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FOREWORD

In the middle of the nineteenth century George Boole initiated the investi-
gation of a class of algebraic structures which were subsequently called Boolean
algebras. The theory of these algebras is directly related to the development of
the most elementary part of mathematical logic — sentential calculus. As is
well known, however, the theory can be developed in a purely algebraic fashion,
it has at present numerous connections with several branches of mathematics
— set theory, topology, and analysis — and hence it can be understood and
appreciated by mathematicians unfamiliar with the logical problems to which
it owes its birth.

The work of Boole was the starting point for a continuous flow of inquiries
into the algebraization of logic which, through various intermediate stages,
led to (but did not end with) the foundation of the theory of cylindric algebras.
This theory, which is the main subject matter of our work, was originally
designed to provide an apparatus for an algebraic study of first-order predicate
logic, a portion of mathematical logic which plays a central role in contem-
porary logical research. Indeed, the theory does for predicate logic what has
been done for sentential calculus by the theory of Boolean algebras. In its
subsequent development, however, this theory, just as that of Boolean algebras,
has found interesting realizations and applications outside of logic. Also, the
theory can be presented, and will be presented here, in a manner primarily
algebraic in character, which will make the main bulk of this work fully
accessible to mathematicians who do not have a detailed knowledge of logical
concepts and methods.

Our first task is to give the reader some intuitive appreciation as to what
cylindric algebras are. To this end we begin with consideration of special
algebraic structures referred to as cylindric set algebras. These structures are
defined in terms of general set theory, and their construction generalizes the
familiar construction of Boolean set algebras.

In describing cylindric set algebras it is convenient to use a terminology
borrowed from analytic geometry. A cylindric set algebra may be regarded as a
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2 FOREWORD

kind of multi-dimensional Boolean set algebra. Indeed, associated with each
cylindric set algebra is an ordinal number «, finite or transfinite, which indicates
the dimensionality of the algebra. Whereas the elements of a Boolean set
algebra may be subsets of a quite arbitrary set V, the elements of a cylindric
set algebra of dimension « are subsets of the Cartesian power “U of some
set U. The set “U is called the a-dimensional Cartesian space with the base U.
Its elements, i.e., the sequences x = {x¢, Xy, ..., X, ..., of length « in which
all terms belong to U, are referred to as points with the coordinates x,, x4, ...,
X, ... . In a Boolean set algebra the empty set 0 and the unit set V are treated
as distinguished elements. In a cylindric set algebra we treat as distinguished
elements, not only the empty set 0 and the whole space *U, but also certain
additional point sets D, (for any x, A < a), called the diagonal sets. The set
D, , consists of all those points x of *U whose xth coordinate x, equals the
Ath coordinate x;. Thus, in case K # 1, the diagonal sets D,, are seen to be
the hyperplanes defined by the equations x, = x,; if, in particular, o = 2,
.then D, is the main diagonal line of the coordinate system.

In a cylindric set algebra, just as in a Boolean set algebra, we are concerned
with the set-theoretical operations of forming unions X uY, intersections
X nY, and complements ~X of members of the algebra. In the case of a
Boolean set algebra these are the only fundamental operations. In a cylindric
set algebra, however, we single out certain further fundamental operations
called cylindrifications. In fact, with each ordinal k¥ < « we correlate the
unary operation C,, the xth cylindrification, which, when applied to a subset
X of the space “U, produces the cylinder C X swept out by all translations
of X parallel to the xth coordinate axis; in other words, a point y of *U
belongs to the cylinder C X if and only if it can be obtained from some point
x of X by changing at most the xth coordinate. Thus, e.g., we have for any
K, A, u <o

C0=0, C*U ="U;

¢b,=¢Db,="U, CD, =D, incase u # x, A

Now let S be any family of subsets of *U which contains as elements all
the distinguished sets — 0, *U, and D, for x, 4 < « — and which is closed
under all the fundamental operations — u, a, ~, and C,, for x < a. The
structure

