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CONNECTIONS BETWEEN COMBINATORIAL
THEORY AND ALGEBRAIC LOGIC

J. Donald Monk

1. INTRODUCTION

- Algebraic logic has arisen as g subdiscipline of algebra mirrorir}g
constructions and theorems of mathematical logie. It is similar In
this respect to such fields as algebraic topology and algebraic
geometry, where the main constructions and theorems are algebraic
in nature but the main intuitions underlying them are respectively
topological and  geometric. The main ~intuitions underlying
algebraic logic are, of course, those of formal logic. We shall

describe in this first section the intuitive background of algebraic.
logic, and state some of the central definitions and results in this.
area. In later sections we give some construetions which arrive at

‘the fundamental algebras of algebraic logic from entirely differer.lt
sources, in fact from certain configurations which play a basic

role in combinatorial theory. These connections between algebraic

logic and combinatorial theory are rather unexpected (at least to

lications and deeper causes have not been
fully explored, - - e o
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Tt is our intent to give enough details in the constructions and
theorems below so that a reader unversed in algebraic logic can
follow the exposition and check those proofs which are presented.
We only give proofs for results which are new, however.

Let £ be any first-order language. Thus £ has an infinite
sequence of individual variables vy, vy, ¢+, logical constants—say
—,—, ¥, =, — and non-logical constants—say a system (R::¢ € I)
of relation symbols, where R; is of rank p; < « for each i € I
(w is the set of all non-negative integers). We assume as known the
usual syntactic notions defined in terms of £, e.g., the notions of a
formula, a sentence (formula without free occurrences of variables),
the conjunction ¢ A ¢ of formulas of £, the notion of a formal
proof from a set of sentences, ete. Given a set T' of sentences, we
may call two formulas ¢ and ¢ equivalent under T, in symbols
¢ =y, provided that the biconditional ¢ <>y is provable from
T. The relation = is in fact an equivalence relation on the set of
formulas. If we let Ar denote the set of all equivalence classes
under T, we find that algebraic operations can be introduced on
Ar which reflect the syntactic operations of building formulas:

e+ Wl =[e V¥l
[elr - [WT = Lo A ¥,
—[ele=[-eln
elLele = [vielr, |
di; = D}; = v; I | ;_

Here [¢]r is the equivalence class of ¢ under T. Note that d; is
a 0-ary operation on Ar, ie., an element of Ar. The algebra
Ar = (Ar, +, «, —, €;, dij)i.jeo thus associated with £ and T is
one of the fundamental algebras studied in algebraic logic. It
 turns out that most of the constructions and theorems of logic can
be algebraically reflected using these algebras %r. For example,
T is complete and consistent iff Ar is simple; the theorem that any

consistent theory can be extended to a complete and consistent

theory is mirrored by the theorem that any algebra r with
| Ar | > 1 has a simple homomorphic image. L S
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The notion of a cylindric algebra is obtained from these alg'ebra‘s
Ar by a process of abstraction. Let & be any ordinal. A cylindric
- algebra of dimension a, for brevity a €4, is an algebraic stru'c!;ure
A= (A4, +, ., -, ¢, dij)iica satisfying the following conditions
foralli,j,k<aandallx,y€A: |

(Co) {4, +, -, —)is a Boolean algebra,

(Cl) ¢l = 0,

(Cz) x é_ci:c, .

(C) iz ciy) = eir CiY,

(04) CiCix = C;Cix,

(Cs) dis =1, -

(Cs) lfj 7 i, k, then Cj(dij ’ dj}c) = d,‘k,

(Cy) if 4 5 J, then ci(dy; » x) - ci(dy; —z) = 0.

The abstraction process is so familiar in modern mathematies tha_lt
we do not have to describe its advantages, That this abstraction is

sound is established by the following logical representation
- theorem, which is not very difficult to proye

 THEOREM 1.1: For any algebra A similar to CA’s the Jollowing
two conditions are equivalent; o

- (3) A 22U for some r; - | '
(ii) A4sq CA_‘., such that | {i: ¢;x 2z} | <wforallzc A.
| Having at hand the abstract notion .of .

- investigations in algebraic logi
different, but actually close
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The most important concepts which are studied in mathematical
logie concern the notion of a model. Let £ be a first-order language,
as described above. A model over £ is a structure of the form
9 = (4, R:)ier, where A 5 0 and R; is of rank p; for each ¢ € L.
We assume as known the notion of a sequence z € “A satisfying a
formula ¢ of £ in ¥, and such derivative notions as ¢ being frue in
%, A being a model of a set T of sentences, ete. For each formula ¢
we set, '

| ¢ = {z € ©A: z satisfies pin Y} = & (If Ais understood).

Thus 3@ is a point-set in the w-dimensional space 4. Certain
set-theoretic operations similar to the classical operations of
descriptive set theory can be introduced corresponding to the
basic syntactic operations:

eU J =@ VY,
. ~ ——— e
Ny = e A \(’)
w AN& = :l._g;,
Cip = Jv;p = cylinder obtained by moving ¢ parallel to the
7-axis, | |

Dij = Ui = ;. o :
The collection {$¥: ¢ a formula of £} forms a CA. under these
operations, Again we make an abstraction from t_hls notion to
obtain a more general set-theoretic object. A cylz'ndr?c set algebra ?f
dimension o with base U, for short a CsY or a Cs,, 15 an algebraic
structure | .
2[ = (A; U, n; ~, Ci; Dij)i.j(d '

such that A is a field of subsets of “U closed under each C:
- with each D; as a member, where | o
| | - Dy={relUim= i}
and for each X € T R
CX = {z€U:(a~{iPlz=(a~lDIy |
' | | forsome Y€ X}

and




. morphism A from A onto a
- tary argument shows that Th

tially solyed, Next, CA, s R;, but

. for @2 3itis not finitely based,
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In terms of thjs concept a purely algebraic form of the complete-
ness theorem can pe stated:

THEOREM 1.9: If 9% satisfies the condition 1.1(ii), then U is
homomorphic 15 CsZ for some U 0. '

' Proofs of 1.2 are Somewhat deeper than those of 1.1. y
The set-theoretio Tepresentation problem is the vaguely po:fle
_problem concerning possible improvements of 1.2, :I‘o mak}?. o
Problem more Precise, let R, be the class of all CA4,.’s isomorp lcbl
8 subdirect prodyet of Csa’s; members of R, are called representable
eTY Non-zero z € A there is a homo-
Csa such that pz 5« 0. A very elemen-

x is representable iff for ev

neorem 1.2 is equivalent to the state-

ts concerning R, are as follows. For
nce the representation problem is essen-

R: can be characterized by
equations . .

a S1,C4, = R, and he
(Co) ~ (C1) together with the two |
S aleey - ae. ~01* —eas - ~dn) =0,
A i ‘=) =0,

% Cdy 5 R, The clags R. i always a variety, but

and for ¢ > , it cannot even be
Gl characterized by a certain i

natural  kind -of finite

schema. For
| « 13 representab]e. Theore

o _ ‘ _ m 1.2 gives a
il fundamenta] Property of repre

representable CA.’s. Th

o . last property
" of R,’s which we will state will play a g :
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| ?e a CAB._ We say that 9 can be neatly embedded 1n 9 if there is an

ls’omorphlsm f of A into (B, +, ", = ch dijhii<a such that
c,-.fa: =frforallz € Aandalli € B~a;f is called a neat embed-
ding of % into B.

