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On the Automorphism Groups
of Denumerable Boolean Algebras

J. Donald Monk

It is well-known that the automorphism group of any denumerable Boolean
algebra has the power of the continuum; for completeness we prove this fact below.
The problem naturally arises to determine the structure of these groups, or at least
to determine which of them are isomorphic. In this note we make a modest
beginning on these problems. We describe the automorphism groups of several
important denumerable Boolean algebras, and we show that some important
Boolean notions can be distinguished from each other group-theoretically.
Conversations with R. Baer and M. Guillaume were stimulating for this work.

By Anderson [1], the automorphism group F of the denumerable atomless
Boolean algebra (BA) 2 is simple. The denumerable BA®B with exactly one atom
obviously has the same automorphism group F. We conjecture that with the
exception of the pair 2, B, any two non-isomorphic denumerable BA’s have non-
isomorphic automorphism groups.

For any BA, we denote by Aut2 the automorphism gioup of . Given a
BAA, any finite permutation of the atoms of 2 can be extended to an auto-
morphism of 2 which leaves the atomless elements of 2 pointwise fixed; we let
Fin2 be the collection of all such automorphisms. Clearly Fin2 < Aut2l. The
even finite permutations of the atoms also clearly induce a normal subgroup of
Aut?l, denoted by Alt2. Thus AltA< FinA< AutA. One more normal sub-
group of Aut will play a prominent role in what follows. To define it, for any
BAA let Iy be the ideal of U generated by the atoms of 2. Now every auto-
morphism f of 2 induces an automorphism ny f =7 f of A/l with the defining
property that (nf)[a]=[fa] for all ae A. Clearly ny is a homomorphism of
Aut into Aut(2/ly). The kernel of ny, denoted by kerng, will now be briefly
investigated. Clearly Alt2(< Fin< kermg<t Aut?. Thus kermy is non-trivial
iff A has at least two atoms.

Lemma 1.1. Let D be an infinite set of atoms in a BAU such that for each a€ A,
{xeD:x<a} is either finite or else its complement in D is finite. Then any per-
mutation of D can be extended to an automorphism of U which is the identity on
{ae A:¥xeD(x-a=0)}.

Proof. Let I be the set of all elements a € A4 such that {xe D:x < a} is finite.
Clearly I is a maximal ideal of 2. For each a €I there exist a unique finite subset
S, of D and a unique b, € A such that YxeD(x-b,=0) and a= X S,+b,. For
each such a and each permutation f of D, let fTa= X {fx:xeS,}+b,. Itis
casily verified that f* is an automorphism of I (considered as a partially ordered
set). As is well-known, f* can then be extended to an automorphism of 2 in a
unique fashion.
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Theorem 1. If A is a denumerable BA with infinitely many atoms, then ker my
contains a copy of Syma.

Proof. Let I be a maximal ideal of A such that x € I whenever a < x for only
finitely many atoms a. We construct a set D of atoms of 2 such that

(*) D is infinite, and for each a€l, {xe D:x<aj} is finite.

To do this, write I = {a;:i€®}. We define a sequence d,,d,,... of atoms
of A by recursion. Suppose d; has been defined for all i <m. Since [ is a proper
ideal, there are infinitely many atoms < —a,* —a, -+ * —a,,_,: we choose d,
to be such an atom different from each d; with i<m. Clearly D={d;:ie w}
satisfies (). Now an application of Lemma 1.1 gives the desired result.

A more general result than Theorem | was shown in [4]. Ifa BA 2 has a finite
number m of atoms, clearly Fin2 = kermny =~ Symm.

Corollary 1.1. If U is a denumerable BA, then |Aut 2| =expN,.

Proof. If 2 has infinitely many atoms, this follows from Theorem 1. If 2 has
only finitely many atoms, clearly F is a subgroup of Aut2(, and obviously F has
power expN,.

Now we begin the consideration of particular BA’s and properties of BA's.

Theorem 2. For any denumerable BAU the following conditions are equivalent :
(i) 2 has at most one atom;
(ii) Aut is simple.

