ON THE NUMBER OF COMPLETE BOOLEAN ALGEBRAS

J. D. MONK1) and R. M. SOLOVAY2)

It is known that for any infinite cardinal m there are exactly 2^m isomorphism types of Boolean algebras of power m. This result and generalizations to the counting of more restricted kinds of Boolean algebras were established independently by Efimov and Kuznetzov [4], Shelah [9], and Carpintero [1], [2], [3] (Shelah's result is much more general). Still open in these papers is the counting problem for complete, or m-complete, Boolean algebras. In the present note we shall give a partial solution to the counting problem for complete Boolean algebras. Namely, we shall prove that for any infinite cardinal m, there are exactly 2^{2m} isomorphism types of complete Boolean algebras of power 2^m . Now Pierce [8] has shown that a complete Boolean algebra of infinite power m exists iff $m^{\aleph_0} = m$. Hence the following problem remains open.

PROBLEM. If m is infinite, $m^{\aleph_0} = m$, but m does not have the form 2ⁿ, are there 2^m isomorphism types of complete Boolean algebras of power m?

The simplest cases of this problem are $\mathfrak{m}=\beth_{\omega_1}$ (where $\beth_0=\aleph_0$, $\beth_{\alpha+1}=2^{\beth_\alpha}$, $\beth_\lambda=\bigcup_{\alpha<\lambda}\beth_\alpha$ for λ a limit ordinal), $\mathfrak{m}=\aleph_{\omega_1}$ assuming GCH, or $\mathfrak{m}=\aleph_2$ assuming $2^{\aleph_0}=\aleph_1$ and $2^{\aleph_1}>\aleph_2$.

Throughout this note m will be a fixed but arbitrary infinite cardinal. 'CBA' is an abbreviation for 'complete Boolean algebra'. SA is the set of all subsets of A. A Boolean algebra $\mathfrak A$ satisfies the m-chain condition if every disjointed subset of A has power $< \mathfrak m$.

By a well-known theorem of Hausdorff [6] let $M \subseteq Sm$ be a family of independent sets with $|M| = 2^m$. Thus if F and G are disjoint finite subsets of M then

$$\bigcap_{X \in F} X \cap \bigcap_{X \in G} (\mathfrak{m} \sim X) \neq 0.$$
 (1)

Note that there are infinitely many elements in each of these intersections. Let t be a one-one map from Sm onto M. For each $R \subseteq \text{Sm}$ such that $|\text{Sm} \sim R| = 2^m$ we now define a CBA \mathbb{C}_R . Let $A_R = \{t_a : a \in \text{Sm} \sim R\}$. Let \mathcal{P}_R consist of all pairs (k, K) such that k is a finite subset of m and K is a finite subset of A_R . We partially order \mathcal{P}_R by setting $(k_1, K_1) \le (k_2, K_2)$ iff $k_1 \subseteq k_2$, $K_1 \subseteq K_2$, and $k_2 \cap \bigcup K_1 \subseteq k_1$. For each $(k, K) \in \mathcal{P}_R$ let $\mathcal{O}_{(k, K)} = \{(k_1, K_1) \in \mathcal{P}_R : (k, K) \le (k_1, K_1)\}$. Then the collection of all sets

Research supported in part by NSF grant GP-28070.

²⁾ Research supported in part by NSF grant GP-33951.

 $\mathcal{O}_{(k,K)}$ for $(k,K) \in \mathcal{P}_R$ forms a base for topology on \mathcal{P}_R , as is easily checked. We let \mathbb{C}_R be the complete Boolean algebra of regular open sets in this topology (see Halmos [5]). The remainder of this note is devoted to showing that each CBA \mathbb{C}_R has power 2^m , and that there are 2^{2^m} isomorphism types among them. The construction of \mathbb{C}_R is taken from Martin, Solovay [7], and many parts of the proofs below are adapted from that paper to the present simpler situation.3) Some further notation: if $z \in \mathcal{P}_R$ we let $b_R z$ be the interior of the closure of \mathcal{O}_z ; thus $b_R z \in \mathbb{C}_R$. For $\alpha < m$, let $a_R^\alpha = b_R(\{\alpha\}, 0)$. For some of the proofs below the following two facts are useful:

$$\begin{aligned} b_R z &= \left\{ w \in \mathcal{P}_R \colon \forall w' \geq w \; \exists z' \geq z \, (z' \geq w') \right\}; \\ -b_R z &= \left\{ w \in \mathcal{P}_R \colon \forall z' \geq z \, (z' \ngeq w) \right\}. \end{aligned}$$

These facts are easily established, using the observation that \mathcal{O}_z is the smallest neighborhood of z.

LEMMA 1. \mathfrak{C}_R satisfies the \mathfrak{m}^+ -chain condition. Proof. $\mathfrak{O}_{(k,K)} \cap \mathfrak{O}_{(l,L)} = 0$ implies that $k \neq l$; the \mathfrak{m}^+ -chain condition follows.

LEMMA 2. $b_R(k, K) = \{(l, L) \in \mathcal{P}_R : k \subseteq l \cup (m \sim \bigcup A_R), K \subseteq L, l \cap \bigcup K \subseteq k\}$. Proof. First suppose that $(l, L) \in b_R(k, K)$. If $\alpha \in k \cap \bigcup A_R$, say $\alpha \in x \in A_R$. Then $(l, L) \leq (l, L \cup \{x\})$, so there is an (m, M) with $(l, L \cup \{x\}) \leq (m, M)$ and $(k, K) \leq (m, M)$. It follows easily that $\alpha \in l$. Thus $k \subseteq l \cup (m \sim \bigcup A_R)$. Next, suppose that $y \in K \sim L$. By independence and the fact that each intersection (1) is infinite, choose $\alpha \in y \sim (\bigcup L \cup l)$. Then $(l, L) \leq (l \cup \{\alpha\}, L)$, so there is an (m, M) with $(l \cup \{\alpha\}, L) \leq (m, M)$ and $(k, K) \leq (m, M)$. Thus $\alpha \in k$, and hence by what has already been established, $\alpha \in l$, contradiction. Thus $K \subseteq L$. Finally, suppose that $\alpha \in l \cap \bigcup K$. Choosing (m, M) so that $(l, L) \leq (m, M)$ and $(k, K) \leq (m, M)$, we easily infer that $\alpha \in k$. This finishes the proof of \subseteq in the equality of the lemma. The converse inclusion \supseteq is easily established.