T.HEOREM 1.3: For any o« the following [wo conditions are
equivalent:

(i) A € Rq;

(i) U can be neatly embedded in a CAaro.
Tl_lis completes our introduction to algebraic logic. A compre-.
~ hensive treatment of the algebraic theory of cylindric algebras can
be found in Henkin, Monk, Tarski [6]. The closely related theory
of polyadic algebras is treated in Halmos [5]. :

2. QUASIGROUPS AND CA3’S

A qz_tasigroup is an algebra A = (A, -)such that for any @, beAd
there is a unique z such that x - a = b, and also a unique y such
that ¢ »+ y = b. Quasigroups are essentially the same thing as latin
Squares; the latter form one of the main objects of study in com-
binatorial theory. For our present purposes, quasigroups are more
convenient to deal with than latin squares. A good source of
reference for quasigroups is Bruck [1]. Let ¥ = {4, ) be a
fluasigroup. We shall consider - as a certain ternary relation on 4,
in the usual way. If X & . and 7 < 3, we define -

| X = {y__e}_:'y,-"--—= zi _"‘forsome_ z€ X}
Further, let g € - Thenfors,j <3 welet

di=alg H HAE= 3.

" Byan¥,¢ -—‘.CA';J; we mean & system B = (B, “U,,n,*r'v, ¢i, d,-,-).-,,-<3.--f |

such that (B, U, Nn,~)isa Boolean algebra of subsets of «, B is
~ closed under c: for each? < 3, and di; € Bforalli,J <3

~ THEOREM 21: If A= (4,) 18 a quasigroup and g € <y then
ey ¥, q— CAsisa CAs S I
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The proof of Theorem 2.1 is routine; let us verify (C,) as a(ril
example. Suppose B is ap ¥, ¢ — CA;, as above. Let.X € B an
assume 7, § < 3. Obviously we may assume that ¢ =% 7. If X = Oi
clearly cie;X = ( = ¢;¢:X. If, on the other hand, X »= 0, we shal
establish that c,e;X = . (and then by symmetry cje:X = - =
¢¢X). 8o, let s be any member of .. Choose r € X. By the
definition of quasigroup, there is then a unique ¢ € - .such that
=r1jand ti = g, Thys ¢ € ¢;X, 50 5 € ¢ic;X, as desired. (We
have actually established that B is simple in the algebraic sense, -
but we do not need this fact below.) o

Simple as it is, Theorem 9.1 turns out to have some uses in
algebraic logic, Namely, we can use it to give an example of a
hon-representable € 4,, "To this end, consider the equation

(1) o SISySyStSEsae,T = 6o,

foIlowing'mul_tiplication table: |

Lt 2{3({4]5 |6

2o
o
—
m.
o
159
Sl
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Let g = 2,3 6) and X = {(5,3,4)}. Let B be the % ¢ = C4s
i all ?Ué sets of .. It is then easily verified that (2, 4, 3) €
stsisds?sisle, X ~ ¢ X. Thus, indeed, equation (1) fails to hold in ®.

There are many natural questions that one can ask concerning
our construction of a C4; from a quasigroup. First, we can ask for
a cha.racterization of CAy's isomorphic to an %A, g — CAs. ‘This
questilon, although unresolved, is somewhat indefinite; a more
definite form is as follows. o

ProBLEM 1: Let B be a CA; such that COCICU. = cer = 1% = 1
for all non-zero x € B. Is there a quasigroup %A =(4,-)and a
q € - such that B is isomorphic to an ¥, ¢ — CAy? "

Anothel_' natural question concerns relationships between algebraic

properties of quasigroups and properties of associated CAs’s. The

following result is of interest in this connection. A loop is a quasl-

group A = (4, -) having an identity element, ie., having an

elemf%nt ¢ such that i-a=4a-1=20 for all a € A. Thus the

quasigroup given in the above table is actually a loop, but it is

not a group. | . | ” -

Turorenm 2.2: Let A = (4, ) bea quasigroup. -

(i) If A is a group, 4 € ., and B 1s any 9, g — CdAs, then Bis
representable. - S | o '

(ii) If U is a loop but not & group,

g = {i,1,1), then the A, q — CAs of a

~ representable. T

5 is the identity of A, and
1l subsets of + 8 not

Proof: (1) Assume that ¥ is a groﬁp,'-let' q € ., and let B be an
%, g — Cas. We shall assign to each g € + 8 subset Fg of *A:
- Fg=[z€’4:i0 _ gt o = amal
" Clearly i z€ Fg, then g is uniquely _determined by =z. Thus
1) ghe- and g=h imply that FgaFh=0.
.A,ISO’ obviously for any z € %A there is'a_ ge: such that x € _Fg, S0
@  Um=4 R
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Finally, |
3 for any g € . wehave Fg # 0.

In fact; giveﬁ g€+ weecanlet z = <Q'191_1; qa‘lgo, 7), where 1 is the
identity of 9 clearly z € Fy, |

For any b € B we now let

Using (1)f(3) it is easy to check that @ is an isomorphism Of the
Boolean part of B onto a field of subsets of 34. It is. straight-
forward to check that actually @ is an isomorphism of B itself onto
a cylindric set algebra; for illustration we check that Geb © ColGb
for any b ¢ B, Assume that p € B and z € Geb. Say z G,F g
where g € b, Then choose } € b such that go = ho. Let zy =
W Y = (@ 21, 23). Now by = gy = guzart sree z € Fg, and

S WU = aethgtl = by, |
It follows that y € Fh. Since h ¢ b, thus y ¢ Gb, so z € CyGb,
- as desired, : o '

~To prove (ii), suppose 9 i a loop but is not g, group. Thus - is
~ Totassociative, so there exist elements a, b, ¢ € 4 with g - (b-c) #

(a-b) «¢c Let:be the identity of %, set ¢ = (i, 7,7), and let B
be the 9, ¢ — C4, of all subsets of <. Now consider the following
-equation: PR T T L

- Itis easily verified that (4) holds in ever
- hence in every R, However, (4) does not hold in B, and thus B is
- Dot representable, In fact, if welet z = (@, 4, a)},y = {(, b,b)},
andz = {(i, ¢, ¢)}, then it is easily verified that, (4) fails,
- CoRoOLLARY 2.3: If A is a loop, 5 is the identity of U g = (i 1),
~and B is the %, g — C4, of all subsets of -, thep, a necessary and
sufficient condition for 9 to be a group i3 tha

tBis representable. |
o '. " Theorem 2.2 suggests the following variant of Problem 1: "

= szﬁ("?{co[éz(c;y'- di) '-:'d@:l s ez} + du) - o]

¥ cylindric set algebra and

AT S5 e WA
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foletzBLEM 2: Let B be an Rs such that ez = €T = C0T = 1
o thnon—z.erq z € B. Is there a group U = (A,+)and a g €
ch that B is isomorphic to an A, ¢ — CA?