G =<S,u,n~,0,°U,C,D,> ..,

is then called a cylindric set algebra of dimension «; S is, of course, the universe
(the set of all elements) of this algebra.
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Many basic properties of cylindric set algebras can be derived directly from
the definition. We know, in particular, a great variety of laws which have the
form of algebraic equations identically satisfied in all cylindric set algebras.
Since, for any given cylindric set algebra

@ = <S, u,n, ~, Oa “U9 Cm DKl>x,l<oc’
the structure
BIS =S, vu,n,~,0,U)

is a Boolean set algebra, called the Boolean part of &, all the familiar Boolean
laws are seen to hold in &. Besides these, there are numerous laws involving
the cylindrifications and diagonal sets which hold in every cylindric set algebra.
Some such laws will be formulated below in this Foreword, and many other
examples will be found in Chapter 1.

The general notion of a Boolean algebra is obtained from that of a Boolean
set algebra by a process of abstraction: we consider the algebraic identities
which hold in all Boolean set algebras and we select some of them as postulates
for the general, abstract theory of Boolean algebras. An analogous procedure
can be applied to arrive at the general notion of a cylindric algebra. Changing
the notation which we have introduced for cylindric set algebras, we now
consider algebraic structures

%{ = <A9 +,0 0: 15 Ces dki>1c,l<a

where A4 is an arbitrary set, + and - are binary operations on 4, — and ¢,
(for each k < «) are unary operations on 4, while 0, 1, and d,, (for any given
K, A < o) are elements of 4. Here +, :, and — are called Boolean addition,
Boolean multiplication, and complementation; 0 and 1 are the Boolean zero
and unit elements; for ¢, and d,, we preserve the terminology adopted in
discussing cylindric set algebras, i.e., ¢, is called the xth cylindrification and
d,, the x, A-diagonal element. Next, we select certain equations which are
identically satisfied in all cylindric set algebras of a given dimension «, and
we take them as postulates for the general theory of cylindric algebras; in
other words, we declare cylindric algebras of dimension o to be just those
structures in which all the selected postulates hold. The postulates are divided
into two groups. Those of the first group involve only Boolean notions, and
jointly they characterize the structure

BIA = <4, +,-, —,0,1)

as a Boolean algebra; systems of equations which are adequate for this purpose
can be found in the literature. The postulates of the second group involve,
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in addition, cylindrifications and diagonal elements, and are thus specific for
cylindric algebras. The following simple equations, assumed to be identically
satisfied by arbitrary elements x,y of 4 and arbitrary ordinals «, 4, i less than a,
are used as the postulates of the second group:

(Cy) ¢ 0=0.

(Cy) x'cx = x.

(Cs) culxrcey) = cxcy.

(Cy) c.0x = g x.

(Cs) cd,; =1

(Co) c(dy,-d,;) = d,,; provided p # x,A.

(Cy) cldez %) cd,; - —x) = 0 provided x # A.

As an example of an equation which is implied by these postulates and hence
is identically satisfied in all cylindric algebras we mention the distributive law
for cylindrifications over Boolean addition,

c(x+y) = ¢x+c.p.

From the above we see that cylindric algebras are Boolean algebras enriched
by new distinguished elements and new fundamental operations which are
distributive over Boolean addition; they form, therefore, a subclass of a
comprehensive class of algebraic structures known in the literature as Boolean
algebras with operators.

