OMITTING TYPES ALGEBRAICALLY(1)

J. Donald MONK

University of Colorado

The purpose of this note is to give algebraic formulations and proofs for the consistency property theorem (Smullyan, Makkai, Keisler) and the omitting types theorem (Henkin, Orey, Grzegorczyk, Mostowski, Ryll-Nardzewski). For formulations of these theorems see Keisler [3]. We follow the notation of Henkin, Monk, Tarski [2].

Let \(\mathcal{U} \) be an Lf_\(\omega \). A constant of \(\mathcal{U} \) is an element \(k \in A \) such that \(\Delta k \subseteq \{0\} \), \(c_{k}^{0} = 1 \), and \(k \cdot s_{1}^{0}k \leq d_{0}^{1} \). Constants have been treated in various guises in the literature; see e.g. Halmos [1] and Pinter [4]. The version we are using is due to Henkin, but its development and applications have not yet appeared in print. Given a constant \(k \) and an \(i \in \omega \), we define

\[
s_{k}^{i}x = c_{i}(s_{1}^{i}k,x)
\]

for all \(x \in A \). Then \(s_{k}^{i} \) is an endomorphism of \(\mathcal{U} \). This fact is essential in the detailed proofs of the results below. A representation pair is a pair \((\mathcal{U}, K) \) such that \(\mathcal{U} \) is a denumerable Lf_\(\omega \) and \(K \) is a denumerable set of constants of \(\mathcal{U} \). A consistency family over \((\mathcal{U}, K) \) is a family \(S \) of subsets of \(Zd\mathcal{U} \) such that for any \(F \in S \) the following conditions hold, for any \(x, y \in A \) and any \(k, i, m \in K \):

1. \(x \notin F \) or \(\neg x \notin F \);
2. if \(x \in F \) and \(x \leq y \), then \(F \cup \{y\} \in S \);
3. if \(x + y \in F \), then \(F \cup \{x\} \in S \) or \(F \cup \{y\} \in S \);
4. for any \(i \in \omega \), if \(c_{i}x \in F \), then there is a \(k \in K \) such that \(F \cup \{s_{k}^{i}x\} \in S \);
5. \(1 \in F \);
6. if \(c_{0}(k, i) \in F \) and \(c_{0}(m, i) \in F \), then \(c_{0}(k, m) \in F \);
7. if \(1 \in G \subseteq F \), then \(G \subseteq S \).

Given a consistency family \(S \) over \((\mathcal{U}, K) \), a function \(f : S \to S \) is admissible over \((\mathcal{U}, K) \) provided that \(F \subseteq \forall F \) for every \(F \in S \).

Now we can give an algebraic version of the model existence theorem.

(1) Research supported in part by U. S. NSF Grant MPS75-03583.
Theorem 1. Let \((\mathfrak{A}, K)\) be a representation pair, \(S\) a consistency family over \((\mathfrak{A}, K)\), and
\(<f_i : i \in \omega>\) a system of functions from \(S\) into \(S\) admissible over \((\mathfrak{A}, K)\). Then for any \(F \subseteq S\), there is a cylindric set algebra \(\mathfrak{B}\) of dimension \(\omega\) and with base \(U\) and there is a homomorphism \(g\) of \(\mathfrak{A}\) into \(\mathfrak{B}\) such that the following conditions hold:

(i) \(U = \{ [k]_E : k \in K \}\) for some equivalence relation \(E\) on \(K\);

(ii) \(g^*F = \{\omega U\}\);

(iii) for each \(i \in \omega\) there is a \(G \subseteq S\) such that \(F \subseteq f_i G \subseteq g^{-1*}\{1\}\);

(iv) for each \(k \in K\), we have \(g_k = \{ u \in \omega U : u_0 = [k]\}\).

Proof. It is easy to construct a set \(M \subseteq \mathbb{Zd\mathfrak{A}}\) such that the following conditions hold for all \(x, y \in A\) and \(k, \xi, m \in K\):

(8) \(x \not\in M\) or \(-x \not\in M\);

(9) if \(x \in M\) and \(x \leq y\), then \(y \in M\);

(10) if \(x \neq y\) and \(x \in M\) or \(y \in M\);

(11) if \(c_0 x \in M\), then \(s_k^i x \in M\) for some \(k \in K\);

(12) \(1 \in K\);

(13) if \(c_0 (k, \xi) \in M\) and \(c_0 (\xi, m) \in M\), then \(c_0 (k, m) \in M\);

(14) for every \(i < \omega\) there is a \(G \subseteq S\) such that \(F \subseteq f_i G \subseteq K\).