It may be that |
: methods of M i
this question. cKenzie [:10] can be used to settle

3. PR
OJECTIVE GEOMETRIES AND CAy’S

s T i .
rela?xi construction we shall now describe was first carried out for |
iy n algebras by Jonsson [8] and Lyndon [97 Surprisingly,

o not know any connections between the presen

t construction '

a . |
nd that of section 2, although projective planes are essentially -

-g;it ;;Ijﬂplete systems of mutually orthogonal latin squares. By a
. jective geometry we understand 2 system (@, £
non-empty set (of “points”), £ is a non-e
subsets (called “lines”) of @, and: |

(G4) each line contains ab least four p'oints;"_ R, |
(Ge) fsach pair of distinet points P and g lie i
(Gs) if p, g, 7, and s are distinct pointsiand pq an

- common point, then . -
. Figarel). . |

We shall assume & knowledge of clementary pr

see, e.g., Seidenberg [161. S e

y such that ®is
mpty collection of ;

s on & unique line P
d rs have a. |
pr and gs have a common point (see

0j eétive géoniéti‘y ;: =
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If B is an equivalence relation on 3, let B’ = {(5, J):i1,j <3
and i Bj). (Here3 = {0,1,2).) Let & = (®, £) be a projective

geometry; we define UG to be the collection of all pairs (R, [)
satisfying the f ollowing conditions: -

(1) Risan equivalence relation on 3 ;
(2) fmaps R’ into ®;

(3) for (4, 5) € R, fij = fji;
4) ifiKj B but j R k, then fij = fik; -
(5) if R = identity on 3, then either f01 = f02 = f12 or else
-~ J01, 502, £12 are distinet collinear points.
NOW for4,j < 3and x S UG welet 3 = {4, k,1} and
X = { (R,f_) € UG: there is an 8,9)€ X such that

BB~ ) = s g and fkl = gkl if kR'l};
b= {(R,f) ¢ UG: 4 R 5} | | |

AG—cC4,isq structure (4, U, n, ~, €, di; )i jes such that 4 is a
field of subsets of UG closed under ¢i for ¢ < 3 and with d;; € 3
| f‘?" i?j < 3. We denote by Uy the @ — C4; of all subsets of U®.

tion of the motivation behind this construction

| - may be helpful,

8 space 3C of one higher dimension ; R, f) € UG,
~ with i 0N 5, amounts to gn abstract selection of three
.d}fstl_nct points zy, 2y, 3, | that 7,2 intersects ® at
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To illustrate the proof we shall establish (C4). Let G = (@, L)
Suppose 7,7 < 3and X S UG. If ¢ = 4, obviously cic; X = ¢iciX.
Hence assume i # j. Clearly c.ic;0 = 0 = ¢c;c:0. So, assume X #0.
Then, as in the proof of 2.1, we shall establish that cic;X = UG;
thu_s (Cy) follows by symmetry. Let, then, (R,f) € UG be
a_trb1trary. Choose (S, g) € X. Choose k so that 3 = {5, 4, k}. If
R’k or ¢S’k let | |
T= (R nz{j, k}) u (8 n2{z, k}))

while if j Rk and ¢ Sk let T = 3. Obviously in either case T is
an equivalence relation on 3. If T = 23,let h = 0. Incase T # 23,
we have i T’ j. If moreover j Tk and 7 T' k we let hij = hjt =
h:tk = hki = gik; if j T' k and i Tk let hij = hji = hik = hkj =
fjk. Finally, if j 7"k and i 1"k, let hjk = hkj = fik and hik =
hki = gik; further, it fik = gik let hji = hij = ik, while if -
fik # gik let hij = hji be a third point on the line (fjk)(gik)-
Cloatly then (T, ) € UG, (R,f) € el (T, 1)}, and (DM €
¢;{(S, g)}. Thus (R,f) € cic;X, as desired. (Again we have
actually established that g is simple.) | - |
Once more we shall be interested in the relationship between the
representability of e and properties of the geometry ©. |

- THEOREM 3.2: If ® is a hyperplane mn a_spdce ®' of one higher
dimension, then s 18 representable. S
We shall only outline the proof of 3.2, sihce_ it is similar to the
- proof of Lemma 2.2 in Monk [12] Let O = (@, £):and ® =
| (¢, £'). Set. U = ¢ ~ @, and for any Z € 3U set S
‘ ._'.Rz._.:: {(i:j):isj<3,_xi = z;}.
Obviously R isan equivaleric'e relation on 3. We define {, mapping
R! into @by setting, for any (i,5) € Ry, [ = X ®. Finally, -
foranYX_EAgweset"-, o S
~ FX = {z€3U: (R, f=) € X}. |
e R o T :
- It is now very _straightfor\}'ard to verify that F is an isomorphism
~ from Yy onto a cylindric set algebra of subsets of 3U. To illustrate,
- we _‘shall check that F preserves Ci. Let3 = {3,5, k}. o
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First, suppose that X € Asand z € Fe;X. Thus (R Jz) € CiX ;
choose, then, (S, g) € X such that R, n2(3 {i)) = Sn2(3~{i})
-'andfzkj = gkjif kRj. Wewill find y € 3U such that (8~ {’{}) 1 T =
B~1{i}) 1y and By, ) = (S, g); this will 'prove the 1nclus1fm
Fe,X © C.FX. The desireq property of y is obvious from 1ts
-definition in each of the f

_ ollowing cases. Of course we let Yi = Tiy
Y = 2. S B

~ Casel. S =13 Thenjp,y, 5023 = 24, Let y; = .
- Case 2. i8Sk ds j. Let Yi be a third point on the line z;g,;.
~ Case3. j & k78§, (The case j S’ ki 8 k is treated similarly.)

Lety,-—*-a_;,-.f.f S e S
- Cased. § = identity dn_ 3, and g01 = 402 = 912, Let y: be a
_point on the line (__gj_k)l':‘ different, from gik, Tiy Te o

- Cases. 8 = identity on 3, and g01, g02, g12 are distinct collinear
points, Let yi = 2(git) - zi(91) (see Figure 2), e
 Thus the inclusion Fe,x & CiFX isestablished, AP ’
Now Suppose that x ¢ CiFX. Sayy ¢ Fx and B~ {i}) 1z = =
G~ {i})1y. Thus Ry, fy) € X. . Clearly -also B fe) €
iRy, £,)) S eX. Thusz ¢ Fe.X, as desired, Pl '
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Desarguesian projective plane. Finally, the seemingly trivial case
of dimension one is of great importance. In this case, ® is merely
a set with at least 4 points, and to say that ® can be embedded
as a hyperplane in a space of one higher dimension is just to say
that ® is a line in some projective plane. If ® is infinite, then this
is always true, and hence by Theorem 3.2 g is representable.
If © is finite, then the exact determination of when @ is a linein a
projective plane is unresolved. If ® has p» + 1 elements for some
prime p and some n > 0, then ® is a line in a projective plane.
But by a celebrated theorem of Bruck and Ryser (see [2]), there
are infinitely many ® which cannot be a line in a projective plane.

