Remark. Some observations indicate that Lemma 3 can be proved in
a much sharper form than ours (see Sublemma 3.3), more precisely, in right
hand sides of 2° (a) (b) and (c) one may place coefficients increasing un-
limitedly with ny (the constans given in Lemma 3 are of course, suffi-
cient for getting a contradiction.
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ON AUTOMORPHISM GROUPS OF BOOLEAN ALGEBRAS

R. MCKENZIE — J.D. MONK*

It has been known for a long time that not every group is isomorphic
to the automorphism group of some Boolean algebra (BA, for short). For
example, de Groot and McDowell [3] showed that for any BA ¥
the automorphism group of ¥ either consists just of those automorphisms
induced by finite permutations of the atoms of %, or else contains the
direct sum of R, copies of C,. (We include rigid BA’s under the first
case.) Thus the problem arises to characterize in some convenient form the
automorphism groups of BA’s. We address ourselves to this question in
Section 1 of this paper. We give there two representation theorems for
complete BA’s which in principle reduce the characterization problem for
complete BA’s to two narrower classes of BA’s — homogeneous BA’s, and
those with no rigid or homogeneous factors. In Section 2 we are concerned
with rigid BA’s. Lozier [9] has shown that for any m > N, thereisa
rigid BA of power 2™. We show that there is also one of each strong

®
limit power. de Groot [2] showed that there are 22 0 rigid BA’s of

*Research supported in part by NSF‘ grants GP-35844X and GP-28070,
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power 2 °. We prove under GCH that for any regular m > N, there
are m** rigid BA’s of power m*. (This result was obtained earlier by
Ehrenfeucht, but his construction remains unpublished.) In section 3
we relate the cardinalities of a BA and its automorphism group. The main re-
sults there have as consequences that there is a BA of power 280 with de-
numerable automorphism group; and under GCH, if N <ngmt > R
then there is a BA of power m with automorphism group of power n.

Our results are actually somewhat stronger than indicated in this brief
description, and we give several results related to the above, as well as the
statement of 12 open problems.

The notation in the paper is standard, with the following exceptions.
The symbols >, —» , >» indicate one-one, onto, and one-one onto
mappings respectively; between BA’s they implicitly represent homomor-
phisms, and between topological spaces — continuous maps. We let
exp m= 2™, The set of all subsets of 7 (of power <n) is denoted by
ST (respectively Scnl). SymI is the group of all permutations of I,
while Sym (m,n) is the group of all permutations of m with support
of power <n. We denote by "‘C;’ the direct sum of m copies of Cz~

If m is an infinite cardinal, then by MA,, we mean the statement
that if P is a partially ordered set satisfying the countable antichain con-
dition, and if § is a collection of open dense subsets of P with
|& 1 <wm, then an §-generic set over P exists (cf. Martin, Solovay
[10]). Martin’s axiom (MA) is the statement VYm < exp By MAy. Itis
known that MA holds. Furthermore, CH +~ MA. Fmally, Con (ZFC) -
= Con (ZFC + exp N >N, + MA): see Solovay, Tennenbaum
[17].

A BA is a structure W =(4,+,-,—,0,1) satisfying the usual axi-
oms. ¥ is called non-trivial if 1A1> 1. German capitals denote BA’s,
and the corresponding Roman letters denote their universes. If m isan
infinite cardinal, then ¥ is m-complete if X exists foreach XS A
with |X|<m. If % isaBAand a€ 4, then U ta isthe principal
ideal generated by a, considered as a BA. For any BA %, c% (the cel-
lularity of W) is the least cardinal greater than all cardinalities of families
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of pairwise disjoint elements of . A partition of unity of a BA % isa

function a€’4 such that _Z;ai =1 and ¢+a=0 for i,jEI and
ie A

i#j. If I is finite or 9 is complete, such a partition gives rise to an

isomorphism f: A >—» P At a; defined by (fx);=x-+gq; forall x€Ad

and i€l. Two BA’s ?I and B are called fotally different iff whenever
0#x€A and O#y€B wehave At x%* By Next, suppose (U;:

iel) is asystem of BA’s. For i€/ and x €A, we define §x EJ_EI A,
by setting (B,x)l, =x if j=1 and (6l.x), =0 if j#i Forany BA ¥,
At U is the collection of atoms of %u. We take the Stone space of ¥ to
be the collection of ultrafilters of ¥ in the usual way. The automorphism
group of ¥ is denoted by Aut %. We say that A isrigid if | Aut Ul =

A is homogeneous if A=A ta whenever 0+a€ A. An element
a€ A isrigid (homogeneous) if A I a is rigid (resp. homogeneous). Ele-
ments a,b €A are isomorphic if W ' a= Ut b. Similar transfers of
terminology from 9 !a to a itself will be made later without explicit
mention. Sg X is the subalgebra generated by X.

1. PRODUCTS OF BA’S

In this section we discuss products of BA’s, in particular, rigid or
homogeneous BA’s, always with the automorphism groups in mind. The
following lemma and proof, of a general algebraic nature, are well-known.

Lemma 1.1. If (N i€ I) is a system of similar algebras, then
P Aut!l >— Aut P 'l!
Proof. For each o€ PIAut A,;, each xE'_EI A, and each i€],
ie ) )
let (fo),i=ox,;. Itis easily verified that f is the desired isomorphism
into.
In general the isomorphism in the proof of 1.1 is not onto; e.g., 1.11

below. But for BA’s there is an‘importnnt case where it is:

Theorem 1.2. If (U;: i€l Y is a system of pairwise totally different
BA’s, then P Aut ¥ = Aut P A,
i€l ! el
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Proof. 1t suffices to show that the function f defined in the proof
of 1.1 is onto. Let ¢ € Aut Pl A, We wish to define o€ tPI Aut A,
ic. =5

so that fo = ¢. We need two preliminary statements.
(1) if i,jel, i+, and x €4,, then (ga&l.x)i =0,

For, assume otherwise: say i#/, (p§x);# 0. Let z= ¢~ l(si(wsix)i).
Since 6/(‘p5,x)i<ga5,.x, we have z<dx. Thus z; =0 for k+#i Now
¢ induces an isomorphism of ¥, Iz, onto 'II]. r (w&l.x)/.. This contradicts
our assumption that o, and A lack common non-trivial factors. Hence
(1) holds. Next,

(2) if iel, then ¢5;1=28,1.

For, by (1) write 8,1 =8,x. If x# 1, then by (1) for ¢~ !, say
‘p‘lB‘-(—x) =8u. Thus u#0, but Su=20du-81=¢ l61.(—x) .
co lox = 1(8,(—x)+ §x)=0, contradiction.

Now define o0,x = (pd,x), forany i€/ and x €A;. It is easy to
verify using (1) and (2) that o€ .PI Aut A; and that fo=¢, asde
. ic

sired.

Theorem 1.2 motivates our investigations of this section. By it, to de-
scribe Aut¥ it is enough to decompose ¥ into a product of (simple, in
some sense) BA’s pairwise lacking common non-trivial factors. The simplest
building blocks from the point of view of automorphism groups are the
rigid BA’s, which we now investigate.

Corollary 1.3. If (U;: i€ D) is a system of pairwise totally different
rigid BA’s, then P] A, s rigid. )
i€
A natural conjecture is that also a subdirect product of pairwise totally
different rigid BA’s is rigid. This is not generally true; see the remark after
1.32.

Corolim'y 1.4. If M and B are totally different BA’s and B is
rigid, then Aut 9 = Aut (A X B).
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The following lemma can be seen by an adaptation of the proof of

L2,

Lemma 1.5. If K is a set of pairwise totally different BA’s, and
0#L, MCK and L+M, then P u# P w.
AEL AEM

The next lemma is well-known.

Lemma 1.6. For any BA U, the following conditions are equivalent.

() A is not rigid;

(ii) there are distinct elements x,y € A such that UM x=Ut y;

(iii) there are disjoint non-zero elements x,y € A such that Ut x =
=AUt y.

Proof. (i) ~ (ii). Let f be a non-identity automorphism of %A; say
x# fx. Clearly f} (4t x): At x>» AL fx, as desired.

(i) - (jii). Let g: W tx>» Aty with x#y. Say x«y. Let
u=x+-y and v=gu. Clearly u and » are nonzero, u+v=_0, and
ghAtu): Atu>Altw

(iii) > (i). Clearly A= (AP X)X (AP IX (AP (—x+ -y =
2 (AP x)X (U Px)X (AL (—x+~)), so (i) follows.

Corollary 1.7. If U is a rigid BA, then for every x€ A, At x is
rigid.

Corollary 1.8. If % isa rigid BA and X is a collection of pairwise
disjoint elements of ¥, then {A M x: x€X} isa collection of pairwise
totally different rigid BA’s.