LEMMA 3. $|\mathfrak{C}_R| \ge 2^m$.

Proof. By Lemma 2, $b_R(0, \{t\}) = \{(l, L) \in \mathcal{P}_R : t \in L, l \subseteq m \sim t\}$ for each $t \in A_R$. Thus $b_R(0, \{s\}) \neq b_R(0, \{t\})$ for $s \neq t$, and Lemma 3 follows.

LEMMA 4. \mathbb{C}_R is completely generated by a set with $\leq m$ elements. Proof. First note, using Lemma 2:

$$a_{\alpha}^{R} = \{(l, L) : \alpha \in l\} \text{ if } \alpha \in \bigcup A_{R}$$
 (2)

³⁾ Thanks are due to R. S. Pierce for comments on an earlier draft of this note, which led to making the proofs independent of [7].

$$a_{\alpha}^{R} = \mathcal{P}_{R} \quad \text{if} \quad \alpha \in \mathfrak{m} \sim \bigcup A_{R}$$
 (3)

$$-a_{\alpha}^{R} = \{(l, L): \alpha \in \bigcup L \sim l\} \quad \text{if} \quad \alpha \in \bigcup A_{R}$$
 (4)

From (2)-(4) and Lemma 2 we easily obtain

$$b_{R}(k,K) = \bigcap_{\alpha \in k} a_{\alpha}^{R} \cap \bigcap_{\alpha \in \cup K \sim k} -a_{\alpha}^{R} \cdot$$

$$= \prod_{\alpha \in k} a_{\alpha}^{R} \cdot \prod_{\alpha \in \cup K \sim k} -a_{\alpha}^{R}$$
(5)

Thus \mathfrak{C}_R is completely generated by all elements a_α^R , as desired.

By Lemmas 1, 3, 4 it follows easily that

LEMMA 5. $|\mathbb{C}_R| = 2^m$.

Now we turn to the proof that many of the algebras \mathbb{C}_R are non-isomorphic. To this end, we say that a set $R \subseteq Sm$ is represented in a complete Boolean algebra D by $x \in D$ provided that

$$R = \{c \subseteq \mathfrak{m} : \sum \{x\alpha : \alpha \in t_c\} = 1\}. \tag{6}$$

Obviously we have

LEMMA 6. If \mathfrak{D} is a CBA of power $2^{\mathfrak{m}}$, then there are at most $2^{\mathfrak{m}}$ sets $R \subseteq S\mathfrak{m}$ representable in \mathfrak{D} by some $x \in {}^{\mathfrak{m}} \mathfrak{D}$.

LEMMA 7. For any $R \subseteq Sm$ such that $|Sm \sim R| = 2^m$, the function a^R represents R in \mathbb{C}_R .

Proof. If $c \in Sm \sim R$, then by (5) above,

$$0 \neq b_R(0, \{t_c\}) = \prod \{-a_a^R : \alpha \in t_c\}$$

and hence c is not in the right hand side of (6). Now assume that $c \in R$. Using (2) and (3) it is clear that $\bigcup \{a_{\alpha}^R : \alpha \in t_c\}$ is dense; in fact, if $(k, K) \in \mathcal{P}_R$ is arbitrary, we may choose $\alpha \in t_c \sim \bigcup K$ by independence; then $(k \cup \{\alpha\}, K) \in \mathcal{O}_{(k,K)} \cap a_{\alpha}^R$. Hence $\sum \{a_{\alpha}^R : \alpha \in t_c\} = 1$, i.e., c is in the right hand side of (6). This completes the proof.

Immediately from Lemmas 5-7 we have the main result of this note:

THEOREM. For any infinite cardinal m there are exactly 2^{2m} isomorphism types of complete Boolean algebras of power 2^m .

REFERENCES

 P. Carpintero, Número de tipos diferentes de álgebras de Boole de cardinal m infinito, Acta Salmanticensia, Universidad de Salamanca 38 (1971), 59 pp.

- [2] P. Carpintero, Cuatro trabajos sobre topología, álgebras de Boole, hipotesis general del continuo y espacios funcionales, Acta Salmanticensia, Universidad de Salamanca 40 (1971), 120 pp.
- [3] P. Carpintero, Número de tipos diferentes de álgebras de Boole de cardinal m infinito que poseen 2^m ideals primos, Revista Matemática Hispano-Americana 31 (1971), 93-97.
- [4] B. Efimov, and V. Kuznetsov, On the topological types of dyadic spaces, (in Russian) Dokl. AN SSSR, vol. 195 (1970), 20-23.
- [5] P. R. Halmos, Lectures on Boolean algebras, Van Nostrand 1963, 147 pp.
- [6] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6 (1936), 18-19.
- [7] D. Martin, and R. M. Solovay, Internal Cohen extensions, Annals Math. Logic 2 (1970), 143-178.
- [8] R. Pierce, A note on complete Boolean algebras, Proc. Amer. Math. Soc. 9 (1958), 892-896.
- [9] S. Shelah, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math. 9 (1971), 473-487.

University of California Berkeley, California University of Colorado Boulder, Colorado