor \psi)^* = \varphi^* \lor \psi^*; \]
\[(\exists v_i \varphi)^* = \exists v_i \varphi^*; \]

Next, let \(\gamma \) be the conjunction of the following formulas of \(\Lambda \):
\[
R_0v_0\ldots v_{a-1} \iff \exists v_2\exists v_{a-1}R_0v_0\ldots v_{a-1}, i < 4, \]
\[
\forall v_0\exists v_2(R_0v_0v_2 \land (R_0v_0v_2 \rightarrow v_i = v_2)), i < 3, \]
\[
R_0v_0\ldots v_{a-1}, 4 \leq i < \beta. \]

One can easily show:

(7) If \(\psi \) is a restricted formula of \(\Lambda \), then \(\gamma \models \psi \iff \psi^* \).

(8) If \(\mathcal{R} \) is a possible model of \(\Omega \), then \(\mathcal{R}_\Lambda \) is a model of \(\gamma \).

With each model \(\mathcal{R} \) of \(\gamma \) we associate a possible model \(\mathcal{R}_\Omega \) of \(\Omega \) as follows, with \(\mathcal{R} = \mathcal{R}_\Omega \) and \(a \in M \):

\[
M^\Omega = M; \]
\[
f_0^\mathcal{R} a = \text{the } b \text{ such that } \mathcal{R} \models R_0v_0v[a,b]; \]
\[
f_1^\mathcal{R} a = \text{the } b \text{ such that } \mathcal{R} \models R_1v_0v[a,b]; \]
\[
g_0^\mathcal{R} a = \text{the } b \text{ such that } \mathcal{R} \models \exists v_1R_1v_0v[a,b]; \]
\[
\mathcal{R} = \{(a,b) : (a,b,b,\ldots) \in \mathcal{R}_\mathcal{R}\} \}; \]

Note that:

(9) For any model \(\mathcal{R} \) of \(\gamma \) we have \(\mathcal{R}_\Omega = \mathcal{R} \).

After these lengthy preliminaries we are ready to establish the theorem. We should emphasize that the above preliminaries could be formulated in a more general setting, making the present proof much shorter.

Recall from the beginning of this proof that \(\varphi \) is the Ehrenfeucht-Fraïssé sentence in \(\Omega \). Let \(\varphi \) be the formula

\[
\varphi' \land \forall v_0\ldots v_{a-1} \gamma \]

of \(\Lambda \). Let \(a = \alpha^\Lambda_{R_0} \), used in defining \(\text{FM}_R^\Lambda \). We show that \(\psi = \) is a non-zero atomless element of \(\text{FM}_R^\Lambda \), completing the proof.

By (2), let \(\mathcal{R} \) be a model of \(\varphi \). Then by (6) and (8), \(\mathcal{R}_\Lambda \) is a model of \(\psi \). Hence \(\psi = 0 \neq 0 \).

Now suppose that \(0 \neq \psi = 0 \). We shall find a restricted formula \(\theta \) such that
(\chi \land \theta) = \neq 0 \neq (\chi \land \neg \theta) = \neq$, thus showing that \(\psi = \neq \) in atomless. Since \(\chi = \neq 0 \), there is a possible model \(\mathfrak{R} \) of \(\Lambda \) and an \(\alpha \in \mathcal{M} \) such that \(\mathfrak{R} \models \chi^* \{\alpha\} \). Now \(\models \chi \rightarrow \psi \), so \(\mathfrak{R} \) is a model of \(\gamma \). Hence by (7) we have \(\mathfrak{R} \models \chi^* \{\alpha\} \), and so by (6) and (9),

(10) \(\mathfrak{R}^0 \models \chi^* \{\alpha\} \).

Next we claim

(11) \(\models \chi^* \rightarrow \varphi \).

For, let \(\mathfrak{R} \) be any possible model of \(\Omega \) and suppose that \(\beta \in \mathcal{N} \) and \(\mathfrak{R} \models \chi^* \{\beta\} \). By (6) we have \(\mathfrak{R}^\Lambda \models \chi^* \{\beta\} \), so by (7) and (8), \(\mathfrak{R}^\Lambda \models \chi \{\beta\} \). Since \(\models \chi \rightarrow \psi \), we get \(\mathfrak{R}^\Lambda \models \varphi \), and so \(\mathfrak{R} \models \varphi \) by (6), proving (11).

By (3), (10), and (11), there is a formula \(\theta \) of \(\Omega \) with at most the variables \(v_0, \ldots, v_{n-1} \) in it such that both \(\chi^* \land \theta \) and \(\chi^* \land \neg \theta \) are consistent. Let \(\mathfrak{R} \) be a possible model of \(\Omega \) and let \(\beta \in \mathcal{N} \) be such that \(\mathfrak{R} \models (\chi^* \land \theta) \{\beta\} \). By (6), (7), (8) we have \(\mathfrak{R}^\Lambda \models (\chi^* \land \theta) \{\beta\} \). Thus \((\chi^* \land \theta) = \neq 0 \). Similarly \((\chi \land \neg \theta) = \neq 0 \), completing the proof.

REMARK 4.3.33. We do not have a purely algebraic proof for 4.3.32, and we do not know whether it extends to \(1 \leq \beta \leq 3 \), or whether an analogous result holds for \(\mathfrak{R} \angle C_{\alpha} \). (We have not been able to reconstruct the proof of the result, due to Tarski, mentioned in 2.5.8.) Note from 2.5.7(i) and 4.3.32 that for \(3 \leq \alpha < \omega \) we have \(\mathfrak{I}_{A^*} \neq \mathfrak{H} \mathfrak{P} \{ \mathfrak{P} \in \mathfrak{IG}_{\alpha} : |A| < \omega \} \).

Interpretations

We now turn to one of the most important connections between logic and algebra, namely the duality between interpretations and homomorphisms, and between definitional equivalence and isomorphisms. The former is due to Németi (see Andréka, Gergely, Németi, Sain [80]), the latter to Hoehnke [60].

DEFINITION 4.3.34. Let \(\Lambda = (\alpha, \mathfrak{R}, \rho) \) and \(\Omega = (\beta, \mathcal{S}, \sigma) \) be two languages. An interpretation of \(\Lambda \) into \(\Omega \) is a function \(f \) mapping \(\mathfrak{R} \) into \(\mathcal{S} \). We denote by \(f^* \) the homomorphism from \(\mathfrak{B}^\Lambda \) into \(\mathcal{S} \) such that, for each \(\xi \in \mathfrak{R} \),

\[
f^* \mathfrak{R}(v_0, \ldots, v_{n-1})_{\gamma \in \rho \xi} = \eta \in \mathcal{S}.
\]

Now assume additionally that \(t \in \{s, p\} \), and \(\Gamma, \Sigma \) are \(t \)-theories in \(\Lambda, \Omega \) respectively. An interpretation \(f \) of \(\Lambda \) into \(\Omega \) is called an interpretation of \(\Gamma \) into \(\Sigma \) provided that \(f^* \varphi \in \Sigma \) for all \(\varphi \in \Gamma \).

This definition takes a slightly more conventional form in the case of ordinary languages, as follows.

THEOREM 4.3.35. Let \(\Lambda = (\alpha, \mathfrak{R}, \rho) \) and \(\Omega = (\beta, \mathcal{S}, \sigma) \) be languages, with \(\Omega \) ordinary, and let \(t \in \{s, p\} \) with \(\Gamma, \Sigma \) \(t \)-theories in \(\Lambda, \Omega \) respectively. Let \(f \) be an interpretation of \(\Gamma \) into \(\Sigma \). Then there is an interpretation \(g \) of \(\Gamma \) into \(\Sigma \) with the following two properties:

(i) For any \(\xi \in \mathfrak{R} \) the free variables of \(g \xi \) are among \(v_0, \ldots, v_{n-1}, \gamma \in \rho \xi \).

(ii) \(f \xi \leftrightarrow g \xi \in \Sigma \) for any \(\xi \in \mathfrak{R} \).
PROOF. Note that if $\xi \in DoR$ and $\rho \xi \leq \eta < \alpha$ then

$$R(\xi, \ldots, \eta, \ldots)_{\alpha \beta} \Leftrightarrow \exists \eta \, R(\xi, \ldots, \eta, \ldots)_{\eta \beta} \in \Gamma.$$

Hence $\forall \xi \exists \eta / \xi \in \Sigma$. Hence if we let

$$g \xi = \exists \eta \xi \ldots \exists \eta m / \xi$$

for each $\xi \in DoR$, where η_1, \ldots, η_m lists all ν such that $\rho \xi \leq \nu < \alpha$ and ν_i occurs free in $f \xi$, the desired conclusions follow.

EXAMPLE 4.3.36. There are many instances of interpretations in logic. For example, the theory of groups can be interpreted in the theory of Boolean algebras, as follows. Let $\Lambda = (\omega, R, \rho)$ where $DoR = DoD = 1$ and $\rho 0 = 3$; R_0 is a ternary relation symbol used to express properties of the group operation. Let Γ consist of all restricted formulas which follow from the group axioms formulated in this language. For the theory of Boolean algebras, let $\Omega = (\omega, S, \sigma)$ where $DoS = DoD = 5$ and $\sigma 0 = 3$, $\sigma 1 = 3$, $\sigma 2 = 2$, $\sigma 3 = 1$, $\sigma 4 = 1$; S_0, \ldots, S_4 are used to express properties of $+, -, 0, 1$, respectively. Let Σ consist of all restricted formulas which follow from BA axioms formulated in this language. Then the following function f interprets the group operation as symmetric difference in a BA (if we dealt with languages with operation symbols and with unrestricted formulas, v_0, v_1, v_2, v_3, v_4 would be assigned to v_0, v_1): $DoD = 1$, and $F 0$ is the formula

$$\exists \eta \exists \nu \exists \zeta [S_2(\xi, v_1, v_2) \land S_3(v_0, v_3) \land S_4(v_4, v_5) \land S_5(\eta, v_6, v_7)],$$

except that $S_4(\eta, v_4, v_5, v_6, v_7)$ should be replaced by restricted formulas by the prescription given in the proof of Theorem 4.3.6. Then f is an interpretation of Γ into Σ in the sense of Definition 4.3.34.

That interpretations give rise to homomorphisms follows almost immediately from the definitions involved:

THEOREM 4.3.37. Let $\Lambda = (\omega, R, \rho)$ and $\Omega = (\omega, S, \sigma)$ be languages. Suppose that $t \in \langle \alpha, \beta \rangle$, ξ, η, α, β are t-theories in Λ, Ω, respectively, and f is an interpretation of Γ into Σ. Then there is a $g \in Ho(\langle \gamma, \phi_{\alpha \beta} \rangle, \langle \gamma, \phi_{\beta \alpha} \rangle)$ such that $g_{\phi_{\alpha \beta}} = (f_{\phi_{\alpha \beta}})_{\phi_{\beta \alpha}}$ for every $\phi \in \Phi_\alpha^{\lambda \beta}$.

It is perhaps surprising that a kind of converse of Theorem 4.3.37 holds; every homomorphism between CA_n's is representable as an interpretation between theories:

THEOREM 4.3.38. Let $\mathcal{K}, \mathcal{B} \in CA_n$ and $f \in Hom(\mathcal{K}, \mathcal{B})$. Then there exist languages $\Lambda, \Omega, \xi, \eta, \alpha, \beta$, respectively, and $a \in \text{In}(\mathcal{K}, \mathcal{B})$, $b \in \text{In}(\mathcal{B}, \mathcal{B})$, such that $f = b \xi (\phi_{\alpha \beta})_{\phi_{\beta \alpha}}^a$ for every $\phi \in \Phi_\alpha^{\lambda \beta}$.

PROOF. By 4.3.28(i) we choose $\Lambda, \Omega, \xi, \eta, \alpha, \beta$ so that Γ and Σ are p-theories in Λ, Ω respectively and $a \in \text{In}(\mathcal{K}, \mathcal{B})$, $b \in \text{In}(\mathcal{B}, \mathcal{B})$. Say $\Lambda = (\omega, R, \rho)$. Now for each $\xi \in DoR$ choose $g \xi = b f a^{-1}(R(\xi, v_0, \ldots, v_n, \ldots))_{\eta \beta}$. Clearly the desired conditions hold.
4.3.39 CONNECTIONS WITH LOGIC

(INTERPRETATIONS)

REMARKS 4.3.39. By using other parts of 4.3.28, one can obtain theorems analogous to 4.3.38 (as well as 4.3.41 and 4.3.44 below) for homomorphisms between $\mathcal{L}_g\Phi_\alpha$'s and interpretations between σ-theories, and for homomorphisms between $\mathcal{L}_g\Phi_\alpha$'s and interpretations between τ-theories in ordinary languages for $\alpha \in \omega$. This last result has been strengthened by Gergely [80'] using category notions. Namely, let α be infinite, and let $\mathcal{L}_g\Phi_\alpha$ be the category of $\mathcal{L}_g\Phi_\alpha$ and homomorphisms between them.

On the other hand, let \mathcal{H} be the category whose objects are all pairs $\langle \Lambda, \Gamma \rangle$, $\Lambda = \langle \alpha, \mathbb{R}, \rho \rangle$ an ordinary language and Γ a τ-theory in Λ, and whose morphisms from $\langle \Lambda, \Gamma \rangle$ to $\langle \Omega, \Sigma \rangle$ are interpretations of Γ into Σ. The result of Gergely [80'] is that the categories $\mathcal{L}_g\Phi_\alpha$ and \mathcal{H} are isomorphic.

It is clear that one-one homomorphisms, i.e., isomorphic embeddings, correspond to **faithful** interpretations, that is, interpretations f as in 4.3.34 such that $\varphi \in \Gamma$ iff $f^*\varphi \in \Sigma$, for all $\varphi \in \Phi_\alpha^\Lambda$.

We now extend the last part of Remarks 4.3.39 to indicate the logical counterpart of the algebraic notion of subalgebra.

DEFINITION 4.3.40. Let $\Lambda = \langle \alpha, \mathbb{R}, \rho \rangle$ and $\Omega = \langle \alpha, \mathbb{S}, \sigma \rangle$ be languages. We call Ω an expansion of Λ if $D_{\mathbb{R}} \subseteq D_{\mathbb{S}}$ and $\mathbb{R}_\xi = \mathbb{S}_\xi$, for all $\xi \in D_{\mathbb{R}}$. Now let Γ and Σ be τ-theories in Λ, Ω respectively, where $\tau \in \{\rho, \sigma\}$. The pair $\langle \Omega, \Sigma \rangle$ is a conservative expansion of $\langle \Lambda, \Gamma \rangle$ provided that Ω is an expansion of Λ and $\varphi \in \Gamma$ iff $\varphi \in \Sigma$, for all $\varphi \in \Phi_\alpha^\Gamma$.

THEOREM 4.3.41. Let $\mathcal{A}, \mathcal{B} \in \mathcal{CA}_\alpha$. Then the following conditions are equivalent:

(i) $\mathcal{A} \subseteq \mathcal{B}$.

(ii) $A \subseteq B$ and there exist Λ, Ω, Γ, Σ, g such that Γ and Σ are τ-theories in Λ, Ω respectively, and Ω is a conservative expansion of $\langle \Lambda, \Gamma \rangle$, $g \in \text{Is}(\mathcal{B}, \mathcal{A}, \Phi_\alpha^\Lambda)$, $A \subseteq g(A)$.

PROOF. Clearly (ii) \Rightarrow (i). Now assume that $\mathcal{A} \subseteq \mathcal{B}$. Then we can choose full languages $\Lambda = \langle \alpha, \mathbb{R}, \rho \rangle$ and $\Omega = \langle \alpha, \mathbb{S}, \sigma \rangle$ such that Ω is an expansion of Λ and there is a function f mapping $D_{\mathbb{R}}$ onto B such that $f^*D_{\mathbb{R}} = A$. By Corollary 4.3.26 there is then a homomorphism $h \in \text{Ho}(\mathcal{B}, \mathcal{A}, \Phi_\alpha^\Lambda)$ such that $h(\mathbb{R}_\xi(v_0, \ldots, v_n)) = f^*g(v_i)$ for all $\xi \in D_{\mathbb{R}}$. Let $\Sigma = \{ \varphi \in \Phi_\alpha^\Omega : \varphi = f^*g^*\varphi \}$ and $\Gamma = \Sigma \cap \Phi_\alpha^\Lambda$. The desired conditions are now easily checked, with $g^*f^*g^* = h^*$ for all $\varphi \in \Phi_\alpha^\Omega$.

Now we turn to the notion of definitional equivalence; see also Part I, pp. 56–57.

DEFINITION 4.3.42. Let $\Lambda = \langle \alpha, \mathbb{R}, \rho \rangle$ and $\Omega = \langle \alpha, \mathbb{S}, \sigma \rangle$ be languages, $t \in \{\rho, \sigma\}$, and Γ and Σ t-theories in Λ, Ω respectively. We say that Γ and Σ are **definitionaly equivalent** provided that there are interpretations $f \in \Gamma$ into Σ and $g \in \Sigma$ into Γ such that for all $\xi \in D_{\mathbb{R}}$ and $\nu \in D_{\mathbb{S}}$ we have

$[\mathbb{R}_\xi(v_0, \ldots, v_n)]_{\rho_{\mathbb{R}}} \leftrightarrow g^*f^*\xi \in \Gamma$,

$[\mathbb{S}_\nu(v_0, \ldots, v_n)]_{\sigma_{\mathbb{S}}} \leftrightarrow f^*g^*\nu \in \Sigma$.

THEOREM 4.3.43. Let Λ, Ω, t, Γ, and Σ be as in the first part of Definition 4.3.34, and let h be arbitrary. Then the following conditions are equivalent:

(i) $h \in \text{Is}(\mathcal{B}, \mathcal{A}, \mathcal{C})$, Φ_α^Λ.
(ii) Γ and Σ are definitionally equivalent using interpretations f and g as in 4.3.42, such that $h(\varphi / \epsilon^A_{\Gamma \Sigma}) = (f^* \varphi) / \epsilon^A_{\Gamma \Sigma}$ for all $\varphi \in \Phi^A_{\mu}$.

(iii) There is a faithful interpretation f of Γ into Σ such that for every $\varphi \in \Phi^\Omega_{\mu}$ there is a $\varphi \in \Phi^A_{\mu}$ with $(f^* \varphi \equiv \psi) \in \Sigma$, and such that $h(\varphi / \epsilon^A_{\Gamma \Sigma}) = (f^* \varphi) / \epsilon^\Omega_{\Gamma \Sigma}$ for all $\varphi \in \Phi^A_{\mu}$.

COROLLARY 4.3.44. Let $\mathcal{L}, \mathcal{M} \in CA_n$. Then $\mathcal{K} \equiv \mathcal{M}$ iff there exist languages $\Lambda = (\lambda, R, \rho)$ and $\Omega = (\alpha, S, \sigma)$ and p-theories Γ and Σ in Λ and Ω respectively such that $\mathcal{K} \equiv \mathcal{M}$, $R \equiv \mathcal{M}^\Omega_{\nu}$, and Γ and Σ are definitionally equivalent.

REMARK 4.3.45. It is of some interest to apply the notions of interpretation and definitional equivalence to models rather than theories; this is what we did in Part I, p.56. See also Nemeti [81]. Let $\Lambda = (\lambda, R, \rho)$ and $\Omega = (\alpha, S, \sigma)$ be languages, and let \mathcal{K} and \mathcal{M} be possible models for Λ and Ω respectively, with the same universe $M = N$. We say that \mathcal{M} can be interpreted in \mathcal{M} if every relation of \mathcal{M} is definable in terms of those of \mathcal{M}. This means just that $\mathcal{G}^{\mathcal{M}}_\alpha \subseteq \mathcal{G}^{\mathcal{M}}_\alpha$. Similarly, \mathcal{K} and \mathcal{M} are definitionally equivalent iff $\mathcal{G}^{\mathcal{K}}_\alpha = \mathcal{G}^{\mathcal{M}}_\alpha$. Now assume that Γ and Σ are s-theories in Λ and Ω respectively, and f is an interpretation of Γ into Σ. Then with each model \mathcal{M} of Σ one can associate a possible model \mathcal{K} of Λ as follows. We set $N = M$, the universe of \mathcal{M}. For each $f \in D_\mathcal{M}$ we set $\mathcal{K}^\mathcal{M}_f = (x \in^f N : \text{for some } y \in^f N \text{ with } x \subseteq y \text{ we have } \mathcal{M} \models (f^* y)[y])$.

In case Λ and Ω are ordinary languages, we can analyze this situation further, as follows. Let f have the additional property mentioned in 4.3.35. Then for any $\varphi \in \Phi^A_{\mu}$ and any $x \in^f M$ we have $\mathcal{M} \models \varphi[x]$ iff $\mathcal{K} \equiv (f^* \varphi)[x]$. Therefore, \mathcal{K} is a model of Γ. If we assume additionally that Γ and Σ are definitionally equivalent via the function f, in the sense of Theorem 4.3.43, then it is easy to check that this correlation of a model of Γ with a model of Σ is one-one and onto.

Logic and Gs_α's

We now turn to a discussion of connections between Gs_α's and logic; see also Nemeti [81].

THEOREM 4.3.46. Let Λ be a language and K a set of possible models of Λ with pairwise disjoint universes. Then

$$\{ \mathcal{M}^\mathcal{K}_\alpha : \varphi \in \Phi^A_{\mu} \}$$

is a generalized cylindric field of sets of dimension α.

DEFINITION 4.3.47. With Λ and K as in 4.3.46, we denote by Gs_α^K the Gs_α with universe

$$\{ \mathcal{M}^\mathcal{K}_\alpha : \varphi \in \Phi^A_{\mu} \}.$$
THEOREM 4.3.48. If $\Lambda = \langle x, R, \rho \rangle$ is an ordinary language and K is a set of possible models of Λ with pairwise disjoint universes, then $\Theta^K_a \subseteq Gs_a \times \ell \Sigma a$.

PROOF. Clearly $\Theta^K_a \subseteq \ell \Sigma a$. To prove that it is regular, suppose that $x \in Gs^K_a$, $f \in \Sigma a$, $g \in \bigcup R \in K \varphi$. Choose $R \in K$ so that $f \in \varphi$. Thus $f \in M$ so, since $f0 = g0$, also $g \in M$. Now let $\Gamma = \{ \varepsilon \Rightarrow x : \psi \in \varphi \}$, such that $\delta \not\in \Delta x$. Let $h \neq M$ be such that $(\Delta x \cup \Delta y) \subseteq h = (\Delta x \cup \Delta y) \subseteq f$ while $(\Delta x \cup \Delta y) \subseteq g$. Then $h \in \varphi$ for every χ for which $\psi \in \varphi$, so $h \in \varphi$. Hence $g \in \Delta \varphi \subseteq \pi \subseteq x$, as desired.

It is convenient to extend the notion of elementary equivalence to our languages as follows. Let $\Lambda = \langle x, R, \rho \rangle$ be a language, and R and φ possible models of Λ. We call R and φ elementarily equivalent provided that for every restricted formula φ of Λ the following conditions are equivalent: (a) there is an $a \in M$ such that $R \models \varphi[a]$, (b) there is an $a \in M$ such that $\varphi[a]$.

THEOREM 4.3.49. Assume that ≥ 2. Let $\Lambda = \langle x, R, \rho \rangle$ be a language and Σ an s-theory in Λ. Suppose that K is a set of models of Σ with pairwise disjoint universes such that for every model R of Σ there is an elementarily equivalent $R \in K$. Then $s \text{Fr}_{\Sigma}^a \subseteq \Theta^K_a$.

REMARKS 4.3.50. Let $\Lambda = \langle x, R, \rho \rangle$ be a language and Σ an s-theory in Λ. Then a set K of the properties described in Theorem 4.3.49 always exists. In fact, for each $\Gamma \subseteq \Phi_{\mu}^a$, let R_{Γ} be a model of Σ such that $\Gamma = \{ \varphi \in \Phi_{\mu}^a : \text{there is an } a \in M \Gamma \text{ such that } R_{\Gamma} \models \varphi[a] \}$, if there is such a model; otherwise Γ is not in the domain of this function R. We may assume that $M_{\Gamma} \cap M_{\Delta} = 0$ for all distinct $\Gamma, \Delta \in D\varphi$. Then $R_{\varphi} = R_{\varphi}$ is as desired.

Thus Theorem 4.3.49 gives an algebraic expression for the notion of a theory; recall from 4.3.31 that filters are another such expression.

REMARK 4.3.51. (This remark, and Theorem 4.3.53, are essentially due to Andréka and Németi.) Interpretations of one theory into another can be given an algebraic expression in terms of base homomorphisms between Σ-languages. As follows. To conveniently formulate the result we shall introduce some special terminology for this remark only. If Λ and Ω are ordinary languages, an interpretation f of Λ into Ω is ordinary if it satisfies the additional condition 4.3.35(i). For any set Γ of formulas, $\Lambda \text{Md} \Gamma$ is the set of all models R of Γ with $M \in A$. If K is a set of possible models of Λ, with possibly non-disjoint universes, we modify the notation Θ^K_a as follows: it is the Gs_a with universe $\{ \bigcup R \in \varphi \} \subseteq \varphi$, where for any $\varphi \in K$ and $\varphi \in \Phi_{\mu}^a$, we set

$$\varphi = \{ a \in M \{ \varphi \} : \varphi \models (\cap \cap a \subseteq x \subseteq a) \}.$$

(Note that $\cap \cap (a \subseteq x) = x$ for any ordered pair $(a \subseteq x)$. The above procedure is just "disjointing" the universes of all $R \in K$.) Next, we want to formalize a procedure in Remark 4.3.45. Let $\Lambda = \langle x, R, \rho \rangle$ and $\Omega = \langle x, S, \sigma \rangle$ be ordinary languages, and f an ordinary interpretation of Λ into Ω. With each possible model R of Ω we associate a
possible model $\mathfrak{B}_f^\mathfrak{M}$ of Λ as follows. For brevity let $\mathfrak{B} = \mathfrak{B}_f^\mathfrak{M}$. Set $N = M$. For each $\xi \in \text{DoR}$ let

$$R^\mathfrak{M}_\xi = \{ x \in \rho^\xi N : \text{ for some } y \in ^\rho N \text{ with } x \leq y \text{ we have } \mathfrak{M} \models (f\xi)[y] \}. $$

Now we can state our new algebraic version of interpretations: let $\Lambda = (\alpha, \mathfrak{R}, \rho)$ and $\Omega = (\alpha, \mathfrak{R}, \sigma)$ be ordinary languages, and let f be an ordinary interpretation of Λ into Ω. Let Γ and Σ be s-theories in Λ and Ω respectively. Then the following conditions are equivalent:

1. f is an interpretation of Γ into Σ.
2. For any $x \in |\Gamma| + |\Sigma|$, let $K = x_{\text{Md}\Gamma}$ and $L = x_{\text{Md}\Sigma}$. Define $g(u, \mathfrak{R}) = (u, \mathfrak{B}_f^\mathfrak{M})$ for any $\mathfrak{R} \in L$ and $u \in M$. Then f is a base-homomorphism of Gr_L^K into Gr_L^L.

It is routine to prove this.

From the above it is clear that Gs_α's form an algebraic version of classes of models. We now want to make this precise, and give a theorem indicating when a Gs_α corresponds to an elementary class of models. The following definition gives a kind of inverse to the process of Definition 4.3.47.

Definition 4.3.52. Let $\mathfrak{X} \in \text{Gs}^{\text{reg}}_\alpha \text{nlf}_\alpha$. A language $\Lambda = (\alpha, \mathfrak{R}, \rho)$ fits \mathfrak{X} if there is a one-one function f (a fitting function) from DoR into Λ such that $Rgf = \{ x \in \Lambda : \text{Rx } \in \omega \}$ and for every $\xi \in \text{DoR}$ we have $\Delta f_\xi = \rho(\xi)$. Then we set

$$M\mathfrak{X} = \{ M, \{ \rho(\xi) \} : u \in M \}. $$

Thus $M\mathfrak{X}$ is a set of possible models of Λ.

Theorem 4.3.53. Let $\alpha \geq \omega$, $\mathfrak{X} \in \text{Gs}^{\text{reg}}_\alpha \text{nlf}_\alpha$, and $\kappa \geq |U|$ for each subbase U of \mathfrak{X}, κ a cardinal. Let Λ fit \mathfrak{X} with fitting function f. Then Λ is an ordinary language, and the following conditions are equivalent:

1. There is a set Γ of sentences of Λ such that $1M\mathfrak{X} = \{ \mathfrak{M} : \mathfrak{M} \text{ is a model of } \Gamma \text{ and } M \in \mathfrak{M} \}$.
2. If $h \in \text{Ho}(\mathfrak{X}, \mathfrak{B})$, $B \in \zeta \text{Cs}^{\text{reg}}_\alpha$, with $\lambda \in \kappa$, then h is a base-homomorphism \hat{g}, where Rgh is a subbase of \mathfrak{X}.

Proof. For each subbase M of \mathfrak{X} we let \mathfrak{M} be the possible model for Λ indicated in Definition 4.3.52.

Now suppose that (1) holds, and let $h \in \text{Ho}(\mathfrak{X}, \mathfrak{B})$, where $B \in \zeta \text{Cs}^{\text{reg}}_\alpha$ and $\lambda \in \kappa$. By 4.3.1(iii), let k be the homomorphism from \mathfrak{M}^Λ into \mathfrak{X} such that $k\mathfrak{M}_\xi = f\xi$ for every $\xi \in \text{DoR}$ (with $\Lambda = (\alpha, \mathfrak{R}, \rho)$). Then it is easy to check that

$$k\varphi \mathfrak{M}^\Lambda = \varphi \mathfrak{M} $$

for each subbase M of \mathfrak{X} and each $\varphi \in \text{Vs}_\alpha^\Lambda$, and k maps onto \mathfrak{X}.

By (i) we thus have $k\varphi = 1$ for every $\varphi \in \Gamma$.

Next, note that Rgf generates \mathfrak{X}. Hence $Rg(h \cdot f)$ generates \mathfrak{B}. It is then easy to check that $(\mathfrak{B}, h \cdot f)$ is a Gs_α with generators suitable for Λ. Let $\mathfrak{X} = \mathfrak{B}\text{gs}_\alpha^\Lambda$. It is easy to check that $hk \varphi = \varphi \mathfrak{M}$ for every $\varphi \in \text{Vs}_\alpha^\Lambda$. Since $k\varphi = 1$ for every $\varphi \in \Gamma$, it follows that \mathfrak{X} is a model of Γ. Hence by (i) there is an isomorphism g of \mathfrak{X} onto some
\[\mathfrak{R} \in M \mathfrak{X}. \] To show that \(h = \hat{y} \), let \(a \in A \) and \(t \in ^aN \). Say \(a = k \varphi \) with \(\varphi \in \Phi_{\mu_n}^A \). Then \(t \in \hat{y} a \) iff \(g \cdot t \in a \) iff \(g \cdot t \in \varphi^\mathfrak{R} \) (by (1)) iff \(t \in k \varphi^\mathfrak{R} \) iff \(t \in k a \), as desired.

Now assume (ii). Let \(k \in Ho(\mathfrak{B}_n^*, \mathfrak{X}) \) be such that \(k \mu_1 v_0 \ldots v_{\mu_n - 1} = f_k \) for every \(\xi \in Do \mathfrak{R} \). Let \(\Gamma \) be the set of sentences \(\varphi \) such that \(k \varphi = 1 \). To establish (i), first suppose that \(M \) is a subbase of \(\mathfrak{X} \). Let \(W = ^aM \). Then \(\Gamma = ^aM \mathfrak{R} \), and hence \(\mathfrak{R} \) is a model of \(\Gamma \). This proves \(\subseteq \) in (i). Conversely, suppose that \(\mathfrak{R} \) is a model of \(\Gamma \) and \(|N| \leq x \). Let \(\mathfrak{B} = \mathfrak{B}^\mathfrak{R} \). Now \(k \varphi = 1 \) implies that \(\varphi^\mathfrak{R} = 1 \), so there is an \(h \in Ho(\mathfrak{X}, \mathfrak{B}) \) such that \(h \varphi = \varphi^\mathfrak{R} \) for all \(\varphi \in \Phi_{\mu_n}^A \). By (ii), \(h \) is a base homomorphism \(\hat{g} \), where \(g \) is a one-one function from \(N \) onto some subbase \(M \) of \(\mathfrak{X} \) (see 3.1.52). We claim that \(g \in Ho(\mathfrak{B}^\mathfrak{R}, \mathfrak{R}) \), hence \(\mathfrak{R} \) is in the left side of (i). For, let \(\xi \in Do \mathfrak{R} \) and \(a \in ^aN \). Choose \(b \in ^aN \) with \(a \leq b \). Let \(\varphi \) be the formula \(\mathfrak{R} \mu_1 v_0 \ldots v_{\mu_n - 1} \). Then \(a \in \mathfrak{R}^\mathfrak{R} \) iff \(b \in \varphi^\mathfrak{R} \) iff \(b \in k \varphi^\mathfrak{R} \) iff \(g \cdot b \in k \varphi \) iff \(g \cdot b \in \varphi^\mathfrak{R} \) iff \(g \cdot a \in \mathfrak{R}^\mathfrak{R} \), as desired.

In connection with Theorem 4.3.53, see Theorem 3.1.111.

REMARK 4.3.54. We shall not discuss the logical counterpart of \(W \alpha \)'s and \(G \alpha \)'s. For some indications along these lines, see Tarski, Vaught [57*].

Terms and formulas

We turn to another basic connection between logic and \(\mathcal{C} \alpha \)'s, namely a kind of duality between terms in a discourse language for the class \(\mathcal{C} \alpha \) and formulas in the kind of languages we have been considering. The basic situation is very simple, as we shall see. It becomes more complicated and interesting when we establish a connection with ordinary languages.

DEFINITION 4.3.55. Let \(\alpha \) be any ordinal. Recall that \(\mathcal{L}_\alpha \) is the standard discourse language for the class \(\mathcal{C} \alpha \); it has \(\omega \) variables \(v_0, v_1, \ldots \) and operation symbols \(+, \ldots, \varphi_{\alpha \lambda} \) (\(\varphi_{\alpha \lambda} \subset \alpha \)). Let \(\Lambda^\alpha = (\mathcal{L}_\alpha, \rho) \) be a full language with \(Do \mathcal{L} = \omega \).

With each term \(\sigma \) of \(\mathcal{L}_\alpha \) we associate a formula \(\xi \sigma \), or simply \(\xi \sigma \), of \(\Lambda^\alpha \), as follows (for arbitrary \(i \in \omega \) and \(\varphi_{\alpha \lambda} \subset \alpha \)):

\[
\begin{align*}
\xi v_i &= R_i(v_0, \ldots, v_i, \ldots) \quad \forall \sigma \alpha i \\
\xi v_\lambda &= v_\lambda \\
\xi (\sigma + \tau) &= \xi \sigma \vee \xi \tau \\
\xi (\sigma \cdot \tau) &= \xi \sigma \wedge \xi \tau \\
\xi (-\sigma) &= \neg \xi \sigma \\
\xi 0 &= F \\
\xi 1 &= T \\
\xi v_\beta &= \exists \sigma \xi \sigma \\
\end{align*}
\]

Clearly \(\xi \) is a one-one function onto the set of all restricted formulas of \(\Lambda^\alpha \), and we let \(\tau_{\xi} \) be its inverse.

THEOREM 4.3.56. Let \(\mathfrak{R} = (M, R) \) be a possible model of \(\Lambda^\alpha \) and set \(\mathfrak{X} = \mathfrak{C}^\alpha \mathfrak{R} \). Then for any term \(\sigma \) of \(\mathcal{L}_\alpha \) we have \(\sigma^\mathfrak{X} \mathfrak{R} = (\xi \sigma)^\mathfrak{R} \).
Theorem 4.3.56 leads to the following important connection result.

THEOREM 4.3.57. For any terms σ, τ of \mathcal{L}_a the following conditions are equivalent:

(i) $\vdash \sigma \leftrightarrow \tau$

(ii) $\text{Gs}_a \models \sigma \equiv \tau$

PROOF. (i) \Rightarrow (ii). Let $\mathcal{X} \in \text{Cs}_a$ and $a \in \mathcal{A}$; we want to show that $\sigma \mathcal{X} \equiv \tau \mathcal{X}$. Let $\mathcal{B} = \mathcal{G}_a R_a$. Then (\mathcal{B}, a) is a Cs_a with generators suitable for Λ_a. Let $\mathcal{X} = \mathcal{M}_{\mathcal{B}, a}$. Then by (i) $(\sigma)^{\mathcal{X}} = (\tau)^{\mathcal{X}}$, so by Theorem 4.3.56, $\sigma^{\mathcal{X}} = \tau^{\mathcal{X}}$, giving the desired result.

(ii) \Rightarrow (i). Let \mathcal{B} be a possible model of Λ_a; we show that $(\sigma)^{\mathcal{B}} = (\tau)^{\mathcal{B}}$. Let $\mathcal{X} = \mathcal{G}_a^{\mathcal{B}}$. Then $\sigma^{\mathcal{X}} R = \tau^{\mathcal{X}} R$, where $\mathcal{X} = \langle M, R \rangle$. Now use 4.3.56 again.

REMARK 4.3.58. Theorem 4.3.57 can be given the following equivalent form: for any restricted formula φ of Λ_a the following conditions are equivalent: (i) $\vdash \varphi$, (ii) $\text{Gs}_a \models \tau \mu \varphi = 1$. A similar remark applies to 4.3.59.

THEOREM 4.3.59. For any terms σ, τ of \mathcal{L}_a the following conditions are equivalent:

(i) $\vdash \sigma \leftrightarrow \tau$

(ii) $\text{CA}_a \models \sigma \equiv \tau$

PROOF. It suffices to show that for any restricted formula φ of Λ_a we have: $\vdash \varphi$ iff $\text{CA}_a \models \tau \mu \varphi = 1$. Let $\mathcal{X} \in \text{CA}_a$ and $a \in \mathcal{A}$. By Theorem 4.3.25, let $h \in \text{Hom}(\mathcal{M}_{\mathcal{B}}^a, \mathcal{X})$ such that $h(R_a(v_0, \ldots, v_i, \ldots)) = a_i$ for all $i \in \omega$. Then $h(\psi/\varphi = (\tau \mu \varphi)^{\mathcal{X}} d_a$ for any $\psi \in \Lambda_a$. Therefore $\mathcal{X} \models \tau \mu \varphi = 1[a]$. This shows that (i) \Rightarrow (ii), and the converse is similar.

The above theorems, 4.3.57 and 4.3.59, give satisfactory logical versions for validity of equations in the classes Gs_a or CA_a. Note that for a finite we may express 4.3.57 as follows: $\text{Gs}_a \models \sigma \equiv \tau$ iff $\vdash \sigma \leftrightarrow \tau$, where \vdash is the ordinary provability notion (with infinitely many variables available). For $a = \omega$, let σ and τ be terms in \mathcal{L}_a. Choose $\beta < \omega$ so that they are terms in \mathcal{L}_β. Then $\text{Gs}_a \models \sigma \equiv \tau$ iff $\vdash \beta \sigma \leftrightarrow \beta \tau$. For $a > \omega$ a similar but more complicated procedure, involving reduct functions, can be used.

These results are, however, not completely satisfactory when considered as algebraic forms of logical results, primarily because the formulas involved have their atomic relational parts all of the same rank. For this reason we now consider a different kind of translation, starting from a countable ordinal language which expands every such language.

DEFINITION 4.3.60. $\Lambda_a = (\omega, \mathcal{R}, \rho) = \Lambda_a$ is an ordinary language with $\text{Do} \mathcal{R} = \omega$, having, for each $i \in \omega$, infinitely many relation symbols of rank i. We define $\xi \sigma$, for σ a term of \mathcal{L}_ω, analogously to Definition 4.3.55; for arbitrary $i \in \omega$ and $\xi, \lambda \leq \omega$,

$\xi^i \sigma = R_i v_0 \ldots v_d \lambda^{-1}$

$\xi^d \sigma = v_i \lambda$

$\xi^i(\sigma + \tau) = \xi^i \sigma \lor \xi^i \tau$
\[t'(\sigma \cdot \tau) = t'\sigma A t'\tau; \]
\[t'(\neg \sigma) = \neg t'\sigma; \]
\[t'0 = F; \]
\[t'1 = T; \]
\[t'_{\forall} \sigma = \exists u t'\sigma; \]

Again, \(t' \) is a one-one function onto the set of all restricted formulas of \(\Lambda_u \), and we let \(\tau \mu \) be its inverse.

The results we present about this notion are due to Andräka and Némethi.

THEOREM 4.3.61. Let \(\varphi, \psi \in \Phi_{\mu}^{\Lambda_u} \). Let \(H = \{ i \in \omega: \psi_i \text{ occurs in } \varphi \lor \psi \} \) and \(G = \{ i \in \omega: \rho_i \text{ occurs in } \varphi \lor \psi \} \). Then the following conditions are equivalent:

(i) \(\models_{\Lambda_u} \varphi \leftrightarrow \psi \).

(ii) \(G \uplus \{ (c, v_j = \psi_j: j \in G, i \in H \sim \rho j) \rightarrow \tau \mu' \varphi = \tau \mu' \psi \} \).

PROOF. For brevity, let \(\theta = \Lambda(c, v_j = \psi_j: j \in G, i \in H \sim \rho j) \). First we take the easy direction (ii) \(\Rightarrow \) (i). Assume that (i) fails. Let \(\mathfrak{R} \) be a possible model of \(\Lambda_u \) such that \(\varphi_{\mathfrak{R}} \neq \psi_{\mathfrak{R}} \). For each \(i \in \omega \) let \(a_i = \{ u \in ^\omega \Lambda: \rho_i \uplus u \in \mathfrak{R} \} \), where \(\Lambda_u = (\omega, \rho, \rho) \). Let \(\mathfrak{X} = \mathfrak{C}_{\mathfrak{R}} \). Then, as is easily checked,

(1) For any \(\chi \in \Phi_{\mu}^{\Lambda_u} \) we have \((\tau \mu' \chi)^{\mathfrak{X}}_a = \chi_{\mathfrak{R}} \).

From (1) it is clear that

\[\mathfrak{X} \models (\theta \rightarrow \tau \mu' \varphi = \tau \mu' \psi)[a], \]

showing that (ii) fails.

Now assume (i). Then we claim

(2) If \(\mathfrak{X} \in \text{G}_{\omega \Lambda u} \mathfrak{N}_{\omega \Lambda u}, a \in \omega A, \) and \(c_i a_j = a_j \) whenever \(j \in G \) and \(i \in \omega \sim \rho j \), then \(\mathfrak{X} \models (\tau \mu' \varphi = \tau \mu' \psi)[a] \).

For, by 3.1.107 we may assume that \(\mathfrak{X} \in \text{G}_{\omega \Lambda u} \mathfrak{N}_{\omega \Lambda u} \). Assume the hypothesis of (2). We may assume that \(a_j = 0 \) if \(j \in \omega \sim G \). Let \(\mathfrak{B} = \mathfrak{C}_{\mathfrak{R}} \mathfrak{G}_{\omega \Lambda u} \). Then \((\mathfrak{B}, a) \) is a \(\text{G}_{\omega \Lambda u} \) with generators suitable for \(\Lambda_u \). Let \(\mathfrak{R} = \mathfrak{B}_{\mathfrak{R}} \). Again one can verify (1). Since \(\varphi_{\mathfrak{R}} = \psi_{\mathfrak{R}} \) by (i), it follows that \(\mathfrak{X} \models (\tau \mu' \varphi = \tau \mu' \psi)[a] \), as desired in (2).

Now, to prove (ii), take any \(\mathfrak{X} \in \text{G}_{\omega \Lambda u} \). By 3.1.123 it suffices to take the case \(\mathfrak{X} \in \text{G}_{\omega \Lambda u} \mathfrak{N}_{\omega \Lambda u} \). Suppose \(a \in \omega A \) and \(\mathfrak{X} = \mathfrak{B}[a] \). Let \(L = \bigcup_{j \in G} a_j \sim H \). Thus \(L \) is finite. Let \(\rho \) be a one-one function from \(\omega \) onto \(\omega \sim L \) such that \(H \rho \subseteq Id \), and set \(\mathfrak{B} = \mathfrak{B}_{\mathfrak{R}} \mathfrak{X} \). Then \(\mathfrak{B} \in \text{G}_{\omega \Lambda u} \mathfrak{N}_{\omega \Lambda u} \) by 3.1.118. Now for any \(j \in G \) and \(k < \omega \) we have

- \(c^\mathfrak{B}_a a_j \neq a_j \) iff \(c^\mathfrak{X}_a a_j \neq a_j \) iff \(px \in \Delta^\mathfrak{X}_a a_j \)
- iff \(px \in \Delta^\mathfrak{X}_a a_j \) and \(px \in H \) (definition of \(\rho \))
- iff \(k \in \Delta^\mathfrak{X}_a a_j \), \(H \rho \subseteq Id \) (definition of \(\rho \))
- iff \(k \in \Delta^\mathfrak{X}_a a_j \) and \(k < \rho j \) (since \(\mathfrak{X} = \mathfrak{B}[a] \)).
Thus $\Delta B j \subseteq \tau_j$ for all $j \in G$. Hence by (2) we have $(\tau \mu ' \psi)^B[a] = (\tau \mu ' \psi)^B[a]$. Now $H \subseteq Id$, and if c_ϕ or d_ϕ occurs in $\tau \mu ' \psi = \tau \mu ' \psi$ then $\kappa_\lambda \in H$. Hence $\mathcal{X} \models (\tau \mu ' \psi = \tau \mu ' \psi)[a]$, finishing the proof.

THEOREM 4.3.62. Let φ and ψ be restricted formulas of Λ_u. Suppose that if v_i and R_j occur in $\varphi \lor \psi$, then $i < \rho j$ (where $\Lambda_u = (\omega, R, \rho)$). Then the following conditions are equivalent:

(i) $\Phi^\omega_{\mu'} \models (\tau \mu ' \varphi \equiv \tau \mu ' \psi)$.

(ii) $\models \varphi \leftrightarrow \psi$.

PROOF. Using the notation of 4.3.61, $H \subseteq \rho j$ for each $j \in G$, so 4.3.62 follows from 4.3.61.

DEFINITION 4.3.63. Let f be a permutation of ω. We denote by f^* the permutation of $\Phi^\omega_{\mu'}$ induced by f as follows: for any $\varphi \in \Phi^\omega_{\mu'}$, $f^* \varphi$ is the formula obtained from φ by replacing each atomic subformula $R_i v_i \ldots v_{\rho j - 1}$ of $\varphi (i \in \omega)$ by $R_i v_i \ldots v_{\rho f(j)}$.

THEOREM 4.3.64. For any $\varphi, \psi \in \Phi^\omega_{\mu'}$ the conditions are equivalent:

(i) $\Phi^\omega_{\mu'} \models (\tau \mu ' \varphi \equiv \tau \mu ' \psi)$.

(ii) For every permutation f of ω we have $\models f^* \varphi \leftrightarrow f^* \psi$.

(iii) There is a permutation f of ω such that $\models f^* \varphi \leftrightarrow f^* \psi$, and if v_i and R_j occur in $\varphi \lor \psi$ then $i < \rho f j$ (with $\Lambda_u = (\omega, R, \rho)$).

PROOF. (i) \Rightarrow (ii). Assume (i), let f be a permutation of ω, and let \mathcal{M} be a possible model of Λ_u; we want to show that $(f^* \varphi)^\mathcal{M} = (f^* \psi)^\mathcal{M}$. Say $\mathcal{M} = (\mathcal{M}, R)$. Let $\mathcal{X} = \mathcal{C}_{f^* \mathcal{M}}$. Now for each $i \in \omega$ let

$$a_i = \{ u \in \mathcal{M} : f^i u \in R_{f^i j} \}.$$

Then the following is easily checked: $(\tau \mu ' \chi)^\mathcal{X} a = (f^* \chi)^\mathcal{M}$ for every $\chi \in \Phi^\omega_{\mu'}$. Hence $(f^* \varphi)^\mathcal{M} = (f^* \psi)^\mathcal{M}$, as desired.

(ii) \Rightarrow (iii) is obvious. Now assume that f satisfies the conditions of (iii). By Theorem 4.3.62 we then have $\Phi^\omega_{\mu'} \models (\tau \mu ' f^i \varphi \equiv \tau \mu ' f^i \psi)$. Now if $\mathcal{X} \in \Phi^\omega_{\mu'}$, $a \in \mathcal{M}$, and $\chi \in \Phi^\omega_{\mu'}$, then $(\tau \mu ' f^i \chi)^\mathcal{X} a = (\tau \mu ' f^i \chi)^\mathcal{M} (a \cdot f^i)^{-1}$. It follows that (i) holds.

REMARK 4.3.65. Theorem 4.3.64 leads to a natural new logical notion. We call a restricted formula φ of Λ_u **type-free valid** if $\models f^* \varphi$ for every permutation f of ω. By 4.3.64 we know that this is equivalent to $\Phi^\omega_{\mu'} \models (\tau \mu ' \varphi \equiv 1)$. Furthermore, 4.3.64(iii) shows that there is a natural proof theory connected with this notion: given φ, let f be a permutation of ω such that if v_i and R_j occur in φ, then $i < \rho j$. Then φ is type-free valid iff $f^* \varphi$ is provable in the usual sense. It would be interesting, however, to have a proof notion involving exclusively type-free valid formulas. For more on the notion type-free valid, see Andrekéa, Gergely, Némethi [77].

REMARK 4.3.66. We consider the logical meaning of the product of CA_u's. For brevity we consider only Lf_u's. By Theorem 4.3.28 it suffices to deal with two
algebras $\mathcal{X} = \mathfrak{F}_m^\Lambda$ and $\mathcal{E} = \mathfrak{F}_m^\Omega$, where $\Lambda = (\omega, \mathcal{R}, \rho)$ and $\Omega = (\omega, \mathcal{S}, \sigma)$ are ordinary languages; furthermore, we clearly may assume that $R\mathcal{R}\mathcal{R} \cap \mathcal{R}\mathcal{S} = 0$. Let $\mathcal{Z} = (\omega, \mathcal{T}, \mu)$ be an arbitrary ordinary language whose non-logical symbols are those of Λ and Ω plus a new one-place relation symbol \mathcal{F}. By Theorem 4.3.17, let $h \in \text{Hom}(\mathfrak{F}_m^\mathcal{Z}, \mathcal{X} \times \mathcal{E})$ be such that:

1. $h(\mathfrak{F}_t v_0 \ldots v_{\mu t - 1}/m) = (\mathfrak{F}_t v_0 \ldots v_{\mu t - 1}/m, 0)$ for $t \in Do\mathcal{R}$,
2. $h(\mathfrak{S}_\eta v_0 \ldots v_{\sigma t - 1}/m) = (0, \mathfrak{S}_\eta v_0 \ldots v_{\sigma t - 1}/m)$ for $\eta \in Do\mathcal{S}$,
3. $h(\mathcal{F} v_0/m) = (1, 0)$.

Clearly, in fact, $h \in \text{Hom}(\mathfrak{F}_m^\mathcal{Z}, \mathcal{X} \times \mathcal{E})$. Let $\Lambda = \{ \phi \in \Phi \mu^\mathcal{Z}_\mathcal{F}; h(\phi/m) = (1, 1) \}$. By Theorem 4.3.27 we infer that $\mathcal{X} \times \mathcal{E} \models \mathfrak{F}_m^\mathcal{Z}_\Lambda$. We can characterize Δ in terms of \mathcal{F} and \mathcal{S} as follows, thus giving a logical meaning to $\mathcal{X} \times \mathcal{E}$. This characterization is due to Andr{é}ka and N{é}meti. Let Δ' be the set of all formulas of \mathcal{Z} of the following kinds:

\[\mathcal{P} v_0 \rightarrow \forall v_0 \mathcal{P} v_0, \]
\[\mathcal{P} v_0 \rightarrow \neg \mathcal{S}_\eta v_0 \ldots v_{\sigma t - 1} \text{ for } \eta \in Do\mathcal{S}, \]
\[\neg \mathcal{P} v_0 \rightarrow \neg \mathfrak{F}_t v_0 \ldots v_{\mu t - 1} \text{ for } t \in Do\mathcal{R}, \]
\[\mathcal{P} v_0 \rightarrow \phi \text{ if } \phi \in \Gamma, \]
\[\neg \mathcal{P} v_0 \rightarrow \psi \text{ if } \psi \in \Sigma. \]

We claim

4. $\Delta = \{ \phi; \phi \in \Phi \mu^\mathcal{Z} \text{ and } \Delta' \models \phi \}.$

In fact, clearly $h\varphi = 1$ for each $\varphi \in \Delta'$, and hence Δ holds. For ζ, we first associate with each restricted formula φ of \mathcal{Z} a restricted formula φ' of Λ by replacing each subformula $\mathcal{P} v_0$ by \mathcal{T}, and each subformula $\mathcal{S}_\eta v_0 \ldots v_{\sigma t - 1}$ by \mathcal{F}. Similarly, we obtain $\phi^\mathcal{S}_\mathcal{F} \in \Phi \mu^\mathcal{Z}_\mathcal{F}$ by replacing $\mathcal{P} v_0$ by \mathcal{F} and each $\mathfrak{F}_t v_0 \ldots v_{\mu t - 1}$ by \mathcal{F}. Then

5. $h(\phi/m) = (\phi/m, \phi^\mathcal{S}_\mathcal{F}/m)$ for any $\phi \in \Phi \mu^\mathcal{Z}_\mathcal{F}$;
6. $\Delta' \models \phi \iff (\phi' \wedge \mathcal{P} v_0) \lor (\phi^\mathcal{S}_\mathcal{F} \wedge \neg \mathcal{P} v_0)$ for any $\phi \in \Phi \mu^\mathcal{Z}_\mathcal{F}$.

Both of these statements are easily verified by induction on φ. Now to prove ζ in (4), let $\varphi \in \Delta$. Thus $h(\varphi/m) = 1$, so by (5) we have $\Delta' \models \varphi'$ and $\Delta' \models \phi^\mathcal{S}_\mathcal{F}$. Hence by the definition of Δ' we have $\Delta' \models \mathcal{P} v_0 \rightarrow \varphi'$ and $\Delta' \models \neg \mathcal{P} v_0 \rightarrow \phi^\mathcal{S}_\mathcal{F}$. Hence by (6), $\Delta' \models \varphi$, as desired.

We give one result connecting ultraproducts of models with ultraproducts of the associated $\mathcal{C}_\varphi^\mathcal{Z}.$

THEOREM 4.3.67. Let $\Lambda = (\alpha, \mathcal{R}, \rho)$ be an ordinary language, $(\mathfrak{F}_i; i \in I)$ a system of possible models of Λ, and \mathcal{F} an ultrafilter on I. Let $\mathfrak{R} = \{ \mathfrak{F}_i \cap \mathfrak{R}_i \}_{i \in I}$ \mathcal{F}-ultrafilter on \mathfrak{R}. Then there is an $f \in \text{Hom}(\mathfrak{C}_\mathcal{F}^\mathcal{R}_\mathcal{F} \mathfrak{R}_i \mathfrak{R}_i, \mathfrak{C}_\mathcal{F}^\mathcal{R}_\mathcal{F} / \mathcal{F})$ such that $f\mathfrak{R}^\mathcal{R}_\mathcal{F} = \{ \mathfrak{C}_\mathcal{F}^\mathcal{R}_i \cap \mathfrak{R}_i : i \in I / \mathcal{F} \}$ for any $\varphi \in \Phi \mu^\mathcal{Z}_\mathcal{F}$, and $\text{Rep}(\varphi) = C\mathfrak{F}^\mathcal{R}_\mathcal{F} / \mathcal{F}$ for any $(\mathfrak{R}, (\mathfrak{M}_i; i \in I, \alpha) - \text{choice function} c.$ (Cf. 3.1.89.)
PROOF. Clearly there is an isomorphism \(f \) satisfying the first condition. Now let
\(c \) be any \((F,\langle M_i : i \in \mathbb{N} \rangle) \)—choice function, let \(\varphi \in \Phi_{\omega_1}^{\omega_1} \), and let \(q \in \mathbb{N} \). Let
\(r = \langle c(q), \varphi \rangle \). Thus \(p_{\varphi}^r = (c^*q)_i \) and \(\tau_r^F = \varphi \) for all \(i \in I \) and \(\kappa < \alpha \). Then
\(q \in \text{Rep}(c)/\varphi \) iff \(\{ i \in I : (c^*q)_i \in \varphi \} \in F \) iff \(\{ i \in I : p_{\varphi}^r \in \varphi \} \in F \) iff \(\varphi^*r \in \varphi \) iff \(q \in \varphi \),
as desired.

Concluding remarks

REMARKS 4.3.68. In these concluding remarks of the section we want to briefly
summarize the section and indicate without proof some other connections which can
be established. For simplicity we restrict ourselves to ordinary languages. Recall
Remark 4.3.11; we indicate below several generator—free ideas.

1. The algebraic version of an ordinary language is a dimension—restricted free
algebra \(\mathfrak{B}^\mathfrak{A}_{\omega} \) with \(\mathfrak{A} \subseteq \omega \) and \(Rg(\mathfrak{A} \subseteq \omega) \).

2. A theory in a language has several algebraic expressions: a filter in a free
algebra, a homomorphism from a free algebra to some \(\mathfrak{L}_{\omega} \), merely an \(\mathfrak{L}_{\omega} \) (a
generator—free version), or a \(\mathfrak{G}_{\omega} \) — also a generator—free version.

3. The most immediate algebraic form of the compactness theorem is as follows.
Suppose \(\alpha \subseteq \omega \) is a cardinal, and \(\Omega \in \omega \). Let \(F \) be a filter in \(\mathfrak{B}^\mathfrak{A}_{\omega} \), and suppose
that for each \(a \in F \) there is a homomorphism \(\alpha \) from \(\mathfrak{B}^\mathfrak{A}_{\omega} \) into \(\mathfrak{G}_{\omega} \) such that
\(\mathfrak{a}a \neq 0 \). Then there is a homomorphism \(\kappa \) from \(\mathfrak{B}^\mathfrak{A}_{\omega} \) into \(\mathfrak{G}_{\omega} \) such that \(\kappa a \neq 0 \) for
all \(a \in F \). This algebraic theorem is an immediate consequence of the representability
of \(\mathfrak{L}_{\omega} \)'s, just like the compactness theorem is immediate from the completeness
theorem. In fact, the assumptions imply that \(F \) is a proper filter, and hence
\(\mathfrak{B}^\mathfrak{A}_{\omega}/F \) is an \(\mathfrak{L}_{\omega} \) with at least two elements. Therefore there is a homomorphism
of \(\mathfrak{B}^\mathfrak{A}_{\omega}/F \) onto some \(\mathfrak{G}_{\omega} \) with a non-empty base; this homomorphism naturally
induces the desired homomorphism \(\kappa \). Of course this algebraic form of the
compactness theorem can be proved more directly using ultraproducts; the easy proof
based on 3.1.92 will be left to the reader.