Now we turn to the consideration of products where there are com-
mon non-trivial factors. In contrast to 1.3, any such product has many
automorphisms, as is seen in 1.9. Our following results through 1.12 con-

stitute an extension of some remarks in Rieger [13] p. 214, where there
are, however, some erroneous statements.
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Lemma 1.9. For any infinite BA %, Aut (% X %) contains L"'Cz“‘,

Proof. Foreach a€ 4, let f, be the automorphism g~l#g, where
B UAXA>» (A ta)X (AL —a)X (A ta) X (At —a) is natural, and

h interchanges first and third coordinates but leaves the second and fourth
fixed. Thus for any (x,y)€AX A4, G, y)=(x+—a+y-a, x-a+
+ye—a). If a,b€A and a#b, say a-—-b+#0, then f,(a,0)=
={(a+—b, a-b), while fﬂ(a, 0)=(0,q), so fa #fb. Clearly each fa,
a# 0, has order 2; and clearly foofy=Fff, forany a,b€A.

In case A is rigid, the automorphisms given in the proof of 1.9 con-
stitute all automorphism of A X A. (This was first noticed in de Groot

[2].) In fact, let k be any automorphism of €AX A. Say k(l,0)= (a, b).

Say k(c, 0) = (a, 0). By 1.6itis clear that ¢ =a. Thus k(a, 0) = (g, 0)
and k(—a, 0) = (0, b), so b= —a. Then clearly k(0, 1) = (—a,a),
k(0,4) = (0,a), K0, —a)= (~a,0). Hence, easily, k=/_,.

Generalizing these considerations, we get a kind of characterization of
Aut¥), ¥ rigid.

Theorem 1.10. Let U be a rigid BA, I a set with at least two ele-
ments. Assume that W is |I1*-complete. Then every automorphism of
14 has the form f,, where a€iX14, Vie Iay: j€ 1) is a partition
of unity), Vj€Iay: 1€ D is a partition of unity), and for all x <4
andall j€I, (fx); = EZI x;+ ay (and each such f, is an automorphism
of ).

Proof. First we show that each f, isan automorphism of /9. Clear-
ly x<y-fx <fay. Assume that f;x <fay. Then X; =iEZl'x,. say=
=2 (£,x),*a,<y,. Thus x<y. It follows also that f is one-one. To

jer e 7 if i

show that f is onto, let y€74. Let xl.=,§y}.-ai]. for all i€ . Then

so fax =y. Hence

for any jel, (fax)i = l_EZ;xi cay= i%yi C 8=V,

£, is an automorphism of ‘4.

Now let ge& Aut ('%). For i,j€l, let a;=(g5,1). Clearly
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(1) forany jel, (aIi: i€l is a partition of unity;
(2) if i,j,k€l and j+#k, then al.]-aik=[].

In fact, choose x such that gox = 6,.(36,1)/. By 1.6 it follows that
x= (gﬁil)l.. Thus gbi(Bgil)J. = 8,(36,.1),., and similarly g5,(gé,1), =
= §,(g8,1),. Since Gl.(gﬁ'.l)l..- 5, (g8;1), = 0, it follows that (g&il),. .
- (g5,1), = 0.

(3) forany i€l 2a,=1.
jer v
This is true because, as was just shown, géi(gvSi.l)] = 6].(36,,])]. for every

j€I Hence g5, =ier 8,(88,1); =,-e21 £5,(85,1), = g/é 5,(88,1),, and
(3) follows.

(4) forany x€A4 and i,jel, (g&lx); =x- (g&il)j.
In fact, choose u so that géu = 6,.(x - (g&,l),). Byl6 u=x- (g&il),..
Thus gé,(x - (gnSi])i) = Bj(x . (g&il)l.), S0

(gd,x); = (gké; 8(x + ay)); = kz (88,(x - ay ), =

€l
= 2 B ay))y=x-a,.
Thus (4) holds. Finally, if x€/4 and jeI, then
(ex); = [giez; 6'.x‘.), = I,EZI 88 = igxl. ey = ().
So g= f,»> as desired.

Corollary 1.11. If W is an infinite rigid BA and 2< m< w, then
FAut (" 20| = | A].

For ¥ rigid and 2<m < w we can give a different description of
Aut (%) from 1.10:

Theorem 1.12. Let W be a rigid BA, X its Stone space. Let m
be a positive integer greater than 1. Then Aut (™) is isomorphic to the
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subgroup of the full Cartesian power XSym m consisting of all continuous
maps of X into Sydim, the latter with the discrete topology.

Proof. Let g& Aut (™). By 1.10 and its proof, write g=/f,,
where g, = (g&il)!. forall i,j<m. For i<m and § G.X, let (Fg)gi
be the j<m suchthat 4, € §; j exists and is unique since (a;: j€ n
is a partition of unity. Now (Fg)g is one-one. For, suppose (Fg)gi=
= (Fg)gk=j with i# k. Thus (g8i1)l - (g8, l)j € §; but this contra-
dicts Sil . 5k1 = 0. Hence (Fg)ﬁ € Sym m.

Now we show that Fg is a continuous map of X into Symm; to

do this is suffices to take any o € Symm and show that (Fg)‘l{a} is
open in X. Since Fg) Yo} =(§: Vi< m(g8;1),; € §}, this is clear.

To show that F is a homomorphism, let g,z € Aut ("), FE X,
and i<m. Say (Fg)gi=j and (Fh)gj= k. Thus (g&il)j €% and
(h&,.])k € §. Hence, using (4) in the proof of 1.10,

(g8,1); + (h8;1), = (h8,(gd,1))), < (hgd 1) ,

so (hg§;1), €8 and hence (Fhg)gi= k. Thus Fhg= Fh + Fg as de-
sired.

Now F is one-one. For, assume that g€ Aut (") is not the iden-
tity. Then by (4) in the proof of 1.10 we easily infer that g§;1 +# §,1 .for
some i<m. Thus (g&il)i # 1, so there is an ultrafilter § on A with
(gSil)l. & &. Hence (Fg)gi#i. Thus Fg is not the identity.

Finally, we must show that the range of F includes all continuous
maps k& of X into Symm. For any ¢ € Symm, h~lo} is a closed-
open subset of X, say h~!{o}={§: b, € F}. For i,j<m let a;=
= : b,. Then

ai=

(1) if i,j,k<m and j+# k, then "ij'"ik=0’ and aﬁ-ah=0.

For, if 6i=j and 7i=k, then A~{e}nh~1{r} =0, hence there is no
& with b, br € §, hence ba . bf = 0. Hence (1) holds.

(2) If i<m, then ]_%'n ai/.=l=i<2m @
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For,if 2 a,+ 1, then thereisan § €X with 2 a,¢%. Say
i<m ¥ i<m ¥
hg=7. Then b €§ andso 5 b €, contradiction.
i<m oi=j

Thus a satisfies the conditions of 1.10. We claim that £f, = h. For,
let Fe€X, i<m, and Ff)gi=Jj. Thus a,€§. Say b €§ where
gi€j. Then hg=o0, so hgi=j. Thus, indeed Ffa=h. This com-
pletes the proof.

By Inv (%), where 9 isa BA, we denote the subalgebra of U
constituted by all elements left fixed by every automorphism of . (An
equivalent condition on the element x € 4 is that x and —x be total-
ly different.)

Lemma 1.13. Let U berigidand I be nonempty. Then Tnv (‘)=
=U; in fact, Inv () is the diagonal subalgebra constituted by all con-
stant mappings from I into A.

Proof. Foreach a€4, let ¢, be the member of ‘A such that
ci=a forall i€l. Then forany a€ A,

(1) for any automorphism f of T, fe, =c,.

For, suppose fe, #c,, f an automorphism of /%. Thus there is an
i€l with (fe,)i # a. Hence (felida or adt (fe,)i. Assume (fe)i %
% a, and let b= (fc,)i+ —a. Thus 8b<fe,, so f“(&ib)< c,. Since
b#0, thereisa €I such that d=(f~1(8,5)),+ 0. Thus d<a,

8,d <[ 1(8;b), and hence f3,d<8b<8(-a). Hence @ and —a are
not totally different, contradicting % being rigid. A similar contradiction
is reached if a < (fe,)i. Hence (1) holds.

Now suppose that x €4, and x is not a constant mapping from
I into A. Say i,jel and x,.s(x,. Let a=x,- =X Then a# 0,
da<x, and §a<—x, so x and ~ x are not totally different. Hence
x & Inv (). This completes the proof,

Theorem 1.14. Assume that U =B where U and B are rigid
and I#0+J. Then U=B; If I isfiniteand A is non-trivial, then
= 1|J.
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Proof. It is immediate from 1.13 that the assumptions imply that
A=B. Suppose also that I is finite and 9 is non-trivial. Then 7% hasa
system {x/: j€J) of pairwise disjoint, non-zero, isomorphic elements.
We will show that this entails |J|<|7|. The same argument then puts
1< |JI.

