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Ré sumé

; Nous esquissons ici la théorie des applications & valeurs cardinales
: définies sur les algébres booldennes. Nous étudions par exemple les applications
hA = min {|B| : B est une image homomorphe infinie de A}, 1la longueur
length A = sup {|X| : X est une chatne de A} ', et le nombre des ultrafiltres de
A, Ult A . Nous décrivons complétement en détails 24 telles applications, et
Nous en mentionnons 16 autres. Nous pensons que 1'étude de ces applications cardi-
nales fournit un cadre commode pour analyser la structure des algébres booléennes
et que c'est un bon terrain d'expérimentation pour les méthodes récentes de démons—
frﬁtion en théorie des ensembles. Beaucoup de ces applications -au moins 13- ont
Cté étudiées de facon approfondie sous leurs formes topologiques duales ; 1'étude
de ces applications pour les algebres booléennes est un cas particulier et impor-
! tant de ces recherches. Ainsi bien des problémes que nous énoncons ont une forme
: topologique qui n'est résolue ni pour les espaces compacts les plus généraux, ni
pour- les espaces réguliers.
La plupart des résultats que nous énong¢ons ne sont pas nouveaux ; les dé-
- Ons que nous en donnons sont simples, et font souvent partie de ce qui ex-—
. 1ste d? plus classique. En général, nous n'avons pas fait 1'effort de découvrir
j € Premier auteur de chaque résultat mais nous 1'indiquons dans certains cas. Nous
; mentionnons 66 problémes non résolus.* v _
Nous commencons par considérer quelques applications arithmétiques. la
cellularité de A, cell A, est sup {|C] : C cA, ou C est formé d'éléments deux
4 deux disjoints}. Cette application a été étudiée de facon détaillée par COMFORT
et NEGREPONTIS (1982). Les applications longueur et profondeur respectivement
: nOte?s’length A et depth A = sup {|C| : € € A, ot C est une chaine bien ordonnée}
{ ggtlzzeéfgzdiéeﬁ Mc KENZIE et MONK (1982). L'application ins A = sup {IML :McA
4 du ?nts de M sont deux a deux 1ncom?arab1es] peut s'exprimer en onct}on
: nombre d'arbres contenus dans A. La densité est la méme chose que le T7-poids

de 1° ; . . Co. . PR
: ¢ 1'espace booléen. La ramification est une application bien connue liée a la
i cellularigg,

monstrati

- Les applications algébriques que nous considérons sont les suivantes :
{ ) 1$'n01§tbre de sous-algebres ; | ‘
; -1 'reductibilité (irr A = sup {|X| : aucune partie propre de X n'engendre X});
; SUi: prof?ndeur des sous-algébres ou fonction depth de A = sup {k : il existe une
- 1ae15trICtement décroissante B pour a < k de sous-algébres de A} ;

ongueur deg sous—algebres %définie partiellement) ; ‘

3 - L -

i _ padépendance (sup {|B| : B est une sous-algtbre libre de A)};
i hA comp, déFins .

- ¢ définie ci-dessus

3 E)
{ - 1: nombre d'endomorphismes 3
: nombre d'automorphismes : .
i Nous considérons pour terminer quelques applications quil ont, au moins
* 1 ’
‘a I - s -~ - - -
Celuj~cg cttre s, lorsqu'elle suit le mot probléme,indique que la résolution de

ensemblesfait Probablement intervenir des résultats d'indépendance de théorie des

e
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implicitement, une forme topologique :

.

le nombre d'idéaux ; 1'étalement ("spread") ; le degré hérdditaire de

; la longueur des idéaux ; le nombre d'ultra-

filtres ; la densité topologique ; le m-caractére i le caractére ; 1'étroitesse
("tightness").

Abstract

We give a survey of the most important cardinal functions
on Boolean algebras. 1In addition to known results about

these functions and relationships between them, we formu-
late many open problems.

We survey cardinal number valued functions defined on Boolean a
Examples of such functions are ha = min{|B|: B is an i
of A} , length A = sup{|X|: X is a chain in A}
ultrafilters on A. Altogether we describe
mention in passing some 16 more.
functions gives a convenient frame

lgebras.
nfinite homomorphic image
, and |UltA| = number of

in some detail 24 such functions and
We believe that the study of

gular spaces.
the proofs we do give here are

We have not, in general, tried to trace
result, but we give such credits in some cases.
We mention 66 open problems.

its solution probably involves set-
problems have evidently not been co
easy. And because of the scope of
on these topics.

This paper overlaps two other surveys:
Arhangelskii [78].

We are grateful to E.K. van D
comments,

The various cardinal functions
"small" ones, whose values are bound

hA £_2w for any BA A);
cardinals close to A

Most of the results we state are not new;
simple, and are mostly in the folklore.
the first person to prove each

The superscript

theoretical independ
nsidered before,
the survey,

on a problem means that
ence results. Since some
some of them may be rather
we may have overlooked some work

van Douwen, Monk, Rubin {80] and

ouwen, P. Nyikos and §, Todordevic for useful
we consider can
ed (for example,
"widely varying" ones,

(for example, length, ¢
whose values are always close to |A[

classification is heuristically useful,
to investigate the relationships b
widely varying, Also, for them it
iour under algebraic operations

course it is also possible to cl
other in general, rather than on

be divided into three sorts:
h, defined above, since

whose valuyes can vary from w t
efined'above); and "big" ones,
(f;r example, |A| < [utea] < Z!AI). This
or example, it ;éems.mosf'inter i
e estin
etween those cardinal functiong which are ¢
ts of most interest '

to determine their behav-
sucb as subalgebras, homomorphis
assify the functions

ly with cardinality,

o}

property P(x,A), we can ask for
holds. For such a function k

related function kaA,

' K such that P(x,A) fails o
18 a successor cardinal
with kA attained, while k%A = yu for 1a

hold. Thus %A = (k&)* if 1a

s OF a limit cardinal
a limig cardinal por attained

R

fpe———
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There are several other cardinal functions related to a given cardinal
function k :

(H+k)A = sup[kB: B an infinite homomorphic image of A}

(H kA = min{kB: B an infinite homomorphic image of A}

(s')a = sup{kB: B an infinite subalgebra of A}

(SKA = min{kB: B an infinite subalgebra of A}

We discuss these, when non-trivial, for many of our functions k .
With each function k s we could consider two spectrum functions:

k~hs(A)
k-ss(A) =

[kB: B an infinite homomorphic image of A}
kB: B an infinite subalgebra of A}
’
To shorten this survey we consider only one of the many possibilities,
I} - hs(a) = {|n]: a—»B, B infinite} , in section 12.

Another related notion will not be discussed here, but we mention it as a
food topic for investiation. Given a property P of subsets of a BA A , we say
that A has P-k~A-caliber if among any « elements of A there is a subset of
Power ‘A satisfying P . This notion has been studied for pairwise intersecting
sets (see Comfort, Negrepontis [82]) and for independence (see Monk [83]).

§t the end of the paper we give a rather messy diagram showing the known
relationships between our main cardinal functions.
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Notation

Our set-theoretical notation is in general standard,
f maps onto B ; £ : A»»>B means - that f 1ig one-one. f[X] is the f-image of

X, fIX] = {fx : x€ X} . For any infinite cardinal » dedk = sup{\ : there
is a linearly ordered set of size A with a dense subset of size «} . [a] 1is
the equivalence class of a under some (implicitly understood) equivalence

s
relation. We let J.OK =k, 1 k=2

n

sl . ®Px

X . [xI¥ is the set of all subsets of X of size
<K . For MAK

f: A—~»B means that

is the set of allhsubsets of

K 3 [X]Q< » those of size
and MA , see Kunen [80]. l<'< = E;KKA“ . Tree has the usual
meaning. A pseudo-tree is a partially ordered ser P such that for alt x €P
{y : y < x} 1s linearly ordered. SH'c is the hypothesis that there is no
K-Souslin tree.

For BA's, —, =93> usually mean homomorphisms .

X' = X\{0} . AtA is th
SgX is the subalgebra gen

For Xg A we let
e collection of atoms of A, Arga = {x €A
erated by X s Igx

FgX the filter generated by x .
a € F} , vhere UltA is the collection

A or A is its completion,
and cofinite subsetrs of X

: X< al.
the ideal generateq by X, and

A, .
S 1s the Stone isomorphism: s®; = {F € vlta:

of ultrafilters on A . For any BA A,

fl.-’or any set X , fincox is the BA of finite
. fip i

intersection property. wec
means weakly countably complete: A satisfies e iff yx Sw
Y >
Vx €X Vy €Y (kTy'SXET‘j there is an VX,Y € [A]

h such that
such that
and a*y = 0) , FpFrx is the free BA on ¢ ¢ : VxEXVyGY (x<a

Xep ®< k. If L
is a linear order with first element
Benerated by all sets [a,b) : a<x}, IfOfTsu?:e:st o "
treealgT 1is the by TrMte w:ee’

. ere
Tre={ser:¢ $s}. For 1 , P reeT is defineq ;imilarly-

Note that homomorphisms on gL are i

e P N one-one :
equivalence relations on 1, Uil=} ., 1§ 4 ‘is hered§::§§sponden?e Mty Sonvex
sequence is the sequence of cardinaliti

sequence of quotients A/Ia (1

atoms of A/Ia} ,

intalgl, ig the BA
and  [a,~) = {x .

: Carp = {a 1 [a] .

- ..

X LJa(kIa for A 1limir), niG ; 1s the direct product

Tg. 1% i . on |

of the A 's; I er?; consists of those £ E'H{ e1d; which are 0

finitely many places, o E
3

xB

A Y two factors, pa C is the free Product of B

gebra A | 1¢ k is an i

for al1 ¢ 3 a €A 7 cardinel

except at

i EIAi - their free pProduct ;
and C with amalgamated syba}
k-homogeneous if kA = k(AT a) function, A is
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A. Arithmetical Functions

We discuss functions associated with the arithmetic of Boolean algebras:
disjointness, chains, incomparability, etc.

