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ha'z:‘z;‘)‘;;he%f?nar? happy to hav? this 'opportunity to describe a field in which they
soon, Tarski wa ctcl)lsefcollaboratlog with Alfred Tarski for many years. As will be
it Wo shall s the founder qf this field, and obtained many of the basic results
and relarod Sm}:r:sent here a brief account of the development of cylindric algebras
© the basic 1o ctures, fo_llowed by the presex?tation of a modest new result relevant
selfcontamed. E:es;ntat]on Problem for cyl_mdric algebras. The paper is entirely
the apparatus’ ; ¢ ‘rst pa}rt is purely expository, while the second part uses only
logic. tot the escribed in the first, We do assume a modest acquaintance with
5 ry, general algebra, and Boolean algebra.

alglt;bi:lil;;v:z' eclt:r;m;‘ the beginni'ng of_ its modern development, logic has had an
whose Workpis 1- n 1a.ct, symb.ol{c logic may be said to have begun with Boole [2],
sidered by Bo lal’ge y algebraic in nature. The algebraic structures implicitly con-
ina Closeyrelatc? e a;fa now called. Boolegn algebras. As is well known, they stand
shall ot be o ionship to sentential ioglc,. as well as to the calculus of classes. We
selves: we w Ontcerned hefe, howesfer, thl? t.he theory of Boolean algebras them-
relate(’i o ra(;l' to des.crxbe certain muljudxmensional Boolean algebras closely
calculus asp etlcate logic. We shall bear in mind, however, the logical and class
hicher di pects of Boolean algebras and look for analogous relationships in the
%l‘ er dimensional cases. -

the :‘}fegrrst abstrac?t algebraic theory of a substantia
of ear]ieryd?f re{atlon algebras, initiated in Tarski [31]
is in fact e‘llljzctlor}s of Tarikn’s work. An algebraic approach to mctamath.ematics
logical modl 1ent in .Tar‘sliq s'cz}lculus of systems (Tarski [28], [29D), in.hls topo-
Tarski [19 els for mtun'tlomstlc and modal logic (Tarski [30], McKinsey and

D, as well as in Kuratowski and Tarski [13], which is the most direct

| portion-of predicate logic is
. This was a natural extension
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precursor of the theory of cylindric algebras. Relation algebras are an abstracti.on
from the calculus of relations first studied by C. S. Peirce and carried to a high
degree of development in E. Schroder [27]. Here one considers a nonempty domain
U, and binary relations over U, i.e., subsets of the Cartesian square 2U. Upon
such relations one can perform the usual Boolean operations: union U, inter-
section N, and complementation ~ with respect to 2U. Two further operations

specific to the theory of binary relations have been intensively studied: the con-
verse R~! of a relation R < 2U, defined by

R = {(x,)):(y, x)e R},
and the relative product R | S of relations R, § < 2U-defined by
R|S = {(x, z):there is a y such that (x, y) e R and (y, z) € S}.

Finally, three special relations play a role in the theory: the empty relation 0,
the universal relation 2U, and the identity relation U | Id, consisting of all pairs
(u, u) with u € U. A relation set algebra is a structure

A= (A’ U, N, ~, 0, 2U, l,—l’ U1 Id)s

where 4 is a collection of relations over U closed under the indicated operations
and having as members the three special relations above. A large portion of the
work of Peirce and Schréder consists in the discovery of equations which hold in
all relation set algebras. Schrider also investigated the solvability of equations
in a detailed fashion. The abstraction which Tarski performed in [31] was to

select a small finite number of the equations holding in all relation set algebras
and define a relation algebra to be any algebra '

U=, +,,,—,0,1,3 U, 17,

relative product does require three variables
a representation problem: Is every relatio
product of relation set algebras? The reaso
way rather than asking for isomorphism

- The second question can be posed as
n algebra isomorphic to asubdirect
n for formulating the problem in this
with a single relation set algebra will
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become evident in the discussion of cylindric algebras. Unfortunately this second
question has a negative answer, as shown in Lyndon [16). One can then consider
the class RRAof all representable relation algebras: those which are isomorphic
to a subdirect product of relation set algebras. In Tarski {33] it is shown that RRA
is an equational class, while in Monk [21] it is shown that RRA is not finitely
axiomatizable. Somie -further “developments in the theory of relation algebras
indicate the depth of the theory. Jénsson [10] indicated a connection with pro-
jective geometry which was generalized in Lyndon [17). Withany projective geom-
etry G, Lyndon associated a relation algebra . In case G isfinite, Gisa hyperplane
in a higher dimensional space if and only if %y € RRA. This result is essential
'in the proof in [21] that RRA is not finitely axiomatizable. Close connections
between group theory and the theory of relation algebras are indicated in McKenzie
[20]. Finally, we may mention that the equational theory of relation algebras was
shown to be undecidable by Tarski; see Tarski [32].

