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The purpose of this short article is to give the author’s view of the most im-
portant problems in algebraic logic at this time. We shall understand algebraic logic
in a rather loose sense to encompass the relationships between kinds of quantifier
logics on the one hand and certain related kinds of algebraic structures on the other
hand. Thus we consider only algebraic structures which exceed the apparatus of
Boolean algebras of similar structures. We shall not be concerned with the philoso-
phical motivation for the study of algebraic logic. The survey is also not intended
to be comprehensive , but is limited to the author’s interests ; in particular, we shall
not discuss the directions exemplified in the important work Rasiowa [26], or in
the many works on monadic algebras. Besides mentioning problems, we shall also
briefly describe a few results, one or two of them new, to put these problems in
some kind of perspective. If no literature references are given for these results, they
are to be assumed to be unpublished. We divide the problems into seven categories,
in rough descending order of their relevance to ordinary logic ; it will be evident
that these categories are not mutually exclusive. They are : (1) logical results pro-
ved with algebraic methods, (2) algebraic formulation and proof of known logical
results, (3) the algebraic structure of theories, (4) algebras for non-classical logics,
(5) metamathematical questions concerning algebras of logic, (6) mathematical
questions concerning algebras of logic, (7) reformulations of algebraic versions of
logic.

The problems are of two sorts : important but somewhat vague ones, which
we shall not dignify with numbers, and more definite ones, which are enumerated.

1. APPLICATIONS OF ALGEBRAIC LOGIC TO LOGIC

Under this heading we understand the proof of logical results with the (at
least initially) essential use of certain algebras of logic. The existence of such
results should certainly be regarded as strong evidence for the value of algebraic
logic. Unfortunately, such results are still scarce.The only clear cut examples
known to the author concern {irst-order logic with finitely many variables ; see
Henkin [7,8], Johnson [12] , Monk [22].Itis, e.g., known for such logics that
there is no finite schema axiomatizing in a natural way the logical validities ; and
the only proof of this fact available at present uses deep results in the theories of
cylindric and polyadic algebras. There are other concerns in logic where one would
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naturally anticipate applications of algebraic logic. We have in mind some topics
whose algebraic formulations are rather simple and clear, such as N 0-categ0ricity,

definitional equivalence of theories, the logic L., YR and Craig’s theorem.

2. ALGEBRAIC FORMULATION AND PROOF OF
KNOWN LOGICAL RESULTS

This is a topic in which a great deal of work has been done ; there are alge-
braic analyses of the completeness theorem, the Léwenheim-Skolem theorem,
Craig’s theorem, and Feferman-Vaught generalized products. These algebraic proofs
have not contributed very much that is new to logic, but many people feel that
some light has been shed upon the logical results by the algebraizations. A natural
problem which has evaded a completely satisfactory solution is :

Problem 1. Give an algebraic proof for Godel’s incompleteness theorem.

There remain many results which have not been subjected to algebraization. We
may mention two-cardinal theorems, Morley’s categoricity theorem, and various
decision procedures, in particular those associated with Rabin’s use of tree auto-
mata. Many algebraizations are rather straightforward, but still do reveal unexpec-
ted aspects of logic.

3. THE ALGEBRAIC STRUCTURE OF THEORIES
Let I' be a theory in first-order language & . Set = r- {o ,¥):¢

and ¢ are formulasof & and T = ¢~ Y} Thus = I is an equivalence
relation on the set Fmla ¢p of formulas of & . The set Fl" of equivalence classes
under = pocan be made into an algebra & r such that []*+[¢]=[l¢ A ¢]
[0] - W] =[e AV] -[¢] =br9] . 0= [¢ A =¢] 1=[¢V = ¢]
dij = v =vj] ;and ¢ [¢]=[Fv.¢] .Thus

Fp = (Fmlag /=, .+ .-~ 0,1, d; )i’j < ¢ -Intrying to fully
describe a theory I' it is natural to attempt an algebraic description of the algebra

F r- This has been done fully in only a very few cases. In [10] it is essentially

done completely for the theory of finitely many unary relation symbols. Myers has
recently given necessary and sufficient conditions for F to be isomorphic to

Fp when I' and A are the purely logical validities of given languages. Perhaps
the most interesting problem here is
Problem 2. Characterize algebraically the algebras F, , ' the purely logical

validites of a given first-order language.

Hanf has recently solved Problem 2 for the Boolean algebra of sentences in a
countable language. The characterization problem for 9‘} is open for most com-

mon theories I' . This is the case even for relatively simple, decidable theories ;
for example, we have
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Problem 3. Characterize algebraically & _ , where T' is the theory of one

r
equivalence relation.

