Some cardinal functions on algebras II

J. Donald Monk

In [2], knowledge of which is assumed here, the relationships between the cardinals |A|, $|\operatorname{Aut}\mathfrak{A}|$, $|\operatorname{Sub}\mathfrak{A}|$, and $|\operatorname{Con}\mathfrak{A}|$ were completely described, assuming that $|A| \geqslant \aleph_0$ and that the GCH holds. The purpose here is to do the same thing for the cardinals |A|, $|\operatorname{Aut}\mathfrak{A}|$, $|\operatorname{End}\mathfrak{A}|$, and $|\operatorname{Sub}\mathfrak{A}|$. The results here are easy adaptations from [2] and Gould, and Platt [1] except for Lemma 7. The construction in Lemma 7 is a generalization of an example by Ralph McKenzie of a denumerable algebra \mathfrak{A} with $|\operatorname{Aut}\mathfrak{A}| = 1$, $|\operatorname{End}\mathfrak{A}| = 2^{\aleph_0}$, and $|\operatorname{Sub}\mathfrak{A}| = \aleph_0$; another denumerable algebra with these properties was constucted by James S. Johnson.

First we consider the case of 'large' \mathfrak{A} , i.e., algebras \mathfrak{A} with $|\text{End }\mathfrak{A}| \leq |A|$. In this case we shall just generalize slightly a construction of Gould and Platt [1].

LEMMA 1. Let \mathfrak{M} be a monoid in which every element is either right cancellative or a right zero. Let $\mathfrak{m} \ge |M| + \aleph_0$. Then there is an algebra \mathfrak{A} such that $|A| = \mathfrak{m}$, End \mathfrak{A} contains \mathfrak{M} as a submonoid, $|\operatorname{Sub} \mathfrak{A}| = 2$, and the subalgebra generated by the empty set has power \mathfrak{m} .

Proof. We modify slightly the proof of sufficiency in Theorem 3 of [1]. We may assume that $(S_0 \cup S_1) \cap \mathfrak{m} = 0$. Note that $|M| \leq |S_0 \cup S_1| \leq |M| + \aleph_0$. Let $A = S_0 \cup S_1 \cup \mathfrak{m}$. Thus $|A| = \mathfrak{m}$. We extend f_2^y to A by setting $f_2^y \alpha = \alpha$ for all $\alpha < \mathfrak{m}$. Let $\mathfrak{A} = \langle A, a, f_2^y \rangle_{\alpha \in S_0 \cup \mathfrak{m}; y, z \in S_1}$. The desired properties of \mathfrak{A} are easily checked.

Now we can apply the proofs of Theorems 1 and 2 of [1] to obtain the following result:

THEOREM 2. Let \mathfrak{M} be a monoid in which every element is either right cancellative or a right zero. Assume that $\mathfrak{m} \ge |M| + \aleph_0$. Let \mathfrak{L} be an algebraic lattice with at least two elements, with $|\text{Cmp} L| \le \mathfrak{m}$. Then there is an algebra \mathfrak{U} such that $|A| = \mathfrak{m}$, End $\mathfrak{U} \cong \mathfrak{M}$, and Sub $\mathfrak{U} \cong \mathfrak{L}$.

Next, we treat the case in which both End $\mathfrak A$ and Aut $\mathfrak A$ are big, while Sub $\mathfrak A$ is small. Note by Lemma 2 of [2], valid also for End $\mathfrak A$ in place of Aut $\mathfrak A$, that if $|\text{End }\mathfrak A| > |A|$ then in Sub $\mathfrak A$ the unit element is not a sum of $< \mathfrak m$ compact elements, where $\mathfrak m$ is the least cardinal such that $|A|^{\mathfrak m} > |A|$.

Presented by B. Jónsson. Received January 22, 1975. Accepted for publication in final form May 8, 1975.