As we have indicated, relation algebras correspond to a restricted portion of
predicate logic, in which, in particular, only three variables are used. Histor-ically,
the next step in the development of a full algebraic version qf predicate logic was
the projective algebras of Everett and Ulam [S]; see also McKinsey [18]. The§e
algebras are again abstracted from the calculus of binary relations, but the ba.sxc
operations are here the projection operations upon the coordinate axes, thinking
of the relations as subsets of the “plane” 2U. Such operations are not as powerful
as the relative product operation. Furthermore, the logical counterpart of pro-
jective algebras is a logic with only two variables. Thus the passage from r.elatl'on
algebras to projective algebras does not seem to be a generalization 1n fhe dlfectlon
of a more comprehensive algebraic version of logic. But in fact tl}e basic notions of
projective algebras immediately suggest a generalization to arbitrary fhmensmns.
Thus they may be viewed as precursors to cylindric algebras, to which we now
turn. : : :

The concept of cylindric algebras was invented and initial work .done by Tarski
in collaboration with his students Louise Chin (Lim) and Freder.xck Thompson.
We can best understand this concept by relating it to predicate logic. Let .E,P;e ‘;n
arbitrary language of predicate logic, and let ®p g be the set of‘ fo'rrflulas of ‘ b | c
assume that % has a simple infinite sequence v, U1, - - - of lndlvxdu?l vaga de.:-
We consider the usual syntactic operations V, A, ™1, o of formmgft eul ;s-
Junction, conjunction, negation, and existential quantification over vy, Ofl cl,;mnd -
Additionally, we assume that & is provided with a falsehood symbo da
truth symbol T. Now we consider the formula algebra of Z ;}m_g,,/deﬁne as

8"‘.? = (d);us’, V, Aa_l’ F, Ts av," Uk = vi)x,/l<w‘ 7

Let T' be any set of sentences of .Z. We define a binary relation’ =r of} .gcﬁdgs t:z .
setting ¢ =, y iff the biconditional g+« v is a consequence of ', i.e.,
every model of T, or is derivable from I'. It is easily seen that =r

. . tient
relation on ®u,, and in fact is a congruence relation on §mg. The quotier

= _is an equivalence - '
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algebra Fmy/ =y is an example of a cylindric a_lgebra; we call‘it the T arski
algebra associated with % and T'. We select certain equations W‘hlch hold in all
algebras Fmy/ =r and take them as axioms for abstract. cyhn‘drlc algebras. .Pre-
cisely speaking, for any ordinal « a cylindric algebra of dzmefmo.n «, for brev1t_y a
CA,, is an algebra ¥ = (4, +55 =50, 1, ¢y deidaicn satisfying the following
conditions for all «, A, u<oeand x, yeA:

(Co) (4, +,+,—,0,1) is a Boolean algebra, ¢, maps A into 4, and d,, € A;

(C) ¢0=0;

(C) x = cx;

(CS) cx(x ‘ Cx}’ ) =X ny >

(C) eccrx = cjex;

(C5) dxx = I;

(Co) if x 5% A, u then dap = C(dy, - den)s

(Cy) if x 3 2, then Celdea %) e (d,, - ~x) = 0. '
If it is necessary to distinguish between operations in several algebras, we write
4ot e 4B B o

The algebras Fm,/ =, present two peculiarities which have been abstracted
from in presenting the general definition of a CA,. One is their dimension, w. The
other is the following condition of locally finite dimension:

(Cy) Forany x € 4 there are only finitely many « < « such that CX # X,

This is of course true in SMg/ =, since any element of §mg/ =, is an
equivalence class [9] of a formula @, and if v, is not among the finitely many
variables occurring in ¢ we then have ¢, [¢] = [3.,#] = [}, since then 1, g @
is logically valid. Thus each algebra §my,/ =_isa CA,, of locally finite dimension.
Conversely, it has been shown that each locally finite dimensional CA,, is iso-
morphic to some algebra ¥Mg/ =r. This indicates the close connection of cylindric
algebras with predicate logic. ' :

The abstract theory of cylindric al
Monk and Tarski [8]. Equations holding in all CA_.’s are derived there and the
operations ¢, and elements d,

H
a are generalized, The algebraic theory of CA./s—
ideals, products, free algebras
We now want to turn, howeve

» 8tC.—is carefully developed.
I, to the representation theory of cylindric al gebras.
We are concerned here with th

¢ calculus of many-placed relations, analogous to
ts with regard to Boolean algebras, and relation set
a2 nonempty set. Subsets of *U/
Y perform on them the usuyal

: ~ being performed with respect
¢ Introduce a unary operation i or simply C,,

ary relations, and we mg
Boolean operations U, N, ~ (complementation
to *U). Now for each s < aw

as follows. For any Rg *U,
CYY'R = {x €U there isayeR with x,

= yiforall 2 <« with 1 5 K}
Also we consider special sets DLy _

"forany x, 2 < .

