ON THE NUMBER OF COMPLETE BOOLEAN ALGEBRAS

J. D. MONK1 and R. M. SOLOVAY2)

It is known that for any infinite cardinal m there are exactly 2^m isomorphism types of Boolean algebras of power m. This result and generalizations to the counting of more restricted kinds of Boolean algebras were established independently by Efimov and Kuznetzov [4], Shelah [9], and Carpintero [1], [2], [3] (Shelah’s result is much more general). Still open in these papers is the counting problem for complete, or m-complete, Boolean algebras. In the present note we shall give a partial solution to the counting problem for complete Boolean algebras. Namely, we shall prove that for any infinite cardinal m, there are exactly 2^{2m} isomorphism types of complete Boolean algebras of power 2^m. Now Pierce [8] has shown that a complete Boolean algebra of infinite power m exists iff $m^{<m} = m$. Hence the following problem remains open.

PROBLEM. If m is infinite, $m^{<m} = m$, but m does not have the form 2^n, are there 2^m isomorphism types of complete Boolean algebras of power m?

The simplest cases of this problem are $m = \exists_{\omega_1}$ (where $\exists_0 = \aleph_0$, $\exists_{n+1} = 2^{\exists_n}$, $\exists_\lambda = \bigcup_{\lambda < \gamma} \exists_{\gamma}$ for λ a limit ordinal), $m = \aleph_\omega$, assuming GCH, or $m = \aleph_2$ assuming $2^{\aleph_0} = \aleph_1$ and $2^{\aleph_1} > \aleph_2$.

Throughout this note m will be a fixed but arbitrary infinite cardinal. ‘CBA’ is an abbreviation for ‘complete Boolean algebra’. SA is the set of all subsets of A. A Boolean algebra \mathcal{A} satisfies the m-chain condition if every disjoint subset of A has power $< m$.

By a well-known theorem of Hausdorff [6] let $M \subseteq \text{Sm}$ be a family of independent sets with $|M| = 2^m$. Thus if F and G are disjoint finite subsets of M then

$$
\bigcap_{X \in F} X \cap \bigcap_{X \in G} (m \sim X) \neq 0.
$$

Note that there are infinitely many elements in each of these intersections. Let t be a one-one map from Sm onto M. For each $R \subseteq \text{Sm}$ such that $|\text{Sm} \sim R| = 2^m$ we now define a CBA \mathcal{C}_R. Let $A_R = \{t_\alpha : \alpha \in \text{Sm} \sim R\}$. Let \mathcal{P}_R consist of all pairs (k, K) such that k is a finite subset of m and K is a finite subset of A_R. We partially order \mathcal{P}_R by setting $(k_1, K_1) \leq (k_2, K_2)$ iff $k_1 \subseteq k_2$, $K_1 \subseteq K_2$, and $k_2 \cap K_1 \subseteq k_1$. For each $(k, K) \in \mathcal{P}_R$ let $\vartheta(k, K) = \{(k_1, K_1) \in \mathcal{P}_R : (k, K) \leq (k_1, K_1)\}$. Then the collection of all sets

1) Research supported in part by NSF grant GP-28070.

2) Research supported in part by NSF grant GP-33951.

Presented by R. S. Pierce. Received July 10, 1972. Accepted for publication in final form October 2, 1972.
\(\mathcal{C}_K \) for \((k, K) \in \mathcal{P}_R \) forms a base for topology on \(\mathcal{P}_R \), as is easily checked. We let \(\mathcal{C}_R \) be the complete Boolean algebra of regular open sets in this topology (see Halmos [5]). The remainder of this note is devoted to showing that each CBA \(\mathcal{C}_R \) has power \(2^m \), and that there are \(2^m \) isomorphism types among them. The construction of \(\mathcal{C}_R \) is taken from Martin, Solovay [7], and many parts of the proofs below are adapted from that paper to the present simpler situation.\(^9\) Some further notation: if \(z \in \mathcal{P}_R \) we let \(b_R z \) be the interior of the closure of \(\mathcal{C}_z \); thus \(b_R z \in \mathcal{C}_R \). For \(\alpha < m \), let \(a^\alpha = b_R(\{x\}, 0) \). For some of the proofs below the following two facts are useful:

\[
\begin{align*}
& b_R z = \{ w \in \mathcal{P}_R : \forall w' \geq w \exists z' \geq z (z' \geq w') \} ; \\
& -b_R z = \{ w \in \mathcal{P}_R : \forall z' \geq z (z' \geq w') \} .
\end{align*}
\]

These facts are easily established, using the observation that \(\mathcal{C}_z \) is the smallest neighborhood of \(z \).

Lemma 1. \(\mathcal{C}_R \) satisfies the \(m^+ \)-chain condition.

Proof. \(\mathcal{C}_{(k, k)} \cap \mathcal{C}_{(l, l)} = 0 \) implies that \(k \neq l \); the \(m^+ \)-chain condition follows.

Lemma 2. \(b_R(k, K) = \{(l, L) \in \mathcal{P}_R : k \leq l \cup (m \sim \bigcup A_R), K \leq L, l \cap \bigcup K \leq k \} \).