1. Cellularity
We define the cellularity of A to be

cellA = sup{]C[: C<A, C a family of pairwise disjoint elements of A}

This notion is extensively studied, along with related notions not treated here,
in Comfort, Negrepontis [82] . Note that this is a widely varying function. By
Erdos, Tarski [43], cellA is always attained for singular cardinals, but there

+
areé counterexamples for weakly inaccessible cardinals. Thus cell®A = (cellA)

unless cellA is weakly inaccessible and not attained, in which case cell’A
= cellA . A satisfies the k-cc (k-chain condition) if [x{< k for every
family X of pairwise disjoint elements of A .

If A< B, clearly cellA < cellB . The cellularity can differ arbitrarily

between A and B . If A-—*B , there is no relationship, in general, between
cellA and cellB

Clearly cellHiEIAi =|Il Usupi GIcellAi ; similarly for weak products.

?he cellularity of an ultraproduct depends on saturation properties. Thus if F
'$ any countably incomplete ultrafilter on a set I , then cell(rk GIAi/F)-Z W,

. w
U all A; are infinite. Assuming MA we have cell(Hi € IAi/F) > 2" for any

Such F ; see, e.g. McKenzie, Monk [82] 1.5.5. For any infinite set I there is
+
a [I| ~good countably incomplete ultrafilter F on I , and hence

cellUE\eIAi/F).z ]Il+ if all A, are infinite. On the other hand, . for any

infinite set T there is an ultrafilter F on I such that cell(HiE IAi/F)

Z zlll

for any system <Ai:i €I> of infinite BA's; see McKenzie, Monk [82]
1.5.4,

We mention here the following vague question.

EE%&SE;L* If F is a |I|*-good countably incomplete ultrafilter on I , under

. . - - . I
what conditions does [ eIA./F have a pairwise disjoint set of power 2I l?
i
The beh
studiEd. We
the caSe
Y & resy

avior of chain conditions under free products has been extensively
survey these results. First we take the free product of two BA's;

of a free product of infinitely many BA's reduces to the ftnt?e case

1t mentioned below, and the finite case, of course, reduces by induction

: .2 KH
f0 the case of two BA's . The partition relations (20" > (« Yo s @27 >
LS 2 ) .
(2 ) :K‘) , K+ > (K+,ch)2 for «k strong limit, give the fOllOWlngv:
) ce11(anp) < gcellAecellB | ‘

0 ; - .
X elld < 2% and cel1n <k = cell(a*B) < 25 ;

(3) i . '
it 'S strong limit, cellA < k , and cellB < cfx , then cell(A*B) < k.

Sults (1) ang (2) can be found in Kurepa [62]. Thus under GCH we have

Ce . . ‘
an;IA cellB.S cell(A*B) < (cellA'cellB)+ ; cell(A*B) = cellA if cellA > cellB .
cellA is 4 successor cardinal; cell(A*B) = cellA if celld is a Ilmlt
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cardinal and cf(celld) > cellB . Thus even under GCH two cases are not

covered by (1)-(3):  cellA 1limit with cf(cella) S cellB < cellA , and cellA
= cellB . The first case appears to be open:

Problem 2. If k is strong limit singular, cellA = » and cfk < cellB < k ,
is cell(A¥B) = ¢ ?

The second case has been extensively studied,

The first result we mention is due
to Kurepa [50]:

+ o
(4) Suppose T is a normal « =-Souslin tree, and let

A = treealgT . Then
celld = k and cell(A*B) = f*

Galvin and Laver (see Galvin [80]) proved
(5) if 2% = ,*

» then there are BA's A and 3 with
cell(A*B) = *,

cellA = cellB = ¢ and

Todorlevit [«] proved

(6) There are arbitrarily large cardinals K such that there exist BA's A,B

which satisfy «k-cc while A*B  does ot ; this holds in

particular if k < 2%
and cfx = cf2?

Fleissner [78] showed

(7) If x Cohen reals are added to M
and B with cell(A*B) >«

are cardinals of M with «

s the? in M[g] there are ccc BA's A
- Consequently, if M satisfies R and Kk,A,p

regular and w < K,u.g K'» then in M[G] there
are BA's A and B with . cellA = A | cel1p = By and  cell(A*B) = y = 2¥

.

A folklore result, proved independently by many people,

is
(8) (m+2“>w1) If A and B

satisfy ccc » S0 does Axp

Finally we note that cell(*,

. ierdy = sup(cell(*ieFA )
Juhasz (801, p. 107. The d

<
7P F ey, see, e.g.
spread, discussed below.

. . +
erived function H'cery s the cardinal function

2, Length
We let lengthA = sup{lc] : ¢ =
studied 1in McKenzie, Monk [82)
of maximal chains in BA's can be found i i
Koppelberg [=] ., 1f A has leng g Jakubik [58]

- - - - - t h K and
attained; if x g limit wirh cfk > o

not completely clear what happen

- A discussion
h, Day [70] and S.
s then lengtha g
» .then there are counter i
examples,
§ to length under direct product, 32 ﬁ:ve e
'max(dedlll,sup. lengtha.) ¢ .
i’ $ lengenm.
| igyr "ngtha, g 1eA"‘i5niexle“gthAi’
where the second inequa!ity can be'equality and .
] ’

e s consistently, S0 can the first.
roblem 3, Doe 1 .
s engr.hﬂt€ tA{ depend only on It] ang {lengtm, ; § €D ?
. . ‘ i ' )
The length of ultraproductg has. noe been invest i
» g

ated,
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Problem 4. Discuss the length of ultraproducts.

There is also a problem concerning the length of free products, although much is
known. The hardest theorem in McKenzie, Monk [82] is that if cfk > w, A has
no chain of power cfk , and B has no chain of power K , then A*B has no

chain of power k ., Hence lengch*i eIAi = sup; EIlengthAi . However, the above

theorem is not best possible. 1In fact, the following additional results are
known:

(1) Suppose A < cfk < p < k , p < dedh , ded\ attained if p = ded\ . Then

there exist A,B with pu = lengthA attained, lengthB = Kk not attained, and
length(A*B) not attained.

(2) Suppose VA < cfx (ZK L cefk) , cfk < lengthA < k , and lengthB = k .
Then A*B has a chain of size & .

(3) If cfk <k, cfc is weakly compact, cfk = lengthA attained, and
lengthB = « , then A*B has a chain of size « . :

(4) If cfc <k s A has a chain of size cfx having cfx pairwise disjoint

intervals each with at least two elements, and lengthB = « , then A*B has a
chain of size &

? very simple form of the questions left open by the abvove results is as
ollows,

Problem 5. Let A be the interval algebra of a So9slin line, B a BA with
Rwl = lengthB not attained. Is length(A*B) attained?

cellA

Note that lengthA < 2 by the Erdos, Rado theorem, It would be natural to

conjecture that VevVA[k < A < 2K = HBA A (cellA = x and lengthA = A)]; this

w°‘f1d.follow from its special case YVk TBA A (cellA = k and lengtPA = 2%) .
This is true under GCH . But as Mitchell [72] showed (see also Juhasz [71]) if

M F cen and G adds Ru) Cohen reals, then in M[G] every BA of length
o : “1
22 attained has cellularity > 2° , and 2% = Rw > 20 = &m 41 ° Thus the
- 1 1
above failg for « = W .
The function H+length does not coincide with any of our cardinal
functlons.

Foblen 6.

Ty Is it consistent to have a BA A such that w < lengthA < |A| and
has no in

finite homomorphic image of power < |A] ?

Some results of

W. Just are relevant to this problem.
Problems 3-

5 are essentially stated in McKenzie, Monk [82].

3. Depth

depthA = sup{|Cc|: C is a well-ordered chain in A}: Again, Ehis
nsively studied in McKenzie, Monk [82], and is a widely varying

% definition,
'S a notion exte
Unctiop,

limitlf- A has depth k and cfk = w , then depthA is attained; if k is
: YIth cfk > W, then there are counterexamples. depthll, erti t II] U

up,
pleldepthAi - Concerning the depth of ultraproducts, there are several
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interesting facts, and one problem. For any k there is a non-principal

K
i 2" for ever
na(an/F has a chain of type y
system <A : a < «> of infinite BA's.

ultrafilter F on x such that

On the other hand, Laver has shown
that in a model of Woodin there is a uniform ultrafilter F on wl such that
w ®

| lw/Fl = @ 5 hence, of course, depth( 1A/F) = © for every denumerable BA .
By the Erdos, Rado theorem, if depthA AR <A

» and F is any ultrafilter
on Kk , then depth(KA/F)_S 2* .

Problem 7. If A is a BA with no chains of type A

and F 1is an ultrafilter
on X , does it follow that

“A/F  has ao chain of type max((ZK)+,X) ?

The answer to problem 7 is (consistently) no if we replace "ultrafilter" by
"filter"; see McKenzie, Monk [82].

If cfk > w, A has no chain of type cfx s and B has no chain of type
K 5 then A*B has no chain of type K ; but if A has a chain of type cfx and
depthB = x , then A%B has a ¢

If x is infinite and re
A onto a subalgebra of «

exist BA's B,c2 A

hain of type « ,
gular, |A]| = x|, and tp
containing all subsets o
satisfying K+-cc such that

infinite BA A in a model M
algebras B,C o A

ere is a homomorphism from
f power < k » then there

depth(B*AC)_Z Kt For any

of GCH , there 1$ an extension M' of M with
such that depth(B*AC) > max(depths

sdepthC) (this is a result
of Shelah found in McKenzie, Monk [821).

Problem 8, 1In ZFC

is it true that for every infinite BA »
B,C 2 A 'with depth(

there exist
B*AC) > max(depthB,depthC) ?

