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A VERY RIGID BOOLEAN ALGEBRA

BY
J. DONALD MONK'

ABSTRACT
A Boolean algebra is constructed having only those endomorphisms corres-

ponding to prime ideals, which arc present in any BA. The BA constructed is of
power c, has 2° endomorphisms, and is not rigid in Bonnet's sense.

Rigid Boolean algebras — those without non-identity automorphisms — have
been extensively studied (see van Douwen, Monk and Rubin [2] for a survey). In
general algebra a stronger rigidity — no non-identity endomorphisms — has
been studied (see, e.g., Hedrlin, Pultr and Vopenka [4]). This notion does not
apply to Boolean algebras, since, e.g., non-identity endomorphisms exist corres-
ponding to any maximal ideal (see below). But one can describe the endomorph-
isms inevitably present in any BA (we call them simply definable endomorph -
isms), and try to construct a BA in which these are the only endomorphisms.
That is the main purpose of this article.

The paper is a sequel to Shelah [8], but is self-contained. In [8] the existence of
a BA in which every endomorphism is simply definable (called henceforth a
prime-rigid BA) was proved assuming ©O,,. Later (unpublished) Shelah replaced
Ox, by CH, while the author established the existence of a BA with only
definable endomorphisms (a weaker notion) in ZFC. This last construction was
simplified by Shelah, and then the author saw how to modify and extend it to
establish the existence of prime-rigid BA’s in ZFC. Without these communica-
tions with Shelah the author would not have accomplished this work. In addition
to Saharon Shelah the author is grateful for useful communications with Robert
Bonnet, Neil Endsley, Sabine Koppelberg, Richard Laver, Matatyahu Rubin,
and the referee.

To state the main result precisely we need several definitions. Two ideals I, J
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in A are complementary if I N J = {0} while I UJ generates a maximal ideal of
A. We call A indecomposable if A has no pair of non-principal complementary
ideals. If f is an endomorphism of A we let kerf={a € A: fa =0}, fixf=
{a€ A:forall x = aq, fx = x}, and exker f = {a + b: a € ker f, b € fix f}. We say
that f is definable if A /exkerf is finite. Finally, A has only simply definable
endomorphisms, or is prime-rigid, if A is atomless, indecomposable, and has only
definable endomorphisms. We give further information and background on
these notions later. The main result is that there is a prime-rigid BA of power 2™.
We actually prove a stronger theorem, Theorem 12, which also gives some
information about a weaker kind of rigidity in other powers. We begin with a
discussion of indecomposability, and then give a more intuitive but more
involved equivalent definition of prime-rigidity. Then we discuss the notion of a
complicated BA, which plays an important technical role in the final construc-
tion. Most of the notions and results up to this point are in [8], perhaps in an
implicit or less general form. Finally, we give the main construction, important
corollaries, and mention some open problems. Some of the results stated are not
needed for the main results, but are included for background.

Indecomposable BA’s

It is easily checked that any complete BA is indecomposable. On the other
hand, we have:

THEOREM 1. If A is the denumerable atomless BA, then any maximal ideal in
A is generated by the union of two non-principal complementary ideals. In
particular, A is decomposable.

Proor. Let (x;:i<w) be a free generating system for A. By the
homogeneity of A it is enough to prove the theorem for the maximal ideal J
generated by {x;: i <w}. For each i <w let

y=x-[l-x,
j<i
and let I, and I, be the ideals generated by {y.:i<w} and {yx..: i <w}
respectively. It is easily checked that I, and I, are complementary and that their
union generates J.

We can extend this theorem as follows to higher cardinals.

THEOREM 2. Assume Martin’s axiom, and let B be a BA of power <2%
which has a denumerable dense atomless subalgebra A. Then B is decomposable.
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Proor. Let J be a maximal ideal in B which preserves all joins b =
S{a€A:a=b},forb€B.Let K=JNA.Since K is a maximal ideal in A, by
Theorem 1 let I, and I, be non-principal complementary ideals in A whose
union generates K. Let I and I| be the ideals in B generated by I, and I,
respectively. Clearly I and I} are non-principal, IsN 1= {0}, and I;U I CJ.
Now let b € J. Then — b& J so, since —b = Z{a € A: a = — b} is preserved by
J, we can choose a €A witha=—-banda€&J Say —~a=c+d withc €,
and d € I,. Then b=b-c+b-d. Thus J is generated by I,U I], as desired.