Proof. First suppose that \((l, L) \in b_R(k, K) \). If \(\alpha \neq k \cap \bigcup A_R \), say \(\alpha \in x \in A_R \). Then \((l, L) \leq (l, L \cup \{x\}) \), so there is an \((m, M) \) with \((l, L \cup \{x\}) \leq (m, M) \) and \((k, K) \leq (m, M) \). It follows easily that \(\alpha \notin l \). Thus \(k \leq l \cup (m \sim \bigcup A_R) \). Next, suppose that \(y \in K \sim L \). By independence and the fact that each intersection \((1)\) is infinite, choose \(\alpha \in y \sim (\bigcup l \cup l) \). Then \((l, L) \leq (l \cup \{x\}, L) \), so there is an \((m, M) \) with \((l \cup \{x\}, L) \leq (m, M) \) and \((k, K) \leq (m, M) \). Thus \(\alpha \neq k \), and hence by what has already been established, \(\alpha \notin l \), contradiction. Thus \(K \leq L \). Finally, suppose that \(\alpha \in l \cap \bigcup K \). Choosing \((m, M) \) so that \((l, L) \leq (m, M) \) and \((k, K) \leq (m, M) \), we easily infer that \(\alpha \neq k \). This finishes the proof of \(\leq \) in the equality of the lemma. The converse inclusion \(\supseteq \) is easily established.

Lemma 3. \(|\mathcal{C}_R| \geq 2^m \).

Proof. By Lemma 2, \(b_R(0, \{t\}) = \{(l, L) \in \mathcal{P}_R : t \in L, l \leq m \sim t \} \) for each \(t \in A_R \). Thus \(b_R(0, \{s\}) \neq b_R(0, \{t\}) \) for \(s \neq t \), and Lemma 3 follows.

Lemma 4. \(\mathcal{C}_R \) is completely generated by a set with \(\leq m \) elements.

Proof. First note, using Lemma 2:

\[
\alpha^R = \{(l, L) : \alpha \in l \} \quad \text{if} \quad \alpha \in \bigcup A_R
\]

\(^9\) Thanks are due to R. S. Pierce for comments on an earlier draft of this note, which led to making the proofs independent of [7].
\[a^R_\alpha = \mathcal{P}_R \quad \text{if} \quad \alpha \in m \sim \bigcup A_R \quad (3) \]
\[-a^R_\alpha = \{(l, L) : \alpha \in \bigcup L \sim l\} \quad \text{if} \quad \alpha \in \bigcup A_R \quad (4) \]

From (2)–(4) and Lemma 2 we easily obtain
\[b_R(k, K) = \bigcap_{\alpha \in k} a^R_\alpha \cap \bigcap_{\alpha \in \bigcup K \sim k} -a^R_\alpha. \]
\[= \prod_{\alpha \in k} a^R_\alpha \cdot \prod_{\alpha \in \bigcup K \sim k} -a^R_\alpha \quad (5) \]

Thus \(\mathcal{C}_R \) is completely generated by all elements \(a^R_\alpha \), as desired.

By Lemmas 1, 3, 4 it follows easily that

LEMMA 5. \(|\mathcal{C}_R| = 2^m \).

Now we turn to the proof that many of the algebras \(\mathcal{C}_R \) are non-isomorphic.

To this end, we say that a set \(R \subseteq Sm \) is represented in a complete Boolean algebra \(D \) by \(x \in m \) \(D \) provided that
\[R = \{ c \subseteq m : \sum \{ x \alpha : \alpha \in t_c \} = 1 \}. \quad (6) \]

Obviously we have

LEMMA 6. If \(\mathcal{D} \) is a CBA of power \(2^m \), then there are at most \(2^m \) sets \(R \subseteq Sm \) representable in \(\mathcal{D} \) by some \(x \in m \mathcal{D} \).

LEMMA 7. For any \(R \subseteq Sm \) such that \(|Sm \sim R| = 2^m \), the function \(a^R \) represents \(R \) in \(\mathcal{C}_R \).

Proof. If \(c \in Sm \sim R \), then by (5) above,
\[0 \neq b_R(0, \{ t_c \}) = \prod \{ -a^R_\alpha : \alpha \in t_c \} \]
and hence \(c \) is not in the right hand side of (6). Now assume that \(c \in R \). Using (2) and (3) it is clear that \(\bigcup \{ a^R_\alpha : \alpha \in t_c \} \) is dense; in fact, if \((k, K) \in \mathcal{P}_R \) is arbitrary, we may choose \(\alpha \in t_c \sim \bigcup K \) by independence; then \((k \cup \{ \alpha \}, K) \in \mathcal{C}_R \cap a^R_\alpha \). Hence \(\sum \{ a^R_\alpha : \alpha \in t_c \} = 1 \), i.e., \(c \) is in the right hand side of (6). This completes the proof.

Immediately from Lemmas 5–7 we have the main result of this note:

THEOREM. For any infinite cardinal \(m \) there are exactly \(2^{2^m} \) isomorphism types of complete Boolean algebras of power \(2^m \).

REFERENCES

University of California
Berkeley, California
University of Colorado
Boulder, Colorado