a - k
D" = {x ey Xe =x,}.
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Now a cylindric set algebra of dimension o wzth base U and unit set “U, for brevity
aCs,isastructure . v 00 T
,‘ o QI =<A’ U,ﬂ’N,O,aU,CE:U), Dl(:lU)>x.A<m
where 4 is closed under the indicated operations and has as elements the indicated

special subsets of “U. It is easily checked that each Cs, is indeed a CA,. The basic
notions can:be conveniently indicated in the case a = 3; see Figure 1.
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FIGURE 1

A subset R < 3U can then be pictured as a point set in 3-space, and g,R is the
cylinder generated by moving R parallel to the 0-axis. Analogous Cf)nsnfierat.xon?
apply to C,R and C,R. Hence the operations C, may be called cylindrifications;
this also shows the origin of the name cylindric algebra. Also, Dy, consists <.)f all
points equidistant from the 0- and 1-axis, and is thus a diagonal plane. Similarly
Dy, and D,, are diagonal planes; and of course Dyp = Do}, Dyy = Do, and
Dy = D,,. We have D, = 3U for any x < 3; U may be considered a degenerate
diagonal plane. The elements D,; are sometimes called diagonal elements.

The connection of Cs,’s with the Tarski algebras §mg,/ =r can be seen as
follows. Let % be a first-order language, T a set of sentences of &, a}nd m =l=l
(U, R);e; a model of T'. For each formula p of £ let Sp¢ be the collection olf a
X € “U which satisfy g in M. Then it is easily seen that Sy induces a hom‘omolrp 1S(r)r}
Sip from §mg/ = onto a Cs,, with base U. In particular, for any formula ¢
< and any « < w, we have _

Sim[avxq)] = CKSSDI[QD]’

which indicates the close connection between cylindrifications an

qualifications. Similarly, Sqp[v, = v2] = Dsa-
The question naturally arises whether every Cy

Cylindric set algebra; we may call this a represen

d existential

lindric algebra is isomorghic toa
tation problem. In this form,
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however, the representation problem has an easy negative answer. In fact, first
suppose that « < w. If A is a Cs, with base U and 0 ¥ R < °U, then *U =
Co -+ C,1R, as is easily verified. Thus any CA, isomorphic to a Cs, identically
satisfies the condition

x#0—>cy e, x =1,

However, % x U fails to satisfy this condition, since (1, 0) (0, 0) but
Co* " ca—l(lv 0) = (1’ 0) # (1’ 1)-

Thus A x A is not isomorphic to a Cs,. On the other hand, since CA, is defined by
a set of equations, it is obvious that A x % € CA,. Thus A x A is a CA, not iso-
morphic to any Cs,. In case « 2 , a different construction is needed to find such
a CA,: Let % be the Cs, of all subsets of 2, and let = 22 Then 79[ (the Ith

direct power of U) has cardinality >2*. Suppose I is isomorphic to a Cs, B;
say that B has base U. Now the equation

do1 + doz + dlz =1

holds in 9, hence also in 'Y and in B. But this implies that |U| < 2, and hence
"] = |B| S 2%, contradicting the fact noted above that {T4| > 2#*' Thus for
@ = o, U is a CA, not isomorphic to any Cs,. Because of these two examples,
we now reformulate the representation problem, in a standard algebraic fashion.
A CA, Uis said to be representable, in symbols U € R,, if A is isomorphic to a sub-
direct product of Cs,’s. Unfortunately, even in this form it turns out that for each
« Z 2 there is a nonrepresentable CA.. Many properties of the class R, are known,
however. We have R, = CAjand R, = CA,, almost trivially. As Henkin has shown,
the class R, can be characterized by the addition of two simple equations to the
conditions (Cy)-(C,). Tarski showed that R, is always an equational class, while
MO!']k showed in (22] that R, is not finitely axiomatizable for « > 3. One of the
ear'llest results in the theory of cylindric algebras, due to Tarski, is that any locally
finite dimensional CA, of infinite dimension is representable. This may be con-
sidered as an algebraic version of the completeness theorem for predicate logic.

Varioqs characterizations of the class R, are known. One of the most useful is the
following, due to Henkin: o

The following conditions are equivalent:
(i) AeRr,,

(ii) there is a CA“” B such that W is g subalgebra of
(B: +s Yy =y 0, l’ C,(:m): dl?)>x.}.<a
(B)

and ¢ 3h x = x for all x € A and all « < w.
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Henkin has shown that the equational theory of CA,'s is decidable. The first-order
theory of CA,’s, for any fixed « = 2, is undecidable.