If A isa BA and X aset, we say that a BA A(X)is a free extension of A by X
if ANX=0,A(X)isgenerated by A U X, and for any BA B, any homomorph-
ism f from A into B and any function g from X into B there is a
homomorphism h of A(X) into B which extends both f and g. The following
theorem was independently found by P. Nyikos.

THEOREM 3. Let A(X) be a free extension of A, with X uncountable. Then
A(X) is indecomposable.

Proor. Suppose that I, and I, are non-principal complementary ideals in
A(X), and let J be the maximal ideal which their union generates. We may
assume that x € J for all x € X; say x =y, + z, with y, € I, and z, € I,. Since
Vo Zx = X, We can write y, = x -u, and z, = x - v,, where u, and v, are in the
subalgebra generated by A U (X —{x}). Thus x = x - (4, + v.), so by the free-
ness of x, u,+v.=1. But also xu, v =y, -z, =0, so u,-v. =0. Thus
v, = — u,. Now for each x € X let sx be a finite subset of X — {x} such that u, is
in the subalgebra generated by A Usx. By Lazér (6], let Y be an infinite subset
of X such that x&sy for all x,y € Y. Now for distinct x,y € Y we have
X -u,-y-—u, =0,s0,since x and y are free, u, - — u, = 0. Hence u, = u, forall
x,y € Y. Set u, = w for all x € Y. Without loss of generality say w € J. Hence
write w = s + t, with s € I, and 1t € I,. Choose s' with s < s'€ I,. Choose x € Y
so that s’ is in the subalgebra generated by A U(X —{x}). Now x -s"-—w €
I,N1I,,sox-s"-—w=0and, by the freeness of x, s"-—w =0. But then s'= s, a2
contradiction.

To end our discussion of indecomposability let us show its relevance for the
discussion of endomorphisms. Suppose that I and J are complementary ideals in
A. Then, as is easily seen, I U — I is a subalgebra of A isomorphic to A /J, where
—I1={a € A: — a € I}. Hence the natural mappings A > A/J>IU-ICA
compose to give an endomorphism of A. Therefore, if we construct an
indecomposable BA, it automatically fails to have this kind of endomorphism.
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Prime-rigid Boolean algebras

The following theorem gives an indication of the strength of having only
definable endomorphisms.

THEOREM 4. If A is atomless and has only definable endomorphisms, then
every one-one and every onto endomorphism of A is the identity.

Proor. First we take the case of a one-one endomorphism f. Suppose f is not
the identity. Then there is a y # 0 with y - fy = 0. For any distinct w.v =y we
have u/exker f# v/exkerf, so A/exkerf is infinite, contradiction.

Now suppose that f is an onto endomorphism different from the identity.
Then f is not one-one, so kerf# {0}; choose 0# a € kerf. For each b=a
choose ¢, €A with fc,=b Then for distinct b b'=a we have
cy/exker f# cy/exker f. In fact, suppose c,/exker f = ¢, /exker f while b# b’ say
b-—b'#0. Write ¢, - —¢,-=d + e with d Ekerf, e Efixf. Applying f we get
azZb-—b'=esoeckerfNfixfandsoe =0.Thus b -— b’ =0, contradiction.
Thus again we have shown that A /exker f is infinite, contradiction.

Now we want to give a more intuitive version of the notion of prime-rigid BA.
Given BA’s A, B and a maximal (prime) ideal I in A, the natural homomorph-
ism A — A/I can be considered to be a homomorphism from A into B. For
A = B, this gives an endomorphism of A (and shows, incidentally, that any BA
has at least as many endomorphisms as maximal ideals). More complicated
endomorphisms can be obtained, e.g., in the following way. For any a € A let
Alabethe BA{x € A: x =a}. Let a, b, ¢, d be four pairwise disjoint non-zero
elements of A with sum 1. Let I be a maximal ideal in A [ d. Then we can obtain
an endomorphism of A as follows:

A=(Ala)x(Alb)x(Alc)x(Ald)
— (Alb)x(Ald)
> (Ala)x(Alb)x(Alc)x(Ald)
=A,

where the first map is the natural isomorphism, the second one is projection
({w, x, y, z) goes to (x, z)), the third one takes (x, z) to (z/I, x, z/I, z) (in a natural
sense), and the fourth is again the natural isomorphism. If we analyze this
situation carefully we can arrive at the following notion (the notion can be given
various equivalent formulations; see, for example, Loats and Rubin [7] for
another interesting one).
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A schema for a prime endomorphism in A is a sequence
(ao, a,, bo, Y bm—ly Coy* "y Ca-1y bz, MY b:..,,c;, Y C:-I) IO) Y IM—I) -’09 Y Jn~l)

such that the following conditions hold:

(1) ao, @y, o, *, by, Co, * * *, Ca-y are pairwise disjoint elements with join 1;
b#0#¢ forall i<m, j<n;

(2) b%,---,bm,cd, "+, ch-, are pairwise disjoint elements with join ao+ b, +
coit by BTAO0F Y foralli<m, j<n;

(3) for ail i <m, I, is a maximal ideal in A [ b;;

(4) for all j <n, J; is a maximal ideal in A [c;,

THEOREM 5. Given a schema for a prime endomorphism as above, there is a
unique endomorphism f of A with the following properties:

(i) for all x = ay, fx =0; for all i <m and for all x € I, fx =0;

(ii) for all x = ay, fx = x; for all j <n and for all x € J, fx = x;

(iii) for all i <m, fb; = b%, and for all j <n, fc; = ¢; +¢*.

Proor. The existence of f is seen from the following diagram:

A=(Ala)x(ATa)x [T (ATh)x[T(AlT¢)

i<m j<n

—=(Ala)x[TAatb)x[I(Al¢)

i<m j<n

l identity l ideals I, l ideals J;

(Atayx[T@Aareyx[T(Atc)x(AlcY)

i=m j=n

=A.

(Alb,—=AlbYtviaxex/I,while Aj¢—=(Al¢)X(Alc%) via x » (x,x/J;).)
The uniqueness of f is clear, since the conditions (i)—(iii) uniquely determine f on
each factor A [as,Ala, Alby, ", Albn-s,AlcCo, ", AlCh1

In the situation of Theorem 5 we say that f is simply defined by the given
schema.

Lemma 6. Let I and J be non-principal complementary ideals in an atomless
BA A, and let f be the endomorphism of A obtained as described after the proof of
Theorem 3. Then f is not simply defined by a schema.

Proor. Suppose on the contrary that f is simply defined by a schema, with
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notation as above. Note that fa =0 foralla € J and fa = a forall a € I. Let K
be the (maximal) ideal generated by I UJ. Then

(1) for all j <n, ¢; € K.

For, otherwise write c;, =d +e with d €I, e €J. Then fc;, =d =¢;, so ¢} =0,
contradiction. Next,

(2) forall i <m, b, & K.

For, otherwise write b, =d + e with d €I, e €J. Then bt = fb,=d = b, and
d# 0 since b% # 0, while fx = x for all x = d. But we can choose 0 # u = d with
u € I, and then fu =0, contradiction.

Suppose m >0. Then by (1) and (2), m =1 and n = 0. Also, — b, € K, so we
can write —b,=d+e, with d€EI and e €J. Hence e =a, d=a, and
b% = a,+ by. Now choose d'€ I with d <d'. Thus d'-—d - b, #0, so we can
choose 0 # u =d'-—d - b, with u € I,. Then 0= fu = u, contradiction.

Thus m = 0, and similarly n = 0. It is then easy to see that ao,a, € K,so 1 €E K|
contradiction.

The following theorem expresses our more intuitive version of prime rigidity.

THEOREM 7. For any atomless BA the following conditions are equivalent:

(i) A is prime-rigid;

(i) every endomorphism of A is simply defined by a schema for a prime
endomorphism.

Proor. (ii) = (i). Assume (ii). By Lemma 6, A is indecomposable. Assume
the notation of the definition of a schema. Then A /exker f, if it has more than
one element, is a finite BA whose atoms are bo/exkerf,---, b._/exkerf,
colexker f, -+ -, c.-./exker f.