4. An interpretation between theories corresponds to a homomorphism between \(\mathfrak{L}_{\omega} \)'s;
definitional equivalence to isomorphism. Alternatively, interpretations correspond to
base—homomorphisms of \(\mathfrak{G}_{\omega} \)'s.

5. Possible models of languages correspond to cylindric set algebras with
generators; \(\mathfrak{G}_{\omega} \)'s themselves are the generator—free version.

6. We have already used, in section 3.2, an algebraic version of an individual
constant, and discussed other versions. Operation symbols can be treated similarly.

7. The algebraic version of the basic logical notion of elementary equivalence is the
isomorphism of \(\langle \mathfrak{M}, x \rangle \) and \(\langle \mathfrak{N}, y \rangle \), where \(\langle \mathfrak{M}, x \rangle \) and \(\langle \mathfrak{N}, y \rangle \) are \(\mathfrak{G}_{\omega} \)'s with generators
(which can be be considered as algebraic structures in their own right). The
generator—free notion is just that \(\mathfrak{M} \) and \(\mathfrak{N} \) are isomorphic. Note that \(\mathfrak{G}_{\omega} \cong \mathfrak{G}_{\omega} \) iff
\(\mathfrak{A} \) is elementarily equivalent to some model which is definitionally equivalent to \(\mathfrak{A} \).
Note also that 3.1.38(1) is a generator—free version of the logical theorem that if \(\mathfrak{A} \)
and R are elementarily equivalent and $|M| < \omega$, then $R \equiv R$.

(8) Recall that a set Γ of sentences in Λ is complete if for every sentence ϕ of Λ, either $\Gamma \models \phi$ or $\Gamma \models \neg \phi$. This means exactly that \mathcal{Fm}^Γ is simple, or else has only one element. An equivalent way of saying the Γ is complete is that any two models of Γ are elementarily equivalent. If we take the algebraic version of this simple equivalence we are led to the following theorem (a generalization of the obvious translation):

(*) For any $Ss_n \in C$ the following conditions are equivalent:

(i) $|C| = 1$, or C is simple;

(ii) for all $f, g \in HoC$, if f^C and g^C are simple, then there is an $h \in Is(f^C, g^C)$ with $g = h^f$.

Andréka and Németi have shown that "Ss_n" cannot be omitted in (*), but that (*) continues to hold if "Ss_n" is omitted and "simple" is replaced by "subdirectly indecomposable". (*) is a generalization of the generator—version of the above equivalent definition of simplicity. The generator—free version of this result does not hold. It would say that the following conditions are equivalent:

(iii) $|C| = 1$ or C is simple.

(iv) If $\mathcal{A}, \mathcal{B} \in Lf_{nH}$ are simple, then $\mathcal{A} \equiv \mathcal{B}$.

It is easy to give a counterexample to this.

(9) κ—categoricity. The algebraic version of this notion is formulated as follows. A $CA_n \in C$ is κ—categorical if for any $\mathcal{A}, \mathcal{B} \in C_{\mathcal{A}}$ and any $f \in Ho(\mathcal{A}, \mathcal{B})$, $g \in Ho(\mathcal{C}, \mathcal{D})$, if both \mathcal{A} and \mathcal{B} have bases of size κ, then there is a base—isomorphism h of \mathcal{A} onto \mathcal{B} such that $h^f = g$. Then the Lof—Vaught test for completeness takes the following form:

(*) Let $\alpha \geq \omega$, and let \mathcal{E} be an Lf_{α} of characteristic 0 (see 2.4.61). Suppose that κ is a cardinal $\geq |C|$, and C is κ—categorical. Then C is simple.

On the other hand, the well—known characterization theorem for ω—categorical theories looks like this algebraically:

(**) Let $\mathcal{A} \in Lf_{\omega}$ be simple, countable, and have characteristic 0. Then the following conditions are equivalent:

(i) \mathcal{A} is ω—categorical.

(ii) For every $n \in \omega$, $R_{n, \mathcal{A}}$ is finite.

(10) Elementary extensions. Let Λ be an ordinary language and \mathcal{R}, \mathcal{R} possible models of Λ. To say that \mathcal{R} is a κ—elementary extension of \mathcal{R} is to say that $\mathcal{E}_\mathcal{A}^{\mathcal{R}}$ is κ—ext—isomorphic to $\mathcal{E}_\mathcal{A}^{\mathcal{R}}$ with the natural generators preserved (see Definition 3.1.41). Thus many of the results in section 3.1 have a logical meaning for our general languages. Going the other way, many logical results concerning elementary extensions give rise to algebraic theorems. To illustrate the ideas, we consider one specific elementary result.

Given a possible model \mathcal{R} for a language Λ, expand Λ to Λ' by adjoining an individual constant c_m for each $m \in M$. Then $(\mathcal{R}, m)_{m \in M}$ denotes the expansion of \mathcal{R}
to a possible model of Λ' in which each constant c_m has denotation m. Let Θ be the set of all sentences of Λ' which hold in $(\mathfrak{M}, m)_{m \in M}$. Then for any possible model \mathfrak{A} of Λ the following conditions are equivalent:

(i) \mathfrak{A} is isomorphic to an elementary extension of \mathfrak{M}.
(ii) \mathfrak{A} can be expanded to a model of Θ.

The natural algebraic theorem corresponding to this result is as follows. Let $\alpha \geq 1$, and let \mathfrak{A} be a Cso-base with base U and unit element V, and suppose that $u \in U$. We define

$$k_u = \{f \in V : f_0 = u\}.$$

For any $Y \subseteq U$ we let \mathfrak{B}_Y be the subalgebra of $\mathfrak{O}V$ generated by $Au(k_u: u \in Y)$. The result (due to Andr^äka and Németh) is then as follows:

(*) Suppose that $\alpha \geq 1$, and $\mathfrak{A}, \mathfrak{B} \in C_{s_0}^{\aleph_0} n\mathbf{L}_0$ with bases U, W respectively. Then the following conditions are equivalent:

(i) \mathfrak{B} is base isomorphic to some C_{s_0} which is ext−isomorphic to \mathfrak{A}.
(ii) There is an $X \subseteq W$ and an $f \in Is(\mathfrak{B}_X, \mathfrak{B}_U)$ such that $f^* \mathfrak{B} = A$.

This result has been considerably generalized by Andr^äka and Németh.

(11) Omitting types. We mention one algebraic result which is a generator−free version of an omitting types theorem. Let \mathfrak{A} be a countable \mathbf{L}_0, $X \subseteq N\mathfrak{A}$, and $\Pi X = \emptyset$. Then there is a $\mathfrak{B} \in C_{s_0}^{\aleph_0} n\mathbf{L}_0$ with countable base and an $f \in Ho(\mathfrak{A}, \mathfrak{B})$ such that $\cap f^* X = \emptyset$.

In general, omitting types theorems correspond to preservations of meets, or joins, by homomorphisms.

(12) Saturated models. The following theorem is due to Németh [83b']. He has also proved related theorems concerning universal models.

(*) Let \mathfrak{A} be a possible model of an ordinary language $\Lambda = (\alpha, R, \rho)$. Then \mathfrak{A} is $|\alpha|^\omega$−saturated if $\mathfrak{R}_{s_0}^\alpha$ has the following property: if $F \subseteq \mathfrak{R}_{s_0}^\alpha$ is directed by \geq, then $c_F = \Pi c^* F$ for every $\subseteq F$.

(13) Beth's theorem. Németh [83'] has shown that this theorem corresponds to the statement that epics are surjective for \mathbf{L}_0; this equivalence generalizes to more general Λ and associated classes.

(14) Prime models. The algebraic counterpart of this notion is as follows. Let $\mathfrak{A} \in C_{s_0}^{\aleph_0} n\mathbf{L}_0$. We call \mathfrak{A} CA−prime if for all $\mathfrak{B} \in C_{s_0}^{\aleph_0} n\mathbf{L}_0$, $\mathfrak{A} \equiv \mathfrak{B}$ implies that \mathfrak{A} is base−isomorphic to some \mathfrak{E} which is sub−isomorphic to \mathfrak{B}. One basic theorem about prime models has the following algebraic form:

(*) Let \mathfrak{A} be a countable $C_{s_0}^{\aleph_0} n\mathbf{L}_0$. Then the following conditions are equivalent:

(i) \mathfrak{A} is CA−prime.
(ii) The base U of \mathfrak{A} is countable, and for every $n < \omega$, $\mathfrak{A}_n \mathfrak{A}$ is atomic and

$$U = \bigcup \{x : x \text{ is an atom in } \mathfrak{A}_n \mathfrak{A}\}.$$
PROBLEMS

PROBLEM 4.1. For $\alpha \geq 3$, give a simple equational basis for $1Gs_\alpha$.

Of the part of section 4.1 dealing with equations characterizing $1Gs_\alpha$.

PROBLEM 4.2. For $\alpha \geq \omega$, are there $2^{2\alpha}$ varieties of $1Gs_\alpha$'s? Of $1Gs_\beta$'s?

See Theorem 4.1.24.
In connection with 4.1.32–4.1.38 the following problem arises.

PROBLEM 4.3. Is $HSPMn_\alpha = SPuMn_\alpha$ or $SUPMn_\alpha$ = $HSPuMn_\alpha$ for $\alpha \geq \omega$?

PROBLEM 4.4. For $3 \leq \alpha < \beta$, is $N\alpha CA_\beta$ an elementary class?

For this problem, see the comments preceding Theorem 4.1.44.

PROBLEM 4.5. For $\alpha \geq \omega$ is it true that $\mathcal{U}nC_\alpha = EIC_\alpha$?

Of here Theorem 4.1.48.
For the next four problems see Andréka, Németi [81'] 7.4–7.9.

PROBLEM 4.6. If $1 < \kappa < \omega \leq \alpha$ and $\mathcal{X} \in \mathcal{E}_\kappa C_\alpha^{\tau \tau_\tau}$, is $\mathcal{X} \cdot \mathcal{X} \in E(\mathcal{E}_\kappa C_\alpha^{\tau \tau_\tau})$? Similarly with "$\mathcal{W}_\alpha$" in place of "$\mathcal{E}_\kappa C_\alpha^{\tau \tau_\tau}$".

PROBLEM 4.7. If $1 < \kappa < \omega \leq \alpha$, is $E(\mathcal{E}_\kappa G_\alpha \circ \mathcal{L}_\kappa) = E(\mathcal{E}_\kappa C_\alpha^{\tau \tau_\tau} \circ \mathcal{L}_\kappa)$?

This is Problem 14 of Andréka, Németi [81'].

PROBLEM 4.8. If $\omega \leq \alpha$, is $E_\alpha W_\alpha = U_\alpha W_\alpha$ or $E_\alpha C_\alpha^{\tau \tau_\tau} = E_\alpha W_\alpha$ or $I_\alpha C_\alpha$?

This is Problem 16 of Andréka, Németi [81'].

PROBLEM 4.9. If $\omega \leq \alpha$, is $E_\alpha C_\alpha^{\tau \tau_\tau} = I_\alpha C_\alpha$?

Some consistency results are known concerning the next problem; see Andréka, Németi [81'] Problem 20.
PROBLEM 4.10. If $\omega^{\leq \alpha} \prec \beta$, is $\text{El}(W_{\alpha} \circ nL_{\beta}) = \text{ElRd}_{\alpha}(W_{\beta} \circ nL_{\beta})$ or $\text{ElWs}_{\alpha} = \text{ElRd}_{\alpha}W_{\beta}$?

Related problems (still open) are numbers 20, 21, 25 of Andréka, Németi [81].

PROBLEM 4.11. Is the first-order theory of Mn_{α} decidable?

For Problem 4.11, see 4.2.1–4.2.3.

PROBLEM 4.12. For $\alpha \leq \omega$, is the equational theory of monadic-generated CA_{α}'s decidable?

See p. 131 and also Monk [64a]

PROBLEM 4.13. For $\alpha = \omega$, give a simple recursive axiomatization of $\text{Th}_{\rho}C_{\alpha}$.

See Theorem 4.2.31.

PROBLEM 4.14. Give a purely algebraic proof that if $3 \leq \alpha < \omega$ and $4 \leq \beta < \omega$ then $\text{Th}_{\rho}G_{\beta_{\alpha}}$ is not atomic. Does this result extend to $1 \leq \beta < 3$, and is it also true with "G_{α}" replaced with "CA_{α}"?

PROBLEM 4.15. For $3 \leq \alpha < \omega$, let K be the class of all finite CA_{α}'s. Is $\text{CA}_{\alpha} = \text{EqK}$?

Cf. the introduction to this volume, and also 4.3.32–4.3.33, for information on Problems 4.14 and 4.15.

PROBLEM 4.16. Give a proof calculus for type-free valid formulas which involves only type-free valid formulas.

See 4.3.64—4.3.65.
CHAPTER 5

OTHER ALGEBRAIC VERSIONS
OF LOGIC
5. OTHER ALGEBRAIC VERSIONS
OF LOGIC

This chapter is devoted to the descriptions of other algebraic versions of logic which have appeared in the literature. The first five sections deal with versions closely related to cylindric algebras: diagonal-free cylindric algebras, which differ from \(CA_\alpha \)'s only in not having diagonal elements — they have been mentioned at various places in Part I; projective algebras, which are a two-dimensional precursor to \(CA_\alpha \)'s; relation algebras, an independently interesting and well-developed kind of algebras intermediate between \(CA_2 \)'s and \(CA_\alpha \)'s; polyadic algebras, developed mainly by Halmos and very roughly equivalent to \(CA_\alpha \)'s; and relativized \(CA_\alpha \)'s, which are not in general \(CA_\alpha \)'s but extend the class \(CA_\alpha \) — again they have been mentioned from time to time already. The last section of the chapter surveys additional algebraic versions of logic, in particular the general algebraic logic developed mainly by Andréka and Németi. In all of this chapter our interest is mainly in the connection of the new notions with \(CA_\alpha \)'s, and, of course, we do not go into the theory of these new algebras to the depth that we have for \(CA_\alpha \)'s.

5.1 DIAGONAL—FREE CYLINDRIC ALGEBRAS

Recall, from 1.1.2, that a diagonal-free cylindric algebra of dimension \(\alpha \), for brevity a \(Df_\alpha \), is an algebraic structure \(B = (B, +, \cdot, 0, 1, c_\alpha)_{\alpha<\omega} \) satisfying \((C_0) - (C_4) \) of 1.1.1, i.e., all of the postulates for cylindric algebras not involving the diagonal elements. For any \(CA_\alpha \), \(Df_\alpha \) is the diagonal-free part of \(\mathcal{K} \), i.e., the reduct of \(\mathcal{K} \) obtained by deleting the diagonal elements. In this section we sketch the theory of \(Df_\alpha \)'s, which parallels the theory of \(CA_\alpha \)'s, and we indicate relationships between these classes.

The elementary arithmetic of cylindrifications, expressed in Chapter 1, extends with practically no changes to \(Df_\alpha \)'s. Specifically, 1.2.1—1.2.17 hold for \(Df_\alpha \)'s, with the same proofs. The results in section 1.3 concerning discrete \(CA_\alpha \)'s do not extend to \(Df_\alpha \)'s, as we shall now indicate.

DEFINITION 5.1.1. A \(Df_\alpha \) \(\mathcal{K} \) is discrete if \(c_\alpha z = z \) for all \(\alpha \leq \alpha \) and all \(z \in A \).

Now 1.3.11 and 1.3.16 still hold when formulated for \(Df_\alpha \)'s. This is not true of 1.3.13 and 1.3.15, even though these results do not involve diagonal elements. This follows from the following obvious lemma.
LEMMA 5.1.2. Suppose \(\alpha \preceq \beta \) and \(\mathcal{X} \) is a \(\text{DF}_\alpha \). Let \(\mathcal{B} = (\mathcal{A}, +, \cdot, \cdot, 0, 1, \mu_\beta)_{\kappa < \beta} \), where \(c^\mathcal{B}_\kappa = c^\mathcal{X}_\kappa \) if \(\kappa < \alpha \), and \(c^\mathcal{B}_\kappa = A^\mathcal{Y} 1d \) if \(\kappa \in \beta \setminus \alpha \). Then \(\mathcal{B} \) is a \(\text{DF}_\beta \).

Note that in 5.1.2 we could take \(c^\mathcal{B}_\kappa \) for \(\kappa \in \beta \setminus \alpha \) to be such that \(c^\mathcal{B}_\kappa z = 1 \) if \(z \neq 0 \), \(c^\mathcal{B}_0 = 0 \).

DEFINITION 5.1.3. If \(\mathcal{K} \) is a class of \(\text{CA}_\alpha \)'s, then \(\text{DFK} = \{ \text{DF}_{\mathcal{X}} : \mathcal{X} \in \mathcal{K} \} \).

COROLLARY 5.1.4. (i) If \(\alpha \preceq 1 \), then \(\text{DF}_0 = \text{DFCA}_0 \).
(ii) If \(\alpha \geq 2 \), then \(\text{DFCA}_0 \subseteq \text{DF}_\alpha \).

PROOF. By 5.1.2 and 1.3.13.

REMARK 5.1.5. In connection with 5.1.4 it is natural to ask whether for every \(\mathcal{X} \in \text{DFCA}_\alpha \), there is a unique \(\mathcal{B} \in \text{CA}_\alpha \) such that \(\mathcal{X} = \text{DFX} \). For \(\alpha \preceq 1 \) this is obviously the case. For \(\alpha \geq 2 \) we can easily produce counterexamples, as follows. Let \(U = \alpha \geq 2 \), let \(\mathcal{B} \) be the full \(\text{CA}_\alpha \) with base \(U \), and let \(\mathcal{X} = \text{DFX} \). We produce a different \(\text{CA}_\alpha \) \(\mathcal{E} \) such that \(\mathcal{X} = \text{DFE} \) as follows. For each \(\kappa < \alpha \) let \(t_\kappa \) be the permutation of \(U \) such that for any \(\lambda < \alpha \) and \(\varepsilon \in 2 \) we have

\[
(t_\kappa(\lambda, \varepsilon)) = \begin{cases}
(\lambda, \varepsilon) & \text{if } \lambda \neq \lambda, \\
(\lambda, 1 - \varepsilon) & \text{if } \lambda = \lambda,
\end{cases}
\]

For all \(\kappa, \lambda < \alpha \) let \(d^\mathcal{E}_{\kappa \lambda} = (x \in 2^U : t_\kappa(x) = t_\lambda(x)) \), and let \(\mathcal{C} = (\mathcal{A}, +, \cdot, \cdot, 0, 1, \mu_\alpha, d^\mathcal{E}_{\kappa \lambda})_{\kappa < \alpha, \lambda < \alpha} \). Now \(\mathcal{C} \neq \mathcal{B} \), since \(x \in d^\mathcal{E}_{\alpha \alpha} \), where \(x_0 = (0, 1) \) and \(x_1 = (0, 0) \) for all \(\lambda < \alpha \). Clearly also \(\mathcal{X} = \text{DFE} \). Finally, \(\mathcal{C} \) is a \(\text{CA}_\alpha \) to prove this, we must check \((C_3) \) to (1.11). Obviously \((C_3) \) holds. To check \((C_6) \), suppose that \(\kappa \lambda, \mu < \alpha \) and \(\kappa \neq \lambda, \mu \); we want to show that \(d^\mathcal{E}_{\kappa \mu} c_\kappa (d^\mathcal{E}_{\lambda \mu}, d^\mathcal{C}_{\lambda \mu}) \). First suppose that \(x \in d^\mathcal{E}_{\kappa \mu} \). Let \(y_\kappa = x_\lambda \) for all \(\xi \in \kappa \setminus \alpha \) and \(y_\lambda = t_\lambda(\alpha, x) \). Then \(t_\lambda y_\lambda = t_\lambda x_\lambda = t_\lambda (x_\lambda) = \mu x_\mu = t_\mu y_\mu \), so \(y \in d^\mathcal{C}_{\lambda \mu} \cdot d^\mathcal{C}_{\lambda \mu} \), hence \(x \in d^\mathcal{C}_{\lambda \mu} \cdot d^\mathcal{C}_{\lambda \mu} \). Conversely, suppose \(x \in d^\mathcal{C}_{\lambda \mu} \cdot d^\mathcal{C}_{\lambda \mu} \). Say \(x_\mu = d^\mathcal{C}_{\lambda \mu} \cdot d^\mathcal{C}_{\lambda \mu} \), where \(u, v \in U \). Then \(t_\mu x_\mu = t_\mu (x_\mu) = t_\mu (x_\mu) = t_\mu \mu = t_\mu x_\mu \), so \(x \in d^\mathcal{E}_{\kappa \mu} \), as desired. Finally we check \((C_7) \). Suppose \(\kappa \neq \lambda \), \(X \in A \), but \(x \in d^\mathcal{C}_{\lambda \mu} \cdot d^\mathcal{C}_{\lambda \mu} \). Say \(x_\mu \in d^\mathcal{C}_{\lambda \mu} \cdot X \) and \(x_\mu \in d^\mathcal{C}_{\lambda \mu} \cdot X \), where \(u, v \in U \). Then \(t_\mu x_\mu = t_\mu (x_\mu) = t_\mu (x_\mu) = t_\mu x_\mu \), and \(t_\mu x_\mu = t_\mu x_\mu \), similarly, so \(t_\mu x_\mu = t_\mu x_\mu \). Hence \(u = v; \) but \(x_\mu \in X \) and \(x_\mu \notin X \), contradiction.

We do not know how to characterize those \(\mathcal{X} \in \text{DFCA}_\alpha \) for which there is a unique \(\mathcal{B} \in \text{CA}_\alpha \) such that \(\mathcal{X} = \text{DFX} \).

The duality results in section 1.4 hold for \(\text{DF}_\alpha \)'s also. Concerning 1.5.23 and 1.5.24 we have the following result.

THEOREM 5.1.6. For each \(\alpha \geq 2 \) there is an equation not involving diagonal elements which holds in every \(\text{CA}_\alpha \) but not in every \(\text{DF}_\alpha \). An example of such an equation is:

\[
0 \cdot x_1 + 0 \cdot x_1 = 0 \cdot x_1 + 0 \cdot x_1 = 0 \cdot x_1 + 0 \cdot x_1.
\]
In particular, there is a D_0 in which this equation fails while $x \neq c_3x$, $y \neq c_3y$, and $z \neq c_3z$.

PROOF. By 3.2.68, let \mathcal{A} be a CA_3 having elements x, y, z such that

$$c_0x \cdot c_1y \cdot c_2z \leq c_0c_1c_2[c_2(c_1z \cdot c_0y) \cdot c_1(c_2x \cdot c_0x) \cdot c_0(c_2y \cdot c_1z)].$$

Now if we apply 5.1.2, we get the desired D_0. Note that the equation given in 5.1.6 holds in every CA_3 by 1.5.23.

For the final sentence of the theorem, we can apply the remark following 5.1.2, as soon as we check that x, y, z are all different from 0 and 1. Clearly they are all different from 0. By symmetry it remains only to show, say, that $x \not= 1$. Suppose, to the contrary, that $x = 1$. Then

$$c_0y \cdot c_2z \leq c_0c_1c_2[c_2(c_0y \cdot c_1c_0y) \cdot c_0(c_2y \cdot c_1z)]
= c_0c_2(c_0y \cdot c_1c_0y)
= c_0c_2(c_0y \cdot c_1z)
= c_0(c_0y \cdot c_2z)
= c_0(c_2y \cdot c_1z),$$

a contradiction.

We do not know whether the first part of 5.1.6 extends to $a = 3$. It would be interesting to find other equations with the property mentioned in 5.1.6.

The notion of dimension set naturally extends to D_0's, and Theorems 1.6.2, 1.6.3, 1.6.5 - 1.6.8, and 1.6.17 hold for D_0's also; this does not apply to 1.6.11, of course (apply 5.1.2). Definition 1.6.18 can be given for D_0's in the same form, and Theorem 1.6.19 extends also.

The results of section 1.7 all carry over to D_0's. The same is true of the results in section 1.10 which do not involve diagonal elements, except for 1.10.5. Locally finite—dimensional and dimension—complemented D_0's can be defined as in section 1.11, but only the trivial properties expressed in 1.11.3(i), (ii), (iv) carry over to D_0's. In fact, these classes are not as important for D_0's as they are for CA_3's.

Algebraic theory

Now we turn to the proper algebraic theory of D_0's.

THEOREM 5.1. (i) $SD_0 = D_0$.

(ii) If $\alpha \geq 2$, then there is a D_0 \mathcal{A} with one generator such that $|A| = \alpha \cdot \omega$.

(iii) If $\alpha \geq 2$ and $\omega \leq \alpha \cdot \omega$, κ a cardinal, then there is a CA_3 \mathcal{A} with one generator such that $|A| = \kappa$.
PROOF. (i) is obvious, and (ii) follows from the proof of 2.1.11. For (iii), use the proof of 2.1.11 and 5.1.2.

THEOREM 5.1.8. Every $\text{Df}_a\mathcal{X}$ has exactly one minimal subalgebra, namely a one- or two-element subalgebra depending on whether $|A| = 1$ or $|A| > 1$.

All one-element $\text{Df}_a\mathcal{X}$'s are isomorphic, and all two-element $\text{Df}_a\mathcal{X}$'s are isomorphic.

Now we consider the class SDFCA_a.

THEOREM 5.1.9. (i) If $a \leq 1$, then $\text{SDFCA}_a = \text{DfCA}_a = \text{CA}_a = \text{Df}_a$.

(ii) If $a \geq 2$, then $\text{DfCA}_a \subset \text{SDFCA}_a$.

(iii) If $a \geq 2$, then $\text{SDFCA}_a \subseteq \text{Df}_a$; $\text{SDFCA}_a \neq \text{Df}_a$ if $a \geq 4$.

PROOF. (i) is obvious, as is \subseteq in (ii) and (iii). To show that $\text{DfCA}_a \neq \text{SDFCA}_a$ for $a \geq 2$, let \mathcal{X} be the full C_a with base 2, let $a = \{a \in \omega^2 : 0 = 0\}$, and let $B = \{\{0, a, a, a\}, \text{c}_a = 1\}$, and $B \cup \text{c}_a \subseteq \text{Id}$ for $\kappa \geq a - 1$. Thus by 1.3.13, $B \in \text{SDFCA}_a \sim \text{DfCA}_a$. The proper inclusion \subset in (iii) for $a \geq 4$ follows from 5.1.6.

We do not know whether the last part of 5.1.9(iii) extends to $a = 3$. We show in 5.1.47 that $\text{SDFCA}_2 = \text{Df}_2$.

Now we consider relativized $\text{Df}_a\mathcal{X}$'s.

DEFINITION 5.1.10. Let \mathcal{X} be a $\text{Df}_a\mathcal{X}$ and $b \in A$; say $\mathcal{X} = (A, +, -, 0, 1, \text{c}_a)_{<a}$. We let $\text{Rl}_b\mathcal{X}, +', -, 0', 1', \text{c}_a'$ be as in 2.2.1, and set $\text{Rl}_b\mathcal{X} = (\text{Rl}_b\mathcal{X}, +', -, 0', 1', \text{c}_a')_{<a}$; $\text{Rl}_b\mathcal{X}$ is a diagonal-free relativized algebra of dimension a. $\text{Df}_a\mathcal{X}$ is the class of all diagonal-free relativized algebras of dimension a.

The following results are analogous to 2.2.2-2.2.4 and have similar proofs.

THEOREM 5.1.11. $\text{Df}_a \subset \text{Df}_a\mathcal{X}$.

THEOREM 5.1.12. If $\mathcal{X} \in \text{Df}_a\mathcal{X}$ and $b \in A$, then $\text{Rl}_b\mathcal{X}$ satisfies all of the axioms (C_0)-(C_4) for $\text{Df}_a\mathcal{X}$'s except possibly (C_4). $\text{Rl}_b\mathcal{X}$ is a Df_a iff the following condition holds (in \mathcal{X}) for all $\kappa, \lambda \leq a$ and all $z \in \text{Rl}_b\mathcal{X}$: $\text{c}_a(\text{c}_a z \cdot b) \subseteq \text{c}_a(\text{c}_a z \cdot b)$.

THEOREM 5.1.13. (i) If $a \leq 1$, then $\text{Df}_a = \text{Df}_a\mathcal{X}$.

(ii) If $a \geq 2$, then $\text{Df}_a \subset \text{Df}_a\mathcal{X}$.

Analogously to 2.2.8 we have:

THEOREM 5.1.14. (i) $\text{PDr}_a = \text{Dr}_a$.
(ii) \(U_{\alpha}D_{\alpha} = D_{\alpha} \).
(iii) \(U_{\alpha}S_{\alpha} = S_{\alpha} \).

We do not know whether \(D_{\alpha} \) is an equational class for \(\alpha \geq 2 \); in particular, we do not know whether \(S_{\alpha}D_{\alpha} = D_{\alpha} \) or \(H_{\alpha}D_{\alpha} = D_{\alpha} \). However, \(S_{\alpha}D_{\alpha} \) is an equational class, characterized by \((C_0) - (C_2)\), as we shall see in 5.1.32 below.

The proof of 2.2.10 gives

THEOREM 5.1.15. Let \(\alpha \in D_{\alpha} \) and \(b \in A \). If \(c_{\lambda b} = c_{\alpha}b = b \) for any two distinct \(\lambda, \lambda < \alpha \), then \(R_{\alpha}b \in D_{\alpha} \).

COROLLARY 5.1.16. Let \(\alpha \in D_{\alpha} \) and \(b \in A \). If \(b \in Z_{\alpha} \alpha \), then \(R_{\alpha}b \in D_{\alpha} \alpha \) and
\[3bR_{\alpha}b = R_{\alpha}3b. \]

THEOREM 5.1.17. If \(\alpha \in D_{\alpha} \) and \(b \in Z_{\alpha} \alpha \), then \(R_{\alpha}b \) is discrete iff for all \(\alpha \),
\[z \in Z_{\alpha} \alpha. \]

Theorem 2.2.15 also naturally extends to \(D_{\alpha} \)'s.

The properties of monadic-generated \(C_{\alpha} \)'s derived in the last part of section 2.2 carry over in a simplified form for \(D_{\alpha} \)'s as follows. (These proofs do not use the notion of relativization.)

DEFINITION 5.1.18. A \(D_{\alpha} \) \(\alpha \) is monadic-generated if there is a set \(X \) such that \(\alpha = \bigcup X \alpha \) and \(|\Delta x| < 1 \) for every \(x \in X \).

THEOREM 5.1.19. Let \(\alpha \) be a monadic-generated \(D_{\alpha} \), say \(\alpha = \bigcup X \alpha \) with \(|\Delta x| < 1 \) for all \(x \in X \). Let
\[C = X \cup \{ a_{\alpha}(Y, Z) : YuZ \leq X, |YuZ| < \omega, ZnZ = 0, \alpha < \alpha, \text{ and } \Delta y = \{ \varepsilon \} \text{ for all } y \leq YuZ \}, \]
where
\[a_{\alpha}(Y, Z) = c_{\alpha}(\prod y \leq y \leq Z - z). \]
Then \(A = S_{\alpha}C \).

COROLLARY 5.1.20. If \(\alpha \in D_{\alpha} \) and \(\alpha = \bigcup X \alpha \) with \(|\Delta x| < 1 \) for every \(x \in X \), then \(\alpha \) is finite.

The notions and results of section 2.3, concerning homomorphisms, isomorphisms, and ideals, carry over to \(D_{\alpha} \)'s with the same proofs, except for 2.3.22, 2.3.30, 2.3.31, 2.3.32, and 2.3.33. Concerning these theorems we have the following results.

THEOREM 5.1.21. For each \(\alpha \geq 1 \) there is a locally finite-dimensional simple \(D_{\alpha} \) generated by two elements but not by one element.

PROOF. Let \(\mathcal{A} \) be the full \(C_{\alpha} \) with base \(3, \mathcal{B} = D_{\alpha} \), and \(\mathcal{C} \) the \(D_{\alpha} \) obtained from \(\mathcal{B} \) by the procedure of 5.1.2. It is easily checked that \(\mathcal{C} \) is as desired.

Note that Theorem 5.1.21 shows that 2.3.22 does not hold for \(D_{\alpha} \)'s. A similar easy argument shows that 2.3.30 does not extend to \(D_{\alpha} \)'s. 2.3.31 essentially involves
diagonal elements. We already remarked on p.295 of Part I that 2.3.32 applies also to D_f's, as noticed by Don Pigozzi:

THEOREM 5.1.22. For every $D_f \mathcal{X}$, if $\mathcal{X} = \exists \mathcal{Y}$ and $|X| < \omega$, then $|A \times n \times \mathcal{X}| \leq 2^{|X|}$.

PROOF. For each $a \in A \times \mathcal{X} \times n \times \mathcal{X}$ let $f_a = \{x \in X : x \cdot a = 0\}$. It suffices to show that f_a is one-one. Suppose that $f_a = f_b$, where $a, b \in A \times \mathcal{X} \times n \times \mathcal{X}$. Let $B = \{x \in A : x \cdot a = 0 \iff x \cdot b = 0\}$. Thus $X \subseteq B$. It is easily checked that $B \subseteq \mathcal{X}$. Hence $B = A$, and so of course $a = b$, as desired.

Corollary 2.3.33(i) does not extend to D_f's, if $\alpha \geq 2$, as one can see using the proof of 2.1.11(ii) and 5.1.19, and using 5.1.19 for the case $\alpha = 2$.

Note that if \mathcal{X} is a CA$_\alpha$, then a subset I of A is an ideal in \mathcal{X} iff it is an ideal in $D_f \mathcal{X}$. Furthermore, \mathcal{X} is simple iff $D_f \mathcal{X}$ is.

The results in section 2.4 (direct products and related notions) which do not involve diagonal elements extend with the same proofs to D_f's with these exceptions: 2.4.8(ii), 2.4.17, and 2.4.54(i). Counterexamples are easily provided for 2.4.5(ii) and 2.4.54(i) in their versions for D_f's. On the other hand, 2.4.17 does extend to D_f's, with a different proof:

THEOREM 5.1.23.(i) Every finite directly indecomposable D_f is simple.

(ii) Every finite D_f is isomorphic to a direct product of simple D_f's.

PROOF. Let \mathcal{X} be a finite directly indecomposable D_f. In order to apply the D_f-version of 2.3.14, suppose that $0 \neq x \in A$. Let y be a maximal element of $\{c_{G \Delta \Gamma} : \Gamma \subseteq \alpha, |\Gamma| < \omega\}$. Then $\Delta y = 0$, so $y = \Gamma$. Thus $c_{G \Delta \Gamma} x = 1$ for some finite $\Gamma \subseteq \alpha$, as desired. This proves (i). (ii) follows by (i) and 0.3.31.

Now we turn to free D_f's. The analogs of 2.5.1 and 2.5.3 hold for D_f's. Lemma 2.5.4 holds in the following somewhat stronger form, with essentially the same proof:

LEMMA 5.1.24. For every simple $\mathcal{X} \in D_f$ and every finite $X \subseteq A$ there is a $B \in D_f$ satisfying the conditions:

(i) B is finite, and in fact, $|B| \leq 2^a$ with $a = 2^{|X|}$;

(ii) $X \subseteq B$ and $B \subseteq L \mathcal{X}$;

(iii) if $x \in X$, then $c_{G \Delta \Gamma} x = c_{G \Delta \Gamma} x \in B$ for $\kappa = 0,1$.

Of the other results in section 2.5 not involving diagonal elements, all but the following carry over to D_f's, with the same proofs: 2.5.11, 2.5.15, 2.5.16, 2.5.24, 2.5.43, 2.5.51, 2.5.52, 2.5.53, 2.5.61, 2.5.66, 2.5.67, 2.5.68. We now consider these results in succession.

Concerning 2.5.11, the situation differs for $\alpha < \omega$ and $\alpha \geq \omega$.

THEOREM 5.1.25. If $\alpha \cdot \beta < \omega$, then $D_f^\alpha \mathcal{X}$ has exactly 2^β zero-dimensional atoms.

PROOF. Let $\mathcal{X} = D_f^\alpha \mathcal{X}$ and for each $\xi \leq \beta$ let $g_\xi = \xi / C_{G \Delta \Gamma} \mathcal{X}$. The case $\alpha \leq 1$ is treated in 2.5.11, so assume that $\alpha \geq 2$. By 5.1.22 it suffices to exhibit 2^β zero-dimensional atoms. For each $\Gamma \subseteq \beta$ let
It is easy to verify that each x_Γ is non-zero, they are zero-dimensional, and they are all distinct. Now fix $\Gamma \subseteq \beta$. Let

$$B = \{ y \in A : y \cdot x_\Gamma = 0 \text{ or } -y \cdot x_\Gamma = 0 \}.$$

It is easily seen that $g_\xi \in B$ for each $\xi < \beta$, and $B \in SUK$. Hence $B = A$, and this shows that x_Γ is an atom of K, as desired.

Theorem 5.1.26. If $\alpha \geq \omega$ and β is an arbitrary non-zero cardinal, then $B_{\beta}D_{\alpha}$ is directly indecomposable and hence has only the two zero-dimensional elements 0 and 1.

Proof. It suffices to show that if $0 < a < 1$ in $B_{\beta}D_{\alpha}$ then $\Delta a \neq 0$. There is a finite set $\Gamma \subseteq \alpha$ and a term τ in the first-order language for D_{α}'s involving c_ξ only for $\xi \in \Gamma$ such that $a = x^\alpha_{\beta} x$ for some $x \in \mathcal{A}_{\beta} D_{\alpha}$, where $\mathcal{A} = B_{\beta}D_{\alpha}$ and $g_\xi = \xi/\Delta_{\beta}D_{\alpha}$ for all $\xi < \beta$. Let $\mathcal{A} = (A,+,-,0,1,c_\xi)_{\xi < \alpha}$, and set $\mathcal{B} = (A,+,-,0,1,c'_\xi)_{\xi < \alpha}$, where $c'_\xi = c_\xi$ for all $\xi \in \Gamma$, while for any $\xi \in \alpha \sim \Gamma$ and any $y \in A$ we set

$$c'_\xi y = \begin{cases} 1 & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

Then clearly $\mathcal{B} \in D_{\alpha}$. Let $f \in Hom(\mathcal{A},\mathcal{B})$ such that $f g_\xi = g_\xi$ for all $\xi < \beta$. Then $fa = a$. Choose $\xi \in \alpha \sim \Gamma$. Then $c'_\xi a = 1$, so also $c_\xi a = a$, as desired.

Theorem 2.5.15 does not carry over to D_{α}'s in its most general form, but we have:

Theorem 5.1.27. In the algebra $B_{\beta}D_{\alpha}$ we have $\Delta (\xi/\Delta_{\beta}D_{\alpha}) = \alpha$ for every $\xi < \beta$.

Similarly for 2.5.16:

Theorem 5.1.28. $B_{\beta}D_{\alpha}$ is not dimension-complemented.

Theorem 2.5.24 extends to D_{α}'s in a more general result, with a trivial proof not involving free algebras:

Theorem 5.1.29. There is a simple D_{α} which is not dimension-complemented.

Corollary 2.5.43 is trivially true for D_{α}'s, since the minimal subalgebra of $B_{\beta}D_{\alpha}$ has exactly two elements. Theorem 2.5.51 and its two corollaries 2.5.52, 2.5.53 do not hold for D_{α}'s. For example, if $\beta = 1$, $\alpha \geq 2$, $\Delta, \Delta' \in \beta S_{\beta}A$ with $\Delta A = \{0\}$, $\Delta 1 = \{1\}$, then all elements of $B_{\beta}D_{\alpha}$ have dimension set $\subseteq \{0\}$ and all elements of $B_{\beta}D_{\alpha}$ have dimension set $\subseteq \{1\}$, with $\Delta (0/\Delta_{\beta}D_{\alpha}) = \{0\}$, so $B_{\beta}D_{\alpha} \not\cong B_{\beta}D_{\alpha}$. Finally, 2.5.61, 2.5.66, 2.5.67, 2.5.68 take the following form for D_{α}'s:
THEOREM 5.1.30. Assume that \(a \geq 2\), \(\Delta \in \delta\text{Sba}, \beta < \omega_1\), and \(|\Delta| \leq 1\) for all \(\xi < \beta\). Then \(\mathfrak{F}^\delta_{\beta}\text{Df}_a\) is finite.

More specifically, for each \(\kappa < \alpha\) let \(\Gamma_\kappa = \{\xi < \beta; \Delta_\xi = \kappa\}\), and let \(\Theta = \{\xi < \beta; \Delta_\xi = 0\}\). Let \(\Omega = \{\kappa < \alpha; \Gamma_\kappa \neq 0\}\). Set \(\gamma = |\Theta| + \Sigma(\delta_\kappa + |\Gamma_\kappa| + 2^{|\Gamma_\kappa|} - 1; \kappa \in \Omega)\). Then \(\text{Fr}_\gamma^\delta_{\beta}\text{Df}_a\) is finite, where
\[
\delta = |\text{At}(\mathfrak{F}^\delta_{\beta}\text{Df}_a)| = 2^\gamma.
\]

PROOF. Let \(\delta = |\Gamma_\kappa|\) for each \(\kappa \in \Omega\). Let \(\mathfrak{X}_\kappa = \mathfrak{F}^\delta_{\beta}\text{Df}_\kappa\) for each \(\kappa \in \Omega\), and let \(\mathfrak{g}_\kappa(\xi) = \xi / \mathfrak{C}_\kappa\text{Df}_\kappa\) for each \(\xi < \delta\). Let \(\mathfrak{B}\) be the free BA on free generators \(\mathfrak{b}_\xi\) for \(\xi \in \Theta\). Let \(f_\kappa\) be a one-one function from \(\delta\) onto \(\Gamma_\kappa\) for each \(\kappa \in \Omega\). Note by 2.5.62 that:

1. \(|\mathfrak{B}| = 2^a\) with \(a = 2^{|\Theta|}\);
2. \(|\mathfrak{A}_\kappa| = 2^b\), with \(b = 2^c\) and \(c = \delta + 2^{2\delta} - 1\), for each \(\kappa \in \Omega\).

Let \(\mathfrak{E}\) be the BA-free product of \(\mathfrak{B}\) and all the algebras \(\mathfrak{E}\mathfrak{X}_\kappa\). By (1) and (2) we see that \(|\mathfrak{E}| = 2^\gamma\). We shall define cylinders on \(\mathfrak{E}\) so that the resulting algebra is a \(\text{Df}_\kappa\) isomorphic to \(\mathfrak{F}^\delta_{\beta}\text{Df}_\kappa\), thereby completing the proof. If \(\lambda \in \alpha < \omega\), we let \(c_\lambda = \mathfrak{C}_1\mathfrak{d}\). Suppose now that \(\lambda \in \Omega\). Let \(d \in \mathfrak{C}\). Then we can write \(d\) in the form
\[
d = \Sigma_{\kappa < \alpha} \mathfrak{b}_\kappa \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\kappa,
\]
where \(\mu < \omega\) and for each \(\iota < \mu\) we have \(\mathfrak{b}_\iota \in \mathfrak{B}\) and \(\mathfrak{a}_\kappa \in \mathfrak{A}_\kappa\) for each \(\kappa \in \Omega\). We would like to set

3. \(c_\lambda d = \Sigma_{\kappa < \alpha} \mathfrak{b}_\kappa \cdot c_\lambda \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\kappa\).

To see that this is possible, suppose also that
\[
d = \Sigma_{\eta < \nu} \mathfrak{b}_\eta \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\eta
\]
with \(\nu < \omega\) and \(\mathfrak{b}_\eta \in \mathfrak{B}, \mathfrak{a}_\eta \in \mathfrak{A}_\kappa\) for each \(\eta < \nu\), \(\kappa \in \Omega\). We need to show that the right side of (3) is equal to
\[
(4) \Sigma_{\eta < \nu} \mathfrak{b}_\eta \cdot c_\lambda \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\eta.
\]

By symmetry, it suffices to take an arbitrary \(\iota < \mu\) and show that
\[
(5) \mathfrak{b}_\iota \cdot c_\lambda \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\kappa
\]
is \(\leq\) the expression (4). Now from the two expressions for \(d\) we see that
\[
\mathfrak{b}_\iota \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\kappa \cdot \Pi_{\eta < \nu} (-\mathfrak{b}_\eta + \Sigma_{\kappa \in \Omega} \mathfrak{a}_\eta) = 0.
\]

Using the free product property it follows that for every \(\Xi \leq \nu\) and every \(\mathfrak{h} \in \Xi\), either \(\mathfrak{b}_\iota \leq \Sigma_{\eta \in \nu - \Xi} \mathfrak{b}_\eta\) or there is a \(\kappa \in \Omega\) such that \(\mathfrak{a}_\kappa \leq \Sigma(\mathfrak{a}_\eta; \mathfrak{h} = \kappa)\). Hence for every \(\Xi \leq \nu\) and every \(\mathfrak{h} \in \Xi\), either \(\mathfrak{b}_\iota \leq \Sigma_{\eta \in \nu - \Xi} \mathfrak{b}_\eta\), or \(c_\lambda \cdot \Pi_{\kappa \in \Omega} \mathfrak{a}_\kappa \leq \Sigma(c_\lambda \cdot \mathfrak{a}_\eta; \mathfrak{h} = \lambda)\), or there is a
\(\kappa \in \Omega \sim (\lambda) \) such that \(a_{\kappa} \subseteq \sum (s_{\kappa}, \lambda) = \kappa \). Hence, as desired, (5) \(\subseteq (4) \).

Now let \(D \) be the structure similar to \(D_\alpha \)'s such that \(R, O \subseteq \mathbb{E} \) and \(c_{\alpha}^D = c_{\lambda}^D \) for all \(\lambda \prec \alpha \). It is easily checked that \(D \) is a \(D_\alpha \). Next we define \(k \in \mathcal{D}; k \) is to be our sequence of free generators under \(\Delta \) (cf. 2.5.34). Let \(\xi \prec \beta \). If \(\Delta \xi = 0 \), set \(k_\xi = k_\xi \). If \(\Delta \xi = \{ \kappa \} \), where \(\kappa \prec \alpha \), let \(k_\xi = g(f_\kappa^{-1}(\kappa), \kappa) \). Note that \(D \) is generated by \(R, k \), and \(\Delta k_\xi \subseteq \Delta \xi \) for every \(\xi \prec \beta \). Now let \(E \) be a \(D_\alpha \), \(y \subseteq \mathbb{E} \), and suppose that \(\Delta y \subseteq \Delta \xi \) for each \(\xi \prec \beta \). Let \(\phi \in \text{Hom}(\mathbb{F}, \mathbb{E}) \) be such that \(\phi k_\xi = y_\xi \) for each \(\xi \in \Theta \). Note that \(R, g \subseteq \mathbb{F} \). Now say \(\Delta \xi = \{ \} \). Set \(\rho = \{ 0, \kappa \} \). Let \(s_\kappa \in \text{Hom}(\mathbb{F}, \mathbb{F} \mathbb{E}) \) be such that \(s_\kappa g(\{ \kappa \}) = y_\kappa \) for each \(\kappa \prec \lambda \). Note that \(\Delta s_\kappa \subseteq \{ \kappa \} \) for all \(\kappa \in \Omega \). By the free product property there is a \(t \in \text{Hom}(\mathbb{E}, \mathbb{E} \mathbb{E}) \) such that \(t_\xi = y_\xi \) for each \(\xi \in \Delta \), and \(t g(\{ \kappa \}) = y_\kappa \) whenever \(\kappa \in \Omega \) and \(\kappa \prec \lambda \). Then if \(\xi \in \Theta \) we have \(t_\xi = t_\xi = y_\xi \). If \(\xi \in \Gamma_\kappa \) with \(\kappa \in \Omega \) then \(t_\xi = t g(f_\kappa^{-1}(\kappa), \kappa) = y_\kappa f_\kappa^{-1}(\kappa) = y_\kappa \). So, \(t \cdot k = y \). It remains to show that \(t \) preserves cylindrifications. Suppose \(d \) is as above, before (3), and \(\lambda \prec \Omega \). Then

\[
\begin{align*}
t_\lambda d &= (\Sigma_{\lambda \prec \beta} b_{\lambda}^Y a_{\lambda} \Gamma \lambda \prec \Omega \sim (\lambda) a_{\lambda}) \\
&= \Sigma_{\lambda \prec \beta} b_\lambda a_{\lambda}^Y \Gamma \lambda \prec \Omega \sim (\lambda) a_{\lambda} \\
&= \Sigma_{\lambda \prec \beta} b_{\lambda} a_{\lambda} \Gamma \lambda \prec \Omega \sim (\lambda) a_{\lambda} \\
&= c_\lambda d.
\end{align*}
\]

Next, suppose \(\lambda \in \alpha \prec \Omega \). Then \(c_\lambda d = d \). Now by the choice of \(t \) and the noted properties of \(l \) and the \(s_\kappa, c_\lambda d = c_\lambda d \). Thus \(t c_\lambda d = c_\lambda d \). Again, as desired.

By the \(D_\beta \)-analog of 2.5.37 we have \(D \cong D_\beta \), as desired.

In view of 5.1.2, the notions of reducts and neat embeddings are trivial for \(D_\beta \)'s:

THEOREM 5.1.31. If \(\alpha \subseteq \beta \), then \(D_\alpha = R \alpha D_\beta = N \alpha D_\beta \).

The notions and results of section 2.7 transfer to \(D_\beta \)'s with no difficulty. Thus Definition 2.7.1 is modified by omitting reference to diagonal elements; \(B_\beta \) and \(B_\alpha \) for the corresponding notions. Similarly, we use \(d \) (or \(d_\alpha \)) for the class of all relational structures (of dimension \(\beta \)) which are atom structures of complete and atomic \(D_\beta \)'s (\(D_\alpha \)'s). Other notions applied to \(D_\beta \) have the natural diagonal–free interpretation. For example, if \(\mathbb{X} \) is a \(D_\beta \) then \(\text{Em} \mathbb{X} \) is defined as in 2.7.4, but omitting reference to diagonal elements. Note that in the \(D_\beta \)-version of Theorem 2.7.40, only conditions (i), (ii) occur.

Now we can use these notions to establish a result about relativized \(D \beta \)'s referred to above.

THEOREM 5.1.32. Let \(\mathbb{X} \) be similar to \(D_\alpha \)'s. Then \(\mathbb{X} \in \mathcal{S} D_\alpha \) iff \(\mathbb{X} \) satisfies \((C_0) \sim (C_3) \) of 1.1.1.

PROOF. The direction \(\Rightarrow \) is clear from the definitions. Now suppose that \(\mathbb{X} \) satisfies \((C_0) \sim (C_3) \). By the \(D_\beta \)-version of 2.7.13, we may assume that \(\mathbb{X} \) is complete and atomic. Now we call a relational structure \(\mathbb{E} = \langle E, T_\alpha \rangle_{\alpha \in \alpha} \) regular if \(T_\alpha \) is an
equivalence relation on \(B \) for every \(\kappa \triangleleft \alpha \).

(1) If \(\mathcal{B} = (B, T^\kappa) \triangleleft \alpha \) is a regular relational structure, \(\kappa \triangleleft \alpha \), and \(a(T^\kappa_\kappa) \), then there is a regular relational structure \(\mathcal{C} \triangleleft \mathcal{B} \), \(\mathcal{C} = (C, T^\kappa_\mu \triangleleft \alpha) \), such that \(a(T^\kappa_\mu \mid T^\kappa_\kappa) \).

For, we may assume that \(\kappa \neq \lambda \). Let \(z \) be any element \(\notin B \) and set \(C = B \cup \{z\} \). Let \(T^\lambda_\kappa \) be the equivalence relation on \(C \) whose equivalence classes are \((b/T^\kappa_\kappa) \) and \(c/T^\lambda_\kappa \) for \(c \in T^\kappa_\kappa \). \(T^\lambda_\mu \) is the equivalence relation on \(C \) with classes \(a/T^\lambda_\mu \) and \(d/T^\mu_\mu \) for \(d \in T^\lambda_\mu \); and for \(\mu \neq \kappa \), \(T^\mu_\mu \) is the equivalence relation on \(C \) with classes \(\{z\} \) and all \(T^ \mu_ \mu \)-classes. Clearly (1) holds.

Now \(\mathcal{X} \triangleleft \mathcal{B} \) is clearly a regular relational structure, and by (1) and an easy transfinite construction we easily obtain a \(D_f \triangleleft \mathcal{B} \) such that \(\mathcal{X} \triangleleft \mathcal{B} \), using the \(D_f \)-version of 2.7.40. Let \(a = \Sigma \mathcal{X} \). Now clearly \(\mathcal{X} \mathcal{X} \triangleleft \mathcal{B} \triangleright \mathcal{X} \mathcal{X} \triangleleft \mathcal{X} \) by the \(D_f \)-version of 2.7.34, so \(\mathcal{X} \in \mathcal{SD}_f \), as desired.

Representable \(D_f \)'s

Now we turn to the notions of diagonal-free set algebras, as in section 3.1. Recall Definition 3.1.1.

DEFINITION 5.1.33. (i) \(A \) is an \(\alpha \)-dimensional \(df \)-cylindric-relativized field of sets (if) there is a set \(V \) of \(\alpha \)-term of sets such that \(A \) is a non-empty family of subsets of \(V \) closed under all the operations \(u, n, v \) and \(C^v_\kappa \) (for each \(\kappa \triangleleft \alpha \)).

(ii) \(\mathcal{X} \) is a \(df \)-cylindric-relativized set algebra of dimension \(\alpha \) iff there is a set \(V \) of \(\alpha \)-term of sequences such that \(\mathcal{X} = (A, u, n, v, \mathcal{C}^v_\kappa, \kappa \triangleleft \alpha) \), where \(A \) is as in (i).

For the rest of the definition, let \(A, \mathcal{X} \), and \(V \) be as in (i) and (ii).

(iii) \(\mathcal{X} \) is an \(\alpha \)-dimensional \(df \)-cylindric set algebra if there is a system \((U_\kappa : \kappa \triangleleft \alpha) \) of sets such that \(V = P : \kappa \triangleleft \alpha \) \(U_\kappa \) is the class of all such \((U_\kappa : \kappa \triangleleft \alpha) \) is called the base system of \(\mathcal{X} \). In case there is a set \(W \) such that \(U_\kappa = W \) for all \(\kappa \triangleleft \alpha \), we call \(\mathcal{X} \) uniform with base \(W \); \(C_{sf} \) is the class of all uniform \(C_{sf} \).

(iv) \(\mathcal{X} \) is an \(\alpha \)-dimensional generalized \(df \)-cylindric set algebra if \(V \) has the form

\[
U_{\kappa \triangleleft \alpha} P_{\kappa \triangleleft \alpha} U_{\kappa \triangleleft \alpha},
\]

where for distinct \(i, j \in I \) and any \(\kappa \triangleleft \alpha \) we have \(U_{\kappa \triangleleft \alpha} \cap U_{\kappa \triangleleft \alpha} = 0 \). If for every \(i \in I \) there is a \(W_i \) such that \(U_{\kappa \triangleleft \alpha} = W_i \) for all \(\kappa \triangleleft \alpha \), we call \(\mathcal{X} \) uniform. \(W \) is then called the base of \(\mathcal{X} \).

Gsd_{sf} and Gsd_{sf} are the corresponding classes.

(v) \(A \mathcal{D}_f \) is representable if it is isomorphic to a \(Gsd_{sf} \).

(vi) If \((U_\kappa : \kappa \triangleleft \alpha) \) is a system of sets and \(p \in P : \kappa \triangleleft \alpha U_{\kappa \triangleleft \alpha} \), then we set

\[
P^p_{\kappa \triangleleft \alpha} U_{\kappa \triangleleft \alpha} = (q \in P : \kappa \triangleleft \alpha U_{\kappa \triangleleft \alpha} : \{\kappa \triangleleft \alpha : q \neq p\} \text{ is finite}).
\]

(vii) \(\mathcal{X} \) is an \(\alpha \)-dimensional weak \(df \)-cylindric set algebra, \(\mathcal{X} \in \mathcal{Wsd}_{sf} \), if \(V \) has the form given in (vi).

(viii) \(\mathcal{X} \) is an \(\alpha \)-dimensional generalized weak \(df \)-cylindric set algebra, \(\mathcal{X} \in \mathcal{GwSd}_{sf} \), if \(V \) has the form

\[
U_{\kappa \triangleleft \alpha} P^p_{\kappa \triangleleft \alpha} U_{\kappa \triangleleft \alpha},
\]
with \(P_{\kappa\lambda}^{(\mu)} U_{\kappa\mu} \cap P_{\kappa\lambda}^{(\nu)} U_{\kappa\nu} = 0\) for \(i \neq j\). We call \(\mathcal{X}\) normal if for all \(i, j \in I\), \(U_{\kappa\mu} = U_{\kappa\nu}\) for all \(\kappa < \lambda\), or \(U_{\kappa\mu} \cap U_{\kappa\nu} = 0\) for all \(\kappa < \lambda\); widely-distributed if \(U_{\kappa\mu} U_{\kappa\nu} = 0\) whenever \(i, j \in I\), \(i \neq j\), and \(\kappa < \lambda\); compressed if \(U_{\kappa\mu} = U_{\kappa\nu}\) for all \(i, j \in I\) and all \(\kappa < \lambda\). \(\text{GSDf}_{\alpha}^{m}\), \(\text{GSDf}_{\alpha}^{lm}\), \(\text{GSDf}_{\alpha}^{an}\) are the corresponding classes.

We state some facts about relationships between these notions. The first one depends on the following algebraic version of the upward Lowenheim, Skolem theorem; it is due to James S. Johnson [99] (see also Halmos [57], Lemma 6.4).

THEOREM 5.1.34. Let \(\mathcal{X}\) be a Csdf\(_\alpha\) with base system \(U = (U_{\lambda} : \lambda < \alpha)\), with \(U_{\lambda} \neq 0\) for all \(\lambda < \alpha\). Suppose \(V = (V_{\lambda} : \lambda < \alpha)\) and \(|U_{\lambda}| = |V_{\lambda}|\) for every \(\lambda < \alpha\). Then \(\mathcal{X}\) is isomorphic to a Csdf\(_\alpha\) with base system \(V\).

PROOF. For each \(\lambda < \alpha\) let \(f_{\lambda}\) be a function mapping \(V_{\lambda}\) onto \(U_{\lambda}\). Now for each \(X \in A\) let

\[FX = \{z \in PV : (f_{\lambda} z_{\lambda} : \lambda < \alpha) \in X\}. \]

It is routine to check that \(F\) is the desired isomorphism.

COROLLARY 5.1.35. \(\text{ICSDf}_{\alpha} = \text{ICSDf}_{\alpha}\).

THEOREM 5.1.36. (i) \(\text{Csdf}_{\alpha} \subset \text{GSDf}_{\alpha}\).

(ii) \(\text{Gsdf}_{\alpha} \subset \text{GSDf}_{\alpha}^{lm}\).