To obtain a contradiction, suppose that /9 has a system (x*:
0< k< |I|) of pairwise disjoint, non-zero, isomorphic elements. For any
fixed m < (7|, we can convert such a system into a similar system (o8
0<k<|I|) with x* <x* (forall k) and ™ <§;1 forsome iEL
Hence in |7|+ 1 steps we can construct such a system Gk k<)
with the property that for each m < |I|, there is a (unique) i, €1 with
XM < &im 1. Since W isrigid, §;1 does not contain two digoint, non-
zero, isomorphic elements; hence the function (im :m<|I|) is one-to-
one. This is impossible, because of the cardinalities involved.

It is also easy to see that, if 79 =79 (A not necessarily rigid), A
is non-trivial, R, <|II<|JI, and |J|> c¥ (in particular, if |J| > A1),
then |I|=|J|. (Use the fact that c is regular.) However, we do not
know whether the conclusion [|=|J| in 1.14 is generally valid.

Problem 1. If /% =79 where 9 is rigid and non-trivial, is || =
=|Ji?

We now turn to the consideration of Aut ¥ for more general .
The non-triviality of the center of Aut¥ is related to the existence of
rigid factors of ¥ in a special fashion explicated below.

Theorem 1.15. For any BA U, the center of AutU is a 2-group.

Proof. Let f be a non-trivial automorphism of % of order > 2;
we shall show that f is not in the center of Aut . First we claim.

(1) There is a nonzero x € A such that x, fx, and f2x are pair-
wise disjoint. }
For, as in the proof of 1.6 we can find 0#y€ A4 sothat ¥+ f2y=0.

It follows that y # fy. Wecanlet x=y+«—fy or x=—y+fy depend-
ing on which is non-zero, and (1) follows.
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Let # be the natural isomorphism 20 >» (% t x) X (A } X)X
X (AP FI)X (UL —x+ —fr- —f2x). Let k be the automorphism of
Rngh which takes (a,b,¢,d) to (f~2c,b,f%a,d) forall a<x,
b<fx, c<flx, d<—x-—fx+—f2x, andlet g=h"'okoh Then
gfx = fx and fex =f3x so gfxefgx=0 and hence gof+# fog, as
desired.

Theorem 1.16. For any BA U the following conditions are equiva-
lent.

(i) Aut¥ has a non-trivial center;

(ii) There is a non-trivial rigid BA 8 and a BA € such that B
and € are totally different and A =B X BXC.

Proof. (i) - (i). Let o be a member of the center of Aut dif-
ferent from the identity. By the proof of 1.6, there is a non-zero x € A
with x+»ox =0, Let f be the natural isomorphism 2> (A | x) X
X (U Pox)X (AP —x+—ox). Let B=u Ix, C=A}-x-—ox.
Thus B is non-trivial and ¥ = B X B X €. If B is not rigid, let 7
be a non-identity automorphism of B, say y-7y=0 with y# 0. Let
p be the automorphism of (At x) X (At ox)X (Ut —x» —ox) acting
like T on the first coordinate and like the identity elsewhere. Then
of Lpfy=ory and f~lpfoy=oy; oy-oryp=0 and y#0, so
of ~Ypf# f~pfo, contradiction. Thus B is rigid. Also, suppose B and
¢ have a common non-trivial factor; say u<x, v<—x-—o0x and
g Wtu>»Aty, with u#0. Let 7 be the natural isomorphism
Ao (APw)X (AP o)X (AP X (AP —u+—ou-—v). Let’ k act
like g on Atu, like g7! on A tw, and like the identity on the
second and fourth coordinates. Then oh~lkhu = ov < —ox; h~lkhou =
= gu < 0x, so again oh~Lkh # h~1kho, contradiction. Hence 8 and
€ have no common non-trivial factors.

(i) » (i) By 1.9, Aut (8B X B) is non-trivial. Hence it suffices to
show that each member g of Aut (B X 8) inducesan automorphism in
the center of BX BX €. Let g'(x,,2)=(g(x,»),2) forany x,y€B
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and z&€C. Let k& be any automorphism of X 8 X €. By 1.2 we
may write h(x,y,z) = (k(x,y),1z) forall x,y€B and z€ C, where
k€ Aut (B X B) and /€ Aut €. By the remark after 1.9, g and %k
commute. Hence g and 4 commute, as desired.

Corollary. 1.17. If U has no non-trivial rigid factors, then Aut
is centerless.

There are other BA’s 9 with Aut9 centerless, e.g.,, %A =!8 where
B is non-trivial and rigid and 3 < |/|, as is easily seen from 1.10.

For our further results in this section we restrict attention to com-
plete BA’s. In this connection the following problem naturally occurs.

Problem 2. Characterize the automorphism groups of complete BA’s
among the automorphism groups of arbitrary BA’s.

We may remark that the two classes of groups mentioned here do not co-
incide. For example, there isa BA % with Aut % denumerable (see 3.2),
but this is never the case for a complete BA, by 1.9,

The following theorem is easy to prove, using Zorn’s lemma,

Theorem 1.18. For any complete BA %  there is a unique element
a€ A such that Nt a isa product of rigid BA’sand At —a has no
non-trivial rigid factors.

Thus the determination of Aut ¥4, U complete, reduces to two special
cases: U is a product of rigid BA’s, or %A has no non-trivial rigid factors.
We now consider the first case. Note that if 9 is a product of rigid BA’s,
then the collection of rigid elements of % is dense in A. If A is com-
plete, then the converse holds.

Lemma 1.19. Let U be a complete BA with at least one non-trivial
rigid factor. Then there is a nonempty collection C of rigid, pairwise dis-
joint and isomorphic, non-zero elements of W such that >C and — 2c
are totally different.

Proof. Let y be a non-zero rigid element of A. By Zorn’s lemma
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let D be a maximal family of pairwise disjoint elements of % each iso-
morphic to y, with y€D, Foreach u€D let fii Wty>—s Aty

where fy is the identity. Let E be a maximal collection of pairwise dis-
joint elements (d,e)€ (At y)X (At — ZD) such that A bt d=A"te.

Foreach (d,e)€E let g;,: Atd>»Ule Let z= > d, and
d,e)eE

set x =y+ —z. Note that x# 0 since D is maximal; and x is rigid
since x<y. Let C={f x: wu€D}. Thus C is a collection of pairwise
disjoint elements of A each isomorphic to x, and x € C. To complete
the proof it suffices to derive a contradiction from the assumptions
0#v< 2C, w<— 2C, and h: %t y>» %At w. Choose uED such
that v - f, x # 0. Now there are three cases.

Case 1. 3t€Dh(v « f,x)+ t+ 0). Thus 5= h(v s f,x) f,z#0.
Clearly ft’ls and fu’lh‘ls are isomorphic pairwise disjoint non-zero
subelements of y, contradiction.

Case 2. Vt€D((v - f,x) - t = 0), but 3(d, e) € E(h(v - f,x)-e#0)
Again gZ7l(h(v - f,x) - €) and f71hn '(A(v-f,x)- €) are isomorphic
pairwise disjoint non-zero subelements of y, contradiction.

Case 3. h(v- fxX)< (- 2D)-— 2 e. This contradicts the max-

d, ek
imality of E.

The proof is complete.

Theorem 1.20. Ler U be a complete BA in which the rigid elements
are dense. There exists a strictly increasing seguence (ma: a<B) of non-
zero cardinals, and a system (%a: a< f) of non-trivial, pairwise totally

different rigid BA’s, such that A = P m B,.
<g

]
Proof. An easy transfinite construction, using 1.19. See the proof of

the next theorem,

The question whether the representation given by Theorem 1.20 is unique,
is equivalent to Problem 1. We cannot prove it. However, we can obtain
uniqueness by imposing an additional condition.
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- Theorem 1.21. Let %A be a complete BA in which the rigid elements
are dense. There are unique sequences (ma: a< B> (strictly increasing,
my>0) and (B, : a< B) (non-trivial, pairwise totally different, rigid
BA'’s) satisfying.

0 w= P ey ;
a<fg

(ii) for each o, every representation m"‘&sﬂ =ME XD where
m>0 and © is a non-trivial rigid algebra totally different from D, has
m, <m.

Proof. If A is trivial, we must put 8= 0. Let us prove the exis-
tence, assuming that A is non-trivial.