(i) = (ii). Assume (i). Thus A /exker f is finite. If exker f = A, then ker f = {0}
and fixf = A, so f is the identity, defined by the schema (0,1). Now assume
exker f# A. Then there are pairwise disjoint elements x,, - - -, x,—, of A with join
1 such that xo/exker f, - - -, x._,/exker f are the distinct atoms of A /exker f. Each
x. will give rise to from one to three terms of the desired schema, as follows
(fixk). Let I,=(kerf)N(A[x.), I,=(fixf)N(A [ x.), J = (exker f)N(A [ x.).
Then I, and I, are complementary ideals in A [ x, their union generates J, and J
is a maximal ideal in Afx. If I, and I, are non-principal, let I{=
{a € A: a-x. €I}. Then I, and I are non-principal, complementary ideals in
A, contradiction. So, I, and I, are not both non-principal. Also they are not both
principal, since otherwise J would also be principal, which would imply the
existence of an atom in A = x,. Thus we have two cases:
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Case 1. I,is principal, say generated by e. Note that x, - — e # 0. We let e be
a part of a,, while x,-—e is to be a term b, Further, b} =fb, and I, =
(exker f)N(A [ x.-—e).

Case 2. I, is principal, say generated by e. Clearly

(1) for all y =x, -—e, if y Eexkerf then y € I,. Also we claim

2) x. - —e=f(x.-—e).
For, otherwise lety = x, - —e -— f(x.-—e). Theny - fy =0,s0 y &€ I, and hence
y & exker f by (1). Hence x, - — y € exker f,so by (1) x. - — y - — e € I,. Choose z
such that x, - —y-—e<z€I,. Hence z=x.--e¢ and fz = z, so

z=x.—e f(x.-—e)=x.—e- -y,

contradiction. Thus (2) holds. Further, clearly x, - — e# 0. Furthermore,
G) flxc-—e) —(x.-—e)#0.
For, otherwise
(4) forally=x.-—e, fy=y.
In fact, let y =x, -—e. If y Eexkerf, then fy =y by (1). If y € exker f, then
x.r—e-—y€exkerf soby (1) x.-—e-—y€EI and hence

fr=fx.-—e-=(x.-—e--y))

=X..—e._(x“.—-e._y)

=y.

So (4). But by (4), x. - — e € I,, so x,. € exker f, contradiction. Hence (3) holds.

In this case we let e be a part of a,, x. -+ — e a term ¢, and by (2) and (3) we
write fc; = ¢, + ¢¥. Finally, we let J, = (exker f)N A [ c..

The various desired conditions in a schema and in Theorem 5 are now easily
verified.

The following lemma is needed in the next section.

LemmA 8. If fis an endomorphism of a BA A, a € A, and for all x = a we
have fx = x, then a € exker f.

Proor. Let x =a. Then f(x-— fx)=x - fx, and obviously f(x-— fx)= fx.
Hence f(x - — fx)=0. Therefore,

(1) for all x =a we have x - — fx Ekerf.
Again, x = a implies fx = ffx by (1), and it implies fx = a and hence ffx = fx, by
hypothesis. Hence

(2) for all x = a, fx = ffx.
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Now we claim

(3) fa efixf.
For, suppose x = fa; we want to show fx = x. We have, using (2) and the fact
that x - — fx = fa,

fa=fa=f(fa-—(x-—fx)+x-~fx)
=flfa-=(x-=fx))+f(x - fx)
=f(fa-—(x-—fx)) by(1)
=fa-—(x - fx) by hypothesis.

Hence fa = — (x - —fx). Since x -— fx = fa, it follows that x -— fx =0. Thus
x = fx, and fx = x by hypothesis. Hence x = fx, and we have established (3). By
(1), (3) we have a = (a - — fa)+ fa € exker f.

Complicated BA’s

Let A be a BA, L, the first-order language for BA's enriched with constants
for members of A. We shall consider 1-types in L, i.e., sets of formulas in L,
with one free variable v. In fact we shall work only with very simple types. If
(@.: a < k)is a sequence of elements of A, 7 isa term in L, in which, aside from
the names of elements of A, only the variable v appears, and S C«, by
[a@., 7]"*“® we mean the formula a, <7 if a €S and a.-7=0if a €S A
standard x-type over A is a type of the form

{[@a, 0]**"% @ <k},

where (a.: a < «) is a system of pairwise disjoint non-zero elements of A and
SCk.