We shall return to the representation problem for cylindric algebras in the next
section. To conclude this section we want to mention briefly some other versions
of algebraic logic. Subsequent to Tarski's first work concerning cylindric algebras,
which was mainly reported in abstracts, several other algebraic versions of pre-
dicate logic have been introduced. The most well-developed of these is the theory
of polyadic algebras of Halmos; his work on them is collected in [6]. Roughly
speaking, they differ from cylindric algebras in having as primitive notions
cylindrifications on infinite subsets of « and other operations S, for 7 € “«, corre-
sponding to substitution in formulas. Daigneault and LeBlanc have further de-
veloped the theory of polyadic algebras, devoting most of their efforts to formulatin'g
logical theorems in algebraic form and providing them with purely algebraic -
proofs. This program has been carried through, for example, for Beth’s theorem,
Feferman-Vaught generalized products, and, partly, for Godel’s incgmpletene§s
theorem. See Daigneault [3], [4] and LeBlanc [15]. Extensive work in glgebralc
logic has been done by Craig. Some of his versions of algebraic logic derive from
taking satisfaction by finite sequences as basic in defining set algebras, rather than
satisfaction by infinite sequences, as is implicitly done above; seg, €.8., Monk [2,3]‘
Among other work in algebraic logic we may mention the ma'ny-sorted relation
algebras of Bernays [1], algebraic versions of higher-order logic in LeBlanc [14]

and Venne [35], the general notion of relation algebra 1n Saln [26], as well as the
Boolean algebras with operators developed in Jénsson and Tarski [11], [12],
Henkin [7], and Monk [24], which provide a general framewog'k for many of
these versions. For a comprehensive bibliography of algebraic logic, se¢ [8].

2. A representation theorem. The main result we want to establis.h is as fo_llo'ws. :
For infinite o, any subdirect product of Cs,'s each having an infinite base is iso-
morphic to a Cs,. This is formulated as Theorem 2 below. B +

As we have seen in §1, the hypothesis & Z @ s necessary here, and also the
hypothesis that each base is infinite cannot be dropped. From Theorem 2 we see
that under these two hypotheses the reformulation of the representation probilenrll
made in §1 is not necessary. We shall establish a result somewhat stronger tha
Theorem 2. To formulate it, and lemmas needed in its proof, we need some NeW
notions. : o e i

Let U be a nonempty set and ¥ < “U. For any R ;ag)and k< a, W "
CY'R = C"P’R N V. For «, A < «, Wwe set DY =Dy 0V By a Gesg W
unit set V' we mean a structure o

A= <A’ U, N, ~, 0, v, CI(C.V‘)’ D;(c,;)>x.l<au

such that (4, U, N, ~, 0, ¥)isa Boolean algebra of subsets of V4 is ﬁos;g;llgdl::
each operation C,(CV)’ and DZ) e A for any «, AL q; its base,ls U.knoswn hich
remarked that not every Ges, is a CA,. Furthermore, many Ges, $ 81
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are CA,’s, but are nonrepresentable. We shall not go into the theory of general
Gces,’s here.

Again, let U be a nonempty set. For P> 4 €°U we define p ~ ¢ to mean that
{r < a:p, # q.} is finite. The relation A is clearly in equivalence relation on *U.
The equivalence class of an element p € *U is denofed by *U‘®) and is called a weak
Cartesian space. A Ges, whose unit set is a weak Cartesian space is called a weak
cylindric set algebra of dimension «; the class of all such is denoted by WCs,. It is
casy to verify that every WCs, is a CA,.

The stronger version of Theorem 2, referred to above, states that: For infinite o,
any subdirect product of WCs,’s each having an infinite base is isomorphic to a Cs,.
This is formulated as Theorem 1 below. Theorem 2 follows readily from it because
each Cs, is a subdirect product of WCs,’s (Lemma 13 below).

The idea of the proof of Theorem 1 is as follows. We first show that any WCs,
with infinite base is isomorphic to a WCs, having a base of cardinality larger than

any preassigned cardinal number (Lemma 4). Then, given any set of WCs,’s each

-Skolem theorems (Lemmas 3 and 5). Finally,
«’S, €ach having the same base U, but having pair-
, Is isomorphic to a Cs, with base U. (See Lemmas 10-12.)
In our final result (Theorem 3), we obtain a weaker form of representation for
subdirect products of WCs,’s having finite bases of the same cardinality,

LEMMA 1. Let % be g WCs, with unit set

. “U™, and let f be a one-one Junction
mapping U onto a set W, Then 9 is isomorphi

¢ to a WCs, with unit set * Wiom,

PROOF.  For each X e 4 [et fX =

'ROOF {foxixe X} It is easily checked that fis the
desired isomorphism.

. LEMMA 2. {.et U be a nonempty ses, PEU, and N the WCs, of all subsets of
U™, Then U is subdirectly indecomposable. In Jact, if f is any homomorphism on
W which is not one-one, then fir=o.

PROOF.  Suppose fisa homomorphism on 9 which is not one-
where X 3£ 0. Choose 9€X. Th

{Ko’ . ,Kj_]} with Ko < - -
f{P}éfcxo"’C

Thus f{p} = 0, as desired.

The following lemma may be considere
mental theorem on ultraproducts, or rath
ultrapowers, which is all we need in this

one. Say fX = 0,
en {x:p, #q,} is finite, say {k:p, # q,} =

* < Ky_g. Clearly then PEc - Cx;_, X, and hence

Ky X = Cp v e, JX =kttt 0=0.

d as an algebraic version of the funda-

er the specialization of that theorem, to
paper. :
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LemMa 3. Let U be a WCs, with unit set *U'). Let I be any set, and F an ultra-
filter over I; set W = TU|F. Assume that s’ e*('U) and that s, = s¢[F for any
k < «. Let f be a choice function for W, ie., fxex for each xe W, and for each
i€l let pr; be the function mapping I into U such that pr;y = yi for any y € y.
Define u mapping *W into *(1U) by setting, for any x € *W and any k < d,

(Ux)e = s Y X = S0
= fx, otherwise.