We now wish to consider the converse of Theorem 3.2. We call a
~ complete CA, U completely representable if for every non-zero a €A
there is a homomorphism % from % into a Cs, such that ha 5 0 and
h carries arbitrary sums (joins) into unions. It is easily verified
that a finite CA, is representable if and only if it is completely
representable. Thus for finite ®, the following theorem is an exact

converse of Theorem 3.2. | - |

THEOREM 3.3: If s is completely representable, then ®isa
hyperplane in a space ®' of one higher dimension.

Again, we shall not give a complete proof of Theorem 3.3; cf.
the proof of Lemma 2.3 in [12], and the proof of Theorem 1 of [9].
We shall just define @', and verify (Gs) for it under the assumption
that (G,) and (QG.) hold. Let H be a complete homomorphism
from % onto a Cs; of subsets of *U such that HU® # 0. Wemay
assume that U n@® = 0, where ® = (@, £). Let &' = (¢, £),
where @ = ® U U, and £’ consists of the lines in £ together with
all sets of the form - | | -

= L(p, u) = {p,ulUfv e U: (ﬁ,u,u)éH{(R:f)}}}.

~ wherep €@ u€ U, R ={(0,0),(, 1), (2,2), (1,2), 2,D},
~and f01 = f10 = f02 = f20 = p. First note |

(1)  if 0#XEA4, them HX#O.
In fact, X = UG by the proof of Theorem 3.1, so HeorX =
CC1HX = 3. Bince CoCi0 = 0, it follows that HX = 0. -~
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d

y

b

Fig. 3

Now we turn to the proof of (Gs), assuming that (G,) and (G2)
hold. Let a,b, ¢, 4 be distinet points in ¢ such that gb and cd
have a common point; we are to show that ac and 34 have a
common point. We may assume that ob 5 24, and that of . cd is

different from g, b, ¢, d. If gb and og are in &, the desired conclusion
follows since @ is a geometry. -

_Now suppose gb is in £, while ¢d is not in

_ { » and let g01 =
910 =1, 902 = 920 = g, g13 = go; _ 5. Note that {(B,f)} <

e{(S, g)}; hence H{ (B, 1)} S CH {(8, 9)}. Thus, since (¢, d, d) €
H{(R, 1)}, it follows that thereisa 4 ¢ g such that (¢, d, ) ¢ |

ROL = h10 = ho2 = h2p = 4.
SRR - K01 = k10 = k02 = kg = 5
Clearly - S
 alSoinds = (may,
2(cf(8, 9)} N dwy) ndy, =B K);
since (¢, u, u) € C,H{ (S,9)} NDpand - JA

(b DEOCHUS, ) Dgy aDy,



CONNECTIONS BETWEEN COMBINATORIAL THEORY AND ALGEBRAIC LOGIC {9

it follows that (¢, u,u) € H{(R, h)} and (u,d,d) € H{(R, k)}.
Hence u € L(a,¢) and d € L(b, u). Therefore by (Gz) » is a
common point of a¢ and bd.

It remains to treat the case in which neither ab nor ¢d is in £.
Here we will also consider several ‘subcases. First suppose that
a € ®and ¢ € @ (the case b € ® and d € @ is similar) ; see Flgure
4. Define

f01 = f02 = f10 = f20 = a;

- g01 = g02 = gl0 = ¢g20 = ¢.
Let ab-cd =u. Clearly v € U, and (u,b,b) € H{(R,f)},
(v, d,d) € H{{R, ¢g)}. Hence
(b, d) € CGH{(R, )} nCH{(R, ¢)}
= H(a{(B,/)} nal(B,g}}).

Since H is completely additive, it follows that there is an (S, k) €
02{(R,f)} Neif{(R,g)} such that (u,b,d) € H{(S,h)}. Here S
is the identity on 3, 201 = a, and k02 = ¢. Let p = h12. Then
a,c,p are collinear since (S,h) € UB. Furthermore, if k01 =
K02 = k10 = k20 = p, then

{(R k)} = C1(Co{<S h)} ﬂdol) ndm

Cleatly (b,d,d) € Ci(CoH{(S,k)} 0 Dw) 0 Dis, 50 (b dd) €
H{(R,k)}. Thusp = ac + bd, as desired.

Fic. 4
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Ay,

' Fia. 5 '

€€ @ is similar). (See Figure 5.) Let 1 ab - cd. Thus u € U.

Hence (u, b, b) ¢ H{(R, )} withf01 = aand (u, ¢, ¢) € H{(R, ¢)}

 with g01 = d. Now let 4 = &(a{(R,/)} naf(R, g)}). Then the
R following is easily established_: ' o ' o

(D | - dy ﬁcl[dm N ¢s(dog ﬂ:t:)'] = xﬂd(n
- Now clearly (b, b, ¢) € H(zNdy), so by (1), (,¢,b) ¢ Hx.

| '_;5. and bd, as desired.

Hence there is a » ¢ [ such that (y, ¢,b) ¢ C:H{(R, f)} and
v, ¢, b) € C,H|{ (R, g)}. Obviously then o is a common point of ac

b
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Fia. 7

We have now taken care of all cases in which two or more of the
points a, b, ¢, d are in ® Now suppose just one of them is in @, say
@ € @. (See Figure 6.) Sayc,d € L(p, ¢). Letab - ¢d = u. Then
pd » ab = u also. Since botha, p € @, we apply a pre@us  case to
see that pq and bd intersect in some point ¢ of ®. Thusbg + cp = d;
both p, ¢ € ®, so by a previous case be and ;BE intgsegtl in some
point r € @. Thus ab-o be = T, and a’qe ®, s0 ab. gc = v for
some v, Hence ac » by exists; since bg = bd, the desired result
follows. ' o o
_ Hence we may assume that none of a, b, ¢, d are in ®. Suppose
@b+ cd = p € @ (See Figure 7.) Let ac intersect @ at ¢. Then
ag * dp = ¢, s0 by a previous case ad * pg = r € @ for some 7.
élso, rd - ﬁ =a, SO pr- bd =s € ® for some s Finally,
da - sq=rs0ds-ag = bd - ac exists, as desired. Finally, suppose

ab - cd = u ¢ @ (See Figure 8.) Let ab-®=p, cd-®=4¢q
Now pa « gc = u,s0pq + ac = r € ®forsomer. Also,pb > ¢d =%
80 pg - bd = s € @ for some s. Next, pa + gd = u, 80 pg ~ad =
1€ @forsomet. ad - s = , 80 ar » ds = ac * bd exists, as desired.