A «k-candidate over A is a system ((a,, b.): @ < «) such that the a.’s are
pairwise disjoint non-zero elements of A, as are the b,’s, and for all a <k,
b, #Z a,. Finally, we call A «-complicated if for any such k-candidate over A
there is an S C«k such that {[a.,v]""% a <k} is realized in A but
{[ba, v]*"“%: @ <k} is omitted in A. The connection with the above rigidity

notions is given in the following theorem.

THEOREM 9. If A is w-complicated, then all endomorphisms of A are
definable.

Proor. Let f be an endomorphism of A, and suppose that A /exkerf is
infinite. Then there is a system (a,:n € w) of pairwise disjoint non-zero
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elements of A such that a,/exker f# 0 for all n. By Lemma 8, for each n €
there is an a, = a, with fa,.Z a,. Thus {(a., fa.): n € 0) is an w-candidate over
A. Hence we can choose S C w so that {{a,, v]""“*: n € w} is realized in A, say
by ¢, but {[fa., v]*"*% n € w} is omitted in A. But clearly fc realizes this last

type, contradiction.

The following theorem is needed in order to partially extend our main result
to higher cardinals.

THeoREM 10. Let A be an atomless k -complicated BA with the property that
for any non-zero a € A there is a system (b,: a < k) of non-zero pairwise disjoint
elements of A [ a. Then every one-one endomorphism of A is the identity.

Proor. Suppose f is a one-one endomorphism of A which is not the identity.
Then there is a non-zero a € A such that a - fa = 0. Let (b.: a < k) be a system
of non-zero pairwise disjoint elements of A [a. Then ((b., fb.): @ <«k) is a
k -candidate over A, which leads to a contradiction as above.

In the main theorem, Theorem 12, we establish the existence of x -complicated
BA's.

The main theorem
The following lemma is probably well-known.

LEMMA 11. Let A satisfy the (< « )-chain condition, i.e., suppose that every set
of pairwise disjoint elements of A has power < k. Let A(X) be a free extension by
X. Then A(X) satisfies the (< k)-chain condition.

Proor. By Erdos and Tarski [3] we can assume that « is regular. Suppose
(b.: @ < k) is a system of pairwise disjoint non-zero elements of A (X). We may
assume that each b, has the form a, - c., where a, € A and for some finite
Y. C X. and some &, € ™2, we have

Ca = n x‘*
EY,

x -

(with x°= - x, x' = x). We may assume that (Y, : a < «) forms a A-system with
kernel Z, and that ¢, | Z = ¢, | Z for all a, B < k. It then follows that a, - a; =0
for a # B, contradiction.

We also note that. for any infinite cardinals x and A the following two
conditions are equivalent:
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(@) A =2"=«"y

(b) A* = A and there is a family F of A denumerable subsets of x with
pairwise finite intersections.
In fact, (a) = (b) is a well-known result of Tarski, and (b) = (a) by the following
computation:

Now we are ready for the main theorem.

THEOREM 12. Assume that k and A are infinite cardinals such that A = 2" =
k™. Then there is an atomless k -complicated indecomposable BA C of power A
such that for any non-zero a € C there is a system (b,: a <«k) of non-zero
pairwise disjoint elements of C [ a.

Proor. Let {{(ap,bj): B <k): a <A) be a list all members of “(A X A), each
member repeated A times. One can easily construct a BA A of power x such
that for each non-zero a € A there is a system (b, : a < «) of non-zero pairwise
disjoint elements of A [ a. Let A(X) be a free extension of A with |X|= A, and
let A(X)* be the completion of A(X). By Lemma 11, A(X)* satisfies the
(< k")-chain condition. We assume that A(X)* C A as a set. Now we construct
two sequences (B.: a = A) and (Q,: a = A) such that for all a, 8 <A,

(1) B. is a subalgebra of A(X)*, |B.|S|a|+«, and a <8 > B, C By;

(2) Q. is a collection of standard «-types over B, omitted in B., and
[Qa|=]a|+ N0
We let Bo= A and Q,=0. For x a limit ordinal = A we let B, = U,,.<,. B, and
Q. = U.., Q.. The essential step is the successor step. So assume a < A, B, and
Q. have been defined satisfying (1) and (2). The construction of B.,., and Q...
takes two steps.