Now we let \(E = \{ (k, \xi) \in K \times K : c_0 (k, \xi) \in M\}\). It is easily seen that \(E\) is an equivalence relation on \(K\). We set \(U = K/E\). Now we are ready to define the homomorphism \(g\). For any \(x \in A\), let

\[gx = \{ u \in \omega U : \text{there is a } w \in \omega C \text{ such that } w_i \in u_i \text{ for all } i \in \omega \text{ and } c_0 (\Delta x) (\Pi i \in \Delta x^0 w_i : x) \in M \}. \]

The desired conditions of the theorem are now easily checked.

For the application of this result to proving an algebraic version of the omitting types theorem we need the following preliminary result, which is almost of a general algebraic character.

Theorem 2. Let \(\mathfrak{A}\) be a non-discrete \(L_{\omega}\). Then there is a representation pair \((\mathfrak{B}, K)\) with the following properties:

(i) \(\mathfrak{B} \subseteq \mathfrak{B}\), and in fact \(\mathfrak{B}\) is generated by \(A \cup K\);

(ii) if \(\mathfrak{B}\) is any \(\mathcal{C}_{A_\omega}\), \(f\) is a homomorphism of \(\mathfrak{A}\) into \(\mathfrak{B}\), and \(g\) is a mapping of \(K\) into the set of constants of \(\mathfrak{C}\), then there is a homomorphism \(t\) of \(\mathfrak{B}\) into \(\mathfrak{C}\) such that \(f \cup g \subseteq t\);

(iii) if \(f\) is a homomorphism of \(\mathfrak{B}\) into the cylindric set algebra \(\mathfrak{C}\) of all subsets of \(\omega U\), \(a \in \text{Sg}(A \cup T)\) with \(T \subseteq K\), \(k \in K \sim T\), and \(f c_0 a = \omega U\), then there is a homomorphism \(g\) of \(\mathfrak{B}\) into \(\mathfrak{C}\) such that \(\text{Sg}(A \cup T) g = \text{Sg}(A \cup T) f\) and \(g c_0^i a = 1\);

(iv) any element of \(B\) can be written in the form
for some \(a \in A \), some finite \(\Gamma \subseteq \omega \), and some \(k \in \Gamma \).

Now let \(\mathfrak{U} \) be an \(Lf_{\omega} \), \(n \in \omega \), and \(N \subseteq \mathrm{Nr}_n \mathfrak{U} \). A homomorphism \(f \) from \(\mathfrak{U} \) into a \(Cs_{\omega} \) admits \(N \) provided that \(\bigcap_{x \in N} fx \neq 0 \); otherwise we say that \(f \) omits \(N \). Now we prove our algebraic version of the omitting types theorem.

Theorem 3. Let \(\mathfrak{U} \) be a countable \(Lf_{\omega} \), \(n \in \omega \), and \(N \subseteq \mathrm{Nr}_n \mathfrak{U} \). Then the following are equivalent:

(i) there is a homomorphism \(f \) of \(\mathfrak{U} \) into a cylindric set algebra with a countable base such that \(f \) omits \(N \);

(ii) there is a homomorphism \(f \) of \(\mathfrak{U} \) into an \(Lf_{\omega} \) \(\mathfrak{B} \) with \(|B| > 1 \) such that for any non-zero \(x \in \mathrm{Nr}_n \mathfrak{B} \) there is a \(y \in N \) such that \(x \cdot fy \neq 0 \).

Proof. (i) \(\Rightarrow \) (ii). Assume (i), where \(\mathfrak{B} \) is the range of \(f \). Thus \(|B| > 1 \). Let \(0 \neq x \in \mathrm{Nr}_n \mathfrak{B} \), and assume that \(x \cdot fy = 0 \) for all \(y \in N \). Then \(x \subseteq \mathcal{Y} \), so \(x = 0 \), contradiction.

(ii) \(\Rightarrow \) (i). Assume (ii). If \(\mathfrak{B} \) is discrete, let \(g \) be a homomorphism of \(\mathfrak{B} \) onto a cylindric set algebra \(\mathfrak{C} \) with a one-element base such that \(g(fy) \neq 0 \) for some \(y \in N \); \(g \) exists by (ii).

Thus \(gfy = 0 \), so \(g \circ f \) omits \(N \).

So, assume that \(\mathfrak{B} \) is non-discrete. Let \((D, K) \) be a representation pair formed from \(\mathfrak{B} \) as indicated in Theorem 2. Let \(S \) consist of all \(F \subseteq ZdD \) satisfying the following conditions:

(15) \(1 \in F \);
(16) \(F \) is finite;
(17) there is a homomorphism \(g \) of \(D \) into a cylindric set algebra with non-empty base such that \(g^*F = \{1\} \).