Problem 9, For every infinite BA A is there a c‘ di i

~roblem 9. ’ ardinal «  such that if B.C
2 A and lB[,lC[ 2 K, then depth(B*AC) = max(depthB,depthc) ? ,
We clearly have depthAli lengthA < ZdepthA

- (H'depth)a
tightness of A y see b

Problems 7-9 are in McKenzie,

4,

coincides with the
Monk [82]

elow,

Incomparability

incA = sup{|M] : ¥ {s a set of pairwise inco '
S as mparable elements of . i1l
be.desall?d below, this is a large function, We let pie abbreviize :S ¥‘
pairwise incomparable elements, e first indicate an equ Fiee
inc

equivalent way of defining

Theorem 4.1, For any infinite
tree, T< AT .

BA A we have incA

Sup{lTl :Tis a
Note that for 4 tree

X . t insist ¢
incomparable in T ; gee section 6 | : hat s+t

I

L for s zpd t
Proof. Since any pie
equality is clear, To show =
regular; we show that
A of power «x ., By Baumgartner Kom jath

power <k . Now each level of % o !81],
at least « levels,
exclusively

s the < part of the
of size” k ,

Suppose that T
A has a denge subset

D of
Let T' pe Nube Pie 5o has Power < Hence ‘T has
of elements of suce « For each d € DK ;onsisting
y et

A has no tree of gize K .

essor level
- LI : N .
My= e €1 ¢ if 4 4 the immediate Predecessor of

t, then 4 ¢ te-s}
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L i i =
Thus T dGDMd y SO there is a d €D with IMdl K . But M

4 is clearly

a pie , contradiction.

If AS B or B-%A , clearly incA < incB . If A S B » then inc(AxB) > |A] .
In fact, {(a,-a) : a € A} is a pie in AXB . Hence if A 1is cardinality-
homogeneous and has no pie of size |A| , then A is rigid. We have inc(A*B)
= max(}A],[B]) if |Al,|s] 2 4, since A*C =AxA if |c| =4 .,

Clearly cellA < incA and |A| s_ZInCA using the Erdos, Rado theorem.
Some deep results and problems are found in connection with trying to construct a
BA A with no pie of size ]A[; we call such 2 BA narrow. Bonnet and Shelah

. (Bonnet [«]) have shown in ZFC that there is a narrow BA of power cf(2%) .

Bonnet [=] has shown assuming GCH that there is a narrow BA of power K.

By a theorem of Arhangelskii [71], if [A[ is singular streng limit, then A 1is
not narrow. Baumgartner, Komjath and Shelah in Shelah [83] have shown that if A
has no pie of size A, then it has a dense suset of size < A . So if [A] is
strong limit, then A is not narrow. Even stronger results are known in which

A also does not have big chains. Call A concentrated if A has no pie and
no chain of size |A| . Shelah has shown under GCH that for each A> w there

is a concentrated BA of size A" , and for each A > w with A # w, there is

. +
a A-complete concentrated BA of size A .,

Problem 10. (CH) Is there a concentrated o-BA of size w, ?

Rubin [83] has shown that if B 1is a subalgebra of an interval algebra and |B]
18 regular, then B is not concentrated.

Problem 11, 1f B is a subalgebra of an interval algebra and ]B’ is singular,
€an B be concentrated?

Note by the above remarks that the answer to Problem 11 is no for |B| strong

linit singular. v

. Shelah [80] and independently van Wesep have shown that it is consistent to
¥ . ® .

have - 2 arbitrarily large and to have a BA A of size 2 with countable

length and incomparability. On the other hand, Baumgartner [80] has shown the

following consistent: MA + 2" = w, + "every uncountable BA has an uncountable
pie.u

Shelah has generalized this, showing that it is consistent to have the
cont inu . .

um arbitrarily large.

Pr s
Zroblem 12

- Is it consistent that every BA of power W, has a pie of size
w, ?
2
Shelah [83) has shown that for any singular A with cfA > w it is consistent

that th?re is a BA A with incA = A not attained. Milner and Pouzet )
U%Published) have shown that if incA = A , with © = cfA , then incA 1is

attained, Todorfevic has shown that if 2“ is weakly inaccessible, then there

i ; . w .
3 BA of size 2 with incomparability 2 not attained.

Problenm 13,

- Is it true that for every weakly but not strongly inaccessible
Cardipg] 'S

there is a BA with incomparability «k not attained?

TodorZevié has

then shown that if ¢fA < A and A is a BA with a tree of size A,

has a pie of size A .

We have (H'inc)a = incA for all A.. Note that H inc is in general non-

T iy T8
e

i
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trivial; for example, (H inc)a = 2Y if A is wece . This gives rise to the
following question.

Problem 14, Under any set~theoretical assumptions,

is there a BA A with
2w, 1incA = w, and

Bl > w for every homomorphic image B of A ?

Problems 10, 11,

13 are mentioned in van Douwen, Monk, Rubin [80]
related to incomp

A function
arability has been considered by p, Nyikos:

h=cof(A) = min{x : every subset of A has a cofinal subset of power < «}

One can show that 1incA £ h-cof(A)

and

h-cof(A) = sup{[T| : TcA, 1 well-founded} ,

The algebra constructed by Shelah [81] assuming CH

is of power w, but has
h-cofinality w ,

1

An algebra A constructed under <>n by Baumgartner, Komjath

{81) has la] = W, incA = w , while

1
{aca: [ara| Lwh=1
ideal, Clearly 1

is a maximal
is not countably generated, so h-cof(A)

U.)l.

Problem 15. Can one construct in ZFC
—_ 10

a BA A with {ncaA < h-cof(A) 7
5. Algebraic Density

TA = min{|D| : D dense in A} .
the same as the n-weight of ulta y bu

t we shall ysya]
densltz. It has been ?xtens1ve%y Studied in topology.
behavior under algebraic operations, thep 1ts relationsh
functions introduced,

Suppose A-»B . Then there is no generally valid re
and WB . To get TA<CB, let A= @
subalgebra of A of power 2

BE € . Clearly 7B = X |
still ask, however, s N it is true tha
has a homomorphic image B with T8 = ¢
question fully (Corollary 5,5),

Again this ig 4 large function. This is

ly call it algebraic
. 5" Td1c

First we discuss its

ips to the previous

lationship between mA
Let C be a free

to a homomorphism f tA»

To get 1B < na , take Fr(ZK)—»fPK .

One can
of power A

~ Theorem 5.1,

Suppose L is g
f : intalgL—»p

dense linear order, p ; . d
+ Then xB < |D] . s 18 dense in L, an

We omit the easy proof,

Corollary 5.2. 1f x <A< deddy .
such that for every B ? N there {5 4

» A-DB  implies mB <k

Theorem 5.3. 1f le > (2% and A ¢ *
image” B with 78 =2 , @ — -

of power A

» then A pas a homomorphic

Proof. We yse here - some results on

Arhangelskil and SapirovskiV (see Juhasz (801}
Now it is easy to see that

8 = spread; gee below,

By a theorem of
» Pr 56) we have

s(U1ta) > .

s(Ulea) = sup{cellc

v P A—pc)

Hence choose ¢ so that A—nC and cellC = x+ .« Let ¥ € [C]k . .
wise disjoint, and let D= sg(C)x with x pair-
Thus B is ag desired,

* Then exteng id:D*D to 8 : C—»Bc D
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Theorem 5.4. If «k 1is singular strong limit and [AI 2 Kk, then for any
A<k A has a homomorphic image B with mB = A .

Proof. As for 5.3, using also Juhasz [80], 4.2.
K 1f A<k, then every BA A of
h mB=A, If A=« is a limit

cardinal, then A itself has n-weight A, If k = p+ , then there is a BA of
power K with no homomorphic image of n-weight « .

Corollary 5.5. (GCH) Let w < AKX
power Kk has a homomorphic image B wit

Problem 16. Describe completely the behavior of m-weight under homomor-
phisms without GCH . In particular, is it consistent that there is a BA A of

power dedé"wl such that for every B, A B implies ™ < w ?

1

Next, suppose A € B . Again, there is no generally valid relationship
between TA and 7B , as easy examples show., The problem of specification of
TA arises as in the case of homomorphisms.

Theorem 5.6, If A has a subalgebra B such that 7B = A , then A has a
homomorphic image € ‘such that #C = A .

Proof. Let f : A—»C € B extending the identity on B . Clearly =C < A.
Suppose D 1is dense in C , Il <A . Forall 0#d €D choose 0 # X4 €B

with X £d . Then {xd :.d € D} 1is dense in B , contradiction.

As noted by van Douwen, the converse of 5.6 does not hold in general. In fact,
<w
let G < [wW]Y consist of almost disjoint sets, |G| = W, and let A = Sg(lw] ™).

It is easily checked that A has a homomorphic image C with =C = w, But no
subalgebra B with 7B = A

Corollary 5.7. If x < A < ded®« , then there is a BA A of power A
such that for every B » BS A implies mB Lx

Theorem 5.8 . 1f |A] > (ZK)+ and A< k' , then A has a subalgebra B
with 8 = % —— - -

+
Proof. If A has a family of pairwise disjoint elements of power « , let

B=5C, ¢ a family of pairwise disjoint elements of power A . Othervise,
K+,
tt\h has  (27) independent elements, and we can let B be generated by A of
em,

COrollarx 5.9. If «k 1is singular strong limit and |A] Lk, then for any
~ X A has a subalgebra B with 7B = A .

Corollarx 5.10. (GcH) Let w< A<k . If A<k, then every BA A of
POWer « hag 4 subalgebra B with nB = A. If A=k is a limit cardinal, then

A itsers has m-weight A . If g = p."' , then there is a BA of power k with
"0 subalgebrg of T-weight «

.

with Problem 17, pescribe completely the behavior of m~weight under subalgebras
out

GCH . In particular, is it consistent that there is a BA A of power
d s
ed Yy such that for every B A, m < W ?