For a characterization of the Boolean algebra of sentences in this case, see Hanf
[6]. For two kinds of theories, the Boolean algebras of sentences are well-known :
consistent axiomatizable essentially undecidable theories (the Boolean algebra is
denumerable atomless), and consistent complete theories (with two-element
Boolean algebra). The full algebra % is unknown in most cases, however. Some

r
typical problems are :

Problem 4. Characterize algebraically gp , where P is Peano arithmetic.
Problem 5. Characterize algebraically '?'-N , where N is the set of all true sentences

of arithmetic.
4. ALGEBRAS FOR NON-CLASSICAL LOGICS

By non-classical logic we shall understand any quantifier logic other than
ordinary first-order logic with equality in standard formalization. Many of these
logics have recived an algebraic treatment. For example, polyadic algebras give an
adequate apparatus for algebraizing languages L, 5, and many-sorted logic was

treated algebraically by LeBlanc [13]. Many logics still await an algebraic treat-
ment, however. Perhaps most interesting among these are the Q-quantifier lan-
guages (see Bell, Slomson [1] for an exposition of them). The theory of relation
algebras may be mentioned here ; this is an old form of algebraic logic first intro-
duced by Tarski [29] , and corresponds to a limited version of tirst-order logic.

A couple of open problems here are as follows.

Problem 6. (McKenzie [16]). Let K be the class of all isomorphs of relation set
algebras which are the class of all invariant relations under a group of permutations
of a set. Is K the same as the class of integral representable relation algebras ?

Problem 7. Develop the theory of relation algebras with an additional operation
corresponding to the formation of the transitive closure of a relation.

Several algebraizations of non-classical logic have been initiated, and are awaiting
further development ; this applies for example to intuitionistic logic (Monteiro,
Varsavsky [24] , Monk [18] ), modal logic (Freeman [4 1), higher-order logic
(Venne [30]), and Hilbert’s €-operator (Guillaume [5]).

3. METAMATHEMATICAL QUESTIONS CONCERNING
ALGEBRAS OF LOGIC

The most well-developed versions of algebraic logic are cylindric and poly-
adic algebras. The remaining questions mainly concern the former.
Most of the natural metamathematical questions concerning cylindric algebras
(CA’s) have been anwered. The class R | of representable CA | ’s is equational.

For &= 2 it is finitely axiomatizable, but not for & > 2. A simple axiomati-
zation of it would be very desirable. Other natural classes of CAOL ’s, like Lf o, ,

Dc, ,3s, ,are not even elementary classes. Of course, CAy itself is a (finitely
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axiomatizable, if o < () equational class. For any o = 1 the elementary theory
of CA , ’sis undecidable (this is due to Tarski for o = 2, and, very recently, to

M. Rubin for @ = 1). The equational theory of CA , s is decidable for a < 1

(trivial), also for @ = 2 (due to Henkin), while for o = 3 it is undecidable
(Tarski ; Maddux for a = 3). A study of equational classes in algebraic logic was

begun in Monk [21] (see also Lucas [14, 13]), but has not bgfn brought to any

stage of completion. J.S. Johnson has shown that there are 2 O varieties of

representable CA s for any 0 with 2 = 0 = (o, in contrast to the results of [21].

6. MATHEMATICAL QUESTIONS CONCERNING
ALGEBRAS OF LOGIC

The mathematical theory of CA o §hasbeen extensively developed
(cf. [10]), so it is not surprising that there are a large number of open problems,
most of them of a rather technical nature. We state here a few typical ones
Problem 8. Is every group isomorphic to the automorphism group of a CAOL ?

For a = 0, Problem 8 has a negative answer ; see McKenzie, Monk [17] for refe-
rences and results. The answer remains negative for @ = 1 by an unpublished
result of D. Demaree.

Problem 9. Is the completion of a representable CAoc stitl representable ?

Problem 10. Define 8 gt iff every CA,  which can be neatly embedded in a

CA q + @ can be neatly embedded in a CAoﬁy . Characterize this ternary relation.
Do thereexist &, with 3 < a < wand § < w such thatﬁg g +1?

Problem 11. Determine cardinals M such that there is a Jonsson CA,  of power
m.
7. REFORMULATIONS OF ALGEBRAS OF LOGIC

We want to mention under this heading several proposed reformulations of
the standard algebras of logic which have not been well enough developed to be
compared fruitfully with the standard ones : Bernays [2], Everett, Ulam [3],
Nolin [25 ], Rieger [27].

To conclude this survey of problems, we would like to indicate the problems
in [19, 10,23, 9] which have now been solved. Problems 1 and 3 of [19] were
solved (negatively) by J.S. Johnson ; see [10], p. 418. The negative solution of
Problem 4 of [19] is the main content of Monk [20]. Problem 2 of [19] does
not exist, by a typographical error. Problem 1.2 of [10] was solved affirmatively
by Sobocinski [28] . Problem 2.8 of [10] was solved negatively by D. Myers in
unpublished work. S. Comer has given counterexamples to problems 1 and 2 of

[23] . Finally, as mentioned earlier, the very important Problem 7 of [9] has
been solved negatively by M. Rubin.
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