Let m, be the least cardinal m such that there exists a collection
C asin 1.19 with |{Cl=m. Choose as C® any collection C asin 1.19
with |Cl=m,. If C°, 8§<+, have been chosen so that the 2C% are
pairwise disjoint and each |C®|=mg, and ifin At — (ng Zce)
there is such a collection C of power m,, let C? be one such. In this
way, we obtain a sequence (C®: 8 <17, such that the ZC®  are pair-
wise digjoint, every C® satisfies 1.19 for o, |C®|=m,, and At —

—(. 2 2% has no such collection C with |C|<m,. Since ¥ is
s 53,

complete, the pairwise disjoint set U C® gives us a decomposition
5<7g
m
a= P "¢, xD="0gxD.
5<7g
We can state a general proposition proved by the above argument.

(1) Let & be a complete BA with a non-zero rigid element. There
exists a decomposition ¢ = ™¢ XD in which

(a) € is non-trivial, rigid, and totally different from D;
(b) m >0 is minimal for all decompositions of & satisfying (a);

(c) in every decomposition D = M& X § satisfying condition (a),

one has n>m.
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Moreover, (obviously) for ™ as for ®, the cardinal number m is
minimal. [We need this for condition 1.21. (ii).] It will follow from the
remaining argument below that € and D are uniquely determined by
®, and in fact that ™€ and D are isomorphic with unique relativized
algebras of 6.

To continue with the proof, we choose B, A% so that séatelﬁent
(1) is true with m, ®, €, replaced by mg, A, 230,210 and in fact,

m
"B =utby and U =wut b

say,

If A, is non-trivial, we can apply (1) to © = ®,. Thus an easy
transfinite construction, which uses the completeness of %® in passing
over limit ordinals, produces a partition of unity in %A, 1= Z’ b

o<p
where % tb = m"mﬂ; and the decomposition % = P Mey  satis-
<

fies all the conditions of Theorem 1.21. o<

For uniqueness, suppose that also %= P "“(.;a satisfying our
a<py

conditions, say

r P Mag > » o .
a<g @ «Eﬁl Ga

It suffices, by symmetry, to take any o< p and find £< B, such that

m =n, and B =¢

§ £
We first remark that

Inv (aEﬁ m“L’BG] = a<P/i Inv (m"‘%m ] , and

[@2]
P Inv

My _ LPY - @
f(“,q‘ %a])—lnv(mfel (Ea]—“f;l Inv[" «,'a),

(See Definition 1.1 and Lemma 1.13.)

Now let y<f, besuch that (f5,1), #0. Thenalso (f~'5 1), % 0.
We conclude, using (2), that
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Moy (“P:31 "eg )t 1="ExD,  and

n -~ my _1 ~ Mg
»,(:7_(“5’6 B )tf s 1="BxeE,

where € is non-trivial, rigid, and totally different from D(€ = € y t
H(s, 1)7)0); and likewise B, €. Consequently, by 1.21 (ii), we have

m,<n; and conversely, so m =n_. Moreover, since (n : a<pf?

is one-to-one, at most one +y exists with m_=mn_, or with (fau 1)7 * 0.
We conclude that fBul < 87] for the unique such 7; and conversely so

- m N
f8,1=156,1. Wehave y satisfying m_ =n_ and "°B_ ="7C_. By
1.14, we also have B = (57. That completes the proof.

Theorems 1.21, 1.2 and 1.10 yield a structure theorem for the auto-
morphism group of a complete BA in which the rigid elements are dense.
The theorem is obvious and we will not bother to formulate it. We can
make some further comments on these algebras.

Corollary 1.22. Let 2 be complete and the rigid elements dense in
AU, Let A= Ee m“iB be any decomposition of W as product of

powers of pairwise totally different rigid algebras. Then Inv (%) is isomor-
phic to <Pa B, Inv(A) is rigid and, in fact, is isomorphic to Uta
-3

where a is any maximal rigid element of W.

Proof.” We observed the truth of the first statement in proving 1.21.
For the second, observe first that Zorn’s lemma ensures the existence of
maximal rigid elements in any complete BA. Let a be any such element.
For each x <a, put

fx= > hx ;
heAutl

and for each u € Inv (¥), put
gu=u-a.

Using the completeness of % and the density of its set of rigid elements,
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one shows easily that f and g are one-to-one, inverse functions between
A ta and Inv(A), and that x <y iff fx <fy whenever x,y<a.
Hence, f: At a > Inv(A).

Corollary 1.23. Let U be any complete BA, and write U = ¢ X

X .P m“% where © has no rigid factors, and P is as in
<p

1. %0 Then Autd has a non-trivial center iff m = 2 for some o< .

If a<f and m_ =2, then the center of Aut ‘)[ is isomorphic to
Aut (*8_).

Corollary 1.24. Any complete BA A can be isomorphically repre-
sented in the form BX BX € where B isrigid, B and € are totally
different, and Aut € s centerless. The center of Aut¥ s a direct fac-
tor of Aut .

The proofs are straightforward.

We can make a similar analysis of products of homogeneous BA’s;
the proofs are actually easier.

Theorem 1.25. For any complete BA W there is a unique element
a€ A such that W} a is a product of homogeneous BA’s and Ut —a
has no non-trivial homogeneous factors.

If A is a product of homogeneous BA’s, then the collection of homo-
geneous elements of ¥ is dense in ¥A; if W is complete, the converse
holds,

Theorem 1.26. Ler U be a complete homogeneous BA, and let 1
be an index set with |I1< c. Then "N =

Theorem 1.27. Let W and B be non-trivial, complete and homo-
geneous BA’s with '3 =78, where |[|>c¥. Then |II=1J| and
A=

Proof. Obvious by the remark following 1.14.
Theorem 1.28. Let U be a complete BA in which the homogeneous

elements are dense. Then there is a non-decreasing sequence {m_: a <)
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of non-zero cardinals and a system (B,: a<f) of pairwise totally different,
non-trivial, homogeneous BA’s such that Va< Blm, >1->m >cB )

and A= P "‘“ma. This representation is unique in the sense that if
«<g

aso W= P Mg withsimilar conditions, then f=vy, m=n, and
a<y

for each o<+ thereisapermutation ¢ of {e: m, =m_} such that
=€, for each ¢ with mo=m,.

Proof. Given any homogeneous element @ of A, by Zorn’s lemma
let C be a maximal set of pairwise disjoint elements of 4 each isomor-
phic to g, with a€C. Then ZC and — ZC have no common non-
trivial factors. This construction, along with 1.26, makes the existence of

the representation as indicated obvious. Now suppose f: P m"‘ssa >
a<p

<P "“(Cq with conditions as in the theorem. It suffices by 1.27 to

<y

take any a<p and find e <+ such that m“%a = "“Ge, Given a<g,

there is exactly one e <y with (fBa 1)s # 0. For,if €,8 <4+, and

(8,1, # 0+ (B, 1),, say (B, 1)), #0+((8,1),), with u<n,

v<ng,. Clearly then B, =€ and B _=C€,, s0 € =0. Thus fo,1=

= SEu for some u. So ""“Ba is a factor of some "E(\:f. By symmetry

the latter is a factor of some ™° nap; hence a= p. It follows that

"‘“mu ="eg,, as desired.

By 1.28 the automorphism group of a complete BA ¥ in which the
homogeneous elements are dense is a direct product of the groups Aut ("®8),
8 homogeneous. For m =1 it is known that Aut is simple when
A is o-complete and homogeneous (see Anderson [1]); but the struc-
ture of Aut 9 is not fully known.

Problem 3. Describe the automorphism groups of (complete) homo-
genous BA’s,

Concerning Aut {™$) in general we have the following not very sat-
isfactory characterization, the proof of which is straightforward

Theorem 1.29. Let B be a complete BA, I any set. Let M pe
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the set of all triples {a, b, g) satisfving the following conditions.
(i) a:IXI-B, and Vie 1((a,.,-: j€ I} isa partition of unity in B);

(ii)) b: IXI-> B, and VjEI((bi/: i€ 1) is a partition of unity in
B);

(iii) Vi,jel 8t B l‘ai]:>—» B I‘bi,..
For {a,b,g€M, define f=f, g >»1B by setting
(), = iEZI g;(x; - a;)
forall x€'B andall jeI.
Then Aut (’%):{fm: (a, b, g>E M}.

By our results concerning products of rigid BA’s and products of
homogeneous BA’s, the problem concerning the structure of Aut % for
A complete reduces to that problem for % of special kinds — powers
of rigid BA’s, powers of homogeneous BA’s, and complete BA’s with no
rigid or homogeneous factors. We have discussed Aut % for the first two
special kinds of 2. We have no results concerning Aut¥ for the third
kind; the following problems remain open.

Problem 4. Does there exist a non-trivial (complete) BA without non-
trivial rigid or homogeneous factors?

Problem 5. Describe Aut where ¥ is a complete BA with no
rigid factors and no homogeneous factors.

We close this section by showing that any BA can be embedded in a
rigid BA. McAloon [11] states without proof the stronger result that
any BA can be embedded in a rigid complete BA.

A BA W is cardinality-homogeneous if |A|= 1A ! x| for all non-
Zero x € A.