Clearly n(m, A)) = U TA, , and similarly for weak products. It is
i i

1€l i€l
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i . but
also clear that for any ultrafilter F on I , n(ﬂi eIAi/F) < ﬂi GInAl/P R
we do not know if this is best possible,

an ultrafilter on I , is n(ﬂiEIAi/F) =11

-d

./F
i EIﬂAt/
4
It is well-known that n(*ie IAi) = |1 UUie 1™; 5 see Juhasz [80], 5.3 a).
Clearly cellA < nA . Baumgartner and Komjath [81]) showed that nA < incA ,
while Shelah [83] gave the stronger result that for any infinite cardinal « s

tf mA >« , then A has an irredundant pie of power « (see section 8).
Anothef_easy relationship between our functions is given in

Theorem 5,11, IAI < nAcellA .

Proof. Let D be dense in A, |D| =,
cellA and a =) X) . This Proves the theorem.

Finally we note that A S_(H+n)A ﬁ_IAl

Clearly (H m)A = w for any infinite BA A .
and S 1 ,

Then Va €A Ax < p (Ix] <

» with < possible in both cases.

+
Similar observations hold for S =

6. Ramification
——t4r1on

A ramification system in A

is a subset R of A such that

¥x,y € R (x Sy or y <{x or X'y =0), 0 ¢Rr s
Yx €R ({y €R ; x Ly} is inversely well-ordered);

see, e.g., Horn, Tarski (48] . We set
ramA = sup{lRI R a ramification System in A} ,

This is a widely varying function, op

: ary € can prove that for any tree T the
following two conditions are equivalent;

() T {s inversely isomorphic to a ramification System in 4 ;

(ii) treealgT is embeddable in A : ,

Thus we have the equivalent definition:

ramA = sup(|B| : B {s 8 tree algebra ang B
ramA  is closely related to
ramA = cell®4 = (cel1a)*

can be embedded in A}
cella £ rama < cell®a
» then A nag 4 ramificatiq

Conversely, i¢ T i

and cellstree
purely set~the

cella . Fhrthermore, if

R system
is a cellsA-Souslin tree,

ramtreealgT = |T| = «
following problem has a
Y non-limit K(SHK)):

R whose inverse

tree, then
algT.= (celltreealgT)+ =t « Thus the
Oretical character: (it is equivalent to

Problem 19,

: is that ramA < mq | 14 fact,
« Say p s dense i A D

"y €R: g ¢y 06D, o= por
‘ ooty ' 2 ramification system in A.
de DHd +» 80 there {5 4 :

d €D ity M, | > :
ellA | g t 5
inversely well-ordered chain, contradiction d R 9 : Md. tSen

otherwise cellA.£ mA < rama
all d €D, et Hd

» where g
Then R = {J
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We also note that ramA and lengthA are, in general, not comparable. 1In
fact, in intalg R there is no ramification system of power w . For, suppose

T 1is such a system. Let T' consist of all nodes of T of successor level.
For each r € Q let

L. = {t €T' : if s 1{is the predecessor of t, then r € s\t}

Thus T' = U!_EQLr » S0 there is an r € @ with Lr uncountable., But the
members of _Lr are pairwise disjoint, contradiction. Conversely, if T 1is an

Aronszajn tree, then length(intalgT) = w by a theorem of Brenner, Monk [83].

It would be natural to define a new cardinal function using the notion of a
pseudo~tree. This does not lead to an essentially new notion, however. In fact,
Kurepa [77] showed that if T 1is a pseudo-tree of regular size Kk with no
chains of size x , then T contains a tree of size &k . Thus

sup{lT[ : TS A, T a pseudo-tree} = lengthAsincA ;
sup{|B] : B is a pseudo-tree algebra , B < A} = lengthAeramA .

- The above result of Kurepa does not extend to singular k , as he essentially

observed in the same paper. On the other hand, Todoréevi¢ observed that by
adding Rw Cohen reals to a model of GCH one can get a BA B such that

‘B‘ = “w » B has a pseudo-tree of size Rw , but no tree or pie of size Rz

1
and no chain of size N

w
1
Finally, note that spreadA < (1 ram)a ; the possibility of equality is
re!ated to Problem 19. (H ram)A is always w , although it is not completely
trivial to see this. Let A be an arbitrary infinite BA . Then A-®»B for

some BA A with fincow< BS w . Suppose R 1is an uncountable ramification
system in B, Now R = U Eln{x €R :n€x}, so there is an n € w for which

C={x€ R :n€x} is uncountable. But then C is a well-ordered chain,
contradiction.

B. Algebraic functions

We now survey cardinal functions having to do with algebraic aspects of

BA's; subalgebras, automorphisms, and homomorphisms.

We let SubA be the set of all subalgebras of A . Clearly |al S_ISUbAl

A .- kd
5.21 l + The following topological equivalent of the subalgebra relation is
well-known,

Theorem 7.1. Let A be a BA . If B is a subalgebra of A , set

"8 = {(G,F) : F,G € UltA and F NB =G NB} .

Then " 15 an equivalence relation on ULtA , and if F?B G , then there is a

CIOSQd"OPen subset U such that F €U and G ¢U , and U 1is a union of "B~

classes. . o

U1 Conversely, if = is an equivalence relation on ULtA such that VF:G €

cltA (Ficy 7 closed open U with F €U, G £U and U a union ?f = ‘
asses), tet C_.={a€A : sa is a union of 3=classes}. Then C. is a sub-

Subalgebra of A, and *c_ =% . Furthermore, if B is any subalgebra of A,
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then C=s =B
B

Shelah [79], generalizing Rubin [83) » showed assuming V =1 that for

every regular «k > w there is a BA A with [A] = |subAl

K
we note that if « 1is a strong limit cardinal and [A| = k , then |suba| = 2% |

These two facts are essentially all that is known about |SubA|. 1n particular,
the following questions are open,

+ .
= K . In section 8

Problem 20. 1s ]SubA! always a power of 2 ?

Problem 21. Can one Prove in ZFC that there is a BA A vwith
[AT = TsuwbA| > w 2

Problem 22S, For g singular is it consistent that there is a
—m L

BA A with
[Al = x and |suba| < 2% 2

If AcB or B—maA » then lSubAl_(_ ISubBl

8. Irredundance
—_—ance

A subset X of A is irredundant if W €X (x ¢ Sg(x\ {x}) . We let irrA =
——=Scundant
sup{lxl : X irredundant} . This is a large function. Shelan [79]1, generalizing
Rubin [83], showed assuming V = L that for every regular « > u there is a BA
) +
A with |A| = ¥* and » Devlin [73] showed that if
measurable, then every algebra with countably many operations an

undant subset of Power «x . Shelah
A has an irredundant pie of power g

Al is strong limit, thenp

K is real-valued
d with « .
[83] showed that if o

+ In particular, nA <
irrA , and if -

w irrA = |A] | ghelan (80a) has shown
that it is consistent to have. 2% ) Rw and every algebra of power Rw with

. : 1 |
< R“ﬁ operations has an trredundant get of power Rl !

. : I
Problem 23. Can one Prove in ZFC that there is a BA 4 with {rrp < la] 2 |
blem 248, i i 2 :

Problem Is it consistent that wl < 2% and there is 4 BA  of power
2%

. . ‘ ’
with no uncountable irredundant get? '

Shelah (81} showed there is a concentrated

: |
BA A of power R
Rl » assuming CH !

with irredundance

. Rubin (unpublished) showed that it is consistent to have a

BA A with irrA = w

. , la] = incA = @ . It is clear that = {rrp = Al for A i
an tnterval algebra.

Hence lengthA < irrA  for an
A Yy BA A, F
form theorem of Brenner, Monk [83] i¢ follows thar irrA = la] ol

algebra, so

ramA < irrA for any BA A . Note also that zirﬁzr< TSu:ATree i

Problem 25, 1g 2irtA = lsubAl ? - i

Problems 23.and 24 are mentioned ip vaﬁ Douwen, Monk, Rubin (80i . ) E
7 Subalgebra depen

sdepthA = sup(r : there 18 a stricely decreasing System <p . i

subalgebras of 4} . Again this is , lar T K> of
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equivalents of this definition.

Theorem 9.1. For any BA A and any infinite regular cardinal « the
following conditions are equivalent:

(i) there is a strictly decreasing sequence <Ba: a < k> of subalgebras of
A

(ii) there is a sequence <ba: @ < k> of elements of A such that
Va < K(ba QSg{bB: ax < B}) ;

(iii) there is a sequence b, @< k> of elements of A such that

Yo € K(ba ¢Sg{bB: a < B} and b, QSg{bB: B < a})

Proof. (i) = (ii) . Choose b, € Ba\ B4y forall a<x . (ii) = (iii).
Define <y.: £ < k> by induction: 7y, € » Y. > sup{B : b, €8g{b : n<E} .
4 g & B Ty
Then (bY : £ < k> is as desired. (iii)= (i) : Let B = Sg{bB: B> a} for

all o < E .

From this theorem it is clear that irrA < sdepthA . If A is strongly
concentrated in the sense of van Douwen, Monk, Rubin [80], then sdepthA < lA[ H

+
hence under Vv = L for every regular k > w there is a BA A of power «
with irrA = sdepthA = k < |a| = K . In fact, suppose <ca: a< N 1is a

Sequence as in 9.1 (ii) , where A\ = |A] ; we shall get a contradiction. Let
a’bl“"’bn s >0 be as in the definition of somewhere dense, applied to

{°a= %< A} . Choose & minimum such that a Lceyla+b + ...+ b ~and

1

Vl(ca'bi < bi) Y < A . Then choose B < A such that Cy < cﬁi a+ b1 + ..

+ . ) .
bn and V1(¢B°bi < bi) and y < A such that Vl.(cY'bi < bi) and cg cY

e o, Clearly a < B,y by the choice of a , contradiction.

Problem 26 . irrA = sdepthA ?