Proof. We have already observed that (i)=(ii). Now if 2l has more than one
atom, then Fin is non-trivial, and by Theorem 1 it is proper. Thus Aut2 is not
simple.

Corollary 2.1. If U, B, and € are denumerable BA’s, U is atomless, B has
exactly one atom, and AutA = Aut€, then €=A or € =Y.

The following useful proposition is immediate from [4]:

Proposition 1. If U is a BA such that the sum a of all atoms in  exists, then
AutU = Aut(A } a) x Aut(A M —a).

Theorem 3. Let m be an integer > 1. For any denumerable BA the following
conditions are equivalent :

(i) A has exactly m atoms;

(ii) Aut =Symm x F.

Proof. The implication (i)=>(ii) is clear from Proposition 1. Now assume that
(i1) holds. Then by Theorem 2, 2l has at least two atoms. Suppose 21 has infinitely
many atoms. By (ii), there exist normal subgroups G, H of Aut with GNH = {e},
GH=AutUA, G=Symm, and H=F. Choose feFin2 of order >m!. Write
[ =gh with ge G, he H. Since every clement of Symm has order dividing m!,
we have f™ =h™. Thus Fin2AnH + {e}. Since H is simple, H < Fin?. This is
impossible, since |H| =expN, while |[Fin | =N,. Thus 2 has a finite number n
of atoms. By Proposition 1, Aut =Symn x F. Let G and H be as above, and
let G" and H' be normal subgroups of Aut2 such that G'nH' = {e}, G'H = Aut ¥,
G'~Symn, and H' = F. Now H’ has an element x of infinite order, and we can
write x = yz with ye G, ze€ H. Since y has finite order, it follows that x' = z' for
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some positive t. Thus HnH' 4 {e}. Since both H and H’ are simple, it follows that
H=H' Hence G=G" and m=n.

Corollary 3.1. If U and B are denumerable BA's, W has a finite number > 1 of
atoms, and AutqA = AutB, then A =B,

Theorem 4. For any denumerable BAU the following conditions are equivalent :

(i) A is atomic;

(i1) Aut2 has a smallest non-trivial normal subgroup, all of whose elements
have finite order.

Proof. (i)=>(ii). Just as for the infinite symmetric groups, one easily shows that
Alt 2 is the smallest non-trivial normal subgroup of 2 when 2 is atomic. (ii)=>(i).
Assume that 20 is not atomic. If 2 has at most one atom, then Aut = F, which
is a simple group having elements of infinite order, so (ii) fails. Suppose 2 has at
least two atoms. Let N = { f'e Aut2: f fixes all atoms}. Clearly N is a non-trivial
normal subgroup of 2. Since FinANN = {e}, (ii) fails.

Next we turn to the BA of finite and cofinite subsets of w. The following lemma
may be of independent interest; it follows easily from Pierce [6], but for com-
pleteness we prove it here.

Lemma 5.1. If U and ‘B are denumerable atomic BA's and the algebras /Iy
and B/l are atomless, then A = B.

Proof. We shall apply the following theorem of Vaught, whose proof can be
found in Hanf [3]:

(*) If R is a symmetric relation among countable BA’s satisfying the following
three conditions:

(1) ARB if A and B are finite and isomorphic;

(2) if ARDB, then Yae A3Ibe B[(A Ma)R(B Mb) and (A M—a)R(B } —b)];

(3) ARB implies |4| =|B|;
then ARV implies A = B.

Now let ARV mean that A and B are finite and isomorphic, or else that they
both satisfy the conditions of the lemma. It is easily checked that the hypotheses
of (%) hold. Hence the lemma follows by ().

Theorem 5. For any denumerable BAU the following conditions are equivalent :
(1) 2 is isomorphic to the BA of finite and cofinite subsets of w;

(i) AutA=Symam;

(it1) AutQ has exactly three non-trivial normal subgroups, and all of them are
infinite ;

(iv) kermg = Aut .

Proof. 1t is obvious that (i) implies (ii). By Schreier and Ulam [7], (ii) implies
(iii). The implication (iii)=>(iv) is clear by Theorems 1-3.