LEMMA 3. Let $m \ge \aleph_0$, and let n be the least cardinal such that $m^n > m$. Then there is an algebra $\mathfrak A$ such that |A| = m, $|\operatorname{Sub} \mathfrak A| = n$, and $|\operatorname{Aut} \mathfrak A| = |\operatorname{End} \mathfrak A| = m^n$.

Proof. We use exactly the algebra of Lemma 3 of [2]. We must determine the endomorphisms of this algebra. Obviously each map r_{α} , $\alpha < n$, is an endomorphism of \mathfrak{A} . We claim that any endomorphism ψ of \mathfrak{A} which is not an automorphism has the form $\varphi_x \circ r_{\alpha}$, and hence $|\operatorname{End} \mathfrak{A}| = m^n$. To prove this, first note

(1) $x = r_{\alpha}x$ iff $Dmn x \leq \alpha$.

Now for any x, say with $Dmnx=\alpha$, we have $\psi x=\psi r_{\alpha}x=r_{\alpha}\psi x$, so by (1), $Dmn\psi x\leq\alpha$. Thus

(2) $Dmn\psi x \leq Dmnx$ for all $x \in A$.

As in [2] one sees that

- (3) if $Dmn\psi x = Dmnx$ for all $x \in A$, then ψ is an automorphism.
- By (2) and (3), fix $x \in A$ such that $Dmn\psi x < Dmn x$. Let $\alpha = Dmn\psi x$. Now
- (4) if $Dmn x \leq Dmn y$ then $Dmn \psi y = \alpha$.

For, write Dmn $x = \beta$. Then for some z, $x = t_z r_{\beta} y$, so $\psi x = t_z r_{\beta} \psi_y$, so Dmn $\psi y = \alpha$. Also,

(5) if $\alpha \leq Dmny < Dmnx$, then $Dmn\psi y = \alpha$.

For, write $y = t_z r_{\beta} x$, where $\beta = D mn y$. Then $\psi y = t_z r_{\beta} \psi x$, so $D mn \psi y = \alpha$.

Now let u have domain α , with u_{β} = identity for all $\beta < \alpha$. Thus by (5), $Dmn\psi u = \alpha$. Let $y = \psi u \cup \langle identity : \alpha \leq \beta < n \rangle$. We claim that $\psi = \varphi_y \circ r_\alpha$. Let $z \in A$ be arbitrary. We distinguish two cases.

Case 1. $\alpha \leq D \operatorname{mn} z$. Then $D \operatorname{mn} \psi z = \alpha$ by (4), (5), so, with $r_{\alpha} z \subseteq w \in B$,

$$\psi z = r_a \psi z = \psi r_a z = \psi t_w u = t_w \psi u = \varphi_v r_a z$$
.

Case 2. Dmn $z < \alpha$. Say Dmn $z = \beta$. Then with $z \subseteq w \in B$,

$$\psi z = \psi t_w r_{\beta} u = t_w r_{\beta} \psi u = \varphi_v r_{\alpha} z$$
.

This completes the proof.

THEOREM 4. Assume that $m \ge \aleph_0$, and let \mathfrak{n} be the least cardinal such that $\mathfrak{m}^n > \mathfrak{m}$. Assume that $\mathfrak{n} \le \mathfrak{p} \le \mathfrak{m}$. Then there is an algebra \mathfrak{A} such that $|A| = \mathfrak{m}$, $|\operatorname{Sub} \mathfrak{A}| = \mathfrak{p}$, and $|\operatorname{Aut} \mathfrak{A}| = |\operatorname{End} \mathfrak{A}| = \mathfrak{m}^n$.