This completes the proof. IEEE '

| Theorems 3.2 and 3.3 can be used together to yield an.impm;tant S
result concerning the class R; of representable three-dlmensmnal;_ SR

| cylindrie algebras. Namely, let K be an infinite collection of finite
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Fic. 8

~embedded as a line in 5 plane; as mentioned above, such exist by

[2]. Let Fbega non-principal ultrafilter on k. Then the following
conditions hold; _

(1) foreach ® ¢ K, 91, i non-representable (by Theorem 3.3) ;
" (2) the ultraproduct B = PyexNo/F can be isomorphically

embedded in 9, for some infinite one-dimensional geometry
3, and hence B is representable. '

~ From (1) and (2) it follows that . cann

\ Ot be characterized by
. any finite set of first-order axioms. This ig a special case of a more |

g results of the next
~section. For g proof of (2) gee [127; of. also Monk [11] and
- McKenzie £107. - - . ) : _

~ For the purpose of comparison with results in the next section we
~ shall conclude this section with & purely combinator '

. simple nature. Let 8°U = {Xx:x S0, |X|=2
~ THEOREM 3.4: Let O =(® L) be ¢ bne-dimensz'onal’projective |
- geometry. . Then the following conditions are equz'valent:__ R

(i) Gisa line in some Projective plane; - S
(i1) there is q non-empty set U and q partition (Th:p € _(P)' of
82U such that RS e mrme s
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(a) for all distinct u,v,w € Uandallp € @, % {u,v} € Tp
and {v, w} € T, then {u, w} € Tp;

(b) for all distinct u,v € U and all p,q,r € @ with
| {p, q,r} | # 2,7 {u, v} € Tythenthereexistsw € U ~
{u, v} such that {u, w} € Tqand {w,v} € T,

Proof: (1) = (ii). Let ® be a line in a projective plane @' =
(¢, £"). Let U = ¢ ~ @ and foreach p € @ let

T = {{u,v}:u,v € U,u =y, and w - @ = p}.

Clearly (T,: p € @) is the desired partition of S*U satisfying (a)
and (b). |

(i) = (i). Assume (ii). Let @ = @ U U, where we assume that
® AU = 0. Let the lines of & be @ together with all
sets of the form |

L(p,u) = {v: {u,v} € Tp} U {p, u},
whereu € Uandp € @.
Since | ® | = 4 by (Gy), using (b) we easily infer that
(1) any line of @’ has at least four points. |

It is also clear from the definition of L(p, u) that

(2) any two points of @' lie on at least oné line of .
() if v € VnL(p,u) with u € U, then L(p, u) = L(p, v).

To prove (3), first let w € L(p, ). We may assume that u # v.
Thus, by hypothesis of (3), {u,»} € Tp. If w = u, then obviously
w € L(p,v). Also w = » trivially yields w € L(p,v). Assume
that w ¢ 4 and w £ v. Then {u, w} € Tp, s0 by (a) {v, w} € T,
‘and w € L(p,v) again. Therefore L(p, u) S L(p,v). The con-

verse is proved similarly. - | - o
Using (3) it is easy to check that

(4) any two distinet points of ®' lie on at most one line of ®'.

T.o check that any two distinct lines intersect it suffices to take the
distinet lines of the forms L(p, u) and L(g,v) with p # ¢ and



- desired.

" the followi_ng conditions:

L (B) if Tisq selection set for R and | T |
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¥ > v. Choose r € @ with fwo} € T, Ifr = p, thenv € L(p, u)
and hence L(p, ) and L(q,v) intersect. Thus we may assume
that 75 p ang, similarly, that r s« ¢. Then by (b) choose

| we U~ fu v} so that {u, w} ¢ T, and {w,v} € T, Thus
- wE L(p, u) NL(q, v), as desired. Thus

- (5) any two distinet lines of @ intersect,

From (1), (2), (4), (5) we see that @& is 3 projec_ztive plane, as

4. GRAPHS Anp CA.’s

Tand ¢ ¢ j Nowforany g, v <
pairs (R, f) satisfying

(1) Ris an equivalence relatjop one;

(2 Smaps R intoy; - LN

- o) e By fij = g, S
L W iiR G Ry, buthk,‘thenﬁjj—fik;. _

=8 'fhéh_". oon
jll{fzjz'z‘,J'_ET"_i#‘j}il-#ll .

+ | i
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5, <aand X C C(a, B, v) we set
¢iX = {{R,f) € (e, B, v7): there is an (8§, g) € X such that
R n*(a~ {d}) = §n2(3 ~ {z}) and fkl = gkl whenever
kR land k, 1 5 ©};
di = {(B, ) € e(a, 8,7): i B j}. |
Finally, we let A3, be the cg)llection of all subsets of @(«, 8, v) and
Uapy = (Aasy, U, N, ~, €3 dijisicar |

The algebras Y., have been discussed at some length in Monk
[13], some of the results of which will be generalized here. (Dif-
ferent generalizations have appeared in Demaree [3], Johnson [7]
and Monk [14].) First of all, in fact, the following two results
have identical proofs with those of Theorem 1.1 and 1.2 of [13]:

THEOREM 4.1: If v = a — 1 and B = 3, then Uopy is @ CA.,.

. THEOREMA42: If 3<a <4, B23, vZo—1, then Uy is
neatly embeddable in Usg,. - | * |

"By virtue of Theorem 1.3, we may interpret the conclusion of
Theorem 4.2 as saying that g, is “approximately” representable.
If 6 = a + w, then U, really is representable. We shall need the
following supplement to 4.1; general algebraically it expresses the

fact that U,g, is simple (see [6]). |

. TaEorEM43: If a<w, y= a—1, 23, and 02X C
Cla, B, v), then ¢y »++ €asX = _e(a, B,v).

Proof: Tt bb\%iously suffices to prove the following statement
(6) i (R,f), (S,0) € €, 8,7) then (B,f) € c0 -++ casl (SN}

To prove (6) ‘we define a sequence {{T; hi):1 = 0!). f{f elements of
€(a, 8,7) in such a way that the following conditions hold for
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- each? < o

(7) Tin*a~q) = p N*a~17)and T;n% = Sn%;
(8) ifj, k€ @ ~ tand j R’ k, then hijk = fjk;

(9) ifj,k ¢ tandj S’ k, then hijk = gjk;
(10) if 7 > 0, then (T;‘.._l, ’l,'_l) - Ci_l{ (Ti, h;‘)}-

" First we set (T, hy) = (R, f); obviously (7)—( 10) hold then with

2 =0, Now Suppose that, (7T';, #;) has been defined so that (7)-(10)
hold. We set o

- Tw=[Tip (a&{i})]u{(i,i)} VLG5, k), (k,4): k <14,i S k)

Ui, 5, (5,0):5> tand there is g % <iwithj Tk S1}.