Lemma 1.30. Let m be an infinite cardinal. If W isa rigid BA of
power exp exp exp m, then U _has a cardinality-homogeneous factor of
power > m.
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Proof. By Zorn’s lemma let B be a maximal collection of peirwise
disjoint non-zero cardinality-homogeneous elements of A4. Clearly
2 B =1. If the conclusion of the lemma fails, then |B|> exp m since

wS P ot b But there are only exp‘ m isomorphism types of BA’s of
powebra; m, so two elernents of B are isomorphic, contradicting A
rigid.

Lemma 1.31. For any cardinal m there is a family of w pairwise

totally different BA’s.:.

Proof. By Lozier [9] there are arbitrarily large rigid BA’s. Hence
by Lemma 1.30 there are arbitrarily large cardinality-homogeneous rigid
BA’s. But clearly any two cardinality-homogeneous BA’s of different pow-
er are totally different, so the lemma follows.

Theorem 1.32. Any BA can be embedded in a rigid BA.
Proof. Any BA ¥ can be embedded in a product EI B, where
I

1B;1=2 foreach i€l 1t (€;: i€D is a family of non-trivial pairwise
totally different rigid BA’s, then EPI 8.C EPI €, and the latter is rigid
L3 i

by 1.3

We can also use Lemma 1.30 to show that a subdirect product of
pairwise totally different rigid BA’s is not necessarily rigid. To this end,
let p, mapping ordinals into cardinals be defined recursively by:

Po = Nc. ;
Pus1 — CXPEXpEXpp, ;
= for X limit .
p}\ aL<JA p"‘
Now let m be a fixed point of p, ie., p, =m. Foreach a<m, Jet
9, be arigid BA such-that p <A, I<p_ ,, and W is cardinality-

homogeneous; A, exists by 1.30. Thus (A : o< m) is a system of
pairwise totally different rigid BA’s. Let 8 be the free BA on a set of
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m free generators, and let {b,: a<m) be an enumeration of the non-
zero elements of B. Now |4,1<m forall @<m, so there is a homo-
morphism f, of 8 onto ¥ o Suchthat f b + 0. Thus the system
{f,: @< m) induces an isomorphism of B onto a subdirect product of
the A ’s. Obviously B is not rigid.

2. RIGID BA’S

As mentioned in the introduction, we shall be concerned in this sec-
tion with the existence of rigid BA’S. First we shall modify the construc-
tion of Lozier [9] and use the modification to construct rigid BA’s of

" singular powers. We could use here 1.30 instead of 2.1, but 2.1 is perhaps

interesting in itself.

Lemma 2.1. For each infinite cardinal m there isarigid BA 2 of
power exp (m*) such that for every ac A with 0+ a, m<|A4Lal

Proof. We modify the construction in [9] as follows. Let X = Xm+,

A= Am*" We claim that there is an injection ¢: X > 4 such that

(B, 7) > forall (,v)€ X, and such that ¢(B,v) always has the form
m+ §+ 1 (ordinal operations), with §# 0. For, write 4 = U B,

a<mt
where the B, are pairwise disjoint sets of cardinality m*. For each

a<mt Jet B, ={m-5+1:8 €B_,8+# 0. Clearly the B are pair-
wise disjoint sets of cardinality m*. The desired v is obtained by let-
ting ¢ P X for a<m* be any injection into B, ~ [0,0]. Clearly this
modification of y leaves the rest of the construction in (9] valid. Now

(1) if a€Rngy and B< w®, then 18, w*)I'=m. For, write
a=m+8+1, where §#0. Then w*= ™%+ y=md + . Say
B<m®en, new Then B<md - n+e< w for each € <m, and
(1) follows. .

Let W be the BA of closed-open subsets of X. By [9], ¥ is rigid
and |A|=exp(m*). Suppose that 0#ae A; we want to prove that
m < |4 taj. First note that
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(2) if x€X and Y€l,, then {x,Y) is closed-open.

For, {x, Y} is open by definition of the topology on X. Suppose
y@ix,Y). If y£x, then y€(y,{x}} and {y,{xDNx, =0 If
y<x, then y€{y,0 and {y,0n (x, ¥)=0. Thus (2) holds.

By (2), we may assume that a = (x, Y} for some x€ X, YEI,.
Note that x € {x, Y} since a+ 0. Now at most one member of Y isin
wa' Choose f< w?* so that {(gx,7): B<y<w?}NnY= 0. Then
Llpx, 1), Y <y < w1} is, by (1) and (2), a set of m distinct mem-
bers of A ta. This completes the proof.

Theorem 2.2. If m is an uncountable strong limit cardinal, then
there is a rigid BA of power m.

Proof. Let (n : a<cf m) be a strictly increasing sequence of in-
finite cardinals < m such that <Ur n, =m. Now we define (p,:

3 cfm

a< cfm).

Py =Ng -

Py = U Pg if o« is a limit ordinal < cfm,
<«

pm,l_1=(exp(p:))+ un,,, if a<cfm.

Clearly {p,: o< cf m) is a strictly increasing sequence of cardinals <m
such that Uf p, = m. Foreach a<cfm let 9 be arigid BA such
a<cfm

that, forevery a€ A with a# 0, p, <|A4 tal<exp (p:),’ A, exists
by 2.1. Now we define (8_: @< cfm) and {I,: a<cfm) by recursion
so that B isa BA, [, isa proper ideal of 8, and
(1) if p<a< cf m then %ﬁ C®8, and Ia SIa.

Let B, =¥, and let 1, ={0}. i v isalimit ordinal <cfm and B ,
I have been defined for all o<y so that (1 ) holds, let B, = U s
(-2 o Y ﬂ.<‘f a
and I = U I. Clearly (1) holds. Now suppose that B, and

Y a< o Y 3 o

y
have been defined so that (la) holds, where o< cfm. Let J, be a max-
imal ideal of ®B_ such that I, CJ,. Wedefine f,: B, -~ B, X Agpt
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by setting f,x = (x,x/J,) foreach x € B,. Here x/J, is treated as the 0
or I of A ;. Clearly £, is an isomorphism of B, into B X U .

Let g, be an isomorphism of B, XA, ontoaBA B__, 2“ B ns';clh

that g.uf“x =x forall xe& B,. Let I ,= {8,(6,0): b€ B,}. aC]early
I,,, isa proper idealof 8_, , and 1, :_)Ia+l' Thus (1_,,) holds, and

our construction is finished. Now for each a< cfm the following hold:

(26‘) B, is rigid;

(3,) for every x€B, ~1, |B, txlzp,;

(4,) forevery x€B , |B, tx|<exp(p});

(5,) forevery f<a and all x€l, B, foBﬁ;

(6,) forevery f<a, anBﬁ is a maximal ideal of 85.

We prove these statements by induction on «. They are clear for a= 0.
Now suppose they hold for a. By (4,) and the choice of % at+1> B

and A, , have no common non-trivial factors. Since B, isrigid by (2 )a:
we infer from 1.3 that B, XU, and B, arerigid. Thus (2 *
holds. Let x€B_,  ~1I . ,; say x= g“(b, a) where a# 0; then
1B, txI21A4,,, tal> Pos1s SO (3‘”1) holds. Next if beB,
and aGAa=+ 1» then

at l)

1B, X A, )@, 1=1B 1Bl 1A, tal<exp(®l, )

by (4,) and the choice of A, 4, Therefore (4,,,) holds. It suffices
to check (5,,,) when (§=a. Suppose x€I and y€B, , tx.
Thus y€B ,, and y<x. Say y=g,b,a) with beB, and a€
€A,y Now g, (b,a)=y<x=g fx=g,(x,0), so b<x and a=0.
Thus be€l; and b=g,f b=g,(b,0)=y, so yGI«SBa. Thus
(5,4 1) holds. To check (6,4 1), it again suffices to take the case f=a.
Let xeB_ . If x€J,, then x=g¢fax=ga(x,0)61u and if
—x€J,, then —xEIM_l, Hence (6a+1) holds.

+17

Now suppose that v isa hrmt ordinal < c¢fm, and (2 o) - (6,) hold
for all «<%. To check (27), suppose on the contrary that 237 is not
rigid. Say 4 is an automorphism of 237 and x anelement of B " such
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that hx # x. Choose a<<v such that x, Ax€B,. Since hx+#x iff
h(—x)# —x, by (6.“_1) we may assume that XGIa“. Then

M B tx=B tx.

In fact, since (55) holds for all &§ < v it is clear that Bv tx=B, ., Mx
Now suppose y€B, , 'x. Thus y€B .| and y<x. Say y=

=g (b,a), x= ga(b', 0), with b,b'€ B,, (zE.Aa‘+ 1- Now‘ x€B,, so
x=gfx=g,(x, x/J,). Hence »'=x€J, . Since y<x, it follows

that b<b' and a=0. Hence bE€J,. So b=g f,b=¢g,(b,00=yEB,.