Now assume that (i) fails to hold; we shall show that (iv) fails. If 20 has only
finitely many atoms, (iv) fails since kermy is then finite. If 2 has an atomless
clement, then in Aut? there is a non-trivial automorphism f fixing all atoms, so
f ¢ kermy. Thus we may assume that 2 is atomic. We now distinguish three cases.

Case 1. N/ly is atomless. Then by Lemma 5.1, 2 has an ordered basis X of
type 1 4w -n. We shall assume that the elements of X are 0 and all pairs (m, r)
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with m € w, r € Q (the rationals), with ordering by second differences. The mapping
f of X into X such that f0=0 and f(m,r)=(m,r+ 1) for all mew, re Q, is
obviously an order automorphism of X, which hence extends to an automorphism
[ of A. Clearly f ¢ kermy, so (iv) fails.

Case 2. U/l has exactly one atom [«]. Since (i) fails, |2/I,| > 2 and hence
[ —a] is an atomless element of A/L,. With B = } —a it is clear that B is de-
numerable and atomic and that B/l is atomless. Hence by Case 1 for B, there is
an fe AutB ~kerng. Clearly f extends to an automorphism of 2 which is not
in kermy,.

Case 3. A/l has at least two atoms, [a] and [b]. We may assume that a and b
have no atoms in common, and thus that a-bh=0. Clearly % M ¢ and 2 } b are
both isomorphic to the BA of finite and cofinite subsets of o, and hence to each
other. Hence there is an automorphism f of 2 which interchanges a and b.
Clearly f¢kermy,.

Corollary 5.1. If 2 and B are denumerable BA's, N the BA of finite and
cofinite subsets of @, and Aut = AutB, then A=Y,

Corollary 5.2. The BA of finite and cofinite subsets of w is the only denumerable
BA with automorphism group isomorphic to Syma.

This corollary answers a question of R. Baer.

Our final two results are intended to hint at how complicated the auto-
morphism groups of denumerable BA’s can be. For the first result we need to
discuss further the ideal . Given any BA, we now define a transfinite sequence
Jo, Jais ..., J&, ... where o ranges through all ordinals; the definition is by recursion.
Let Ji = {0}, the trivial ideal. If « is a limit ordinal, set J3= |} J§. Finally, if J§

has been defined, let pez
Ji*'={xe A:[x] isa finite sum of atoms in the algebra A/J4} .

Clearly Jg =1y, J& is the preimage of Iy under the natural homomorphism
A - A/l =B, etc. This is a well-known construction. For each ordinal « let
oy = o” be the natural homomorphism of 2 onto /L. Every automorphism f
of 2 induces an automorphism =g, f ==*f of /I with the defining property
that (n§, f)agx = gy fx. Again ny is a homomorphism of Aut?l into Aut(2/[3).
Clearly kernj Ckernd, if 2 < B. Note that ny = my.

Lemma 6.1. If U is a denumerable hereditarily atomic BA and o is an ordinal
for which | /13| > 2, then kerny C kerng' .

Proof. Under the hypothesis, there are elements x, ye 4 for which ¢*x and
o’y are distinct atoms of 2/Iy. We may assume that x - y =0. In the terminology
of Day [2], clearly 2 } x and 2 } y have the same cardinal sequence. Hence by [2]
they are isomorphic, so there is an automorphism f of 20 which interchanges x
and y and leaves clements £ —x - —y fixed. Clearly fekern®"'~kern™

Theorem 6. For each countable ordinal o = 4 there is a countable BAU such that
the normal subgroup lattice of W contains a chain of order type a.

Proof. Choose f such that a =4+ . If =0, we may take for 2 the BA of
finite and cofinite subsets of . Assume > 0. Choose a countable hereditarily
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atomic BA 2 whose cardinal sequence is of type f# + 1 with last term 2 (for example,
2 can be chosen as a BA with an ordered basis of type ” - 2). Thus by Lemma 6.1,
the normal subgroup lattice of 2 contains the chain of length =«

{e}< AltA< FinA<kern'< - --<kern’< Aut

with all inclusions proper.