- Obviously T'iy1is symmetric and reflexive op ¢, To show that it is
transitive it ig enough, by Symmetry, to consider the following

- Casel. j7,, 'T,-+1 i with G k< “ Then j 7,1 54 and hence
JSkSiby (7). Thu'stz', 50 § T,-+12'.‘ ' '

_ ..Case 2. J Ti+1 k Tg'-f-i ) Wlth] < ‘I:,' k >1. Then thei'e isanl <1
withj T, k 7,1 S i; thus j 7,1 81, so 5 Tiriasin Case 1.
| Case 3. j T,-+1_ kET;

_ w1 with j> 4 g oo Then jT.% 84 so
obviously j Tipaz, R T L _
Casod. j Tak Toai with j g s 1 ThiS case is similar 1o
Case2, | LT o
o, Cases. jTeni Ty kwithj g < 4 Thenj i 8k, g i Skand
hencejT;kby (7),andjT,-+1k. ST
 Case6. jTyi Tiak with § < 4,
- withj 84, k7,1 8 Thus 1855017
hencej Tipn k. ' o

> 7. Then there is zp 7 <i
iJ by (D), hence & T:j and
© Case?. JTini Tipn k with hk> i Thexi ‘lt_h_e‘r' exi

with 77,184 and & Tim S+<. Thus L8m, so 1.,
Hence j T, k, sojT,-+1k._ S R
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This establishes that T, is transitive, and hence is an equiva-
lence relation on . Further, (7) for 7 + 1 is now obvious. Now if
Jyk € a~ {7} and j Tik (hence j Ti,, k), we set hip jk = hqjk.
If  <17andj Tt+1 ¢ (hence 7 8'7) we set hipdj = hip ji = gje.
Finally, if j > 7 and j T';,, ¢, we consider several cases.

Case 1). There is a &k 77 such that &k T:a4. Then we set
hiyxij = hiyy ji = hijk; clearly this does not depend on our
particular choice of such a k.

Case 2). There is no k # ¢ such that k 714, but there is an
! <7 with I Ti;15. Then we set hyij = hiajt = gil; again it is
easy to check that this does not depend on our particular choice of
such an [, |

Case 3). There is no k # ¢ such that & Ty 4, and there is no
! < with [ T:y7. Let fi, -+, jm be a sequence of members of
a~ (¢ + 1) satisfying the following conditions:

JsTinnge  for 1=Zs<tgm;

for each s with 1 £ s < m, there is no [ < ¢ such that T,+1 o3
if w€an~ (44 1) and there is no I <7 such that I Ti1 4,
then there is an s with 1 £ s £ m such that u Ty Js.

Since m<a—:—1and y=a—1, we may pick dlstmct
elements
| hH‘l?’Jlr rer h1+12]m €y~ {h;+1’lt t < 7’; 1 Tz-l»l t}

Then we set hiy1 8 = hiyxije for all s with 1 < s < m. Further-
more, if w € a ~ (¢ + 1), there is no I < ¢ such that I Tsa % and
€ {j:1 <s < m}, then there is a umque sw1th 1=<s <m
such that 4 7'y, 4 Js, and we set -

In this way each element j jasin Case 3 is taken care of Thus h,Tl |

o Is now completely defined.

Nowifj k€ a~ (i +1), thenj, k € aNzandhence
hipjk = hijk = fik by (8) for s, .
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Thus (8) holds for 7 4 1. Next, if j, & ¢ ¢ and j S’ k, then

hini gk = ki gk = gjk,

to check that (9) holds

hi11ij, where J <% and
desued -

- We still have to check that (T, hipy) € C(e, B, v) ; it will then

be obvious that (10) holds, Clearly here we only need to concern

ourselves with conditions (4) ang (5). To check condltlon (4),

we thus need only look at an elemerit
¢ §'j. Thus ¢ T +1J, 50 hinij = gij, as

. several cases need to he eonsxdered

Case (1). szJ, ATk, JT1+1 k, 3,k<z ThlS case is

" ~ obvious since (S, ¢) ¢ C(a, Bv).

- 1> such that ] Tind

o Case (2). 5 T4, 4 Tink,j T;+1 k,J < %k > 7, and there is an
-.',-l<zsuchthatlT,+1z ThenlSzand -

h,+1zlc = hilk by Case 1)

o= hlJ " since (T,,h ) e C(a, B, v)
= by
: .:_= gij _‘f-smce (8, g) E e(d, 3, 7)
e hi{l’t:f o | o |

Case (3) z T:+1 i Tiyy k,J Tﬂ.z k,a < kS 7, and there is an
Then by the deﬁmtlon of Tii1 there is a
“u < 7 with lT,uSz Thus uT

e H 2, and the proof runs as in
o Case 2). . RIS | .

Cas\‘v’ (4). ¢ Ta+1 5t T i+1 k, J Ta+1 k

,J<z k>z and therels-
no ! # 7 such that l T,+1z -Th ‘

o0 hipiik < 99 = huyij by Case 2).
Case (5). ¢ Tiide T.+z k,J Tink, P> i, k > z, a.nd there is an
'l<zsuchthatlT.+1z ThenlSzand e

h,.uzlc = hlk by Case 1)

=hdj ©  since (T.,h ) E (‘l(a,ﬁ *y)
= Ry by Case 1)
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Case (6). ¢ T}, 17,4 Tik,j Tina k,J > 1,k > 4, and thereis an
I > 7 such that I T, 7. This is treated similarly to Case (3).

Case (7). j Tio1d, FTink, ¢ Tiak, 5,k <. Then ¢ 8k and
h:‘-{-lj?: = ng = gjk = h,]k = hi+1jk. :

Case (8). j Thurty § Tinky i Tipnk, § <3, k>4 Say u<i
and k T; u Si. Then

hiji = gji = gju = hiju = hijk = hip jk.

Case (9). j Thi4, 5 Thk, i Tepnk, j >4, k #4. Then i Sk
and hiyy ji = hijk = Rhia jk. _

Thus (4) has been established for (T, hiy1). Turning to (5),
let U be a selection set for 7'y with | T| = 8. If # ¢ U, then the
desired conclusion follows since (T, ki) € €(a,8,7). H 1€ U
-and there is a & # ¢ such that % T4 7, the desired conclusion again
easily follows. Hence suppose i € U and there is no k 5 ¢ such
that & T;,, 4. If foreachj € U ~ {i} thereisak < i withk TinaJ,
then" the desired conclusion follows since (S,g) € €(a, B, 7)-
Finally, Case 3) takes care of the remaining possibility.

Thus (T, his) € €(a, B,7), and our construction of
Ty hi)ii < o) is complete. By (10), (B, f) € o *** Ca:-l(Tm he )y
and by (7) and (9), (T4, ha) = {S, g), 50 the theorem is proved.

| Co‘ROLLARY'4.4: If a<w, y2a—1, 823, and Wapy 18
representable, then s, s isomorphic to a cylindric set algebra. o

Proof: If H is a homomorphism from s, onto a Csq With
U% 0 (and such an H must exist, by ‘assumption), then
HE(a, 8,v) = aU. Hence by 4.3 HX # 0 whenever X #0.
Thus H is an isomorphism. S

We now want to give some analogs of Theorem 3.4 for our
algebras 9.,; as will be seen, these theorems give connections
between combinatorial questions and representation problems
o Whmh are analogous to the connections given in section 3. Bef ) |

glving our general result in this direction we first give a SPGCI{’J -
result whose formulation is much simpler. The special result 1S
taken from the unpublished work Demaree [3], and is included

ore .
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- with his perinission. Its proof is generalized for 4.6, and should
~serve to illustrate the more complicated proof.

| THEOREM 4.5; L Y = 3. Then the Jollowing two conditions are
“equivalent:

(1) W, s representable;

(i) there 45 o non-empty set U and a partition (Ts5:6 <) of
ST such they . ' .

