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Some cardinal functions on algebras

J. Donald Monk

With any universal algebra W={4, f;);., one can associate several cardinal num-
bers important for the structure of L. In this note we shall consider the following ones:
[4]; |Aut2], where AutY is the group of automorphisms of U; |Con¥|, where ConU
is the lattice of congruence relations on U; and |Sub2|, where Sub¥ is the lattice of
subalgebras of . (Here we consider the empty set as a subalgebra of A, and for sim-
plicity all operations are assumed to have positive rank.) We shall describe the possible
relationships between these cardinals, assuming GCH and |4]| >N, (see Theorem 9).
(GCH is the generalized continuum hypothesis.) A much more difficult question,
which we do not completely answer, is to fully describe the variations |4| can have for
given automorphism group, congruence lattice, and subalgebra lattice. We do prove
that if |A| is ‘big’, then it can take on any possible value (Theorem 1, which is essen-
tially known). Most of our efforts are with ‘small” algebras, and here the constructions
are standard except for the proof of the basic Lemma 3, where a rather unusual algebra
is constructed. Various open questions are discussed at the end of the paper. The role
of the GCH is also discussed. Some of the constructions here are relevant for the
incorporation of the cardinal |[End | (endomorphisms of ) into our problem setting.
We intend to consider this cardinal function in a later note.

Our paper is self-contained; some relations to other papers are mentioned below.

Modifying slightly Lampe’s construction in [5], we can obtain the following result.
(For any algebraic lattice L, let CmpL be the collection of compact elements of L)

THEOREM 1. Let G be a group and Ly and L, algebraic lattices each with at least
two elements. Let m be any cardinal >|G|+|Cmp Ly| +|CmpL,| +N,. Then there is an
algebra W such that |A|=m, AutA=xG, ConA=L, and SubA=L,.

Proof. Tt suffices to modify Lemma 19 of [5] so that the resulting partial algebra
B has power nt. For this purpose one lets B=C, x Cg x G x m with notation as in
Lemma 19, and modifies the partial operations in the following way. For each geG
and x<m define a unary partial operation f,, on B by Dmn f,= {0} x {(y}xGxm
and £,,(0, y, h, B)=(0, y, g*h, «) for each heG and f<m. For each (a, b)eC, xCq
define a binary partial operation f, , by

Dma £, »={((0, y, 8, @), (a, b, g, @)):g€G, x<m}

and

fus((0, 7,8 %), (a,b,8,2))=(0, y,8 a) forall geG,a<m.
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Let B be B together with all of these operations plus the identity on B. It is lengthy but
straightforward to carry through the rest of the proof as given in [5].

This theorem, although it is very strong, does not give all possible values for |4,
even when |A4|>N,, since it is possible that [A4| <|Aut|. Note the following trivial
cardinality restrictions for A infinite:

|Aut| <exp|4|, [ConA|l<exp|A4|, |SubU|<exp|4].

Since Cmp Sub¥ is the collection of finitely generated subalgebras of A, we have
|Cmp Sub| <|A4|, and similarly |[Cmp Con¥|<|A|.
In case |4] <|Aut2[|, some restriction on {Sub¥| occur:

LEMMA 2. If |Aut|>|A| >N, then in Sub the unit element is not a sum of
<m compact elements, where m is the least cardinal such that |A|™ > |A|.
Proof. If the conclusion is false, then A is generated by a set X with | X|<m. Now

AutA =1 {{feAutA:hsf}:he*A4}.

Since [{ feAutW:h< f}|<1 for each he*A, it follows that |AutA|<|4].
The following Lemma is basic for our treatment of the case |4| <|Aut¥]|:

LEMMA 3. Let m=N,, and let n be the least cardinal such that m">m. Then
there is an algebra N such that |A|=m, |Sub¥|=n, and |AutA|=m".
Proof. Set A=\J,<, M. Thus |4A|=m. For each 2<n we introduce a unary
operation r, on 4. For x€A4,
roxm {x if Dmnx<a,
xla if a<Dmnx.

Let o be a group operation on m. Let B be the set of all xe™m such that there is an
a<n with x, = (identity of {m, o)) for all # with «< f <n. For each x& B we introduce
a unary operation , on A. For each ye 4, let Dmnz, y=Dmny, and for any x<Dmny
let (1,y) a=x,0),. Let W={A, 7y, t.Ds<m, xer- Then

SubA={{xe4:Dmnx<a}:a<n}. (1)

For, the inclusion 2 is clear. Now let SeSub?. Set a=sup{Dmnx+1:xeS}.
Clearly then S<{xeAd:Dmnx<a}. Let xe 4, Dmnx<a. Then Dmnx<Dmny for
some yeS. Let f=Dmnx, z=r,y. Thus zeS. For each y<« let u,=x,°z;" and
u,=identity of {m, o) for a<y<n. Clearly then 7,z=x, so xeS. Hence (1) holds.