For our final result we exhibit the automorphism groups for a class of countable
BA's which forms a first natural extension of the BA of finite and cofinite subsets
of w. Note that if 2 is a BA of subsets of w, then any automorphism f of 2 has the
form Yae A(fa=g*a) for some permutation g of w, where g*a is the g-image
of the set a. We denote by Aut* ¥ all the permutations of « which induce auto-
morphisms of 2. Obviously Aut* 2 consists of all those permutations g of w such
that Yae A(g*a e A).

Theorem 7. Let B be a partition of o into infinite sets, with 8| > 1. Let 2 be
the subalgebra of the BA of all subsets of o generated by WU{F :FCw, F finite}.
Let M = {(a,b,c,d,e)}:a,b, and d are functions with domain ‘B, Vo € Wax and bo
are cofinite subsets of %), c€ Sym'R, Va e P(do : ax~»bca), and

e:{ (J (@~ao)>»1{) (a~ba)}‘

2P 2eP
Then
Aut* A ={ \J dxve:(a.b,c,d e)e M} .
2eP

Proof. LetB be the BA of finite and cofinite subsets of w. Let N = |x:x: '3 » B
and either {x: x40} is finite or {«: x4 w} is finite}]. Then, as is easily checked,

(1) A={ |J xana:xe Ni.

acsP
Thus forany a S w, a € A iff the following two conditions hold:

(2) Yo e ‘Plana is a finite or cofinite subset of ).
(3) {x:ae P, ana+0} is finite or {x:ae P, ana+a} is finite.

Now let (a, b, ¢.d,e)e M and let = U due; we show that fe Aut*Q. To
ac'P

this end, take any x € A; we show that f*xe A. For any e ‘B, f*xna has the
form (de™ 'a)* (xne 'a)uy for some yCd~ba. Since xne 'a is a finite or
cofinite subset of ¢ ~'a by (2), and Dmn de ™ 'o=ac™ "o is a cofinite subset of ¢ ' 2,
it follows that f*xna is a finite or cofinite subset of . Thus (2) holds for f*x.
To check (3) for f*x, we consider two cases [by (3) for x].

Case 1. {a:xna+0} =TI is finite. Then the set ¢* "' iz:c* J(B~ap)na *0}

if finite: if & is not in this set, then per

f*xna=(dc "a)* (xne To)ule* xna)

Ce* | (B~aP)yna (since ¢ 'ag¢l)
pel
=0.
Thus {o: f*xna 40} is finite.
Case 2. {o:xna+a} =T is finite. Similar to Case 1.
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Thus (3) holds for f*a, so f*ae A. Since (a,b,c,d,e)e M and f= | | dave
aeP
imply (b,a,c™',d ",e " )eM and [ '= [Jdave ', where d'a=(da) " for
2eP
allxe B, it follows that f*a € A impliesa e A. We have now proved the inclusion 2
in the statement of the theorem.

Now let f'e Aut*2. Then

(4) for every e *B there is a unique f € B such that f*an f is a cofinite sub-
set of 8.

In fact, first suppose that all sets f*anf are finite. Then by (3) for f*z,
{B:f*anf+0} is finite. But this implies that f*a is finite, contradiction. Thus
by (2), at least one set f*an f is a cofinite subset of ff. Suppose there are two such,
say f*anfoand f*an B, withf, % f,. Then f'*(f*anB,)and [~ *(f*anp,)
are infinite disjoint subsets of « and both are in A, contradicting (2). Thus (4)
holds.

By (4), let ¢ be the function such that f*ance is a cofinite subset of ca for
each o € ‘B. By considering the action of f ~' it is easily seen that ¢ isa permutation
of *B.

Now for each xe P let an= f~"*(f*anca)=anf "*ca. Since f*anca
is a cofinite subset of ca, it is infinite, and hence by (4) for ™', an f ™ "*caisa
cofinite subset of o. For each ae ‘B let ba= f*c™ 'ana By (4), ba is a cofinite
subset of o For ae R let do= f Pao: clearly do:ao>»bca. Finally, let
e=f~ | da It is clear that (a,b,c,d,e)e M and f= [ dave.

as'P aeP
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Note added in proof. The main conjecture has been refuted by McKenzie and Shelah, independently.