(a) no T, contains q triangle, i.e., for gl distinet w, v, w € U
and all § < Y o {u, 0} € Ty and {u, w} € Ts then

: {u; ?.U} ¢ T&; o . ]
(D) jor an distinet y, o CU and all 5,¢¢ <~ with
o l {3, ¢, = 2, if {u,v} ¢ T, then there exists a
WE U~ {u, v} sue that {u, w} € T, and {w, v} € T}

Proof: (i) = (ii), By ‘Corollary“ 4.4, let F be an isomorphism
from U, onto 8 CsY, where U7 5« 0. Let P and R be the equiva-
~ lence relations on g associated Tespectively with the partitions

| {{0},.{1}', {2}} and {0}, {1, 2}}; and for each § < y let f; be the
- ™apping of B’ into v sych that £i01 = 5 anq (3), (4) hold. Then

D # Gn,w) ¢ py By then  yoqy o
BT ad (g F{(B,f)}.
- In fact, since (R, 1,) ¢ Gz 3t IS clear that y = 3 Arc. + - asil
checked that EER e v 'w Also, it is easily
® % u) € Dy LDy, g Co(Dun~p, g CF R, 1oy
=FlR LY, E L
“as desired in (11). Now for éa’cha(<"yilet_’r' L

D=l € 80 o, CFIRfy).
Clearly, then, (T;: 5 < v)isa partition of g 2'('],'".-:'1‘0.0}16(;1{;(5)'
Suppose u, v, and w are distinct members of 7 with { u,ﬁrv}, {v, w}

a4
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{u, w} € T; Thus, by (11),
(u, v, 0), (v, w, w), {u, w,w) € F{(R, f35)}.
Hence, as is easily seen,
(40,0 € CF (R, )} N CF((R, £3)} 1 ColDox N CF{(R, £5)))

= Fle{(R, )} na{(R, i)} na(dunal(R,/H)];
on the other hand, it is easily checked that

(R, i)} Nal(R, f5)} Naldunal(R,f5)}) = 0.

This contradiction shows that (a) must hold.

To check (b), suppose u # v, 8,¢, & <7, | {6,¢ ¢} | = 2, and
(4,0} € Ts. Thus (u,v,v) € F{(R, fs)}. Now let g map P’ into v
in such a way that g01 = 3, g02 = ¢, and g12 = {. Thus (P, ¢) €
€(3,3, 7). Clearly (R, f3) € &{(P, g)}, so

(u,v,0) € F{(B, fs}} S CF{(P, )}

Thus we may choose w € U so that (u, v, w) € F{(P, g)}. Since
af (P, g ndi = {(R,f)} and dwrnala{P g)}n doa) =

{ (fgi)fm, it follows that {u, w} € T. and {w, v} € T;, as desired
n ) | |

(i) = (i). Assume (ii). For eachz € 3U let
R.= {(5,]) € %3 = 23},

and for any (7, j) € R’ let f«47 = the 8 < v such that {z:, ;) € Th.
| By (a), (R, 1.) € €(3, 3, 7). Then forany X € €(3, 3, v) we set

FX = {z € U: (R, 1) € X}.

Clearly F is a Boolean homomorphism. To show that F is one-one,
Subpose that 0 5 X ¢ €(3,3,v); say (S,¢) € X. If 8 # iden-
ity on 3, obviously z € F{(S,g)} € FX for some 2. Suppose

S = identity on 3. Choose {u,v} € Tor Then by (b) choose
% % U, vs50 that {u, w} € Tyand {w, v} € Ton Thus (u, v, ) €
FUS gy FX, as desired. | S -

learly F preserves d;; for any ,j < 3; also it is clear that |

Crx S FeiX whenever i < 3.and X S €(3, 3, ). To show that




Fc,X C CrFX, Suppose that

: i i we have Ry, f,) =

: , ~each § < ¥ let f; be the
¢ Then, asin the proof of

s ,(12). if <u v, 0, >eF{<R fm

Now for each 6 <7we let

S '-Cleafly, then, (Ty:6 < v) is g partition of S’ check a) o
e Ve, 7 D g SVE 1 g ek ¢
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% € Fe.X. Thus (R, fz>3€ ‘:Yi;;)
therelsan (8, g) € X such that R, N¥a~ {i}) = Sn¥a

band Il Lot 3 = {4, k, 1}, If fh;
ily seen that » € C:FX. Hence assume

t
Y (b), choose w € 7 ~ {xx, 2} so tha
ta, w} € Ton and {w Tt} € Ty Then with

¥y=1{(km), 1), (¢, w)}

(8, ¢) and hence € C FX.
Thls cornpletes the Proof,

THEOREM

L 4:6 Ifa<w’7>a-_.1anda>ﬁ>3ﬂwnﬂw'
{onTe fol owing two

condztwns are equwalent
. _(i) Aosy is representable

L (i) there 4 a n

on-empty set U and a partztzon (Ta i< ) of
"~ SU such that SERINEE | |

' omplete graph on B vertices, i.e., if
o Uw1th|Vl -—BthenS2V$Ta, B
(b) 4 VC U, IV' Sa, fev and there do not exist @
. d<yandowe Vsuchthat[Wl =B—1,fw=38
- for all 4 € W, and S2 W C Ts, then there s auk _
U~ V such that v

»u} € f Jv for allve vy,
| Proof (i) = (ii). By CorolI

ary 4, 4,-_1et F 'bé’an is'omofphism
- from 9, onto a Csv » Where U 5=

0. Let p R be ‘the equivalence
relation on « associateq With the partitjor, " 10}, « ~ {0}}, and for
ma plng of R’ mto v such that faOl = ‘5

then 5 f

Ta = {{u, v} € S’U (u’ 0 v .. ol

01' &ny two_ L
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distinet u, v € V we have {u,v,v, +++) € F{{(R, f3)}. Let w € «U
be such that for some ¢ < @, €] w is a one-one map onto V. For
rc a, say I' = {)\0, e, Ak—l}; let Cm = Cpy "0 C)\k_.l. Let

X = Nocice Capop iR, 15)}

N Nocicice o[ doi N c1(dr; N Ca~oapnf (B, f5)}.