(iii) \(\text{GSDf}_{\alpha}^{an} \subset \text{Df}_{\alpha}\).

PROOF. (i) and (ii) are obvious. For (iii) it suffices to check \((C_4)\). There is no problem for \(\alpha = 1\). Let \(\mathcal{X}\) have unit element \(V\) as in 5.1.33(viii). Suppose \(\kappa, \lambda < \alpha, \kappa \neq \lambda\). If \(\alpha = 2\), then for any \(X \in A\),

\[C_{\kappa}^{[V]} \cap C_{\lambda}^{[V]} X = \{u \in C_{\kappa}^{[V]} u \subset C_{\lambda}^{[V]} u \neq 0\}. \]

For, suppose \(u \in C_{\kappa}^{[V]} \cap C_{\lambda}^{[V]} X\). Say \(u = u_{\mu} \in C_{\kappa}^{[V]} X\). Say \(u = u_{\mu} \in C_{\kappa}^{[V]} X, u = u_{\mu} \in C_{\lambda}^{[V]} X\). Say \(u_{\mu} \in P_{\mu < \alpha} U_{\mu}\) and \(u_{\mu} \in P_{\mu < \alpha} U_{\mu}\). Then \(s \in U_{\mu} \cap U_{\nu}\) so \(i = j\); and \(s \in U_{\lambda}\) so \(j = \kappa\). Thus \(u_{\mu} \in P_{\mu < \alpha} U_{\mu}\) with \(P_{\mu < \alpha} U_{\mu} X = 0\) if \(i = j\). Since \(u_{\mu} \in U_{\mu}\) \(X = 0\), \(u_{\mu} \in C_{\mu}^{[V]} X\). Then \(u_{\mu} \in V\) hence \(u_{\mu} \in C_{\mu}^{[V]} X\), and \(u_{\mu} \in C_{\mu}^{[V]} X\), as desired.

From (1) it is clear that \((C_4)\) holds in \(\mathcal{X}\).

Now assume that \(\alpha \geq 3\). Then

\[C_{\kappa}^{[V]} \cap C_{\lambda}^{[V]} X = \{u \in V : \text{there is a } v \in X \text{ such that } (u \sim (\kappa, \lambda)) \cup u \subset u\}. \]

In fact, \(\subset\) is obvious. Now let \(u \in V, v \in X, (u \sim (\kappa, \lambda)) \cup u \subset u\). Say \(u \in P_{\mu < \alpha} U_{\mu}\), \(v \in P_{\mu < \alpha} U_{\mu}\). Choose \(\mu \in \alpha \sim (\kappa, \lambda)\). Then \(u_{\mu} = v_{\mu} \in U_{\mu} \cap U_{\mu}\), so \(i = j\). Hence clearly
u ∈ C^{|V|}_x C^{|V|}_x X$, and (2), hence (C_x), holds.

Remark 5.1.37. Not every Gwstf is a Df. For, take any $α ≤ ω$. Let $I = \{i, j\}$ with $i ≠ j$; $U_0 = \{0\}$, $U_1 = \{0, 1\}$, and $U_κ = ω$ if $κ ≥ 1$. Let $(p_j)κ = 0$ for all $κ ∈ α$. Let $(p_j)0 = (p_j)1 = 1$, $(p_j)κ = 0$ for all $κ ∈ α$ ≠ 2. Set

$$V = P_κ^{(p_κ)} U_κ P_κ^{(p_κ)} U_κ.$$

Let $X = \{p_j\}$. Then $C^{|V|}_0 C^{|V|}_0 X = \{q ∈ V: qκ = 0 \text{ for all } κ ≠ 1\}$, while $C^{|V|}_0 C^{|V|}_x X = \{q ∈ V: qκ = 0 \text{ for all } κ ≠ 0, 1\}$. Thus (C_x) fails.

The following facts are proved like the corresponding ones for cylindric set algebras (see 3.1.6 – 3.1.80).

Theorem 5.1.38. (i) If $α ≤ 2$, then $1Gsd f = SpCsd f$.
(ii) If $α ∈ ω$, then $Gsd f = Gwstf$.
(iii) If $α ≥ ω$, then $Gwstf = SpWsd f$.

We need below the following algebraic version of the downward Lowenheim, Skolem theorem (cf. Halmos [57], proof of Theorem (6.7)):

Theorem 5.1.39. Suppose $α < ω$. Let X be a Csd f with base V. For any $u, v ∈ V$ we define uSv iff for all $x, y ∈ V$, all $κ < α$, and all $X ∈ A$, if $(α ⊼ (κ)) \downarrow x ⊆ y$ and $x_κ = u$, $y_κ = v$, then $x ∈ X$ iff $y ∈ X$.

Then S is an equivalence relation on V, and for any equivalence relation R on V such that $R ⊆ S$, X is isomorphic to a Csd f with base V/R.

Proof. Obviously S is an equivalence relation on V. Now let R be as indicated. Recall that R^a is the natural map from V onto V/R (see p. 28 of Part I). For each $X ∈ S^a(V/R)$ let

$$FX = \{x ∈ S^a V: R^a x ∈ X\}.$$

Let B be the Csd f of all subsets of $S^a(V/R)$. By the proof of 5.1.34, F is an isomorphism from B onto a Csd f with base V. Therefore it suffices to show that $A ⊆ R^a F$. Let $Y ∈ A$. Set $X = (R^a x: x ∈ Y)$. Thus $X ∈ S^a(V/R)$ and $Y ⊆ FX$. Now suppose that $x ∈ FX$. Then $R^a x ∈ X$, so $R^a x = R^a y$ for some $y ∈ Y$. For each $λ ≤ α$ let $z_κ = (z_κ x < λ) u (y_κ x < λ)$. Since $y = z_κ ∈ Y$, it is clear by induction that $z_κ x ∈ Y$ for all $λ ≤ α$, since $R ⊆ S$. Hence $FX = Y$, as desired.

Theorem 5.1.40. For $α < ω$, any Csd f X with $|X| > 1$ is simple.

Lemma 5.1.41. $UpGsd f = 1Gsd f$.

Proof. Let $X ∈ Gsd f$ for all $i ∈ I$ and let F be an ultrafilter on I. Take any $a ∈ F$, and suppose that $a/F ≠ 0$. We want to find a Csd f B and a homomorphism f
from $P_{\in I}\mathcal{K}_i/\bar{F}$ into \mathcal{B} such that $f(a/\bar{F}) \neq 0$. Clearly we may assume that each \mathcal{K}_i is a Cusdf$_a$ with non-empty base, say with base U_i. Let $Z = \{i \in I : a_i \neq 0\}$, and for each $i \in Z$ choose $a_i \in u_i$; let $s_i \in u_i$. Set $w = \langle (s_i : i \in I, a \ll \alpha) \rangle$, and let c' be an (F, U, a)-choice function such that $c'(s, w, a/\bar{F}) = w, x$ for all $\kappa \ll a$ (see 3.1.99). By the proof of 3.1.90, $Rep(c')$ is a homomorphism from $P_{\in I}\mathcal{K}_i/\bar{F}$ into a Cusdf$_a$ \mathcal{B} such that $Rep(c')(a/\bar{F}) \neq 0$, as desired.

LEMMA 5.1.42. $H_{\text{Gwsdf}}^{\text{am}} \subseteq \text{Gsf}_a$.

PROOF. We follow closely the proof of 3.1.103. In fact, the case $a \ll \omega$ is exactly as in that proof. Now assume that $a \gg \omega$, and that \mathcal{X} is a Gwsdf$_a^{\text{am}}$, with unit element V as in 5.1.33(viii), but with I replaced by J. Let L, a, I, F, r, j be as in the proof of 3.1.103. Thus in particular $r_i \in P_{\in J}\mathcal{U}_{j_{i, k}}$ for all $i \in J$. Let W be the base of V (see 3.1.1(ii)), and let $X = ^I W/\bar{F}$. For each $\kappa \ll a$ let

$$Q_\kappa = \langle k/\bar{F}, k \in P_{\in I}\mathcal{U}_{j_{i, k}} \rangle,$$

where each element k/\bar{F} is considered as a member of X. Furthermore, let w be as in the proof of 3.1.103. Note that $w_\kappa \in P_{\in I}\mathcal{U}_{j_{i, k}}$. Fix κ. Now for each $y \in X$ choose $k_y \in ^I W$ so that $y = k_y/\bar{F}$; if $y \in Q_\kappa$ we may assume that $k_y \in P_{\in I}\mathcal{U}_{j_{i, k}}$, and if $y = w_\kappa/\bar{F}$ we may assume that $k_y = w_\kappa$. Define $c(x, y) \in ^I W$ as follows. Let $(x, \Gamma) \in I$. We set

$$c(x, y, \Gamma) = \begin{cases} r(x, \Gamma) \kappa \text{ if } \kappa \not\in \Gamma, \\ k_y(x, \Gamma) \text{ if } \kappa \in \Gamma. \end{cases}$$

Then c is an $(F, (W : i \in I, a))$-choice function satisfying (2), (3) in the proof of 3.1.103 as well as:

1' If $\kappa \ll a$ and $y \in Q_\kappa$, then $c(x, y) \in P_{\in I}\mathcal{U}_{j_{i, k}}$.

Let $f = Rep(F, (W : i \in I, a), (A : i \in I, a))$, and let $\alpha = (a : i \in I)/\bar{F}$ for all $a \in A$. Then as in the proof of 3.1.103, the remaining details follow; note that (4) should be changed to:

4' For any $q \in ^a X$ and any $i \in I$, $(c^* q)_i \in V$ if $(c^* q)_i \in P_{\kappa \ll a}\mathcal{U}_{j_{i, k}}$.

In the last part of the proof one shows that $f_0 V = P_{\kappa \alpha} Q_\kappa$.

THEOREM 5.1.43. $H_{\text{SPGsf}} = H_{\text{Gsf}} = H_{\text{Gwsdf}}^{\text{am}} = H_{\text{Gwsdf}}$ for $a \gg 2$.

Now we turn to the representation theory for Df a. We do not know of any result comparable in strength and importance to 3.2.5 and its corollaries. The df-version of 3.2.14 does hold, however, but its proof must be slightly modified:

THEOREM 5.1.44. Let \mathcal{X} be any atomic Df$_a$, $a \gg 2$. Then the following conditions are equivalent:
(i) Every atom of \mathcal{X} is rectangular.
(ii) There is an isomorphism of \mathcal{X} onto a Gwsdf$_a^{\alpha\beta\gamma\delta\epsilon\zeta\phi}$ \mathcal{B} that carries each atom of \mathcal{X} to a singleton element of \mathcal{B}.

PROOF. As in the CA-case, the implication (ii) \Rightarrow (i) is trivial. Now assume (i).
We define a binary relation E on $At\mathcal{X} \times \alpha$ as follows. For any $a,b \in At\mathcal{X}$ and $\iota, \eta \in \alpha$, $(a, \iota)E(b, \eta)$ iff there is some finite $\Gamma \subseteq \alpha$ with $\iota, \eta \in \Gamma$ such that $c_{\Gamma \setminus \{\iota\}} a = c_{\Gamma \setminus \{\eta\}} b$. One checks as in the proof of 3.2.14 that E is an equivalence relation of $At\mathcal{X} \times \alpha$. Then h, V, \mathcal{E}, and j are defined as before, and it is checked as before that j is an isomorphism of \mathcal{X} onto a df-cylindric-relativized set algebra with unit element V. Moreover, (2) and (3) in that proof remain valid. The remainder of the proof is modified as follows.

First assume that $\alpha < \omega$. For each $\kappa < \alpha$ and each α-atom k, let $U_{\kappa k} = \{ (ha)\kappa : a$ is an atom $\leq k \}$. Then as in the proof of 3.2.14 one shows:

(4') If $\kappa < \alpha$ and k and l are distinct α-atoms, then $U_{\kappa k} \cap U_{\kappa l} = 0$.
(5') $V = \bigcup \{ P_{\kappa < \alpha} U_{\kappa k} : k$ an α-atom $\}$.
(6') Suppose that k is an α-atom, a is an atom $\leq k$, $\kappa < \alpha$, $x \in P_{\lambda < \alpha} U_{\kappa \lambda}$, and $z = (ha)\lambda$ for all $\lambda \in \alpha < \alpha$. Then $x \in V$.

For the case $\alpha \geq \omega$, the proof in 3.2.14 goes through with no changes; the subbases are "uniform".

THEOREM 5.1.45. For $\alpha \geq 2$, a Df$_\alpha$ is representable iff it can be embedded in an atomic Df$_\alpha$ in which all atoms are rectangular.

Another positive representation theorem is that Df$_2 = IGsd$ Df$_2$. The proof is similar to, but simpler than, the proof of 3.2.65:

LEMMA 5.1.46. If \mathcal{X} is a simple complete atomic Df$_2$ then \mathcal{X} is representable.

PROOF. Let U be an infinite set such that $|U| \geq |At\mathcal{X}|$. Fix $a \in At\mathcal{X}$. Now let $M_0 \subseteq At\mathcal{X} \cap R_l U$ and $M_1 \subseteq At\mathcal{X} \cap R_l U$, $u = c_0 a$, $v = c_1 a$, satisfy the following conditions:

(1) For all $b \in At\mathcal{X} \cap R_l U$ there is a $c \in M_0$ such that $c_0 b = c_1 c$.
(2) For all $b \in At\mathcal{X} \cap R_l U$ there is a $c \in M_1$ such that $c_0 b = c_1 c$.
(3) If $b, c \in M_0$ and $b \neq c$, then $c_0 b \neq c_1 c$.
(4) If $b, c \in M_1$ and $b \neq c$, then $c_0 b \neq c_1 c$.

For each $\varepsilon \in 2$ let f_ε be a one-one mapping of M_0 onto a partition of U having each element of size $|U|$. Now we claim:
(5) For every atom b there are unique $c \in M_0$ and $d \in M_1$ such that $b \leq c \cdot c_0 \cdot d$.

For, since \mathcal{X} is simple we have

$$1 = c \cdot c_0 \cdot a = \Sigma(c \cdot x; x \in At(\mathcal{X} \cap Rl_{w, w}^{1} \mathcal{X})) = \Sigma(c \cdot x; x \in M_0).$$

This gives a unique $c \in M_0$ such that $b \leq c \cdot c_0$. The existence and uniqueness of d is proved similarly.

Now we define a function h mapping $At\mathcal{X}$ into $St(2^U)$ by defining $(At\mathcal{X} \cap Rl_{w, w}^{1} \mathcal{X}) \cdot h$, with $w = c \cdot b \cdot c_0 \cdot c$, for an arbitrary $b \in M_0$ and $c \in M_1$. In fact, let this restriction be a one-one function onto a partition \mathcal{P} of $V = f_0 \cdot b \cdot f_1$ such that for any $X \in \mathcal{P}$, $C_0^{\uparrow} \mathcal{X} = C_1^{\uparrow} \mathcal{X} = V$; this is possible by 3.2.58. Now for any $x \in A$ let $j_x = \bigcup\{hh; b \in At\mathcal{X}, b \leq x\}$. It is clear that j is a Boolean isomorphism from \mathcal{X} onto a Boolean set algebra with unit element $\mathcal{2}U$. By symmetry it suffices to show that j preserves c_0. First suppose that $(u, v) \in j_x$. Say $(u, v) \in hh$, where $h \in At\mathcal{X}$ and $b \leq c \cdot x$; say $b \leq c_0 \cdot c$, where $e \in At\mathcal{X}$ and $e \leq x$. Thus $c \cdot b = c_0 \cdot e$, and so $(b, e) = (1, e)$. We have $(u, v) \in C_0^{\uparrow} hh = U \cdot f_0(b) = U \cdot f_0(e) = C_0 hh$, so there is an $w \in U$ such that $(u, v) \in hh$. Thus $(u, v) \in C_0^{\uparrow} j_x$, as desired. Second suppose that $(u, v) \in C_0^{\uparrow} j_x$. Say $(w, v) \in hh$ with $e \in At\mathcal{X}$, $e \leq x$. Choose $f \in M_0$ so that $u \in f_0(b)$. Note that $(u, v) \in C_0 \cdot hh = U \cdot f_1(e)$. Therefore $(u, v) \in f_0 \cdot j_x \cdot f_1(e)$. Hence there is an atom $c \leq c \cdot b \cdot c_0 \cdot e$ such that $(u, v) \in hh$. Now $c \leq c_0 \cdot e = c_0 \cdot e \leq c_0 \cdot x$, so $(u, v) \in j_x$, as desired.

Applying the d-versions of results in section 2.7, we obtain:

THEOREM 5.1.47. $Df_2 = IGsd(1);$ hence $Df_2 = SDfCA_2$.

Next we discuss non-representable Df_α's. The construction given in 3.2.68 gives a non-representable Df_α for each $\alpha > 3$; in fact, the Df_α constructed is also a $DfCA_\alpha$. In order to extend the non-finite axiomatizability results for CA_α's to Df_α's, we now must discuss the relationships between CA_α's and Df_α's further. These results, 5.1.48 to 5.1.63, are due to James S. Johnson [69].

LEMMA 5.1.48. Assume $\alpha < \omega$. Suppose \mathcal{X} is a CA_α and $\Sigma \mathcal{X}$ is a $Csd\mathcal{X}$. Then there is an isomorphism f of $\Sigma \mathcal{X}$ onto a $Csd\mathcal{X}$ with base U such that $Df_{\epsilon, \alpha}^{\uparrow} \subset f_{\epsilon, \alpha}$ for all $\epsilon, \alpha < \alpha$.

PROOF. By 5.1.34 we may assume that $\Sigma \mathcal{X}$ has a pairwise disjoint base system $(V_\epsilon; \epsilon < \alpha)$. Let $U = \bigcup_{\epsilon < \alpha} V_\epsilon$. Now by 1.8.7 we have $c_{\alpha - (\epsilon)} d_\alpha = 1$ for any $\epsilon < \alpha$, so that for any $w \in V_\epsilon$ there is an $z \in d_\alpha$ such that $z_\epsilon = w$. Hence for each $\epsilon < \alpha$ there is a function g_ϵ mapping V_ϵ into d_α such that $(g_\epsilon w)_\epsilon = w$ for all $w \in V_\epsilon$. Now define for each $\epsilon < \alpha$ a function t_ϵ mapping U onto V_ϵ by setting $t_\epsilon v = (g_\epsilon v)_\epsilon$, where λ is such that $v \in V_\lambda$. Finally, for any $x \in A$ let...
$$fz = \{ u \in aU : (t,u_\lambda : \lambda \prec \alpha) \in z \}.$$

By the proof of 5.1.34, \(f \) is an isomorphism from \(D[X] \) onto a \(\text{Csuf}_\alpha \) with base \(U \).

Now suppose that \(\kappa, \lambda \prec \alpha \) and \(x \in D^{(U)}_{\lambda} \). Let \(y_\mu = z_\mu \) for all \(\mu \prec \alpha \). Say \(z_\mu \in V_\mu \). Then \(g_\mu z_\mu = d_\mu \), so for each \(\mu \prec \alpha \) we have

$$t_\mu y_\mu = t_\mu z_\mu = (g_\mu z_\mu)_\mu,$$

hence \((t_\mu y_\mu : \mu \prec \alpha) = g_\mu z_\mu \in d_\alpha \). Thus \(y \in f d_\alpha \) and so \(x \in C_{(\alpha \rightarrow (\kappa, \lambda))}d_\alpha = fC_{(\alpha \rightarrow (\kappa, \lambda))}d_\alpha = f d_\lambda \), as desired.

LEMMA 5.1.49. Suppose \(3 \leq \alpha \prec \omega \), \(X \) is a \(CA_\alpha \), \(D[X] \) is a \(\text{Csuf}_\alpha \) with base \(U \), and \(D^{(U)}_{\lambda} \subseteq d_{\lambda} \) for all \(\kappa, \lambda \prec \alpha \). Let \(R = \{(u,v) \in 2^U : \text{there is an } z \in d_0 \text{ such that } z_0 = u \text{ and } z_1 = v \} \). Then \(R \) is an equivalence relation on \(U \), and for any distinct \(\kappa, \lambda \prec \alpha \) we have \(R = \{(u,v) \in 2^U : \text{there is an } z \in d_{\lambda} \text{ such that } z_0 = u \text{ and } z_1 = v \} \).

PROOF. For any distinct \(\kappa, \lambda \prec \alpha \) let \(S_{\lambda} = \{(u,v) \in 2^U : \text{there is an } z \in d_{\lambda} \text{ such that } z_0 = u \text{ and } z_1 = v \} \). To prove the second part of the conclusion it suffices to show that \(S_{\lambda} \subseteq S_{\mu} \) whenever \(|(\kappa, \mu)| = 3 \). Let \((u,v) \in S_{\lambda} \); say \(z \in d_{\lambda} \) with \(z_0 = u \), \(z_1 = v \).

Since \(C_{d_{\lambda}} = d_{\lambda} \), there is a \(y \in 2^U \) such that \(yx = u \), \(y\lambda = v \), \(y\mu = v \), \(y \in d_{\lambda} \). Then \(y \in D_{y\lambda} \subseteq d_{y\lambda} \), so \(y \in d_{\mu} \). Hence \((u,v) \in S_{\mu} \), as desired.

Now \(R \) is reflexive on \(U \) since \(D_{d_0} \subseteq d_{d_0} \), and it is symmetric since \(S_{\lambda} = S_{\mu} \). Now suppose that \(u R v \). Then \((u,y) \in S_{d_1} \) and \((y,v) \in S_{d_2} \). Say \(z \in d_{d_0} \), \(z_0 = u \), \(z_1 = v \), \(y \in d_{d_1} \), \(y_1 = v \), \(y_2 = w \). Let \(z_0 = u \), \(z_1 = v \), \(z_2 = w \), \(z \in 2^U \). Then \(z \in C_{(\alpha \rightarrow (\kappa, \lambda))}(x) \subseteq C_{(\alpha \rightarrow (\kappa, \lambda))}d_{d_1} = d_{d_2} \) and \(z \in d_{d_2} \) similarly. Hence \(z \in d_{d_2} \), so \((u,v) \in S_{d_2} = R \), as desired.

LEMMA 5.1.50. Assume the hypotheses of 5.1.49, and let \(E = \{ X \in A : \text{for all } z, y \in 2^U, \text{ if } z R y \text{ for all } \lambda \prec \alpha \}, \text{ then } z \in X \iff y \in X \} \).

Then \(\{ X \in A : \Delta X \neq \alpha \} \subseteq E \), and \(E \subseteq \text{SuX} \).

PROOF. Let \(X \in A \) and \(\Delta X \neq \alpha \). Say \(\lambda \prec \alpha \). To show that \(X \in E \) it suffices to prove the following statement:

1. If \(\lambda \prec \alpha \), \(z, y \in 2^U, z R y \), \((\alpha \rightarrow (\lambda)) \) \(1 \) \(x \subseteq y \), and \(z \in X \), then \(y \notin X \).

Assume the hypothesis of (1). If \(\lambda = \lambda \) then obviously \(y \in X \), so assume that \(\lambda \neq \lambda \).

Since \(x R y \), choose by 5.1.49 \(w \in d_{\alpha} \) such that \(w_\lambda = x_\lambda \) and \(w_\mu = y_\mu \). Then \((y_\lambda^w)_x = x_\lambda = w_\lambda \) and \((y_\mu^w) = y_\mu = w_\lambda \). So \(y_\mu^w \in C_{(\alpha \rightarrow (\lambda))}(w) \subseteq C_{(\alpha \rightarrow (\lambda))}d_{\alpha} = d_{\lambda} \). Also, \((\lambda \rightarrow (\mu)) \) \(1 \) \(y_\lambda^w \subseteq x_\lambda^w \) and \(z_\mu^w \subseteq C_X X = X \), \(z_\mu^w \subseteq d_{\lambda} \subseteq d_{\alpha} \), so \(y_\mu^w \in C_X (X \cap d_{\lambda}) \cap d_{\alpha} = X \cap d_{\lambda} \). Hence \(y \notin X \), as desired.

Now \(E \) is obviously closed under \(+ \) and \(- \), and \(d_{\alpha} \in E \) for all \(\kappa, \lambda \prec \alpha \) since \(D_{\lambda} \subseteq (\kappa, \lambda) \) and \(\alpha \geq 3 \) (using what was established above). It remains to show that \(E \) is closed under \(C_X \) for an arbitrary \(\kappa \prec \alpha \). By symmetry it suffices to assume that \(X \in E \), \(x \in C_X X \), \(y \in 2^U \), and \(z R y \) for all \(\lambda \prec \alpha \), and prove that \(y \notin C_X X \). Say \(z_\mu \in X \).

Now \((x_\mu^w)_x R (y_\mu^w)_x \) for each \(\lambda \prec \alpha \). Hence \(y_\mu^w \in X \) since \(X \in E \). Thus \(y \notin C_X X \), as desired.
Now the above lemmas enable us to establish two important connections between representability of \mathfrak{K} and of \mathfrak{SK} for a \mathcal{D}_{α} \mathcal{A}:

THEOREM 5.1.51. Suppose \mathfrak{K} is a \mathcal{D}_{α} with $3\leq\alpha<\omega$, \mathfrak{K} is generated by $(z \in A: \Delta z \neq 0)$, and $\mathfrak{SK} \in \mathbb{I}Gsd_{\alpha}$. Then \mathfrak{K} is representable.

PROOF. By 5.1.48 we may assume that \mathfrak{SK} is a \mathcal{D}_{α} with base U such that $D_{\alpha}^{\mathcal{D}_{\alpha}} \subseteq D_{\alpha}$ for all $\kappa, \lambda < \alpha$. Now let R and B be as in 5.1.49 and 5.1.50, and let S be as in 5.1.39. By 5.1.39 and its proof, \mathfrak{SK} is isomorphic to a \mathcal{D}_{α} \mathcal{B} with base U/R, where the isomorphism from \mathcal{B} onto \mathfrak{K} is the restriction to \mathcal{B} of the following isomorphism $F: \mathbb{B}(\mathbb{B}(U/R)) \rightarrow \mathbb{B}(\mathbb{B}(U/R))$ (both considered as \mathcal{D}_{α}'s):

$F = \{ (z \in \mathbb{A}: R^x \cdot z \in X) : X \in \mathbb{B}(U/R) \}$. It suffices to show that $FD_{\alpha}^{U/R} = D_{\alpha}^{\mathcal{D}_{\alpha}}$ for arbitrary $\kappa, \lambda < \alpha$. Suppose that $z \in FD_{\alpha}$. Then $R^x \cdot z \in D_{\alpha}$, so $z \in D_{\alpha}$. From 5.1.49 it follows easily that $z \in D_{\alpha}$. If, conversely, $z \in D_{\alpha}$, then $z \cdot Rz$ by 5.1.49, and so $z \in FD_{\alpha}$ easily.

THEOREM 5.1.52. If $3\leq\alpha<\omega$, \mathcal{B} is a $\mathcal{D}_{\alpha+1}$, and $\mathfrak{SK} \in \mathbb{I}Gsd_{\alpha+1}$, then $\mathfrak{SK} \in \mathbb{I}Gsd_{\alpha}$.

PROOF. Let $C = \mathbb{B}^2 \ast N_{\alpha} B$. Then $\mathfrak{SK} \subseteq \mathfrak{SK} B$, so $\mathfrak{SK} B \in \mathbb{I}Gsd_{\alpha+1}$. By 5.1.51, $C \in \mathbb{I}Gsd_{\alpha+1}$, so by an easy argument, $\mathfrak{SK} = \mathfrak{SK} B \in \mathbb{I}Gsd_{\alpha}$.

REMARK 5.1.53. In connection with the above results it should be noted that for every $\alpha \geq 2$ there is a non-representable \mathcal{D}_{α} \mathcal{A} such that \mathfrak{SK} is representable. For $\alpha = 2$ we can take the algebra \mathfrak{K} of 5.1.13; the equation

\[e_0(x_0 \cdot x_2) \cdot e_0(x_0 \cdot x_2) \cdot [\Pi_{\kappa \leq \alpha} c_0 e_0(x_2 \cdot s_0 e_0(x_0 \cdot d_0)] = 0 \]

fails in \mathfrak{K} but holds in every $\mathbb{I}Gsd_{\alpha}$, so \mathfrak{K} is non-representable. On the other hand, \mathfrak{SK} is representable by 5.1.47. Now assume that $3\leq\alpha$. We shall define a non-representable \mathcal{D}_{α} \mathcal{A} with \mathfrak{SK} representable. Set $\beta = (\alpha \cup \omega)^+$, let a and b be distinct objects not in β, and let $U = \beta \{ a, b \}$. Now \mathfrak{SK} will be a \mathcal{D}_{α} \mathcal{B} with base U.

To define \mathfrak{K} we first describe certain elements of $\mathcal{B}(\mathbb{B}(U))$. For each $\kappa < \alpha$ let

\[Q_\kappa = \{ z \in \mathbb{A} : (\kappa \cdot z) : z \text{ is one-one} \}; \]
\[P_{\kappa} = \{ z \in Q_\kappa : \bigcup_{\kappa \leq \lambda < \alpha} P_\lambda \text{ is a limit ordinal} \}; \]
\[P_{\kappa} = \{ z \in P_{\kappa} : P_\lambda \}; \]
\[M_\kappa = \{ z \in \mathbb{A} : z_\kappa = a \text{ and } (\kappa \cdot z_\kappa) \in \mathbb{B}(U) \}; \]
\[M_\kappa = \{ z \in \mathbb{A} : z_\kappa = b \text{ and } (\kappa \cdot z_\kappa) \in \mathbb{B}(U) \}; \]

N_κ is like M_κ with a and b interchanged. Finally, suppose $\Gamma \subseteq \alpha$ and R is an equivalence relation on $\alpha \setminus \Gamma$; we set

\[T_{\Gamma} = \{ z \in \mathbb{A} : z^\ast \Gamma \subseteq \{ a, b \} \}, \quad \{ z^\ast (\alpha \setminus \Gamma) \subseteq \beta, \text{ and } \{ (\alpha \setminus \Gamma) \setminus \{ z^\ast (\alpha \setminus \Gamma) \} \} = R \}. \]
Now we let
\[\rho = \{ M_\kappa, \nu < \alpha \} \cup \{ N_\kappa, \nu < \alpha \} \cup \{ T_{\Gamma R}: \Gamma \subseteq \alpha, \ R \text{ an equivalence relation on } \alpha \sim \Gamma \sim \{ T_{\Gamma R}: |\Gamma| = 1, \ R \subseteq Id \} \} . \]

It is easily checked that \(\rho \) is a partition of \(^a U \). Let \(A \) be the set of all unions of members of \(\rho \). We claim that \(A \) is closed under all cylindrifications \(C_\kappa^{\forall \nu} \) for \(\nu < \alpha \), where \(V = ^a U \). This follows from the following easily checked facts, where \(\kappa < \alpha \) is arbitrary:

1. \(M_\kappa \cup N_\kappa = T_{\{\kappa\}, R} \), where \(R = (\alpha \sim \{ \kappa \}) \subseteq Id \).
2. Let \(R \) be an equivalence relation on \(\alpha \) with \(Rn^2(\alpha \sim \{ \kappa \}) \subseteq Id \). Then
 \[C_\kappa M_\kappa = C_\kappa N_\kappa = C_\kappa T_{\{\kappa\}} = M_\kappa \cup N_\kappa \cup \{ T_{\{\kappa\}} \} \subseteq Id \] is an equivalence relation on \(\alpha \) and \(Sn^2(\alpha \sim \{ \kappa \}) \subseteq Id \).
3. If \(\lambda < \alpha \sim \{ \kappa \} \), \(R = (\alpha \sim \{ \kappa, \lambda \}) \subseteq Id \), and \(S \) is an equivalence relation on \(\alpha \sim \{ \lambda \} \) with \(Sn^2(\alpha \sim \{ \kappa, \lambda \}) \subseteq Id \), then
 \[C_\kappa M_\lambda = C_\kappa N_\lambda = C_\kappa T_{\{\kappa, \lambda\}} = T_{\{\kappa\}} \cup \{ T_{\{\lambda\}} \} \subseteq Id \] is an equivalence relation on \(\alpha \sim \{ \lambda \} \) and \(Wn^2(\alpha \sim \{ \kappa, \lambda \}) \subseteq Id \).
4. Let \(R \) be an equivalence relation on \(\alpha \) with \(Rn^2(\alpha \sim \{ \kappa \}) \subseteq Id \), and set \(S = Sn^2(\alpha \sim \{ \kappa \}) \subseteq Id \). Then
 \[C_\kappa T_{\{\lambda\}} = C_\kappa T_{\{\kappa\}} \subseteq Id \] is an equivalence relation on \(\alpha \) and \(Sn^2(\alpha \sim \{ \kappa \}) \subseteq Id \).
5. If \(\lambda < \alpha \sim \{ \kappa \} \), \(S \) is an equivalence relation on \(\alpha \sim \{ \lambda \} \), and \(R = Sn^2(\alpha \sim \{ \kappa, \lambda \}) \subseteq Id \), then
 \[C_\kappa T_{\{\lambda\}} = C_\kappa T_{\{\kappa\}} \cup \{ T_{\{\lambda\}} \} \subseteq Id \] is an equivalence relation on \(\alpha \sim \{ \lambda \} \) and \(Sn^2(\alpha \sim \{ \kappa, \lambda \}) \subseteq Id \).
6. If \(\Gamma \subseteq \alpha \), \(R \) is an equivalence relation on \(\alpha \sim \Gamma \), and \(|\Gamma \sim \{ \kappa \}| = 2 \), then
 \[C_\kappa T_{\Gamma R} = U \{ T_{\{\Gamma\}} \} \subseteq Id \] is an equivalence relation on \(\alpha \sim \{ \lambda \} \) and \(Sn^2(\alpha \sim \{ \kappa \}) \subseteq Id \).

Now for any \(\kappa, \lambda < \alpha \) we set
\[d_\kappa = \{ x \in {}^\alpha U: x = \varepsilon \text{ or } x_\varepsilon, x_\lambda \in \{ \alpha, b \} \} . \]

Finally, we let \(\mathcal{X} = \langle A, \cup, \cap, \setminus, 0, V, C_\kappa^{\forall \nu}, d_\kappa \rangle_{\kappa < \alpha} \). Thus by the above, \(\mathcal{X} \) is a \(\text{Csf}_U \) with base \(U \). We still have to check that each \(d_\kappa \) is in \(\mathcal{X} \), \(\mathcal{X} \in CA_\alpha \). Note that \(d_\varepsilon = V \) for all \(\kappa < \alpha \). Suppose \(\kappa \neq \alpha \). Then

\[d_\varepsilon = \bigcup \{ T_{\Gamma R}: \Gamma \subseteq \alpha, \ R \text{ is an equivalence relation on } \alpha \sim \Gamma, \text{ and } \kappa, \lambda \in \Gamma \text{ or } \kappa R \lambda \} . \]

Thus \(d_\varepsilon \in A \). Clearly \((C_5) \) holds, and \((C_6) \) is routine. To check \((C_7) \), assume that \(\kappa \neq \lambda \). It suffices to show that if \(X \) and \(Y \) are distinct members of \(\rho \) with \(X, Y \subseteq d_\varepsilon \), then \(C_\varepsilon X \cap C_\varepsilon Y = 0 \). This is routine, using \((1)-(7)\). So, \(\mathcal{X} \) is a \(CA_\alpha \).
Now suppose that \(\mathcal{K} \) is representable. Then there is a homomorphism \(f \) from \(\mathcal{K} \) onto a \(C_{c_{\alpha}} \) such that \(fM_0 \neq 0 \). Choose \(z \in fM_0 \). Now \(C_{\alpha}M_0 \alpha_{\alpha}C_{\alpha}M_0 \subseteq d_{\alpha^2} \). Also, \(x \in fM_0 \subseteq C_{\alpha}M_0 = fC_{\alpha}N_0 = C_{\alpha}fN_0 \), so there is a \(w \) such that \(z^0_w \in fN_0 \). Since \(C_{\alpha}M_0 = C_{\alpha}N_0 \), it follows that \(z^0_w \in C_{\alpha}fM_0 \alpha_{\alpha}C_{\alpha}fM_0 \), and so by the above \(z^0_w \in fN_0 \). Thus \(z \in fM_0 \alpha_{\alpha}fN_0 \), contradiction.

Now we return to the discussion of non-finitizability for the classes \(D_{c_{\alpha}} \). We use notation introduced in 3.2.76.

Lemma 5.1.54. Suppose \(3 \leq c_{\alpha, \beta} < \omega \) and \(c_{\alpha} - 1 \leq \beta \). Then \(\varnothing \Theta_{c_{\alpha}} \) is generated by \(\{ z \in G_{c_{\alpha^2}} | \Delta z \leq 2 \} \).

Proof. Since \(\Theta_{c_{\alpha}} \) is finite, it suffices to note that for any \((R, f) \in G_{c_{\alpha}} \) we have

\[
\{ (R, f) \} = \prod \{ c_{\alpha^2} \sim (\psi) \} \{ (R, f) : \psi, \lambda \leq c_{\alpha}, \psi \neq \lambda \}.
\]

This is immediate from 3.2.76(7).

Combining this lemma with 5.1.51, we can extend 3.2.84 and 3.2.85 as follows.

Lemma 5.1.55. For every \(\kappa \in \omega \) there is an \(\alpha \in \omega \sim 3 \) such that \(\mathcal{D} \mathcal{H} \Theta_{c_{\alpha, \alpha + \kappa}} \) is a non-representable \(D_{c_{\alpha}} \).

Theorem 5.1.56. If \(3 \leq c_{\alpha} < \omega \) and \(c_{\alpha} < \omega \), then there is a \(C_{c_{\alpha}} \) \(\mathcal{K} \) not embeddable in a \(C_{c_{\alpha} + \kappa} \) such that \(\mathcal{D} \mathcal{H} \mathcal{K} \) is non-representable.

Finally, repeating the proof of 4.1.3, we obtain:

Theorem 5.1.57. For \(3 \leq c_{\alpha} < \omega \), \(1G_{c_{\alpha}} \) is not finitely axiomatizable; neither is the class of representable \(D(\mathcal{H} C_{c_{\alpha}}) \)’s.

Now we want to generalize 5.1.56 to the case \(\alpha \geq \omega \). To this end we need two lemmas.

Lemma 5.1.58. Suppose \(3 \leq c_{\alpha} < \omega \), \(\mathcal{K} \) is a \(G_{c_{\alpha}} \), \(z \in A \), and \(c_{\alpha} \cdot c_{\alpha^2} (\kappa) z = z \) for all \(\kappa < \alpha \). Then \(\mathcal{H} \mathcal{K} \in 1G_{c_{\alpha}} \).

Proof. Let \(\mathcal{K} \) have unit element as in 5.1.39(iv). Let \(J = \{ i \in I : x \in P_{\kappa \leq c_{\alpha}} U_{x} \neq 0 \} \). For each \(i \in J \) and \(\kappa < \alpha \) let \(W_{i} = \{ u : u \in x \in P_{\kappa \leq c_{\alpha}} U_{x} \} \). Now:

1. \(P_{\kappa \leq c_{\alpha}} W_{i} \subseteq z \) for any \(i \in J \).

In fact, it suffices to assume that \(u \in (P_{\kappa \leq c_{\alpha}} W_{i}) \alpha_{\alpha} x \), \(t \in W_{i} \), and show that \(u_{i} \in z \). We have \(u_{i} \in V_{i} \), \(u_{i} \in c_{\alpha} z \). Say \(t = u_{v}, v \in z \). Thus \(u_{i} \in c_{\alpha} (\alpha_{\alpha} x) \). Hence \(u_{i} \in z \) by the hypothesis of the lemma.

By (1) it follows that \(z \) is a \(G_{c_{\alpha}} \) unit element, and so the lemma holds.
By the proof of 3.2.86 we have:

Lemma 5.1.59. Suppose $3 \leq \alpha \leq \beta < \omega$ and $\kappa < \omega$. Then $\theta_{\alpha, \alpha + \kappa} = \theta_{\beta, \beta + \kappa}$ for some $z \in G_{\beta, \alpha + \kappa}$ such that $c_z \cdot c_{(\alpha - \kappa)} \cdot z = z$ for all $\kappa < \omega$.

Then the proof of 3.2.87 yields:

Theorem 5.1.60. If $3 \leq \alpha$ and $\kappa < \omega$, then there is a $\text{CA}_{\alpha, \kappa}$ neatly embeddable in a $\text{CA}_{\alpha + \kappa}$ such that DF_{κ} is not representable.

Now we can repeat the proofs of 4.1.5–4.1.7 to obtain the following results (the notions in 4.1.4 being modified in the natural way):

Theorem 5.1.61. For $\alpha \geq \omega$, DF_{α} is axiomatizable by a finite schema of equations.

Theorem 5.1.62. For $\alpha \geq \omega$, IGsdf_{α} is axiomatizable by a countable schema of equations.

Theorem 5.1.63. For $\alpha \geq \omega$, IGsdf_{α} is not axiomatizable by a finite schema of equations.

Now we turn to decidability questions. By 5.1.24 and the proof of 4.2.7 we have:

Theorem 5.1.64. The equational theory of DF_{2} is decidable.

Recall from 5.1.47 that $\text{DF}_{2} = \text{IGsdf}_{2}$. Now we consider DF_{α}, $\alpha \geq 3$. As for CA_{α}'s, the equational theory of DF_{α} is undecidable for $3 \leq \alpha \leq \omega$. The proof is due to Maddux [80'], and follows closely 4.2.17–4.2.18. We need a substitute for the operation ; defined there, since its definition involves diagonal elements. This substitute, and the analog of 4.2.17, are given in the following lemma:

Lemma 5.1.65. Let \mathcal{X} be a DF_{α}, $\alpha \geq 3$. Suppose $u, v \in A$ and $c_0 u = u$, $c_1 v = v$. For any $x, y \in A$ define

$$z : y = c_2 (c_1 (u \cdot x) \cdot c_0 (v \cdot y)) .$$

Now let $x, y, z, w \in A$. Then the conditions of 4.2.17 hold with ; replaced by $: =$ and d_{12}, d_{02} by u, v respectively.

Proof. By the proof of 4.2.17.

Theorem 5.1.66. Suppose $3 \leq \alpha \leq \omega$ and $\text{IGsdf}_{\alpha} \subseteq K \subseteq \text{DF}_{\alpha}$. Then the equational theory of \mathcal{K} is undecidable.

Proof. We slightly modify the proof of 4.2.18. First assume that $\alpha < \omega$. Suppose that $0 < \beta < \omega$. For any terms σ, τ of \mathcal{F}_{α} we let $\sigma \cdot \tau$ be an abbreviation for $c_2 (c_1 (v_0 ! c_3 \sigma) \cdot c_0 (v_{\beta + 2} \cdot c_5 \tau))$. We also use the abbreviations $c_{(0)}$, Φ, f from the proof of 4.2.19. Now with each element x of \mathcal{F}_{β} we associate a term $\tau \sigma$ involving only the variables $v_{\beta}, \ldots, v_{\beta + 1}$, $v_{\beta + 1}, v_{\beta + 2}$ as follows:
for any \(z, y \in Fr_\beta \). Now we claim:

(1) If \(X \subseteq Fr_\alpha \times Fr_\beta \), \(X \) finite, and \(z, y \in Fr_\beta \), then \(z \approx x \approx y \) iff the following inequality holds in \(K \):
\[
(\tau z : c_1, v_\beta) \Theta (\tau y : c_1, v_\beta) \leq \sum_{(u, v) \in K} c_{(0)}(\tau u \Theta \tau v) + c_{(2)}(v_{\beta+1} \Theta c_0 v_{\beta+1}) + c_{(2)}(v_{\beta+2} \Theta c_1 v_{\beta+2}).
\]

The proof of (1), and the rest of the proof of 5.1.66, follows the lines of the proof of 4.2.18. (In the second part of the proof of (1), let additionally \(h(\beta + 1) = \{ a \in a^A : a_1 = a_2 \} \) and \(h(\beta + 2) = \{ a \in a^A : a_0 = a_2 \} \). The case \(a = \omega \) is treated as in 4.2.18.

The connections with logic for \(Df_\alpha \)’s are like those for \(CA_\alpha \)’s; we sketch enough of this theory to establish a logical representation theorem analogous to 4.3.28. Although in the absence of the equality symbol we cannot reduce arbitrary formulas to restricted ones we shall deal here only with restricted formulas. \(\Phi_{\mu_\alpha}^\Lambda \) denotes the set of all restricted formulas of \(\Lambda \) not involving equality. The corresponding absolutely free algebra is
\[
\text{\textbf{\textit{\neg}}} \Phi_{\mu_\alpha}^\Lambda = (\bar{\text{\textbf{\textit{\neg}}} \Phi_{\mu_\alpha}^\Lambda, \nu, \Lambda, \neg, \Phi, T, \exists \Phi \nu)_{\bar{\epsilon} \in \bar{\alpha}}.
\]

An analog of 4.3.1 holds. Given a possible model \(\mathcal{M} \) of \(\Lambda \), \(\Phi_{\mu_\alpha}^\Lambda \) denotes the \(\text{Csdf}_\alpha \) with universe \(\{ \varphi \bar{\varphi} : \varphi \in \Phi_{\mu_\alpha}^\Lambda \} \). The analog of 4.3.5 holds. Introducing the notation of 4.3.9 for \(\text{Csdf}_\alpha \)’s also, we obtain 4.3.10 for \(Df_\alpha \)’s. We can then introduce the semantical equivalence relation analogous to \(\approx_{=\varphi}^\Lambda \) for equality–free formulas, and an algebra corresponding to \(\text{\textbf{\textit{\neg}}} \Phi_{\mu_\alpha}^\Lambda \); we denote them by \(\approx_{=\varphi}^\Lambda \) and \(\text{\textbf{\textit{\neg}}} \text{\textbf{\textit{\neg}}} \Phi_{\mu_\alpha}^\Lambda \) respectively. Theorems analogous to 4.3.16, 4.3.17, and 4.3.18 then hold. The proof, theoretical notions are treated similarly; we take as axioms only the formulas in schemas (1)–(4) (see the discussion prior to 4.3.19.) This leads to notions \(\approx_{=\varphi}^\Lambda \) and \(\text{\textbf{\textit{\neg}}} \text{\textbf{\textit{\neg}}} \Phi_{\mu_\alpha}^\Lambda \), and an analog of 4.3.22. The results leading up to the analog of 4.3.28 are then as check.
5.2 PROJECTIVE ALGEBRAS

The notion of a projective algebra was introduced by Everett and Ulam [46] to abstractly express Boolean algebras of subsets of a plane and their projections on the two coordinate axes (see also Remark 5.2.2 below.) Their further theory was developed by McKinsey [48], Bednarek and Ulam [78'], and Larson [83'], [83a']. The relationships to cylindric algebras were discussed in Chin, Tarski [48] and Jónsson, Tarski [51]. In this section we show that projective algebras are definitionally equivalent to certain Df's. We do not go into the theory of projective algebras, but to keep our development self-contained we discuss some of their elementary arithmetic.

DEFINITION 5.2.1. A projective algebra (PA) is an algebraic system \(\mathcal{X} = (A, +, -, 0, 1, P_0, P_1, \square, a) \) satisfying the following conditions, for all \(x, y, z, u \in A \) and \(\varepsilon \in \{2\} \):

1. \((A, +, -, 0, 1)\) is a BA.
2. \(P_0\) and \(P_1\) are unary operations on \(A\), \(\square\) is a binary operation on \(A\), and \(a\) is an atom of \(\mathcal{X}\).
3. \(P_0 (x + y) = P_0 x + P_0 y\).
4. \(P_0 P_1 = P_0 P_1 = a\).
5. \(P_0 x = 0 \iff x = 0\).
6. \(P_0 P_1 x = P_1 x\).
7. If \(z \preceq P_1\), then \(P_1 x = x\).
8. If \(z \not\equiv 0 \not\equiv y\) then \(P_0 (x \square y) = P_0 z \) and \(P_1 (z \square y) = P_1 y\).
9. \(x \square 0 = 0 \square x = 0\).
10. If \(P_0 z = P_0 x \) and \(P_0 z = P_0 y\), then \(z \preceq x \square y\).
11. \((P_0 1) \square a = P_0 1\) and \(a \square (P_1 1) = P_1 1\).
12. \((x + y) \square (p_1) = [x \square (p_1)] \cup [y \square (p_1)]\) and \((P_0 1) \square (x + y) = [(P_0 1) \square x] \cup [(P_0 1) \square y]\).

REMARK 5.2.2. The motivation for the introduction of this notion is as follows. \(\mathcal{X}\) is a projective set algebra if there exist sets \(U_0, U_1\) and \(u \in U_0, v \in U_1\) such that, with \(W = U_0 \ast U_1\),

\[\mathcal{X} = (A, u, n, w, 0, W, P_0, P_1, \square, a),\]

where \((A, u, n, w, 0, W)\) is a Boolean set algebra of subsets of \(W\), \(a = \{(u, v)\} \in A\), and \(P_0\) and \(P_1\) are the unary and \(\square\) the binary operations on subsets of \(W\) given as follows, with \(X, Y \subseteq W\):

...
\[P_0X = \{(w,v) : (w,t) \in X \text{ for some } t \in U_1\}, \]
\[P_1X = \{(w,w) : (t,w) \in X \text{ for some } t \in U_0\}, \]
\[X \square Y = \{(s,t) : (s,w) \in X \text{ for some } w \in U_1, \text{ and } (w,t) \in Y \text{ for some } w \in U_0\}. \]

It is easily checked that any projective set algebra is a projective algebra. These set algebras are the motivating source for the definition of abstract projective algebras, and the axioms in 5.2.1 are complete in the sense that any projective algebra is isomorphic to a projective set algebra; see Everett, Ulam [46] and McKinsey [48].

Now we develop some of the arithmetic of projective algebras.

Theorem 5.2.3. Let \(\mathcal{A} \) be a PA, as in 5.2.1, and let \(w,x,y,z \in A \) and \(\varepsilon \in 2 \). Then

(i) \((p_0,1) \square (p_1,1) = 1\).

(ii) If \(z \preceq y \) then \(p_1 x \preceq p_1 y \).

(iii) \(p_1 a = a \).

(iv) If \(z \preceq p_0,1 \) then \(x = p_1 y \) for some \(y \).

(v) If \(w \preceq z \) and \(y \preceq z \), then \(w \preceq y \preceq z \).

(vi) If \(w, z \preceq p_0,1 \) and \(y, z \preceq p_1,1 \), then \((w) \square (y) = (w \square y) \cdot (y \square z) \).

(vii) \(z \square y = (p_0,1) \cdot (p_1,1) = (p_0,1) \cdot (p_1,1) = (p_0,1) \cdot (p_1,1) \).

(viii) \(z \square y = (p_0,1) \cdot (p_1,1) = (p_0,1) \cdot (p_1,1) \).

(ix) If \(z \preceq p_0,1 \), then \(z \preceq (p_0,1) \).

(x) If \(y \preceq p_0,1 \), then \((p_0,1) \preceq (p_0,1) \).

Proof. (i) is immediate from \((P_0)\). For (ii), if \(x \preceq y \) then \(p_1 x = p_1 (x + y) = p_1 x + p_1 y \) and so \(p_1 x \preceq p_1 y \), using \((P_3)\). To prove (iii), by symmetry it suffices to assume \(\varepsilon = 0 \). Then

\[p_0 a = p_0 p_1 \]
\[= p_0 p_1 \]
\[= a \]

by \((P_4)\).

Now to show (iv), again assume \(\varepsilon = 0 \). Suppose \(x \preceq p_0,1 \). By \((P_3)\) we may assume that \(z \neq 0 \). Thus \(p_0,1 \neq 0 \) by \((P_5)\). Hence \(p_0 (z \square p_1,1) = p_0 z \cdot z \) by \((P_6)\) and \((P_7)\). Next, for (v) assume that \(w \preceq z \) and \(y \preceq z \). By \((P_9)\) we may assume that \(w \neq 0 \). Then

\[p_0 (w \square y) = p_0 (w \square y) + p_0 (z \square z) \]
\[= p_0 (w + z) \]
\[= p_0 (w + z) \]

Similarly, \(p_1 (w \square y) = p_1 z \). Hence by \((P_10)\) we get \(w \square y \preceq (z \square z) \preceq z \square z \), as desired. Next, assume the hypotheses of (vi). The inequality \(\preceq \) is clear by (v). Let \(t = (w \square y) \cdot (z \square z) \). We may assume that \(w, z, y, z \neq 0 \). Then \(p_0 t \)
\(p_0(w \boxplus y) = p_0w = w \) by (ii), (P$_7$), (P$_8$). Similarly, \(p_0 \leq z \), \(p_0 \leq y \), and \(p_0 \leq z \). Thus \(p_0 \leq z \cdot w \) and \(p_0 \leq y \cdot z \). Hence \(t \leq (p_0t) \boxplus (p_0t) \leq (z \cdot w) \boxplus (y \cdot z) \) by (P$_{10}$) and (v).

For (vii) we may assume that \(z, y, p_0z, p_0y \neq 0 \), by (P$_5$) and (P$_9$). Then \(p_0((p_0z) \boxplus y) = p_0p_0z = p_0z \) by (P$_8$) and (P$_6$), and \(p_0((p_0z) \boxplus y) = p_0y \) by (P$_8$), so \((p_0z) \boxplus y \leq z \boxplus y \) by (P$_{10}$). The other parts of (vii) are established similarly. As to (viii), we have

\[
\begin{align*}
 z \boxplus y &= (p_0z) \boxplus (p_0y) & \text{by (vii)} \\
 &= (p_0z \cdot p_0y) \cdot (p_0z \cdot p_0y) & \text{by (ii)} \\
 &= ((p_0z) \boxplus (p_0y)) \cdot ((p_0z) \boxplus (p_0y)) & \text{by (vi), (ii)} \\
 &= (z \boxplus (p_0z)) \cdot ((p_0z) \boxplus y) & \text{by (vii)}. \\
\end{align*}
\]

To prove (ix), we may assume by (P$_5$) and (P$_9$) that \(z \neq 0 \). Note then that \(0 \neq p_0(p_0z) \neq p_0p_0z = a \) by (P$_5$), (ii) and (P$_4$), hence \(p_0p_0z = p_0p_0z \). Thus

\[
\begin{align*}
 p_0z \leq (p_0z) \boxplus (p_0p_0z) & \quad \text{by (P$_{10}$)} \\
 = (p_0z) \boxplus (p_0p_0z) & \quad \text{by (P$_{10}$)} \\
 \leq (p_0z) \boxplus (p_01) & \quad \text{by (ii), (vii)} \\
\end{align*}
\]

Also, \(p_0z \leq p_0z \) by (ii), so \(p_0z \leq (z \boxplus (p_0z)) \cdot p_0z \). Now let \(t = (z \boxplus (p_0z)) \cdot p_0z \). Then \(t \leq p_0z \), so

\[
 t = p_0t \leq p_0(z \boxplus (p_0z)) = p_0z \quad \text{by (P$_7$), (P$_8$), (P$_5$)},
\]

The other part of (ix) follows by symmetry. Next,

\[
\begin{align*}
 z \boxplus a &= (z \boxplus (p_0z)) \cdot ((p_0z) \boxplus a) & \text{by (viii)} \\
 &= (z \boxplus (p_01)) \cdot p_0z & \text{by (P$_{10}$)} \\
 &= p_0z & \text{by (ix)},
\end{align*}
\]

so (x) holds, the proof of the other part being similar. Assume that \(z \leq p_0z \). Then

\[
\begin{align*}
 (z \boxplus (p_0z)) + ((-z \cdot p_0z) \boxplus (p_0z)) &= (x + z \cdot p_0z) \boxplus (p_0z) & \text{by (P$_{11}$)} \\
 &= (p_0z) \boxplus (p_0z) = 1 & \text{by (i)}
\end{align*}
\]

Also,

\[
(z \boxplus (p_0z)) \cdot ((-z \cdot p_0z) \boxplus (p_0z)) = (z \cdot -z \cdot p_0z) \boxplus (p_0z) = 0 & \text{by (vi), (P$_9$)}.
\]

Hence (xi) holds. Finally, (xii) is established similarly to (xi).

Now we are ready for the main theorem of this section. The notion of polynomial equivalence is discussed in Part I, pp.128ff.
THEOREM 5.2.4. Let K be the class of all algebras $\mathcal{A} = (A, +, ', \cdot, -0, 1, c_\varepsilon, a)_{\varepsilon \in \mathbb{C}}$ satisfying the following conditions:

(i) $(A, +, ', -0, 1, c_\varepsilon, a)_{\varepsilon \in \mathbb{C}}$ is a simple D_{F_2}.

(ii) a is an atom of $(A, +, ', -0, 1)$.

(iii) If $x \in A$ and $x \leq c_\varepsilon a$ or $x \leq c_\varepsilon a$, then $x = c_\varepsilon x \cdot c_\varepsilon x$.

Then K is polynomialsally equivalent to the class PA of projective algebras.

In more detail, if $\mathcal{A} \in K$, with notation as above, define for any $x, y \in A$

$$p_0 x = c_0 x \cdot c_0 a, \quad p_1 x = c_1 x \cdot c_1 a,$$

$$x \sqcap y = c_0 x \cdot c_1 y;$$

let $\mathcal{A}^p = (A, +, ', -0, 1, p_0, p_1, \square, a)$. Conversely, given any PA \mathcal{A} as in 5.2.1, define for any $x \in A$

$$c_0 x = (p_2 x) \sqcap (p_1 1), \quad c_1 x = (p_0 1) \sqcap (p_2 x),$$

and let $\mathcal{A}^c = (A, +, ', -0, 1, c_0, a)_{\varepsilon \in \mathbb{C}}$. Then

(iv) If $\mathcal{A} \in K$, then $\mathcal{A}^p \in PA$, and $\mathcal{A}^{p^c} = \mathcal{A}$.

(v) If $\mathcal{A} \in PA$, then $\mathcal{A}^c \in K$, and $\mathcal{A}^{p^c} = \mathcal{A}$.

PROOF. To establish (iv), let $\mathcal{A} \in K$. Clearly (P_1) and (P_2) hold for \mathcal{A}^p. We prove (P_3) only in case $\varepsilon = 0$; for any $x, y \in A$,

$$p_0 (x + y) = c_0 (x + y) \cdot c_0 a = (c_0 x + c_0 y) \cdot c_0 a = p_0 x + p_0 y.$$

As to (P_4),

$$p_0 p_1 = p_0 (c_1 1 \cdot c_0 a) = c_0 (c_1 1 \cdot c_0 a) \cdot c_0 a = c_0 a \cdot c_0 a = a \quad \text{by (iii)}.$$

Similarly, $p_0 p_0 = 1$. Next, $p_0 x = 0$ iff $c_0 x \cdot c_0 a = 0$ iff $x \leq c_0 x \cdot c_0 a = 0$ iff $x = 0$, by simplicity.