Proof. Let \mathbb{C} be formed as in Lemma 4 of [2], except without the operation h. It is clear that $|C| = \mathfrak{m}$, $|\operatorname{Sub}\mathbb{C}| = \mathfrak{p}$, and $|\operatorname{Aut}\mathbb{C}| = \mathfrak{m}^n$. It remains only to check that $|\operatorname{End}\mathbb{C}| = \mathfrak{m}^n$. If $\psi \in \operatorname{End}\mathbb{M}$ and $\alpha < \mathfrak{p}$, define $\chi_{\psi\alpha} x = \psi x$ if $x \in A$, and $\chi_{\psi\alpha} b_{\beta} = b_{\alpha \cap \beta}$. Then $\chi_{\psi\alpha} \in \operatorname{End}\mathbb{C}$. To prove this, first note

(1) $\psi b_0 = b_0$.

For, $\psi b_0 = \psi r_0 b_0 = r_0 \psi b_0 = 0 = b_0$.

Obviously $\chi_{\psi\alpha}$ preserves the operations f_i^+ . Also we have

$$\chi_{\psi\alpha}S_{\beta}b_{\gamma}=b_{\alpha\cap\beta\cap\gamma}=S_{\beta}\chi_{\psi\alpha}b_{\gamma},$$

so $\chi_{\psi\alpha} \in \text{End } \mathfrak{C}$. If $\psi \in \text{End } \mathfrak{A}$, then $\psi^+ x = \psi x$, $\psi^+ b_\alpha = b_\alpha$ for $b_\alpha \in B$ defines an endomorphism ψ^+ of \mathfrak{C} .

Now let $\varphi \in \text{End } \mathfrak{C}$; we claim that φ has the form ψ^+ or $\chi_{\psi \alpha}$. To prove this, first note

(2) $\forall x \in A \ (\varphi x \in A)$.

For, suppose $x \in A$ and $\varphi x = b_{\alpha}$. Then $b_0 = S_0 b_{\alpha} = S_0 \varphi x = \varphi S_0 x = \varphi x = b_{\alpha}$, so $\varphi x = b_{\alpha} = b_0 \in A$. Also,

(3) $\varphi b_0 = b_0$.

For, $\varphi b_0 = \varphi r_0 b_0 = r_0 \varphi b_0 = 0 = b_0$ by (2). Next,

(4) $\forall x \in B (\varphi x \in B \cup \{b_0\}).$

For, suppose $\varphi b_{\alpha} = x \in A$ with $\alpha > 0$. Then $x = S_0 x = S_0 \varphi b_{\alpha} = \varphi S_0 b_{\alpha} = \varphi b_0 = b_0$.

By (2), (3), (4) it is clear that if $\varphi \upharpoonright B$ is the identity then φ is ψ^+ for some $\psi \in \text{End } \mathfrak{A}$. So, assume $\varphi b_\alpha = b_\beta$ where b_α , $b_\beta \in B \cup \{b_0\}$ and $\alpha \neq \beta$. If $\alpha < \beta$, then $b_\beta = \varphi b_\alpha = \varphi S_\alpha b_\alpha = S_\alpha \varphi b_\alpha = S_\alpha \varphi b_\beta = b_\alpha$, contradiction. Thus $\beta < \alpha$. If $\alpha \leqslant \gamma$, then

$$b_{\beta} = \varphi b_{\alpha} = \varphi S_{\alpha} b_{\gamma} = S_{\alpha} \varphi b_{\gamma},$$

so $\varphi b_{\gamma} = b_{\beta}$. If $\beta \leqslant \gamma < \alpha$, then

$$\varphi b_{\gamma} = \varphi S_{\gamma} b_{\alpha} = S_{\gamma} \varphi b_{\alpha} = S_{\gamma} b_{\beta} = b_{\beta}$$
.

Finally, if $\gamma < \beta$, then

$$\varphi b_{\gamma} = \varphi S_{\gamma} b_{\beta} = S_{\gamma} \varphi b_{\beta} = S_{\gamma} b_{\beta} = b_{\gamma}.$$

Thus φ has the form $\chi_{\psi\beta}$.

Now we take up the construction of an algebra $\mathfrak U$ with Aut $\mathfrak U$ small and End $\mathfrak U$, Sub $\mathfrak U$ big. The construction depends on the following lemma.