Hence (7) holds. Now it follows that Ax € Im+ 1 For, if hx¢& 1a+ 1
then

1B, thx|> 1B, thxI>p,, by (3,
while by (7) and (4,), |B, tx|=1B, I x|<exp »r)<p,,, Thisis
a contradiction, since & maps B_ | x one-one onto B_ | hx. Thus,
indeed, Ax €/, , ;. But then by (5;) for § <y we have B7 tx=

=B, ,,tx and B,’ thx=B,, , ! hx, and'(.2m+1) is contradicted. .
Hence (27) holds after all. The other conditions (3,')- (67) are easily

checked.
In particular, 8~ is rigid. Since (3,) and (4,) hold for all
a<cfm, itisclear that |B, |=m. This completes the proof.
Corollary 2.3 (GCH). For every uncountable cardinal m, there is
a rigid BA of power m.

Thus under the assumption of GCH, the cardinalities of rigid BA’s are
known: 1, 2, and all uncountable cardinals.

In unpublished work, B. Balcar and P. $t8 péanek have proved that

the existence of a rigid BA of power ¥, is consistent with the negation
of CH. Very recently, S. Shelah has shown that in fact Corollary 2.3

holds without GCH.

Now we turn to de Groot’s theorem. Our extension of his theo-
rem will follow the same general lines as his construction, except that

-974 -

instead of working on the real line we use the m-metric spaces of
Sikorski [15]. Before we begin this construction we would like to men-
tion two problems. De Groot claims to have constructed (1) BA’s with no
non-trivial onto endomorphisms or one-one endomorphisms and (2)

exp exp ¥, BA’s with no non-trivial homomorphisms onto each other.

We have not been able to reconstruct these proofs, and the following prob-
lems are hence open so far as we know:

Problem 6. Is there an infinite BA with no non-trivial one-one endo-
morphism?

Problem 7. For which infinite cardinals m do there exist BA’s of
power m with no non-trivial onto endomorphisms?

Recall that Rieger [13] has shown the existence of BA’s with no non-
trivial onto endomorphisms; the cardinalities of his examples are rather
large.

Returning to de Groot’s construction, we begin with the follow-
ing lemma, essentially obtained from [9):

Lemma 2.4. If Y and Z are completely regular Hausdorff spaces,
Yy e Y(Y ~{y} is not C*-embedded in Y), Yz€ Z(Z~ {z} is not C*-
embedded in Z), and f: BY > BZ, then f: Y > Z.

Proof. By symmetry it is enough to show that f*Y C Z, Suppose,
to the contrary, that y€ Y and Sy € Z. We shall obtain a contradiction
by showing that Y ~ {y} is. C*-embedded in Y. Let g€ C*Y ~ {y}).
From Gillman, Jerison [5] ON.1 we know that Y~ (y} is €*
embedded in ‘8Y ~ {y}. Hence let g* e C*(BY ~ {y}) be an extension
of g. Now ZC f*@BY ~ {y}), so F*BY ~ {p}) is C*-embedded in BZ.
Hence let h € C*BZ be an extension of gtof-lt @y~ {¥}). Then
hoftY is the desired extension of g.

Lemma 2.5. Let Y be a Hausdorff Space. Assume that y € Y and
there is an infinite cardinal m and a sequence { U,: a<m) of closed-
open subsets of 'Y such that:
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() if a<p<m then U,oU;

Gi) if A<m isalimit ordinal, then U, = Q}\ U,;
3

(iii) {Uq: a <} is a neighborhood base for y.
Then Y ~{y} is not C*-embedded in Y,

Proof. We may assume that Uy =Y. Clearly then for every x€
EY~{y} there is a unique a=a_ such that x€ U,~U,,,- Now
forany x€ Y~ {y} let fx=1 if o, iseven, fx=0 if a isodd.
Clearly f€ C*(Y ~ {y}). Suppose f extends to f* € C*Y. We may as-
sume that f*y = 0. Let ¥ be a neighborhood of y such that 0 & f**V.
Say U,SV. Choose § odd, a<B<m. Then OGf“’Uﬂ Crtep,
contradiction.

For some of the following, see Sikorski [15]. A Gy -set is a set
which is the intersection of < m opensets. If X is a space of weight <m,
then X has < expm open sets, also < expm Gy, -sets, and it has a dense
subset of power < m; and any subspace of X has weight <m. We shall
consider below the notion of an m-metric space from [15]. We will always
take the value group to be the additive group of some ordered field. Recall
that for such an ordered field there is a strictly decreasing sequence (e, :
a<m) of positive elements coinitial in the set of all positive elements.

If X and Y are m-metric spaces with values in an ordered field
B, ACX, and f: A- Y is continuous, we let

Af = {p€ X: for every positive €€ B there is a positive
8 € B such that for all x,y€S,pNA we have
pUx, fy) <e}.

Here S p={z€ X: p(z,p) < 8}. Clearly 4 < Af. The following three
lemmas are proved just as for the (classical) metric spaces.

Lemma 2.6. A, isa Gy-set.

Lemma 2.7. In any m-metric space, any closed set F is a Gpy-set.
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Lemma 2.8. Let X and Y be m-metric spaces, Y complete, val-
uesof X and Y in B, ACX, f: A~ ¥ continuous. Then f can be
extended continuously to the G -set Af N clA.

For some of the notation in the next lemma see [11. A continuous
n-displacement is a continuous function which is a displacement of order .

Lemma 2.9. Let M be a complete m-metric space, with |M|=
= exp m and with the weight of M <m. Let (Ka: a<expwm) bea
Jamily of subsets of M, each K, of power expw. Then there is a fain-
ily (Fa: o« < expexp m) of subsets of M such that

@ (F ~Fj=expm if a#p;

(i) no F, admits any continuous (exp w)-displacement into itself
or another F, I

(iii) IFquﬁl=expm=|Kﬂ~Fm| forall a<expexpm, §<
< exp m.

The proof of this lemma is a straightforward generalization of the proof
of Theorem 1 of [2]. At the appropriate place in this proof, Lemma 2.8
is used.

Lemma 2.10. Let X be a Hausdorff space, |X|=n. Suppose
Y,ZEX and £ Y>> Z is continuous, f not the identity on Y. As-
sume that for-every’ y € Y, each neighborhood of y contains n points
of Y. Then f isan n-displacement. : ;

Proof. Choose a€ Y, b€ Z with a# b and fa=b. Let U:and
V' be disjoint open neighborhoods of @ and b respectively. Then W =
=UNf1*V isan open neighborhood of @, hence |W|=mu, and
Wnf*WCUnV=0, as desired.

Now we turn to the second main result of this section. The result
has previously been established by Ehrenfeucht (unpublished).

Theorem 2.11. Let m bea regular cardinal such that ¥u <
< m(expn < m). Then there are exactly. exp exp m isomorphism types

-977 -




of rigid BA’s of power exp m.

Proof. By {2] we may assume that m > R,. The space Dy, of [15]
(denoted by fDn in [13], where m = N“ = mﬁ) is a complete n-metric
space of power expm and weight m. Dy, issimply ™2 with a suitable
m-metric. Let E be the collection of f&€ ™2 which are not eventually 1,
ie, E={fe ™2: Va<mIf>aff=0)}. Clearly [E|=2". Let ™2
be lexicographically ordered, and let (K : a<expm) enumerate all closed
intervals [f,g], where f,g€E and f<g. For f,ge™2, f#g, let
Mg be the least o< m such that fo# ga. Note:

(1) 1{f,g}l=expm whenever f,g€E and f<g.

In fact, let o= N Thus fa= 0, ga= 1. Now since f€E, thereisa
B>oa with B=0. If h is any member of ™2 such that At f=f18
while #8=1, then f<h<g. Thus (1) follows. Now apply Lemma 2.9
to get a family (F_: o< expexp m) with the indicated properties. Next
we note:

(2) [f,.glNF, is a closed-open subset of F_, whenever
a<expexpm, f,g€EE~F,, and f<g.

In fact, to show that [f,g]N F, is open in F,, let he[fg]Nn F,. Let
B= Ny Y Tyg- For any kES”ah NF,, k+h, we have B<my,, and
hence k€|[f,g]n F . Therefore [f,g]NF, isopenin F_,. To show
that it is closed, assume that #€ C1({f,g]N F )N F,. Let f= Ny Y g
Choose keS”ﬁh N (f,glN F . Thenclearly A€ [f glN F,. Thus(2) ]
holds.