10. Subalgebra length

Slengtha = sup{|G| : G is a set of subalgebras of A simply ordered by S} .
'S 1s a large function. Thus sdepthA < slengthA . Now, as shown by Kurepa

527]’ for any 2 @ we have dedk = sup{A : (Pc has a chain of size A} . Now
XS A is irredundant, X infinite, and if G < X 1is linearly ordered by

§ s then <Sgy : v €G> is an isomorphism from G into SubA . Thus slengthA
2 ded|X| , hence

sup{dedk : k < irrSA} < slengthA .

Th . . .
S the most natural question concerning this cardinal function is:

P
M- slengthA = |suba| ?

11.  Independence

X of A 1is independent if X freely generates the subalgebra it
Or equivalently, if Tyl cz " ? # 0 for any two disjoint finite
z .
o ad 2 of X . Set indA = sup{|X] : X €A , X independent}. This
3 widely

Surye Varying function. This notion has been widely studied and a detailed
y €an be found in Monk I83]. v

A Subset
EEneraces,

Subset g Y
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For each limit cardinal « » there is a

attained. Independence in subalgebras was cha
A< B, then

BA A with independence « not

indB = indA y sup{ind(B/FgF) : F ¢ Ulea} .

Concerning homomorphisms, clearly indB_S indA if A-pp ., If A has an
independent set of power A with AY = A, then A—yB for some B wit? indB
= A, and one can specify whether indB f{s attained or not under some mild

conditions; moreover, this result is in a sense best possible.
. ' w
Using a construction of T. Cramer {741, for any x > 2

itarily atomic BA A (which thus has independence
T. Carlson has shown that if <Ai 1L ED

and |Ai12_2 for all { €1 , then

w) such that ind(wA) =K .
is a system of interval algebras,

3, Lind(M A < 1,1 .
Problem 28, 1f <Ai PiED

is a system of
for all

i€1, is md(IIi€ ) = .JIIII ?

Sapirovskil [80) showed tha

interval algebras with lAiI 22

t if neither A npor B has an independent subset of
power «x , then neither does A*B . Hence
N - .
ind( ierd) = i} Usupi erind(a,) |

Monk [83] showed that if A ig wee , then (inda)® = indA .
{83] showed that any complete BA 4 has an independent subse

The relationship between cell’ and ing is not fully kn
strong results have been obtain

ed; in Particular, the situatio
V=1L . Shelah [80] showed the following,

Balcar and Frangk
t of power IAI .
own, although some
n is clear if

(1) Let = cellsA.. Suppose either that A
or A= g g weakly compact,

is regular and VYp < (u<l< < A),
Then among any A
independent elements, °

elements of A there are A

Assuming v = 1 | (1) i best possible for A regular
needed to show this are easy, or well-known, but %he f;11M°8t of the examples
(82] is more involved:

owing example of Argyros
(2) 1f n is singular strong limit, 2H
then there is a pBp A of pover

independent set of power p+

+
=n o, (efp)”

. = cfp for all < cfp ,
n satisfying the

(efp)*-cc with no

Without v = there are several open problems.

Problem 29. (In zpc) If « is strongly i
1s there a BA of power i

3 aatiafying the
power i _

Problem 30. (In 2zpc) Assume o ¢ <2P ¢y <2V

» with ) Yegular Is there
2 : + .
@ BA of power A satisfying the v TC¢  with no independent Set of power 3 ?
Problem 31. (1n ZFc)
—mtm J1

Assume cf ¢ B< g pofn
A regular., 1s there a BaA N

and Yo < m (pcfu
of power 3 : :
independent set of power A 7 S$atisfying

< W, with
the (cfu)+-cc

with no

racterized by Sapirovski} [80]; if

there is a hered-

e

J——

Sy
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For A singular, we first note the following result of Shelah [80]:

(3) Let x be regular, and let A be singular with V¥p < A (u<K < A) . Then
the following conditions are equivalent:

(a) every BA of power A satisfying the k-cc has an independent set of
power A ,

(b) for all A, if A satisfies k-cc , then Va ECH\A

cfh <w
ar € [cfAr} YF € [T] (Haean #0) .

The property (b) has been widely studied; see Comfort, Negrepontis [82]. The
initial cardinality condition in (3) is trivial under GCH (true if «x < A,
false if « > A). Without GCH , its falsity leads to the following question,

Problem 32, (In ZFC) Suppose that k 1is uncountable and weakly inaccessible,

v
2" <A for all v<«k, and 2<'< = A 1is singular. 1Is there a BA of power A
satisfying x-cc with no independent set of size A ?

If x 1is regular, A is singular, and WVu < A (u<'< < A) , then (3) applies, and
We are concerned with (b). Condition (b) is fully resolved under V =1 ,
Without V = 1, the following problem arises. We say that A has precaliber «

if vae®a qre [K]K({aa: @« €T} has fip ) .

v
Problem 33. (In 2FC) If « and A are regular, k < A, A> 2% , and p > A

for some 1 < A and v <Kk, is there a BA satisfying «-cc without
Precaliber A ? '

Problems 28-33 are mentioned in Monk {83). 1In connection with these problems,
see also Todorlevid [w],

12. Homomorphism type and spectrum

Let hA = min{lBI :A—»B , |B| > w} for A infinite. Also let
"A=(IB] : A—»B, [B| > w} . This is a different kind of function from the

préceding ones; its values are sets of cardinals. hsA always has a largest
;lement |A] and a smallest one hA . We are concerned with the possibilities
° PA and hsA . We mention some known results about H :

() (s, Koppelberg [75)) hA = 2 for A infinite wce .
(2) (s, Koppelberg [77]) MA and w < la] < 2" hAa=w.
3 s, Koppelberg [77]) If A can be embedded in a free BA or in a interval
algebra, then hA = .,
v , : A
(4)  (w. Just, unpublished) cCon(2¥ is arbitrarily large and for every A <2

Ith < cfN there is a BA A with |A] = haA= M) .
P | ;
~oblem 34. 1f 4 has an irredundant set of generators, is hA = w ?

P . . .
%)bl“enﬁs- Is it consistent to have a BA A with |Al =hA=xr, w<AL

N .
MV turato hs . 1F A is free, then hsA = [v,|a[] . If A {is complete,

th i
lnterysy 21085, Franek [82] , hsA = [0,|Al] 0 {x : k%= k} . Concerning

in
terval algebras, we have:

l*m_._l.. if L 1is a linear ordring and <aa: a < k> is strictly

il'ICr : . .
®asing in 1, » where k 1is an infinite cardinal, then [w,k]  hs(intalgl) .
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Proof. It suffices to show that « € hs(intalgL)

+ Define x =y {ff
X,y € and Ya < K[(aa <x  iff a, <y and (x< a, Uff y< aa)] . Then
= is a convex equivalence relation on 1 with

kK classes, and the theorem
follows,

From Theorem 12.1 it follows that hs(intalgk) = lw,k]  for any infinite cardinal
K . Moreover, by the Erdos, Rado theorem, if L] 2_(2K)+, then

[m,K+] € hs(intalglL)

Theorem 12.2, hs(intalg R) = {w,2%} .
—<orem 12.2

: intalg R —3 A s Where lAl >w .,

Then f is
determined by a convex equivalence relation E on R with Ir/E] = A] . Now
L' =U{k : X is an E-class, (k| > 1)

is Borel, so L =R\L' 1is also.

Clearly |L"| = [a] . Hence |a] = 2% by the Alexandroff, Hausdorff theorem.
If A is hereditarily atomic and i

be an atom of A/IgAtA ; then A—» AT a

it can be shown that if A {g hereditarily atomic, ¢ < A , then [K,K<K]
0 hsA#0 . oOn the other hand, Jyhész, Nagy and Weiss I797‘constructed under
V=L a BA A of power Rw#l with R, € hsa van Douwen [«] constructed an

nfinite, then hA = w , 1Ip fact, let [a]
= fincok —yp fincow for some Kk , Also,

hereditarily atomic pa A of power 2% with hgp = {w,2%) ]
the following question,

van Douwen asked
Problem 36. (In zrc) If A
~roblem J6.

is hereditari]
A have a homomorphic image of

S Y atomic and [a] > ¢ = W , does
size k ?

Problem 375. con( VA(A hereditarily atomic and i
—_—

nfinite = hsp = [w,[a]]))?
We note some other easy facts about

(5) If w<k<|Al, then hsA N [x,25) ¢ ¢ |

(6) If A has a free subalgebra of power « >
(1) hs(AxB) = hs(A*B) = hsA U hsB | Z @, then

@) 1f w<p¢®

hs :

hsA N [x,k“] # ¢

» then there is 5 BA A

' 8Such ‘that
For, we take A = Fre x Py .

hsA = [u,k] U {29} .

Theorem 12.3. (CH)  If there is a pa A
—Qorem 12.3

there is a Kurepa family,

Proof. By face (6) above,
A does not satisfy cce ,

fim:oml €SB ¢ @wl + Clearly, stil) hsB = {

subset of wl', then bb AT for
bnr:bve p)

Hence
Mmage 3
w’ub} 1t g . such that

) 'S any countable
' @ homomorph

is a Kurepg family.

that there ig no Kurepavfamily
]

is countable, Thug B

It is consistent with i
12.3.. .

Problem 388,
hsA = {w,u&} ?

1s it consistent with CH
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13. Endomorphisms

EndA is the set of all endomorphisms of A . Since clearly |ulta]| <
[EndA| » we are dealing here with a "large" cardinal function, and the most
interesting question is to construct BA's A with ]EndA‘ small.

Theorem 13.1. Suppose L is a complete dense linear ordering of power

A>w, and D 1is a dense subset of L of power « , where AN =2 . Then
lintalgL | = [End(intalgL) =,

Proof. Ult(intalgA) = X 1is a linearly ordered space with a deanse subspace
of power « and lxl = K . Hence there are at most A~ = A continuous
functions from X into X , as desired.