LEMMA 5. For any $m \ge \aleph_0$ there is an algebra $\mathfrak A$ such that |A| = m, $|\operatorname{End} \mathfrak A| = 2^m$, $|\operatorname{Aut} \mathfrak A| = 1$, and $|\operatorname{Sub} \mathfrak A| = 2^m$.

Proof. Let $\mathfrak{A} = \langle \mathfrak{m}, \cap \rangle$. Then, as is easily seen,

- (1) for any $X \subseteq \mathfrak{m}$, X is a subalgebra of \mathfrak{A} ;
- (2) $f \in \text{End } \mathfrak{A} \text{ iff } \forall \alpha, \beta \in \mathfrak{m} \ (\alpha \leq \beta \Rightarrow f\alpha \leq f\beta)$

From (2) it follows that any automorphism of $\mathfrak A$ is an order-preserving map of $\mathfrak m$ onto $\mathfrak m$; hence only the identity is an automorphism of $\mathfrak A$.

Now we exhibit 2^m endomorphisms of $\mathfrak A$. For any $f \in 2^m$ let $g_f : m \to m$ be defined as follows. Given $\gamma < m$, write $\gamma = \omega \cdot \alpha + m$ with $\alpha < m$, $m < \omega$. Set $g_f \gamma = \omega \cdot \alpha + f \alpha$. Then g_f is an endomorphism of $\mathfrak A$. For, suppose that $\gamma \le \delta < m$. Write $\gamma = \omega \cdot \alpha + m$, $\delta = \omega \cdot \beta + n$. If $\alpha < \beta$, then $g_f \gamma < g_f \delta$. If $\alpha = \beta$, then $g_f \gamma = g_f \delta$. Hence by (2), $g_f \in \text{End } \mathfrak A$. Obviously $g_f \neq g_{f'}$ if $f \neq f'$. This completes the proof.

THEOREM 6. If \mathfrak{G} is a group with $|G| \leq \mathfrak{m}$, then there is an algebra \mathfrak{A} with $|A| = \mathfrak{m}$, Aut $\mathfrak{A} \cong \mathfrak{G}$, and $|\operatorname{Sub} \mathfrak{A}| = |\operatorname{End} \mathfrak{A}| = 2^{\mathfrak{m}}$.

Proof. Let $\mathfrak A$ be as in Lemma 5, and let $\mathfrak B$ be an algebra with $|B| = \mathfrak m$ and Aut $\mathfrak B \cong \mathfrak G$. We may assume that $A \cap B = 0$ and $(A \cup B) \cap 2 = 0$. Let $C = A \cup B \cup 2$. For f_i a fundamental operation of $\mathfrak A$ we define f_i^+ on C:

$$f_i^+(x_0,...,x_{m-1}) = \begin{cases} f_i(x_0,...,x_{m-1}) & \text{if all } x_i \in A, \\ x_0 & \text{otherwise.} \end{cases}$$

Similarly the operations g_j of \mathfrak{B} are extended to operations g_j^+ on C. The algebra \mathfrak{C} is to consist of all operations f_i^+, g_j^+ , the distinguished elements 0, 1, and the following unary operation k:

$$kx = \begin{cases} 0 & x \in A \cup \{0\}, \\ 1 & x \in B \cup \{1\}. \end{cases}$$

Clearly

(1) if $X \in \text{Sub } \mathfrak{A}$, then $X \cup \{0, 1\} \in \text{Sub } \mathfrak{C}$.

Thus $|Sub \mathfrak{C}| = 2^m$.

Next, if h is an endomorphism of \mathfrak{A} , define for any $x \in C$

$$h^+x = \begin{cases} hx & \text{if } x \in A, \\ x & \text{if } x \in B \cup \{0, 1\}. \end{cases}$$

It is easily checked that h^+ is an endomorphism of \mathbb{C} . Thus $|\operatorname{End} \mathbb{C}| = 2^m$.