For each a<expexpm let %  be the BA of closed-open subsets
of F .

a N

(3) 14, I=expm for each «< exp exp m,
In fact, each F o has weight <, so |4 |<expm. On the other hand
{f.8]NF,: f,e€E~F,, f<g} is, by (2), a collection of members of
4,. There are exp m members of E~F . If (f,g) # (h, k) as ordered
pairs, then [f,g]1NF, #[h kJNF . Indeed, say g < k. Then
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[£gINF, N[g k=0, but [k Kk]N F,N (g k]# 0 by our choice of
the F_’s. Other possible situations regarding the intervals {f,8] and [h,k]
are treated similarly.

Now we turn to the proof that the \zla’s are rigid.

(4) if feF_, then each neighborhood of f contains expm points
of F . -
o

In fact, let U be any neighborhood of f. Say S”afg U. Let g=
=ft{a+ DU0: Bem~(a+ 1)) and h=ft(a+ DU{(a+1, 1)U
UO0: gem~(a+2)). Then g,h€E, g<h, and [&,AINF C
SS“afn F, €SUn F,. Furthermore, |[g, A]N F,|=expm by our
choice of the F, ’s. Hence (4) holds. Therefore by (4), Lemma 2.10, and
our choice of the F, ’s,

(5) no F_ admits any one-one continuous map into another Fﬁ
or any non-identity one-one continuous map into itself.

Now by [15] (viii) and (vi), each F, is a normal topological space with
a base of closed-open sets. Hence §F . is a Stone space. We shall now
prepare to apply Lemmas 2.4 and 2.5. Let fe€ F,. We shall define a se-
quence (Uﬁ: B<m) of closed-open neighborhoods of f in F,. Let
Uy=F,. For § alimit ordinal <m, let U[i = Q Uv. Now suppose

v

U‘3 has been defined. Then Uﬂ n S”af is a neighborhood of f; say
S”,yfg Ug;nSypfs v=B. Let g and % be members of E with y<
<Ng NNy and Mg > 7. By choice of F_, |[g,AlNF |= 2™, Hence
we may choose k€ ([g, Al N F~1{f}. Let §= > and choose Uﬂ+ 1
to be a closed-open set & U‘i n Sl“sf. Note that y < 8, and hence
Ugir QSWJ. Note that k€ U, ~ U,, |. This completes the construc-
tion of (Uﬂ: g<wm). If V isany neighbourhood of f, say S”Bfg V;

then Uﬂ+1QV. :

Thus the hypothesis of 2.5 is satisfied. By 2.5, 2.4, (5), and duality,
the theorem follows.

Of course, Theorem 2.11 leaves several problems open.
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Problem 8. Assuming GCH, how many isomorphism types of rigid
BA’s of power m™*, m singular, are there? In particular, how many are

there of power N,q?

Problem 9. If m is singular, how many rigid BA’s of power m are
there, up to isomorphism?

3. CARDINALITY OF AUTOMORPHISM GROUPS

The general question we consider in this section is the relationship
between the cardinalities of W and Aut . The case Aut¥ finite es-
sentially reduces to considerations about rigid BA’s because of the result
of de Groot and McDowell quoted in the introduction. Thus the question
to which we address ourselves is: given m, u > R, is there a BA % of
power m with |Aut¥|=u? Obviously |Aut¥|<exp|A4|. This
bound can actually be attained. For example, for % the BA of finite and
cofinite subsets of m we clearly have |A|=m and | Aut 2| = expm.

We begin with our strongest theorem. The other results in this section
are corollaries of this theorem or treat special problems suggested by it.

Theorem 3.1. Let ¥, <nw<m. There existsa BA A< &y with
|A| = expwm such that & . m C W and Aut A is naturally isomorphic
to Sym (m,n).

Proof. Let (j;: £<expm) be an enumeration of Symm ~ )
~ Sym (m, n). Foreach p<m let =p be the congruence relation associ-
ated with the ideal & _ m of @uy: X=pY iff XA Y (the symmetric
difference) is in @ pm. Now by Hausdorff [6], let (X,: a<expm) bea
system of subsets of m, independent modulo & <mM thus X, /€
a<expm) freely generates a subalgebra of @m/@

<m™

<m™

We now construct by transfinite recursion two sequences (Y
< exp m) and (U o< expm); each Y, will be a subset of m,
and’ each U, a eubset of expm with 1Ua|< & + |a]. We shall en-
sure that :

(1) for each f<expm, (Y,: a<BUX,: f<a<expm and
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1 U ) is independent modulo @& <mM; and furthermore, for all §< g,
f*Y € Sg(Y,: a<pru & . .m).

Let y<expm and Y., U, already defined for all o<y, so that
(1) is true for each < 7. We determme Y U as follows. To begin,
put UY = U U, u(y+ 1)." Then clearly

(1.1) <Yﬂ: a<yUX,: a€expm~ U") is independent modulo
@ ;10U Ry + 1vl; and forall §<4, fE*YE QSg({Ym: a<ylu
U _m).

Let us prove:

(1.2) Let 845 51 be the least two ordinals in exp i ~ U, One of
the fifteen elements different from wm in the set Sg (X50’X51) contains
aset Z=Z, U Z (disoint union) such that |Z|=n and f"“Z0 =Z,.
Indeed, since f7 & Sym (m, n), there are disjoint sets C, D Cm with
ICl=n and fv*Cz D (easily verified). Since X50’X51 are independent,
they generate four nonzero atoms in Sg (XEO,X“)A One of the atoms
must include an n-element set C' € C. One of the atoms must contain
an u-element set D’ Qf;C’. Then we can put Z, = f_"l*D‘, Z,=D.
So (1.2) is proved.

Now we take Z = Zy U Z, asin(1.2). Also we let XESg(X 51),
ZC X+m. We are going to take, for some &€ exp m~ UY ~ {8y, 61}
and some SC Z,,

(1.3), Y7 =X, ~2)us,; U7 =UYU{8,8;,6}

Of course, we want & and S so that (1) will be true with B=1.

The ”independence” assertion in (1) will hold true whatever the choice
of 8, § subject to the above. In words, the argument is simply that Y
and X, agree on the non-zero set ~ Xesgx, 5’ X ) hence non-tnvn-

al relations (modulo &, ,m) among (Y,: a< 7) V] (X QE expm ~ U )
imply non-trivial relations (modulo S_,ym) among (Y ra<yu
U(X P a€expm~ UY) but these are ruled out by (1. l) This argument
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can be made precise, but we won’t bother.
To assure the second condition of (1) for §= v, we first prove

(1.4) Let £<+v, and A,BESg{YQ: a <}, There is at most
one §€Eexpm~ U’ ~ {8,,8,} such that for some S& ZO, and for ¥ =
=(X; ~2Z)U S, we have fs"}"s =, 4N NUBN~Y).

For if not, we have say Y'= (X.sf ~Z)u S and S eexpm~UT~
~{8,.8,}, 'S Z, (for i=1,2) with 5!+ 5%, and

Y, =nAnYhuBn~Y)  for i=1,2.
Note that the symmetric difference of the right hand sets (for i = 1,2) in
the above formulas includes the set ~ZN(AABN (X AX 2) and
hence includes ~X N (4 AB)N (X AX 2), which is hcnce =, 0. By

1.1, “independence” modulo & m, that is impossible unless 4 A B €
€ Sg {Ya: a<qv} is 0. That in turn means A = B and

LY =ndn Yhudn~ylh=4

which implies that fE* Yf €Sg({Y,: a<y}u &_,m), contradicting (1.1).
Statement (1.4) is proved.

Now there are at most Rg + 17| triples (¢, A,B) asin (1.4), and
expm~U? ~ {8y, 6,1} hasthe power exp m. So we are enabled to choose
6 as the least member of exp m~ U7 ~ {8,5,8,} such that there are no
£, A,B,S satisfying the formulas of (1.4). Now, however we choose S

and define Y,y by (1.3), condition (1) will hold for f=1v and all £<p.

We claim that one of the choices S=0 or S= Z, will satisfy (1) for
B= =& Assuming otherwise, we shall get a contradiction.

Solet Y! =X, ~Z and Y2 = (X, ~Z)u Z,, and suppose that
f*Y‘ € Sg ((Y a< yYU{Yiju &_,m) for i=1,2. This means that
there exist A, B‘ESg{Y a<y} (for i=1,2) such that-

M Y= dnrhu@ n~r),

We intersect both sides of these relations by ~ X, noting that
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(f*Y‘)m~X (f*YZ)n~X YiaX=yY2~f= X; ~ X, and (con-

sequently) ~Y'n~X=~¥2n X—~X n~X; and we get
(Aln)( )ou(Bln~Xn ~X)=n
(A20X6~X)U(an~Xsﬂ~X).