Recall that if M 1s any infinite cardinal, and v 1is minimum such that B> ou,
then there is a complete linear ordering of power “v with a dense subset of
power u . Thus:

. v

Corollary 13.2. If p is an infinite cardinal and Vv < ulp = p) , there
isa BA A such that la] = |Enda| = 2* .

Corollary 13,3, |End(intalg R)| = 2“ .

Corollary 13.4, {GCH) If « 1is infinite and regular, then there is a BA
A such that |a] = |Enda| = «* .

M (GCH) For A a Limit cardinal or the successor of a singular
cardinal,”is there a BA A such that Al = |Enda| = A 2

It is €asy to see that if A] > w then |EndA] 2 2“ . Thus the assumption

1 b ]
W, .
w <2 implies that there is no A with lAI = IEndAl =W

E;::l\ef?l&o. In ZFC. can one show that there are arbitrarily large & for which
®1%a BA A with |A] = |Enda] = x ?

A,
Problem 41, Under any set~theoretical assumptions, if A < k < 2" , is there a
A with |A] =\ ang |[Enda| = « 2 : :

~foblem 42. Is  |gnaa| < [suba]

-2

E:ie;lerived functions H+|End| , H |End] , st |[End | , S |End | appear to be
ated to |End| 3 they have not been investigated.

14. Automorphisms

fUnct"\um Ls the group of automorphisms of A . This is a widely varying
paper;(’"; not in general related to most of our other functions. There are many
Stu

en dyi'}g this group. There are infinite BA's A with lAutA|.='l (A is
€alled rigiq), If AutA is finite, then it is isomorphic to a finite
sYHIuetric group.

w .
McKenzie, Monk (73] showed that for any k > 2 there is a BA
A owith Al -

. o _ w
and lAutAI = w'; assuming MA , |AutA | = w implies la] 227,

Van
Pouven [80] showed con(zrc + 2% = w, + @A ACAl = o, lauea] =w) . In
Mckenzie 2

with A, Monk [73] it is also shown that if w < k < A, then there is a BA A
! = A and IA‘-‘tAl =K . For any A there isa BA A with [A] = A




b
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and |AutA| = M In case R <A< k< 2

there is a BA A with [A] = 2
have been obtained by Roi

it is not completely clear when

and ]AutAl =K.

Some consistency results
tman and Shelah,

Problem 435, Describe fully when it is possible to have a BA A with
—l T 3D

1Al =%, JautA] = « | for Ry <A<k < oM

. , +
Consideration of the functions H

and H
rise to some natural questions:

associated with |AutAI gives

Problem 44, Is there a rigid BA A

such that every infinite atomless
homomorphic image of A s rigid?

Problem 45. 1Is there a BA A with ]AutA[ = w

Such that A has no infinite
rigid homomorphic image?

The functions S+1Aut‘ and S_‘Autl can vary widely,

C. Topological functions:

open sets or ideals

Next we deal with

functions that at least
nature. The first ones

tmplicitly are of a topological
concern open sets, .
15. 1Ideals
——

IdA = {1 : I {s an ideal of A} . Again e are dealing with a
function, since |UltAl S.lIdAl « We not

ulargeu‘
e also the following easy theorem of
Loats [77]:
Theorem 15.1. |r1da| < |suba] .
—_n 2.1 =~
Proof. Let x = {1 1 1is a proper fon~maximal idea] of A} . v¥or all
I€X lee f1 =1 U-=I; it is easily checked that ¢
To finish the proof i

€ is one-one,
t suffices to show thar luteal < x| . Fix F € UltA.
For any Gg ULtA\ {F} let &G = NG . Thus U

. . : & maps ylga F i : S0
1wt suffices to show that g 1is one-one, which ig easy, \ {F} tnto - X,

The construction of Shelah [79], generalizing Rubig (83], yields assuming
Vel for ever BA A with |a] - ltda] = * Since there
ideals of A and open setg i

: n Ultp the
can be 1: rel;;ed to the well-known topolc:gical
open sets, us from Juh
limit singular, N [80]’ T ve

and that it {g likely that
always holds (it does under GCH),
Problem 46. (In
—onfm 36

Y regular 2w a
is a one-one corr
problem concerning what |1da

problem concerning the number of
know that |1dA] is never strong

[raa [ = |raa|

ZFC) s J1aal” = |1aa|

Troblem 47. If W<k <A< 2%, ig thore a BA A ien
Froblem 47 .
|1dA] = % 2 ,

Various possibilities in Problem h7ufre excluded by
of open sets. Note thar Jtday = 2 whenever |A]

=,
2
. {Sub(iqta!g R)| =2

{Id(incalx R)| = 2% ’ |End(intaig R)| = 2“:
[1dA} < JEndA] for a1y A

\ > ot |Enga] < J1daq alwayg?
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16. Spread

We let spreadA = sup{!X| : X 1is a minimal set of generators of IgX}
There are several equivalents of this notion. For one of them, we call X

ideal-independent if ¥m € w\ {0} ¥x € ™ (x one-one = X0 )ixl + ...+ x

m—l)
Theorem 16.1. For any infinite BA A we have spreadA = sup{ixl : X is
—_—f] 0.1

ideal independent)} = sup{|D} : D UltA , D is discrete} = sup{|AtB| : A—yB

B atomic} = sup{cellB : A—»B} .

3

Proof. Let the cardinals in question be KI’KZ’KB’Kl&’KS + Clearly X 1is a
minimal set of generators of IgX iff X 1is ideal independent, so Ky = Ky -

To show Ky < Ks » let X be ideal independent; we find a homomorphic image B

of A with cellB > |I| . Let J = Ig{aeb : a,b € X, a#b}, and let
B = A/l . It suffices to show that a € J for all a € X . Assuming otherwise,
we then have

a Sbo'co + 0.+ bm—l.cm-l

vhere a’bO’CO“"’bm-l’cm—i € X and bi # c, for all i < m . Hence without

loss of generality, say Vi < m (a # bi) . Then a _<_b0 oL+ bm-l , contra-
diction, §o SKS .

For Ks < K4, » Suppose A-~—»B and D is a system of pairwise disjoint
elements of 3
]::et C = SgBD
Wentity on ¢

i we find an atomic homomorphic image C of A with [D| = lAtc].

and by the Sikorski extension theorem let f : B > C extend the
- Then range(f) is as desired. So & <

5="4"
K £ K3 ¢ let B be an atomic homomorphic image of A ; we find a discrete
subset of yea with |AtB| elements. Say f : A—»B . For every atom b of
let Fb=flaca:b« fa} . Clearly Fy s an ultrafilter on A , and
{r = '

b bEAtB} s discrete.
Finally, for
choose , €A

{aF: F 6 D}

Kq < K let D S UltA be discrete. Thus for every F €D
0 that sap ND = {F} . Then <aF : F €D> is one-one and

is ideal independent, as desired.

and t:Ote that all of the equivalent definitions given in 16.1 involve sups ,
that allli Blve rise to attainment problems. The proof of 16.1 shows, however, ,
these SUps are attained or not attained simultaneously. Now by'Juhasz
Cardinai2 » SPread  is attained for singular strong limit cardinals, fm: singular
Stronglys-of COf"}ality @, and for weakly compact cardinals. If «k is

€ and not weakly compact, and L is a k-Souslin lire, then
1gL) = ¢ por attained.

Prohle .
9%, Is it consistent to have a BA A such that

5 spreadA is
Bular gng Ot attained?

A reg ) :
ult of Sapirovskii [76]) implies that |A] < 2SPTeadA - yiie also that
F€adA < incA and cellA < spreadA . '

17. 1Ideal generation

igA =

min{g .
ekement s} .

©Very mon-principal ideal of A can be generated by < k
This

is a large function. There are numerous equivalents of this




- A £ hdA. Again the one-

Problem 52, (1n ZFC)

30 J.D. Monk

notion, given in the next theorem.

In particular,
is the same as the hereditary Lindel

this theorem shows that igA
of degree of Uy

1tA , a well-known function.
Theorem 17.1. For A infinite we have igA =

increasing sequence of ideals of type k} = sup{k :

increasing sequence of filters of type )} = sup{k : there is a strictly

increasing sequence of open sets in ULEA  of type K} = sup{c : there is a

strictly decreasing Sequence of closed sets ip ULtA of type «} = sup{k : there

is a right-separated Séquence in ULtA of type k} (see* Juhdsz [80]) = sup{LS :
S< ULtA} (see Juhhsz (80]) = min{x : SVEry S S UltA has the Property that any
open cover has g3 subcover of P every closed set 1is the

ower < k} = min{x .
intersection of Lk open sets} = min{k : every OPen set is a union of <k
closed sets} = sup{k : q < X, a< k> € “A Va <k ¥ ¢ [a]<m (x ﬁ'y x.) .
| “T "per P
From this theorem it isg clear that SpreadA < {gA . The one-point

compactification of the Kunen line, constructed under CH , gives a BA A with
igA = @ and  spreadA =  ; gee Juhasz, Kunen, Rudinp [76] .

sup{k : there is a strictly
there is a strictly

Problem 50. (In 2zrc) 1s there a BA A yich SpreadA < igp 7
—fm 00

Note that ig(intalg R) = 4
incA = w and igA = W

[81] under C}.

» vhile inc(intalg ) = 5 On the other hand,
for an algebra A

constructed by Baumgartner, Komjath

Problem 51. (In 2zrc) Is there a BA 4 with inca < igA ?
—=22rem >l ?