Now if h is an automorphism of \mathfrak{B} , define for any $x \in C$

$$h'x = \begin{cases} hx & \text{if } x \in B, \\ x & \text{if } x \in A \cup \{0, 1\}. \end{cases}$$

Then h' is an automorphism of \mathfrak{C} . Finally we must show that any automorphism l of \mathfrak{C} has the form h'. Clearly l0=0 and l1=1. Suppose la=b with $a \in A$, $b \in B$. Then

$$1 = kb = kla = ka = 0 = 0$$
.

a contradiction. Thus $l^*A \subseteq A$. Similarly $l^*B \subseteq B$, so $l^*A = A$ and $l^*B = B$. Now $l \upharpoonright A \in \text{Aut } \mathfrak{A}$, so $l \upharpoonright A = \text{identity on } A$. Thus l has the form h'.

Our final aim is to produce an algebra A in which Aut A and Sub A are small while End A is big.

LEMMA 7. Let $m \ge \aleph_0$, and let n be minimal such that $m^n > m$. Then there is an algebra $\mathfrak A$ such that |A| = m, $|\operatorname{Aut} \mathfrak A| = 1$, $|\operatorname{End} \mathfrak A| = m^n$, and $|\operatorname{Sub} \mathfrak A| = n$.

Proof. Let $Y = \bigcup_{\alpha < n} {}^{\alpha}m$, let X be a set disjoint from Y with |X| = n, and let $A = X \cup Y$. For each $\alpha < n$ we introduce an operation f_{α} on A. Let $X = \{x_{\alpha} : \alpha < n\}$ with x one-one. For all $\alpha, \beta < n$ let $f_{\alpha}x_{\beta} = x_{\alpha \cap \beta}$. For any $y \in Y$ let $f_{\alpha}y = y \upharpoonright \alpha$. In addition,

for any $y \in Y$ introduce the constant operation g_y on A with value y. Let $\mathfrak{A} = = \langle A, f_\alpha, g_y \rangle_{\alpha < \pi, y \in Y}$. The subalgebras of \mathfrak{A} are the empty set and all subsets of A of the form $\{x_\beta \colon \beta < \alpha\} \cup Y$, where $\alpha \le \pi$. Thus $|\operatorname{Sub} \mathfrak{A}| = \pi$. It is easily seen that \mathfrak{A} has only the identity automorphism. Also, it is easily checked that the following are the only non-identity endomorphisms of \mathfrak{A} . For $z \in {}^n m$, the following operation h_z on $A \colon h_z x_\alpha = z \upharpoonright \alpha$, h_z the identity on Y. For $z \in {}^n m$, $\alpha < \pi$, an operation $h'_{z\alpha}$ on $A \colon h'_{z\alpha} x_\beta = z \upharpoonright \alpha \cap \beta$, $h'_{z\alpha}$ the identity on Y. Finally, for any $\alpha < \pi$ an operation h''_α on $A \colon h''_\alpha x_\beta = x_{\alpha \cap \beta}$, h''_α the identity on Y.

LEMMA 8. Let $\mathfrak{m} \geqslant \aleph_0$, and let \mathfrak{n} be minimal such that $\mathfrak{m}^n > \mathfrak{m}$. Let $\mathfrak{n} \leqslant \mathfrak{p} \leqslant \mathfrak{m}$; then there is an algebra \mathfrak{A} such that $|A| = \mathfrak{m}$, $|\operatorname{Sub} \mathfrak{A}| = \mathfrak{p}$, $|\operatorname{Aut} \mathfrak{A}| = 1$, and $|\operatorname{End} \mathfrak{A}| = \mathfrak{m}^n$.

Proof. The proof of Lemma 4 of [2], without the operation h, easily gives the desired result (see the proof of Theorem 4 above).