Similarly, $p_1 x = 0$ iff $x = 0$, so (P_5) holds. We prove (P_6) only for $\varepsilon = 0$:

$$p_0 p_x = p_0 (c_0 x \cdot c_1 a) = c_0 (c_0 x \cdot c_1 a) \cdot c_1 a = c_0 x \cdot c_1 a = p_0 x.$$

For (P_7) we again suppose $\varepsilon = 0$. By (P_3) we may assume that $x \neq 0$. Suppose $z \leq p_0 1$. Thus $z \leq c_0, a$, so $c_1 z = c_0 a$ by 1.10.3. Hence

$$p_0 z = c_0 z \cdot c_0 a = c_0 z \cdot c_1 a = z \quad \text{by (iii)}.$$

Next, suppose $x \neq 0 \neq y$. Then

$$p_0 (x \sqcap y) = p_0 (c_0 x \cdot c_1 y) = c_0 (c_0 x \cdot c_1 y) \cdot c_0 a = c_0 x \cdot c_1 a \cdot c_0 a \quad \text{by simplicity} = p_0 x.$$

Similarly, $p_0 (z \sqcap y) = p_1 y$. Thus (P_8) holds. (P_9) is clear. Assume the hypotheses of (P_{10}). Then $c_0 x \leq c_0 z \cdot c_0 a = p_0 z = p_0 x = c_0 z \cdot c_0 a$, so $c_0 x \leq c_0 (c_0 z \cdot c_0 a) = c_0 z \cdot c_0 c_0 a = c_0 z$ by simplicity. Thus $z \leq c_0 x$. By symmetry, $z \leq c_0 y$, so $z \leq x \sqcap y$. For (P_{10}),}
(p_0 \Delta a) = c_0(c_0 \cdot c_0 a) \cdot c_1 a = c_1 a = p_0 \Delta a;

similarly, a \Delta (p_1) = p_1. Finally,

\[
(x + y) \Delta (p_1) = c_0(x + y) \cdot c_0 p_1 = c_0 x \cdot c_0 p_1 \cdot c_0 y \cdot c_0 p_1
= (x \Delta (p_1)) + (y \Delta (p_1)).
\]

The other part of (P_{12}) is similarly proved. Thus \(\mathcal{X}^p \in \mathcal{PA} \). Denote the cylindrifications of \(\mathcal{X}^{p,c} \) by \(c_0, c_1 \). Then we have

\[
c_0 x = (p_0 x) \Delta (p_1) = (c_0 x \cdot c_0 a) \Delta (c_0 x \cdot c_0 a)
= c_0(c_0 x \cdot c_0 a) \cdot c_0(c_0 x \cdot c_0 a)
= c_0 x \cdot c_0 a \cdot c_0 a = c_0 x
\]

by simplicity. Similarly, \(c_1 = c_1 \). This proves (iv).

Now suppose \(\mathcal{X} \in \mathcal{PA} \). First we show that \(\mathcal{X} \in \mathcal{DF}_2 \). Conditions (C_0) and (C_1) are clear. For (C_2), note that

\[
x \subseteq (p_0 x) \Delta (p_1) = (p_0 x) \Delta (p_1) = c_0 x;
\]

similarly, \(x \subseteq c_0 x \). To establish (C_3) we need some auxiliary statements.

1. If \(x \subseteq y \), then \(c_0 x \subseteq c_0 y \), for \(\varepsilon \in 2 \).

This follows from 5.2.3(iii), 5.2.3(v).

2. \(c_0 c_0 x = c_0 x \) for \(\varepsilon \in 2 \).

For example, if \(\varepsilon = 0 \) we have, if \(x \neq 0 \),

\[
c_0 c_0 x = c_0((p_0 x) \Delta (p_1)) = (p_0((p_0 x) \Delta (p_1))) \Delta (p_1)
= (p_0 x) \Delta (p_1) = c_0 x.
\]

3. \(c_0(-c_0 x) = -c_0 x \) for \(\varepsilon \in 2 \).

Again we take only \(\varepsilon = 0 \), and assume that \(-p_0 x \cdot p_0 \neq 0:\)

\[
c_0(-c_0 x) = c_0(-([p_0 x] \Delta (p_1)))
= c_0(-([p_0 x] \cdot p_0 \cdot p_1)) \Delta (p_1)
= (p_0(-[p_0 x] \cdot p_0 \cdot p_1)) \Delta (p_1)
= (p_0 x \cdot p_0 \cdot p_1) \Delta (p_1)
= -c_0 x
\]

by 5.2.3(xi). Now, returning to the verification of (C_3), we have \(x \cdot c_0 y \subseteq c_0 x \) by (C_2), hence \(c_0(x \cdot c_0 y) \subseteq c_0 x \) by (1)(2). Similarly, \(c_0(x \cdot c_0 y) \subseteq c_0 x \cdot c_0 y \). Conversely,
\[c_0 x = (p_0 x) \boxdot (p_1) = [p_0(x \cdot c_0 y)] \boxdot (p_1) + [p_0(x \cdot c_0 y)] \boxdot (p_1) \quad \text{by (P_3), (P_{12})} \]
\[= c_0(x \cdot c_0 y) + c_0(x \cdot -c_0 y) \]
\[= c_0(x \cdot c_0 y) + c_0(-c_0 y) \quad \text{by (1)} \]
\[= c_0(x \cdot c_0 y) + -c_0 y. \]

Hence \((C_2)\) follows (using symmetry for \(c_1\)).

To establish \((C_4)\) and simplicity it suffices to show that \(c_0 c_1 x = 1\) if \(x \neq 0\). We have

\[c_0 c_1 x = c_0[(p_0 1) \boxdot (p_1 x)] \]
\[= (p_0[(p_0 1) \boxdot (p_1 x)]) \boxdot (p_1) \]
\[= (p_2 1) \boxdot (p_1) = 1. \]

Thus \(\mathcal{A}^c\) is a simple \(Df_2\). Next we check (iii). Suppose, for example, that \(x \leq c_0 a\). We may assume that \(x \neq 0\). Now \(x \leq (p_0 a) \boxdot (p_1) = a \boxdot (p_1) = p_1\). Hence \(p_0 x \leq p_0 p_1 = a\), so \(p_0 x = a\). Hence

\[c_0 x \cdot c_1 x = [(p_0 x) \boxdot (p_1)] \cdot [(p_0 1) \boxdot (p_1 x)] \]
\[= [a \boxdot (p_1)] \cdot [(p_0 1) \boxdot (p_1 x)] \]
\[= (p_1) \cdot [(p_0 1) \boxdot (p_1 x)] \]
\[= p_1 x \quad \text{by 5.2.3(ix)} \]
\[= x \quad \text{by (P_7)}. \]

So \(\mathcal{A}^c \in K\). Finally, let \(p_0', p_1', \boxdot'\) be the operations in \(\mathcal{A}^{op}\). For any \(x\) we have

\[p_0' x = c_0 x \cdot c_1 a = [(p_0 x) \boxdot (p_1)] \cdot [(p_0 1) \boxdot (p_1 a)] \]
\[= (p_2 x) \boxdot (p_1 a) = x \boxdot a = p_2 x. \]

Similarly, \(p_1' x = p_1 x\). Finally,

\[x \boxdot' y = c_0 x \cdot c_1 y = [(p_0 x) \boxdot (p_1)] \cdot [(p_0 1) \boxdot (p_1 y)] \]
\[= (p_0 x) \boxdot (p_1 y) = x \boxdot y. \]
5.3 RELATION ALGEBRAS

Relation algebras were historically the first algebraic version of a portion of predicate logic to be studied. In fact, their extensive study dates back at least to Schroder [1890], although the modern abstract development dates from Tarski [41]. Some of the most important works concerning these algebras are Chin, Tarski [51], Jonsson, Tarski [52], Jonsson [53], [54], Lyndon [55], [56], [61], Maddux [81], [82], Monk [64], and McKenzie [70]. Their theory is rather extensive and well-developed. Our purpose in this section is modest. We show that relation algebras correspond closely to certain CAJ's, so that their study could, in principle, be reduced to the study of a simply defined class of CAJ's; see 5.3.17.

The development here is self-contained. In particular, before working to establish this connection with CAJ's we shall develop enough of the arithmetic and algebraic theory of relation algebras to support the development of this connection.

DEFINITION 5.3.1. A relation algebra (RA) is a system \(\mathcal{X} = (A, +, \cdot, 0, 1, ;, 1') \) such that \((A, +, \cdot, 0, 1) \) is a BA, ; is a binary operation on \(A \), \(1' \in A \), and for all \(x, y, z \in A \) the following conditions hold:

\[
\begin{align*}
(R_1) \quad & (x; y); z = (x; y)z \\
(R_2) \quad & (x + y); z = (x; z) + (y; z) \\
(R_3) \quad & x; 1' = x \\
(R_4) \quad & x'' = x \\
(R_5) \quad & (x + y)' = x' + y' \\
(R_6) \quad & (x; y)' = y' \cdot x' \\
(R_7) \quad & x' \cdot (x; y) = x - y
\end{align*}
\]

To reduce parentheses, let us assume that ; binds more closely than + or \(\cdot \). Thus \((x; z) + (y; z) = x + y; z \) and \(y; 1' = (y; 1) \cdot 1' \).

The motivation for the definition of RA comes from the set-theoretical calculus of binary relations, as indicated in the following definition.

DEFINITION 5.3.2. Let \(U \) be any set. A relation set algebra (Rs) with base \(U \) is a system \(\mathcal{X} = (A, u, n, v, 0, U, 1, U \cap 1, \cdot, 1') \) such that \(A \) is a collection of subsets of \(V = 2^U \) closed under \(u, n, v\), \(0, U, 1, \cdot, 1' \) and \(U \cap 1 \in A \) (recall the definitions of \(| \) and \(\cdot \) from p.28 of Part I). If \(A \) consists of all subsets of \(2^U \) we call \(\mathcal{X} \) full. An RA \(\mathcal{X} \) is representable if \(\mathcal{X} \) is isomorphic to a subdirect product of Rs's; RRA is the class of all representable relation algebras.

It is easy to check that every Rs and every RRA is an RA.
Elementary arithmetic

Now we give the elementary arithmetic needed for the rest of this section, in 5.3.3–5.3.5. Further arithmetic is found in Schroeder [1890], Chin, Tarski [51], Monk [61b], and Maddux [82]. For these results we assume that we deal with an arbitrary RA and elements in it.

LEMMA 5.3.3.
(i) $z_1(y+z) = z_1 y + z_1 z$.
(ii) $1^\circ = 1^\circ$.
(iii) $1^\circ x = x$.
(iv) If $x \leq y$, then $x^\circ \leq y^\circ$.
(v) $(x, y)^\circ = x^\circ y^\circ$.
(vi) $0^\circ = 0$.
(vii) $1^\circ = 1$.
(viii) \circ is a Boolean automorphism.
(ix) $- (y, z)] z^\circ \leq y$.

PROOF. For (i) we calculate:

$$z_1(y+z) = (z_1(y+z))^\circ$$
$$= (y+z)^\circ z_1^\circ$$
$$= (y^\circ + z^\circ)^\circ z_1^\circ$$
$$= (y^\circ z^\circ + z^\circ z^\circ)^\circ$$
$$= z_1 y + z_1 z.$$

Concerning (ii) we have $1^\circ = 1^\circ = 1^\circ$.

For (iii):

$$1^\circ x = (1^\circ x)^\circ = (x, 1)^\circ = x^\circ.$$

For (iv): $x \leq y$ implies $x + y = y$, hence $(x+y)^\circ = x^\circ + y^\circ = y^\circ$, so $x^\circ \leq y^\circ$. Now $z_1 y \leq z_1 z$, so $(x, y)^\circ \leq (x, z)^\circ$. Similarly, $(x, y)^\circ \leq (x, z)^\circ$. Applying this to x° and y°, we get $(x^\circ, y^\circ)^\circ \leq x \leq y$, hence $x^\circ y^\circ z_1 y \leq z_1 z$. This proves (v). For (vi) and (vii):

$$0^\circ = 0 + 0^\circ = 0^\circ + 0^\circ = (0^\circ + 0)^\circ = 0^\circ = 0.$$
$$1 = 1^\circ + 1^\circ = (1^\circ + 1)^\circ = 1^\circ.$$

Now (viii) follows in an obvious fashion. Finally, by (Rg) we have $z^\circ; [- (x, y)] z^\circ \leq y^\circ$, so $[- (y, z)] z^\circ \leq y$, as desired.

LEMMA 5.3.4. Let \mathcal{A} be a relation algebra, as in 5.3.1. For all $x, y \in \mathcal{A}$ let $z_1 y = y z_1$. Then $(\mathcal{A}, +, \cdot, \cdot, \cdot, 0, 1, 1^\circ, 1^\circ)$ is also an RA.

PROOF. By 5.3.3(1), (iii), (ix).

Lemma 5.3.4 implies a duality principle which we shall not formulate explicitly but will apply when needed. For example, (Rg) and 5.3.3(ix) are dual statements.
LEMMA 5.3.5. (i) If \(u \leq v \), then \(u; z \leq u; z \).
(ii) The following conditions are equivalent: \(x; y \cdot z = 0 \), \(x; z \cdot y = 0 \), \(x; y \cdot z = 0 \).
(iii) For atoms \(x, y, z \), the following conditions are equivalent: \(z \leq x; y \), \(y \leq x; z \), \(x \leq x; y \).
(iv) If \(\Sigma X \) exists, then so does \(\Sigma x \cdot \Sigma (x; y) \), and \((\Sigma X); y = \Sigma x \cdot \Sigma (x; y) \).

(v) \(0; y = 0 \).
(vi) \(x; y \cdot z \leq x; (x; z \cdot y) \).
(vii) \(x \leq z; x; z \).
(viii) \(x \cdot (x; y) = (x; y) \).
(ix) \((x; y) \cdot z = (x; y) \cdot x \).
(x) \((x; y); 1 = (x; y) \).
(xi) \((x; y); 1 = (x; y) \).
(xii) If \(u \) is an atom, then so is \(u; 1 \).

PROOF. For (i), assume that \(u \leq v \). So, \(u + v = v \) and \(u; z \leq u; z \), which follows easily from (\(R \)). Next, to prove (ii) first assume that \(x; y \cdot z = 0 \). Thus \(z \leq - (x; y) \), so

\[
x; z \leq x; - (x; y) \leq y,
\]

and hence \(x; z \cdot y = 0 \). This argument, applied to \(x, z, y \) rather than \(x, y, z \), shows that \(x; y \cdot z = 0 \) implies \(x; y \cdot z = 0 \). Thus the equivalence \(x; y \cdot z = 0 \) if \(x; z \cdot y = 0 \) holds in all \(R \) semi-groups, so its dual "\(x; y \cdot z = 0 \) iff \(x; y \cdot z = 0 \)" does too, and (ii) holds. (iii) is an obvious consequence of (ii).

Now assume that \(\Sigma X \) exists. For any \(x \in X \) we have \(x \leq \Sigma X \), hence \(x; y \leq \Sigma (X); y \). Thus \(\Sigma (X); y \) is an upper bound for \(\{x; y : x \in X\} \). Suppose \(z \) is any other upper bound. Then \(x; y \cdot z = 0 \) hence \(-x; y \cdot z = 0 \) for any \(x \in X \). Thus \(-x; y \cdot \Sigma X = 0 \), so \(\Sigma (X); y \cdot z = 0 \), or \(\Sigma (X); y \cdot z = 0 \), establishing (iv). Taking \(X = 0 \), we get (v). For (vi), note that

\[
x; [-(x; z) \cdot y] \leq x; y \cdot z
\]

using (\(R \)), and hence

\[
x; y \cdot z = (x; [-(x; z) \cdot y]) + x; ([x; z] \cdot y) \cdot z
\]

\[
= x; ([x; z] \cdot y) \cdot z \leq x; (x; z \cdot y).
\]

Now (vii) follows:

\[
x = x; 1 \cdot x \leq x; (x; 1) \cdot x \leq x; x.
\]

For (viii) we have:

\[
x; 1 \cdot (x; 1); (x; 1) \cdot (x; 1) \cdot (x; 1) \cdot (x; 1) \cdot x = (x; x) \cdot (x; x) \cdot x \cdot x\cdot x,
\]

from which the desired conclusion follows. Applying " to (viii), (ix) follows. (x) is a consequence of (viii) and (ix).

To prove (xi), note that \((x; 1) \cdot (-x; 1) \cdot x = x \), and similarly \((x; 1) \cdot (-x; 1) \cdot x = x \), so \((x; 1) \cdot (-x; 1) = 0 \). Since \(1; 1 = 1 \), we get \((x; 1) \cdot (-x; 1) \cdot 1; 1 = 0 \), hence

\[
(x; 1) \cdot 1 \cdot -x; 1 \cdot = 0 \text{ hence } (x; 1) \cdot 1 \cdot (x; 1) \cdot 1 = 0.
\]

But also
(−x;1')1+(z;1');1 = 1';1 = 1,

so (xi) is true. For (xii), note that u' is also an atom, and u';1' = u' ≠ 0, so u;1;1' ≠ 0. Now suppose that u;1;1'z ≠ 0. Hence (z;1')1;u ≠ 0, so u ≤ (z;1')1. By (xi), u;−(z;1');1 = 0, so −z;1'u;1 = 0, proving (xii). Finally, we have −(z;1);1'=z;1 = 0, hence −(z;1);1';z;1;1 = 0 and so z;1;−(z;1);1';1 = 0. Hence by (xi),

z;1 ≤ (z;1;1');1 ≤ z;1,

and (xiii) is proved.

Algebraic theory

This finishes our brief development of the arithmetic of relation algebras. We need one major result in the algebraic theory of RA's. It is the RA version of one of the main theorems in section 2.7. This result was first proved in Jönsson, Tarski [52], but we follow a suggestion in McKenzie [60].

THEOREM 5.3.6. Any RA can be embedded in a complete atomic RA.

PROOF. Let a be an arbitrary RA, and let X be the set of all ultrafilters on . (In analogy to CA's, is the Boolean reduct of a.) We denote by f the Stone isomorphism of into the complete atomic BA . Recall that f is defined as follows: for any a ∈ A,

f(a) = {F ∈ X : a ∈ F}.

Now we define operations ; and \(. \) on . For any M \(\subseteq X \) let

M ↪ N = \(\{ F ∈ X : \text{there exist } G ∈ M \text{ and } H ∈ N \text{ such that } \{ x : x ∈ G, y ∈ H \} ⊆ F \} \).

For any M \(\subseteq X \) let

M ↪ = \(\{ F ∈ X : \text{there is a } G ∈ M \text{ such that } \{ x : x ∈ G \} ⊆ F \} \).

Finally, we let \(B = (SbX, u, \cdot, \cdot', 0, X;1;')\). The rest of the proof will consist in showing that f is an isomorphism of a into B, and B is an RA (which is obviously complete and atomic.)

For the first part of this task, we only need to check that f preserves \(. \) and \(; \). Let a ∈ A, and first suppose that F ∈ fa'. Set G = \(\{ x ∈ A : x' ∈ F \} \). Since \(. \) is an automorphism of a, G is an ultrafilter on . Now a' ∈ F, so a ∈ G and hence G ∈ /a. Therefore F ∈ (fa)'. The converse is even easier; so f preserves \(. \). To show that f preserves \(; \), suppose that a, b ∈ A. First suppose that F ∈ (fa)(/b). Choose G ∈ fa and H ∈ fb so that \(\{ x : x ∈ G, y ∈ H \} ⊆ F \). Now a ∈ G and b ∈ H, so a' b ∈ F and hence F ∈ f(a' b), as desired. Conversely, suppose that F ∈ f(a' b), so that a' b ∈ F. Let G be a proper filter, maximal subject to the conditions a ∈ G and x b ∈ F for all x ∈ G. (G exists by Zorn's lemma.) We claim that G is an ultrafilter. For, suppose that x ∈ G; we show that −x ∈ G. Let H be the filter generated by G∪{z}. If \(\forall y ∈ G((x,y) ∈ F) \), then H is a proper filter such that x ∈ F for all x ∈ H, contra-
dicting the maximal condition on G. So, choose $y \in G$ such that $(x, y); b \notin F$. Now for any $z \in G$ we have $(x, y, z); b \leq (x, y); b$, so $(x, y, z); b \notin F$; but $(y, z); b = (x, y, z); b + (-z, y, z); b$ and $(y, z); b \in F$ since $y, z \in G$, so $(-z, y, z); b \notin F$. By the maximal condition on G it follows that $-z \in G$. Thus, indeed, G is an ultrafilter.

Let H be a proper filter, maximal subject to the conditions $b \in H$ and $\forall x \in G \forall y \in H (x, y); b \in F$. Again we claim that H is an ultrafilter. Suppose that $y \notin H$. As above we infer that there exist $z \in G$ and $z \in H$ such that $x, y); z; b \notin F$. For any $u \in G$ and $v \in H$ we have $(u, z); (y, z); v) \notin F$ while $(u, z); (x, v) \in F$, so $(u, z); (y, z); v) \in F$. Hence $-y \in H$ by the maximal condition on H.

Since $G \subseteq fA$ and $H \subseteq fB$, we have $F \subseteq (fA \cap fB)$, as desired.

Next we check the axioms $(R_1)-(R_3).

(R_1). Suppose $M, N, P \subseteq X$, and $F \subseteq M \cap (N, P)$. Say $G \in M$, $H \in N \cap P$, and $(x, y); x \in G$, $y \in H) \subseteq F$. Also say $K \subseteq M$, $L \subseteq N \cap P$, and $(x, y); x \in K$, $y \in L) \subseteq H$. Now

$\{x; y; x \in G$, $y \in K\}$ has the finite intersection property.

For, if $x \in G$ and $y \in K$, then $1 \in L$ implies that $y, 1 \in H$, hence $x, y, 1 \notin F$, hence $x, y \neq 0$. Now if $z_1, \ldots, z_n \in G$ and $y_1, \ldots, y_n \in K$, then

$\prod z_1 \prod y_1 \cdots \prod z_n \prod y_n \in \Gamma^n \Gamma^n \neq 0$,

so (1) holds.

Now note that if $x \in G$, $y \in K$, and $z \in L$, then $y, z \in H$ and $x, y, z \in F$. Hence by (1) and Zorn's lemma there is a proper filter J maximal subject to the conditions $\forall x \in G \forall y \in K (z; y) \in J$ and $\forall x \in J \forall y \in L (x; y) \in F)$. Once more we claim that J is an ultrafilter. The proof goes as before. This shows that $F \subseteq (M, N) \cap P$. Thus

$M \cap (N, P) \subseteq (M; N) \cap P$. The other inclusion is entirely analogous, so (R_1) is proved.

(R_2) is completely straightforward.

(R_3). Suppose $M \subseteq X$. We want to show that $M; f, f' \subseteq M$. Let $F \subseteq M; f, f'$. Say $G \subseteq M$, $H \subseteq f, f'$, and $(x, y); x \in G$, $y \in H) \subseteq F$. Then $1 \in H$. Hence for any $x \in G$ we have $x = z; 1 \in F$. Therefore $F \subseteq G \subseteq M$. Now let $F \subseteq M$. Let H be a proper filter maximal subject to the conditions $1 \in H$ and $\forall x \in F \forall y \in H (x; y) \in F). As above, H is an ultrafilter. Hence $F \subseteq (M; f, f')$. And (R_3) holds.

(R_4) and (R_5) are obvious since Γ is an automorphism of \mathfrak{M}^X.

(R_6) Suppose $M \subseteq M \subseteq X$. It suffices, by (R_4), to show that $(M, N) \subseteq (N, M)$.

Let $F \subseteq (M, N)$. Say $G \subseteq M, N$ and $(x, y); x \in G, y \in H) \subseteq F$. Say $H \subseteq M, N$ and $(x, y); x \in H, y \in K) \subseteq G$. Let $H' = \{x; x \in H\}$, $K' = \{x; x \in K\}$. Since Γ is an automorphism of \mathfrak{M}^X, we have $H', K' \in X$, hence $H', K' \in M$, and $K' \in N$. If $x \in H'$ and $y \in K'$, then $x' \in H, y' \in K$, hence $x' y' \in G$, and $y' = \Gamma(x' y')' \in F$. Thus $F \subseteq (N, M)$).

(R_7) Suppose $M \subseteq X$. We want to show that $M; (X \sim (M, N)) \subseteq N \subseteq 0$; suppose on the contrary that F is a member of this set. Thus $F \subseteq N$, and there exist $G \subseteq M$, $H \subseteq (X \sim (M, N))$ such that $(x, y); x \in G, y \in H) \subseteq F$. Let $K = \{x; x \in G\}$. Again, $K \subseteq X$ and $K \subseteq M$. Since $F \subseteq (M, N)$, it follows that there is an $x \in K$ and a $y \in F$ such that $-x; y \in H$. Hence $-(x, y) \in H$. Since $x' \in G$, we have $x'; (x, y) \in F$. But $x'; (x, y) \notin F$, so $-y \in F$, contradiction.

This completes the proof of Theorem 5.3.6.
CA₃'s and RA's

Now we introduce the standard method of associating an RA with a CA₃, due to Henkin and Tarski.

DEFINITION 5.3.7. Let \mathcal{A} be a CA₃, $\alpha \geq 3$. We set $\mathbf{RaA} = (N_{2,\mathcal{A}}, +, -, 0, 1, \circ, d_0)$, where for any $x, y \in N_{2,\mathcal{A}}$ we set

$$x; y = c_4(s_3^1 x, s_2^0 y),$$
$$x' = s(0, 1)x.$$

The following result is due to Henkin and Tarski.

THEOREM 5.3.8. If \mathcal{A} is a CA₃, $\alpha \geq 4$, then \mathbf{RaA} is an RA.

PROOF. Clearly $N_{2,\mathcal{A}}$ is closed under $+$ and \circ, and so \mathbf{RaA} is an algebra similar to RA's. We must check $(R_1) - (R_7)$. We use some theorems from section 1.5 without explicit citation. Let x, y, z be arbitrary elements of $N_{2,\mathcal{A}}$. First we note:

(*) $c_2(s_1^1 x; s_2^0 y) = c_3(s_1^1 x, s_2^0 y)$

For,

$$c_2(s_1^1 x; s_2^0 y) = c_2(s_2^1 s_1^1 x, s_2^0 s_2^0 y)$$
$$= c_2(s_3^1 s_3^1 x, s_3^0 s_3^0 y)$$
$$= c_3(s_1^1 s_1^1 x, s_2^0 y)$$
$$= c_3(s_1^1 x; s_2^0 y).$$

Now we use (*) to check $(R_1) - (R_7)$:

$$x; (y; x) = c_2(s_1^1 x; s_2^0 c_4(s_1^1 y, s_2^0 x))$$
$$= c_2(s_1^1 x; s_2^0 c_4(s_1^1 y, s_2^0 x))$$
$$= c_4 c_3(s_1^1 x, s_2^0 s_4^0 y, s_2^0 x)$$
$$= c_3(c_2(s_1^1 x, s_2^0 s_4^0 y), s_2^0 x)$$
$$= c_3(s_1^1 c_2(s_1^1 x, s_2^0 y), s_2^0 x)$$
$$= (x; y); x.$$

$(x + y); z = c_4(s_1^1 (x + y), s_2^0 z) = z; (x + y); z.$

$z; 1' = c_2(s_1^1 x; s_2^0 d_0) = c_2(s_1^1 x; s_2^0 d_1) = c_2(z; d_1) = z.$

$(x + y)^* = s(0, 1)(x + y) = x' + y'.$

$z^{**} = s(0, 1)s(0, 1)z = z.$
(x;y)^* = \varepsilon_s(0,1)c_2(s_2^0x + s_2^0y)
= \varepsilon_s(0,1)c_3(s_2^0x - s_2^0y)
= \varepsilon_d(s_2^1s_2^1 - s_2^1s_2^1)
= c_3(s_2^0s_2^0s_2^1s_2^x + s_2^0s_2^0s_2^1s_2^y)
= c_3(s_2^0s_2^0s_2^1s_2^x - s_2^0s_2^0s_2^1s_2^y)
= c_2(s_2^1s_2^1s_2^x - s_2^1s_2^1s_2^y)
= c_2(s_2^1s_2^1s_2^x - s_2^1s_2^1s_2^y)
= c_2(s_2^0s_2^0s_2^1s_2^x - s_2^0s_2^0s_2^1s_2^y)
= c_2(s_2^1s_2^1s_2^x - s_2^1s_2^1s_2^y)
= c_2(s_2^1s_2^1s_2^x - s_2^1s_2^1s_2^y)
= c_2(s_2^1s_2^1s_2^x - s_2^1s_2^1s_2^y)
= y; x^*.

Finally, for (R7) we note that each of the following conditions are equivalent:

\[x; [- (x;y)] ; y = 0. \]
\[c_2(s_2^0s_2^0s_2^1s_2^x - c_1(s_2^1s_2^1s_2^y)) ; y = 0. \]
\[s_2^0s_2^0s_2^1s_2^x - c_1(s_2^1s_2^1s_2^y) ; y = 0. \]
\[s_2^0s_2^0s_2^1s_2^x - c_1(s_2^1s_2^1s_2^y) ; s_2^0s_2^1s_2^1s_2^y = 0. \]
\[d_02(s_2^1s_2^1s_2^x - c_1(s_2^1s_2^1s_2^y)) ; s_2^0s_2^1s_2^1s_2^y = 0. \]

Now \[d_02(s_2^1s_2^1s_2^x - c_1(s_2^1s_2^1s_2^y)) = c_2(s_2^1s_2^1s_2^y), \] so (R7) follows.

COROLLARY 5.3.9. If \(\mathcal{H} \in \text{SN}_r \mathcal{C}_a \), with \(\alpha \geq 4 \), then \(\mathcal{R} \mathcal{A} \) is an RA.

PROOF. Say \(\mathcal{H} \subseteq \mathcal{E} = \mathcal{R}_r \mathcal{C}, \mathcal{C} \in \mathcal{C}_a \). Then \(\mathcal{R}_r \mathcal{A} \subseteq \mathcal{R}_r \mathcal{B} = \mathcal{R}_r \mathcal{C} \in \mathcal{RA} \) by 5.3.8.

The following elementary result will also be useful in what follows.

THEOREM 5.3.10. Let \(\mathcal{H} \) be a \(\mathcal{C}_a \), \(\alpha \geq 4 \), and let \(x,y \in \mathcal{R}_r \mathcal{H} \). Then
\(\begin{align*}
(i) & \ c_2(s_2^1s_2^1s_2^x - y) = s_2^0(x;y). \\
(ii) & \ c_2(s_2^1s_2^1s_2^x - y) = s_2^0(x;y).
\end{align*} \)

PROOF. We have
\[s_2^0(x;y) = s_2^0c_2(s_2^0s_2^0s_2^1s_2^x - s_2^0s_2^1s_2^1s_2^y), \]
\[= s_2^0c_2(s_2^0s_2^1s_2^1s_2^y), \]
\[= s_2^0c_2(s_2^0s_2^1s_2^1s_2^y), \]
\[= c_3(s_2^0s_2^1s_2^1s_2^y), \]
\[= c_2(s_2^1s_2^1s_2^x - y). \]

Condition (ii) is proved similarly.

Now we need two lemmas concerning algebraic properties of the operation \(\mathcal{R}_r \mathcal{A} \).
LEMMA 5.3.11. Let $\mathcal{K} \subseteq \mathcal{C}_a$, $a \geq 3$. Then $Ra^*PK = PRa^*K$.

PROOF. First suppose $\mathcal{K} \subseteq \mathcal{K}_i$, so that $P_{i\subseteq \mathcal{K}_i}$ is a typical member of PK. Now clearly $Ra_{P_{i\subseteq \mathcal{K}_i}} = P_{i\subseteq \mathcal{K}_i}Ra^*$. Furthermore, for any $x, y \in Nr_2P_{i\subseteq \mathcal{K}_i}$ and any $i \in I$ we have

$$(x; y)_i = [c_i(s_1^0x \cdot s_2^0y)]_i = c_i(s_1^ixa_i) = x_ia_i,$$

and similarly for x^*. Hence $Ra_{P_{i\subseteq \mathcal{K}_i}} = P_{i\subseteq \mathcal{K}_i}Ra^*$, establishing $Ra^*PK \subseteq PRa^*K$. The other inclusion is similar.

LEMMA 5.3.12. Let $\mathcal{X} \in SNr_2\mathcal{C}_A$ and $\mathcal{X} \subseteq Nr_2\mathcal{X}$. Then $S_0^{Ra^*}\mathcal{X} = Ra_0\mathcal{X}$.

PROOF. Clearly it suffices to show that $S_y^{Ra^*}\mathcal{X} = Nr_0^{Ra^*}\mathcal{X}$. Let

$$E = \{s_2^0x_0 \cdot s_1^1x_1 \cdot x_2 : x_0, x_1, x_2 \in S_y^{Ra^*}\mathcal{X}\}.$$

Note that E is closed under \cdot. Now we claim

(1) $S_y^{Ra^*}\mathcal{X} = \{E : Y \subseteq E, \ Y \text{ finite}\}$.

Clearly $S_y^{Ra^*}\mathcal{X} \subseteq S_y^{\mathcal{K}_i}\mathcal{X}$, and hence the inclusion 1 in (1) holds. For the other inclusion, let F be the right side of (1). It suffices to show that $X \subseteq F \in Su\mathcal{X}$.

Since $1 \in S_y^{Ra^*}\mathcal{X}$, it is clear that $X \subseteq F \subseteq F$. To show that $d_{x_i} \in F$ for all $x_i \in \mathcal{X}$ and $i < 3$, observe that $d_{x_i} = 1 \in E$ for any $i < 3$, $d_{x_0} \in S_y^{Ra^*}\mathcal{X} \in E$, $d_{x_2} = s_2^0, s_1^1 d_{x_0} \cdot 1 \in E$, and $d_{x_2} = s_2^0 d_{x_0} \cdot s_1^1 \cdot 1 \in E$.

Clearly F is closed under $+$ and \cdot. To show that F is closed under $-$, it clearly suffices to show that $-y \in F$ for each $y \in E$. And we have, if $x_0, x_1, x_2 \in S_y^{Ra^*}\mathcal{X}$,

$$(s_2^0x_0 \cdot s_1^1x_1 \cdot x_2) = -s_2^0x_0 \cdot -s_1^1x_1 \cdot -x_2 = s_2^0(-x_0) \cdot s_1^1(-x_1) \cdot 1 + s_2^0(-x_2) \cdot 1 + s_2^0(-x_2) \cdot -x_2 \in F,$$

as desired.

It remains to show that F is closed under $c_0, c_1,$ and c_2. Clearly it suffices to show that if $y \in E$, then $c_iy \in F$, for $i = 0, 1, 2$. So suppose $y = s_2^0x_0 \cdot s_1^1x_1 \cdot x_2$ with $x_0, x_1, x_2 \in S_y^{Ra^*}\mathcal{X}$. Then

$$c_0y = s_2^0x_0 \cdot c_0(s_2^1x_1 \cdot x_2) = s_2^0x_0 \cdot s_2^0(s_1^1x_1 \cdot x_2) = s_2^0(s_2^0x_0 \cdot s_1^1x_1 \cdot x_2) = s_2^0(s_2^0x_0 \cdot s_1^1x_1 \cdot x_2) = s_2^0(s_2^0x_0 \cdot s_1^1x_1 \cdot x_2) \in E.$$
Similarly, \(c_3 y \in E\). Finally,
\[
c_2 y = c_2(x_0^0 x_0^1 x_1) \cdot x_2 = x_1 x_0 x_2 \in E.
\]

We have established (1). Note that in the very last part of the proof we have also shown that if \(y \in E\) then \(c_2 y \in S \gamma \mathcal{R} \aleph \mathcal{X}\), and hence

(2) If \(y \in S \gamma \mathcal{R} \aleph \mathcal{X}\), then \(c_2 y \in S \gamma \mathcal{R} \aleph \mathcal{X}\).

For the lemma itself, for any \(y \in A\) we have \(y \in N \gamma \mathcal{R} \aleph \mathcal{X}\) iff \(y \in S \gamma \mathcal{R} \aleph \mathcal{X}\) and \(c_2 y = y\). Thus by (2), \(y \in N \gamma \mathcal{R} \aleph \mathcal{X}\) implies that \(y \in S \gamma \mathcal{R} \aleph \mathcal{X}\). The converse is clear, so the lemma holds.

COROLLARY 5.3.13. If \(K \subseteq S \gamma \mathcal{R} \aleph \mathcal{A}_4\) then \(\mathcal{R} \aleph \mathcal{S} \mathcal{K} = \mathcal{S} \mathcal{R} \aleph \mathcal{K}\).

PROOF. First let \(K \subseteq \mathcal{R} \aleph \mathcal{S} \mathcal{K}\). Say \(K = \mathcal{R} \aleph \mathcal{B}, B \subseteq C \subseteq K\). Clearly \(K \subseteq \mathcal{R} \aleph \mathcal{E}\), so \(K \subseteq \mathcal{S} \mathcal{R} \aleph \mathcal{K}\). Second let \(K \subseteq \mathcal{S} \mathcal{R} \aleph \mathcal{K}\). Say \(K \subseteq \mathcal{E} = \mathcal{R} \aleph \mathcal{C}, C \subseteq K\). Then \(K = \mathcal{S} \gamma \mathcal{R} \aleph A = \mathcal{S} \gamma \mathcal{R} \aleph F\) by Lemma 5.3.12, and \(\mathcal{S} \gamma \mathcal{R} \aleph A \subseteq C \subseteq K\). Thus \(K \subseteq \mathcal{S} \mathcal{R} \aleph \mathcal{K}\), as desired.

DEFINITION 5.3.14. \(M = \{K \subseteq S \gamma \mathcal{R} \aleph \mathcal{A} _4 : K = \mathcal{S} \gamma \mathcal{A} _4 (x \in A : \Delta x \leq 2)\}\).

Finally we can formulate precisely the main result of this section: it is that \(\mathcal{R} \aleph\) maps \(M\) onto \(\mathcal{R} \aleph\), and induces a one-one mapping of isomorphism types of members of \(M\) onto isomorphism types of \(\mathcal{R} \aleph\)'s. Obviously \(\mathcal{R} \aleph \mathcal{B}\) implies that \(\mathcal{R} \aleph \mathcal{A} \leq \mathcal{R} \aleph \mathcal{B}\). The converse, for members of \(M\), is given in our next result.

LEMMA 5.3.15. Let \(K, B \in M\) and suppose that \(\gamma \in \text{Is}(\mathcal{R} \aleph K, \mathcal{R} \aleph B)\). Then there is a \(\gamma \in \text{Is}(K, B)\) such that \(f \gamma\).

PROOF. Let \(\gamma = S \gamma \mathcal{R} \aleph B\). By 0.3.47 it suffices to show that \(\gamma\) is a one-one function with domain \(K\) and range \(B\). Since \(D \gamma = D \gamma S \gamma \mathcal{R} \aleph B = S \gamma \mathcal{R} \aleph F = S \gamma \mathcal{R} \aleph N \gamma \mathcal{R} \aleph A\), we have \(D \gamma = A\) from the definition of \(M\). Similarly, \(R \gamma = B\).

By symmetry it remains only to show that \(\gamma\) is a function. This depends on the following fact:

1. If \((a, b) \in \gamma\) and \(c_2(a, b) = (a, b)\), then \(fa = b\).

In fact, say (by the definition of \(M\)) \(K \subseteq \mathcal{E} \subseteq N \gamma \mathcal{R} \aleph \mathcal{A} _4\) and \(B \subseteq \mathcal{D} \subseteq N \gamma \mathcal{R} \aleph \mathcal{A} _4\). Note that \(K \aleph \subseteq \mathcal{R} \aleph \mathcal{E}, \mathcal{R} \aleph B \subseteq \mathcal{R} \aleph \mathcal{D}, \mathcal{R} \aleph \mathcal{A} \subseteq \mathcal{E} \subseteq \mathcal{D}\), and \(\mathcal{R} \aleph (C \subseteq \mathcal{D}) = \mathcal{R} \aleph C \subseteq \mathcal{D}\). Hence
\[
\begin{align*}
(a, b) &\in N \gamma \mathcal{R} \aleph (C \subseteq \mathcal{D}) f = S \gamma \mathcal{R} \aleph (C \subseteq \mathcal{D}) f \\
&= S \gamma \mathcal{R} \aleph (C \subseteq \mathcal{D}) f, \quad \text{by 5.3.12} \\
&= S \gamma \mathcal{R} \aleph (C \subseteq \mathcal{D}) f = f,
\end{align*}
\]
as desired.
Now suppose \((x, y), (z, w) \in g\). Then
\[
(0, c_2(y \oplus z)) = (c_20, c_2(y \oplus z)) = c_2(0, y \oplus z) = c_2((x, y) \oplus (x, z)) \in g.
\]
Furthermore, \(c_2(0, c_2(y \oplus z)) = (0, c_2(y \oplus z))\). Hence by (1) we conclude that \(f0 = c_2(y \oplus z)\), so \(c_2(y \oplus z) = 0\), hence \(y = z\), as desired.

We are now ready to prove our main result for RRA. It summarizes some results of Maddux and Monk.

Theorem 5.3.16. The class RRA of representable relation algebras is related as follows to the class \(1G_s\) of representable cylindric algebras:
\[
\text{RRA} = \mathcal{R}\alpha^*1G_s = \mathcal{R}\alpha^*\{X \in 1G_s : X = \mathbb{C}^X N_{r_2}X\} = \bigcap_{\alpha<\omega} \mathcal{R}\alpha^*SN_{r_3}CA_{4+\alpha}.
\]

Proof. First we claim:

(1) If \(U\) is a non-empty set, \(\mathcal{X}\) is the full \(\mathcal{R}\alpha\) with base \(U\), and \(\mathcal{B}\) is the full \(C_{s_3}\) with base \(U\) then \(\mathcal{X} \equiv \mathcal{R}\alpha\mathcal{B}\).

In fact, for each \(X \subseteq U\) let \(fX = \{u \in U : 21u \in X\}\). It is routine to check that \(f\) is the desired isomorphism. Now let \(\mathcal{K}\) be the class of all RA's isomorphic to full \(\mathcal{R}\alpha\)'s, \(L\) the class of all \(CA_{s_3}\) isomorphic to full \(C_{s_3}\)'s. Then \(\mathcal{K} = \mathcal{R}\alpha L\) by (1). Hence
\[
\mathcal{R}\alpha^*1G_s = \mathcal{R}\alpha^*\text{SPL} = \mathcal{S}\mathcal{P}\mathcal{R}\alpha^*L \quad (5.3.11, 5.3.13)
= \mathcal{S}\mathcal{P}\mathcal{K}
= \text{RRA} \quad \text{(definition of RRA)}.
\]

Next, if \(X \in 1G_s\) let \(\mathcal{B} = \mathbb{C}_0^X N_{r_2}X\). Then \(\mathcal{B} \in 1G_s\) and \(\mathcal{B} = \mathbb{C}_0^X N_{r_2} \mathcal{B}\). Furthermore, \(\mathcal{R}\alpha\mathcal{X} = \mathcal{R}\alpha\mathcal{B}\). It follows that \(\mathcal{R}\alpha^*1G_s = \mathcal{R}\alpha^*\{X \in 1G_s : X = \mathbb{C}_0^X N_{r_2}X\}\).

Next, note that \(1G_s \subseteq SN_{r_3}CA_{4+\alpha}\) for any \(\alpha<\omega\) by 3.1.127. Therefore, \(\mathcal{R}\alpha^*1G_s \subseteq \bigcap_{\alpha<\omega} \mathcal{R}\alpha^*SN_{r_3}CA_{4+\alpha}\). Conversely suppose that \(X \in \bigcap_{\alpha<\omega} \mathcal{R}\alpha^*SN_{r_3}CA_{4+\alpha}\). For each \(\alpha<\omega\) choose \(\mathcal{B}_\alpha \in SN_{r_3}CA_{4+\alpha}\) such that \(X = \mathcal{R}\alpha\mathcal{B}_\alpha\). We may assume that \(\mathcal{B}_\alpha = \mathbb{C}_0^X N_{r_2} \mathcal{B}_\alpha\) for each \(\alpha<\omega\). Hence by 5.3.15 we have \(\mathcal{B}_0 = \mathcal{B}_\alpha\) for all \(\alpha<\omega\). Thus \(\mathcal{B}_0 \in \bigcap_{\alpha<\omega} SN_{r_3}CA_{4+\alpha}\), so by 3.2.10 we have \(\mathcal{B}_0 \in 1G_s\). Hence \(X = \mathcal{R}\alpha\mathcal{B}_0 \in \mathcal{R}\alpha^*1G_s\), as desired.

Now we give the main theorem of this section. It is due to Maddux [78a], improving results of Monk [61b].

Theorem 5.3.17. RA = \(\mathcal{R}\alpha^*M\).

Proof. The inclusion 2 is a consequence of 5.3.8. For 1, it suffices by 5.3.6 and 5.3.12 to show that for any complete atomic RA \(\mathcal{X}\), \(\mathcal{X} \equiv \mathcal{R}\alpha\mathcal{B}\) for some \(\mathcal{B} \in M\). Namely, if this is true and \(\mathcal{E} \in RA\) is arbitrary, let \(\mathcal{E} \subseteq \mathcal{X}\), \(\mathcal{X}\) complete and atomic by 5.3.6. Say \(\mathcal{X} = \mathcal{R}\alpha\mathcal{B}\), \(\mathcal{B} \in M\). Then by 5.3.12, \(\mathcal{E} = \mathbb{C}_0^X \mathcal{E} = \mathbb{C}_0^X \mathcal{R}\alpha^* \mathcal{B} = \mathcal{R}\alpha \mathbb{C}_0^X \mathcal{B}\), and \(\mathbb{C}_0^X \mathcal{B} = \mathbb{C}_0^X N_{r_2} \mathbb{C}_0^X \mathcal{C}\) hence \(\mathbb{C}_0^X \mathcal{C} \in M\).
So, let $X \in RA$ be non-trivial, complete and atomic. We shall construct a CA_4 \mathcal{B} such that $X \equiv RA \& \mathcal{B}$ by constructing the associated CA_4 \mathcal{C} (see 2.7.38). Let

$$C = \{a \in T \mid \forall \lambda, \mu \leq 4 \text{ we have: } a_{\lambda \mu} \leq a_{\lambda \mu}, \text{ and } a_{\lambda \mu} \leq a_{\lambda \mu} \}.$$

For $\lambda \leq 4$ we set

$$E_{\lambda} = \{a \in C : a_{\lambda \lambda} \leq 1\},$$

$$T_\lambda = \{(a, b) \in E_{\lambda} : a_{\mu \mu} = b_{\mu \mu} \text{ for all } \mu \leq \lambda \leq 4 - 1\}.$$

Finally, $\mathcal{C} = (C, T, E_{\lambda}, \lambda \leq 4)$. First we note that $C \neq \emptyset$; choose an atom $z \leq 1$, and let $a_{z z} = z$ for all $\lambda \leq 4$. The required conditions are easily checked, using some of the arithmetic laws established at the beginning of this section. Now we proceed to check the conditions of 2.7.40.

Condition (i) is clear. For condition (ii), we need the following fact, which will also be useful later:

1) If $4 = \{\lambda, \mu, \nu, \eta\}$, $a, b \in C$, and $a_{\mu \nu} = b_{\mu \nu}$, then $a(T_\lambda \setminus T_\eta) b$.

To prove this, assume its hypotheses. Then we claim:

2) $a_{\lambda \mu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$.

For, we have $a_{\mu \nu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$. Since $a_{\mu \nu} = b_{\mu \nu}$, it follows that $a_{\lambda \mu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$. Hence $a_{\lambda \mu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$ and $a_{\lambda \mu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$. Thus $a_{\lambda \mu} b_{\mu \lambda} a_{\lambda \nu} b_{\nu \lambda} \neq 0$, as desired.

We now define an element $c \in C$ such that $a(T_\lambda \setminus T_\eta) b$, thereby proving (1). Let $c_{\mu \mu} = a_{\mu \mu}$ if $\mu \neq \lambda$. For $\mu = \lambda$, let $c_{\mu \mu} = b_{\mu \mu}$; finally, let $c_{\lambda \lambda} = a_{\lambda \lambda} = b_{\lambda \lambda}$. We need to check that $c \in C$. Clearly $c_{\rho \rho} \leq 1$ and $c_{\rho \rho} \leq c_{\rho \rho}$ for all $\rho \leq \lambda$. If $\rho \neq \lambda$, then $c_{\rho \rho} = c_{\rho \rho} = c_{\rho \rho}$; if $\rho = \lambda$, then $c_{\rho \rho} = c_{\rho \rho}$. The remaining possibilities work out as follows:

1. If $\rho \neq \lambda$, then $c_{\rho \rho} = a_{\rho \rho} = b_{\rho \rho} \geq b_{\rho \rho} = a_{\rho \rho}$. Thus by 5.3.6(iii), also $c_{\rho \rho} \leq c_{\rho \rho}$. Similarly, $c_{\rho \rho} \leq c_{\rho \rho}$.

2. If $\rho = \lambda$, then $c_{\rho \rho} = c_{\rho \rho}$. Similarly, $c_{\rho \rho} \leq c_{\rho \rho}$.

3. We have $c_{\rho \rho} \leq a_{\rho \rho} b_{\rho \rho} \leq a_{\rho \rho} b_{\rho \rho} \leq a_{\rho \rho} b_{\rho \rho} = a_{\rho \rho} b_{\rho \rho}$.

Hence $c_{\rho \rho} \leq c_{\rho \rho}$. Similarly, $c_{\rho \rho} \leq c_{\rho \rho}$. Since $c_{\rho \rho} \leq 1$, it is easy to verify that we have taken care of all possibilities above, so (1) holds.

Now to establish 2.7.40(ii), it suffices to take distinct $\rho, \lambda \leq 4$ and show that $T_{\rho} \setminus T_{\rho} \leq T_{\lambda} \setminus T_{\lambda}$. Suppose $a(T_{\rho} \setminus T_{\lambda}) b$. Then (1) applies to give the desired result.
2.7.40(iii) obviously holds. For 2.7.40(iv), assume that \(\kappa, \lambda \neq \mu \). First suppose that \(a \in T^*_\mu(E_{\kappa \mu} \cap E_{\lambda \mu}) \). Say \(b \in E_{\kappa \mu} \cap E_{\lambda \mu} \) and \(a_{\rho \sigma} = b_{\rho \sigma} \) for all \(\rho, \sigma \neq \mu \). Then

\[
a_{\kappa \mu} = b_{\kappa \mu} \leq b_{\mu \kappa}; b_{\lambda \mu} \leq 1'; 1' = 1',
\]

so \(a \in E_{\kappa \lambda} \), as desired. Conversely, suppose that \(a \in E_{\kappa \lambda} \). Define \(\tau \in \mathcal{T}_4 \) by:

\[
\tau_{\rho} = \begin{cases}
\rho & \text{if } \rho \neq \mu, \\
\kappa & \text{if } \rho = \mu,
\end{cases}
\]

for any \(\rho < 4 \). Now we define \(b \in {}^{4 \times 4} At\mathcal{X} \) by setting, for any \(\rho, \sigma < 4 \), \(b_{\rho \sigma} = a_{\tau_{\rho} \tau_{\sigma}} \). It is routine to check that \(b \in C \). Clearly \(a T_\tau b \). Now \(b_{\kappa \mu} = a_{\kappa \mu} \leq 1' \) and \(b_{\mu \kappa} = a_{\mu \kappa} \leq 1' \). Thus \(b \in E_{\kappa \mu} \cap E_{\lambda \mu} \), so \(a \in T^*_\mu(E_{\kappa \mu} \cap E_{\lambda \mu}) \), as desired.

Finally, for 2.7.40(v), assume that \(\kappa \neq \lambda \), \(aT_\kappa b \) and \(a, b \in E_{\kappa \lambda} \). For any \(\mu < 4 \) we then have

\[
a_{\kappa \mu} \leq a_{\kappa \lambda}; a_{\mu \lambda} \leq 1'; a_{\lambda \mu} = a_{\lambda \kappa},
\]

so \(a_{\kappa \mu} = a_{\kappa \lambda} \). Similarly, \(a_{\mu \kappa} = a_{\mu \lambda} \), \(b_{\kappa \mu} = b_{\kappa \lambda} \), and \(b_{\mu \kappa} = b_{\mu \lambda} \) for any \(\mu < 4 \). Hence if \(\mu \neq \kappa \) we get \(a_{\kappa \mu} = a_{\kappa \lambda} = b_{\kappa \mu} = b_{\kappa \lambda} \) and similarly \(a_{\mu \kappa} = b_{\mu \kappa} \). Finally, \(a_{\kappa \kappa} = a_{\mu \mu} = b_{\kappa \kappa} = b_{\mu \mu} \) by similar arguments. Since \(aT_\kappa b \) we get \(a = b \), as desired.

We have now checked all conditions of 2.7.40, so \(\mathcal{C} \) is a \(\mathcal{C}_4 \). Let \(\mathcal{B} = \mathcal{C} \circ \mathcal{C} \) (see 2.7.33, 2.7.40). So \(\mathcal{B} \) is a \(\mathcal{C}_4 \).

Now we define a function \(f \) which will turn out to be an isomorphism from \(\mathcal{X} \) onto \(\mathfrak{A} \mathfrak{B} \). For any \(x \in A \) we let

\[
fz = \{ a \in C : a_{01} \leq x \}.
\]

Thus \(f^* A \subseteq SbC \). It is also clear that \(fz \in Nr_1 \mathcal{B} \) for any \(x \in A \), so \(f \) maps into \(R_1 \mathcal{B} \).

Clearly \(f \) preserves \(+ \) and \(- \), so \(f \) is a Boolean homomorphism. Also,

\[
f1' = \{ a \in C : a_{01} \leq 1' \} = c_{01} \mathcal{B},
\]

as desired. To check that \(f \) preserves \(; \), we use the following fact, also needed later.

(3) If \(u, v, w \in At\mathcal{X} \) and \(w \leq u; v \), then there is a \(c \in C \) such that \(c_{01} = w \), \(c_{02} = u \), and \(c_{12} = v \).

For, we first define \(b \in {}^{3 \times 3} At\mathcal{X} \) by the following stipulations:

\[
\begin{align*}
b_{00} &= u; 1 \cdot 1' \\
b_{11} &= 1; w \cdot 1' \\
b_{22} &= v; 1 \cdot 1' \\
b_{01} &= w \\
b_{10} &= w \\
b_{02} &= u \\
b_{20} &= u' \\
b_{12} &= v' \\
\end{align*}
\]

\(h_{21} = v \).
Note that \(b_{00}, b_{11}, b_{22} \) are atoms by 5.3.5(xii). Then it is clear that \(b_{xx} \leq 1' \) for all \(\kappa < 3 \), and \(b_{\kappa} = b_{\kappa} \) for all \(\kappa, \lambda < 3 \). We claim that also \(b_{\kappa} \leq b_{\mu} \) for all \(\kappa, \lambda, \mu < 3 \). In fact, \(b_{00} = w \triangleq u; w = b_{02}; b_{21}; b_{20}; b_{20} \leq b_{21}; b_{22}; b_{10}; b_{10} \leq b_{11} = b_{01}; b_{01} \). Hence by 5.3.5(iii) we get \(b_{02} \leq b_{01}; b_{12} \leq b_{20} = b_{22} \leq b_{21}; b_{10} \leq b_{11} = b_{01}; b_{01} \). Next, note that \(w \triangleq u; w \triangleq u; 1 = (u; 1') \cdot 1 \) by 5.3.5(xiii). Hence \(w \cdot (u; 1') \cdot 1 \neq 0 \), so \(0 \neq (u; 1') \cdot w \leq 1' ; w = w \). Since \(w \) is an atom, we get \((u; 1') \cdot w = w \). Therefore \(b_{01} \leq b_{00}; b_{00} \leq b_{01}; b_{01} \leq b_{00}; b_{00} \). The other cases are treated similarly. Thus the above claim holds. Now let \(\tau \in \varepsilon^4 \) be such that \(3 \mid 1 \cdot \varepsilon \tau \) and \(\tau = 0 \). Define \(c_{\kappa} = b_{\kappa, \kappa} \) for all \(\kappa, \lambda < 4 \). Then the properties of \(b \) easily yield that \(c \in C \). Hence (3) holds.

Now, to see that \(f \) preserves \(\cdot \), first suppose that \(a \in f(x; y) \). Thus \(a_{01} \leq x; y \), so by 5.3.5(iv) and its dual there are atoms \(u \leq x, v \leq y \) such that \(a_{01} \leq u; v \). By (3), choose \(c \in C \) so that \(c_{01} = a_{01}, c_{02} = u, c_{12} = v \).

By (1) we have \(a T c T c \), so choose \(e \) with \(c T e T c \). Let \((4 \cdot 1) \cdot 1 \cdot d \cdot 0, \sigma = 1, 2 \), and let \(g_{\kappa} = c_{\kappa, \kappa} \) for all \(\kappa, \lambda < 4 \). Then \(g \in C, e T g \), and \(g_{00} = c_{00} = u \leq x \). Thus \(g \leq f \cdot x \). Also \(g_{22} = e_{22} \leq 1' \), so \(g \in E_{12} \). Hence \(e \in f \cdot 1' \cdot f \). Next, let \((4 \cdot 0) \cdot 1 \cdot d \cdot 1, \tau = 0, 2 \), and let \(h_{\kappa} = c_{\kappa, \kappa} \) for all \(\kappa, \lambda < 4 \). Then \(h \in C, e T h \), and \(h_{00} = a_{01} = c_{01} = v \leq y \). Thus \(h \leq f \cdot y \). Also \(h_{22} = e_{22} \leq 1' \), so \(h \in E_{22} \). Hence \(e \in f \cdot 1' \cdot y \). Thus \(a c_{02} (s_{12} f \cdot s_{22} f \cdot y) = f \cdot y \cdot f \). So we have shown that \(f(\varepsilon) \cdot f(\varepsilon) \).

Next, suppose that \(a \in f \cdot 1' \cdot f \). Since \(f \cdot 1' \cdot f = c_{02} (s_{12} f \cdot s_{22} f \cdot y) \), choose \(b \) with \(a T b \in f \cdot 1' \cdot f \). Say \(b T c \in E_{02} \cdot n \cdot f \). Thus \(c_{02} \leq 1' \), \(c_{02} \leq x \), \(c_{02} \leq 1' \), \(c_{02} \leq y \). Hence

\[
\begin{align*}
a_{01} &= b_{00} \leq b_{02}; b_{21} = c_{02}; c_{21} \\
&\leq c_{02}; c_{21}; c_{02} \leq c_{01} \\
&\triangleq x; y; 1' = y \triangleq x;
\end{align*}
\]

so \(a \in f \cdot (x; y) \) as desired. Therefore, \(f \) preserves \(\cdot \).