Also note that if L is a Souslin line ¢
in the usual way (using branches), then lram( {
W . Since cellA < igA for al]
that it is not possible t

btained from
ntalgl) | = w

1 A, we see from the
O geL 1n ZFC gap algebra

18. 1deal depth
—C8pth

hdA = sup{x : there is a str
order type «x} . This large func

with the hereditary density of th

i?tly decreasing Sequence of
tion, led idea)
» by the followi
infinite we have

ts of type «} = su

idealsof A of
depth, coincides

ag theorem.
Theorem 18.1. For A

dA = 4 . : .
decreasing sequence of filte up{x : there s a strictly

. . plk : ¢ i ‘
decreasing sequence of open sets tn UltA of type ) :r:uI? a.Str‘CCIY
strictly increasing sequence of closed sets in ylpy of t b i there is 4
is a left-separated sequence in Ulea ype «} =

- L of type i} (see J sup{k : there
sup{density S : § UltA} = min{x

uhé =
) ‘ every g S Ulea has 5 d:z tso))
Lk} o= sup{density UleB : A B} = sup{mp . A B "

= supfx : T<x r a <k >
€ “a Ya < ¢ YT ¢ [z\(q#l)]“’(xa i ) xﬁ) . *
per*®

om duality theor | ’
« Also, hdA < inca f 20 Juhdsg (80]

1f A—.;p * .
< incA by 18T, ' then B < incp <
hdA < sdeptha by the proog of 15,)

point compactification of
Rudin [76]) gives under CH a BA A with

Szentmiklossy [80]) showed that under MA + - CH

The proof of this theorem follows fr
Clearly spreadA < hdA

incA by section 5, so hda
Also note that

Istthere a BA A SPTeadA < pga

Px has ideal depth 2 by 18.1 (since i¢ has spreaq 2y ‘
density « . intalg R has tdeal depth u , bye Subalgepy, dep:}tt v:a; fasebraic
| . . \ "d incompgy-
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ability 2%, Sapirovskil [74] showed hdA < (spreadA)+ . Juhlsz [71] showed
“under MA + =CH that igA = w= hdA = w .

19. Ideal length

We set ilengthA = sup{|X] : X is a chain under € of ideals of A} ; this
is ideal length, Clearly igA , hda , lengthA < ilengthA , which is thus a
——— Ength 2

large function. Note that ilengthA < slengthA by the proof of 15.1. Tt is

possible to have iga < ilengthA , hdA < ilengthA , and ilengtha < slengthA ,
Also note that it is consistent that there is a BA A with ilengthA < |IdA|
let A be the BA of finite and cofinite subsets of wi . Then 1ilengthA =

W
dedw, , while |ida| = 2

“
ded wy < 2

.+ By Mitchell [72] it is consistent to have

- Ideal length has been studied in a general topological setting by
by Ginsburg [w«]

Problem 53, (In ZFC) 1s there a BA A with ilengthA < IIdA[ ?

D.  Topological functions: points or ultrafilters

. U(liur final group of functions are concerned with ultrafilters, i.e., points
in Ulea , :
20. VUltrafilters
It is

IXTll-known that |A| S_]UltA] . Clearly also |ultA] < |tdal ,

Concerning the possible relationships between [A] and |Ulta|
well-known or easy facts:

|Enaa] | 5
¥e mention some
() For A infinite, IUItA] = w or |ULtA| _>_2w .
@ 15 ¢ k < 2N ¢ oK

" then there is a BA A with |A] = k and
'UltAI = 2" |
3) con(zre N
* BA A such that |A] =R , juieal =8, 2" = )

(4) (s w w1 ) wt

¢ Tall [80] ; the result is due to Kunen.) Con( T inaccessible) =
C 1 @ w
on( VA(|AI = wl = ]UltAl € {wl,z 1}) + 2w - ‘*’l + 2 1 S wz) .

Prob) .
—m 4. Describe the possibilities for |A| and lutead .

Th
¢ BA constructed

4] =

by Fedorcuk [75] using <> is such that cellA = indA»= w,
w
wl > ]UltAl = 2 1

Probl
55, (In ZFC). 1Is there a

'y an easy argument
Mage g with

>
, 712“’ for ever

W thig cage:

indA
BA A with |ulea| > p¢ellAtindA

under GCH , if P < lUltAl then A has a homomorphic
IUltBl =" or k't If A is infinite and wcc , then |ULtB |

s ., w
Y nfinite homomorphic image B of A ; also ]UltB] = [UItB'

. » See, e.g., van Douwen {81] .
- Joblen ¢ \
b CM) I there & mA A win [vrea] > v, such that A has no
°1'Phic image ’ ’ :

B with Jyien] = w, ?
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Problem 57. (GCH) Is there a BA A with |UltA]| >

W) such that A has no
subalgebra B with |UltB|

w, ?

2

celld = w = |UltA] < 2% 2

21. Topological density

dA = min{x : UltA has a dense subset of power «k} . This a large func-
tion. A less topological form for dA is:

Theorem 21.1. dA = min{k : A 1is isomorphic to a field of subsets of k} .

Proof. < : Suppose A c®c . For each «< K let Fa = {a €A : a €a).

Thus Fa is an ultrafilter on A , and {Fa: a < k} is clearly dense in UltA.

> . Let D be dense in UltA . TFor each a € A let fa={Fep : a€F}.

Clearly F : A—»®P0D .
Theorem 21.2, ramA S_dA .

Proof. Obviouély cellA < dA ;

hence if the theorem is false, we have
cellA = dA and ramA = (cellA)”

by section 6.

Say Ac ®A, A =dA, and R
is a ramification system in A of power 1A',

For all a < A et F, o= {x €R:
@ € x} . Then Fo is a well-ordered chain and

cellA = )\ | o |pa| < A . But
R = LJa(AFa » contradiction, :
Clearly dA < mA . Sapirovskii [74] has shown that

easy to see that |A| S_ZdA . Clearly
free, in general.

dA < (spreada)” . 1t is

. ramA < dA  {n general; dA < mA for A
We have spread(intalg R) = d(intalg R) = Under CH
there is a BA A with spreadA = w and dA = @ (the Kunen line)

Problem 59. (In 2FC) Is there a BA A with spreadA < dA 7

Recall from 18.1 that (H'd)A = hdA . Arhangelskit [70) »pr
tAecella ) - v proved that

da < 2 - Malyhin and Sapirovskii (73] showeq that

that tA,cellA = w = dA = w ; under the same assumption Hajn

showed cellA =w , mA < 2“2 dA = o .
~showed spreadA {x , tA < kK = dA <k

MA + —CH implies
. al and Juhdsz [71]
Sapirovskii (see Arhangelski{ [78])

.

Problem 60%. Con(dA < tAecellA for all A) 7

K ' :
Problem 61%. Con( VA W(dA < 2" , tA < 2%, celip ¢, L W< s

Problem 62. (In 2FC) 1Is there a BA A with

celld = | dA
julea] < 2¥ 9 _ > @ and
The interval algebra A on a Souslin line has cellp = dA .
On the other hand, by the above result of Hajnal ang Juhi ’. v 'ml , IAI = 0.
MA+ -ci, Wl|= w and cellA=w = da= g, 452z we have, under

22. Ultrafilter den#ity

Por'any ultrafilter F on A let
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nXF = min{|X| : Ya € F 3= € x"(x < a)l.

The ultrafilter density of A is

YA = sup{nyF : F € UltA)

and the lower ultrafilter density of A is

XA = min{myF : F € UltA) .

Both'of these are widely varying functions. Mainly we shall consider ultrafilter
density. We mention about ™o only the useful result of SapirovskiY that

. +
indA = (Y TXo)A 5 see Sapirovskii [80].

Sapirovskii [75] showed that 7nyxA < tA .
|a] < myacella

for «

Sapirovskii [74] showed

From various results it follows that TA = mYA*dA . Note that
uncountable and regular, my(intalgk) = k .

23. Character

Let

XA = min{k : every ultrafilter on A can be generated by < k
elements} . m

This is a large function. Note that XA < igA . The famous theorem
of Arhangelskif{ [69] implies that |vita] < 2 YA
example, if A
whi].e XA = g .

. One can have yA < igA . For
is the Alexandroff duplicate of Frk , then 2° = celld < igA ,

The Kunen line (under CH) gives a BA with character w, and

Spread ¢ l

implies ya =556?tm1klossy [80] showed under MA + —CH that spreadA = w

Prob
~2lem 63, (In 2FC) Is there a BA A with YA > spreadA ?

It is kndwn that |A] < xAcellA

Pr :
oblem 64, 12A = yAsspreadA ?

Ba
xA“Tgartner and Kom

=y jath [81] assuming <> constructed a BA A with incA = w and -
l .

Prob A
~2lem 65, ya < sdeptha ?

Prob le .
——m 6. (in ZFC) 1Is there a BA A with YA = w and cellA # dA.?

_ 24, Tightness
Our . .
‘ last function s tightness. For any ultrafilter F on A we set
tF = : .
Mo : if Y CULtA and FEY then @ € [YISGr s U},
tA = sup{tF : F € UltA} .

iS is :
2 widely varying function,

try There is a useful equivalence of Arhangelskii

in te . .
s of free sequences. A sequence <F§= E< @ in UltA is free if

there is no ¢ c UltA with

G (U FHN(U  F)
g " £_<_fl<an
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Then . tA = sup{|a| ¢ there is a free s

equence of length a} ., There is also a
more algebraic version of the definiti

on:
Theorem 24.1, tA = sup{|a]| : 7 Cap: & < w€ “aAzy e ULtA <sa, NY : E< @
—corem 3.0 1 :

is strictly increasing} = sup{depth(A/I) : I an ideal in A} .

Proof. Let the three cardinals be Ky |<2,|c3 L < Ky ! Let <F£: ELw
there is an ap € A such that {FTI:
n<E} ¢ sag and saEn{Fn:n< al =0 .