(1)
Now assume that

)] for any x €*W' and i € I we have pr;oux € ey,

Then there is a homomorphism g of /F into a WCs, with unit set W) such that,
foranyae’A, :

(3) g(afF) = {x e W": {ieL: prioux €a;} € F}.

PROOF. Let V = *W®, X = *U®. It is easily seen that there is a functiqn g
satisfying (3), and it is obvious that g preserves +. Furthermore, using (2) 1t 18
easy to check that g preserves —. Now suppose X € g(d,:/F). Thus x € |4 ar}d
{ielpriouxe DX} e F. Since {i€l:pr;oux € DXy ¢ {i e I (ux),d = )i},
it follows easily that (ux),/F = (ux),/F. But (ux),/F = x, for any p < &, by (.l).
Thus x, = x;, 50 g(d../F) & D{’. The converse is analogously established, using

().
To show that g preserves c,, first note, by (1),

(4) ifx, yeV, k < aand x, = Y then (ux)c = (Up)s-
Now assume that x € g(cafF). Thus '

%) xeVand JeF, where J = {i €1: pryoux € cXa}.

Choose f & 'X such that for any i €J we have (pr; ux)h = t;Aforalld o~ {x},

and t, € a;. Define ¢ mapping « into Ty by setting, for any A< o«and i€l
;i = t,A. Finally, for any 4 < « let t" = t}|F. Thus t’ e *W. Furthermore,

(6) t/ = x, whenever A€~ {x}.

Indeed, for 1 € « ~ {«x} and i €J, we have

(ux),i = (pr;oux), = th = ;1.

Since J € F by (5), it follows that (ux),/F = tifF, e, X3 =1 i
Since x € V by (5), we also have

7 _ t"ev.

Now let K = {i el (utﬂ)Ki — t;i}. Since by (1) we have (ut”)x Et: = t:’c/F, it
follows that K e F, Thus, by. (5), ' |

(8) JNKeF.

Thus (6) holds.
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Now
)] JNKc {iel:priout” =1t}
Indeed, let ieJ N K,

(prioutye = (ut") i = tli = l;Kk;

if 4 € a ~ {«}, then, using (4) and 6),
(pricwt”)h = (ut"),i = (ux);i = (pr; o ux), = t,A.

Thus (9) holds. It now follows that x € C”g(a/F). In fact, x € V'by (5), and x, =
t; whenever 1 € & ~ {x} by (6). Furthermore, ¢" € by (7), and by (8) and (9),
{i€I: pr,out” € a;} € F,t" € g(a/F). Thus we have shown that g(c,a/F) < c\g(alF).

Conversely, suppose that x e Cg(a[F). Thus x e V, and there is a y €g(a/F)
such that x; = y, for any A € a ~ {}. Thus by (3), Y€Vand LeF, where I =
{iel: pr;ouy € a}. Now using (4) we easily see that if / e I and 2 € &« ~ {«} then
~ (prieoux)d = (pr; o up)A. Thus by (2) we have I < {iel:pr.ouxe Cch)ag}- Hence

x € g(c.alF), as desired. :

The next lemma is an algebraic version of the upward Lowenheim-Skolem-

Tarski theorem. Its proof is analogous to the ugyal ultraproduct proof of that
theorem. .

verify condition (2) of Lemma 3, Let x T P v
finite. If x € & ~ T ang i€ 1. then Set I = {k: x5 Sc}. Thus I' is

¢ the natural isomorphj into 197/ 1.
Forany a€ 4, hais ajF, where (rr - omorphism of 9 into 79[/
Fact, us = 5°, 50 pr, o s i » Where (W'a)i = q for all ¢ 1. Note that s € gh{p}. In

, Ploranyie ], Also, hp) — 1o
f pod. » 1P} = K{p}[F, and (h'{p})i =
) €1 Thus pr o use g4 ()i for any i e 1. Thys, ifdéed, s e;’hg?'Hengg

5 .

g I{QX:& ge I:galﬁerx;r:a 2,gohis o_ne-ont?. Hence g o  is the desired isomorphism,

theoren;_ e g:) ‘ V€ an algebraic version of the downward Léwenheim-Skolem

Tarkimad J) W 34!:] ;?tterned afte}' the proof of the logical theorem given in

Pisn v gh - For any funcnpn P> Rapisthe range of p. If p isa function
main of p, and g i arbitrary, we denote by p: the function (p ~

{G.r) U (G, 0},
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LemMA 5. Let m be an infinite cardinal such that m®! = m. Suppose that Uis a
WCs, with unit set U, where |A]| = m = |\U|. Then there is a subset W of U with
|W|=mand Ra p = W such that 2 is isomorphic to a WCs, with unit set “W?),

ProoF Let U be given a well-ordering. The hypothesis ml® = m implies that
« < 1. Hence, also using the assumption that |4] £ m =< |U|, there is a subset T
of U such that |T,| = m, Rap & T, and X N°T, # 0 whenever 0 # X € A. Now
suppose that 0 < A < m and 7, has been defined for all k < A Let M = U<s T
and let

T,=MuU{aeU:3Xe A3k <aIue'M
(a is the first element of U such that uf € X)}.