We have thus described the construction of cylindric set algebras and have
introduced the general notion of a cylindric algebra. Several important points,
however, remain obscure in this presentation; they concern primarily our
motivation in the whole procedure. The reader may wonder why, when con-
structing algebras of subsets of a Cartesian space, we have selected just the
cylindrifications and the diagonal sets as additional notions to supplement
the familiar fundamental notions of Boolean set algebras. He may also ask
what our motives are in singling out just (C,)~(C,), from among the infinitely
many identities holding in cylindric set algebras, as the only postulates which,
together with Boolean postulates, characterize the general notion of a cylindric
algebra. It seems impossible to find a satisfactory clarification of these points
within the conceptual framework of cylindric set algebras themselves. We have
to recall that the theory of cylindric algebras is rooted in logic and was originally
developed as an instrument for the algebraization of predicate logic. Thus, to
explain the selection of fundamental notions and postulates for this theory,
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we have to examine its logical origin more closely. In the first place, we have to
discuss another special class of cylindric algebras; the class is described in
metalogical terms and is directly related to the main purpose for which the
theory of cylindric algebras has been designed.

We consider a system of predicate logic (with identity). The formal language
in which this system is developed will be referred to as the language A. The
vocabulary of A (i.e., the set of all symbols occurring in expressions of A)
consists, as usual, of individual variables, logical constants, and non-logical
constants. There are infinitely many different variables in A; they are arranged
in a simple infinite sequence {vy, ..., ¥, ...), <, Lhe logical constants are:
the disjunction symbol v, the conjunction symbol A, the negation symbol =,
the existential quantifier 3, the identity symbol =, the truth symbol 7, and
the falsehood symbol F. The non-logical constants are various predicates,
again arranged in a sequence {Py, ..., P, ...>.., where B is an arbitrary
ordinal, finite or infinite. Each predicate has a definite finite rank p =0, 1,2, ...;
we refer to a predicate with rank p as a p-place predicate.

The expressions of the language A are arbitrary finite sequences of symbols;
single symbols are identified with one-termed sequences and hence are also
regarded as expressions. An expression formed by a p-place predicate P;
followed by p variables is called an afomic formula. In this connection the
truth symbol 7, the falsehood symbol F, and the identity symbol = are also
treated as predicates (although they are not included in the sequence
(P, ..., Py, .. 5¢cp) — in fact, T and F as zero-place predicates and = as
a two-place predicate. Thus, T and F by themselves (i.e., without any following
variables) are atomic formulas. On the other hand, the sequence of three
symbols =, v,, and v, is also an atomic formula; we denote it by v, = v,
(thus inverting the order in which the symbols = and v, occur in the sequence)
and call it an equation or, specifically, the «, A-equation.

With each of the logical constarits v, o, =, and I there is correlated a certain
operation on expressions. Thus, from two given expressions ¢ and ¥ we form
their disjunction ¢ v s, or conjunction ¢ A ¥, by combining them by means
of the disjunction symbol v, or the conjunction symbol A. Notice that “v>
and “A” (which served originally as metalogical designations of certain symbols
in A) are now used in a new sense — as designations of certain binary operations
on expressions of A. Similarly, we obtain the negation —¢, or the xth existential
quantification 3, ¢, of a given expression ¢, by prefixing to ¢ the negation
symbol =, or the expression formed by the existential quantifier 3 and the
immediately following variable v,. Thus, - and 3, (for each natural number )
are viewed as unary operations on expressions.
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A system of predicate logic may be provided with some further logical
constants, such as the implication symbol, the biconditional symbol, and the
universal quantifier. With these new logical constants are correlated new
operations on expressions — formation of implications —, formation of bi-
conditionals <>, and the xth universal quantification V, . We prefer here to
obtain these new operations by defining them in terms of old operations; the
definitions can be given the following form:

P = l// = (_‘(p)v l//a
pey=(@->9Y)rly-o9),
Vv,cgo = —13%—1@.

An expression obtained from atomic formulas by applying the operations
vV, A, =1, and Hvk an arbitrary number of times is called a formula. We assume
known the conditions under which a variable v, is said to occur free in a
formula ¢. Formulas in which no variables occur free are referred to as sen-
tences. For instance, T, F, 3.,0”0 = v, and —13001;0 = v, are sentences.