Next we check that \(f \) preserves \(\cdot \). Suppose \(a \in f \cdot 1' \). Thus \(a_{01} \leq 1' \). Let \(\sigma = [2 \cdot 0], \tau = [0 \cdot 1], \rho = [1 \cdot 2], \) all as members of \(4 \) (see p.36 of Part I). Let \(b_{\kappa, \kappa} = a_{\kappa, \kappa, \kappa}, c_{\kappa, \kappa} = b_{\kappa, \kappa}, \lambda, \kappa \leq \kappa, \rho \) for all \(\kappa, \lambda < 4 \). Clearly \(b_{\kappa, \kappa}, c \in C \). We have \(a T b \in E_{02}, b T c \in E_{12}, c T e \in E_{02} \). Furthermore, \(c_{01} = c_{02} = b_{12} = b_{10} \leq x \), so \(e \in f \cdot z \). Thus \(a \in f (s_{02} f \cdot z) = f (f z) \), as desired. The converse is similar.

We have now shown that \(f \) is a homomorphism from \(X \) into \(\mathcal{R} \mathbb{B} \). Now if \(x \neq 0 \), let \(w \) be an atom \(\leq x \). Then \(w \triangleq u; w \), so there is an atom \(v \) such that \(w \triangleq u; v \). Then (3) yields \(c \in C \) such that \(c_{01} \leq w \cdot z \). So \(c \in f \cdot z \). This shows that \(f \) is one-one.

Finally, assume that \(M \in \mathcal{R} \mathbb{B} \); we find \(x \in A \) such that \(f \cdot x = M \), thus showing that \(f \) is onto and finishing the proof. Note that \(c_{02} c_{02} M = M \).

\[
x = \Sigma(a_{01} : a \in M).
\]

Now suppose that \(a \in M \). Then \(a_{01} \leq x \), so \(a \in f \cdot z \). Conversely, suppose that \(a \in f \cdot z \). Then there is a \(b \in M \) such that \(a_{01} = b_{01} \). By (1) we have \(a(E_{02} | E_{22}) B \). Hence \(a c_{02} c_{02} M = M \), as desired.
5.4 POLYADIC ALGEBRAS

Polyadic algebras were introduced and extensively studied by Halmos. His work on them is collected in Halmos [62]. Further development of their theory can be found in Andréka, Németi [84a], [84b], Daigneault [59], [63], [63a], [64], [64a], [71a], Daigneault, Monk [63], Fenstad [64a], Galler [55], [57], Georgescu [74], [75], [76], [80a], [82], [82b], [83], Jerison [70], J.S. Johnson [68], [69], [70], [73], Jurie [72], Kramosil [71], LeBlanc [59], [60a], [63], [66], Lucas [67], [68], Monk [60], [64a], [70a], [71], Petrescu [74], Pinter [73b], [73a], Potthoff [71].

Our aim in this section is to sketch the theory of these algebras, giving proofs for some results not in the literature, and to give a fairly complete description of the relationships between polyadic and cylindric algebras. For some of our results we assume acquaintance with some theorems in the literature; this section is not self-contained. We begin with the axioms; but readers not very familiar with polyadic algebras might want to read definition 5.4.22 first; it gives the set-theoretical concrete versions of polyadic algebras which motivate the following axioms.

Basic notions

DEFINITION 5.4.1. Let \(\alpha \) be an arbitrary ordinal. We denote \([\alpha, \lambda] / \lambda < \alpha \) by \([\alpha, \lambda] \).

(i) A polyadic algebra of dimension \(\alpha \) (a \(PA_{\alpha} \)) is an algebraic structure

\[K = (A, +, \cdot, 0, 1, c_{\Gamma}, s_{\Gamma}) \in \alpha, \] where \(\Gamma = \alpha \), such that + and \cdot are binary operations on \(A \), \(0, 1 \in A \), and the following postulates are satisfied for any \(x, y \in A \), any \(\Gamma, \Delta \subseteq \alpha \), and any \(\sigma, \tau \in \alpha \):

- \((P_0)\) \(A, +, \cdot, 0, 1 \) is a BA;
- \((P_1)\) \(c_{\Gamma}0 = 0 \);
- \((P_2)\) \(x \leq c_{\Gamma}x \);
- \((P_3)\) \(c_{\Gamma}(x \cdot c_{\Gamma}y) = c_{\Gamma}x \cdot c_{\Gamma}y \);
- \((P_4)\) \(c_{\Gamma}x = x \);
- \((P_5)\) \(c_{\Gamma c_{\Delta}x} = c_{\Gamma c_{\Delta}x} \);
- \((P_6)\) \(s_{\tau \cdot \Delta}x = \tau \cdot \Delta x \);
- \((P_7)\) \(s_{\tau \cdot \Delta}x = \tau \cdot \Delta x \);
- \((P_8)\) \(s_{\tau}(x + y) = s_{\tau}x + s_{\tau}y \);
- \((P_9)\) \(s_{\tau}(-x) = -s_{\tau}x \);
- \((P_{10})\) if \((a \cdot \tau)1_\lambda = (a \cdot \tau)1_\lambda \), then \(s_{\tau}c_{\Gamma}x = s_{\tau}c_{\Gamma}x \);
- \((P_{11})\) if \((\tau \cdot \lambda) \) is one-one, then \(c_{\Gamma}x = s_{\tau}c_{\Gamma}x \), with \(\Delta = \tau \cdot \lambda \).
We write c_e in place of $c_{\tau(e)}$.

(ii). A polyadic equality algebra of dimension α (a PEA$_\alpha$) is an algebraic structure

$$\mathcal{X} = (A, +, \cdot, \cdot, 0, 1, c_{\tau}, s_\kappa, d_\kappa)_{\tau \in \tau^*, \kappa < \alpha}$$

where $T = \kappa^\alpha$, such that $d_\kappa \in A$ for all $\kappa, \lambda < \alpha$, $(A, +, \cdot, \cdot, 0, 1, c_{\tau}, s_\kappa, d_\kappa)_{\tau \in \tau^*, \kappa < \alpha}$ is a PA$_\alpha$, and the following conditions hold for all $\kappa, \lambda < \alpha$, all $\tau \in \kappa^\alpha$, and all $x \in A$:

(E$_1$) $d_{ee} = 1$;

(E$_2$) $x \cdot d_\kappa \leq s_{\kappa/\lambda}x$;

(E$_3$) $s_{\kappa/\lambda}d_\kappa = d_{\kappa/\lambda}$.

(iii) For \mathcal{X} a PEA$_\alpha$, as above, its cylindric reduct is

$$\mathcal{R}_{\kappa/\alpha} \mathcal{X} = (A, +, \cdot, \cdot, 0, 1, c_{\kappa/\lambda})_{\kappa < \lambda}.$$

(iv) For \mathcal{X} a PA$_\alpha$ or PEA$_\alpha$, as above, its diagonal-free reduct is

$$\mathcal{R}_{\kappa/\alpha, \lambda} \mathcal{X} = (A, +, \cdot, \cdot, 0, 1, c_{\kappa/\lambda}).$$

(v) If K is a class of PEA$_\alpha$-s or PA$_\alpha$-s, $\mathcal{R}_{\kappa/\alpha, \lambda} K$ is the class $\{\mathcal{R}_{\kappa/\alpha, \lambda} \mathcal{X} : \mathcal{X} \in K\}$. Similarly for $\mathcal{R}_{\kappa/\alpha, \lambda} K$.

One of the basic results about polyadic algebras is as follows, from Halmos [57a] or Halmos [62]: If \mathcal{X} is a complete atomic PA$_\alpha$, then \mathcal{X} is the PA-reduct of a PEA$_\alpha$, and any PA$_\alpha$ can be isomorphically embedded in the PA-reduct of a PEA$_\alpha$ (the PA-reduct is understood in its natural way).

The following theorem is clear:

THEOREM 5.4.2. If \mathcal{X} is a PA$_\alpha$, then $\mathcal{R}_{\kappa/\alpha, \lambda} \mathcal{X}$ is a Df$_\alpha$.

THEOREM 5.4.3. If \mathcal{X} is a PEA$_\alpha$, then $\mathcal{R}_{\kappa/\alpha} \mathcal{X}$ is a CA$_\alpha$. Furthermore, $s_{\kappa/\lambda}x = c_{\kappa/\lambda}(d_\kappa \cdot x)$ for any distinct $\kappa, \lambda < \alpha$ and any $x \in A$.

PROOF. First we show

(1) $c_e d_\kappa = 1$ for any $\kappa, \lambda < \alpha$.

For, $1 = d_\kappa \cdot s_{\kappa/\lambda}d_\kappa \leq s_{\kappa/\lambda}c_e d_\kappa = s_{\kappa/\lambda}c_\kappa d_\kappa = c_e d_\kappa$. Next,

(2) $x \cdot d_\kappa = s_{\kappa/\lambda}x \cdot d_\kappa$ for any $\kappa, \lambda < \alpha$ and $x \in A$.

For, S is given in (E$_2$). On the other hand,

$$s_{\kappa/\lambda}x \cdot d_\kappa \leq s_{\kappa/\lambda}x, s_{\kappa/\lambda}z - x = 0,$$

so (2) follows. Now if $\kappa = \lambda$ then $[\kappa/\lambda]^{-1} \kappa = 0$, so by (P$_{11}$) we have $c_e s_{\kappa/\lambda}x = s_{\kappa/\lambda}x$ for any $x \in A$. Hence

$$c_e(x \cdot d_\kappa) = s_{\kappa/\lambda}x \cdot c_e d_\kappa \text{ by (2)}$$

$$= s_{\kappa/\lambda}x,$$

giving part of what is desired in the theorem. From this it is easy to check the
axioms \((C_6)\) and \((C_7)\) for cylindric algebras, and the theorem follows.

REMARKS 5.4.4. In connection with 5.4.2 and 5.4.3 it is natural to ask about their converses. One may even ask whether every CA\(_{a}\) is a subalgebra of \(Rb_{\alpha} A\) for some PEA\(_{a}\) \(A\); similarly for Df\(_{a}\)'s and PA\(_{a}\)'s. First note that for \(a \geq 1\) CA\(_{a}\), Df\(_{a}\), PA\(_{a}\), and PEA\(_{a}\) are virtually identical classes. Now take \(a = 2\). From 5.1.47, which says that every Df\(_2\) is representable, it follows that every Df\(_2\) can be isomorphically embedded in \(Rb_{\alpha} A\) for some PEA\(_{a}\) \(A\). On the other hand, we have the following result.

THEOREM 5.4.5. If \(\kappa < \alpha\) and \(A\) is a PA\(_{a}\) such that \(c_{\kappa}^A = A1Id\), then \(c_{\lambda}^A = A1Id\) for all \(\lambda < \alpha\).

PROOF. For any \(z \in A\) we have

\[
c_{\lambda}^A z = c_{\lambda}^A s_{\kappa, \lambda}^A r_{\kappa, \lambda}^A z = s_{\kappa, \lambda}^A c_{\kappa}^A s_{\kappa, \lambda}^A z = z.
\]

REMARK 5.4.6. Since for any \(a \geq 2\) we can easily construct a Df\(_a\) \(A\) such that \(c_{\kappa}^A = A1Id\) while \(c_{\lambda}^A \neq A1Id\), it follows from 5.4.5 that \(A \neq Rb_{\alpha} B\) for every PA\(_{a}\) \(B\).

We shall see, in 5.4.23, that every CA\(_2\) can be embedded in \(Rb_{\alpha} B\) for some PEA\(_2\) \(B\). We now give, however, an example of a CA\(_2\) \(A\) such that \(A \neq Rb_{\alpha} B\) for every PEA\(_2\) \(B\). Let \(|X| = |Y| = 8\), \(X = \{x_0, \ldots, x_7\}\), \(XnY = 0\), \(Y = \{y_0, \ldots, y_7\}\), \(U = XuY\). We define a CA\(_2\) \(X\) with base \(U\) by specifying its atoms \(a, b, c, d, e, f, g, h\):

\[
a = \{ (x_i, x_j) : i < 8 \},
\]

\[
b = \{ (x_0, x_j), (x_i, x_2), \ldots, (x_6, x_0), (x_7, x_0) \},
\]

\[
c = X \cdot X \cdot \sim (a \cup b),
\]

\[
d = \{ (y_i, x) : i < 8 \},
\]

\[
e = Y \cdot X \cdot \sim d,
\]

\[
f = X \cdot Y,
\]

\[
g = \{ (y_i, y_j) : i < 8 \},
\]

\[
h = Y \cdot Y \cdot \sim g.
\]

Clearly we have \(D_{0i} = a \cup g\), \(C_{0i} = C_{0j} = C_{0c} = C_{0d} = C_{0e} = a \cup b \cup c \cup d \cup e \cup f \cup g \cup h\), and \(C_{1i} = C_{1j} = C_{1c} = C_{1d} = C_{1e} = C_{1f} = C_{1g} = C_{1h} = e \cup d \cup g \cup h\).

Thus we have defined a CA\(_2\) \(X\). It is illustrated in Figure 5.4.7. Suppose that \(X = Rb_{\alpha} B\) for some PEA\(_2\) \(B\). Since \(s_{0i, 0j} = d_{0i}\) and \(s_{0i, 0j} = d_{0j}\) is an automorphism of \(Rb_{\alpha} X\), we have \(s_{0i, 0j} = a\) or \(s_{0i, 0j} = g\). If \(s_{0i, 0j} = a\), then \(a \cup b \cup c \cup d \cup e \cup f \cup g \cup h = \sum\) of only four atoms of \(X\). A similar contradiction is reached assuming that \(s_{0i, 0j} = g\).

Now we turn to the case \(3\leq\alpha<\omega\). We do not know whether every Df\(_a\) can be embedded in some \(Rb_{\alpha} X\), a PA\(_{a}\), in this case. At least, by the above, for each such \(a\) there is a Df\(_a\) \(X\) such that \(X \neq Rb_{\alpha} B\) for every PA\(_{a}\) \(B\). Now we claim that for any such \(a\) there is a CA\(_a\) not embeddable in \(Rb_{\alpha} B\) for any PEA\(_a\) \(B\). This
depends on the following elementary fact about PEAₐ's.

Theorem 5.4.8 Suppose \(\alpha \geq 3 \) and \(\mathcal{X} \) is a PEAₐ. Then \(s_{10,0}^2 c_2 a = s_{01}^2 s_{02} c_2 a \) for any \(a \in A \).

Proof. Let \(\sigma c \eta \in \mathcal{X} \) be such that \(\sigma 0 = 1, \sigma 1 = 0, \sigma 2 = 0 \), and \(\sigma \xi = \xi \) for all \(\xi \in \alpha \cdot 3 \). Thus \((\alpha \cdot 2) 1[0,1] = (\alpha \cdot 2) 1 \sigma \), and \(\sigma = [2/0] 1[0/1] 1[1/2] \). Hence

\[
s_{10,0}^2 c_2 a = s_{01}^2 s_{02} c_2 a = s_{12/0}^2 s_{10/2}^2 c_2 a = s_{01}^2 s_{02}^2 c_2 a.
\]

Using 5.4.3, as desired.

Remarks 5.4.9. From 5.4.8 we obtain by symmetry that \(s_{10,0}^2 c_2 a = s_{01}^2 s_{02} c_2 a \) for any \(a \in A \) also. Now if we take a CAₐ \(\mathcal{X} \), given by 3.2.71, such that \(s_{01}^2 s_{02} c_2 a \neq s_{02}^2 s_{01} c_2 a \) for some \(a \in A \), we see that \(\mathcal{X} \) is not embeddable in \(\mathbb{R}_a \mathcal{X} \) for any PEAₐ \(\mathcal{Y} \). Note that this is true for any \(\alpha \geq 3 \), without the restriction \(\alpha < \omega \).

Finally, for \(\alpha \geq \omega \) there is a DFₐ \(\mathcal{X} \) not embeddable in \(\mathbb{R}_a \mathcal{X} \) for any PAₐ \(\mathcal{Y} \). This follows from the following facts: (1) every PAₐ, \(\alpha \geq \omega \), is representable (see below), (2) if \(\mathcal{X} \) is a representable PAₐ then \(\mathbb{R}_a \mathcal{X} \) is a representable DFₐ (see below), (3) for any \(\alpha \geq 3 \) there is a non-representable DFₐ (see 5.1.60).
There are also relationships between CA_α's and PEA_\alpha's in some special situations which have already been noticed in our work. Thus if $3 \leq \alpha < \omega$, let K, resp. L, be the class of all CA_α's, resp. PEA_\alpha's, of positive characteristic. Then by 3.2.51 we have $K = (\mathcal{Rb}_{\alpha} \mathcal{X} : \mathcal{X} \in L)$. Actually CA_α's and PEA_\alpha's of positive characteristic are \textit{polynomially equivalent} in the sense of Part I, p. 125. From 3.2.52 we see that for $3 \leq \alpha < \omega$, if \mathcal{X} is a CA_α neatly embeddable in a $CA_{\alpha+2}$, then $\mathcal{X} \subset \mathcal{Rb}_{\alpha} \mathcal{Y}$ for some PEA_\alpha \mathcal{Y}. Recall also the results of Andrèka, Comer and Németi quoted after 3.2.52. Finally, locally finite-dimensional CA_α's and PEA_\alpha's essentially coincide for $3 \leq \alpha$; we shall now go into some detail.

DEFINITION 5.4.10. A PEA_\alpha \mathcal{X} is \textit{locally finite-dimensional}, in symbols $\mathcal{X} \in \mathcal{LFP}_{\alpha}$, if for every $a \in A$ there is a finite subset Γ of α such that $c_{(\alpha \setminus \Gamma)} a = a$.

If $\mathcal{X} \in \mathcal{L}_{\alpha}$, $a \in A$, we let $T = (T_0, T_1, \ldots , T_{\lambda < \alpha})$ be a total ordering of the $\lambda < \alpha$, where $T = \alpha$, \mathcal{V} is given by 1.11.13, and $c_{(\alpha \setminus \Gamma)} a = c_{(\mathcal{V} \setminus \Gamma)} a$ for all $\Gamma \subseteq \alpha$.

THEOREM 5.4.11. Let $a \in \mathcal{X}$. Then

(i) If $\mathcal{X} \in \mathcal{LFP}_{\alpha}$, then $\mathcal{Rb}_{\alpha} \mathcal{X} \in \mathcal{L}_{\alpha}$ and $(\mathcal{Rb}_{\alpha} \mathcal{X}^*)^* = \mathcal{X}$.

(ii) If $\mathcal{X} \in \mathcal{L}_{\alpha}$, then $\mathcal{X}^* \in \mathcal{LFP}_{\alpha}$ and $(\mathcal{Rb}_{\alpha} \mathcal{X})^* = \mathcal{X}$.

This theorem is immediate from 1.11.14. Looking at Definition 5.4.10, one might ask whether the definition of local finiteness can be given the simpler form:

\{(c, a, a \neq a) : a \in A, \text{ for } CA_\alpha\}'s. We shall see below, in 5.4.11, that this is not equivalent to local finiteness.

Now we shall make some remarks on the arithmetic and algebraic theory of polyadic algebras. Of course the arithmetical properties of cylindric algebras given in Chapter I of Part I also apply to polyadic equality algebras. There are also additional laws. We give two examples that have turned out to be useful.

THEOREM 5.4.12. If $\Gamma \subseteq \alpha$, $\tau \in \omega$, and $c_{(\alpha \setminus \Gamma)} a = a$, then $c_{(\alpha \setminus \Delta)} s^\tau a = s^\tau a$, where $\Delta = \tau \setminus \Gamma$.

PROOF. If $\Gamma = 0$, then $\Delta = 0$ and, with $a = a \Delta \mathcal{I}$, $s^\tau a = c_{(\alpha \setminus \Gamma)} s^\tau a = c_{(\alpha \setminus \Delta)} s^\tau a = s^\tau a$, as desired. Now suppose that $\Gamma \neq 0$. Let $\sigma \in \omega$ be such that $\Gamma \cap \sigma = \Gamma \cap \tau$ and $\sigma = (\alpha \setminus \tau) \setminus (\alpha \setminus \Gamma)$. Thus $\sigma \setminus (\alpha \setminus \tau \setminus \Gamma) = 0$. Hence

\[
c_{(\alpha \setminus \Delta \setminus \Gamma)} a = c_{(\alpha \setminus \Delta \setminus \Gamma)} s^\tau a = c_{(\alpha \setminus \Delta \setminus \Gamma)} s^\tau a = s^\tau a.
\]

THEOREM 5.4.13. Suppose that $a \in A$, $\sigma, \tau \in \omega$, $\Gamma, \Delta \subseteq \alpha$, $\sigma^* \Gamma = \Omega$, $\Gamma \setminus \sigma$ is one-one, $\tau^* (\alpha \setminus \Gamma \setminus \sigma) = 0$, $c_{(\alpha \setminus \Delta \setminus \Gamma)} a = a$, and $(\alpha \setminus \tau) \setminus \sigma = (\alpha \setminus \Gamma) \setminus \tau$. Then $c_{(\Omega \setminus \sigma)} a = c_{(\Omega \setminus \sigma)} a$.

PROOF. First we suppose that $\sigma^* \Gamma = \alpha$. Thus $\Delta \setminus \Gamma = 0$ and hence $c_{(\alpha \setminus \Gamma)} a = a$. Now since $\Gamma \setminus \sigma$ is one-one, we have $\sigma = \Gamma^* \setminus (\alpha \setminus \Gamma)^* \setminus \sigma$. Hence, with $\rho = \sigma \Delta \mathcal{I}$,

\[
c_{(\Omega \setminus \sigma)} a = c_{(\Omega \setminus \sigma)} a.
\]
as desired.

So now assume that $\sigma^*\Gamma \neq \sigma$. Let $\varphi \in \sigma$ be such that $\Gamma \sigma \models \sigma \Gamma \models (\Delta \to \Gamma) \models \sigma \Gamma$, and $\varphi^*[(\sigma \to (\sigma \varphi) \models \sigma \sigma \models \sigma^*\Gamma]$. Then $\Delta \sigma \models \Delta \sigma \models \sigma^*\Gamma$, and $\Gamma \sigma \models \sigma \Gamma$ is one-one. Hence

$$s_{\sigma \Gamma}^a = s_{\sigma \Gamma}^a,$$

as desired.

Algebraic theory

We now turn to the algebraic theory of polyadic algebras, concentrating on those aspects which differ from the situation for cylindric algebras. Relativization for polyadic algebras has not been studied much. We mention only one result, which is analogous to 2.2.3.

Definition 5.4.14. Let \mathcal{A} be a \mathcal{P}_a, with notation as in 5.4.1, and suppose that $a \in A$. We let $\mathcal{A}_a = (A) : z \models a)$ and define, for $z,y \in \mathcal{A}_a$, $z^* \models a$,

$$x^* y = x + y,$$
$$x^t = x \cdot y,$$
$$-x = a - z,$$
$$0' \models a,$$
$$1' = a,$$
$$c_{\Gamma} z = c_{\Gamma} x \cdot y,$$
$$z' = s_{\sigma} z \cdot a.$$

Set $\mathcal{A}_a = (\mathcal{A}_a, +, , \cdot, a, 0', 1', c_{\Gamma})$. \(T \models a\).

If $\mathcal{A} \in \mathcal{P}_{\mathcal{A}_a}$ we extend this definition in the obvious way, with $d_{\alpha} = d_{\alpha} \cdot a$ for all $\alpha < \sigma$.

Theorem 5.4.15. If $\mathcal{A} \in \mathcal{P}_{\mathcal{A}_a}$, then \mathcal{A}_a satisfies all of the axioms for a \mathcal{P}_a, or $\mathcal{P}_{\mathcal{A}_a}$, except perhaps \((P_3), (P_4), (P_5), (P_6), (P_7), \) and \((E_3)\). \(\mathcal{A}_a\) is a \mathcal{P}_a, or $\mathcal{P}_{\mathcal{A}_a}$, iff the following three conditions are satisfied (in \mathcal{A}) for all $z \in \mathcal{A}_a$. $\Delta \Delta \models \Delta \alpha$, and $\tau \in \alpha$:

(i) $c_{\Delta \alpha} z \cdot b = c_{\Delta \alpha} (c_{\Delta \alpha} z \cdot b)$ if $\Gamma \Delta \alpha$ are disjoint.

(ii) $b \Delta \models b$.

(iii) If τ maps $\Delta \models \Delta$ onto Γ, then $c_{\Delta \alpha} (c_{\Delta \alpha} z \cdot b) \Delta \alpha \models c_{\Delta \alpha} (c_{\Delta \alpha} z \cdot b)$, where $\Delta = \tau \Delta \alpha$.

Proof. As in the proof of 2.2.3, \((P_3), (P_4), (P_5), \) and \((P_3)\) are clear. Also, \((P_4), (P_6), \) and \((P_6)\) are obvious. For $\mathcal{P}_{\mathcal{A}_a}$\'s, \((E_1)\) and \((E_2)\) are obvious.

For the second part of the theorem, first suppose that \mathcal{A}_a is a \mathcal{P}_a, or $\mathcal{P}_{\mathcal{A}_a}$. If $\Gamma \Delta \alpha$, then for any $z \in \mathcal{A}_a$,

$$c_{\Delta \alpha} z \cdot b = c_{\Delta \alpha} (c_{\Delta \alpha} z) \cdot b = c_{\Delta \alpha} (c_{\Delta \alpha} z \cdot b).$$
\[\subseteq c_{\Gamma}(c_{\Delta}z \cdot b), \]

so (i) holds. Next, let \(\tau \in ^{=}a \). Then \(b = s_{\tau}b = s_{\tau}b \cdot s_{\tau}b \), so (ii) holds. Assume the hypotheses of (iii). Then

\[s_{\tau}(c_{\Delta}z \cdot b) \cdot b = s_{\tau}c_{\Delta}z = c_{\Gamma}(s_{\tau}z \cdot b) \cdot b \subseteq c_{\Gamma}(s_{\tau}z \cdot b), \]

as desired.

Conversely, suppose that (i), (ii), (iii) hold. We must check \((P_3), (P_7), (P_9), (P_{10}), (P_{11})\), and \((E_3)\). First we check \((P_5)\) when \(\Gamma, \Delta \subseteq a \) are disjoint:

\[c_{\Gamma}c_{\Delta}z = c_{\Gamma}(c_{\Delta}z \cdot b) \cdot b \subseteq c_{\Delta}c_{\Delta}z \cdot b = c_{\Delta}c_{\Delta}z = c_{\Gamma}c_{\Delta}z \cdot b \subseteq c_{\Gamma}(c_{\Delta}z \cdot b) \cdot b = c_{\Gamma}c_{\Delta}z, \]

as desired. Next note that for any \(\Omega \subseteq a \) we have \(c_{\Omega}^{(1)}c_{\Omega}^{(1)}z = c_{\Omega}^{(1)}z \). Hence for arbitrary \(\Gamma, \Delta \subseteq a \) we get

\[c_{\Gamma}c_{\Delta}z = c_{\Gamma \cdot \Delta}c_{\Gamma \cdot \Delta}c_{\Gamma \cdot \Delta}c_{\Gamma \cdot \Delta}c_{\Gamma \cdot \Delta} \]

So, \((P_5)\) holds. For \((P_7)\), let \(\sigma, \tau \in ^{=}a \). Then

\[s_{\sigma \cdot \tau}z = s_{\sigma \cdot \tau}z \cdot b \subseteq s_{\sigma \cdot \tau}z \cdot b = s_{\sigma \cdot \tau}z \cdot b = s_{\sigma \cdot \tau}z \cdot b \]

Next we treat \((P_9)\):

\[s_{\sigma \cdot \tau}z = s_{\sigma \cdot \tau}z \cdot b \subseteq s_{\sigma \cdot \tau}z \cdot b = s_{\sigma \cdot \tau}z \cdot b = s_{\sigma \cdot \tau}z \cdot b \]

We turn to \((P_{10})\). Assume its hypotheses. Then

\[s_{\sigma \cdot \tau}c_{\Gamma \cdot \Delta}z = s_{\sigma \cdot \tau}(c_{\Gamma \cdot \Delta}z \cdot b) \cdot b = s_{\sigma \cdot \tau}c_{\Gamma \cdot \Delta}z \cdot s_{\sigma \cdot \tau}z \cdot b \]

Then \((P_{11})\), assume that \((\tau^{-1} \Gamma \cdot \Delta) \) is one–one. Let \(\Delta = \tau^{-1} \Gamma \cdot \Delta \) and \(\Omega = \tau^{*} \Delta \). First we prove \(\subseteq \):

\[c_{\Gamma}c_{\Delta}z = c_{\Gamma}(s_{\tau}z \cdot b) \cdot b \subseteq c_{\Gamma}(s_{\tau}z \cdot b) \cdot s_{\tau}b \]
Next we prove \(\exists \) assuming that \(\Delta = 0 \):

\[
\begin{align*}
\mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z} &= \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b} \\
&= \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z} = \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b} \\
&= \mathcal{c}'_{\mathcal{\Pi}} \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b}.
\end{align*}
\]

Finally we prove \(\exists \) in general:

\[
\begin{align*}
\mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z} &= \mathcal{c}'_{\mathcal{\Pi}} \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z} \quad \text{(the case } \Delta = 0) \\
&= \mathcal{c}'_{\mathcal{\Pi}} (\mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b}) \\
&\leq \mathcal{c}'_{\mathcal{\Pi}} (\mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b}) \quad \text{(by (iii))} \\
&= \mathcal{c}'_{\mathcal{\Pi}} \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b} = \mathcal{c}'_{\mathcal{\Pi}} \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z}.
\end{align*}
\]

Only \(E_3 \) remains:

\[
\begin{align*}
\mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{z} &= \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b} \\
&= \mathcal{s}'_\mathcal{\Delta} \cdot \mathcal{b} \\
&= \mathcal{d}'_{\mathcal{\Gamma}} \cdot \mathcal{b}.
\end{align*}
\]

An important algebraic property of \(\mathbf{PA}_\alpha \)'s not shared by cylindric algebras is that every polyadic algebra and every \(\mathbf{PEA}_\alpha \) is semisimple; see Halmos [82], p.131. The notion of neat embedding is also important for polyadic algebras:

DEFINITION 5.4.16. Let \(\beta \preceq \alpha \), and let \(\mathfrak{A} \) be a \(\mathbf{PA}_\alpha \), with notation as in Definition 5.4.1. Let \(\mathfrak{At}_\beta \mathfrak{A} = (\mathfrak{At}_\beta \mathfrak{A}, +, \cdot, -0, 1, \mathcal{c}'_{\mathcal{\Pi}} \mathcal{s}'_\mathcal{\Delta})_{\mathcal{T} \in \mathcal{P}, \mathcal{T} \in \mathcal{T}}, \) where \(T = \mathcal{T}_\beta \), \(\mathfrak{At}_\beta \mathfrak{A} = \{ a \in A : c_{a-b}^\beta \mathcal{a} = a \} \), and \(s'_\mathcal{\Pi} = s'_{\mathcal{\Pi}} \) with \(a = \mathcal{u} (\kappa, \mathcal{a} \in a \mathcal{\sim} \beta) \) for each \(\mathcal{T} \in \mathcal{T}_\beta \). A \(\mathbf{PA}_\beta \) \(\mathfrak{B} \) can be neatly embedded in \(\mathfrak{A} \) provided that \(\mathfrak{B} \) is isomorphic to a subalgebra of \(\mathfrak{At}_\beta \mathfrak{A} \).

These notions are extended in the obvious way to \(\mathbf{PEA}_\alpha \)'s.

The main result about neat embeddings (in Daigneault, Monk [63], Theorem 3.3), is that if \(\omega \preceq \beta \), then every \(\mathbf{PA}_\beta \) can be neatly embedded in a \(\mathbf{PA}_\alpha \), for any \(\alpha \preceq \beta \). This result extends to \(\mathbf{PEA}_\alpha \)'s also:

THEOREM 5.4.17. Suppose that \(\omega \preceq \beta \preceq \alpha \). Then every \(\mathbf{PEA}_\beta \) can be neatly embedded in a \(\mathbf{PEA}_\alpha \).

PROOF. We may assume that \([\beta] < [\alpha] \). Let \(\mathfrak{A} \) be a given \(\mathbf{PEA}_\beta \) and \(\mathfrak{A}' \) its \(\mathbf{PA}_\beta \)-reduct obtained by deleting the diagonal elements of \(\mathfrak{A} \). By Daigneault, Monk [63] Theorem 3.3, there is a \(\mathbf{PA}_\alpha \) \(\mathfrak{B} \) such that \(\mathfrak{A}' \cong \mathfrak{At}_\beta \mathfrak{B} \); furthermore, each element of \(\mathfrak{B} \) has the form \(\mathcal{s}'_\mathcal{\Delta} \) for some \(\alpha \in A \) and some permutation \(\sigma \). (The operations of \(\mathfrak{B} \) are denoted with a superscript '.) Now we define proposed diagonal elements \(\mathcal{d}'_{\mathcal{\Delta}} \) for \(\kappa, \lambda \preceq \alpha \): for \(\kappa = \lambda \) let \(\mathcal{d}'_{\mathcal{\Delta}} = 1 \), while if \(\kappa \neq \lambda \), let \(\mu \) be an element of \(\beta \sim \{ \kappa, \lambda \} \) and set
First we check that this definition does not depend on the particular \(\mu \in \beta \sim \{\kappa, \lambda\} \)
chosen. In fact, suppose also \(\nu \in \beta \sim \{\kappa, \lambda, \mu\} \). Note that \(\{\mu, \lambda\} \vdash \{\mu, \lambda\} \vdash \{\nu, \kappa\} \vdash [\mu, \nu] \).
Hence for \(\kappa \geq \beta, \lambda < \beta \) we have

\[
\begin{align*}
d_{\lambda \kappa}^+ &= d_{\lambda \kappa}^+ & \text{if } \kappa, \lambda < \beta, \\
s_{\mu, \kappa}^+ \cdot d_{\mu \lambda}^+ & = s_{\mu, \kappa}^+ \cdot d_{\mu \lambda}^+ & \text{if } \kappa \geq \beta, \lambda < \beta, \\
s_{\mu, \lambda}^+ \cdot d_{\mu \kappa}^+ & = s_{\mu, \lambda}^+ \cdot d_{\mu \kappa}^+ & \text{if } \kappa < \beta, \lambda \geq \beta, \\
s_{\mu, \lambda}^+ \cdot s_{\mu, \kappa}^+ \cdot d_{\lambda \mu}^+ & = s_{\mu, \lambda}^+ \cdot s_{\mu, \kappa}^+ \cdot d_{\lambda \mu}^+ & \text{if } \kappa, \lambda \geq \beta.
\end{align*}
\]

as desired; the other case involving \(\mu \) is similar.

Now we need to check \((E_7) - (E_9)\). \((E_7)\) is obvious. Checking \((E_9)\) requires several cases, depending on which of \(\kappa, \lambda, \tau, \kappa \lambda \) are \(< \beta \). We take one typical case: \(\kappa, \lambda \geq \beta, \kappa \neq \lambda \), and \(\tau, \kappa \lambda < \beta \). Let \(\mu, \nu \) be distinct members of \(\beta \sim \{0,1, \kappa, \tau, \kappa \lambda\} \). Then

\[
\begin{align*}
d_{\kappa \lambda}^+ &= s_{\mu, \kappa \lambda}^+ \cdot d_{\mu \lambda}^+ = s_{\mu, \kappa \lambda}^+ \cdot d_{\mu \lambda}^+, \\
d_{\tau \kappa \lambda}^+ &= s_{\mu, \tau \kappa \lambda}^+ \cdot d_{\mu \lambda}^+ = s_{\mu, \tau \kappa \lambda}^+ \cdot d_{\mu \lambda}^+.
\end{align*}
\]

Since \(\{\mu, \nu\} \vdash \{[\tau, \kappa \lambda], [\mu, \tau, \kappa \lambda]\} \), it follows easily that

\[
s_{\kappa \lambda}^+ \cdot d_{\mu \lambda}^+ = d_{\tau \kappa \lambda}^+ = s_{\mu, \tau \kappa \lambda}^+ \cdot d_{\mu \lambda}^+,
\]

as desired. To prove \((E_3)\), we first show it for \(z \in A \). If \(\kappa \lambda < \beta \), it follows from \((E_9)\) for \(\kappa \lambda \). Suppose \(\kappa \geq \beta, \lambda < \beta \). Choose \(\mu \in \beta \sim \{\lambda\} \), and then choose \(\sigma, \tau \in \alpha \) such that \((\alpha \sim \beta) \vdash [\lambda], \sigma = \tau = \alpha \vdash [\lambda] \), and \(\mu \in R_{\alpha} \). Then

\[
\begin{align*}
s_{\lambda \kappa}^+ (z \cdot d_{\mu \lambda}^+) &= s_{\lambda \kappa}^+ z \cdot s_{\mu, \kappa \lambda}^+ \cdot d_{\mu \lambda}^+ = s_{\lambda \kappa}^+ z \cdot s_{\mu, \kappa \lambda}^+ \cdot d_{\mu \lambda}^+ \\
&= s_{\lambda \kappa}^+ z \cdot s_{\mu, \kappa \lambda}^+ \cdot d_{\mu \lambda}^+, \quad s_{\kappa \lambda}^+ z \cdot d_{\mu \lambda}^+ = s_{\kappa \lambda}^+ z \cdot d_{\mu \lambda}^+.
\end{align*}
\]

Applying \(s_{\kappa \lambda}^+ \), we get \(z \cdot d_{\mu \lambda}^+ \leq z = z \cdot s_{\kappa \lambda \mu}^+ z \), as desired. The other cases are similar.

Now the general case of \((E_9)\) follows: for \(z \in A \) and \(\sigma \) a permutation of \(\alpha \), choose \(\mu, \nu < \alpha \) so that \(\sigma \mu = \kappa \) and \(\sigma \nu = \lambda \); then

\[
s_{\nu}^+ z \cdot d_{\mu \lambda}^+ = s_{\nu}^+ z \cdot d_{\mu \lambda}^+ \leq s_{\kappa \lambda}^+ s_{\mu, \kappa \lambda}^+ s_{\mu, \kappa \lambda}^+ z = s_{\mu, \kappa \lambda}^+ s_{\mu, \kappa \lambda}^+ z.
\]

COROLLARY 5.4.18. If \(\beta \geq \omega \) and \(\mathcal{X} \) is a PEA \(\beta \), then \(\text{Rb}_\alpha \mathcal{X} \) is representable.

PROOF. By 5.4.17 and 3.2.10.

The notions and results of section 2.7 can be extended to polyadic algebras. This is a consequence of Jónsson, Tarski [51], [52], 2.15 and 2.18. Thus every PA\(\alpha \) (or PEA\(\alpha \)) can be embedded in a complete atomic PA\(\alpha \) (or PEA\(\alpha \)). The notion of a complex algebra deserves special attention:
DEFINITION 5.4.19. Let $\mathcal{B} = (B, T_\Gamma, U_\tau)_{\Gamma \subseteq A, \tau \in A}$ be a relational structure, with $S = \{a, B \subseteq B \cdot B$ for all $\Gamma \subseteq A$, and $\tau \in \nu A$. The complex algebra $\mathcal{B}(\mathcal{B})$ of \mathcal{B} is the algebra

$$(Bb, u, n, B \cup 0, B, T_{\Delta}^+, U_{\tau}^+, E_{\epsilon})_{\Gamma \subseteq A, \tau \in A}.$$

Similarly, if $\mathcal{B} = (B, T_\Gamma, U_\tau, E_{\epsilon})_{\Gamma \subseteq A, \tau \in A}$ is a relational structure with $T_\Gamma \subseteq B \cdot B$, $B \subseteq B \cdot B$, $E_{\epsilon} \subseteq B$ for all $\Gamma \subseteq A$, $\epsilon \in \nu A$, $\epsilon, \lambda < \alpha$, $C(\mathcal{B})$ is

$$(Bb, u, n, B \cup 0, B, T_{\Delta}^+, U_{\tau}^+, E_{\epsilon})_{\Gamma \subseteq A, \tau \in A, \epsilon, \lambda < \alpha}.$$

The analog of 2.7.40 is as follows:

THEOREM 5.4.20. For every relational structure $\mathcal{B} = (B, T_\Gamma, U_\tau)_{\Gamma \subseteq A, \tau \in A}$ with $S = \{a, T_\Gamma \subseteq B \cdot B$, $B \subseteq B \cdot B$, we have $C(\mathcal{B}) \in \mathcal{P}A$ iff the following seven conditions hold for all $\epsilon, \lambda < \alpha$:

(i) T_Γ is an equivalence relation on B,

(ii) $T_{\Delta}^+ = T_{\Delta}^+$,

(iii) U_{τ}^+ is a function from B into B,

(iv) $U_{\epsilon}^1 \circ \epsilon = B \circ 1$,

(v) $U_{\epsilon}^1 \circ \epsilon = U_{\epsilon}^1$,

(vi) if $\theta \in \Gamma$ then $T_{\delta}^+ \circ \theta = T_{\delta}^+ \circ \theta$,

(vii) if $\theta = T_{\delta}^+ \circ \theta$ then $U_{\delta}^1 \circ \theta = T_{\delta}^+ \circ \theta$.

PROOF. First assume that $C(\mathcal{B}) \in \mathcal{P}A$. Just as in the proof of 2.7.40, it is easily shown that (i) holds. For any $x, y \in B$ we have $x(T_{\delta}^+ \circ \theta)$ iff $xT_{\delta}^+ \circ \theta$ for some θ iff $y \in T_{\delta}^+ \circ \theta$ iff $y \in T_{\delta}^+ \circ \theta$, so (ii) holds. Suppose that $xU_{\epsilon} y$ and $xU_{\lambda} y$. Thus $y \in U_{\epsilon}^+ \circ \theta$ and $y \in U_{\lambda}^+ \circ \theta$, so, since $U_{\epsilon}^+ \circ \theta$ is an endomorphism of $B \subseteq \mathcal{B}$, $x = y$. Thus $U_{\epsilon}^+ \circ \theta$ is a function. If $x \in B$, then $x \in B \subseteq B \cdot B$, so there is a $y \in B$ with $yU_{\lambda} x$; hence $x \in D(U_{\lambda}^+ \circ \theta)$. Hence (iii) holds. (iv) is clear since $U_{\epsilon}^+ \circ \theta = X \circ \theta$ for any $X \subseteq B$. For (v), we have $x(U_{\lambda} \circ \theta y)$ iff $xU_{\lambda} \circ \theta y$ for some θ iff $y \in U_{\lambda}^+ \circ \theta$ iff $y \in U_{\lambda}^+ \circ \theta$. Assume the hypothesis of (vi). Then $x(T_{\delta}^+ \circ \theta)$ iff $xT_{\delta}^+ \circ \theta$ iff $y \in U_{\lambda}^+ \circ \theta$. (vii) is established similarly.

The converse part of the theorem is just as routine.

THEOREM 5.4.21. For every relational structure $\mathcal{B} = (B, T_\Gamma, U_\tau, E_{\epsilon})_{\Gamma \subseteq A, \tau \in A}$ with $S = \{a, T_\Gamma \subseteq B \cdot B$, $E_{\epsilon} \subseteq B$, we have $C(\mathcal{B}) \in \mathcal{P}A$ iff in addition to 5.4.19(i)–(vii) the following three conditions hold for all $\epsilon, \lambda < \alpha$ and all $\tau \in \nu A$:

(viii) $E_{\epsilon} = B$,

(ix) $U_{\epsilon}^1 \circ \theta \subseteq U_{\epsilon}(\epsilon \theta)$,

(x) $U_{\epsilon}^1 E_{\epsilon} \circ \theta E_{\epsilon} \circ \theta$.

PROOF: routine.
CA_α's and representable polyadic algebras

We now turn to the discussion of representable polyadic algebras.

Definition 5.4.22 (i) Let U be a set, α an ordinal. For any Γ ≤ α and any X ⊆ U we set, with V = αU,

\[C_{Γ}^{X} = \{ u ∈ U : \text{there is a } v ∈ X \text{ with } (α ∼ Γ) 1u = (α ∼ Γ) 1v \}. \]

For each τ ∈ α and each X ⊆ U we let

\[s_{Γ}^{X} = \{ u ∈ U : z ∼ τ ∈ X \}. \]

(ii) \(X \) is a polyadic set algebra of dimension α with base U, in symbols \(X ∈ \text{Ps}_{α} \), provided that \(X = (A, u, n, v, 0, a, U, C_{Γ}^{X}, s_{Γ}^{X}) \) \(Γ ≤ α, τ ∈ S \), where \(V = αU, S = ^{α}a \), and A is a collection of subsets of \(αU \) closed under all the indicated operations.

(iii) \(X \) is a polyadic equality set algebra of dimension α with base U, in symbols \(X ∈ \text{Pse}_{α} \), if \(X = (A, u, n, v, 0, a, U, C_{Γ}^{X}, s_{Γ}^{X}, D_{Γ}^{X}) \) \(Γ ≤ α, τ ∈ S \), where \(V = αU, S = ^{α}a \), and A is a collection of subsets of \(αU \) closed under all the indicated operations.

(iv) \(X \) is a representable polyadic (equality) algebra of dimension α, in symbols \(X ∈ \text{Rp}_{α} \) \((X ∈ \text{Rpe}_{α}) \), if \(X \) is isomorphic to a subdirect product of members of \(\text{Ps}_{α} \) \((\text{Pse}_{α}) \).

It is straightforward to check that every \(\text{Ps}_{α} \), \(\text{Rpp}_{α} \) (resp. \(\text{Pse}_{α} \), \(\text{Rppe}_{α} \)) is a \(\text{PA}_{α} \) (resp. \(\text{PEA}_{α} \)). Note that the definition of representable polyadic algebra differs in form from the corresponding definition for cylindric algebras; but cf. 3.1.77.

Regularity of \(\text{CA}_{α} \)'s has an elementary formulation in polyadic terms. Thus let \(X \) be a \(\text{Pse}_{α} \). Then, of course, \(Rb_{α} X \) is a \(\text{CS}_{α} \). An element \(x ∈ A \) \((= Rd_{α} X) \) is regular iff \(c_{(α ∼ α)} x = x \). Also, if \(X ∈ \text{Pse}_{α} \) is locally finite—dimensional (in the sense of Definition 5.4.11), then \(Rb_{α} X ∈ \text{CS}_{α} \). In fact, if \(x ∈ A \), choose a finite \(Γ ≤ α \) so that \(c_{(α ∼ Γ)} x = x \). Clearly \(Δx ≤ Γ \), so \(c_{(α ∼ Δ)} x = c_{(α ∼ Γ)} c_{(Δ ∼ Γ)} x = c_{(α ∼ Γ)} x = x \), so \(x \) is, indeed, regular. Hence a \(\text{Pse}_{α} \) \(X \) is locally finite—dimensional iff \(Rb_{α} X \) is locally finite dimensional and regular.

Now we return briefly to the questions raised in 5.4.6; the following theorem was proved independently by Henkin, and by Andréka and Németi:

Theorem 5.4.23 \(\text{CA}_{2} = \Sigma \text{R}_{α} \text{PEA}_{2} \).

Proof. The inclusion \(\subseteq \) is all that needs to be proved. Clearly it suffices to show that any simple complete atomic \(\text{CA}_{2} \) is embeddable in the \(\text{CA} \)—reduct of some \(\text{PEA}_{2} \). Here we can apply 3.2.59. By it, it suffices to show that

\[b = 2U ∼ \bigcup_{i ∈ I} (2X ∼ D_{0}) \]

has the properties described in 5.4.15, considering \(b \) as an element of the \(\text{Pse}_{2} \) of all subsets of \(2U \) (see 3.2.59 for the notation). Condition 5.4.15(i) is immediate from 3.2.59, and 5.4.15(ii) is easy to check. The only non—trivial instance of 5.4.15(iii) is illustrated by...
which is also straightforward.

In Andréka, Németi [84b'] it is shown that if $\alpha<\omega$ and \mathfrak{X} is a PEA$_\alpha$ such that $\mathfrak{R}_{\omega\alpha}\mathfrak{X}$ is a full Cs$_\alpha$, then \mathfrak{X} is a PSe$_\alpha$; here the hypothesis that $\mathfrak{R}_{\omega\alpha}\mathfrak{X}$ is a full Cs$_\alpha$ (rather than a non-full Cs$_\alpha$ or a full Gs$_\alpha$) is necessary. We do not know if $\alpha<\omega$ is needed; as a partial extension to $\alpha\geq\omega$ Andréka and Németi have shown that if \mathfrak{X} is a simple $\mathfrak{M}_{\omega\alpha}$ with $\alpha\geq\omega$ and $\mathfrak{X} = \mathfrak{R}_{\omega\alpha}\mathfrak{B}$ for some PEA$_\alpha$ \mathfrak{B}, then \mathfrak{B} is representable. Furthermore, if $2\leq\alpha<\omega$, then there is a Cs$_\alpha$ \mathfrak{X} such that $\mathfrak{X} \neq \mathfrak{R}_{\omega\alpha}\mathfrak{B}$ for every PEA$_\alpha$ \mathfrak{B} (cf. 5.4.6).

We now indicate some relationships between representable PA$_\alpha$'s, PEA$_\alpha$'s, CA$_\alpha$'s, and Dl$_\alpha$'s; these results are from J.S. Johnson [69].

THEOREM 5.4.24. Suppose that $3\leq\alpha<\omega$, \mathfrak{X} is a PEA$_\alpha$ generated by $\{z: \Delta z = \alpha\}$, and the PA$_\alpha$-reduct of \mathfrak{X} is representable. Then \mathfrak{X} is representable.

PROOF. We may assume that \mathfrak{X} is simple, hence that the PA$_\alpha$ reduct of \mathfrak{X} is a PSe$_\alpha$ with base U. The proof now follows the lines of the proof of Theorem 5.1.51. Corresponding to Lemma 5.1.48 we claim (with $V = \epsilon^U$):

(1) $D_{\epsilon\alpha}^V \subseteq_{\epsilon\alpha} d_{\epsilon\alpha}$ for all $\kappa, \lambda < \alpha$.

To prove this, let $a \in D_{\epsilon\alpha}^V$. Since $c_{\alpha} \epsilon \epsilon_{\alpha}$, choose $u \in U$ such that $a_{\epsilon\alpha} \in \epsilon_{\alpha}$. Now by (E$^\alpha$), $d_{\epsilon\alpha} \subseteq c_{\epsilon\alpha} \epsilon \epsilon_{\alpha} \epsilon_{\alpha}$, so $a_{\epsilon\alpha} \in c_{\epsilon\alpha} \epsilon \epsilon_{\alpha} \epsilon_{\alpha}$. But $a_{\epsilon\alpha} \in \epsilon_{\alpha}$, so $a \in d_{\epsilon\alpha}$, proving (1).

By (1), we have the conclusion of Lemma 5.1.49 available. Now we want to extend Lemma 5.1.50, showing that $E \in S\epsilon\mathfrak{X}$. (Lemma 5.1.50 itself only gives that $E \in \epsilon\mathfrak{X}$.) Suppose that $X \in E$, $\tau \in \tau X$, $z, y \in \epsilon U$, and $x \in y_{\tau}$ for all $\lambda < \alpha$. Then $(x^\tau y^\tau) = z \tau R_{\tau} y_{\tau} = (x^\tau y^\tau)$, for all $\lambda < \alpha$. Hence $x^\tau y^\tau \in X$ iff $y^\tau \in X$, i.e., $z \in x X$ iff $y \in z X$. Thus $x^\tau \in X$, as desired.

Now we are ready to define the desired isomorphism G of \mathfrak{X} with a PSe$_\alpha$. The base of this PSe$_\alpha$ is U/R, R as in Lemma 5.1.49; for any $x \in A$ we set

$$ GX = \{R^x z : z \in X\}. $$

We take only three non-trivial parts in the verification that G is an isomorphism: $G x G(\epsilon U \sim X) = 0$, $G s X = s X$, and $G d_{\epsilon\alpha} = D_{\epsilon\alpha}$. Suppose $y \in G X \cap G(\epsilon U \sim X)$. Say $y = R^x z$, $z \in X$ and $y = R^z x$, $z \in \epsilon \epsilon U \sim X$. Thus $z \in x X$, for all $\lambda < \alpha$, so we have contradicted $A = A$ (a consequence of $E \in S\epsilon\mathfrak{X}$ and the hypothesis of the theorem). Next, suppose that $y \in G s X$. Say $y = R^x z$ with $z \in x X$. Thus $x^\tau y^\tau \in X$, so $x^\tau y^\tau \in X$. Conversely, suppose that $y \in G s X$. Then $y^\tau \in G X$, say $y^\tau = R^z x$ with $z \in X$. Let $y = R^x z$, $z \in \epsilon U$. Then $R^x z \tau = R^z x$, so by $E = A$ we have $x^\tau \in X$. Thus $x^\tau \in X$ and $y \in G(s X)$, as desired. Next, suppose that $y \in G d_{\epsilon\alpha}$. Say $y = R^x z$, $z \in d_{\epsilon\alpha}$. By the conclusion of Lemma 5.1.49, $z \tau R_{\tau} x$, and hence $y = y^\tau$ and $y \in D_{\epsilon\alpha}$. Conversely, suppose that $y \in D_{\epsilon\alpha}$. Say $y = R^x z$. Thus $z \tau R_{\tau} x$, so
5.4.25 POLYADIC ALGEBRAS
(CA_a's AND REPRESENTABLE PA_a's)

\(y = y \) and \(y \in D_\alpha \). Conversely, suppose that \(y \in D_\alpha \). Say \(y = R^\lambda x \). Thus \(\lambda R \alpha \), so by the conclusion of Lemma 5.1.49 there is a \(z \in d_\alpha \) such that \(\lambda z = x \) and \(\lambda z = x \). But \(c_{(\alpha,(\lambda,\alpha)}^\lambda d_\alpha = d_\alpha \), so \(z \in d_\alpha \) too. Thus \(y \in Gd_\alpha \), finishing the proof of Theorem 5.4.22.

COROLLARY 5.4.25. Suppose that \(3 \leq \alpha < \omega \) and \(\mathcal{K} \) is a PEA_{\alpha} neatly embedded in a PEA_{\alpha+1} \(\mathcal{B} \) such that the polyadic reduct of \(\mathcal{B} \) is representable. Then \(\mathcal{K} \) is representable.

PROOF: obvious from Theorem 5.4.24.

THEOREM 5.4.26. Suppose that \(3 \leq \alpha < \omega \), \(\mathcal{K} \) is a PEA_{\alpha}, \(\mathcal{R}_a \mathcal{K} \) is representable, and \(\mathcal{K} \) is generated by \(\{ x : \Delta x \neq 0 \} \). Then \(\mathcal{K} \) is representable.

PROOF. It suffices to show that if \(\emptyset \neq A \subseteq \alpha \), then there is a homomorphism \(f \) of \(\mathcal{K} \) onto a PSe_{\alpha} \(\mathcal{B} \) such that \(f A \neq 0 \). Let \(f \) be a homomorphism of \(\mathcal{R}_a \mathcal{K} \) onto a C_{\alpha} with base \(U \) such that \(f U \neq 0 \). We shall show that \(f \) preserves each operation \(\eta \), as well. Note by Theorem 5.4.3 that \(f_{(\eta,\lambda)}\lambda x = \{ u \in U : U \times (\eta,\lambda) \subseteq x \} = s_{(\eta,\lambda)}f_x \). Hence, since \(\alpha \) is finite, it suffices to show that \(f \) preserves \(s_{(\eta,\lambda)} \) for arbitrary distinct \(\eta < \alpha \). By hypothesis it suffices to show that \(f_{(\eta,\lambda)}\lambda = s_{(\eta,\lambda)}f \) for any \(\lambda \in A \) such that \(\lambda \neq \eta \). Choose \(\mu \in A \) such that \(\lambda < \mu \). Then \(f_{(\eta,\lambda)}\lambda = f_{(\eta,\lambda)}\mu f = f_{(\eta,\lambda)}f = s_{(\eta,\lambda)}f = s_{(\eta,\lambda)}f \), as desired. Similarly if \(\lambda = \mu \), then

\[
f_{(\eta,\lambda)}\lambda = f_{(\eta,\lambda)}\mu f = s_{(\eta,\lambda)}f = s_{(\eta,\lambda)}f,
\]

as desired.

THEOREM 5.4.27. Suppose that \(3 \leq \alpha < \omega \), \(\mathcal{K} \) is a PEA_{\alpha} neatly embedded in a PEA_{\alpha+1} \(\mathcal{B} \) and \(\mathcal{R}_a \mathcal{B} \) is representable. Then \(\mathcal{K} \) is representable.

PROOF. Let \(\mathcal{C} = \mathcal{B} \downarrow A \). Then also \(\mathcal{C} = \mathcal{B} \downarrow \{ X \in C : |X| < \alpha + 1 \} \). In fact, \(\mathcal{C} \) is trivial, so it suffices to show \(\mathcal{C} \). For this, note that \(\mathcal{A} \subseteq \{ X \in C : |X| < \alpha + 1 \} \), and \(\mathcal{B} \downarrow \{ X \in C : |X| < \alpha + 1 \} \) is closed under all the operations of \(\mathcal{B} \) and contains all diagonal elements. Then 5.4.26 yields that \(\mathcal{C} \), and hence \(\mathcal{K} \), are representable.

THEOREM 5.4.28. Suppose that \(3 \leq \alpha < \omega \), \(\mathcal{K} \) is a PEA_{\alpha} neatly embedded in a PEA_{\alpha+2} \(\mathcal{B} \) such that \(\mathcal{R}_a \mathcal{B} \) is representable. Then \(\mathcal{K} \) is representable.

PROOF. Let \(\mathcal{C} \) be the neat \((\alpha+1)\)-reduct of \(\mathcal{B} \). By 5.1.51, \(\mathcal{R}_a \mathcal{C} \) is representable. Hence by 5.4.27 \(\mathcal{K} \) is representable.

THEOREM 5.4.29. Suppose that \(3 \leq \alpha < \omega \), and \(\mathcal{K} \) is a PEA_{\alpha}, \(\mathcal{R}_a \mathcal{K} \) is representable, and \(\mathcal{R}_a \mathcal{K} \) is generated by \(\{ x : \Delta x \neq 0 \} \). Then \(\mathcal{K} \) is representable.

PROOF. By 5.1.51, \(\mathcal{R}_a \mathcal{K} \) is representable, so by 5.4.26 \(\mathcal{K} \) is representable.
Now we turn to some representation theorems for polyadic algebras. First we shall show that for each \(a \) with \(2 \leq a < \omega \) there is a PEA\(_a\) whose CA\(_a\)-reduct is non-representable. To do this, we start with a version of Lemma 2.6.12.