Let W = T,,. By transfinite induction it is easily seen that |T,] = m forall k = m,;
in particular, || = m. Obviously Rap < W. Now forany XeAletfX =40
“W), Clearly fis a Boolean isomorphism from 9 into the WCs, of all subsets of
“Win), Tt is also clear that f preserves d,;. Now let N =°U® and P =W
* Suppose that u € fC™ X. Thus u € C."'X N P,s0u € pand ut € X for somea € U.
Now mi* = m implies that a < cf m, so thereis a 1 < msuch thatu € «T,. There
is then a b e T},, such that u} € X. Thus uj €fX, so ¥ € C‘P'fX. Thus we have
shown that fCV X < CF'fX. The converse is trivial, so the proof is complete.

In the next few lemmas we shall be concerned with the problem of changing' the
function p appearing as exponent in the unit set 2U*? of a WCs,. If pis any function,
say with domain I, we let ker p = {(i,/): i, j €1 and pi = pj}-

LEMMA 6. Let 9 be the WCs, of all subsets of *U®, and B the WCs,of allsubsets

of “U', Assume that ker p = ker q. Suppose that either U is finite, or & < \U|. Then

A~ B,

PROOF. Let f= {(pw ¢x):k < o}. Thenfisa one-one function mappinga subset
of Uinto U, Since U is finite or a < |U|, we can extend fto a permutation fofU.

Now for any subset X of *U(® we set
fx = {fou:ueX}.

It is easily verified that f'is the desired isomorphism of 2 onto B. -
LEMMA 7. Let 9 be @ WCs, with unit set “U®, |UL > 1, and let R be any eqlf{'”"l

alence relation on o such that |afR| < |U|. Then 9l is homomorphic to a \"VCS,‘ wil

unit set of the form *Y'®, where U < Y and ker g = R. Moreover, if U is finite we

may assume that U = Y.

PROOF. We shall apply Lemma 3. Let I={I'sa IT| < @} ch'leaec;
Tellet Mp = {AeI:T < A}, and let Fbean ultrafilter over I such that Mr -
for all T" € I. Set W = YU/F. For each Tel,letsr€ ag7(# be such that'ker ST "
T = R N T, Define 5" € *(*U) by setting, for any ¥ <« anc'i Tel, .S’SP =2SFKi'
Now let s, f, pr, and u be as in Lemma 3. We proceed to verify condition @o
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Lemma 3. Let x € *W®. If T' e I and x, = s,, then

(prr o ux), = (ux),I' = (us),I' = s,T" = s{«.

Thus {«:(prp o ux),  spx} is finite, so, since sp €U we also have prr e
ux € “U, as desired. Thus (2) of Lemma 3 holds. Hence from Lemma 3 and the
fact that % can be isomorphically embedded in "9/ F our lemma follows as soon as
we show that ker s = R. In fact, we can then apply Lemma 1 to change W to a set
Y 2 U, and if U is finite we must have | Y| = |U|and hence ¥ = U, To show that
ker s = R, take any «, 1 < a. Assume that (k,A)eR.Forany I' e M, ; we then
have spx = sp, hence s.I" = s!T". Since M, ;, € F, it follows easily that s, = ,.
Similarly, (x, 2) ¢ R implies that s, £ s,. Thus kers = R » and the proofis complete.

LEMMA 8. Let W be a WCs, with unit set *U'P, U finite, and let q€*U. Then A
is homomorphic to a WCs, with unit set *U0,

Proor. By Lemma 7, % is homomorphic to a WCs, with unit set *UM, where
ker r = ker¢q. By Lemma 6 we may assume that r = ¢. '

LEMMA 9. If U is a WCs, with an infinite base and m is any cardinal such that
|4l £ m and ml = m, then 9 is isomorphic to a WCs, whose base has power m.

ProOF. By Lemmas 4 and 5,

LEMMA 10. If U isa WCs, with unit set *UP | where U is infinite, |A| £ |U|,

l«l < [Ul, and |U|™ = U], and ifqe®U, then U is homomorphic to a WCs, with
unit set *U',

ProOF. By Lemma 7, 9 is homomorphic to a WCs, B with unit set * ¥ where
Ug Yandkerr = ker 4. By Lemma 6 we may assume that r = g, and by Lemma
5 we may assume that |U| = | Y|. Since la| < |UJ, there is a one-one function I
znappmg Y onto U such that S q = q. Hence the desired result follows by Lemma

Next, we need to represent products of weak set algebras in a geometric fashion.