The set @ of all formulas is closed under the operations v, A, =, and Elv,c and
contains as elements the expressions F, T, and v, = v, (for any x,1 < ).
Hence the structure

% = <@,V, A, 1, Fa T) av,J v, = vl>x,1<w

is an algebra (in a wide sense of the word). We refer to ¥ as the free algebra
of formulas (in the language A). Indeed, § is what is called an absolutely free
algebra in the general theory of algebraic structures. As a consequence, no
algebraic equation formulated in terms of fundamental operations and
distinguished elements of ¥ is identically satisfied in this algebra unless it is
a pure tautology of the form “x = x” — so that, for example, the operations
v and A are neither commutative nor associative. Thus § presents but little
interest from an algebraic point of view. It should also be emphasized that
in itself is by no means a proper tool for an algebraic discussion of predicate
logic. This appears clear if only from the fact that the notion of consequence,
which is a most basic element in the development of any logical system, has
not been involved at all in the construction of .

The situation will change essentially when we introduce the notion of con-
sequence and use it to construct from §F some derivative algebras. To this
end we have first to explain how the formal language A can be interpreted,
i.e., how definite meanings can be ascribed to symbols, formulas, and sentence
in A. As a base for an interpretation we choose an arbitrary relational structur
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N =1C4,Ry, ..., R, ..0:<; Where A is an arbitrary non-empty set and
Ry, ..., R, ... are finitary relations among elements of 4.

The sequence of fundamental relations R, in Ji has the same length as the
sequence of predicates P, in A; each relation R, is assumed to be of the same
rank as the corresponding predicate P, so that, e.g., R; is a binary relation
if P, is a two-place predicate. We interpret A in 3t by stipulating that variables
vy, ¥4, ... represent arbitrary elements of 4 (in other words, that any elements
gy, ay, ... of A can be assigned as values to v, vy, ...) and that the predicates
Py, Py, ... denote the corresponding relations R, Ry, ... . Furthermore, we
stipulate the logical constants of A to be synonymous with certain familiar
words and phrases of common language, e.g., the disjunction symbol v with
the word “or” and the existential quantifier 3 with the phrase “there is a ...
such that”. To the truth symbol T we ascribe the meaning of some particular
sentence in common language which is obviously (logically) true, say the
sentence “for every x, x is identical with x”’; the falsehood symbol F is assumed
to mean the same as the negation of this sentence. Thus the meaning assigned
to logical constants is independent of any special properties of the structure 3.

The interpretation of A in J extends in an obvious way from symbols to
formulas and sentences. An essential semantical difference between sentences
and those formulas which are not sentences comes to light now. Under our
interpretation, every sentence ¢ acquires the meaning of a definite statement
(in the common language) concerning Jt; hence we can meaningfully ask the
question whether ¢ holds (is true) or fails (is false) in H. If, however, ¢ is a
formula with free variables, we can only ask whether or not, under a given
assignment of elements of A4 to variables of A, the elements assigned to the
free variables of ¢ satisfy ¢ in 9. For instance, given a predicate P; of rank p
and elements a;, ..., a, assigned to variables vy, ..., v,, we can ask whether
or not ay, ..., a, satisfy the atomic formula P.v,...v,; this amounts to asking
whether or not the relation R, holds among the elements ay, ..., a,. It may
happen that a formula ¢ is satisfied in 9 under every assignment of elements
to its free variables. In this case we say that ¢ is universally or identically
satisfied in 9; by extending to such formulas the terminology suggested for
sentences, we can simply say that ¢ holds in 3.