First we take care of a candidate, forming B, and Q.. If {(ag, bg): B <k) is
not a k -candidate over B,, we let B, = B,, Q.= Q.. So assume it is. We drop the
superscript a. Extend (as: B <«k) to a maximal pairwise disjoint system
(ag: B <y);thus k =y <A". For each § C « let ¢S = Zgesas (sumin A (X)*),
and set B.S = B, (c¢S) (simple extension within A (X)*). We want to choose S so
that

(3) B.S omits p = {[bg, v]"*“%: B <«k};

(4) BS omits each member of Q..

Since ¢S realizes {[a,, v]"?<*: B < «}, this will take care of the current candidate.
For each B < k choose fB <y so that fB# B and by - a5 # 0; this is possible
since bs % a;. Now we claim
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(5) there is an $* C « with |S*|= x such that for all BE S*, fBEZ S*.
For, if for some I' C k with |I'| < k we have fg €T for all B € x —I', we can take

* = k —I'. In the opposite case an easy inductive construction yields the desired
set S*.

The following fact will enable us to take care of (3).

(6) If d, e and g are pairwise disjoint elements of B, such that d +e - ¢S +
g - — ¢S realizes p in B.S, where SC S* then S={BES*: by-ap=d+g}.
Assume the hypothesis of (6). For any B € S* we have fB& S* hence fBE S
and ap-cS=0. Thus BES implies bB=d+e-cS+g-—cS and hence
bB-ag=d+g And BE S*— S implies b -(d+e-cS+g-—cS)=0 and so

by~ (d+g)=bs-ap-(d+g-—cS)=0.
Thus (6) holds.

Now let K be a family of A denumerable subsets of « with pairwise finite
intersections. The following will enable us to take care of (4).

(7) If d, e, g are pairwise disjoint elements of B., ¢ € Q., ¢ = {[hs, v]**<": B <
K}, then there is at most one S € K such that y, = d + e - ¢S + g - — ¢S realizes q
in BLS.

Assume the hypotheses of (7). Let

k=-d-—-e-—g,

I=2{hs-(k+e):BET}+ X {hs-(d+g):BEK~T)

m=2>{hy-(k+g):BET}+ 2 {hs-(d+e):BEK~T}

The following is easily verified:

8)ifB.CCCA(X)*andu€C thenq'={[hg,d+e-v+g-—v]"" . B<
k} is realized by u in C iff I=u and m -u =0.
As a consequence of (8) we have

(9) there is no u € B, such that | S u and m -u =0.
Now let L be the ideal in A (X)* generated by {as: B < y}.

(10) If I€E L, then for any SEK, d +e-cS+g-—cS does not realize q in
B3S.
For, otherwise by (8) I = ¢S and m - ¢S = 0. Hence for some finite join u of a,’s,
I=u-cSandm -u-cS=0.Butu-cS isclearly in B, so this contradicts (9). By
(10), to establish (7) it suffices to assume that I & L. Now suppose that S, and S
are distinct elements of K such that ys, and ys realize q in B.S,, B.S,
respectively. Then by (8), [ = ¢S, for i = 1,2, so
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I=cS,-cS;= D ag

BES,NS;
hence [ € L, contradiction. Thus (7) holds.

By (1), (2), (6), (7), we can choose S C S* so that (3) and (4) hold. We let
B.=B.S and Q.= Q. U{p}.

The second step in the construction of B.., and Q.., is to take care of
indecomposability.

(11) There is an x € X free over B..
In fact, for each ¢ € B/, we can write ¢ = Z D,, where D, is a subset of A (X) of
power = k. Foreach y € A(X) there s a finite E, C X such that y € A(E,). Let

F=U{E,:ceB,yeD.).

By (1) we have | F| <A, so choose x € X — F. Clearly x is free over B..
By (11) we choose x € X free over B/, and we set B,., = B(x). We let Q..,
be Q. together with those of the two types

{lag-x, 0] B <«},

{[ag:— x, 0] B <k}

which are standard x-types omitted in B,.;.