Lemma 11, Assm(ne)a Z2 Let V= Jus *UP each U; # 0, where for i, je T
and i 3 j we have *U*? UP =0, Further assume that either U; = U; whenever

i,j€l, orelse that U, N U; = 0 whenever i J€landi s j
j , J- Let W be the Ges, of all
subsets of V, and for each i c [ Jot B, be the WCs, of all subsets of *U. Forj:my

xe€dandiellet (fx), = x N U, For anyy € PiiB, let gy = Uicry.. Then fis

an isomorphism from N onto Pic1By, and g is its inverse.

- Proor.  Clearly fis a Boolean isomorphism from 9 onto Pi./B,, with g as its

inverse; furthermore JSclearly preserves d 1 Nowlet W, = «7i20) R

’ XA i = "U;""foreachie Iand
let ue (fCV'x),. Thus u e C¥xn W.Sayve X, where u; = v, for all A ¢ ocrrlw
{«}. Sayve W,. If U, = U for all k, Ie I, then U; =
hencevex N W.If U, n U, = 0 whenever k,lelandk # [ then

. since o =
there is a 1€ « ~ {x}, and weU,v,eU, u, = ’ =2

U1, 80 i = j; hence again
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vex N W, ThusueCV'(x N W) N W, = C¥(fx);. We have shown that
fCxZec, fx. The converse is trivial, so the proof is complete.

Our last lemma for Theorem 1 is the following simple result of a general algebraic
nature.

LemMA 12, Let (U,:j € J) be a system of similar algebras. Let I be a subset of J.
Assume that for some i, € I and each j € J ~ I there is a homomorphism f; from U,
into U,. Then P, N, can be isomorphically embedded in Pje;%;.

Proof. For any x € P,.;A; and any j € J we define

(g =x ifjel,
=f;-x.,~o ifjeJNI.

Clearly g is the desired isomorphism.

THEOREM 1. Assume o = w. For eachi € Ilet U; be a WCs, with unit set *U{™,
each U infinite. Then P, W, is isomorphic to a Cs,.

PrROOF. We may assume that I 3 0. Let m be an infinite cardinal such that
Il £ m, |4, <m, and m"*! = m. By Lemma 9, each %; is isomorphic to a WCs,
B, with unit set *¥{%’, where |¥,| = m. By Lemma 1 we may assume that V; N
V; = Owhenever i, j € Iand i # j. Let W = Uy V. Note that [ W] = |V,| for each
i € I. Furthermore, |a| < m since m!® = m. Hence for each i € I there is a one-
one function f; mapping ¥, onto W such that f; o ¢; = ¢,. Hence by Lemma 1, B, is
isomorphic to a WCs, €, with unit set “W. Since Rag; = V; for any i €I, and
the ¥,’s are pairwise disjoint, it follows that W% N “W( = O whenever i,jel
and i 5 j. Now let J be a superset of , and let g; be defined for all j € J ~ I'so that
the following conditions hold:

(1) W o= U aw(aj),

jeJ

(2) *W'% A 2w = O whenever j, k€ J andj # k.

For each j € J ~ I let €, be the WCs, of all subsets of %), By Lemmas 1.0 z_md
12, P,.;%, is isomorphic to a subalgebra of Pc;C;. By Lemma 11, P;;¢, is iso-
morphic to a Cs, with base W. This completes the proof. _ .

_ The following lemma is an immediate consequence of Lemma 11 and the defini-
tion of the relation ~ given prior to Lemma 1:

LeMMA 13, If is a Cs, with base U, then U is isomorphic to @ subdirect product
of WCs,’s all with base U.

By Theorem 1 and Lemma 13 we have

THEOREM 2. For« = w, any subdirect product of Cs,’s each having an infinite base
is isomorphic to a Cs,. ‘

Now we shall consider products of WCs,’s with finite bases. {\s n.oted in. the
preceding section, we cannot expect a result like Theorem 1. Tt is still possible,
however, to ““coalesce™ part of a product in this case.
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THEOREM 3. Ler | < « < = «. Suppose that, Jor each iel, U; is a WCs,

with unit set “U{® | where |Ui| = k. Let m be the least cardinal number such that
Jor each equivalence relation R on o,

Hiel:kerp, =R} <m. 1{%"): x € %, ker x = R}|.
Then P, ., is isomorphic o a product of m Cs,’s.?

PROOF. For each equivalence relation R on let Jp = {i e I'ker P: = R}, By
assumption we may write Je=Upscm Kpg, where |Kral S 1{"c*) : x €%, ker x = R}|.
For each f < m let Jrp be a one-one mapping of K, into {*«'=): x e “x, ker x =
R}. By Lemma 1 and Lemma 6, for each B <mandeachie Kgg, U, is isomorphic

to a WCs, B, with unit set Srgi. Now one can argue as in the last part of the proof
of Theorem 1 to show that, for each B < m,

P(B,: R an equivalence relation on «, j ¢ Kgrg)

is isomorphic to a Cs, with base x whenever there exists an 7 € J such that i e Kp,
for some equivalence relation R on «. Hence our theorem follows,

COROLLARY. Any WCs,_ is isomorphic to q Cs,.