For any xe™m we define 2 mapping ¢, of 4 into 4. For any ye4, Dmng,y=
=Dmny, and for any a<Dmny, (¢,y),=y.°X,. It is easily checked that ¢, eAuti.

Let y be any automorphism of 2. For any xeA, say with Dmnx=ao, we have
Yx=yrx=rayx, and hence Dmnyx<Dmnx. Applying this to ¥ ™' we get Dmny !
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Yx<Dmnyx<a and hence Dmnyx=Dmnx. Furthermore, if also ye4 and x<y,
then Yyx<Syy, since yx=yr,y=rpy. Let x=J {Yu,:a<n}, where u, is the element
of A such that Dmnu,=a and u,z=identity of {(m, o) for all f<a. We claim that
Y =09,. For, let ye A4, say Dmny=a. Then with ze B such that ycz,

Vy=vtu,=tpu,=t.(x[x)=0.y.
This completes the proof of the lemma.

LEMMA 4. Let m and n be as in Lemma 3. Assume n<p<m. Then there is an
algebra A such that |A|=m, |SubWU|=p, |ConA| =2, and |AutU|=m".

Proof. Let W={A, f;);.; be the algebra of Lemma 3. Let B be a set disjoint from
A with |B|=p. Let C=AUB. Say B={b,:0<a<p} with b one-one. Note that 0 (the
empty sequence) is a member of A. Set b,=0. We extend each operation f; to an
operation ;" on C by letting /" act as the identity on B. For each a<p we introduce
a unary operation S, on C. S, is to act as the identity on A4, while for any f<p,
S,bp=b,ns- Finally, we introduce a ternary operation 4 on A4: for any ay, a,, a,€A4,

h(ao, a,, a;) = {

Let €=<{C, [, Sas M)iar,a<, Clearly |C|=m. Each automorphism of % clearly ex-
tends to an automorphism of €. The subalgebras of € are exactly all sets of the form
Du {b,:a<p}, where DeSubW and f< p. Thus |Sub€|=p. Also, each automorphism
of @ fixes each element of B. For, each element of A4 is fixed by S, but each element of
B is moved by S, so ¥ fixes B as a set. Now suppose yb,=b, with a# . We may
assume that a<f (working with ¥ ~' if f<a). Then

by=Yba=YSb,=SNYb,=Sby=b,.

contradiction. Finally, it is clear that |Con|=2.

ay if a #a,,
a, if a,=a,.

LEMMA 5. Let m>=N,. Then there is an algebra? of power m such that |Con| =2
and |Aut|=|Sub2|=2".
Proof. Let A=m. Let h be the ternary operation on m such that forany «, #, y<m,

a if B#y,
h(z, B,v)= .
The desired properties are easily checked.
The following lemma is well-known.

LEMMA 6. Let WA and B be algebras. Then there is an algebra € with universe
WA x B such that SubC=SubWU, AutCx=Aut, while ConC€ has a smallest non-zero
element and Con B is isomorphic to the lattice of non-zero elements of ConC.
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Proof. Say ={A, fDie1» B=(B, g;;¢;- For i€l, say f; m-ary, and for ae™4,
be™B, we set

fl+ ((aOv bo)’---’ (am-l’ bm—l))"-‘(fi(aov--" am—l)’ bO)

The operations g,+ on C=A x B are similarly defined. For each 6& B we define a unary
operation h, on C: for any (a, c)eC, h,(a, ¢)=(a, b). Finally we define a ternary
operation K. For any (ay, bo), (ay, b,), (a,, b,)eC,

K((ao o) (o b0, (o b)) = {00 o) 1 fovB) 7

Let €=<C, f/', 8/, hy» KDic1, jes,pep TO show that Sub€=Sub¥, for any DeSub¥
let D* ={(a, h):aeD}. Clearly D*eSubC, and D<E iff D*<E™* for D, EeSub¥.
Now suppose FeSubC. Fix byeB, and let D={a:(a, by)eF}. Clearly DeSub¥. If
(a, b)eD*, then (a, by)eF, hence (a, b)=h,(a, by)eF. Thus D* = F, and similarly
F<D*. So * is the desired isomorphism.

For each peAut¥, define ¢ * (a, b)=(¢pa, b) for any (a, b)eC. Clearly ¢ " € AutC€
and * is'an isomorphism of Aut into Aut®. Now let y e Aut€. For any (a, b)eC,
v (a, b)=yhy(a, b)=h (a, b), so Y (a, b)=(a’, b) for some a'. If s (a, b)=(a’, b) and
¥ (a, b')=(a", b') with b#b’, then

(a',b)=y(a, b)=yK((a, b), (a,b'), (a, b))
=K(¥(a, b), ¥(a,b'), ¥ (a, b))
=K((d,b), (", ¥), (a, b))=(da", b).

Thus a'=a". It follows that there is a permutation ¢ of 4 such that Y (a, b)=(¢a, b)
for all (a, b)eC. Clearly pcAutU and y=0".