Then it is easily verified that X = 0, but on the other hand
w € FX. This contradiction shows that (a) holds.
Now to check (b), we assume its hypothesis. Let z € «U be such

that for some ¢ < @, z maps € one-one onto V. Let z € F{{(Q, ¢)}.
Now we set ' |

8=[QM (e~ {a—1)JU{(a—La— D}

Clearly § is an equivalence relation on . For &, € a ~ {a - 1}
and kQ'l we let hkl = gkl. For i < e we let h(a — 1,7) =
h(},a — 1) = Jx;. Choose gy, +++,Jm € (@ — 1) ~ eso that

R for 1 =2s<t=m;

if ke (a- 1) ~e theh there is an s with 1 £ s < m such
thathj,, :

Now let h( j;, o — 1), k(joy ¢ — 1), o=+, h{jm @ — 1) be distinet
members of 5~ {h(j,a—1): i<e}. For k€ (a—1~
(eU{dii 1 <s=m}) let s be such that 1 < s < m and kRj,
(there ig only one such s), and let h(k, 0 — 1) = h(js, @ — 1).
Finally, if 1 ¢ (@ —1) ~e we let h(a—1,1) = h{l,a—1).
This completes the definition of k; clearly h maps S’ into y. We
- claim that (S, h) ¢ C(e, B, v). Indeed, conditions (1)-(4) are
clear from the definitions. Now, in order to check (5), suppose T
5 & selection set for S with | 7| = 8. If « — 1 € T, the desired
¢onclusion is obvious. Suppose « — 1 € T. If k € T for some &
wi
Suppose there is no such k. Assume that | {hif:4,j € T,i#j}|=1;
8y {hijid,j € T,i5 4} = {5). Now from the fact that
€ F{{Q, 9)} it easily follows that for distinet ,j € T ~ {a — 1}
we 1ave |y 2;} € T'yij = Thy = Ts. Furthermore, fr; =8 for
au "€ I'~{a~1}. This contradicts the hypothesis of (b).

the<k<a—1, then again the desired conclusion is clear.
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Hence our assumption that | {h;. LwJET, ix35)| =1 isfalse
Thus (8, ) ¢ Cle, B, v), as stated.

Now clearly (g, 9) € car{(S, h)}; since z € F{(Q, g)}, we may

_hence.choose U € U such that (@0, v, Ta2,u) € F{{8,h)}.
Clearly v is as desired in the conclusion of (b).

(i) = (i)". Assume (ii). For eachz € a7 Jot
| Be={(1,3) € %) = o,

andforany (4,5) € Rllet 4 = the s < y such that {z;, z;} € T -
By (a), (B, 1) € C(e, 8, 7). Now for any X C €(a, 8, v) wese

X =tlaev:@,1)c x)

orphism. To show tha,t Fis one-one,
%5 7); say (S,9) € X. Choose
following conditions; |

| PG 1sscigay,
(19) if kea they k8j,

We now deﬁne a:j], “es

U. Now Suppose that 1 < <m and Tji, «++, 27, have been
defined so that the following conditiong hol(. ST
_(15')_. &y e, aj, areall distinet; "
0 I 1s5t<cugy, - then g

C Let V= {zj,:1 _S.tés}._Sinces'<m§a,‘_| V| < . For each
T €V let faj, = gJtdesr. Then the hypothesis of (b) holds. In
- facet, suppose there exist § <vand W CVso that W | —p—1,
Jw =235 for all 4 € W, and SW . Say W= {2 tc Z}
where Z < {4: 1 Stss). Thus by (16), Gide = 5 for distinct
t,u € Z, and JjtJapr = & for ANy t € Z. Thig contradictg condition
(5) for (S, g). Thus, indeed, the hypothesis of (b) holds, By
the conclusion of (b}, let 25,y € U7 ~ V be such that (. |
- 5 ) and (16) holg for s 41,

This completes the construction of 44, . ;oTe

, | )
{71 =+, jn}, let 8 be such that 1 5 5 <

Suppose that ' s XC (é(
Iyt im € a satisfying the
(13)

{xjhxju} € Tgtu- .
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where s is unique by (13)), and set @k = zj.. Thus = € “U.
Clearly z € F{{8, g)} € FX, as desired. Thus F is one-one.
Clearly F preserves d; for any ,j < a; also it is clear that
C,FX C Fe;X whenever ¢ < a and X € Cle, 6, v). To show
that Fe,X C C:FX, suppose that = € Fe;X. Thus (Ba, fz) € ¢X,
sothereisan (S, ¢) € X such that R n3(a~ {i}) = Sn*(a~d)
and £kl = gkl if kR, and k, 1 5 4. If ¢ 8 for some j # 1, it is
Clear th‘at z € C,FX. Hence assume that ¢S8'j for all j# 1
Choose j, ++«, j € o ~ {3} such that j, ' jeif 1 S 8 <t Sm;

if kGdN{i}, then %k Sjs forsbmeswithlésém.

Let V = {zj,: 1 <5 =<m]. For each s with 1 £ssm let
hzj, = 77, Then the hypothesis of (b) holds, as is easily seen. -
Applying (b), we get a u € U ~ V such that {js, u} € hxjs for
eachswith1 < s < m. Let y belike 2 except that y: = t. Clearly
R, = Sandf, = ¢g. It follows that z € C.FX, as desired. :
The combinatorial condition expressed in 4.6(ii) may be loosely
termed a free decomposition of the complete graph on U into sub-
graphs each excluding the complete graph on B vertices. This condition
has not been investigated in the literature, as far as this author
k_nows. However, condition 4.6(ii) (a) by itself has been ‘exten-
sively investigated. The basic result here is the following theorem
- of Ramsey (see Ramsey [156]): R P
THEOREM 4.7: Suppose 3 < 8 < v and 2 < v < w. Then there
~is an integer n(B,y) € w~1 with the following property. Iy U 18
@ set with at least n(B, ~v) elements and if (Ts: 0 < yYisa partztz_on
of StU, then there exist @ § < Y and a subset V. of U with (V=8
Csuchthat SV C T ' :

From this theorem and the proof.
representable, say . jsomorphic to &

Thus a good knowledge of _r_epresentati .
- would yield lower bounds for the Ramsey numbers n(8, ). We
" do not have such knowledge yet: However, in [3] it is shs:wn

directly that (3,3, 2) and'?l(:}, 3, 3) are repre.sent,ablei but_smce E
~ n(3,2) = 6 and 2(3,3) = 17 by [4], no new information on the -
. Ramsey numb_ersiso_btained. ERE Ll f

| of 4.6 it follows that if Uesy is
CsY, then |U| < n{(B, v).

on of the algebras Yasy ARR |
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- On the other hand, | A, | forces a lower bound on | U] We
shall give such a lower bound for the case 8 = 3; for the pr oqf see
the proof of Theorem 1.8 of [13].

L .THEOREM 4.8 If Uazy 78 tsomorphic to @ Cs’ and a < W,
,2§‘y<w,then_ :

| 8T | 2 (v — 2)2,

Now upper bounds for the Ramsey numbers n(B, v) are not

- known in general, but for B =3 we have the following result of
Greenwood—_-Glea_son 4]: S

THEOREM 4.9: n(3, v) = é] + L
R CoRroLrARY 4.10: If QI(a, 3
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