Lemma 5.4.30. Assume that \(2 \leq a < \omega \) and \(K \) is a PEA\(_a\) with notation as in 5.4.1, and \(a \) is any element of \(K \) such that \(a \leq d_{\alpha} \) whenever \(\kappa < \lambda < \alpha \) and \(s_{\kappa}a = a \) for any permutation \(\sigma \in \kappa a \). Let \(B = (B, +', ',-', 0', 1', c'_{\Gamma}, s'_{\sigma}, d'_{\alpha})_{\Gamma \leq a, \tau \in \kappa, \kappa \lambda < \alpha} \), with \(S = \sigma a \), similar to \(K \), determined by the following stipulations:

(i) \((B, +', ',-', 0', 1') = B K \cdot \mathcal{K}(a, B K) \);

(ii) \(d'_{\alpha} = (d_{\alpha}, a - d_{\alpha}) \) for all \(\kappa \lambda < \alpha \);

(iii) \(c'_{\Gamma}(x, y) = (c'_{\Gamma}(x + y), a \cdot c'_{\Gamma}(x + y)) \) for all \(x, y \in A \) with \(y \leq a \) and all non-empty \(\Gamma \subset a \);

(iv) \(B \mathcal{K}_{\sigma} = B \mathcal{K} \mathcal{L} \mathcal{D} \);

(v) \(s'_{a}(x, y) = (s_{a}x, s_{a}y) \) if \(\sigma \) is a permutation of \(a \), \(s'_{a}(x, y) = (s_{a}x, a \cdot s_{a}y) \) otherwise, for all \(x, y \in A \) with \(y \leq a \).

Under these assumptions, \(B \in \text{PEA}_a \). Furthermore, \(K \cong B \mathcal{K}(a, B K) \) and for each \(x \in A \) such that \(x \leq a \) we have disjoint elements \((x, 0) \) and \((0, x) \) in \(B \) such that \(c'_{\Gamma}(x, 0) = c'_{\Gamma}(0, x) \) for every non-empty \(\Gamma \subset a \).

Proof. The axioms \((P_5), (P_7), (P_8), (P_9), (P_9), (P_{10})\) and \((E_1)\) are obvious, while \((P_3)\) is treated like \((C_3)\) in the proof of 2.6.12. For \((P_2)\) we have, for non-empty \(\Gamma, \Delta \subset a \),

\[
\begin{align*}
\Delta c'_{\Gamma} &= \cprime_{\Gamma}(\Delta, a \cdot c'_{\Gamma}(x + y)) \\
&= (c'_{\Gamma}(\Delta, a \cdot c'_{\Gamma}(x + y))) \\
&= c'_{\Gamma}(\Delta, a \cdot c'_{\Gamma}(x + y)).
\end{align*}
\]

Next we take \((P_7)\). If \(\sigma \) and \(\tau \) are permutations, the assertion is clear. If \(\sigma \) is a permutation but \(\tau \) is not, then

\[
\begin{align*}
s'_{\sigma}(s_{\sigma}x, a \cdot s_{\sigma}y) &= s'_{\sigma}(s_{\sigma}x, a \cdot s_{\sigma}y) \\
&= (s_{\sigma}x, a \cdot s_{\sigma}y) = s'_{\sigma, \tau}(x, y).
\end{align*}
\]

If \(\tau \) is a permutation but \(\sigma \) is not, then

\[
\begin{align*}
s'_{\sigma}(s_{\sigma}x, a \cdot s_{\sigma}y) &= s'_{\sigma}(s_{\sigma}x, a \cdot s_{\sigma}y) \\
&= (s_{\sigma}x, a \cdot s_{\sigma}y) = s'_{\sigma, \tau}(x, y).
\end{align*}
\]

Finally, if neither is a permutation then

\[
\begin{align*}
s'_{\sigma}(s_{\sigma}x, a \cdot s_{\sigma}y) &= s'_{\tau}(s_{\sigma}x, a \cdot s_{\sigma}y) \\
&= (s_{\sigma}x, a \cdot s_{\sigma}y) = s'_{\sigma, \tau}(x, y).
\end{align*}
\]

\((P_8)\) and \((P_9)\) are routine. \((P_{10})\) is clear if \(\Gamma = 0 \), while for \(\Gamma \neq 0 \) we have, for any \(\rho \in \kappa \chi \),

\[
\begin{align*}
s'_{\rho}(c'_{\Gamma}(x, y), a \cdot c'_{\Gamma}(x, y)) &= s'_{\rho}(c'_{\Gamma}(x + y), a \cdot c'_{\Gamma}(x + y)) \\
&= (s_{\rho}c'_{\Gamma}(x + y), a \cdot s_{\rho}c'_{\Gamma}(x + y)).
\end{align*}
\]
hence \((P_{10})\) follows. \((P_{11})\) is clear if \(\Gamma = 0\). Assume that \(\Gamma \neq 0\). If \(\Delta = 0\), then \(\tau\) is not a permutation, and

\[
c'_{\Gamma s'}(x, y) = c'_{\Gamma s}(s, z, a \cdot s, z) = (c_{\Gamma s} s, z, a \cdot c_{\Gamma s} s, z) = (s, z, a \cdot s, z) = s'(x, y).
\]

If \(\Delta \neq 0\) and \(\tau\) is a permutation, then

\[
c'_{\Gamma s'}(x, y) = c'_{\Gamma s}(s, z, s, y) = (c_{\Gamma s} s, z + s, y, a \cdot c_{\Gamma s} s, z + s, y) = (s, c_{\Gamma s} s, z + s, y, a \cdot s, c_{\Gamma s} s, z + s, y) = s'(c'_{\Delta}(x, y))
\]

For \(\Delta \neq 0\) and \(\tau\) not a permutation,

\[
c'_{\Gamma s'}(x, y) = c'_{\Gamma s}(s, z, a \cdot s, z) = (c_{\Gamma s} s, z, a \cdot c_{\Gamma s} s, z),
\]

while

\[
s'(c'_{\Delta}(x, y)) = s'(c_{\Delta}(x + s, y), a \cdot c_{\Delta}(x + s, y)) = (s, c_{\Delta}(x + s, y), a \cdot s, c_{\Delta}(x + s, y) = (c_{\Gamma s} s, z, a \cdot c_{\Gamma s} s, z).
\]

since \(s, y \leq s, a \leq \sigma, (-d_{\lambda}) = 0\), where \(\kappa, \lambda\) are such that \(\kappa \neq \lambda\) and \(\tau \kappa = \tau \lambda\). \((E_2)\) holds clearly if \(\kappa = \lambda\), while for \(\kappa \neq \lambda\) we have

\[
(x, y) \cdot d'_{\lambda} = (x, y) \cdot (d_{\kappa}, 0) = (x, d_{\kappa}, 0)
\]

\[
\leq (s_{\kappa / \lambda} x, a \cdot s_{\kappa / \lambda} x) = s_{\kappa / \lambda}(x, y).
\]

Finally, \((E_3)\) clearly holds if \(\kappa = \lambda\); for \(\kappa \neq \lambda\) and \(\tau\) a permutation we have

\[
s'_r d'_{\kappa} = s'_r (d_{\kappa}, 0) = (d_{\tau \kappa}, 0) = d'_{\tau \kappa}.
\]

For \(\kappa \neq \lambda\) and \(\tau\) not a permutation we get

\[
s'_r d'_{\kappa} = s'_r (d_{\kappa}, 0) = (s, d_{\kappa}, a \cdot s, d_{\kappa}) = (d_{\tau \kappa \lambda}, a \cdot d_{\tau \kappa \lambda}) = d'_{\tau \kappa \lambda}.
\]

The last part of the lemma is clear.

Theorem 5.4.31. If \(2 2 \sigma < \omega\), then there is a \(\text{PEA}_\sigma\) \(B\) such that \(\text{BRho}_\sigma B\) is non-representable. In fact, the following equation (which holds in all \(\text{I}_G\)'s by 2.6.41) fails in \(B\):
\[c_i(y \cdot c_0(c_i(y \cdot -y))) \cdot -c_0(c_i(y \cdot -d_{01})) = 0. \]

Proof. Let \(X \) be the \(\text{Pse}_a \) of all subsets of \(a, \) and let \(a = \{ u \in a : u \text{ is one-one} \}. \) Thus \(a \leq d_{\alpha} \) for all distinct \(\kappa, \lambda < \alpha. \) We now apply Lemma 5.4.30, obtaining an algebra \(\mathcal{B} \) with the properties indicated there. Let \(u = \alpha \cdot 1_{\mathcal{B}} \) and \(y = (\{ u \}, 0). \) Then the following facts are easily checked:

\[-'(y \cdot c_0(y \cdot -y)) = (c_i(y \cdot -y), (u)),\]
\[c_i(y \cdot -y) = (c_0(c_i(y \cdot -y)), (u)),\]
\[c_0(c_i(y \cdot -y)) = (c_0(c_i(y \cdot -y)), (u)),\]
\[y \cdot c_i(y \cdot -y) = (\{ u \}, 0),\]
\[c_0(y \cdot c_0(c_i(y \cdot -y))) = (\{ u \}, 0),\]
\[d_0 = (d_{01}, 0),\]
\[-d_{01} = (-d_{01}, a),\]
\[c_i(y \cdot -d_{01}) = (c_i(y \cdot -d_{01}), (u)),\]
\[c_0(c_i(y \cdot -d_{01})) = (c_0(c_i(y \cdot -d_{01})), (u)),\]
\[-c_0(c_i(y \cdot -d_{01})) = (-c_0(c_i(y \cdot -d_{01})), (u)),\]

and hence \((\{ u \}, 0) \) is \(\leq \) the left side of the given equation, as desired.

Andr\'eka and N\'emeti have noticed that 5.4.31 can be improved if \(3 \leq a < \omega: \) there is a \(\text{PEA}_a \mathcal{B} \) such that \(\mathcal{B}_{df} \mathcal{B} \) is non-representable. This can be seen by using 3.2.88 and 5.4.15.

Analogously to 5.1.47 we shall now show that every \(\text{PA}_2 \) is representable. To do this we need the following lemma.

Lemma 5.4.32. Suppose that \(\kappa \) and \(\lambda \) are cardinals, \(1 \leq 2\kappa + \lambda + 1 \leq |U| \geq \omega. \) Then there is a partition \(\mathcal{P} \) of \(2^U \) with the following properties:

1. \(|\mathcal{P}| = \kappa \cdot \lambda + 1, \)
2. \((V \downarrow \subseteq \mathcal{P}, \text{ where } V = 2^U, \)
3. there exist disjoint \(\mathcal{P}_0, \mathcal{P}_1 \subseteq \mathcal{P} \) with \(|\mathcal{P}_0| = \kappa, \ |\mathcal{P}_1| = \lambda, \ D_{01} \notin \mathcal{P}_0 \cup \mathcal{P}_1, \)
4. \(\mathcal{C}_{\mathcal{P}} X = \{ U \subseteq \mathcal{P} : X \subseteq \mathcal{P}, X \subseteq \mathcal{P}_1 \text{ for all } X \subseteq \mathcal{P}_1, \ X \subseteq \mathcal{P}_1 \text{ for all } X \subseteq \mathcal{P}_1, \}

Proof. We form the sets \(X_\kappa \) as in the proof of 3.2.57; if \(e \) is the identity of the group, then \(X_\kappa = D_{01} \).

Theorem 5.4.33. Every \(\text{PA}_2 \) is representable.

Proof. Let \(\mathcal{C} \) be a simple \(\text{PA}_2. \) Embedding \(\mathcal{C} \) in a simple complete and atomic
PA 2 \mathcal{B}, it suffices to show that \mathcal{B} is representable. Now \mathcal{B} is the PA reduct of a simple PEA 2 \mathcal{X}; see the remark following 5.4.1. We shall follow the proof of 3.2.59 closely. We take the definitions of Dat, small, big, A_{ab} from there, and (1)-(4) hold. But now we let, for all \(a \in \text{Dat} \),

\[X_a = \{ (a, \alpha) : \alpha < \mu \}, \]

where \(\mu = |\text{At} \mathcal{X}| \cdot \omega \). Let \(U = \bigcup_{a \in \text{Dat} \, X_a} \). Now we shall define \(\varphi \) mapping \(\text{At} \mathcal{X} \) into \(S^2 \mathcal{V} \), \(V = 2 \mathcal{U} \), so that the following conditions hold:

1. If \(x, y \in A_{ab} \) and \(x \neq y \) then \(\varphi(x \varphi y) = 0 \neq \varphi x \).
2. If \(a, b \in \text{Dat} \) then \(\bigcup_{a \in \text{Dat} \, (\varphi a) = X_a \times X_b} \).
3. If \(a \in \text{Dat} \) then \(D^{[\|]}_1 (X_a \times X_b) \subseteq \varphi a \).
4. If \(x \in A_{ab} \) then \(C^{[\|]}_1 \varphi x = X_a \times X_b \) and \(C^{[\|]}_1 \varphi x = X_a \times U \).

Let \(\prec \) be an ordering of \(\text{Dat} \). For \(a, b \in \text{Dat} \) we define \(A_{ab} \cdot \varphi \):

1. Case 1. \(a = b \) a small. Let \(\varphi a = X_a \times X_a \).
2. Case 2. \(a = b \) a big. By Lemma 5.4.32 let \(A_{ab} \cdot \varphi = \) a one—one mapping of \(A_{ab} \) onto a partition of \(X_a \times X_a \) such that \(\varphi a = D^{[\|]}_1 (X_a \times X_b) \), \(\varphi s_{(0, 1)} u = (\varphi u)^{-1} \) for every \(u \in A_{ab} \), and (4) holds.
3. Case 3. \(a < b \). By Lemma 3.2.57 let \(\varphi \) be a one—one mapping of \(A_{ab} \) onto a partition of \(X_a \times X_b \) such that (4) holds.
4. Case 4. \(b < a \). For any \(u \in A_{ab} \) let \(\varphi u = (\varphi s_{(0, 1)} u)^{-1} \); note that \(s_{(0, 1)} u \leq c_b s_{(0, 1)} a \cdot c_b s_{(0, 1)} b = c_b \cdot c_a \), so \(s_{(0, 1)} u \in A_{ba} \).

Then for any \(x \in A \) let

\[f x = \bigcup (x a : a \leq x, \ a \in \text{Dat}). \]

So \(f \) is an isomorphism of \(\text{At} \mathcal{X} \) into the BA \(S^2 \mathcal{V} \). As in the proof of 3.2.59 one shows that \(f \) preserves \(s_{(\|)} \) for all \(\| \leq 2 \).

To show that \(f \) preserves \(s_{(0, 1)} \), suppose first that \((u, v) \in f s_{(0, 1)} x \), \(x \in A \). Say \((u, v) \in \varphi a \), \(a \leq s_{(0, 1)} b \), \(b \in \text{At} \mathcal{X} \), \(b \leq x \). Then \(b \in \text{Dat} \); otherwise \(a \leq s_{(0, 1)} b - d_{(0, 1)} = 0 \), contradiction. Thus \(s_{(0, 1)} b = c_b \cdot b \cdot c_a \). Hence \(v \in X_b \) and \((v, u) \in D^{[\|]}_1 (X_b \times X_b) \subseteq \varphi b \). Thus \((u, v) \in s_{(0, 1)} / f x \). Conversely, suppose that \((u, v) \in s_{(0, 1)} / f x \). Thus \((v, u) \in f x; \) say \((v, u) \in \varphi b \) with \(b \leq x \). It follows from (2), (3) that \(b \in \text{Dat} \). Say \((u, v) \in \varphi a \), \(a \in A_{ba} \). Then \(v \in X_a \times X_b \) so \(d = b \). Thus \(a \leq c_b \cdot b \) and so \((u, v) \in f c_b \cdot b \subseteq f s_{(0, 1)} / f x \), as desired. Similarly, \(f \) preserves \(s_{(1, 0)} \).

Finally, suppose that \((u, v) \in f s_{(1, 0)} / f x \). Say \((u, v) \in \varphi a \), \(a \leq s_{(1, 0)} a \), \(a \in \text{At} \mathcal{X} \). If \(a \in \text{Dat} \), it is clear from cases 1, 2 that \((v, u) \in \varphi a \); also \(a \subseteq s_{(0, 1)} a \), \(s_{(0, 1)} a \). Suppose \(a \in \text{Dat} \); let \(a \in A_{ba} \). If \(b = c \), then Case 2 applies, and \((v, u) \in (\varphi a)^{-1} \varphi s_{(0, 1)} a \). Since \(s_{(0, 1)} a \subseteq s_{(0, 1)} a \), this shows that \((u, v) \in s_{(0, 1)} / f x \). Next suppose that \(b < c \). Then \((v, u) \in (\varphi a)^{-1} = (\varphi s_{(0, 1)} a)^{-1} = s_{(0, 1)} a \) by Case 4, since \(s_{(0, 1)} a \in A_{ab} \). Again this shows the desired result. Similarly if \(c < b \). Thus we have shown that \(f s_{(1, 0)} / f x \subseteq s_{(0, 1)} / f x \). Hence
\(s_{10,11} f \bar{x} = s_{10,11} f s_{10,11} s_{10,11} f s_{10,11} s_{10,11} f = s_{10,11} \bar{x} \), finishing the proof.

The ideas of this proof can also be used to prove a representation theorem for \(\text{PEA}_2 \)'s analogous to 3.2.65.

Now we turn to representation questions for \(3 \leq \alpha < \omega \). Here the two main positive theorems in section 3.2 extend to \(\text{PEA}_2 \)'s.

THEOREM 5.4.34. Suppose \(3 \leq \alpha < \omega \) and \(\mathcal{X} \) is a \(\text{PEA}_2 \). Then \(\mathcal{X} \) is representable iff \(\mathcal{X} \) can be embedded in a rich \(\text{PEA}_2 \) \(\mathcal{B} \) such that in \(\mathcal{B} \) the equations
\[c_\lambda(x, y, c_\lambda(x, -y)) \cdot c_\lambda(c_\lambda(x, -\bar{\alpha})) = 0 \]
hold, for all distinct \(\kappa, \lambda \prec \alpha \) and all \(x, y \in B \).

PROOF. It suffices to check that the function \(f \) defined in the proof of Theorem 3.2.6 preserves \(s_{\kappa, \lambda} \) for all distinct \(\kappa, \lambda \prec \alpha \). Suppose that \(\mathcal{X} \) is representable, then there is an embedding \(\mathcal{X} \subseteq \mathcal{B} \) such that in \(\mathcal{B} \) the equations hold.

It suffices to show

\[\prod_{\mu \in \Delta a} s_{\mu}^{0}(u [\kappa, \lambda])_{\mu} = \bar{a}; \]

so let \(\mu \in \Delta a \).

Case 1. \((\kappa, \lambda) \cap \{\mu, 0\} = 0. \)

\[s_{\kappa, \lambda} s_{\mu}^{0} u_{\mu} = s_{\mu}^{0} s_{\kappa, \lambda} u_{\mu} = s_{\mu}^{0} u_{\mu} = s_{\mu}^{0}(u [\kappa, \lambda])_{\mu}. \]

Case 2. \(\kappa = 0, \mu \notin \{\kappa, \lambda\}. \)

\[s_{\kappa, \lambda} s_{\mu}^{0} u_{\mu} = s_{\mu}^{0} u_{\mu} = s_{\mu}^{0}(u [\kappa, \lambda])_{\mu}. \]

Case 3. \(\kappa = 0, \mu = \lambda. \)

\[s_{\kappa, \lambda} s_{\mu}^{0} u_{\mu} = s_{\lambda}^{0}(u [\kappa, \lambda])_{\lambda}. \]

Case 4. \(\kappa = 0 = \mu. \)

\[s_{\kappa, \lambda} s_{\mu}^{0} u_{\mu} = s_{\lambda}^{0}(u [\kappa, \lambda])_{\lambda}. \]

Other cases are similar to these. So we have shown that \(f_{s_{\kappa, \lambda} a} \subseteq s_{\kappa, \lambda} f a \). The other inclusion easily follows from this one.
We do not know whether some version of 5.4.34 extends to PA_\alpha's.

THEOREM 5.4.35. Let \mathcal{K} be any simple atomic PEA_\alpha, with 3 \leq \alpha < \omega. Then the following conditions are equivalent:

(i) Every atom of \mathcal{K} is rectangular.

(ii) There is an isomorphism of \mathcal{K} onto a P\alpha B that carries each atom of \mathcal{K} to a singleton element of B.

PROOF. Following the proof of Theorem 3.2.14, it suffices to show that if a is an atom of \mathcal{K} and \sigma is a permutation of \alpha then \{h_\sigma a \} \leq s_\sigma(ha). To do this it suffices to take any \xi < \alpha and show that \langle s_\alpha \sigma \xi \rangle \subseteq \mathcal{K}:

\[c_{\alpha^{-1}(\xi)} s_\alpha a \cdot d_\sigma = s_\sigma c_{\alpha^{-1}(\xi)} a \cdot d_\sigma = s_\sigma c_{\alpha^{-1}(\xi)} a \cdot d_\sigma = c_{\alpha^{-1}(\xi)} a \cdot d_\sigma, \]
as desired.

THEOREM 5.4.36. If 3 \leq \alpha < \omega, then a PEA_\alpha is representable iff it can be embedded in an atomic PEA_\alpha which the atoms are rectangular.

To extend this theorem to PA_\alpha's, it is convenient to have a PA_\alpha—version of Theorem 2.7.21:

THEOREM 5.4.37. Assume that \alpha < \omega. For any PA_\alpha \mathcal{K} there is a complete PA_\alpha B such that \mathcal{K} \subseteq B and the following two conditions hold:

(i) \Sigma^A X = \Sigma^B X for every X \subseteq A for which \Sigma^B X exists;

(ii) b = \Sigma_{b \geq x \in A} x for every b \in B.

PROOF. We proceed as in the proof of 2.7.21, obtaining B as \mathcal{K} and the operations c_{\gamma}, \Gamma \subseteq \alpha, so that (i), (ii), and (P_1)-(P_5) hold. Then for any \sigma \in \alpha and any b \in B we set

\[s_\alpha b = \Sigma_{b \geq x \in A} s_\alpha x. \]

As in the proof of 2.7.21 we easily see that \Sigma^A X = \Sigma^B s_\alpha x for any X \subseteq B. Then the other postulates are easy to check.

THEOREM 5.4.38. If 3 \leq \alpha < \omega, then a PA_\alpha is representable iff it can be embedded in an atomic PA_\alpha in which the atoms are rectangular.

PROOF. For the non—trivial direction \Leftarrow it suffices to show that any atomic PA_\alpha \mathcal{K} in which all atoms are rectangular is representable. By 5.4.37 we may assume that \mathcal{K} is complete. Then \mathcal{K} is the PA_\alpha—reduct of some PEA_\alpha B; by 5.4.35, B is representable, so \mathcal{K} is also.

The following theorem of Henkin is proved just as the corresponding theorem
3.2.53 was.

THEOREM 5.4.39. For \(a < \omega \), any PEA\(_a\) of finite characteristic is representable.

This result can be formulated in the following way: If \(a < \omega \) and \(\mathfrak{X} \) is a PEA\(_a\) such that \(\overline{d}(\alpha \cdot a) = 0 \), then \(\mathfrak{X} \) is representable. Andréka and Németi [84b'] generalized this as follows: If \(a < \omega \) and \(\mathfrak{X} \) is a PEA\(_a\) such that each equation

\[
c_a(x \cdot \overline{d}(\alpha \cdot a)) \overline{d}(\alpha \cdot a) = x \cdot \overline{d}(\alpha \cdot a), \quad \kappa < \alpha,
\]

holds in \(\mathfrak{X} \), then \(\mathfrak{X} \) is representable. (In a full PSE\(_a\), these equations are equivalent to the base being of size \(\leq \alpha \).

Now we turn to a discussion of non-representable polyadic algebras.

REMARKS 5.4.40. Assume that \(3 \leq \alpha < \omega \). J.S. Johnson [69] showed that there is a PEA\(_a\) whose PA\(_a\)-reduct is representable but whose CA\(_a\)-reduct is not. He also showed that Rpp\(_a\) and Rppe\(_a\) are not finitely axiomatizable. Andréka and Németi [84c'] showed that there is a non-representable PEA\(_a\) \(\mathfrak{X} \) with \(\mathfrak{R}_{ca} \mathfrak{X} \) representable, for \(4 \leq \alpha < \omega \). The case \(\alpha = 3 \) is open.

REMARKS 5.4.41. Assume that \(\alpha \geq \omega \). Daigneault and Keisler independently showed that every PA\(_a\) is representable; see Daigneault, Monk [83] and Keisler [63]. On the other hand, Rppe\(_a\) is not even closed under ultraproducts, as was first shown by Monk; see J.S. Johnson [69]. In fact, Johnson proved a more general theorem: there is an ultraproduct \(\mathfrak{X} \) of PSE\(_a\)'s with infinite bases such that \(\mathfrak{X} \) is non-representable. Thus by 3.1.109, \(\mathfrak{X} \) is a non-representable PEA\(_a\) such that \(\mathfrak{R}_{ca} \mathfrak{X} \) is representable.

REMARK 5.4.42. Returning to the class CA\(_a\)nICRS\(_a\) of "generalized" representable algebras discussed at the end of section 3.2, we note that for any \(\mathfrak{X} \in \text{PEA}_a \), we have \(\mathfrak{R}_{ca} \mathfrak{X} \in \text{CA}_a \text{nICRS}_a \), by the theorem of Resek mentioned there.

We shall not discuss the connections of polyadic algebras with logic; roughly speaking, the connections are as in section 4.3, except that it is not necessary to talk only about restricted formulas. See Monk [71'] and Johnson [73'].

We have already discussed in section 2.2 the class \(C_{\alpha} \) of relativized cylindric algebras, and in section 3.1 the associated "concrete" class \(C_{\alpha}r \). Both of these are classes of algebras which are not, in general, cylindric algebras. In sections 2.2 and 3.1, the part of our discussion having to do with relativized \(CA_{\alpha} \)'s was essentially concerned mainly with the classes \(CA_{\alpha,n}C_{\alpha} \) and \(CA_{\alpha,n}C_{\alpha,r} \), but now we want to focus attention on the larger classes \(C_{\alpha}r \) and \(C_{\alpha}r \). Note that \(C_{\alpha}r = \text{SRC_{\alpha}} \). The main results we present are that \(\text{SRC_{\alpha}} \) and \(ICR_{\alpha} \) are equational classes, but for \(\alpha \geq 3 \) they are not finitely axiomatizable.

We begin with the case \(\alpha = 2 \). Here we have a simple characterization of \(ICR_{2} \) due to Henkin, Resek [75]; we use a shorter proof due to Andréka and Németi, which proceeds via the following four lemmas.

LEMMA 5.5.1. Let \(\mathcal{X} \) be similar to \(CA_{2} \)'s and satisfy \((C_{0})- (C_{3})\) (cf. Part I, p.162). Then there is a structure \(B = (B, T_{x}, E_{0}) \) \(\forall \lambda < \alpha \) similar to \(CA_{2} \)'s (cf. 2.7.38) such that the following conditions hold:

(i) \(T_{0} \) and \(T_{1} \) are equivalence relations on \(B \).

(ii) \(\mathcal{X} \approx \mathcal{X}' \cong \text{CmB} \) for some \(\mathcal{X}' \), and for all distinct \(a, b \in B \) there is an \(x \in A' \) such that \(a \mathcal{X} x \) and \(b \not\mathcal{X} x \).

PROOF. We use the terminology of section 2.7. Note that \(\mathcal{X} \) is a \(B_{0} \). Set \(B = \mathcal{X} \cong \text{CmX} \). Then by 2.7.5 and 2.7.34 we see that there is an isomorphism of \(\mathcal{X} \) onto a subalgebra \(\mathcal{Y} \) of \(\text{CmB} \) such that (ii) holds. Writing \(\mathcal{B} \) as in the formulation of the theorem, we see by 2.7.32 that \(T_{x} = \{(x, y) \in \text{A} \in \text{E} \mid y \leq c_{x} x \} \), where \(\mathcal{C} = \text{CmX} \), for each \(x \in A \). Clearly then \(T_{x} \) is transitive and reflexive on \(\text{A} \), where \(\text{A} \in \text{E} = B \). Since, by 1.2.5 (whose proof used only \((C_{0})- (C_{3})\)), \(y \leq c_{x} x \) iff \(y = c_{x} x \) iff \(c_{x} y \neq 0 \) iff \(x \leq c_{x} y \), each \(T_{x} \) is also symmetric, finishing the proof.

LEMMA 5.5.2. Let \(\mathcal{X} \) be similar to \(CA_{2} \)'s and satisfy \((C_{0})- (C_{3})\) and \((C_{7})\). Assume that \(\mathcal{B} \) satisfies 5.5.1(i),(ii). Then

\[(*) \quad T_{0} \mathcal{X} c_{0} E_{01} = T_{1} \mathcal{X} c_{0} E_{01} \cup \text{Id}.\]

PROOF. By symmetry it suffices to show that \(T_{0} \mathcal{X} c_{0} E_{01} \cup \text{Id} \). Suppose on the contrary that \(a, b \in E_{01} \), \(a \neq b \), and \(a T_{0} b \). By 5.5.1(i) choose \(x \in A' \) such that \(a \mathcal{X} x \) and \(b \not\mathcal{X} x \). Then \(a \mathcal{X} c_{0}(d_{0} x) \cdot c_{0}(d_{0} x) = a \mathcal{X} x \), contradicting the fact that \(\mathcal{X} \) (hence \(\mathcal{X}' \)) satisfies \((C_{7})\).

LEMMA 5.5.3. Let \(\mathcal{B} = (B, T_{x}, E_{0}) \) be similar to \(CA_{2} \)'s with \(T_{0}, T_{1} \) equivalence
relations on B, $T_0 n^2 E_0 = T_1 n^2 E_0 \leq Id$, and $E_{00} = E_{11} = B$, $E_{01} = E_{10}$.

Then there is a relational structure $\mathbb{B}' = (B', T', E', \alpha, \lambda, <, \omega) | \subseteq \mathbb{B}$ such that $\mathbb{C}m\mathbb{B} | \subseteq \mathbb{C}m\mathbb{B}'$ and the following conditions hold:

(i) T_0' and T_1' are equivalence relations on B'.
(ii) $T_0 n^2 E_0' = T_1 n^2 E_0' \leq Id$.
(iii) $T_0' n T' \leq Id$.
(iv) $E_{00}' = E_{11}' = B'$; $E_{01}' = E_{10}'$.

PROOF. Let $x \in |B| + \omega$ be arbitrary, and set $B' = B \times \kappa$. Now we claim that there is an equivalence relation R on B' with the following two properties:

1. For all $\xi \in \kappa$ and $a, b \in B$, $(a, \xi) R (b, \xi)$ if and only if $a = b$.
2. For all $\xi \in \kappa$ and $a, b \in B$, there is a unique $\eta \in \kappa$ such that $(a, \xi) R (b, \eta)$.

To see this, let $(a, \xi) R (b, \xi)$ for each repeated κ times. For each $\xi \in \kappa$, let f_ξ be a one-one map of B into κ such that $f_\xi a = \min(\kappa \setminus f_\xi a : \alpha < \xi)$. Then $(f_\xi : \xi \in \kappa)$ forms a partition of B'. With R the associated equivalence relation, (1), (2) are easily checked.

Now we define the relations of the structure \mathbb{B}':

- $T_0' = \{((a, \xi), (b, \xi)) : a T_0 b, \xi < \kappa\}$
- $T_1' = \{((a, \xi), (b, \eta)) : a T_1 b, (a, \xi) R (b, \eta)\}$
- $E_{00}' = E_{11}' = \{(a, \xi) : a \in E_{00}, \xi < \kappa\}$
- $E_{01}' = E_{10}' = B'$

This defines \mathbb{B}'. It is routine to check (i)-(iv). The desired $f \in \mathcal{I}m(\mathbb{C}m\mathbb{B}, \mathbb{C}m\mathbb{B}')$ is defined by

$$f = \{(a, \xi) : a \in x, \xi \in \kappa : x \in B\}.$$

Again it is routine to check the desired properties of f.

The next lemma is of more general interest, so we call it a theorem. Compare once more with 2.7.40, and see also the concluding remarks of section 2.7.

THEOREM 5.5.4. Let \mathbb{X} be a structure similar to $\mathbb{C}m_{2 \alpha}$, where $\mathbb{X} = (A, T, E, \alpha, \lambda, <, \omega)$. Then the following conditions are sufficient for $\mathbb{C}m\mathbb{X}$ to be isomorphic to a $\mathcal{C}r\mathcal{S}_{\alpha}$:

(a) T_0 and T_0 are equivalence relations on A.
(b) $T_0 n^2 E_0 = T_1 n^2 E_0 \leq Id$.
(c) $T_0 n T_1 \leq Id$.
(d) $E_{00} = E_{01}$ and $E_{00} = E_{11} = A$.

PROOF. Define $M = (A / T_0) \sim (b / T_0 : b \in E_{00})$ and let U be any set with at least $|A / T_1| + |M|$ elements. Let f be a one-one function from A / T_1 into U and g a one-one function from M into $U \sim Rg$. Define h from A / T_0 into U by the stipulations that $g \subseteq h$, and $h(b / T_0) = f(b / T_1)$ if $b \in E_{01}$; this is justified by (b). Thus
A is one-one. Then by (c) we see that for any \(a \in A \), \(f(a/T_0) = h(a/T_0) \) iff \(a \in E_{01} \). Now define \(k \) mapping \(A \) into \(\tilde{U} \) by setting \(ka = \langle f(a/T_1), h(a/T_0) \rangle \). Then for any \(a, b \in A \) we have: \(aT_0b \) iff \(h(a/T_0) = h(b/T_0) \), and \(aT_1b \) iff \(f(a/T_1) = f(b/T_1) \). It is now easy to check that \(k^* \) is an isomorphism of \(\mathcal{C}m \mathcal{X} \) onto \(\mathcal{C}b(k^*A) \), as desired.

Now we are ready for the above mentioned theorem of Henkin and Resek.

THEOREM 5.5.5. \(\mathcal{S}Cr_2 = \mathcal{I}Cr_2 \); moreover, \(\mathcal{S}Cr_2 \) is characterized by the postulates

\[(C_0) - (C_3), (C_5), (C_7), \text{ along with the equation } d_{01} = d_{10}.

PROOF. Let \(\mathcal{V} \) be the variety determined by \((C_0) - (C_3), (C_5), (C_7), \) and \(d_{01} = d_{10} \). Clearly \(\mathcal{I}Cr_2 \subseteq \mathcal{S}Cr_2 \subseteq \mathcal{V} \). The inclusion \(\mathcal{V} \subseteq \mathcal{I}Cr_2 \), follows from 5.5.1—5.5.4.

REMARKS 5.5.6. Theorem 5.5.5 has as an immediate consequence the inclusion \(\mathcal{C}A_2 \subseteq \mathcal{I}Cr_2 \), proved in section 3.2 as Theorem 3.2.61. Henkin and Resek [75'] improved 5.5.5 by also showing that \(\mathcal{S}Cr_2 = \mathcal{Cr}_2 \). Andréka and Németi have shown that \(\mathcal{Cr}_2 \subseteq \mathcal{I}R\mathcal{C} \); hence \(\mathcal{Cr}_2 = \mathcal{I}R\mathcal{C} \).

Now we turn to the case \(\alpha > 2 \). Henkin and Resek [75'] also showed:

(A) For \(\alpha > 2 \), the class \(\mathcal{C}r_\alpha \) is not equational; in fact, \(\mathcal{S}Cr_\alpha \neq \mathcal{C}r_\alpha \).

A similar situation holds for the class \(\mathcal{R}C_\alpha \), for \(\alpha = 2 \) as well as \(\alpha > 2 \), as has been shown by Andréka and Németi:

EXAMPLE 5.5.7. (See Andréka, Németi [81'], p.155.) For each \(\alpha \geq 2 \) there is an \(\mathcal{K} \in \mathcal{C}r_\alpha \sim \mathcal{R}C_\alpha \). For, let \(\mathcal{T} \) be the full \(\mathcal{C} \)s with base 4. Set \(f = (0,1,0,0,...) \), \(g = (1,2,0,0,...) \), \(h = (2,3,0,0,...) \), \(V = \{f, g, h\} \), \(\mathcal{E} = \mathcal{R}1\mathcal{R} \), \(\mathcal{K} = \mathcal{E}^\mathcal{E}\{f\} \). Thus \(\mathcal{K} \in \mathcal{C}r_\alpha \), and we now show that \(\mathcal{K} \not\in \mathcal{R}C_\alpha \). Note that \(A = \{0, V, \{f\}, \{g, h\}\} \). Suppose that \(\mathcal{K} = \mathcal{R}1\mathcal{D} \), where \(\mathcal{D} \) is a \(\mathcal{C} \)s. Then

\[\{g\} = \{g, h\} \mathcal{N} \{D_{01}, \mathcal{N} \{D_{01}, \{f\} \} \} \in \mathcal{D}, \]

hence \(\{g\} \in \mathcal{R}1\mathcal{D} = \mathcal{K} \), contradiction.

The analogy between (A) and Example 5.5.7 is not as close as it first appears. In fact, \(\mathcal{I}C_\alpha = \mathcal{C}r_\alpha \) but \(\mathcal{I}R\mathcal{C}_\alpha \neq \mathcal{R}C_\alpha \). Thus the most natural question associated with (A) is whether \(\mathcal{I}R\mathcal{C}_\alpha \) is an equational class, or whether it is closed under \(S \). But the proof of (A) actually gives the following result, answering both questions negatively:

(B) For each \(\alpha > 2 \) there is an \(\mathcal{K} \in \mathcal{C}r_\alpha \sim \mathcal{C}r_\alpha \).

Next, recall from 2.2.8 that \(\mathcal{P}C_\alpha = \mathcal{C}r_\alpha \) and \(\mathcal{U}pC_\alpha = \mathcal{C}r_\alpha \). Hence \(\mathcal{U}p\mathcal{S}C_\alpha = \mathcal{S}C_\alpha \). Thus \(\mathcal{S}C_\alpha \) is a universal class. Actually, Resek has shown that \(\mathcal{S}C_\alpha \) is always an equational class. This is an unpublished result that we now present with a simple proof due to Don Pigozzi. We note first that the definition of an ideal in a \(\mathcal{C}r_\alpha \) can
be taken just as for \(CA_a \)'s, and the correspondence with congruence relations follows as for \(CA_a \)'s; see 2.3.6–2.3.7.

Theorem 5.5.8. \(SCr_a \) is an equational class for any ordinal \(a \).

Proof. From the above remarks we see that it is sufficient to show that \(HSCR_a = SCr_a \), and that to do this it suffices to take any \(CA_a \mathfrak{A}, a \in A, \mathfrak{B} \subseteq \mathfrak{R}_a \mathfrak{A}, \mathfrak{I} \) an ideal of \(\mathfrak{B} \), and show that \(\mathfrak{B}/\mathfrak{I} \) can be isomorphically embedded in \(\mathfrak{R}_a \). Now if \(\mathfrak{I} \) is the ideal of \(\mathfrak{R}_a A \) generated by \(\mathfrak{I} \) then, as is easily seen,

\[
\mathfrak{I} = \{ z \in \mathfrak{R}_a \mathfrak{A} : x \leq y \text{ for some } y \in \mathfrak{I} \}.
\]

It follows that \(J \cap \mathfrak{B} = \mathfrak{I} \). Hence \(\mathfrak{B}/\mathfrak{I} \) can be isomorphically embedded in \(\mathfrak{R}_a \mathfrak{A}/\mathfrak{I} \). Thus we may assume that \(\mathfrak{B} = \mathfrak{R}_a \mathfrak{A} \) in what follows.

Let \(\mathfrak{C} = \mathfrak{R}_a \mathfrak{A} \mathfrak{C} \). We shall find \(c \in C \) such that \(\mathfrak{R}_a \mathfrak{A}/\mathfrak{I} \) can be isomorphically embedded in \(\mathfrak{R}_a \mathfrak{C} \). We shall use \(+, - \), etc. for operations of \(\mathfrak{A} \) and \(\mathfrak{C} \), not of \(\mathfrak{R}_a \mathfrak{A} \) and \(\mathfrak{R}_a \mathfrak{C} \). Let \(\mathfrak{c} = \sum \mathfrak{c} \mathfrak{I} \). Then for each \(k < a \) we have \(c_k x \cdot a \) for all \(x \in I \), and hence

\[
c_k \mathfrak{c} \cdot a = (c_k \sum \mathfrak{c} \mathfrak{I}) \cdot a = (\sum c_k / c_k \mathfrak{c}) \cdot a
= \sum c_k \mathfrak{c} \cdot a \leq \mathfrak{c} \mathfrak{I} = \mathfrak{c}.
\]

Hence \(a \cdot -e \cdot c = 0 \), so \(c_k (a \cdot -e) \cdot e = 0 \). Thus

(1) \(c_k (a \cdot -e) \cdot a = a \cdot -e \)

for every \(k < a \). We set \(c = a \cdot -e \). We now define a homomorphism \(h \) from \(\mathfrak{R}_a \mathfrak{A} \) into \(\mathfrak{R}_a \mathfrak{C} \) such that \((h^{-1})^* 0 = \mathfrak{I} \), thus finishing the proof. Namely, we let \(h = (x : c = x \in \mathfrak{R}_a \mathfrak{A}) \). Clearly \(h \in \text{Hom}(\mathfrak{B} \mathfrak{R}_a \mathfrak{A}, \mathfrak{B} \mathfrak{R}_a \mathfrak{C}) \), and \(h(d_k \mathfrak{c} \cdot a) = d_k \mathfrak{c} \cdot c \) for all \(k, \lambda < a \). To show that \(h \) preserves cylindrifications, suppose that \(k < a \) and \(x \in \mathfrak{R}_a \mathfrak{A} \). Then

\[
h(c_k x \cdot a) = c_k x \cdot a \cdot -e = c_k x \cdot c_k (a \cdot -e) \cdot a \cdot -e
= c_k (x \cdot c_k (a \cdot -e)) \cdot a \cdot -e
= c_k (x \cdot a \cdot -e) \cdot a \cdot -e \quad \text{by (1)}
= c_k x \cdot -e,
\]

as desired. So, \(h \) is a homomorphism.

Now if \(x \in \mathfrak{I} \), then \(x \leq c \) and so \(hx = x \cdot c = 0 \). On the other hand, if \(x \in \mathfrak{R}_a \mathfrak{A} \) and \(hx = 0 \), then \(x \leq c = \mathfrak{I} \); by Theorem 2.3.5, \(x \leq \mathfrak{I} \mathfrak{K} \) for some finite \(\mathfrak{K} \subseteq \mathfrak{I} \); so, \(x \in \mathfrak{I} \). Hence \((h^{-1})^* 0 = \mathfrak{I} \), finishing the proof.

The analogous result to 5.5.8 for the class \(\mathfrak{Crs}_a \) is also true; but before proceeding to that, it is apropos to show that for \(a > 2 \) the classes in question are distinct:

Example 5.5.9. For every \(a \geq 3 \) there is an \(\mathfrak{A} \in \mathfrak{C}_a \mathfrak{Crs}_a \). Since \(\mathfrak{C}_a \subseteq \mathfrak{SCr}_a \), this
shows that $S\mathcal{C}r_\alpha \neq 1\mathcal{C}r_\alpha$ for all $\alpha \geq 3$. For \mathcal{U} we take a CA_3 in which the equation

$$(1) \quad s(0,1)c_2x = s(1,0)c_2x$$

fails to hold; see 3.2.71. We now show that every $B \in CA_3 \cap 1\mathcal{C}r_\alpha$ does satisfy the equation (1). Thus suppose that B is a $\mathcal{C}r_\alpha \cap CA_3$, say with unit element V and base U. Suppose that $x \in B$. It suffices to show that $s(0,1)c_2x \leq s(1,0)c_2x$. Suppose that $f \in s(0,1)c_2x$. Now $s(0,1)c_2x = s(0,1)^2c_2x$. Say $f = (a,b,c,\ldots)$. We thus easily get that $b \in x$ for some $d \in U$. Using the laws $c_2(d_0c_2y) = c_2y$, $c_2(d_1c_2y) = c_2y$, $c_2(d_2c_2y) = c_2y$, which are valid in any CA_α, we then get successively $(a,b,c,\ldots) \in d_0c_2x$, $(a,a,b,\ldots) \in d_1c_2x$, $(a,b,b,\ldots) \in d_2c_2x$, $f \in s(0,1)^2c_2x = s(1,0)c_2x$, as desired.

The fact that $1\mathcal{C}r_\alpha$ is also a variety is a result of Németi [79'],[81']. In the proof we need the following fact, obtained by repeating the proof of 2.3.26, for $\mathcal{C}r_\alpha$'s: If \mathcal{X} is a $\mathcal{C}r_\alpha$, $a \in A$, and $c_\kappa a = a$ for all $\kappa < \alpha$, then the function $(x.a : x \in A)$ is a homomorphism of \mathcal{X} into some $\mathcal{C}r_\alpha$.

THEOREM 5.5.10. For $\alpha \geq 2$, $1\mathcal{C}r_\alpha$ is an equational class.

PROOF. It is easily checked that $1\mathcal{C}r_\alpha$ is closed under S and P. Hence it suffices to show that it is closed under H also. To do this it suffices to take any $\mathcal{X} \in 1\mathcal{C}r_\alpha$ and any ideal L of \mathcal{X} and show that \mathcal{X}/L is isomorphic to a $\mathcal{C}r_\alpha$. And to do this it is enough to take any $x \in A \setminus L$ and find a homomorphism \mathcal{X} from \mathcal{X} into a $\mathcal{C}r_\alpha$ such that $\mathcal{X}x \neq 0$ and $\mathcal{X}^*L = \{0\}$.

Clearly there is an ultrafilter F on L such that $\{y \in L : x \subseteq y\} \in F$ for all $x \in L$. Let U be the base of \mathcal{X}, and set $X = U^L/F$. Now $x \notin L$, so for every $x \in L$ we have $x \notin x$, and so we can choose $p_x \in x^*x$. Set $R = \{(p_x : x \in L) : \kappa < \alpha\}$. Thus $R \in F \cap (U^L/F)$. Now let e be a (F,U,α)-choice function such that $c(\kappa, e/F) = r_\kappa$ for all $\kappa < \alpha$ (see definition 3.1.89). For each $y \in A$ let $\bar{y} = (y : x \in L)$. Finally, we set

$$f y = \text{Rep}(\bar{y}/F)$$

for any $y \in A$, where $\text{Rep} = \text{Rep}(F,U,\alpha(A : s \in L),e)$. By Lemma 3.1.90, f is a homomorphism from \mathcal{X} into some $\mathcal{C}r_\alpha$.

Let $t = (r_\kappa e/F : \kappa < \alpha)$. We claim that $t \in \mathcal{F}z$. In fact, by 3.1.89 this is true iff

$$\{x \in L : (c't)x \in z\} \in F.$$

Since $(c't)_x = (c(t)x)_x : \kappa < \alpha) = (r_\kappa x : \kappa < \alpha) = (p_x : \kappa < \alpha) = p_x$, this is true.

Now we set $V = F$ and

$$(1) \quad W = \bigcup \{C_{\epsilon_1}^{[V]} \ldots C_{\epsilon_k}^{[V]}(t) : \epsilon_0, \ldots, \epsilon_k < \alpha\}.$$

Let $\mathcal{B} = \mathcal{F}bV$. Thus $C_{\epsilon_k}^{[V]}W = W$ for all $\kappa < \alpha$, and hence by the remark preceding this
Theorem,

\(h = (f \circ W : y \in A) \)

is a homomorphism of \(\mathcal{U} \) onto a \(\text{Crs}_\alpha \) with unit element \(W \). Since \(t \in W \) we have \(t \in h z \) and so \(h z \neq 0 \). Now we show that \(h z = 0 \) for an arbitrary \(z \in L \), finishing the proof. Assume that \(\kappa \in \omega \), we want to show that \(f \circ (c_\kappa \cdots c_\alpha z) = 0 \). Using 1.2.5, which is clearly valid for \(\text{ICrs}_\alpha \) also, we see that it suffices to show that

(2) \(\{ t \} \cap \text{Crs}_\alpha \cdots \text{Crs}_\alpha / f z = 0 \).

Since \(f \) is a homomorphism, we thus want to show that \(t \notin f(c_\kappa \cdots c_\alpha z) \). Let \(w = c_\kappa \cdots c_\alpha z \). Thus \(w \in L \), so \(\{ v \in L : w \notin v \} \in F \), hence \(\{ v \in L : p = w \} \in F \), so \(\{ v \in L : (c' t)_w \notin w \} \in F \) since \((c' t)_w = p_0 \) for all \(v \in L \), as was pointed out above prior to (1). Thus \(t \notin f w \), as desired.

Explicit equational axioms for the class \(\text{SCrs}_\alpha \) have been given by Reek [75]. She also showed that \(\text{SCrs}_\alpha \) is not finitely axiomatizable for \(\alpha \geq 3 \). We shall give a proof for this due to Andréka and Némethi. Their construction also shows that \(\text{ICrs}_\alpha \) is not finitely axiomatizable for \(\alpha \geq 3 \).

Theorem 5.5.11. For each \(\alpha \geq 3 \) there is a system \(\{ \mathcal{X}_m : m \in \omega \} \) of algebras similar to \(\text{CA}_\alpha \)'s such that \(\mathcal{X}_m \notin \text{ISCr}_\alpha \) for all \(m \in \omega \), but \(P \in \text{ICrs}_\alpha \) for any non-principal ultrafilter \(F \) on \(\omega \).

Proof. For each \(m \in \omega \) and \(\kappa, \lambda < \alpha \) we set

\[
\begin{align*}
V_m &= \{ f \in \omega : \text{for some } n \leq m \text{ we have } f_0 = 2n+1, \}
\{ f_1 \in \{2n, 2n+2\}, \text{ and } f_\kappa = 0 \text{ for all } \kappa < \alpha \}, \\
d_{m, \kappa}^m &= d_{m, \kappa}, \\
d_{m, \kappa}^m &= 0 \text{ if } 0 < \kappa < \alpha, \\
d_{m, \kappa}^m &= V_m, \\
d_{m, \kappa}^m &= V_m, \\
d_{m, \kappa}^m &= \{ (1,0,0,\ldots), (2m+1,2m+2,0,0,\ldots) \} \text{ if } 1 < \kappa, \\
\mathcal{X}_m &= (SBV_m, u, n, \omega, 0, V_m, c_\kappa, d_{m, \kappa}^m, c_\lambda, d_{m, \lambda}^m, \kappa, \lambda < \alpha),
\end{align*}
\]

with \(W = V_m \). First we claim:

(1) \(\mathcal{X}_m \notin \text{ISCr}_\alpha \) for all \(m \in \omega \).

To prove this we consider the following inequality which holds in all members of \(\text{IScr}_\alpha \); see 2.2.5(iv) and 2.2.6:

\[
(c_0 c_1)^{m+1}(d_{12} - z) \cdot d_{12} \leq c_0 z.
\]

Taking \(z = \{ (1,0,0,\ldots) \} \), we see that \((2m+1,2m+2,0,0,\ldots) \) is in the left side of this inequality but not in the right side.

Now suppose that \(F \) is any non-principal ultrafilter on \(\omega \). We set \(B = P \in \mathcal{X}_m / F \)}
and $C = \mathbb{P}_{m \in \omega \cup \{m+1, <\}} / \bar{F}$. If u is an atom of \mathbb{C}_m, say $u = \{(2n+1, \ldots)\}$ with $n \leq m$; then we set $\text{int}(u) = \omega$. Note that \mathbb{B} is atomic. If z / \bar{F} is an atom of \mathbb{B}, we say that z / \bar{F} is of type 1 if \{m \in \omega : \text{for some } n, \ x_m = \{(2n+1, 2n, 0, \ldots)\} \in \bar{F}\}; otherwise z / \bar{F} is of type 2. Note that if z / \bar{F} is of type 2, then \{m \in \omega : \text{for some } n, \ x_m = \{(2n+1, 2n+2, 0, \ldots)\} \in \bar{F}\}. It is well-known that $|\mathbb{C}| = 2^\omega$; see Chang, Keisler [73*]. Let $\alpha = \{0 : m \in \omega\} / \bar{F}$, $\omega = \{m : m \in \omega\} / \bar{F}$. Now \mathbb{C} is a linearly ordered structure with least element α and greatest element ω; every element except ω has an immediate successor, and every element except α has an immediate predecessor. Therefore the order type of \mathbb{C} consists of ω followed by 2^ω copies of \mathbb{Z} in some order not of interest in this proof, followed by ω. For any atom z / \bar{F} of \mathbb{B} we set $\text{int}(z / \bar{F}) = \{\text{int}(x_m) : m \in \omega\} / \bar{F}$; clearly this is a well-defined function from $A(\mathbb{B})$ into C. We call two elements a, b of \mathbb{C} equivalent if $a = b + n$ for some integer n, i.e. a is the n^{th} successor of b for n positive, the n^{th} predecessor of b for n non-positive. Then atoms z / \bar{F} and y / \bar{F} of \mathbb{B} are equivalent if $\text{int}(z / \bar{F})$ and $\text{int}(y / \bar{F})$ are. Let $u_m = \{(1, 0, 0, \ldots)\}$ and $v_m = \{(2m+1, 2m+2, 0, \ldots)\}$ for all $m \in \omega$.

Now we indicate some rules for calculating cylindrifications in \mathbb{B}:

(2) For any $i \in \{1, 2\}$ and any $n \in \mathbb{P}_{m \in \omega \cup \{m+1\}}$ there is at most one atom z / \bar{F} of type i with $\text{int}(z / \bar{F}) = \omega$.

(3) $c_0(u / \bar{F}) = u / \bar{F}$ and $c_0(v / \bar{F}) = v / \bar{F}$.

(4) If $\text{int}(z / \bar{F}) = \omega / \bar{F}$, then $c_i(z / \bar{F}) = z / \bar{F} + y / \bar{F}$, where y / \bar{F} is the second atom with $\text{int}(y / \bar{F}) = \omega / \bar{F}$.

(5) If $z / \bar{F} \neq u / \bar{F}$ and z / \bar{F} is of type 1, then $c_0(z / \bar{F}) = z / \bar{F} + y / \bar{F}$, where y / \bar{F} is the atom of type 2 with $\text{int}(y / \bar{F}) = \text{int}(z / \bar{F}) - 1$.

(6) If $z / \bar{F} \neq v / \bar{F}$ and z / \bar{F} is of type 2, then $c_0(z / \bar{F}) = z / \bar{F} + y / \bar{F}$, where y / \bar{F} is the atom of type 1 with $\text{int}(y / \bar{F}) = \text{int}(z / \bar{F}) + 1$.

These rules are easy to check.

Next we define G mapping $A(\mathbb{B})$ into \mathbb{C} by defining its restriction to each equivalence class k under the above equivalence relation.

Case 1. $u / \bar{F} \in k$. Then we set

$$G(u / \bar{F}) = \langle \bar{0} + 1, \bar{0}, \ldots \rangle.$$

Suppose that $u / \bar{F} \neq z / \bar{F} \in k$. Write $\text{int}(z / \bar{F}) = \bar{0} + n$. We set

$$G(z / \bar{F}) = \begin{cases} \langle \bar{0} + 2n + 1, \bar{0} + 2n, \bar{0}, \ldots \rangle & \text{if } z / \bar{F} \text{ is of type 1,} \\ \langle \bar{0} + 2n + 1, \bar{0} + 2n + 2, \bar{0}, \ldots \rangle & \text{otherwise.} \end{cases}$$

Case 2. $v / \bar{F} \in k$. Then we set

$$G(v / \bar{F}) = \langle \bar{0} - 1, \bar{0}, \ldots \rangle.$$

Suppose that $v / \bar{F} \neq z / \bar{F} \in k$. Write $\text{int}(z / \bar{F}) = \bar{0} - n$. We set

$$G(z / \bar{F}) = \begin{cases} \langle \bar{0} - (2n + 1), \bar{0} - 2n, \bar{0}, \ldots \rangle & \text{if } z / \bar{F} \text{ is of type 2,} \\ \langle \bar{0} - (2n + 1), \bar{0} - (2n + 2), \bar{0}, \ldots \rangle & \text{otherwise.} \end{cases}$$
Case 3. \(u/F, v/F \notin k \). Let \(a \) be any member of the equivalence class of \(\text{int}(z/F) \), with \(z/F \) any member of \(k \). Now for any \(y/F \in k \), write \(\text{int}(y/F) = a + n \), where \(n \in Z \). We set

\[
G(y/F) = \begin{cases} \langle a+2n+1, a+2n, 0, 0, \ldots \rangle & \text{if } y/F \text{ is of type 1,} \\ \langle a+2n+1, a+2n+2, 0, 0, \ldots \rangle & \text{otherwise.} \end{cases}
\]

We define \(H \) mapping \(B \) into \(Sk^a(C) \) by setting, for any \(b \in B \),

\[
Hb = \{ Ga : b \supseteq a \in AtB \}.
\]

Further, let \(Z = H1 \). Then it is routine to check that \(G \) is an isomorphism of \(B \) onto a \(Crs_a \) with unit element \(Z \), finishing the proof.

COROLLARY 5.5.12. Let \(a \geq 3 \). Then the classes \(Scr_a \) and \(Crs_a \) are not finitely axiomatizable.

Of course, for \(a \geq \omega \) we do not expect \(Scr_a \) or \(Crs_a \) to be finitely axiomatizable. We return to the notion finite schema axiomatizable introduced in section 4.1. The theorems 5.5.13 and 5.5.14 which follow are due to Andrêka and Németi (unpublished).

THEOREM 5.5.13. If \(a \geq \omega \), then \(lCr \) is not axiomatizable by a finite schema of equations.

PROOF. Assume otherwise. Then by Definition 4.1.4(iii) (which clearly can be extended to an arbitrary class \(K \) of algebras similar to \(CA_a \)'s), there is a finite set \(E \subseteq E^\nu \omega \) such that

(1) \(lCr \) \(= \text{Md}\{ \gamma^\sigma = \gamma^\tau : \sigma = \tau \in E, \gamma \in^\omega a, \gamma \text{ one-one} \} \).

Now for any term \(\sigma \) of \(\mathcal{L}_a \) let \(\sigma' \) be obtained from \(\sigma \) by the following process:

- \(c_\kappa \) is deleted if \(\kappa \in a \sim 3 \);
- \(d_{\mu,0} \) and \(d_{\nu,0} \) are replaced by \(d_{\mu,1} \) if \(\kappa \in a \sim 1 \);
- \(d_{\mu,1} \) and \(d_{\nu,1} \) are replaced by \(d_{\mu,2} \) if \(\kappa \in a \sim 2 \);
- \(d_{\kappa,\lambda} \) is replaced by \(1 \) if \(\kappa, \lambda \in a \sim 2 \).