This completes the construction. We claim that B, is the desired algebra C.
Clearly | B, | = A. Since at each stage @ — a + 1 the second step is to take a free
extension, B, is clearly atomless. The following statement is easily proved by
induction on a:

(12) for each @ = A and each 0# a € B, there is a system (bs: B <«) of

non-zero pairwise disjoint elements of B, [ a.
Hence the last statement of the theorem clearly holds. Since k <cf A, it is clear
that B, is k-complicated. It remains only to show that it is indecomposable.
Suppose I, and I, are non-principal complementary ideals in B,. Let (as: 8 <k,
B even) be a maximal system of non-zero pairwise disjoint elements of I,, and let
(ag: B <k, B odd) be a similar system for I,. Let J be the (maximal) ideal
generated by I, U I,. Choose a <A such that (a5, bg): B <«k)={(as as): B <
k) and {ag: B <k} C B.. Then at the ath step of the construction we let
B...= Bl(x), a free extension. We claim

(13) {[ag, v]*?=*": B <k} is omitted in B..

For, suppose y € B, realizes it. Without loss of generality say y € J, and write
y=d+e with d€E€ I,, e €I,. Then for B even we have as =y =d +e, and
ag-e =0, so ag =d. This contradicts I, being non-principal, because of the
maximality of {as: B even}. So (13) holds.
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(14) {[as " x, v]""**" B <k} and {[as - — x,v]""=*": B <k} are omitted in
B...
For by symmetry we consider the first type only, and suppose b+c-x+d-—x
realizes it, where b, ¢, d € B.. Then for B even, @y x=<b+c¢-x+d-—x, so
ag=b+c ForB odd, agx-(b+c-x+d-—x)=0, so as*(b+c)=0. This
contradicts (13), and establishes (14). By (14), the types there are omitted in B,
as well (see the construction).

Now say without loss of generality x € J, and write x = d + e with d € I,,
e € I,. Clearly then d realizes {{a; - x, v]"?*": B < x}, contradiction. The proof
is complete.

Taking k =Ny, A =2" in Theorem 12 and using the previous theorems, we
obtain

CoRrOLLARY 13. There is a prime-rigid BA of power 2".

COROLLARY 14, If k™ =2"= A, then there is a BA of power X with no
non-identity one-one endomorphisms.

The hypothesis of Corollary 14 holds, e.g., if k =3, withcfa =R,and A =2..,;
thus it holds for arbitrarily large cardinals.

Concerning possible improvements of these results, we mention first a
spectrum problem:

ProBLeM 1. In what cardinalities do there exist prime-rigid BA’s?

We want to prove a theorem, implicit in S. Koppelberg [5], relevant to this
problem. We need two lemmas.

LemMA 15. If A is atomless and has only definable endomorphisms, then the
BA B of finite and cofinite subsets of w is not a homomorphic image of A.

PrOOF. Assume otherwise, and let f be a homomorphism from A onto B.
Since A has a subalgebra isomorphic to B, we may assume that B is a subalgebra
of A. For every n € w choose a, € A such that fa, = {n}. Then for m # n we
have a,/exkerf# a,/exkerf. In fact, otherwise a,Aa,=b+c for some
b Ekerf, c Efixf. Applying f, {m,n}=c.Say0<d <{m} (in A). But d =, so
fd = d € B, contradiction. Thus A /exker f is infinite.

LEMMA 16. Let (a.: n € ) be a system of pairwise disjoint elements of A,
and let (D,: n € w) be a system of ultrafilters of A with a, € D, for all n € w.
Assume that {n € w: a € D,} is finite or cofinite for every a € A. Then the BA of
finite and cofinite subsets of @ is a homomorphic image of A.
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Proor. Let fa ={n € w: a € D,} for all a € A.

Tueorem 17 (S. Koppelberg [5])." Assume Martin’s axiom, and let A be a
BA with Ry=|A|<2%. Then the BA of finite and cofinite subsets of  is a
homomorphic image of A. If in addition A is atomless, then A has undefinable
endomorphisms.

Proor. By the above lemmas it suffices to construct (a.: n € ) and
(D,: n € w) to satisfy the hypotheses of Lemma 16. Let (a.: n € w) be any
system of non-zero pairwise disjoint elements, and let a, € D,, D, an ultrafilter
on A, for each n€ w. For each a€ A let N,={nE€ w: a€ D,}. Thus
{a € A: N, is finite} is a proper ideal of A, and we extend it to a maximal ideal F
of A.Let P = {(Q, R): Q isa finite subset of w and R is a finite subset of F}. For
(Q,R),(Q",R")EP we define (Q,R)=(Q",R’) iff QCQ’, RCR’, and
0'NU,cN.CQ. Clearly under this partial ordering P satisfies ccc. Let G be
generic over P with respect to the dense sets

{(Q,R):|Q|zm}: m € w}U{{(Q,R): a €ER}: a € F}.