This corollary follows immediately from Theorems 1 and 3. It i also an imme-
diate consequence of the characterization of Tepresentable algebras given in the
last section. In fact,let € be a WCs, with unit set U Toshow thatQ is isomorphic
toa Cs, it suffices to assume that € is the WCs, of all subsets of *f/ ‘9). Letg e *+oy
be such that the P S q. Let B be the WCs,,, of all subsets of **ey/@ For any
XeCletfX = (ueop., lueX}) Itis easily verified that fis an isomorphism
of € onto a CA, U which is related to 98 a5 in (ii) of the characterization of repre-
sentable CA,’s. Hence 9 e R. and € eR,. Since ¢ j subdirectly indecomposable
by Lemma 2, € is isomorphic to a Cs,. If we based the proof of the Corollary on this

in all would be longer.

One should note with regard to the above results that if « = w,Aisa WCs, with
base. U,Ba WCs, with base v, |i/ | # 1¥], and |U| or |Vl is finite, then 91 x 9 i
not 1somorp(21)c to amC,s,. In fact, suppose that Ul < |V, and |U is finite. Let s =

Ul. Th ~ 4l - ile c!®) ... .(B)
ll. Lenczn Co S Llacuge ~d = 9, while ¢ el zgng.c_ —d® =

(AxB) (9AxB) '
05 ¢, e, H — 'Tx®B)

A<psx
But it is easily checked that in any Cs, D, either -

R 2 | dP =0 o e ..
A<uSx : .

| K
Thus A x B is not isomorphic to 3 Cs,.

l<n§x

* See Note added in proof preceding the Bibliography.
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3. Open problems. We shall state here what seem to us to be some of the most
important open problems in algebraic logic, restricting ourselves, however, to those
that can be conveniently formulated on the basis of the definitions given in this
paper, The first five are of a programatic nature and are not given an exact formu-
lation.

Problem 1. Devise an algebraic version of predicate logic in which the class of
representable algebras forms a finitely based equational class.

It has been shown that many versions of algebraic logic fail to satisfy the criterion
of Problem 1; see [23] for references.

Problem 2. Describe the structure of Tarski algebras of well-known theories,
such as Peano arithmetic and group theory. '

The program suggested in Problem 2 has been carried through for the theory
of real-closed fields. In fact, Tarski’s decision method essentially gives a complete
description of the Tarski algebra in this case. Concerning Peano arithmetic and
group theory, we can say that their Tarski algebras are not simple, in the technical
sense, using Gédel’s incompleteness theorem to establish this for Peano arithmetic.
The Boolean algebra of sentences for Peano arithmetic, which is a definable part of
the Tarski algebra, is a denumerable atomless Boolean algebra.

Problem 3. Investigate cylindric algebras corresponding to the language Ly, -

The cylindric algebras mentioned in Problem 3 are easy to describe. Such an
algebra % must be locally finite of infinite dimension and such that Z,-EI X, exists
whenever (x,:i € I) is a countable system of elements of A such that

U {K:cxxi # xi}

iel
is finite. For algebraically investigating L, o cylindric algebras seem more appro-
priate than polyadic algebras. The latter are, however, more suitable with respect
to the general languages L,,. For work along the lines of Problem 3 see Preller [25].

| Problem 4. Show that any CA can be represented in terms of Cs’s by mean s of
some kinds of operations. '

From the remarks of §l it is seen that the usual algebraic operations—homo-
morphisms, direct products, etc.—are inadequate for the purpose of Problem 4.
The addition of the operation of relativization, i.c., passing from a Cs, to a G¢s,,
is also not sufficient for this purpose, but it comes close: Most of the nonrc.p_rese'nt—.
able CA,’s which have been constructed can be obtained from Cs,’s by relativization
and the usual algebraic operations. Other construction methods are known, mostly
unpublished, which may be useful in solving Problem 4.

Problem 5. Give an equational characterization of R, with a clear and simple

mathematical content.
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Rather complicated equations characterizing R, can be found in [22]. .
For our final two problems, cf. the discussion of decision methods for CA’s in

§1.

Problem 6. s the equational theory of CA,’s decidable ?

A solution of Probler § may result from an ang]

ysis of Ja§kowski [9]; unfortu-
nately, detailed proofs were never published for all

the results of that paper.
Problem 7. J5 ¢z Jirst-order theory of CA,’s decidable?

Problem 7 s closely related to the problem
algebra with a distinguished subalgebra is decidable,

NOTE ADDED IN PROOF, Richard Thompson has pointed out to us that the form-
ulation and proof of Theorem 3 are in error., To the left of = in the displayed form-

ula of Theorem 3 there should appear

I{i eI for some 79~ p; and kerg = R}

and then the Proof as given must pe modified somewhat.
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