Let \(\Gamma \) be the following set of equations:

\[
\{ c_\kappa x = x : 2 \leq \kappa < a \} \cup \{ d_{\mu,0} x = d_{\mu,1} : \kappa \in a \sim 1 \} \\
\cup \{ d_{\mu,1} x = d_{\mu,2} : \kappa \in a \sim 2 \} \cup \{ d_{\kappa,\lambda} x = 1 : \kappa, \lambda \in a \sim 2 \}.
\]

Now we consider the algebras \(\mathcal{U}_m \), \(m \in \omega \), as defined in the proof of Theorem 5.5.11. Clearly each algebra \(\mathcal{U}_m \) is a model of \(\Gamma \), and hence so is \(P_{m\omega} \mathcal{U}_m/F \) (\(F \) as in that proof too). If \(\sigma = \tau \) is an equation in \(\mathcal{L}_a \), clearly it holds in \(\mathcal{U}_m \) iff \(\sigma' = \tau' \) does, for
any \(m \in \omega \). The same is true of \(P_{m \in \omega} \mathbb{U}_m/f^\mathbb{U} \). But \(\{(\gamma^\mathbb{U})' = (\gamma^\mathbb{U})': \sigma = \tau \in E, \gamma \in ^\omega \alpha, \gamma \) one–one\} is clearly finite; since each of its members holds in \(P_{m \in \omega} \mathbb{U}_m/f^\mathbb{U} \), there is an \(m \in \omega \) such that each one holds in \(\mathbb{U}_m \). Thus by (1), \(\mathbb{U}_m \preceq \text{ICr}_\alpha \), contradiction.

The same proof yields:

THEOREM 5.5.14. If \(\alpha \cong \omega \), then \(\text{SCr}_\alpha \) is not axiomatizable by a finite schema.

As our last major result of this section we show that for \(\alpha \cong \omega \), \(\text{ICr}_\alpha \) is axiomatizable by a countable schema; this result is also due to Andréka and Németi. It follows on rather general grounds from 5.5.10 and the following result (Proposition 8(ii) in Németi [81]):

THEOREM 5.5.15. Let \(1 < \alpha \equiv \beta \) and let \(\rho \in ^\alpha \beta \) be a one–one function. Then \(\text{ICr}_\alpha = \text{Rd}^\beta \text{ICr}_\rho \).

PROOF. For the inclusion \(\preceq \), let \(\mathbb{U} \in \text{Cr}_\beta \), say with base \(U \). Choose \(u \not\in U \) and set \(W = U \cup \{u\} \). Now we define a function \(f \) mapping \(^\alpha U \) into \(^\beta W \) by setting, for all \(s \in ^\alpha U \) and all \(\kappa < \beta \),

\[
(f s)_\kappa = \begin{cases} s \\kappa \text{ if } \rho \kappa = \kappa, \\ u \text{ otherwise}. \end{cases}
\]

Let \(\mathbb{E} = \mathbb{E}_H f^* \mathbb{U} \), as a \(\text{Cr}_\beta \). Then it is easy to check that \(f \) is one–one and that \(f^* \) is an isomorphism from \(\mathbb{U} \) into \(\text{Rd}^\beta \mathbb{E} \). Now let \(B = \{f^* x : x \in A\} \). Then \(B \in \text{Sw} \mathbb{E} \). This follows from the following easily verified facts, where \(x \in A \) and \(\kappa, \lambda < \beta \):

- \(B \) is closed under \(+, -, \cdot, \);
- \(c_{\rho \mu} f^* x = f^* c_{\rho \mu} x \) if \(\mu < \alpha \);
- \(c_{\rho} f^* x = f^* x \) if \(\kappa \in R \rho \);
- \(d_{\mu \nu} f^* x = f^* d_{\mu \nu} x \) if \(\mu, \nu < \alpha \);
- \(d_{\rho \mu} = 0 \) if \(\mu < \alpha, \kappa < R \rho \);
- \(d_{\rho} = 1 \) if \(\kappa \lambda < R \rho \).

Let \(\mathbb{B} \) be the subalgebra of \(\mathbb{E} \) with universe \(B \). Clearly \(f^* \) is an isomorphism of \(\mathbb{U} \) onto \(\mathbb{B} \), as desired.

For 2, let \(\mathbb{U} \in \text{Cr}_\beta \), say with base \(U \). We define a function \(f \) mapping \(^\beta U \) into \(^\alpha W \) (for some \(W \)) by setting, for all \(s \in ^\beta U \) and all \(\kappa < \alpha \),

\[
(f s)_\kappa = (s \chi, (\beta \omega R \rho) 1 \chi).
\]

It is straightforward to check that \(f^* \) is an isomorphism of \(\text{Rd}^\beta \mathbb{U} \) onto some \(\text{Cr}_\alpha \).

THEOREM 5.5.16 Let \(\alpha \cong \omega \), \(\text{ICr}_\alpha \) is axiomatizable by a countable schema.

PROOF. Let \(E = \{\sigma \equiv \tau : \sigma \equiv \tau \} \) is an equation of \(\mathcal{I}_\omega \) which holds in every \(\text{Cr}_\alpha \). We claim:
(1) $\text{ICrs}_a = \text{Md}(\gamma^! \sigma \equiv \gamma^! \tau : \sigma \equiv \tau \in E, \gamma \in \text{"a"}, \gamma \text{ one-one}),$

which will finish the proof. First let $\mathcal{A} \in \text{Crs}_a$, $\sigma \equiv \tau \in E$, $\gamma \in \text{"a"}$, γ one-one; we are to show that $\gamma^\sigma \equiv \gamma^\tau$ holds identically in \mathcal{A}. By Theorem 5.5.15, $\text{Rb}^* \mathcal{A} \in \text{ICrs}_\omega$, and so $\sigma \equiv \tau$ holds in $\text{Rb}^* \mathcal{A}$. Hence $\gamma^\sigma \equiv \gamma^\tau$ holds in \mathcal{A}.

Conversely, let \mathcal{A} be a member of the right-hand side of (1). To show that $\mathcal{A} \in \text{ICrs}_a$ it suffices by Theorem 5.5.10 to take any equation $\sigma \equiv \tau$ holding in ICrs_a and show that it holds in \mathcal{A}. Choose a one-one $\gamma \in \text{"a"}$ such that if e_λ or d_λ occurs in $\sigma \equiv \tau$ then $e_\lambda \in \text{Rg} \gamma$. Now $\text{Rb}^* \mathcal{A} \in \text{ICrs}_\omega$, since \mathcal{A} is in the right-hand side of (1) and hence $\text{Rb}^* \mathcal{A}$ is a model of E (we use Theorem 5.5.10 again). By Theorem 5.5.15, choose a $\text{Crs}_a \mathcal{B}$ and an isomorphism f from $\text{Rb}^* \mathcal{A}$ onto $\text{Rb}^* \mathcal{B}$. There are terms σ', τ' in \mathcal{E}_ω such that $\gamma^\sigma' = \sigma$ and $\gamma^\tau' = \tau$. Since $\sigma \equiv \tau$ holds in \mathcal{B}, it follows that $\sigma' \equiv \tau'$ holds in $\text{Rb}^* \mathcal{B}$, hence in $\text{Rb}^* \mathcal{A}$, and thus $\sigma \equiv \tau$ holds in \mathcal{A}, as desired.
5.6 ABSTRACT ALGEBRAIC LOGIC
AND MORE ALGEBRAIC LOGICS

In this last section of the book we want to survey other algebraic treatments of logic. The main part of the section will be concerned with a general kind of algebraic logic, while the rest will be devoted to brief descriptions of various specific algebraic logics not discussed in the earlier parts of this book.

Abstract algebraic logic is an algebraic version of abstract (or "soft") model theory. It is concerned with very general algebraic structures which correspond to very general languages. We begin our discussion by describing some general languages, general algebraic logics, and their connections. Then we specialize the discussion, first to finitary one-sorted algebraic logics, and then to varieties definable by schemes of equations. All of this direction in algebraic logic has been developed mainly by Andréka and Németi; it is summarized in Andréka, Németi, Sain [84'].

General languages and algebraic logics

A general language is a triple \((\text{Sym}, \mathcal{K}, \text{Sem})\) such that \(\text{Sym}\) is a function with \(\text{Sym}_i \neq \emptyset\) for all \(i \in \text{DoSym}\), \(\mathcal{K}\) is a class, and \(\text{Sem}\) is a function with domain \(\bigcup_{i \in \text{DoSym}} \text{Sym}_i \times \mathcal{K}\). For this notion and the development below, see Andréka, Sain [81'] (other references can be found there). \(\text{Sym}\) describes syntactic categories (like terms, formulas), \(\mathcal{K}\) is a class of models (in some sense), and \(\text{Sem}\) defines semantic notions in the models. The following examples, which will be developed further as we proceed, illustrate these ideas.

EXAMPLE 5.6.1. Let \(\Lambda\) be a language in the sense of section 4.3. The associated general language is as follows. \(\text{Sym}\) has domain 1, with \(\text{Sym}_0 = \Phi^\Lambda\), the set of all formulas of \(\Lambda\). \(\mathcal{K}\) is the class of all possible models of \(\Lambda\). For any \(\phi \in \Phi^\Lambda\) and any \(\mathcal{A} \in \mathcal{K}\), \(\text{Sem}(\phi, \mathcal{A}) = \phi^\mathcal{A}\), the set of all \(a \in \mathcal{A}\) which satisfy \(\phi\) in \(\mathcal{A}\).

EXAMPLE 5.6.2. Let \(\kappa\) and \(\lambda\) be infinite cardinals, and \(\Lambda\) an ordinary language in the sense of section 4.3, with a sequence \(\langle \phi^i : i < \alpha \rangle\) of individual variables, \(a \in \kappa\). Now we take \(\text{Sym}\) to have domain 1, and \(\text{Sym}_0\) to be the set of all \(L_\kappa\)-formulas in \(\Lambda\), i.e., we allow conjunctions of sets of formulas of size \(< \kappa\), and simultaneous universal quantification of a set of \(\lambda\) variables. \(\mathcal{K}\) and \(\text{Sem}\) are defined analogously to example 5.6.1. \(L_{\kappa, \lambda}\), \(L_{\kappa, \lambda}\), \(L_{\omega, \omega}\) are treated similarly.

EXAMPLE 5.6.3. Let \(\Lambda = (\omega, \mathcal{R}, \rho, S, \sigma)\) be an ordinary language with function symbols. That is, \(\text{DoR}\) is some cardinal \(\beta\) and \(\rho\) maps \(\beta\) into \(\omega\), and similarly for \(S\) and \(\sigma\); each \(\mathcal{R}_i\) is treated as a relation symbol of rank \(\rho_i\) and each \(S_i\) as a function symbol of rank \(\sigma_i\). To define the associated general language, let \(\text{Sym}\) have domain 3...
with $\text{Sym}_0 = \{v_i : i \in \omega\}$, $\text{Sym}_1 = \{\tau : \tau \text{ is a term of } \Lambda\}$, $\text{Sym}_2 = \Phi^\Lambda_\mu$. K is the class of all possible models of Λ, and if $i \in \omega$, τ is a term, φ a formula, and $\mathcal{A} \in K$, then

$$\text{Sem}(v_i, \mathcal{A}) = \{(a, a_i) : a \in \omega^A\},$$

$$\text{Sem}(\tau, \mathcal{A}) = \{(a, \tau^\mathcal{A}a) : a \in \omega^A\},$$

$$\text{Sem}(\varphi, \mathcal{A}) = \varphi^\mathcal{A}.$$

To algebraize general languages we need the notion of a general context-free grammar. For any set X we let

$$X^* = \bigcup_a \text{ an ordinal } a \mathcal{X}.$$

We may consider X^* as the set of all words (of possibly infinite length) on X; the notation is intended to suggest a generalization of the usual notation X^* for the set of all finite sequences of members of X. There should be no confusion with our entirely different use of * (see Part I, p.28). A general CF grammar is a triple $\mathcal{G} = (A, B, R)$ such that A and B are disjoint non-empty sets and $R \subseteq A \times (A \cup B)^*$. It is conventional, because of the intuitive meaning of these notions, to write $x \Rightarrow y$ in place of (x,y) if $(x,y) \in R$. A is a set of syntactic categories, B a set of basic symbols, R the class of rules. We define extended relations $\Rightarrow \alpha$ for every ordinal α as follows.

$x \Rightarrow \alpha x$ for any $x \in A$. For $a > 0$ we define $x \Rightarrow a y$ iff $x \in A$ and there is a rule $x \Rightarrow z$ with the following property: let $\Gamma = \{\epsilon \in Doz : z \in \alpha\}$. Then there is a $w \in \Gamma((A \cup B)^*)$ such that for each $\epsilon \in \Gamma$ there is a $\beta < a$ with $z_\epsilon \Rightarrow_\beta w_\epsilon$, and y is obtained from x by simultaneously replacing z_ϵ by w_ϵ for every $\epsilon \in \Gamma$. Then we write $x \Rightarrow y$ iff $x \Rightarrow_\alpha y$ for some α. In case all rules are finitary — that is, with second terms of finite length — this definition can be given a simpler form, which we leave to the reader.

EXAMPLE 5.6.4 (Continuing 5.6.1). Let $\Lambda = (\langle, R, \rho \rangle)$ be a language in the sense of section 4.3. Consider the general CF grammar $(\langle formula \rangle, \text{RyRu} \{v_\kappa : \kappa < \alpha\} \cup \{A, K, N, Q, E, T, F\}, R)$, where R is given as follows:

1. $\text{formula} \Rightarrow (T)$
2. $\text{formula} \Rightarrow (F)$
3. $\text{formula} \Rightarrow (R, \epsilon) (v_\kappa) \quad (\epsilon \in DoR, \epsilon \in \omega^0)$
4. $\text{formula} \Rightarrow (E, v_\kappa, v_\lambda) \quad (\kappa, \lambda < \alpha)$
5. $\text{formula} \Rightarrow (A, \text{formula}, \text{formula})$
6. $\text{formula} \Rightarrow (K, \text{formula}, \text{formula})$
7. $\text{formula} \Rightarrow (N, \text{formula})$
8. $\text{formula} \Rightarrow (Q, v_\kappa, \text{formula}) \quad (\kappa < \alpha)$.

Then $\Phi^\Lambda_\mu = \{\varphi : \text{formula is not in the range of the sequence } \varphi, \text{ and } \text{formula} \Rightarrow \varphi\}.$

EXAMPLE 5.6.5 (Continuing 5.6.2). We assume that $\Lambda = (\langle, R, \rho \rangle)$ just as in section 4.3, but we take $\alpha \approx \kappa, \lambda$ and use the $L_{\lambda \kappa}$ formation rules. This means that we just replace (5),(6),(8) in 5.6.4 by the following rules:

1. $\text{formula} \Rightarrow (A)^* (\text{formula} : \epsilon < \beta) \quad \text{for } 0 < \beta < \kappa$
\(6') \text{ formula} \rightarrow (K)^* \text{ formula} : (\langle \beta \rangle) \quad \text{for } 0 < \beta < \epsilon \\
(8') \text{ formula} \rightarrow (Q)^* a^* \text{ formula}, \quad \text{where } a \in \{v_1, \langle \alpha \rangle\} \text{ for some } 0 < \beta < \lambda.\)

Then again we have the same description of the \(L_\lambda\)-formulas.

EXAMPLE 5.6.6 (Continuing 5.6.3). The general CF grammar this time is
\(\{\text{variable, term, formula}\}, RgR \cup RgS \cup \{v_1, |, A, K, N, Q, E, T, F, \}, R\), where \(R\) is given as follows:

\[
\begin{align*}
\text{variable} & \rightarrow (v) \\
\text{variable} & \rightarrow (\text{variable}, |) \\
\text{term} & \rightarrow (S_\eta)^* (\text{term} : \kappa < \eta) \quad (\eta \in DoS) \\
\text{term} & \rightarrow \text{variable} \\
\text{formula} & \rightarrow (E, \text{term}, \text{term}) \\
\text{formula} & \rightarrow (R_\eta)^* (\text{term} : \kappa < \eta) \quad (\eta \in DoR) \\
\text{formula} & \rightarrow (Q, \text{variable}, \text{formula})
\end{align*}
\]

plus rules (5)–(7) of 5.6.4. Then, with \(B\) the second term of our general \(CF\) grammar, we have \(\{v_i : i \in \omega\} = \{\varphi \in B^* : \text{variable} \Rightarrow \varphi\}\), \(T_\mu^A = \{\varphi \in B^* : \text{term} \Rightarrow \varphi\}\), and \(T_\mu^A = \{\varphi \in B^* : \text{formula} \Rightarrow \varphi\}\). Here for each \(i \in \omega\), \(v_i\) is considered to be the sequence consisting of \(v\) followed by \(i\)'s.

Now let \(L = (\text{Syn}, K, \text{Sem})\) be a general language. We say that \(L\) is **syntactically well-presented** by a general \(CF\) grammar \(\mathcal{G} = (A, B, R)\) provided that \(A = \text{DoSyn}\) and for every \(a \in A\) we have \(\text{Syn}_a = \{\varphi \in B^* : a \Rightarrow \varphi\}\). Thus we have shown that our three canonical examples are syntactically well-presented.

We want to define also an appropriate notion **semantically well-presented**. To this end we need, first of all, the notion of a **many-sorted algebra**. Let \(S\) be a non-empty set (of sorts). An \(S\)-type is a function \(g\) from some set \(I\) into \(S^+\). A **many-sorted algebra of type** \(g\) is a structure \(\mathcal{A} = (A, f_\alpha)_{\alpha \in I}\) such that \(A\) is a function with domain \(S\) with \(A_\alpha \neq 0\) for all \(s \in S\), and if \(i \in I\) then \(f_i\) maps \(P_{\alpha \in \text{Do}(g_i) \land A_{\alpha}(g_i) \in \alpha}\). (If \(\text{Do}(g_i) = 1\), then merely \(f_i \in A_{\alpha}(g_i)\).) Now let \(\mathcal{G} = (A, B, R)\) be a general \(CF\) grammar. We associate with \(\mathcal{G}\) the set \(A\) of sorts, an \(A\)-type \(g\), and a many-sorted algebra \(\mathcal{B}_\mathcal{G}\) as follows. Each rule in \(R\) can be written uniquely in the form

\((*)\) \quad \(a_0 \rightarrow u_0^\alpha (a_1)^{\alpha_1} \cdots (a_\xi)^{\alpha_\xi} \cdots (a_\zeta)^{\alpha_\zeta} \cdots (\kappa < \alpha)\)

for some \(a\), where \(a_\alpha \in A\) and \(u_\alpha \in B^*\) for each \(\kappa < \alpha\). Let \(g\) have domain \(R\), and if \(r \in R\) has the form \((*)\), we let \(g_r = (a_0, a_1, \ldots, a_\xi)_{\kappa < \alpha}\). Next, for each \(s \in A\) we let \(F_s = \{x \in B^* : b \Rightarrow x\}\). For each \(r \in R\), if \(r\) has the form \((*)\) and \(y_\kappa \in F_{\alpha r}\) for each \(\kappa \in \alpha - 1\), we let

\[
f_r(y_{\kappa} : \kappa \in \alpha - 1) = u_0^\alpha y_0^\alpha \cdots y_{\kappa}^\alpha \cdots (\kappa < \alpha).
\]

Thus \(f_r(y_{\kappa} : \kappa \in \alpha - 1) \in \mathcal{F}_{\alpha r}\). Let \(\mathcal{B}_\mathcal{G}(F_{\alpha r})_{\alpha \in \mathcal{R}}\). So, \(\mathcal{B}_\mathcal{G}\) is a many-sorted algebra of type \(g\).
EXAMPLE 5.6.7 (Continuing 5.6.1, 5.6.4). The algebra \mathfrak{B}_G is one–sorted, and it is in fact

$$\langle \Phi, \Lambda, \mu, \nu, \alpha, \tau, \beta, T, \exists \rangle_{\mu, \nu} \Psi, \varphi \rangle_{\kappa < \alpha, \varphi} \text{ atomic}.$$

This is almost the same as \mathfrak{B}^G (see section 4.3).

EXAMPLE 5.6.8 (Continuing 5.6.2, 5.6.5). The algebra \mathfrak{B}_G, still one–sorted, is

$$\langle \Xi, \mathcal{V}_\eta, \Lambda_\eta, \neg, \mathfrak{F}, \mathcal{T}, \mathfrak{E}_\eta, \varphi \rangle,$$

where the indices range as follows: $\eta < \kappa$, $\alpha \in \mathcal{E} \{ \eta : \kappa < \alpha \}$, $\beta < \lambda$, φ atomic, and Ξ is the set of all L_α–formulas of Λ. Of course $\mathcal{V}_\eta(\varphi, \eta)$ is the disjunction of the formulas φ_η, $\nu < \eta$; similarly for Λ_η. For $\kappa = \omega$ this comes close to the absolutely free algebra suitable for polyadic equality algebras.

EXAMPLE 5.6.9 (Continuing 5.6.3, 5.6.6). This time the algebra \mathfrak{B}_G is 3–sorted:

$$\langle \{ u : \kappa < \omega \}, \mathcal{T}, \mathcal{F}, \mathfrak{F}, \eta, \mathcal{T}, \mathcal{S}_\eta, \mathcal{E}_\eta, \mathfrak{R}, \mathfrak{F}, \mathfrak{S}, \mathfrak{F}, \mathcal{T}, \mathfrak{E}_\eta \rangle_{\eta \in \mathcal{D}_G, \tau \in \mathcal{D}_G},$$

where $\forall z = x$ for any variable z, $\forall x = x$ for any variable x, and $\mathcal{E}(x, \tau) = x = \tau$ for any terms x, τ.

Returning to our general situation, we say that $\mathcal{L} = (\mathcal{S}ym, K, Sem)$ is semantically well–presented by \mathcal{G} provided that it is syntactically well–presented by \mathcal{G} and for every $\xi \in K$, the relation

$$h_\mathcal{G} = \bigcup_{\alpha \in \Lambda}(\mathcal{S}em(\varphi, \mathcal{H}) : a \rightarrow \varphi, \varphi \in B^a)$$

is actually a function which is a homomorphism on \mathfrak{B}_G. Each of our three examples is semantically well–presented, as is easily seen.

The general algebraic logic corresponding to \mathcal{L} in this situation is the pair $(\mathfrak{B}_G, \{ h_\mathcal{G} : \mathcal{H} \in K \})$ (where $h_\mathcal{G}$ is a proper class in general).

In Andrêká, Németi, Sain [84'] it is shown how, even at this very general level, algebraic and logical properties have interesting interconnections. By considering classes of general languages, one can also motivate, in our examples 5.6.1, 5.6.4, 5.6.7, the final step leading to cylindric algebras — distinguishing equality formulas while ignoring other atomic formulas. Roughly speaking, the idea is that objects common to all languages in a class of general languages are exactly those that deserve to be called purely logical notions and hence should correspond to basic operations in an associated algebra.

By simplifying the situation slightly we will be able to give here a concrete instance of the interplay of algebraic and logical notions at this level of abstraction.

Algebraic logics

Considering the above situation when there is only one sort and all the rules in
the grammar are finitary, the associated general algebraic logic is a pair consisting of an algebra \mathfrak{F} (in the usual general algebraic sense) and a class of homomorphisms on \mathfrak{F}. Moreover, in important examples, like 5.6.1 (continued in 5.6.4, 5.6.7), the algebra $\mathfrak{F}_\mathfrak{H}$ is absolutely free, although this is not generally the case. (Consider, for example, a grammar $\langle \{\text{formula}\}, \{a, R\} \rangle$ with rules $\text{formula} \rightarrow (a, \text{formula})$, $\text{formula} \rightarrow a$, and $\text{formula} \rightarrow \text{formula}, a$, and build a semantically well-presented language on it.)

This motivates the following definition. An algebraic logic is a pair $\langle \mathfrak{F}, \mathcal{K} \rangle$ such that \mathfrak{F} is an absolutely free algebra of some type and $\mathcal{K} \subseteq \text{Hom}(\mathfrak{F})$. This notion is investigated in Andréka, Gergely, Németi [77]; see also Andréka, Németi [75] for a briefer introduction. To illustrate this notion we shall develop it far enough to prove a result of Németi [83'] which gives an algebraic equivalent of Beth’s theorem. (This is a solution of a problem stated in Part I, p.357.) To motivate the following definitions, keep in mind the special case roughly corresponding to ordinary logic: \mathfrak{F} is an absolutely free algebra similar to $\mathcal{C}_{\omega_1^\omega}$, and \mathcal{K} is the class of all homomorphisms of \mathfrak{F} into $\mathcal{C}_{\omega_1^\omega} \cap \Gamma_{\omega_1}$.

Let t be any (ordinary, one-sorted, algebraic) similarity type, fixed for the rest of this discussion, and let \mathcal{K} be a class of algebras of type t. Given an arbitrary set X, we think of the elements of X as non-logical constants. \mathfrak{F}_X is the absolutely free algebra of type t with X as its set of free generators. We then consider the algebraic logic $\mathcal{K} = (\mathfrak{F}_X, \mathcal{K})$. Elements of \mathfrak{F}_X are called X-formulas. An X-\mathcal{K}-model is a pair $\langle A, h \rangle$ with $A \in \mathcal{K}$ and $h \in \text{Hom}(\mathfrak{F}_X, A)$. Given X-formulas φ, ψ and an X-\mathcal{K}-model $\langle A, h \rangle$, we write $\langle A, h \rangle \models \varphi \leftrightarrow \psi$ provided that $h\varphi = h\psi$. An X-theory is a set $\Sigma \subseteq \mathfrak{F}_X$. (We think of Σ as “saying” of each $\langle \varphi, \psi \rangle \in \Sigma$ that φ is equivalent to ψ.) Then an X-\mathcal{K}-model $\langle A, h \rangle$ is a model of Σ provided that $h\varphi = h\psi$ for each $\langle \varphi, \psi \rangle \in \Sigma$. Now assume that $x \in X$. We say that Σ defines x implicitly provided that if $\langle A, h \rangle, \langle A, k \rangle$ are models of Σ such that $\langle X \models (x) \rangle \ni h \subseteq k$, then $hx = kx$ (and hence $h = k$). We write $\Sigma \models \varphi \leftrightarrow \psi$ iff every model $\langle A, h \rangle$ of Σ is such that $h\varphi = h\psi$. Then Σ defines x explicitly provided there is a $\varphi \in \mathfrak{F}_X \setminus \Sigma \models \varphi \leftrightarrow x$. Finally, we say that t, \mathcal{K} has the Beth property provided that for every set X, every X-theory Σ, and every $x \in X$, if Σ defines x implicitly, then Σ defines x explicitly. This is a purely logical notion, in a general sense.

Now we formulate a purely algebraic notion, involving only the class \mathcal{K}. Let L be any class of algebras of type t. An L-epimorphism is a homomorphism $h \in \text{Hom}(\mathfrak{F}, \mathfrak{B})$ with $\mathfrak{F}, \mathfrak{B} \in L$ such that for all homomorphisms $k, l \in \text{Hom}(\mathfrak{B}, \mathfrak{E})$ with $\mathfrak{E} \in L$, if $k \circ h = l \circ h$ then $k = l$. We call a homomorphism $h \in \text{Hom}(\mathfrak{F}, \mathfrak{B})$ almost onto \mathfrak{B} if there is an element $b \in B$ such that $Rgh \{b\}$ generates \mathfrak{B}. The theorem of Németi [83'] is as follows.

Theorem 5.6.10. Let $K = \text{SPK}$. Then t, K has the Beth property iff every almost onto K-epimorphism is onto.

Proof. Suppose that $h \in \text{Hom}(\mathfrak{F}, \mathfrak{B})$ is an almost onto K-epimorphism. Say $b \in B$ and $Sg(\text{Rghu} \{b\}) = B$. Choose a set X and an element $x \in X$ such that there is a one-one function φ from $X \setminus \{x\}$ onto A. Let $f \in \text{Hom}(\mathfrak{F}_X, \mathfrak{B})$ be such that $\langle X \models (x) \rangle \ni f \subseteq h\varphi$, while $fx = b$. Let Σ be the X-theory f/f^{-1}. Now Σ defines x implicitly. For, suppose that $\langle A, k \rangle$ and $\langle A, l \rangle$ are models of Σ such that $\langle X \models (x) \rangle \ni k \subseteq l$. Then there are homomorphisms $k', l' \in \text{Hom}(\mathfrak{B}, \mathfrak{E})$ such that $k'f = l'f = h\varphi$ and $k'f = l'f$ for any $\varphi \in \mathfrak{F}_X$. Then $k' \circ h = l' \circ h$, since any element of A has the form
gy for some \(y \in X - \{ z \} \), and

\[
k' hgy = k' fy = ky = ly = l' fy = l' hgy.
\]

Thus since \(h \) is a \(K \)-epimorphism we infer that \(k' = l' \). Hence \(k z = k' fz = l' fz = l z \), showing that \(\Sigma \) defines \(z \) implicitly. So, by the Beth property choose \(\varphi \in S g(X - \{ z \}) \) such that \(\Sigma \vdash \varphi = z \). Now \((B, f) \) is a model of \(\Sigma \), so \(b = fz = f \varphi \in R \varphi h \), and so \(h \) is onto.

\(\Leftarrow \). Suppose that \(\Sigma \) is an \(X \)-theory, \(z \in X \), \(\Sigma \) defines \(z \) implicitly, but \(\Sigma \) does not define \(z \) explicitly. Let \(I = S g^X(X - \{ z \}) \), with \(X = \exists \varphi X \). Then for each \(\varphi \in I \) there is a model \((\mathcal{H}_\varphi, h_\varphi) \) of \(\Sigma \) such that \(h_\varphi \varphi \neq h_\varphi z \). Recall from 0.422 that if \(\exists \varphi X \in K \), since \(\text{SP} = K \). Now there is a homomorphism \(f \in \text{Hom}(\exists \varphi X, \mathcal{P}_\psi \varphi \psi) \) such that \(f(\psi / \exists \varphi X) = (h_\psi \psi : \psi \in I) \) for every \(\psi \in \exists \varphi X \). Let \(Y = \{ y / \exists \varphi X : y \in X - \{ z \} \} \), and let \(\mathcal{E} = \exists \varphi Y \). We claim:

(1) \(B \vdash f \in \text{Hom}(\mathcal{E}, f^\ast \exists \varphi X) \) is a \(K \)-epimorphism which is almost onto.

For, suppose \(k, l \in \text{Hom}(f^\ast \exists \varphi X, \mathcal{E}) \), where \(\mathcal{E} \in K \), and \(k \circ (B \vdash f) = l \circ (B \vdash f) \). Let \(n = (\varphi / \exists \varphi X, \psi : \psi \in \exists \varphi X) \) be the natural homomorphism from \(\exists \varphi X \) onto \(\exists \varphi X \). Then \((\mathcal{E}, k \circ f \circ n) \) and \((\mathcal{E}, l \circ f \circ n) \) are models of \(\Sigma \), as is easily checked. Moreover, if \(y \in X - \{ z \} \) we have \(k f ny = k(B \vdash f) ny = l(B \vdash f) ny = l f ny \). Therefore, since \(\Sigma \) defines \(z \) implicitly, \(k f nz = l f nz \). Hence \(k = l \), as desired: \(B \vdash f \) is a \(K \)-epimorphism. Since \(f^\ast B u (f n z) \) generates \(f^\ast \exists \varphi X \), \(B \vdash f \) is almost onto.

Now (1) and the hypothesis yield that \(B \vdash f \) maps onto \(f^\ast \exists \varphi X \). Hence there is a \(\varphi \in I \) such that \(f(\varphi / \exists \varphi X) = (z / \exists \varphi X) \). Hence by the definition of \(f \), \(h_\varphi \varphi = f(\varphi / \exists \varphi X) = f(z / \exists \varphi X) = h_\varphi z \), contradicting the choice of \(h_\varphi \).

Theorem 5.6.10 is generalized in Némethi [83'], and several applications are given.

Systems of varieties

We now specialize the idea of an algebraic logic even further; but the notion will still be general enough to encompass very many specific algebraic logics. The notions and results here can be found in Andréka, Némethi [80'a]. We give only a sampling of their results. We generalize an aspect of cylindric algebras emphasized in section 4.1: our important classes \(CA_n \) and \(IGs_n \) are definable by countable schemas of equations. The indices \(c, \alpha \) in the fundamental operations \(c, d, \alpha \) vary according to a schema, and the system \((IGs_n : c \in \omega, \alpha \in \omega) \) (for example) is completely determined by a schema involving only \(IGs_\omega \). The following definition expresses which of the fundamental operations are to be determined by schemas.

DEFINITION 5.6.11. (i) A **type schema** is a quadruple \(t = (T, \delta, \rho, c) \) such that \(T \) is a set, \(\delta \) maps \(T \) into \(\omega, \rho \) maps \(T \) into \(\omega, c \in T, \) and \(\delta c = \rho c = 1 \).

(ii) A **type schema** \(t \) as in (i) defines a similarity type \(t_\alpha \) for each \(\alpha \) as follows. The domain \(T_\alpha \) of \(t_\alpha \) is

\[
T_\alpha = \{ (f, c_0, \ldots, c_{\delta f}) : f \in T, \ k \in \delta f \alpha \}.
\]
For each \((f, \xi_0, \ldots, \xi_{d-1}) \in T_a \) we set \(t_a(f, \xi_0, \ldots, \xi_{d-1}) = \rho f \).

(iii) A system \((K_a : a \in \omega) \) of classes of algebras is of type schema \(t \) if for each \(a \in \omega \), \(K_a \) is a class of algebras of type \(t_a \). \(\text{Alg}_a \) is the class of all algebras of type \(t_a \). Thus cylindric algebras fall under this definition with \(T = \{ +, -, 0, 1, d, c \} \) and \(\rho, \sigma \) the obvious functions.

Note that every system \((K_a : a \in \omega) \) given by a schema has unary operations \(c_a \), \(\epsilon \in a \). These special operations will be used to define local finite-dimension and related concepts below. Since most logics presently considered are extensions or modifications of first-order logic, this aspect of 5.6.11 does not seem very restrictive — it corresponds very roughly to this fact.

DEFINITION 5.6.12. Let \(t \) be a type schema as in 5.6.11. (i) With each \(a \) we associate a language \(L^t_a \) of type \(t_a \) : for each \(f \in T \) and \(\kappa \in \mathbb{B}t \alpha \) we have a function symbol \(t_{0, \ldots, \chi(\mathbb{B}f - 1)} \) of rank \(\kappa \).

(ii) Let \(\xi \in \mathbb{B}a \). We associate with each term \(\tau \) of \(L^t_a \) a term \(t^{\ast} \tau \) of \(L^t_a \) (cf. 4.1.4). For any \(\kappa \in \omega \), \(\xi^* \kappa = \nu \kappa \). If \(f \in T \), \(\kappa \in \mathbb{B}t \alpha \), and \(\chi_0, \ldots, \chi_{d-1} \) are terms of \(L^t_a \), then

\[
t^{\ast} \chi_0, \ldots, \chi_{d-1} \cdot \kappa = t^{\ast} \chi_0, \ldots, t^{\ast} \chi_{d-1} \cdot \kappa.
\]

Then we associate with each \(\tau \) of \(L^t_a \) the equation \(t^{\ast} \tau = \xi^{\ast} \tau \) of \(L^t_a \).

(iii) Let \(E \) be a set of equations of \(L^t_a \). A system \((K_a : a \in \omega) \) of type schema \(t \) is definable by \(E \) if for every \(a \in \omega \) we have

\[
K_a = \text{Md}(\xi^* c : c \in E, \xi \in a, \xi \text{ one-one}).
\]

Then we say that \((K_a : a \in \omega) \) is definable by the schema \((t, E)\).

We first note that this notion can be given a purely algebraic formulation.

THEOREM 5.6.13. Let \(t \) be a type schema, \(K = (K_a : a \in \omega) \) a system of varieties of type schema \(t \). Then the following conditions are equivalent:

(i) \(K \) is definable by a schema.

(ii) If \(\omega \subset \mathbb{B} \) and \(\sigma \in \mathbb{B} \) is one-one, then \(K_a = \text{HSPRd}^t K_{a\sigma} \).

PROOF. First observe that \(\text{HSPRd}^t K \) is defined in a natural way, extending the definition for \(C \text{a}_e \)'s in section 2.6.

(i) \(\Rightarrow \) (ii). Assume that \(K \) is definable by \((t, E)\) and the hypotheses of (ii) hold. To prove that \(K_a = \text{HSPRd}^t K_{a\sigma} \), it suffices to take any \(c \in E \), and any \(\xi \in a \) with \(\xi \) one-one, and show that \(\text{HSPRd}^t K_{a\sigma} = \xi^* c \). Now \(K_{a\sigma} = \sigma^* c \), so clearly \(\text{HSPRd}^t K_{a\sigma} = \xi^* c \). To prove that \(K_a \subseteq \text{HSPRd}^t K_{a\sigma} \), let \(\alpha \in K_a \) be arbitrary. Let \(\Gamma = \{ \xi \in \mathbb{B}a : |\xi| \leq \omega \} \). For each \(\Gamma \in I \) let \(\eta \) be a one-one function from \(\Gamma \) into \(a \) such that \(\Gamma R_\Delta \eta \). Let \(\Xi = \text{HSPRd}^t K \), and let \(C \) be any algebra of type \(t_a \) such that \(\text{HSPRd}^t C \subseteq \Xi \). Let \(F \) be an ultralimit on \(I \) such that \(\Delta \in I \) if and only if \(\Delta \subseteq \Delta \). Clearly \(\Xi \subseteq \text{HSPRd}^t \Xi \). Now we show that \(\Xi \in K_{a\sigma} \). So, let \(\xi \in E \) and let \(\xi \in \mathbb{B} \) be one-one: we want to show that \(\Xi = \xi^* c \). Let \(\Delta \) be the set of all \(\xi \in \mathbb{B} \) which occur as indices in operation symbols occurring in \(\xi^* c \). Taking any \(\Delta \in I \) such that \(\Gamma \subseteq \Delta \), we have \(\Xi \subseteq \Xi^\Delta \xi^* c \) since \(\Xi \subseteq K_a \), and hence \(\text{HSPRd}^t \Xi \subseteq \xi^* c \) and so \(\Xi \subseteq \xi^* c \). It follows that \(\Xi = \xi^* c \). We have shown that \(\Xi \subseteq \text{HSPRd}^t K_{a\sigma} \), as desired.
Note that in 5.16.13(ii), \textsc{HSP} can be replaced by \textsc{SI} (see the proof).

DEFINITION 5.6.14. Let \((K_a : a \geq \omega)\) be of type schema \(t. (i)\) For \(a \geq \omega, \mathcal{A} \in K_a, a \in A,\) we set

\[\Delta a = \{\epsilon < a : c_\epsilon a \neq a\}.\]

(ii) For \(a \geq \omega, \mathcal{A} \in K_a,\) we say that \(\mathcal{A}\) is locally finite–dimensional if \(|\Delta a| < \omega\) for all \(a \in A.\) \(K_a\) is the class of all locally finite–dimensional \(\mathcal{A} \in K_a.\)

(iii) For \(a \geq \omega, \mathcal{A} \in K_a,\) we say that \(\mathcal{A}\) is dimension complemented if for every finite \(X \subseteq A\) we have that \(a^{-1} \cup_{b \in X} \Delta b\) is infinite. \(K_i\) is the class of all dimension complemented \(\mathcal{A} \in K_i.\)

(iv) Suppose \(a \geq c_\epsilon b\) and \(\mathcal{A} \in \text{Alg}(\mathcal{B}).\) An element \(B\) of \(\text{Alg}(\mathcal{A})\) is a neat \(a\)–subredcut of \(\mathcal{A}\) if \(B \subseteq \mathcal{B}\) and \(\Delta^a b \subseteq a\) for all \(b \in B.\) \(K_n\) is the class of all neat \(a\)–subredcuts of members of \(K_{a+\omega}.\)

(v) For any class \(K\) of similar algbras, \(\text{RpK}\) is the class of all algebras isomorphic to reduced products of algbras in \(K.\)

For the next theorem, cf. 2.6.49(i) and 2.6.32.

THEOREM 5.6.15. Let \((K_a : a \geq \omega)\) be definable by a schema, and let \(a \geq \omega.\) Then \(K_a \subseteq K_c \subseteq K_n = \text{SRP} K_n \subseteq \text{SRP} K_a.\)

PROOF. Obviously \(K_n \subseteq K_a.\) Using the schema property, it is also clear that \(K_a \subseteq \text{SRP} K_n \subseteq K_n.\) Now suppose that \(\mathcal{A} \in K_c;\) we construct \(\mathcal{B} \in K_{a+\omega}\) so that \(\mathcal{A}\) is a neat \(a\)–subredcut of \(\mathcal{B}\) – hence \(\mathcal{B} \in K_n\), as desired.

Let \(I = \set{\langle \Gamma, X : \Gamma \subseteq a+\omega, X \subseteq A, \Gamma\text{ finite}}, \) \(\langle \Gamma, X \rangle \in I.\) Since \(\mathcal{A} \in K_c,\) the set \(H \text{def} a^{-1} \cup_{x \in X} \Delta x\) is infinite. Let \(n_{\Gamma, X}\) be a one–one function from \(\Gamma\) into \(a\) such that \(a1n_{\Gamma, X} \subseteq 1a\) and \(Rg((\Gamma^{-\omega} \setminus n_{\Gamma, X})) \subseteq H.\) Then let \(\mathcal{B}_{\Gamma, X}\) be a member of \(\text{Alg}(\mathcal{A}+\omega, B)\) whose \(\Gamma\)–reduct is \(\mathcal{B} \Delta^\infty X.\) Let \(F\) be the filter on \(I\) generated by

\[\set{\langle \Gamma, X \rangle \in I : \Delta \subseteq \Gamma, Y \subseteq X} : (\Delta, Y) \in I}\]

Then \(\mathcal{A}\) is isomorphic to a neat \(a\)–subredcut of \(P_{\infty}/B_{\infty}/F,\) and \(P_{\infty}/B_{\infty}/F \in K_{a+\omega},\) as desired.

DEFINITION 5.6.16. Let \(K = (K_a : a \geq \omega)\) be of type schema \(t.\) We say that \(K\) satisfies the finiteness generating condition if for all \(a \geq \omega, \mathcal{A} \in K_a,\) and \(X \subseteq A,\) if \(|\Delta x| < \omega\) for all \(x \in X,\) then \(\mathcal{B} \Delta^\infty X \in K_a.\)

For the next theorem, cf. 2.6.52.
THEOREM 5.6.17. Let \((K_\alpha; \alpha \leq \omega)\) be definable by a schema and satisfy the finiteness generating condition. Then for any \(\alpha \leq \omega\) we have \(\text{SUP}(K_\alpha) = \text{SUP}(K_\alpha) = Kn_\alpha\), and hence \(\text{HSP}(K_\alpha) = \text{HSP}(K_\alpha) = \text{HKn}_\alpha\).

PROOF By Theorem 5.6.15 it suffices to show that \(Kn_\alpha \subseteq \text{SUP}(K_\alpha)\). Let \(\mathcal{U} \in Kn_\alpha\), and choose \(B \in K_{\alpha+\omega}\) such that \(\mathcal{U}\) is a neat \(\alpha\)-subreduct of \(B\). For every finite \(\Gamma \subseteq \alpha\) we shall construct \(C_\Gamma \in K_{a}\) such that \(\mathcal{R}_B \mathcal{U} \subseteq \mathcal{R}_B C_\Gamma\); this easily gives the desired conclusion \(\mathcal{U} \in \text{SUP}(K_\alpha)\).

So let \(\Gamma\) be any finite subset of \(\alpha\). For any finite subset \(\Delta\) of \(\alpha\) let \(\eta_\Delta\) be a one-one function from \(\Delta\) into \(\alpha + \omega\) such that \((\Gamma \setminus \Delta) \cup \eta_\Delta \subseteq \Delta\) and \(Rg((\Delta - \Gamma) \cup \eta_\Delta) \subseteq (\alpha + \omega) - \alpha\). Now let \(D_\Delta\) be any member of \(\text{Alg}_{\Delta}\) such that \(\mathcal{R}_{B} D_\Delta = \mathcal{R}_{B} \eta_\Delta B\). Let \(F\) be an ultrafilter on \(I^{\infty} \{\Delta \subseteq \omega : \Delta\ \text{finite}\}\) such that \(\{\xi \in I : \Delta \subseteq \Omega\} \in F\) for every \(\Delta \in I\). Then \(C_\Gamma = D_{\Delta} / F\). Then \(\mathcal{R}_B B \subseteq \mathcal{R}_B C_\Gamma\) and \(C_\Gamma \in K_{\alpha}\). Also, \(\Delta^{\infty} \subseteq \Gamma\) for all \(\Delta \in A\), by construction. Let \(\mathcal{C}_\Gamma = C_B^{\infty} A\). Then \(\mathcal{R}_B \mathcal{U} \subseteq \mathcal{R}_B C_\Gamma\), and \(C_\Gamma \in K_{\alpha}\) by the generating condition. The proof is complete.

The finiteness generating condition is extensively investigated in Andrusk, Németi [78] and in Andruska, Nemeti, Sain [84]. In particular, CA results are classified according to whether they hold for arbitrary systems of varieties definable by a schema, for those having the finiteness generating condition, or are very specific for cylindric algebras. They make a similar classification for the other algebraic logics treated below.

A survey of some
additional algebraic logics

We now turn to the other part of this section, in which we briefly describe some other specific algebraic logics. We shall discuss these in alphabetical order of the inventor of the logic.

1. Bernays [59]: many-sorted cylindric algebras. The idea here is to reformulate the notion \(L_\kappa\) by having, for each \(\kappa \in \omega\), variables of sort \(\kappa\) to denote elements \(x\) such that \(\Delta x \subseteq \kappa\). This enables one to simplify the primitive notions, too. Specifically there are \(\omega\) sorts. For each \(m \in \omega\) we have variables \(v^m_0, v^m_1, \ldots\) of sort \(m\). The non-logical constants are as follows:

\begin{align*}
\sigma, (\text{for } i, j \in \omega), & \quad \text{permutation symbols, which are one place function symbols;} \\
\epsilon & \quad \text{cylindrification, one place function symbol;} \\
d & \quad \text{diagonal, individual constant;} \\
- & \quad \text{unary function symbol;} \\
+ & \quad \text{binary function symbols;} \\
0, 1 & \quad \text{individual constants.}
\end{align*}

Terms are formed as follows. Each variable \(v^m_0\) is an \(m\)-term. Every \(m\)-term is an \((m+1)\)-term. If \(\sigma\) and \(\tau\) are \(m\)-terms, so are \(\sigma + \tau\), \(\sigma \tau\), \(-\tau\), and \(\varepsilon \sigma\). If \(\sigma\) is an
m-term and \(l \geq i, j, m \), then \(s_{ij} \sigma \) is an \(l \)-term. If \(\sigma \) is a \((k+1)\)-term, then \(s_{0,k+1} \sigma \) is a \(k \)-term. \(d \) is a 2-term. 0 and 1 are 0-terms. The following are taken as axioms, with arbitrary indices except where restrictions are mentioned.

\[
\begin{align*}
v_0^m + v_1^m &= v_1^m + v_0^m, \\
v_0^m \cdot v_1^m &= v_1^m \cdot v_0^m, \\
v_0^m + v_1^m \cdot v_2^m &= (v_0^m + v_1^m) \cdot (v_0^m + v_2^m), \\
v_0^m \cdot (v_1^m + v_2^m) &= v_0^m \cdot v_1^m + v_0^m \cdot v_2^m, \\
v_0^m + 0 &= v_0^m, \\
v_0^m \cdot 1 &= v_0^m, \\
v_0^m + -v_0^m &= 1, \\
v_0^m \cdot -v_0^m &= 0, \\
s_{ij}(v_0^m + v_1^m) &= s_{ij}v_0^m + s_{ij}v_1^m, \\
s_{ij}(-v_0^m) &= -s_{ij}v_0^m, \\
s_{ij}v_0^m &= v_0^m, \\
s_{ij}v_0^m &= s_{ij}v_0^m, \\
s_{ij}, s_{jk}, s_{kl} v_0^k &= s_{jk}v_0^k \quad \text{if } i \neq j, k, \\
s_{ij}v_0^k &= v_0^k \quad \text{if } i, j > k, \\
s_{01}v_0^m &= s_{01}v_0^m \quad \text{if } i > k, \\
s_{ij}v_0^m &= s_{ij}v_0^m \quad \text{if } i, j > 0, \\
s_0(v_0^m \cdot d) &= v_0^m \cdot d, \\
\epsilon d &= 1, \\
\epsilon(v_0^m \cdot \epsilon v_1^m) &= \epsilon v_0^m \cdot \epsilon v_1^m, \\
\epsilon(d \cdot -v_0^m) &= -\epsilon(d \cdot v_0^m), \\
s_{01} \epsilon_0 v_0^m &= s_{01} \epsilon v_0^m, \\
0 \neq 1, \\
v_0^m = 0 \lor \epsilon v_0^m = 1.
\end{align*}
\]

The main result in Bernays [69] is that this axiom system is complete with respect to the interpretation initially alluded to. See also Schwartz [79].

2. Copeland [56]: simplified polyadic equality algebras. This notion was not much developed in Copeland [56], and we shall instead follow Demaree [72']. Let \(Z \) be the set of integers. We recall some familiar operations on \(Sb(Z, U) \), \(U \) any set. Below \(\vartriangleleft \) is the successor operation on \(Z \), and \(z \in Z U \).

\[
\begin{align*}
\mathcal{C}_z &= \{u \in Z U : u_0 = z \text{ for some } u\}, \\
\mathcal{Q}_z &= \{u \in Z U : u \in z \text{ and } u_0 = u_1\}, \\
\mathcal{P}_z &= \{u \in Z U : u = [0, 1, 1, 0] \in z\}, \\
\mathcal{T}_z &= \{u \in Z U : u_0 \vartriangleleft u \in z\}.
\end{align*}
\]

A Copeland set algebra, \(\mathcal{C}_{z} \), is an algebra

\[\langle A U, \mathcal{C}, \mathcal{D}, \mathcal{Q}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{-1} \rangle\]

where \(A \) is a collection of subsets of \(Z U \). \(\mathcal{R}_{z} \) is the class of all algebras isomorphic to a subdirect product of \(\mathcal{C}_{z} \), and \(\mathcal{C} \) the variety determined by all equations holding in all \(\mathcal{C}_{z} \). The main results in Demaree [72'] are: (1) neither \(\mathcal{S}_{z} \mathcal{C}_{z} \) nor \(\mathcal{R}_{z} \) are elementary classes; (2) \(\mathcal{C} \) is not finitely axiomatizable; (3) there is an \(X \in \mathcal{C}_{z} \sim \mathcal{R}_{z} \) which is locally finite-dimensional; (4) within each \(\mathcal{C} \) one can define
in a natural way a CA_k (understood in the obvious sense).

3. Craig: *algebras of sets of finite sequences*. Several kinds of algebraic logics corresponding to satisfaction by finite sequences were developed mainly by Craig; see Craig [66],[68],[74a],[74b],[74c] and also Howard [66] and Monk [70]. This development is more ambitious than implied by our title: he attempts to give a justification for the primitives chosen, on the basis of extensive concern with the set-theoretic expressibility of logical notions. We illustrate the specific systems he develops with one case: the *augmented cylindric theory for sets of finite sequences*. The set algebra notion is as follows. For any non-empty set U, let $^c U$ denote the collection of all finite sequences of members of U. We consider the following operations on $Sb(^c U)$: for any $X \subseteq U$ and $i < \omega$,

- $C_i X = \{ f \in ^c U : \text{there is a } g \in X \text{ such that } Dof = Dg \text{ and } fj = gj \text{ for all } j \in Dof \sim \{ i \}\}$.
- $QX = \{ (u)^h : u \in U, h \in X \}$.
- $PX = \{ h \in ^c U : (u)^h \in X \text{ for some } u \in U \}$.
- $D = \{ f \in ^c U : 2 \leq Dof \text{ and } f_0 = f_i \}$.

Then a *finite sequence set algebra* is an algebraic structure

$$\mathcal{X} = (A, u, n, \sim, 0, ^c U, Q, P, D, C_i)_{i < \omega}$$

with A closed under the indicated operations. The main result about this notion is a completeness theorem: an equality $\sigma = \tau$ is valid in all finite sequence set algebras iff it is derivable from the following equations, where $i, j < \omega$, $d_{i+1} = d_{i+1} = q^d$, and $d_{i,i+2} = d_{i+2,i} = c_{i+1}(q^d \cdot q^{i+1}d)$:

1. Axioms for BA’s.
2. $c_0 = 0$.
3. $x \cdot c_0 = x$.
4. $c_0 (x \cdot c_1 x) = c_1 x \cdot c_1 y$.
5. $c_0 x = c_0 x$.
6. $c_0 = 0$.
7. $q(x + y) = q x + q y$.
8. $q(x \cdot y) = q x \cdot q y$.
9. $q(x \cdot z) = c_{i+1} q x$.
10. $c_i (q^{i+1}_1 x) = - q^{i+1}_1 x$.
11. $qp = q1 \cdot c_0 x$.
12. $pq = x$.
13. $c_0 d = q^i_1$.
14. $c_i d = q^i_1$.
15. $c_i d = d$ if $i \geq 2$.
16. $d_{i,j} c_i (d_{i,j} x) = d_{i,j} x$ if $i \neq j$ and $-2 \leq i - j \leq 2$.

4. Freeman [76]: *modal cylindric algebras*. This is an algebraization of modal predicate logic. A *modal cylindric algebra* is a cylindric algebra with an additional unary operation * (corresponding to "possibility") so that the following conditions hold:
(M1) \((x + y) = ^*z + ^*y\).
(M2) \(c_z \cdot c_z = ^*c_z\).
(M3) \(d_{\alpha\cdot} = ^*z \leq ^*z = ^* \cdot (d_{\alpha\cdot} \cdot z)\).
(M4) \(-d_{\alpha\cdot} = ^*z \leq ^*z = ^* \cdot (-d_{\alpha\cdot} \cdot z)\).

Corresponding to various kinds of modal logic, one adds additional equational axioms. The notion of a modal cylindric set algebra is as follows; it involves Kripke semantics. Let \(U\) be a non-empty set, \(a\) an ordinal, \(W\) a non-empty set, \(R\) a binary relation on \(W\), \(W\) a subset of \(W\), and \(f\) a function from \(W\) into \(ShU\) \{-0\} such that \(uRw\) implies \(fv \supset fw\). For each \(w \in W\) let \(X_w\) be the \(Cs_a \setminus \ast f w\). We make \(P_{w \in W} X_w\) into a modal cylindric algebra by defining the operation \(^*\) as follows. Let \(z \in P_{w \in W} A_w\) and \(w \in W\). Then

\[
(^*z)_w = \begin{cases}
 ^*fw & \text{if } w \in Q, \\
 \{u \in ^*fw: \text{there is a } v \text{ such that } wRv \text{ and } u \in z_v\} & \text{if } w \notin Q.
\end{cases}
\]

Any subalgebra of \(P_{w \in W} X_w\) is called a modal cylindric set algebra. The main result of Freeman [76'] is the representation theorem: any locally finite-dimensional modal cylindric algebra is isomorphic to a subdirect product of modal cylindric set algebras.

Very analogous results were proved later in Georgescu [79'].

5. Georgescu [72'] Polyadic \(b\)-valued Łukasiewicz algebras. Instead of a BA, one takes a \(b\)-valued Łukasiewicz algebra. A representation theorem for locally-finite dimensional algebras of infinite dimension is proved.

6. Georgescu [79a'] Polyadic tense algebras. Instead of a BA, one takes a tense algebra, which is an algebraic version of tense logic. Again a representation theorem for locally finite infinite dimensional algebras is proved.

7. Georgescu [82a'] Polyadic interior algebras. Rather than taking the underlying algebra to be an interior algebra instead of a BA, the idea here is to take a \(Cs_a\) with base \(U\), where \(U\) has a topology on it; then one can define for each \(\varepsilon \prec \alpha\) a unary operation \(I_{\varepsilon}\) on \(Sh(\alpha U)\) as follows. For any \(X \subseteq \alpha U\),

\[I_{\varepsilon}X = \{u \in \alpha U: u_{\varepsilon} \in \text{Interior} \{a \in U: u_{a} \in X\}\}. \]

This gives an appropriate notion of a set algebra, with a similarity type extending that of \(\text{PEA}_a\)'s by a new sequence \((I_{\varepsilon}: \varepsilon \prec \alpha)\) of unary operators. Equational axioms are given, and a representation theorem as in 5,6 is proved.

8. Georgescu [82'] Monotone polyadic algebras. Extensions of polyadic algebras which algebraize the monotone quantifiers of Makowsky, Tulipani [78**], are introduced, and a representation theorem as in 5,6,7 is proved.

9. Halmos [57] and [62]. Quasi-polyadic algebras. These are like polyadic algebras, except that \(s_{\varepsilon}\) is allowed only for \(\varepsilon \prec \alpha\) finite transformations, and \(c_{\varepsilon} \Gamma\) only for finite \(\varepsilon\). Their theory has not been much developed, but they form an interesting stage
between cylindric and polyadic algebras. See also Daigneault, Monk [63] and Andrêka, Gergely, Németi [77].

10. Kotus, Piekakowski [67] *Cylindric algebras over a Boolean ring*. Basic definitions and simple facts are given.

11. LeBlanc [62a] *Nonhomogeneous polyadic algebras*. We have here an algebraic version of many—sorted logic. Let α be an ordinal and \mathcal{P} a partition of α. A \mathcal{P}—transformation of α is a function $\sigma \in \alpha^\mathcal{P}$ such that $\sigma\tau \in \mathcal{P}$ for every $\tau \in \mathcal{P}$. A \mathcal{P}—sorted polyadic algebra of dimension α is an algebra

$$\mathcal{X} = (A, +, \cdot, -, 0, 1, \varsigma_{(\Gamma)}, s_{\tau})_{\Gamma \subseteq \alpha, \tau \in \mathcal{P}},$$

where \mathcal{P} is the set of all \mathcal{P}—transformations, such that all of the axioms for polyadic algebras hold, restricting to $\tau \in \mathcal{P}$ rather than arbitrary $\tau \in \alpha$. The usual representation theorem for locally finite algebras with each $\Gamma \in \mathcal{P}$ infinite is given, and a reduction to ordinary polyadic algebras is indicated — corresponding to the reduction of many—sorted logic to ordinary logic.

12. Lucas [68]: *Extended cylindric algebras*. The extension is to cylindrification over infinite sets, and infinitary diagonal elements. Specifically, let κ be an infinite cardinal, α any ordinal. A κ—$\mathcal{C}A\alpha$ is an algebra

$$\mathcal{X} = (A, +, \cdot, -, 0, 1, \varsigma_{(\Gamma)}, d_{E})_{\Gamma \in \mathcal{M}, E \in N},$$

where $\mathcal{M} = \{\Gamma \subseteq \alpha : |\Gamma| < \kappa\}$, $N = \{E \subseteq \alpha \times \alpha : E$ is an equivalence relation on α and $|\{\{\alpha : \{E \neq \{\alpha\} \subseteq \alpha\} | < \kappa\}$, such that the following conditions hold:

(E_1) $(A, +, \cdot, -, 0, 1)$ is a BA.

(E_2) $\varsigma_{(\Gamma)} 0 = 0$.