It is easily checked that \(S \) is a consistency family over \((D, K) \); part (iii) of Theorem 2 can be used to check (4). The following additional condition holds:

(18) if \(F \in S \) and \(k \in \mathfrak{B}_K \), then there is a \(b \in N \) such that

\[
F \cup \{c(\mathfrak{B}) (\Pi j \leq n \mathfrak{B} k, fb)\} \in S.
\]

To check (18), several small facts about constants are needed (\(i, j < \omega \) and \(k \) a constant):

(19) \(s_i k \cdot s_j k = s_i k \cdot d_{ij} \);
(20) \(s_i x = s_j \mathfrak{B} x \) if \(j \not\subset \Delta x \);
(21) \(s_i x = s_j \mathfrak{B} x \) if \(j \not\subset \Delta s_i \mathfrak{B} x \), \(j \not\subset i \).

Now assume the hypotheses of (18). By Theorem 2 (iv) we may write

\[
\Pi F = c(\Delta) (\Pi j \in \Delta \mathfrak{B} k \cdot d),
\]
where \(k \in \Delta K \), \(\Delta \) is finite. and \(d \in B \). By (19) we may assume that \(\varepsilon \) is one-one. Define \(E = \{(i,j) : i, j < n \text{ and } k_i = k_j\} \). Thus \(E \) is an equivalence relation. Let \(\Gamma \) have one member from each equivalence class. Now using (20) we may assume that \(S_n \subset \omega \). Then using (21) and the fact that \(\Delta \Pi F = 0 \) we may assume that if \(\varepsilon i = k_j \) for some \(i, j \), then \(i = j \in \Gamma \). In summary, by (19) we can then write

\[
\Pi F = c(n) C(\Delta) \left(\prod_{i \in \Delta} s^i_{0,0} \cdot d \right)
\]

where \(d_{ij} \leq d \) whenever \(i \in E_j \) is one-one, and if \(\varepsilon i \in \text{range} k \) then \(\varepsilon i = k_i \) and \(i \in \Gamma \).

Furthermore, we can assume that \(\Delta d \subset \Delta \). Now choose \(g \) by (17). Then \(g \neq 0 \), so

\[
0 \neq c(\Delta_n \cdot d) \in \mathbb{N}_n \mathfrak{B}.
\]

From (ii) of our theorem it follows that there is a \(y \in \mathbb{N} \) such that

\[
c(\Delta_n \cdot d) \cdot f_y \neq 0.\]

Let \(h \) be a homomorphism of \(\mathfrak{B} \) into a cylindric set algebra such that

\[
h(c(\Delta_n \cdot d) \cdot f_y) \neq 0.\]

Thus

\[
h c(n) (c(\Delta_n \cdot d) \cdot f_y) = 1.
\]

Hence by Theorem 2 (ii) there is a \(t \in \Delta \cup nK \) and an extension \(u \) of \(h \cup t \) such that

\[
u c(n) (\prod_{i < n} s^i_{0,0} \cdot c(\Delta_n \cdot d) \cdot f_y) = 1,
\]

\[
u c(n \cup \Delta) (\prod_{i \in \Delta \cup n} s^i_{0,0} \cdot d) = 1.
\]

It is then clear that \(u \Pi F = 1 \) and \(u(c(n) (\prod_{j < n} s^j_{0,0} \cdot k_i \cdot f_y)) = 1 \).

From this, (18) easily follows.

The set \(\Pi K \) is denumerable, and we enumerate it \(<k_i : i < \omega> \). For each \(i, j \in \omega \) define

\[
r_i : S \to S \text{ by setting for any } F \in S \]

\[
r_i F = F \cup \{c(n) (\prod_{j < n} s^j_{0,0} \cdot f_{b,j})\},
\]

where \(b \in B \) is chosen minimal in some well-ordering of \(B \) so that the above set is in \(S \). Now we apply Theorem 1, and obtain a cylindric set algebra \(\mathfrak{B} \) with base \(\{[k] : k \in K\} \) and a homomorphism \(p \) from \(\mathfrak{T} \) into \(\mathfrak{B} \) such that for each \(i \in \omega \) there is a \(G \in S \) with

\[
\{1\} = r_i G \subset p^{-1} \{1\};
\]

and satisfying Theorem 1 (iv). We claim that \(p \circ f \) omits \(N \). For, let \(w \in \omega K \). Say \(<w_j : j < n \geq k_i \). Then there is a \(G \in S \) with \(r_i G \subset p^{-1} \{1\} \), and hence there is a \(b \in N \) such that

\[
p(c(n) (\prod_{j < n} s^j_{0,0} \cdot w_j \cdot f_{b,j})) = 1.
\]

Using Theorem 1 (iv), we infer that \(<[w_j] : j < \omega \not\in pfb \). Thus \(p \circ f \) omits \(N \), and the proof is complete.
REFERENCES