Since (Y _: o¢<7>U(Xﬁ,X50,X51) are free modulo &__m, this is ac-

tually an equality, and it implies A! = 42 = B2, [In the free algebra,
one can map endomorphically X to 0, X to m and all Y (a<y)
to themselves — then the two sides go to Al A2, We use that Xe

eSg (X50’X61) is distinct from 0, m. Likewise B! = B2

Now if we intersect (I) (for i= 1) with Z, we obtain U=“ Bln nZz.
If we intersect (I) (for i= 2) with Z we obtam Z =,82n Z,. But
B' =B? and 0#u Z,, so we have our contradiction.

Having succeeded in our construction, we define 9 as the subalgebra
of &, generated by {Y,: a<expm}u &, m. All properties required
by Theorem 3.1 follow trivially from statement (1). Note that A/S
is a free algebra of power exp m.

<u™

Now we give a few special cases and generalizations of this theorem.

Corollary 3.2. There is a BA of power 2™0 with automorphism
group of power Rg-

It was first shown by Jonsson (unpublished) that there. exists a BA
with automorphism group of power R,. His algebra has a large cardinal-
ity.

Corollary 3.3. If m=2" for some n or if m is an uncountable
strong limit cardinal, then there is a BA of power m with exactly N
automorphisms.

Proof. By [9], 2.2, 1.4, and 3.1.

Corollary 3.4 (GCH). If Ry <n<mt > N, then there is a BA
of power m with automorphism group of power n.
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Proof. If n=m"* we may let % be the BA of finite and cofinite
subsets of m. If m=n, we use 2.3 and 1.11, Now assume that m> n.
By 3.1 let ¥ be an atomic BA of power n* with Aut9 = Sym (n, X)),
and let B be atomless and rigid of power m; then WX B is the desired
algebra.

Corollary 3.5, For any n> Ry there isa BA U such that
| Aut | = n.

In the remainder of the paper we give some results showing a few
ways in which 3.1-3.5 cannot be improved. We aim first for 3.10, relevant
to 3.2,

Theorem 3.6. If W has infinitely many atoms and MAI 4 holds,
then Sym w can be isomorphically embedded in Aut 9.

Proof. We shall apply Theorem 2.2 of Martin, Solovay [10].
Let a: w>—> At 9. Let F be an ultrafilter on 9 such that x€ F
whenever At(—x)N Rnga is finite. Set B={JC w: for some x¢& F,
J={i: qy<x}} and C={JC w: forsome x€F, J={i: a;+ x=0}.
The hypotheses of 2.2 of [9] are easily verified. Hence

(1) there is an infinite DS At% N Rnga such that for all x €
€A~F, {deD: d<x} is finite.

Now by (1) we can write each x €4 ~ F uniquely in the form o+

+ % d where AttxN D=0 and M, is a finite subset of D. For
de

X
any permutation f of D and any x€ A~ F we set

tx=1¢_ + d .
=t de%'xf

For x€F weset f*x=—f* —x. Thenforany x,y€A, ff(x+yp)=
=f*x+f*y. Thisiseasy toseeif x,y€A4~F or x,ycF. Now
suppose, say, x€ F and y€ A ~F. Then

—Utx+ )= —(-f* —x+fty)=
='(_'-X'_aemz_,fd+ t, +ae%, fd) =
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=—t,- X fd-(z_x+de%xfd}=

dEMy

[
-
|

= fte_ . —
L+ ZMyfdff( X+ —y)

e B dEM _\y~

and hence f*(x+ y)=f*x+f*y. The rest of the proof that It isthe
desired isomorphism is easy.

Corollary 3.7. If A is a denumerable BA, then Sym w can be iso-
morphically embedded in Aut 9.

This leads to the following wellknown result.
Corollary 3.8. If W is a denumerable BA, then | Aut 9| = exp Ro-

Corollary 3.9. If W has infinitely many atoms, |A|< exp Ry and
MA holds, then Sym w can be isomorphically embedded in Aut .

Now recalling the theorem of de Groot and McDowell quoted in the
introduction, the following corollary follows.

Corollary 3.10. If MA and | Aut %u| = Ry, then |A|> exp K,.

This rules out one possible improvement of 3.2. We can relate some other
possibilities of improving 3.2 to our earlier question concerning the possi-
ble cardinalities of rigid BA’s:

Theorem 3.11. If w is an infinite cardingl, | Aut{= m, and
141> expm, then there is a rigid B with |B|=|A| and B C 9,

Proof. First we claim
(1) Thereisan a€A with {Ata|<wm and JAut (A ta)) > 1.

For, by 1.6 (iii) we can choose disjoint non-zero elements x,y of 4
with U tx? Wty Since A= (AMx)X (AL y) X (N F(=x+ —p)), it
is clear that the elements of W ! x induce distinct automorphisms of UA.
Hence |Atxi<m. Let a=x+y; (1) is then clear.

By (I),let M bea maxin;al set of pairwise disjoint elements ¢ € A4
such that |4 Fa|<m and |Aut(¥ ta)|> 1. Clearly M gives rise to
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|M| automorphisms of A, so |M|<m. Nowlet I={x€4: Vae
€ M(x - a= 0)}). Clearly [ is an ideal of A. There is a homomorphism
f Al EM (A ta) such that flx/Na=x-+a forall x€EA and a€M.
Clearly ; is one-one, so it follows that |A4/I1< expm. Hence |/|= |4l
Suppose I has a largest element, c¢. Then A ¢ has power |Al, and
is isomorphic to a subalgebra of % (as is well-known). If it is not rigid
we easily obtain, as in the proof of (1), an a<c¢ with JAts|<m and
| Aut (% | @)| > 1, contradicting the maximility of M. Thus &« te is
rigid.

Now suppose / has no largest element. Let B=/U{x: —x € Iy
It is easily verified that B is closed under + and —, so BEA. Ob-
viously |Bi=|A]. Suppose B is not rigid. By 1.6 (iii) choose disjoint
non-zero elements x,y of B with Btx=®Bty; say f2 Bl x>
> Bty If x+y€l, then Utx+y=Bix+y is non-rigid and
again we easily obtain a contradiction to the maximility of M. Assume
that x + ygJ. Then —x -+ —~y€&€l Choose c€/ with —x+»—y<ec.
Thus ¢+ ® +y)# 0. Say ¢+ x# 0. Thus frBtecex) Bte: x>
>» Bt fice x). If flc+x)€1, we again obtain a contradiction. If
Re+»x)@l, then —flc-x)€I and we may choose d€I with
—flc+x)<d. Thus d- fic*x)# 0, and B A(d- flcex) =
=B ld. flcex) with d- fle*x), f~d - fic+» x)) €I, which again
yields a contradiction.

Corollary 3.12. For every m > exp R, the following conditions are
equivalent:

(i) there is a rigid BA of power m;

(ii) there is a BA of power w with denumerable automorphism
group.

Proof. (i) - (i). Let 9 be rigid, [Al=m. By 3.1let 8 bean
atomic BA of power exp ¥, with | Aut 8| = R,. We may assume that
9 is atomless. A X B satisfies (ii).

(i) » (i). By Katetov [8] we may assume that m > exp No. Then
(i) follows by 3.11.
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We conclude the paper with a result concerning a possible improvement
of 3.4.

Lemma 3.13. Assume that nw and p are infinite cardinals with

n<expp<expn<expexpp. Then there is a BA % of power expp
with Aut ¥ of power expn.

Proof. Let € be the BA of finite and cofinite subsets of n, and
let B be an atomless rigid BA of power expp. Then €X B X B sat-
isfies the desired conditions.

Theorem 3.14. Con (ZFC) » Con (ZFC + Vm (m regular > 3BA %
of power mtt with m** < |Aut ¥« | <exp m*t)).

Proof. We shall apply Easton [4]. Let Fm=w** for every
regular cardinal m. Then [4] gives the desired result.

From the problems left open in this section, we may mention the fol-
lowing.

Problem 10. Does | Aut %|= Ry imply [A4]> exp N, without MA?

Problem 11. Con (ZFC) - Con (ZFC + Ym> By 3N of power m
with m <[ Aut 9| < exp m)?
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10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1873.

THE NUMBER OF SPERNER FAMILIES OF SUBSETS OF AN n
ELEMENT SET

D. KLEITMAN *

1. INTRODUCTION

Let S be an n-element set and let 25 represent the collection of
subset of S. A subset of 25 no member of which contains another will
be called a Sperner family. To each Sperner family we can correspond a
monotone 0 — 1 function (or Boolean function) defined on 25, by as-
signing the value 1 to those members of 25 that are contained in no
member of the family. One may also correspond a member of the free
distributive lattice on-. n generators to each Sperner family.

Thus the number of Sperner families represents the number of mon-
otone Booléan functions definable on 25 and the size of the free distrib-
utive lattice on n generators as well.

A number of authors, especially Korobkov, Hansel and the
present author have obtained upper bounds on this number. The general

*Work supported in part by the ONR under Contract No. N00014 67 A-0204-0063.
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