(E_3) $\varsigma \varsigma_{(\Gamma)} = \varsigma$.

(E_4) $\varsigma_{(\Gamma)} (z - \varsigma_{(\Gamma)} y) = \varsigma_{(\Gamma)} z - \varsigma_{(\Gamma)} y$.

(E_5) $\varsigma_{(\Delta)} z = z$.

(E_6) $\varsigma_{(\emptyset)} = \varsigma_{(\emptyset)}$.

(E_7) $d_{\Gamma} 1 = 1$, where $\Gamma = \alpha 1 Id$.

(E_8) $\varsigma_{(\Gamma)} d_{E} = d_{F}$, where $F = En^{2}(\sigma \cdot \Gamma) u (\alpha 1 Id)$.

Intuitively, d_{E} denotes $\Pi_{(\tau, \eta) \in E} d_{\eta}$. The results of Lucas [68] are concerned with the relationships of extended cylindric algebras with similarly defined extended polyadic algebras.

13. Pinter [73b] *Substitution—cylindrification algebras*. These are essentially polyadic algebras with simplified primitives, definitionally equivalent (in an extension of first—order logic) to $PA\alpha$’s in the locally—finite infinite dimension case.

14. Pinter [73b] *Substitution algebras*. A substitution algebra of dimension α is an algebra $\mathcal{X} = (A, +, \cdot, -, 0, 1, s_{\lambda < \alpha})$ such that the following conditions hold:
(S₁) \((A, +, \cdot, -, 0, 1)\) is a BA.

(S₂) \(s^e_λ(x+y) = s^e_λx + s^e_λy\).

(S₃) \(s^e_λz = s^e_λ\).

(S₄) \(s^e_λz = z\).

(S₅) \(s^e_λs^e_μz = s^e_μs^e_λz\).

(S₆) \(s^e_λs^e_μz = s^e_μz\) if \(\lambda \neq \mu\).

(S₇) \(s^e_λs^e_μz = s^e_μs^e_λz\) if \(\lambda \neq \mu, \nu\) and \(\mu \neq \nu\).

It is shown that cylindric algebras are definitionally equivalent (again, in an extension of first-order logic) to substitution algebras which satisfy the following three conditions:

(K₁) For each \(z \in A\) and \(\kappa \in \alpha\), \(\{y \in A : y \in Rgs^e_λ, \lambda \neq \kappa, y \not\in z\}\) has a least element, denoted by \(c_λz\).

(K₂) For all \(\kappa, \lambda \in \alpha\), \(\{z : s^e_λz = 1\}\) has a least element.

(K₃) If \(\mu \neq \kappa, \lambda\), then \(s^e_λc^e_μz = c^e_μs^e_λz\).

See also Preller [79].

15. Pinter [75'] Generalized-quantifier algebras. A GQ CAₐ is an algebra

\[\mathcal{A} = (A, +, \cdot, -, 0, 1, c_λ, d_λ, q_λ, e_λ, \kappa, \lambda < \alpha) \]

such that \((A, +,\cdot, -, 0, 1, c_λ, d_λ, e_λ, \kappa, \lambda < \alpha)\) is a CAₐ and the following axioms hold:

(Q₁) \(q_λ(z + y) = q_λz + q_λy\).

(Q₂) \(q_λd_λ = 0\).

(Q₃) \(q_λc_λ = c_λ\).

(Q₄) \(c_λq_λ = q_λ\).

(Q₅) \(q_λc_λz \leq c_λq_λz + q_λc_λz\).

Cylindric algebras which can be expanded to GQ CAₐ's are characterized. See also Georgescu [80].

16. Pratt, Kozen. Dynamic algebras. The main reference is Pratt [79']. These algebras arose in computer science, but they are a kind of algebraic logic. A dynamic algebra is a two-sorted algebra \((A, +, -, 0, 1, B, +', \cdot', *, \cdot, 0)\) satisfying the following conditions (with \(a, b \in A\) and \(x, y, z \in B\)):

(D₁) \((A, +, -, 0, 1)\) is a BA.

(D₂) \((B, +', \cdot', *, \cdot)\) is a one-sorted algebra.

(D₃) \(\cdot\) maps \(B \times A\) into \(A\).

(D₄) \(x0 = 0\).

(D₅) \(x0(a + b) = (x0a) + (x0b)\).

(D₆) \(x + y)0a = (x0a) + (x0b)\).

(D₇) \(x + y)0a = x + (y0a)\).
(D₈) \(x + y \circ (y \circ x) \leq y \circ (x \circ y) \).

There is an associated set algebra notion, namely an algebra

\[(A, u, n, I, B, u, \cdot, *, x)\]

such that \((A, u, n, I, B, u, \cdot, *, x)\) is a BA of subsets of \(I\), \(B\) is a set of binary relations on \(I\) closed under \(u, I\) (relative product) and \(*\), where \(*R\) is the reflexive, transitive closure of \(R\), and such that \(\cdot\) maps \(B \times A\) into \(A\) where, for any \(R \in B\) and \(X \in A\), \(\langle R, X \rangle = R^{-1} \cdot X\).

17. Schein [70]: \textit{general relation algebras.} This paper (a survey of his earlier work in this area) gives a general schema for arriving at finite dimensional set algebras related to cylindric algebras.

Fix \(m \in \omega\); we show how to construct algebras of \(m\)-ary relations. Let \(K\) be a class of relational structures (with primitive relations and functions). To a language \(\mathcal{L}\) appropriate for \(K\) we adjoin \(m\)-ary relation variables \(R_0, R_1, \ldots\). A possible model of \(\mathcal{L}\) is a pair \((\mathcal{R}, A)\) such that \(\mathcal{R} \in K\) and \(A\) is a set of \(m\)-ary relations on \(M\). A formula \(\varphi\) of \(\mathcal{L}\) is semi-closed if it has no free individual variables. \((\mathcal{R}, A)\) is a model of \(\varphi\) if \(\mathcal{M}_{\varphi}(\mathcal{R}, t(t)) = \mathcal{M}_{\varphi}(\mathcal{R}, t(t))\) for every \(R \in A\). Now let \(t \in \omega\) be a similarity type (of algebras). This type \(t\) does not have to have any relationship to the type of members of \(K\). A system \((\varphi_i : i \in I)\) of formulas of \(\mathcal{L}\) conforms to \(t\) provided that the following conditions hold for each \(i \in I\):

1. The free individual variables of \(\varphi_i\) are among \(v_0, \ldots, v_{m-1}\).
2. The relation variables of \(\varphi_i\) are among \(R_0, \ldots, R_{t+1-1}\).

Furthermore, let \((\mathcal{R}, A)\) be a model of a set \(\Gamma\) of semi-closed formulas of \(\mathcal{L}\). Then \((\varphi_i : i \in I)\) conforms to \(t; \mathcal{R}, A\) provided that it conforms to \(t\) and the following condition holds for each \(i \in I\):

3. For all \(R_0, \ldots, R_{t+1-1} \in A\), we have \(\{u \in M : (\mathcal{R}, A) \models \varphi_i[u_0, \ldots, u_{m-1}, R_0, \ldots, R_{t+1-1}]\} \in A\).

In case this happens, we can define a \textit{general relation algebra} \(\mathcal{R}_{t; \mathcal{R}, A} = \mathcal{R}\) with universe \(A\) and of type \(t\) as follows: for any \(R_0, \ldots, R_{t+1-1} \in A\),

\[E_t^\mathcal{R} = \{u \in M : (\mathcal{R}, A) \models \varphi_i[u_0, \ldots, u_{m-1}, R_0, \ldots, R_{t+1-1}]\}.

For any \(K, \mathcal{L}, \Gamma, t, \varphi\), \(\mathcal{R}_{K, \mathcal{L}, \Gamma, t}^{=}\) is the class of all general relation algebras \(\mathcal{R}_{t; \mathcal{R}, A}\) such that \((\mathcal{R}, A)\) is a model of \(\Gamma\) and \(\varphi\) conforms to \(t; \mathcal{R}, A\).

This completes the basic definitions. We give two examples:

1. \textit{Ordinary relation algebras.} Here \(m = 2\). \(K\) is the class of all sets, \(\Gamma = 0\), \(t = (2, 2, 1, 0, 2, 1, 0)\), and \(\varphi_0, \ldots, \varphi_7\) are the following formulas of \(\mathcal{L}\):
\(\varphi_0 : R_0 v_0 v_1 \lor R_1 v_0 v_1 \)
\(\varphi_1 : R_0 v_0 v_1 \land R_1 v_0 v_1 \)
\(\varphi_2 : \neg R_0 v_0 v_1 \)
\(\varphi_3 : F \)
\(\varphi_4 : T \)
\(\varphi_5 : \exists v_R (R_0 v_0 v_2 \land R_1 v_2 v_1) \)
\(\varphi_6 : R_0 v_0 v_0 \)
\(\varphi_7 : v_0 = v_1 \)

(2) Cylindric algebras of dimension \(m \in \omega - 1 \). Again \(K \) is the class of all sets, \(\Gamma = 0 \), \(t \) is the type of \(CA_m \)'s, where in addition to \(\varphi_0 - \varphi_4 \) above we have the following formula \(\psi \) for each \(i < m \):

\[\exists v_R R_0 v_0 \ldots v_{m-1}, \]

and the following formula \(\chi_{ij} \) for all \(i, j < m \):

\[v_i = v_j. \]

We know by 3.1.70 and 3.1.108 that for \(m < \omega \), \(IC_m^s \) is a universal class. The following theorem generalizes this.

THEOREM 5.6.18. Let \(m \in \omega \). If \(K \) is closed under ultraproducts, then \(IR_{K, \Gamma}^m \) is a universal class.

Proof. We omit the subscript on \(Rs \). First, \(IRs \) is closed under \(S \). For, let \(B \in IRs \). Say \(\varphi \) conforms to \(t, \Gamma, A, \langle R, A \rangle \) a model of \(\Gamma \), and \(B = \langle R, A \rangle \). Suppose \(C \subseteq B \). Clearly \(\langle R, C \rangle \) is a model of \(\Gamma \), \(\varphi \) conforms to \(t, \Gamma, C \), and \(\langle R, A \rangle = C \), as desired. We finish the proof by showing that \(IRs \) is closed under ultraproducts. Suppose that \(\mathcal{U}_s \in IRs \) for each \(s \in S \) and \(F \) is an ultrafilter on \(S \). Say \(\mathcal{U}_s = \langle R, A_s \rangle \) for each \(s \in S \), where \(\langle R, A_s \rangle \) is a model of \(\Gamma \) and \(\varphi \) conforms to \(t, \langle R, A_s \rangle \). Thus \(\mathcal{U} = \mathcal{U}_s \) is a member of \(E \). Now for each \(k \in P_s \subseteq A_s \) let

\[G_k = \{ \bar{F}^* a : a \in P \cap \mathcal{M}_{s} A_s \} \in F. \]

Then it is easily seen that if \(\bar{F}^* a \in G_k \) then \(\{ s \in S : (a, a, i < m) \in A_s \} \in F \), and if \(k/F = 1/F \) then \(G_k = G_1 \). Let \(C = \{ G_k : k \in P_s \subseteq A \} \). We claim that \((R, C) \) is a model of \(\Gamma \), \(\varphi \) conforms to \(t, \Gamma, C \), and \(P_s \subseteq \mathcal{H}_s \) if \(F \not\subseteq \mathcal{H}_s \). All of these conditions are straightforward, and we omit the proofs.

Schein also showed that in Theorem 5.6.18, if \(K \) is recursively axiomatizable, and \(\varphi \) and \(\Gamma \) are recursive, then \(IR_{K, \Gamma}^m \) is recursively axiomatizable.

18. Schwartz [77], [80]: Polyadic many-valued algebras. Polyadic algebras over an MV algebra rather than a \(BA \) are introduced, and a weak representation theorem is proved.
19. Schwartz [80a]: *Cylindric algebras with filter quantifiers*. Cylindric algebras are extended by additional operations q_{Γ} (Γ a finite subset of α) with axioms algebraically expressing the quantifier "for almost all", and a representation theorem is proved.

20. Schwartz [81]: *Algebraic analysis of Hermes' term logic with choice operator*. This is a rather unusual kind of algebra; a representation theorem is proved.

PROBLEMS

PROBLEM 5.1. Characterize those $\mathcal{U} \in \text{DfCA}_a$ for which there is a unique $\mathcal{B} \in \text{CA}_a$ such that $\mathcal{U} = \text{Df}\mathcal{B}$.

See Remark 5.1.5.

PROBLEM 5.2. Is there an equation not involving diagonal elements holding in every CA_a but not in every Df_a? Is $\text{SDfCA}_a = \text{Df}_a$?

Cf. 5.1.6 and 5.1.9(ii).
Recall that Dr_a is the class of all diagonal–free relativized algebras of dimension α. For the next problem cf. 5.1.14.

PROBLEM 5.3. Is Dr_a an equational class for $\alpha \geq 2$? Is $\text{SDr}_a = \text{Dr}_a$ or $\text{HDR}_a = \text{Dr}_a$?

PROBLEM 5.4. Is IGA_a finitely axiomatizable over the class of representable Df_a’s for $\alpha \geq 3$?

PROBLEM 5.5. For $3 \leq \alpha < \omega$, can every Df_a be embedded in $\mathcal{R}_{\text{df}}\mathcal{U}$ for some $\text{PA}_a\mathcal{X}$?

Cf. Remark 5.4.6.

PROBLEM 5.6. Extend 5.4.34 in some form to PA_a’s, for $3 \leq \alpha < \omega$.

PROBLEM 5.7. Is there a non–representable $\text{PEA}_a\mathcal{X}$ with $\mathcal{R}_{\text{df}}\mathcal{X}$ representable?

PROBLEM 5.8. Let $3 \leq \alpha < \omega$. Is the class of representable PEA_a’s finitely axiomatizable over the class of representable CA_a’s?

For these problems cf. Remarks 5.4.40.
I. BIBLIOGRAPHY OF CYLINDRIC ALGEBRAS AND RELATED ALGEBRAIC STRUCTURES

This bibliography is a continuation of the one with the same name in Part I. To distinguish entries here from those in the earlier volume, a prime ' is added here. The criteria for inclusion of works are the same as in Part I.

Abad, M. and Monteiro, L.

Andréka, H.

Andréka, H., Comer, S., and Németi, I.
[83a'] *Epimorphisms in cylindric algebras*. preprint.

Andréka, H. and Gergely, T.

Andréka, H., Gergely, T., and Németi, I.

Andréka, H., Gergely, T., Németi, I., and Sain, I.
[80'] *Theory morphisms, stepwise refinement of program specifications, representation of knowledge, and cylindric algebras*. preprint.

Andréka, H. and Németi, I.
[79a'] On the number of generators of cylindric algebras. preprint.
[84'] IWsα is not characterized by weak subdirect indecomposability and is not closed under directed unions either. preprint. 7pp.
[84a'] Cylindric algebras are subreducts of polyadic ones in dimension two. preprint. 11pp.
[84b'] Term definability of substitutions in Gs's. preprint. 14pp.

Andráska, H., Németi, I. and Sain, I.
[84'] Abstract model theoretic approach to algebraic logic. Manuscript. 70pp.

Andráska, H. and Sain, I.
Arnon, D. and McCallum, S.

Barthelemy, J. – P.

Barton, G.

Bednarek, A. and Ulam, S.

Benjaminov, E.
[80'] Algebraic structure of relational models of data bases. (Russian) Nauchn.—Tehn. Informacija (VINIIT) Ser. 2 Informatsionnye Processy i Sistemy, no. 9, 23–25. MR 82h:68127b.

Bergman, G.

Biró, B.
[84'] On isomorphic but not lower—base—isomorphic cylindric set algebras. preprint. 3pp.

Bor ric, B.

Brink, C.

Carrega, J.-C.
[71a'] Structure polyadique canonique sur un anneau libre. Séminaire de Logique algébrique de Lyon.

Carrega, J. and Coulon, J.

Collins, G.

Comer, S.
[81'] Combinatorial aspects of relations. preprint. 25 pp.

Coulon, J. - L.

Coulon, R.

Craig, W.
[74b'] Logic in algebraic form, North–Holland, viii + 204 pp.
Daigneault, A.

Danecki, R.

Davey, B.

Demaree, D.

Dragalin, A.

Erdős, P., Faber, V. and Larson, J.

Feldman, N.

Felscher, W.

Fereczi, M.

[84a'] On the extension of mappings to cylindric homomorphisms. To appear.

Fischer–Servi, G.

Freeman, J.

Georgesca, G.

Georgescu, G. and Vraciu, C.

Gergely, T.

Grant, J.

Griffin, J.

Hanschel, G.

Hansoul, G.

Henkin, L.
[73'] Internal semantics and algebraic logic. Truth, syntax, and modality, North—Holland, pp. 111—127. MR 52#13881.
Henkin, L. and Monk, J. D.

Henkin, L., Monk, J. D., and Tarski, A.

[84'] Representable cylindric algebras. preprint. 65pp.
Henkin, L., Monk, J. D., Tarski, A., Andréka, H., and Németi, I.

Henkin, L. and Resek., D.

Hennessey, M.

Imieliński, T. and Lipski, W.

[84'] The relational model of data and cylindric algebras. J. Computer and System Sciences, 28, 80—103.

Iturroz, L.

Jaśkowski, S.

Jeroslow, R.

Johnson, J. S.

[72'] Triples for classes which are not varieties. Alg. Univ., vol. 2, pp. 3—6. MR 51#7996.

Jönsson, B.

Jurie, P. – F.

[73c'] Recherches sur le probleme de la representabilitè des algèbres polyadiques de degré fini, thèse, Clermont–Ferrand, 82pp.

Kagan, J., Quackenbush, R.

Kogalovskii, S. and Cepurnov, B.

Kotar, J. and Pieczkowski, A.

Kozen, D.

[79a'] On the representation of dynamic algebras. preprint.

[80a'] On the representation of dynamic algebras II. preprint. 10 pp.

Kramer, R. and Maddux, R.

Kramosil, I.

Kuhn, S.

Kwatinetz, M.

Laita, L.

Larson, J.

[83a'] The number of finitely generated infinite cylindric algebras of dimension two. preprint, 34 pp. To appear, Alg. Univ.

[84'] The number of one-generated cylindric set algebras of dimension greater than two. To appear, J. Symb. Logic.
Lucas, Th.

Maddux, R.

Maddux, R. and Tarski, A.

Magari, R.

Manca, V. and Salibra, A.

Mangione, C.

Marcja, A.

Mayet, A.

Mayet, R.

McKenzie, R.
Monk, J. D.
47–55.
53–71.
353–358.
[74'] Connections between combinatorial theory and algebraic logic. Studies in Math.,
[76'] Mathematical Logic. Springer Verlag, 531 pp.
[77'] Some problems in algebraic logic. Colloq. Inter. de Logic, CNRS vol. 249, pp.
83–88.
Monteiro, L.
[74'] Trivalent monadic Lukasiewicz algebras. Inst. de Mat., Univ. Nac. del Sur,
[77'] Algèbres de Post et de Moisil trivalentes monadiques libres. Logique et Analyse,
vol. 20, pp. 329–337.
Morais, R.
[77'] Projective logics and projective Boolean algebras. Non–classical logics, model
theory and computability, North–Holland, pp. 201–221.
Mortimer, M.
135–140.
Myers, D.
[76'] Cylindric algebras of first–order languages. Trans. Amer. Math. Soc., vol. 216,
Németi, I.
[79'] The class of cylindric–relativized set algebras is a variety. preprint.
[80'] Some constructions of cylindric algebra theory applied to dynamic algebras of
[81'] Connections between cylindric algebras and initial algebra semantics of CF
languages. Mathematical logic in computer science, Colloq. Math. Soc. J.
[81a'] Dynamic algebras of programs. Fundamentals of Computation Theory. Lecture
[82'] Every free algebra in the variety generated by the representable dynamic algebras
83i:08010.
[83'] Beth definability is equivalent with surjectiveness of epis in general algebraic
logic. preprint, 35pp.
389.
[83b'] C_{G_2} has strong amalgamation. preprint. To appear, J. Symb. Logic.
[83c'] The class of neat reducts of cylindric algebras is not a variety but is closed with
Ng, K. C.

Ng, K. C. and Tarski, A.

Olivier, J. - P.

Ouellet, R.

Pálfy, P. P.

Petrascu, I.

Pieczkowski, A.
[68'] Undecidability of the homogeneous formulas of degree 3 of the predicate calculus. Studia Logica, vol. 22, pp.7–16.

Pigozzi, D.

Pinter, C.

Plotkin, B. I.
[84'] Databases and Halmos algebras. Preprint, Institute of aviation, Riga, USSR.

Poiat, B.

Ribeyre, S. [71] Quantificateurs et anneaux monadiques pseudo–rationnels, completion monadique. These, Lyon.

Sales, F.

Saneib, R.

Schein, B.

Schlosser, B.

Schmidt, K.

Schöfledt, W.

Scott, D. S.

Schwartz, D.

Selvi, R.

Serény, G.

Serv, M.

Simi, G.
Sobociński, B.

Streckert, J.

Sudkamp, T.

Sweet, A.

Tambrowski, B.

Thompson, R. J.

Topencaror, V.

Tuschik, H.-P.

Urquhart, A.

Vaslavsky, O.

Volger, H.

Vuckovic, V.

Wadge, W.
[76'] A complete natural deduction system for the relational calculus. Theory of Computation Report No. 6, Univ. Warwick.

Westner, U.
Wu, Y. — y.

Zlatoš, P.

[83'] Two notes on locally finite cylindric algebras. preprint.

[84'] On conceptual completeness of syntactic–semantical systems. preprint.
This bibliography contains new works referred to in Part II. In Part II we also refer to some of the works listed in the Supplementary Bibliography of Part I. To distinguish between this bibliography and the corresponding one in Part I, we add to the dates of the items two asterisks **.

Baker, K. A.

Chang, C. C. and Keisler, H. J.

Davis, M.

Ehrenfeucht, A. and Fuhrenken, G.

Greenwood, R. and Gleason, A.

Jönsson, B.

Makowsky, J. and Tulipani, S.

Markov, A.

[47**] On the impossibility of certain algorithms in the theory of associative systems. DAN SSSR vol. 55, pp. 587–590.

Monk, J. D.

Pierce, R. S.

Post, E.

Seidenberg, A.

INDEX OF SYMBOLS
This index is a continuation of the index in Part I.

CYLINDRIC ALGEBRAS

\(f_u \)
function \(f \) with \(u \) replacing \(\phi \)th entry, 3

\(D^{[V]}_\alpha \)
generalized set-theoretical diagonal element, 3

\(C^{[V]}_\alpha \)
generalized set-theoretical cylindrification, 4

\(C_{\alpha} \)
class of all cylindric set algebras of dimension \(\alpha \), 4

\(G_{\alpha} \)
class of all generalized cylindric set algebras of dimension \(\alpha \), 4

\(K^{\text{rep}} \)
class of all regular members of \(K \), 4

\(W^{(p)}_\beta \)
weak Cartesian space with base \(W \), dimension \(\beta \), determined by \(p \), 5

\(W_s_{\alpha} \)
class of all weak cylindric set algebras of dimension \(\alpha \), 5

\(G_{W_{\alpha}} \)
class of all generalized weak cylindric set algebras of dimension \(\alpha \), 5

\(G_{W_{\alpha}}^{nm} \)
class of all normal \(G_{W_{\alpha}} \)'s, 6

\(G_{W_{\alpha}}^{ud} \)
class of all widely distributed \(G_{W_{\alpha}} \)'s, 6

\(G_{W_{\alpha}}^{cm} \)
class of all compressed \(G_{W_{\alpha}} \)'s, 6

\(\mathcal{K} \)
class of all \(\mathcal{K} \in \mathcal{K} \) all of whose subbases have power \(\kappa \), 6

\(\mathcal{K}^{<\kappa} \)
class of all \(\mathcal{K} \in \mathcal{K} \) all of whose subbases have power \(<\kappa \), 6

\(\mathcal{K}^{=\kappa} \)
class of all \(\mathcal{K} \in \mathcal{K} \) with all subbases infinite, 6

\(\mathcal{R} \mathcal{K} \)
class of all relativizations of members of \(\mathcal{K} \), 6

\(\vec{f} \)
base-isomorphism determined by \(f \), 15

\(\hat{f} \)
base-homomorphism associated with \(f \), 22

\(S^{m}_\kappa \)
set of all small elements of \(\mathcal{A} \), 24

\(\mathcal{R} \mathcal{I}^{m}_\kappa \)
ideal associated with regularity concepts, 24

\(D^{m}_\kappa, D^{m}_\kappa^2 \)
subalgebra with universe \(\{x \in A : |x - x'| < \omega\} \), 24

\(\mathcal{I} \mathcal{C} \)
relativization function, 30

\(\text{Rep}(F, U, \alpha, A, c) \), \(\text{Rep}(c) \)
homomorphism from an ultraproduct into a \(C_{\alpha} \), 33

\(c^{(\prime)}_q \)
modified function associated with a choice function \(c \) and a sequence \(q \), 33

\(r_b^{\phi} \)
reduct base function, 53

\(r_d^{\phi} \)
reduct function, 53

\(\mathcal{R} \mathcal{K}(\kappa, \alpha) \)
regular locally finite \(C_{\alpha} \) with base \(\kappa \), 55

\(g_{\mu \alpha} \)
\(\Pi\{d_{\mu \nu} : \mu, \nu < \kappa, \mu \neq \nu, \{\mu, \nu\} \cap \{\rho, \sigma\} = \emptyset\} \), 69
INDEX OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_α</td>
<td>$g_{pp}, 69$</td>
</tr>
<tr>
<td>$f_{\mu\nu}$</td>
<td>$d_{\mu\nu}, e_\nu, 69$</td>
</tr>
<tr>
<td>$s[\lambda, \mu]$</td>
<td>substitution defined for $\alpha<\omega, 70$</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>set of all \dot{f} for $f \in C, 85$</td>
</tr>
<tr>
<td>$\mathcal{P}_{\mathcal{B}f}, \mathcal{B}{\mathcal{B}_f}$</td>
<td>fixed subalgebra of $\mathcal{B}, 85$</td>
</tr>
<tr>
<td>$\mathcal{A}_{\mathcal{G}_f}$</td>
<td>cylindric algebra associated with a quasigroup $\mathcal{G}, 92$</td>
</tr>
<tr>
<td>$\mathcal{R}_{\mathcal{G}_f}$</td>
<td>$\mathcal{C}_{\mathcal{A}_3}$ associated with a projective geometry $\mathcal{G}, 94$</td>
</tr>
<tr>
<td>$\mathcal{C}_{\mathcal{G}_f}$</td>
<td>cylindric algebra associated with graphs without triangles, 95</td>
</tr>
<tr>
<td>$\mathcal{C}_{\mathcal{G}_f}$</td>
<td>modified CA associated with graphs without triangles, 97</td>
</tr>
<tr>
<td>$\mathcal{E}_{\mathcal{G}_K}$</td>
<td>smallest equational class containing $\mathcal{K}, 109$</td>
</tr>
<tr>
<td>$\mathcal{U}_{\mathcal{G}_K}$</td>
<td>smallest universal class containing $\mathcal{K}, 109$</td>
</tr>
<tr>
<td>$\mathcal{E}_{\mathcal{G}_K}$</td>
<td>smallest elementary class containing $\mathcal{K}, 109$</td>
</tr>
<tr>
<td>$\mathcal{A}_{\mathcal{G}_f}$</td>
<td>absolutely free algebra with empty set of generators, 153</td>
</tr>
<tr>
<td>$\mathcal{G}_{s, \mathcal{K}}$</td>
<td>the \mathcal{G}_s associated with a set \mathcal{K} of models, 168</td>
</tr>
</tbody>
</table>

METALOGIC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L}_α</td>
<td>discourse language for $\mathcal{C}_{\mathcal{A}_3}, 110$</td>
</tr>
<tr>
<td>$\mathcal{T}{\mathcal{L}\alpha}$</td>
<td>set of terms of $\mathcal{L}_\alpha, 110$</td>
</tr>
<tr>
<td>$\mathcal{E}{\mathcal{L}\alpha}$</td>
<td>set of equations of $\mathcal{L}_\alpha, 110$</td>
</tr>
<tr>
<td>γ^+</td>
<td>mapping from T_{μ}^α into T_{μ}^β associated with $\gamma \in \mathcal{G}_s, 110$</td>
</tr>
<tr>
<td>ν^+</td>
<td>integer associated with $\nu<\omega$, ν a finite subset of $\alpha, 112$</td>
</tr>
<tr>
<td>κ_ν^+</td>
<td>abbreviation, formal general cylindrification, 112</td>
</tr>
<tr>
<td>Θ</td>
<td>abbreviation, formal symmetric difference, 112</td>
</tr>
<tr>
<td>Γ^α</td>
<td>a certain formal sum, 112</td>
</tr>
<tr>
<td>α^\blacktriangle</td>
<td>a certain equation in $\mathcal{L}_\alpha, 112$</td>
</tr>
<tr>
<td>Δ^α</td>
<td>equations such that $\mathcal{C}_{\mathcal{A}3} = \text{Mdl}{\alpha}, 112$</td>
</tr>
<tr>
<td>$\mathcal{O}_{\mathcal{C}}$</td>
<td>set of indices of c, d occurring in $\mathcal{C}, 115$</td>
</tr>
<tr>
<td>$A_{\mathcal{C}}$</td>
<td>first-order axioms for $\mathcal{L}_{\mathcal{C}}, 115$</td>
</tr>
<tr>
<td>Dim_{σ}</td>
<td>formal dimension of the term $\sigma, 116$</td>
</tr>
<tr>
<td>equiv_{σ}</td>
<td>special provability notion for equations, 117</td>
</tr>
<tr>
<td>$\mathcal{A}_{\mathcal{C}}$</td>
<td>class of all algebras similar to $\mathcal{C}_{\mathcal{A}_3}$'s, 118</td>
</tr>
<tr>
<td>$\mathcal{N}{\mathcal{R}\alpha}$, $\mathcal{R}{\mathcal{R}\alpha}$</td>
<td>neat reduct of $\mathcal{R}, 118$</td>
</tr>
<tr>
<td>$\mathcal{N}_{\mathcal{C}}$</td>
<td>class of neat reducts of members of $\mathcal{K}, 118$</td>
</tr>
<tr>
<td>σ^+</td>
<td>relativized form of $\sigma, 130$</td>
</tr>
<tr>
<td>Θ</td>
<td>free semigroup, 136</td>
</tr>
<tr>
<td>σ^T, \approx_T, \approx_X</td>
<td>derivability notions associated with $\Theta, 136, 137$</td>
</tr>
<tr>
<td>$\mathcal{E}_{\mathcal{C}}$</td>
<td>ideal associated with the elementary theory of the BA $\mathcal{X}, 141$</td>
</tr>
<tr>
<td>$\mathcal{M}_{\mathcal{X}}$</td>
<td>many-sorted \mathcal{C} associated with a Cs $\mathcal{X}, 148$</td>
</tr>
<tr>
<td>$\mathcal{C}_{\mathcal{A}_3}$</td>
<td>\mathcal{C} associated with $\mathcal{R}, 148$</td>
</tr>
</tbody>
</table>
\(\mathcal{M}_\alpha\) many-sorted language suitable for many-sorted Cs's, 149

A, U, V, I, Proj, E, C, D, \(+,-, 1, k_\varepsilon\) symbols of \(\mathcal{M}_\alpha\), 149

trans translation function from \(\mathcal{E}_\alpha\) to \(\mathcal{M}_\alpha\), 149

A,K,N,Q,E,T,F logical constants, 152

\(\phi^\Lambda\) collection of all formulas of \(\Lambda\), 152

\(\phi^\Lambda_\varphi\) collection of all restricted formulas of \(\Lambda\), 152

\(\mathcal{T}m^\Lambda\) algebra of formulas over \(\Lambda\), 153

\(\mathcal{T}m^\Lambda_\varphi\) algebra of restricted formulas over \(\Lambda\), 153

\(\mathcal{R}\) set of sequences satisfying \(\varphi\) in \(\mathcal{R}\), 153

\(\mathcal{C}_\varphi\mathcal{R}\) cylindric set algebra determined by \(\mathcal{R}\), 154

\(\mathcal{C}_\varphi^\mathcal{R}\) cylindric set algebra determined by \(\mathcal{R}\) using restricted formulas, 154

\(\mathcal{R}d_{\mathcal{R}}\) model determined by \(\Lambda\), \(\mathcal{R}\), \(x\), 155

\(z = \varphi [x]\) \(x\) satisfies \(\varphi\) in \(\mathcal{R}\), 155

\(\mathcal{K}\mathcal{R}, \mathcal{K} = \varphi, \Sigma = \varphi, \vdash \varphi\) related notions, 155, 156

\(\mathcal{M}c\Sigma\) class of all models of \(\Sigma\), 155

\(\mathcal{S}^{\Lambda}_\Sigma, \mathcal{S}^{\Lambda_\varphi}_\Sigma\) congruence relations determined by \(\Sigma\), 156

\(\mathcal{S}^{\Lambda}_{\mathcal{T}m^\Lambda_\varphi}, \mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}\) algebras of formulas determined by \(\Sigma\), 156

\(\Gamma \vdash \varphi\) ordinary provability notion, 157

\(\Lambda^\varphi\) set of logical axioms for \(\Lambda\), 157

\(\Gamma \vdash^\varphi \varphi, \Gamma \vdash^{\Lambda_\varphi} \varphi, \Gamma \vdash^{\Lambda} \varphi\) provability for restricted formulas, 157

\(\mathcal{P}^{\Lambda}_\Sigma\) congruence relation associated with provability from \(\Gamma\), 158

\(f^\varphi\) extension of an interpretation to a homomorphism, 165

\(\mathcal{R}d_f\mathcal{R}\) model determined by an interpretation \(f\) and a model \(\mathcal{R}\), 170

\(\mathcal{M}c\mathcal{X}\) class of models determined by a \(G_{\alpha} \mathcal{X}\), 170

\(\mathcal{A}_\varphi\) a full language with \(Do\mathcal{R} = \omega\), 171

\(\xi^{\varphi}, \xi^\varphi\) a formula associated with the term \(\varphi\), 171

\(\tau^{\varphi}\) a term associated with a formula, 171

\(\Lambda_\varphi\) a "universal" ordinary language, 172

\(\xi^\varphi\) a formula associated with the term \(\varphi\), 172

\(\tau^{\varphi}\) a term associated with the formula \(\varphi\), 173

\(f^\varphi\) permutation of \(\phi^{\Lambda_\varphi}\) induced by the permutation \(f\) of \(\omega\), 174

\(\mathcal{S}^{\Lambda}_{\mathcal{T}m^\Lambda}, \mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}, \mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}\) set of all restricted formulas not involving equality, 203

\(\mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}\) algebra of restricted formulas not involving equality, 203

\(\mathcal{L}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}\) notions without equality analogous to the ones with equality, 203

\(\mathcal{S}^{\Lambda}_{\mathcal{T}m^\Lambda}, \mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}, \mathcal{S}^{\Lambda_\varphi}_{\mathcal{T}m^\Lambda_\varphi}\) abstract class of syntactic categories, 255
INDEX OF SYMBOLS

Sem abstract semantic function, 255

OTHER ALGEBRAIC LOGICS

\(\mathfrak{A} \) diagonal-free reduct of a CA \(\mathfrak{A} \), 183
\(\mathfrak{DfK} \) class of diagonal-free reducts of members of \(\mathfrak{K} \), 184
\(\mathcal{Rl}_{\mathfrak{A}} \) relativization to \(b \) of a \(\mathcal{Df}_b \mathfrak{A} \), 186
\(\mathcal{Df}_a \) class of all diagonal-free relativized algebras of dimension \(a \), 186
\(\mathcal{Csef}_a \) class of all \(df \)-cylindric set algebras, 192
\(\mathcal{Csef}_u_a \) class of all uniform \(\mathcal{Csef}_a \)'s, 192
\(\mathcal{Gsef}_a \) class of all \(a \)-dimensional generalized diagonal-free cylinder set algebras, 192
\(\mathcal{Gsef}_u_a \) class of all uniform \(\mathcal{Gsef}_a \)'s, 192
\(\mathcal{P}_{\mathcal{U}_d} \) \(\{ q \in \mathcal{P}_{\mathcal{U}_d} U_r : \{ i < a : q_i = p \} \text{ is finite} \} \), 192
\(\mathcal{Wsef}_a \) class of all \(a \)-dimensional weak \(df \)-cylindrical set algebras, 192
\(\mathcal{Gwsef}_u \) class of all generalized weak \(df \)-cylindrical set algebras, 192
\(\mathcal{Gwsef}_{us} \) class of all normal \(\mathcal{Gwsef}_u \)'s, 193
\(\mathcal{Gwsef}_{ud} \) class of all widely-distributed \(\mathcal{Gwsef}_u \)'s, 193
\(\mathcal{Gwsef}_{um} \) class of all compressed \(\mathcal{Gwsef}_u \)'s, 193
\(\mathcal{P}_0, \mathcal{P}_1 \) projection operators in a projective algebra, 205
\(\square \) rectangle operator in a projective algebra, 205
\(\mathcal{PA} \) class of all projective algebras, 205
\(\mathcal{RA} \) class of all relation algebras, 211
\(\mathcal{Rs} \) class of all relation set algebras, 211
\(\mathcal{RRA} \) class of all representable relation algebras, 211
\(\mathcal{Ra}_\mathfrak{A} \) relation algebra associated with a CA \(\mathfrak{A} \), 216
\(\mathcal{PA}_a \) class of all polyadic algebras of dimension \(a \), 225
\(\mathcal{PEA}_a \) class of all polyadic equality algebras of dimension \(a \), 226
\(\mathcal{Rb}_{ca} \mathfrak{A} \) cylindric reduct of \(\mathfrak{A} \), 226
\(\mathcal{Rb}_{df} \mathfrak{A} \) diagonal-free reduct of \(\mathfrak{A} \), 226
\(\mathcal{Rd}_{df} \mathfrak{K} \) class of all diagonal-free reducts of members of \(\mathfrak{K} \), 226
\(\mathcal{Rd}_{ca} \mathfrak{K} \) class of all cylindric reducts of members of \(\mathfrak{K} \), 226
\(\mathcal{LPEA}_a \) class of all locally-finite-dimensional \(\mathcal{PEA}_a \)'s, 229
\(\mathcal{L}_{\mathcal{PEA}_a} \) the \(\mathcal{PEA}_a \) associated with an \(\mathcal{Li}_a \mathfrak{A} \), 229
\(\mathcal{Rl}_{\mathfrak{A}} \mathfrak{A} \) relativization of a \(\mathcal{PA}_a \) or \(\mathcal{PEA}_a \mathfrak{A} \), 230
\(\mathcal{Ar}_{\mathfrak{A}}, \mathcal{Nr}_{\mathfrak{A}} \) neat reduct of a \(\mathcal{PA}_a \) or \(\mathcal{PEA}_a \mathfrak{A} \), 232
\(\mathcal{C}_{\mathfrak{M}} \) complex algebra for \(\mathcal{PA}_a \)'s, 234
\(\mathcal{C}_\mathcal{W} \) generalized set-theoretical cylindrical reductification, 235
\(\mathcal{S}_{\mathfrak{W}} \) set-theoretical substitution, 235
\(\mathcal{Ps}_a \) class of all polyadic set algebras of dimension \(a \), 235
\(\mathcal{Pse}_a \) class of all polyadic equality set algebras of dimension \(a \), 235
INDEX OF NAMES AND SUBJECTS

The main reference to a subject is given in boldface type

Abad, M., 275
absolutely free algebras, 153
abstract algebraic logic, 255
abstract model theory, 265
algebraic logics, 258ff
algebraic term logic, 271
algebraic theory of PA_n's, 230ff
algebraic theory of RA's, 214ff
algebraically closed class, 46
algebras of sets of finite sequences, 265
almost onto, 259
Arnon, D., 276
augmented cylindric theory, 285
axiomatizable by a countable schema of equations, 110ff, 202
axiomatizable by a finite schema of equations, 110ff, 202, 252
Baker, K., 119, 289
Barthelemy, J. – P., 276
Barton, G., 276
base–homomorphism, 33, 46, 170f
base–isomorphic, 16, 85, 177
basic symbols, 256
Bednarek, A., 205, 276
Beniaminov, E., 276
Bergman, G., 28, 279
Bernays, P., 263, 264
Beth property, 259
Beth’s theorem, 178, 250ff
Biró, B., 276
Boolean group, 93
Borjic, B., 276
Brink, C., 276
Carrega, J. – C., 277
Cartesian space, 5
κ–categoricity, 177
category, 167
Čepurnov, B., 281
Chang, C. C., 41, 42, 45, 116, 251, 289
change of base, 15ff
characteristic 16, passim
characterization of ICrS_2, 245ff
Chin, L., 205, 211, 212
(FU,α) – choice function, 33
Collins, G., 277
coloring, 95ff
Comer, S., 27, 68, 76, 77, 101, 102, 105, 121, 147, 229, 275, 277
compactness theorem, 176
complete algebraic form of a language, 157
complete algebraic form of a theory, 157
complete, 177
completeness theorem, 59, 160, 176
complex algebra of a PA_n, 234
compressed, 6, 44, 193
conforms, 269
conservative expansion, 167
constants, 59f
Copeland set algebra, 264
Copeland, A., 264
Coulon, J. – L., 277
Coulon, R., 277
Craig, W., 264, 265, 277
cylindric algebras over a Boolean ring, 267
cylindric algebras with filter quantifiers, 271
cylindric field of sets, 4
cylindric reduct, 226
cylindric set algebra with generators, 155, 176
cylindric set algebra, 4, 33ff
cylindric–relativized field of sets, 4
cylindric–relativized set algebra, 4, 16, 28, 30, 33ff, 42ff, 50ff, 58, 245ff
df–cylindric set algebra, 192
df–cylindric–relativized field of sets, 192
df–cylindric–relativized set algebra, 192
INDEX OF NAMES AND SUBJECTS

Daigneault, A., 225, 232, 244, 266f, 278

Danecki, R., 278

Davey, B., 278

Davis, M., 136, 137

Davis, M., 289
decision problems, 131ff
decreasing base theorem, 17, 19
deduction theorem, 161
defective atom, 79
definable by a type schema, 261
defines explicitly, 259
defines implicitly, 259
definitionally equivalent, 167, 176

demaree, D., 94, 264, 278
desargue's condition, 94
detachment, 157
diagonal-free cylindric algebras, 183ff, 273
diagonal-free reduct, 226
diagonal-free relativized algebra, 186, 191
dilation, 85, 86
dimension-complemented CA's, 115ff
dimension-complemented Df's, 189
dimension-complemented, 262
dimension-restricted free algebra, 156, 178
direct factor, 40
directed unions, 41
directly indecomposable Df's, 188f
directly indecomposable, 32
discrete Df's, 183

Dragalin, A., 278
duality principle for relation algebras, 212
dynamic algebras, 268
degree coloring, 95
Ehrenfeucht, A., 162, 164, 289
elementary arithmetic of RA's, 212ff
elementary class, 179
elementary equivalence, 169, 176
elementary extension, 18, 177
elementary substructure, 18

elementary theory, 123ff, 141f, 147
elementary transformation, 68

L—epimorphism, 259

equation, 152, 194

equational class, 109, 112, 247, 273

equational theory of Df's, 202
equations characterizing Ig's, 112ff, 179
equations in CA^2's, 132ff
equations in CA^2's, 136ff

erdos, P., 28, 278
everett, C., 79, 205, 206
expansion, 167

ext-base—isomorphism, 18

ext—isomorphism, 18

extended cylindric algebras, 267

faber, V., 28, 278

faithful interpretation, 167

feldman, N., 278

felscher, W., 278

fenstad, J., 225

ferenczi, M., 23, 278

filter, 181

finite axiomatizability, 110

finite sequence set algebra, 265

finite transformation, 68

finiteness generating condition, 262

fischer—servi, G., 278

fits, 170

fitting function, 170

X-formulas, 259

free Df's, 188

free cylindric algebra, 162, 180

freeman, J., 266, 278

fuhrken, G., 162, 164, 289

full cylindric—relativized field of sets, 5

full cylindric—relativized set algebra, 5

full language, 152

full relation set algebra, 211

galler, B., 63, 225

general context—free grammar, 256
general language, 255
general relation algebras, 269
generalization, 157
generalized cylindric field of sets, 4
generalized cylindric set algebra, 4, 12, 14, 22, 30, 33ff, 43, 55ff, 110, 168ff
generalized weak df-cylindric set algebra, 192
generalized weak field of sets, 4, 171
generalized weak set algebra, 5, 12, 25, 31, 33ff, 43ff, 52
generalized df-cylindric set algebra, 192

generalized quantifier algebras, 268
generator—free, 155, 176
generators in Df's, 185, 187
generators, 26ff, 142f, 170ff
gheorgescu, G., 225, 266, 278f
INDEX OF NAMES AND SUBJECTS

Gergely, T., 151, 153, 165, 167, 174, 259, 267, 275, 279
Gleason, A., 98, 289
Grant, J., 279
graphs, 85
Greenwood, R., 98, 289
Griffin, J., 151, 279
group, 92f
Halmos, P. R., 59, 63, 183 193, 194, 225, 226, 232 266
Handschel, G., 279
Hansoul, G., 279
Henkin, L., 3–105, passim; 125, 132, 151, 153, 216, 235, 243, 245, 247, 279f
Hennessey, M., 280
hereditarily non–discrete, 58
Hermes, H., 271
Hoehnke, H.–J., 161, 165
homomorphisms, 28ff, 43, 58, 166, 176, 195
Howard, C., 265
hyperplane, 65, 94
ideal in a Gα, 247
Imleniski, T., 280
increasing bases, 45, 47
indecomposable, 32, 128, 188
interpretation of models, 168
interpretation, 165, 176
Iurrez, L., 280
Jaszkowski, S., 153, 280
Jeroslow, R., 225, 280
Johnson, J. S., 94f, 120, 193, 197, 225, 236, 244, 280
Jonsson, B., 68, 75f, 101, 119, 120, 211, 214, 233, 289
Jurie, P.–F., 225, 280f
Kagan, J., 281
Kaluzhnin, L., 285
Keisler, H. J., 41, 42, 45, 116, 244, 289
Kogalovskii, S., 281
Konig’s lemma, 114
Kozen, D., 208f, 281
Kramer, R., 281
Kramosil, I., 225, 281
Kripke semantics, 266
Kuhn, S., 281
Kwasinetz, M., 281
Laita, L., 281
language, 152ff
Larson, J., 27, 205, 278, 281

lattice, 119f
LeBlanc, L., 225, 267
Lipaki, W., 280
locally finite–dimensional, 26, 28, 52, 55ff, 116ff, 159, 174, 262
locally finite–dimensional PAα, 229
logical constants, 152
logical representation theorem, 151, 161
loop, 92
Łoś lemma, 40
Lowenheim–Skolem theorem, 17, 38, 193
Lucas, T., 120, 226, 267, 281
Lyndon, R., 211
Maddux, R., 125, 136, 202, 211, 212, 220, 281f
Magari, R., 282
Makowsky, J., 266, 289
Manca, V., 282
Mangione, C., 282
many–sorted Cs, 148
many–sorted algebra, 148f, 257
Marcja, A., 282
Markov, A., 136, 289
Mayet, A., 282
Mayet, R., 282
McCallum, S., 276
McKenzie, R., 112, 141, 211, 214, 282
McKinsey, J. C. C., 205f
measurable, 104
merry–go–round identity, 101
minimal Cα, 64, 122, 131, 180
minimal subalgebra of a Dfα, 186
minimal subalgebra, 29
modal cylindric algebra, 265
modal cylindric set algebra, 266
model theory, 109ff
X–K–model, 259
monadic–generated CAα, 64, 131ff
monadic–generated Dfα, 187
Monk, J. D., 3, passim
monotone polyadic algebra, 266
Monteiro, L., 275, 283
Morais, R., 283
Mortimer, M., 283
Myers, D., 283
neat o-subreduct, 262
neat embedding of polyadic algebras, 232
Ng, K. C., 283
non-finite axiomatizability, 110ff
non-finitizability for Cr's, 252
non-finitizability for Df's, 201ff
non-logical constants, 259
non-representable CA's, 85ff
non-representable polyadic algebras, 238ff
nonhomogeneous polyadic algebras, 267
Normal, 6, 26, 193
Olivier, J. – P., 284
omitting types, 178
ordinary interpretation, 169
ordinary language, 152, 176
Ouellet, R., 284
Palfy, P., 28, 284
permutation models, 85
Petrescu, I., 225, 284
Piecikowski, A., 267, 281, 284
Pierce, R. S., 101, 289
Pigozzi, D., 155, 188, 247, 284
Pinter, C., 225, 267f, 284
Plotkin, B., 284
Polak, B., 284
polyadic o-valued Łukasiewicz algebra, 266
polyadic algebras, 59, 63, 67, 183, 235ff, 244, 273
polyadic equality algebra, 226
polyadic equality set algebra, 235
polyadic higher-order algebras, 271
polyadic interior algebra, 266
polyadic many-valued algebras, 270
polyadic set algebra, 235
polyadic tense algebra, 266
polynomial equivalence, 207f, 229
Ponse, D., 284
Poschel, R., 285
positive characteristic, 59, 64, 68ff, 127, 229
possible model, 153
Post, E., 136, 289
Potthoff, K., 225, 285
Pratt, V., 268, 285
Preller, A., 288
preserving joins, 178
preserving meets, 178
prime model, 178
CA-prime, 178
products of Df's, 188
products, 50ff, 174
projective algebras, 183, 206ff
projective geometries, 85, 93
projective set algebra, 205
Quackenbush, R., 281
quasi-polyadic algebra, 266
quasigroups, 85, 91, 101
Quine, W., 285
Ramsey's theorem, 95, 98
rectangular atoms, 59, 68ff, 196
rectangular atoms in polyadic algebras, 243
recursively enumerable, 132, 150
reduct, 50ff, 63, 104, 125ff
reducts of Df's, 191
regular, 4, 10, 18, 24ff, 30, 37, 42, 52, 60, 63, 104, 192, 235
Γ-regular, 25
Reiterman, J., 285
relation algebras, 183, 211f, 269
relation set algebra, 211
relation symbols, 152
relation variables, 269
relational atomic formula, 152
relative product, 88, 138
relativization, 12ff, 101, 130
relativized cylindric algebras, 183, 245ff
relativized polyadic algebra, 230
representable CA's, 79ff
representable Df's, 192ff
representable Df's', 190ff
representable PA's, 240
representable cylindric algebra, 4, 45, 59, 79, 161
representable polyadic (equality) algebra, 235
representable relation algebra, 211, 220
Resek, D., 101, 148, 244, 245, 250, 247, 280, 285
restricted formula, 152ff
Ribeyre, S., 285
rich cylindric algebra, 61ff
rich polyadic equality algebra, 242
Rota, G. – C., 285
Rubin, M., 141, 285
rules, 286
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sain, I.</td>
<td>20, 31, 103f, 151, 165, 255, 258, 263, 275f, 285</td>
</tr>
<tr>
<td>Sales, G.</td>
<td>286</td>
</tr>
<tr>
<td>Salibra, A.</td>
<td>282</td>
</tr>
<tr>
<td>Sanerib, R.</td>
<td>151, 286</td>
</tr>
<tr>
<td>saturated models</td>
<td>178</td>
</tr>
<tr>
<td>Schein, B.</td>
<td>148, 269f, 286</td>
</tr>
<tr>
<td>Schroeder, B.</td>
<td>286</td>
</tr>
<tr>
<td>Schmidt, K.</td>
<td>286</td>
</tr>
<tr>
<td>Schonfeld, W.</td>
<td>286</td>
</tr>
<tr>
<td>Schröder, E.</td>
<td>211, 212</td>
</tr>
<tr>
<td>Schwartz, D.</td>
<td>264, 270f, 286</td>
</tr>
<tr>
<td>Scott, D.</td>
<td>132, 286</td>
</tr>
<tr>
<td>section</td>
<td>102</td>
</tr>
<tr>
<td>Seidenberg, A.</td>
<td>94, 289</td>
</tr>
<tr>
<td>Selvi, R.</td>
<td>286</td>
</tr>
<tr>
<td>semantically well-presented</td>
<td>258</td>
</tr>
<tr>
<td>semi-closed formulas</td>
<td>269</td>
</tr>
<tr>
<td>semigroup</td>
<td>68, 137</td>
</tr>
<tr>
<td>semisimple (\text{CA}_q)</td>
<td>124</td>
</tr>
<tr>
<td>Serény, G.</td>
<td>286</td>
</tr>
<tr>
<td>Servi, M.</td>
<td>286</td>
</tr>
<tr>
<td>sheaves</td>
<td>59, 101</td>
</tr>
<tr>
<td>Simi, G.</td>
<td>286</td>
</tr>
<tr>
<td>similarity type associated with a type</td>
<td>260</td>
</tr>
<tr>
<td>schema</td>
<td></td>
</tr>
<tr>
<td>simple cylindric algebra</td>
<td>177</td>
</tr>
<tr>
<td>simple set algebra</td>
<td>28, 31, 41ff</td>
</tr>
<tr>
<td>small element</td>
<td>24</td>
</tr>
<tr>
<td>Sobociński, B.</td>
<td>287</td>
</tr>
<tr>
<td>soft model theory</td>
<td>255</td>
</tr>
<tr>
<td>(\mathcal{P})-sorted polyadic algebra</td>
<td>287</td>
</tr>
<tr>
<td>special equational sequence</td>
<td>117</td>
</tr>
<tr>
<td>special term</td>
<td>116</td>
</tr>
<tr>
<td>splitting elements</td>
<td>85</td>
</tr>
<tr>
<td>Stone, M.</td>
<td>214</td>
</tr>
<tr>
<td>Strecker, J.</td>
<td>287</td>
</tr>
<tr>
<td>strong ext-base-isomorphism</td>
<td>18</td>
</tr>
<tr>
<td>strong ext-isomorphism</td>
<td>18</td>
</tr>
<tr>
<td>strong sub-base-isomorphism</td>
<td>18</td>
</tr>
<tr>
<td>strong sub-isomorphism</td>
<td>18, 49</td>
</tr>
<tr>
<td>sub-base-isomorphism</td>
<td>18</td>
</tr>
<tr>
<td>sub-isomorphism</td>
<td>18, 47, 49</td>
</tr>
<tr>
<td>subalgebras</td>
<td>24ff</td>
</tr>
<tr>
<td>subalgebras of (D_i)'s</td>
<td>185</td>
</tr>
<tr>
<td>subbase</td>
<td>6</td>
</tr>
<tr>
<td>subdirectly indecomposable</td>
<td>32, 177</td>
</tr>
<tr>
<td>substitution algebras</td>
<td>267</td>
</tr>
<tr>
<td>substitution function</td>
<td>63, 68</td>
</tr>
<tr>
<td>substitution-cylindrification algebras</td>
<td>267</td>
</tr>
<tr>
<td>Sudkamp, T.</td>
<td>287</td>
</tr>
<tr>
<td>suitable for (\Lambda)</td>
<td>155</td>
</tr>
<tr>
<td>Sweet, A.</td>
<td>287</td>
</tr>
<tr>
<td>syntactic categories</td>
<td>255ff</td>
</tr>
<tr>
<td>syntactically well-presented</td>
<td>257</td>
</tr>
<tr>
<td>system of varieties</td>
<td>260</td>
</tr>
<tr>
<td>Tarski, A.</td>
<td>17, 43, 52, 59, 63ff, 79, 103, 125, 136, 148, 151, 153, 165, 171, 205, 211, 212, 214, 216, 233, 280ff</td>
</tr>
<tr>
<td>Tengowski, B.</td>
<td>287</td>
</tr>
<tr>
<td>theory of Boolean algebras</td>
<td>166</td>
</tr>
<tr>
<td>theory of groups</td>
<td>168</td>
</tr>
<tr>
<td>theory</td>
<td>161, 176</td>
</tr>
<tr>
<td>(\mathcal{P})-theory</td>
<td>161</td>
</tr>
<tr>
<td>(\mathcal{S})-theory</td>
<td>161</td>
</tr>
<tr>
<td>(\mathcal{R})-thin element</td>
<td>60ff</td>
</tr>
<tr>
<td>Thompson, F.</td>
<td>85</td>
</tr>
<tr>
<td>Thompson, R.</td>
<td>50, 101, 103, 287</td>
</tr>
<tr>
<td>Topencarov, V.</td>
<td>287</td>
</tr>
<tr>
<td>transformation</td>
<td>68</td>
</tr>
<tr>
<td>transposition</td>
<td>115</td>
</tr>
<tr>
<td>Trnková, V.</td>
<td>285</td>
</tr>
<tr>
<td>Tulipani, S.</td>
<td>266, 289</td>
</tr>
<tr>
<td>Tuschik, H. − P.</td>
<td>287</td>
</tr>
<tr>
<td>twisting</td>
<td>85, 89ff</td>
</tr>
<tr>
<td>type schema</td>
<td>260ff</td>
</tr>
<tr>
<td>type-free valid</td>
<td>174, 180</td>
</tr>
<tr>
<td>Ulam, S.</td>
<td>79, 205f, 276</td>
</tr>
<tr>
<td>ultraproducts</td>
<td>35ff, 175</td>
</tr>
<tr>
<td>uniform</td>
<td>192</td>
</tr>
<tr>
<td>uniformly axiomatizable</td>
<td>118</td>
</tr>
<tr>
<td>Urquhart, A.</td>
<td>287</td>
</tr>
<tr>
<td>variables</td>
<td>152</td>
</tr>
<tr>
<td>varieties</td>
<td>110ff, 179, 249</td>
</tr>
<tr>
<td>Varsavsky, O.</td>
<td>287</td>
</tr>
<tr>
<td>Vaught, R. L.</td>
<td>17, 171</td>
</tr>
<tr>
<td>Venne, M.</td>
<td>271</td>
</tr>
<tr>
<td>Volger, H.</td>
<td>287</td>
</tr>
<tr>
<td>Vrăciu, C.</td>
<td>279</td>
</tr>
<tr>
<td>Vuckovic, V.</td>
<td>287</td>
</tr>
<tr>
<td>Wadge, W.</td>
<td>287</td>
</tr>
<tr>
<td>weak Cartesian space</td>
<td>5</td>
</tr>
<tr>
<td>weak cylindric field of sets</td>
<td>5</td>
</tr>
<tr>
<td>weak cylindric set algebra</td>
<td>5ff, 21, 28, 31, 33ff, 42, 48, 58, 128, 171, 179</td>
</tr>
<tr>
<td>weak (\mathcal{D}_f)-cylindric set algebra</td>
<td>192</td>
</tr>
<tr>
<td>weakly subdirectly indecomposable</td>
<td>32, 104</td>
</tr>
</tbody>
</table>
widely distributed, 8, 193
Wostner, U., 287
Wu, Y. - y., 287

zero-dimensional, 43ff
Zlatoš, P., 287