For ReCon B let R* ={((ao, bo), (ay, b,)):boRb,}. Clearly R* €Con(, and Rc S
if R* <S™* for R, SeCon B. It remains to take any 7e Con € with T#1d | C and find
ReConB with R*=T. Say ((co, do) T(cy,d,) with (c,,do)#(c,,d,). Let R=
= {(bo, by): ((co, bo) T(co, b,)}. Clearly ReCon B. Now let (aq, by) R* (ay, b,). Thus
(cos bo) T'(co, by ), 50 (g, bo)=K((ao, bo), (¢1,d,) (¢1,d,)) TK((ao, bo), (co» do), (¢4, d,))
=(co, bo) and similarly (ay, b,) T(co, b,), and so (ao, by) T(ay, b,). Hence R*<T.
Similarly T< R*, so T=R". This completes the proof.

Combining Lemmas 4 and 6, we obtain

THEOREM 7. Let m=N,, and let n be the least cardinal such that m">m.
Assume that n<p<m. Let L be an algebraic lattice with a smallest non-zero element
such that |CmpL|<m. Then there is an algebra W such that |A|=m, ConA=L,
[SubA|=p, and |AutA|=m".

Combining Lemmas 5 and 6:
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THEOREM 8. Let m=>N,. Let L be an algebraic lattice with a smallest non-zero
element such that |Cmp L| <m. Then there is an algebra W such that |A|=m, ConA=L,
and |Sub | =] Aut | =2%.

Now we can combine the preceding results to give a complete description of the
relationships between the cardinals mentioned at the outset:

THEOREM 9. Assume GCH. Let m, p, q, t be cardinals such that m=N,, p>0,
and q, t>1. Let n be minimal such that m">m. Then the following conditions are
equivalent:

(1) there is an algebra W such that |A|=m, |AutU|=p, |ConU|=q, and |[SubWU|=1;

(ii) one of these conditions holds:

(1) m>pand g, t<m*
(2) p=m*, n<r<m*, and g<m™.

Proof. Assume (i) and (1) fails. Then by the trivial inequalities, p=m*. Hence by
Lemma 2, n<r; the inequalities r<m™ and g<m™* are trivial.

Now assume (1). Let G be a group with |G| =p, and let L, and L, be the algebraic
lattices such that |L|=gq, |L,|=1, and |CmpLy|<m, |CmpL,|<m; it is easy to find
such lattices. Then an application of Theorem 1 gives the desired result.

That (2) implies (i) is an easy consequence of Theorems 7 and 8.

Note that under GCH the cardinal n of Theorem 9 coincides with the cofinality
of m.

With regard to dropping the assumption GCH in Theorem 9, the following two
results are relevant.

THEOREM 10. If W is a denumerable algebra and m=|AutU| or {ConU| or
|SubA|, then m< N, or m=2%,

This theorem was established by Kueker and Reyes independently for m=|Aut |,
and by Burris and Kwatinetz in the remaining cases. The following theorem is a simple
generalization of an unpublished result of Stephen Comer:

THEOREM 11. Con(ZF) - Con(ZFC +for every regular cardinal m=>¥N, there
is an algebra W of power m™ such that if n=|Aut| or |ConA| or |Sub¥A| then
m* <n<2™).

Proof. By Easton’s theorem, using the function F such that Fm=m*"* for every
regular cardinal m, it suffices to prove within ZFC the following statement:

(1) If Ng<m<n<2™<2" then there is an algebra A of power 1 with |Aut|

=|Con| =|Sub?|=2".
To construct such an algebra, let A=n. For each aen~m let f, be the unary operation
on 1 such that, for any f<mn, f,f=x. Let g be the ternary operation on n such that
for any «, B, y<n,
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p if B,yen~m and B#y,
o otherwise.

g(x B, v) ={

Let A={n, f;, & zen~m- Then the automorphisms of U are the permutations of n
which are the identity on n~m. The subalgebras of U are the empty set and all sub-
sets fu(n~m) of n with f=m. The congruence relations of U are nxn and all
equivalence relations on 1t which are the union of an equivalence relation on m with
the identity on n~mnt.

These two theorems rule out some natural possibilities for generalizing Theorem 9
when GCH is eliminated. Many other generalizations or variations of Theorem 9 are
conceivable. We mention just a few:

(1) Consider the case m <N,.

(2) Adjoin to the discussion some other cardinal functions, such as |/|, Gould
and Gritzer’s multiplicity types, |End %|.

(3) Give a full description of the structures Aut2, Con%, etc., for a given cardinal
m=|A|; Theorem 1 is an important result in this direction.

(4) Consider all of the questions for special kinds of algebras, such as groups,
lattices, Boolean algebras. In McKenzie, Monk [6] the relationship of 4] to |Aut¥|
is completely given for Boolean algebras, assuming GCH.
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