Let x = U(Qn)ea Q. Then X is infinite, and for all ¢ € F, X NN, is finite (if
a € R with (Q,R)€ G, then X N N, C Q). Hence by relabeling, the desired
conclusion follows.

There are two ways in which one might try to improve Corollary 13 to obtain
even more rigid BA’s:

Number of endomorphisms. 1t is easy to sce that the BA C of Corollary 13
has a free subalgebra D with |[D | = 2. Hence C has 2”* maximal ideals and also
that many endomorphisms. It would be desirable to obtain a prime-rigid BA
with no more endomorphisms than elements. The following theorem of Shelah,
which we include with his kind permission, indicates some limits on constructing
such an algebra — it must be of power at least 2.

THeOREM 18 (Shelah)." If B is atomless and has only definable endomorph -
isms, then B has at least 2" ultrafilters.

Proor. Let{a,: n € w)be a system of non-zero pairwise disjoint elements of
B, and let (D,: n € w) be a system of ultrafilters of B such that a, € D, for all
n € w. Now we define for all @ < w, and all n € “2 aset A, C @ and an element
b, € B by induction on a. Suppose defined for all B < a, so that

'See note Added in proof at the end of the paper.
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(1) B<a and n €2 imply | A, |= Ny,

Q) B<y<a, n€EP2 n'E€"2, nCx' imply A, \A, finite,

3) B+1<a, n €2 imply {neEA,:-b,ED,}= A, and

{(heA,:b,€ED,}=A,,.
Now suppose n €°2. If a =0, let A, = w. If @ is a non-zero limit ordinal,
choose A, so that A,\A,; is finite for all B < a. Finally, for a = g +1 let
A,={n€ A,,: b€ D,}, where ¢"= — ¢, ¢' = ¢ for all ¢ € B. By Lemmas 15
and 16, choose b, € B such that {n € A,: b, € D,} is finite for ¢ =0, 1. This
completes the construction.

Now let n € “2. Then by (2), {A,1.: @ < w,} is contained in an ultrafilter E 3
on w. Set E, ={a€B:{n:a€ D,}€ E?}}. Clearly E, is an ultrafilter on B.
Now suppose n,n'€ “2 and n# n'. Choose @ minimum such that na# n'a.
Then by (3),

{n: b:‘l’ae Dn} = Anl(a#l)e E;,

so byi. € E,. Similarly b7, € E,., so E, # E,.. This completes the proof.

Bonnet-rigid BA’s. Another strong version of rigidity was given by Bonnet
[1}. A is Bonnet-rigid if for every BA B, every one-one homomorphism
f: A — B and every onto homomorphism g: A — B we have f = g. He showed
that there is such an algebra of power 2™ his algebra is not prime-rigid. The
algebra C of Corollary 13 is not Bonnet-rigid. For, let D be as above, and let h
be a homomorphism from D onto C. Let I be the ideal in C generated by the
kernel of h. Then there is a one-one homomorphism f: C — C/I with fhd = d/I
for every d € D. Let g: C— C/I be the natural onto homomorphism. Clearly
f# g. It would be nice to have a prime-rigid BA which is also Bonnet-rigid; such
an algebra has been recently constructed by Shelah, assuming O,

An interesting form of these problems is

ProBLEM 2. Isthere a prime-rigid BA A which is also Bonnet-rigid and has
only | A | endomorphisms?

Concerning Corollary 14, we mention that Shelah has recently shown in ZFC
that BA’s with no non-identity one-to-one endomorphisms exist in each regular
cardinality and many singular ones.

Added in proof (October 1979). S. Todoréevi¢ has brought to the author’s
attention that Theorem 18 follows easily from Lemma 15 and a theorem of S. P.
Franklin (Proc. Amer. Math. Soc. 21(1969), 597-599), while Malyhin and
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Sapirovskil in Sov. Math. Dokl. 14(1973), 1746-1751 prove a theorem from
which Theorem 17 follows under the weaker assumption that | S | < exp(exp N),
S the Stone space of A.
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