THEOREM 9. Let $\mathfrak{m} \geqslant \aleph_0$, let \mathfrak{n} be minimal such that $\mathfrak{m}^n > \mathfrak{m}$, and let $\mathfrak{n} \leqslant \mathfrak{p} \leqslant \mathfrak{m}$. Suppose \mathfrak{G} is a group such that $|G| \leqslant \mathfrak{m}$. Then there is an algebra \mathfrak{A} such that $|A| = \mathfrak{m}$, Aut $\mathfrak{A} \cong \mathfrak{G}$, $|\operatorname{End} \mathfrak{A}| = \mathfrak{m}^n$, and $|\operatorname{Sub} \mathfrak{A}| = \mathfrak{p}$.

Proof. Let \mathfrak{A} be as in Lemma 8, and let \mathfrak{B} be an algebra such that $|B|=\mathfrak{m}$, Aut $\mathfrak{B} \cong \mathfrak{G}$, and $\operatorname{Sub} \mathfrak{B} = \{0, B\}$. Form \mathfrak{C} by the process of the proof of Theorem 6. Obviously then $\operatorname{Aut} \mathfrak{C} \cong \mathfrak{G}$ and $|\operatorname{Sub} \mathfrak{C}| = \mathfrak{p}$. The endomorphisms of \mathfrak{C} are as follows. For h an endomorphism of \mathfrak{A} , let

$$h^{+}x = \begin{cases} hx & \text{if } x \in A, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x \in B \cup \{1\}. \end{cases}$$

Then h^+ is an endomorphism of \mathbb{C} . Similarly define l' for $l \in \text{End } \mathfrak{B}$. Finally, for $h \in \text{End } \mathfrak{A}$, $l \in \text{End } \mathfrak{B}$ define

$$(h,l)^*x = \begin{cases} hx & \text{if} \quad x \in A, \\ x & \text{if} \quad x \in \{0,1\}, \\ lx & \text{if} \quad x \in B. \end{cases}$$

The maps l' and $(h, l)^*$ are also endomorphisms of \mathbb{C} . To see that any endomorphism of \mathbb{C} is of one of these forms, the only hard step is to check the following statement:

- (1) if $s \in \text{End } \mathbb{C}$ and sa = 0 for some $a \in A$, then sx = x for all $x \in A$. The proof of this statement relies on the particular construction of \mathfrak{A} . In fact, let $R = \{(x, y) \in {}^{2}A : x = y \text{ or for some operation } t \text{ of } \mathfrak{A}, tx = y \text{ or } ty = x\}$. Then (1) follows from the following two easily checked statements:
 - (2) ²A is the transitive closure of R;
 - (3) if xRy, $s \in End \mathbb{C}$, and sx = 0, then sy = 0.

The main theorem of this note now follows:

THEOREM 10. Assume GCH. Let \mathfrak{m} , \mathfrak{n} , \mathfrak{p} , \mathfrak{q} be cardinals such that $\mathfrak{m} \geqslant \aleph_0$ and $\mathfrak{q} > 1$. Then the following conditions are equivalent:

- (i) there is an algebra \mathfrak{A} such that $|A| = \mathfrak{m}$, $|\operatorname{Aut} \mathfrak{A}| = \mathfrak{n}$, $|\operatorname{End} \mathfrak{A}| = \mathfrak{p}$, and $|\operatorname{Sub} \mathfrak{A}| = \mathfrak{q}$;
- (ii) one of these conditions holds:
 - (1) $1 \le n \le p \le m$ and $q \le m^+$,
 - (2) $1 \le n \le p = m^+$ and $c \nmid m \le q \le m^+$.

REFERENCES

[1] M. Gould and C. Platt, Versatile monoids and versatile categories, Alg. Univ. 1 (1971), 54-62.

[2] J. D. Monk, Some cardinal functions on algebras, Alg. Univ. 5 (1975), 76-81.

Eidgenössische Technische Hochschule Zürich Switzerland

and

University of Colorado Boulder, Colorado U.S.A.