: : >
KziKl Let <a£ £E< «a and Y be

choose F

be any free sequence, For all & < a

Let’” Y = {F;: £ < a} .

as indicated. For all £ < a
g € Sag,p NY\ sag . It is easily checked that

<I-‘F; L < a> is a free
sequence, )
. a
<, < Ky ¢ Let <8F' E<ade A

{xe A: Yg s(-x)} . Clearly 1
Then s(ag--an) NY=0, so a

and Y be as indicated. Let I =

is an ideal in A - Suppose E < n< a.
£ . -an €1 . Hence [aF:] < [an] . Choose
Fe sa_ ny\ $8y . Then F ¢ s(aﬁ‘-ai) NY , so vy ¢ s(-(anhag)) . Thus
8, * "3 ¢ I . Hence [QE] < [an] . :
Ky SKZ ¢ Let 1 be an ideal, <[a§} tELC
sequence in A/I . Set Y = N s(~x)

_ Xxel
then a§€F and aé'-anEI,so -a

So sag NYe sanﬂY . Now a
u {-ag} . Then F has

2 strictly increasing
Suppose E ¢ n<a. If F €sa. NY,

4
3 af}EF hence an'GF and F € sa_.

n
n--a§EI. Let F={x:-}x €1} U(an}

fip , s0 er G . Thus GEY
and G ¢ san\sag » as destired.

+

F<G for some ultrafile

The actual definition of
rise to attainment problems; ¢t

e free sequence equivalent give
properties as the free sequenc

in 24.1 have the same attainment
8 € ; each limig cardi there is
8 BA A with tightness ot attained; for efk > ' the samen?; t:ue for the

free sequence definition, If « is singular cfk =
= w i s
K, then A has a free sequence of length K,'. These fa;cand e op2s tightnes

using the methods of McKenzie, Monk (82] . ts are easily proved

We have t(AXB) = tA ytB ang i

For

i€ItAi - On the other hand,
© such that ¢(Y) =  ,

3

Z i i tightness
Monk [83] . ‘

It follows from a result of Malyhin [72] thaf
Clearly independence.
ultrafilter density £ tight

see

% =
¢ ierty 11!-Usupi€ItA

depth < tightness, Sapirovskiy [7

ness. Clearly tight
Sapirovskil [74] showed hdA £ spreadAs(ta)* L

We also should mention that A

i.
5] has shown that

ness < Spread, Character,

= sup{nxB : A3y
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2depth

cell

cell

2cell

length

cell

depth

e e e

there may be

d by ? . 1In addition,

dicate
PS not shown; see the problems.

qualities are in

Possible e
relationsh

At e A il et S R 4 4 i




o i i M A 2

36

J.D. Monk

REFERENCES

Argyros, S. [82] Boolean algebras without free families, Alg. Univ. 14, 244-256.

Arhangelskii, A. (69] The power of bicompacta with the first axiom of
countability, DAN SSSR 187, 967-968.

Arhangelskii, A. [70) Souslin number and cardinality. Character of points in
sequential becompacta, DAN SSSR 192, 255-258,
Arhangelskii, A.V. [71] On bicompacta hereditaril

tion, tightness, and free sequences, Sov. Math. Dokl. 12, 1253-1257.

Arhangelskiil, A.V. [78] Construction and classification of topological spaces
and cardinal invariants, Usp. Mat. Nauk 33, 29-84,
Balcar, B., Franék, F. [82]

Independent families on complete Boolean algebras,
Trans. AMS 274, 607-618.
Baumgartner, J. [80] Chains and antichains in §
Baumgartner, J., Komjath, p. [81] Boolean
antichain is countable, Fund. Math. 111, 125-133,
Bonnet, R. [=] Very strongly rigid Boolean algebra, continuum discrete set
condition, countable antichain condition.
Breaner, G., Monk, J.D. [83] Tree algebras ang chains,
lattice theory, Springer Lecture Notes
Comfort, W.W., Negrepontis, S. [82]
Univ. press, 300 pp.
Cramer, T. [74] Extensions of free Boolean algebras,

y satisfying Souslin's condi-

(w), J. Symb. Logic 45, 85-92.
algebras in which every chain and

é Universal algebra and
In Mathematics 1004, 54-66.

Chain conditions in topology, Cambridge

226-230. J. London Math. Soc. 8,
Day, G.W. [70] Maximal chains in atomic Boolean algebras, Fund. Math 67,
293-296. . .

Devlin, K. [73] Some weak versions of large cardinat axioms
4 (1973), 291-326. ’
van Douwen, E.K. [80} .
automorphism group, Alg. Univ. 11, 389-393, san algebra with countable
van Douwen, E.K. [81] Cardinal functions on compact F-
countably complete Boolean algebras, Fung, Math 1)
van Douwen, E.K. [#] A technique for constructing hone
metrizable examples,
van Douwen, E.K., Monk, J,D., Rubin, M. (80}
algebras, Alg. Univ. 11, 220-243,
T aay S1sep.r A 1431 On families of mrtually exciugiye sets, Ann. Math.
Fedorduk, V. {75] On the cardinality of hereditar:
Hausdorff spaces, DAN SSSR 222, 302-305, rartly separable compact
Fleissne{, W. [78] Some spaces related to topological ine
Erdos-Rado theorem, Proc. Amer. Math. Soc, 71, 313_328u
Galvin, F. [80) Chain conditions and .products, Fund, Marh *
Ginsburg, J. [®] A note on chains of open sets, ’ - 10s, 33-48.

Hajnal, A., Juhasz, 1. [71] A consequence of Martin! .
457-463, n's axiom,

Horn, A., Tarski, A. [48)
64, 467-497,
Jakubik, J. [58]
193-202.
Juhdsz, I. [71} cardinal functions in
Centrum Amsterdam, 149 PP.
Juhdsz, 1. [80] Cardinal functions in topology -

te
Tracts 123, Math. Centrum Amsterdam, 160 PP. n.years_lﬂtet. Math. Centre
Juhdsz, 1., Nagy, z., Weiss, W, [79] On count ab

ly com
spaces, Per. Math. Hung. 10, 193-206. pacs, 10ca11y countable
Juhdsz, I., Kunen, K., Rudin, M.E. [76] Two more i

. er 3
Lindeldf spaces, Can. J. Math 28, 998-1005. o t2Tily separable pope
Kanamori, A., Magidor, M. [78]

The evolution of |gar e 13
theory, Higher Set Theory, 99-276, Springer Lecgur:a;dlnal axi

Ann, Math. Logic

Spaces and on weakly
3, 237-256.

st locally compact sub-

Some questions about Boolean

alities proven by the

Indag. Math. 33,

Measures in Boolean algebras, Trapg, Amer. Math. Soc

On chains in Boolean lattices, ﬁat :
« Cas, Sloven Ak .

+ Akad. Vied. 8,

topology,

oms in set
otes, v, 669.



Cardinal functions on boolean algebras

Koppelberg, S. [75]
AMS 51, 171-175.

Koppelberg, S. [77] Boolean algebras as unions of chains of subalgebras, Alg.
Univ. 7, 195-204,

Koppelberg, S. [#] Maximal chains in Boolean algebras,

Kunen, K. [80] Set theory, North-Holland, 313 pp.

Kurepa, D. {50] La condition de Suslin et une propriété caractéristique des
nombres reels, Comp. Rendus (Paris) 231, 1113-1114,

Kurepa, D. [57] Partitive sets and ordered chains, "Rad" de 1'Acad. Yougoslave
302, 197-235.

Kurepa, D. [62) The cartesian multiplication and the cellularity number, Publ.
Inst. Math. (Beograd) 2, 121-139.

Kurepa, D. [77] Ramified sets or pseudotrees, Publ. Inst. Math. (Beograd) 22,
149-163.

Loats, J. [77] on endomorphism semigroups of Boolean algebras and other
problems, Ph.D. thesis, Univ. of Colo., 75 pp.

Malyhin, V. [72] oOn tightness and Souslin number in expX and in a product of
Spaces, Sov. Math. Dokl. 13 (1972), 496-499.

Malyhin, v,, Sapirovskil, B. [73]
spaces, DAN SSSR 213, 532-535,

McKRenzie, R., Monk, J.D. [73] On automorphism groups of Boolean algebras, Erdos

Symposium, Colloq. Math. Soc. J. Bolyai 10, 951-988.

MCKen:l:ie, R., Monk, J.D. [82] Chains in Boolean algebras, Ann. Math. Logic 22,
37-175.

Mitchell, M. [72] Aronszajn trees and the independence of the transfer property,
Ann. Math, Logic 5, 21~46.
Monk’Zgén- [83] Independence in Boolean algebras, Per. Math. Hungar. 14,
-308.

Rubin, M. [83] A Boolean algebra with few subalgebras, interval Boolean
! algebras, and retractiveness, Trans. AMS 278, 65-89.

Sapirovskii, B, [74] cCanonical sets and character. Density and weight in com~
{ans Pact spaces, Sov. Math, Dokl. 15, 1282-1287.

atrovskii, B. [75] on T-character and m-weight in bicompact spaces, DAN SSSR
« 223, 799-8p7. '

Sapirovelii, B, [76]

¢+ Uniy, 257, 88-89,
Saplrovskii, B. [80]

Homomorphic images of o-complete Boolean algebras, Proc.

Martin's axiom and properties of topological

On tightness, n-weight, and related notions, Uc. Zap. Latv.

22-13 On mappings onto Tychonov cubes, Usp. Mat. Nauk 35,
Sh T .
e1‘"‘;':;:_)5142[79] Boolean algebras with few endomorphisms, Proc. AMS 74,

Shelap o Remarks on Boolean algebras, Alg. Univ. 11, 77-89. )
» 8. [80a] Independence of strong partition relation for small cardinals,
and the free-gybget problem, J. Symb. Logic 45, 505-509.

c (81 On uncountable Boolean algebras with no uncountable pairwise
35';'9;8'2“9 or incomparable sets of elements, Notre Dame J. Formal Logic 22,
Shelah’ S. [é3]

ole Constructions of many complicated uncountable structures and
klo:: algebras. Israel J. Math, 45, 100-146. . ) vath
oc, Jay’ 2. [80! S-spaces and L~spaces under Martin's axiom, Colloq. .
Talp, F0180?°8 Bolyai 23, 1139-1145. _

Acad, p Large cardinals for topologists, Surveys in general topology,

OTcevid, ;ess;]445-477.

Szenepg

Remarks on chain conditioins in products.