Now let X be any set of sentences of A. By a model of X we understand any
relational structure R = {4, Ry, ..., Ry, ...D:<p in which all sentences of X
hold. A sentence — or, more generally, a formula — is said to be a consequence
of X, or to be implied by X, if it holds in every model of X. The set @ of all
sentences implied by some set X is called a theory. It is sometimes convenient
to think of X as an axiom system for & and refer to O as the theory axiomatized
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or generated by X; sentences belonging to € are called, in this context, theorems
of @. If, in particular, we take the empty set for X, then @ coincides with the
set of all logically valid sentences, i.e., sentences holding in every relational
structure. Given any relational structure 3, or any family F of such structures,
the set of all sentences which hold in %, or in every structure belonging to F,
is always a theory; it is referred to as the (first-order) theory of 9, or of F,
formalized in the language A. Conversely, every theory @ is the theory of some
(possibly empty) family of structures, for instance, of the family of all models
of 6.

Two arbitrary formulas ¢ and y are called equivalent under a set of sentences
X if the biconditional ¢ <>/ is a consequence of X; we write, symbolically,
@ =;y. It is easily seen that, for each set X, =, is an equivalence relation on
the set @ of all formulas, and therefore it partitions @ into mutually exclusive
equivalence classes @y; for each formula ¢ of A, @y is the set of all formulas
equivalent with ¢ under X. The set of all these equivalence classes may be
denoted by @;. Moreover, by relating =, to the free algebra of formulas ,
we realize that =y is a congruence relation of that algebra, in the sense of the
general theory of algebras. Hence, by applying a well-known algebraic pro-
cedure, we can construct the quotient algebra &/=;, which we denote for
brevity by §. The elements of ¥, are arbitrary equivalence classes ¢y, and
hence the universe of 5 is the set @;. The fundamental operations and dis-
tinguished elements of s are those induced in a familiar manner by the
fundamental operations and distinguished elements of . We denote the
induced operations and elements by means of the same symbols which are
used in &, providing them sometimes, for clarity, with the subscript “X”. We
thus arrive at the algebra

Js = {P5, V3, Ay, =5, Fy, T, (1;,)2: (v, = ”a)z>,c,,1<m-

It is a trivial matter to check that the algebra ¥ satisfies all the postulates
for w-dimensional cylindric algebras. We refer to &y as a cylindric algebra of
formulas and, more specifically, as the cylindric algebra of formulas in the
language A associated with the set of sentences 2. If © is the theory generated
by Z, then the relations =y and =, clearly coincide, and so do the algebras
& and Fo.

The significance of the algebras ¥y for an algebraic study of predicate logic
is rather obvious. Theories are basic entities in metalogical discussion just as
algebraic structures are basic entities in algebraic research. By correlating the
algebra ¥y with any theory ©, we have established a correspondence, which
turns out to be one-one, between first-order theories and cylindric algebras of
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formulas. The basic metalogical problems for a fixed set of sentences X, or
for a fixed theory @, are problems of the type: “Is a given sentence ¢ implied
by the set X?”” or “Is a given sentence ¢ a theorem of the theory ©?” Each
such problem clearly reduces to an algebraic problem concerning the associated
algebra of formulas: “Does the equation @y = Ty, or ¢y = Ty, hold in the
algebra 5, or Fe?”

The discussion of cylindric algebras of formulas leads in a most natural
way to cylindric set algebras. Consider, indeed, a theory @ in the language A;
to simplify the discussion, assume that @ is the first-order theory of a single
relational structure, (U, Ry, ..., Ry, ...Ds<p5. Let ¢ be any formula in A and
letv,, ..., v, beall of its free variables. We correlate with ¢ a subset X, of the
Cartesian space “U, in fact, the set of all those points x = {(X¢, ..., X, -+ Dp <o
such that the coordinates x, , ..., x, satisfy the formula ¢. Given any other
formula ¥, the set X, coincides with X, if and only if ¥ is equivalent with ¢
under 0, i.e., belongs to the equivalence class ¢o. We thus obtain a “natural”
one-one mapping of the set @, of all equivalence classes @, onto the family
S of all sets X,. We can now consider those sets of S and those operations
on members of S which correspond under this mapping to the distinguished
elements and fundamental operations of the algebra . Obviously the induced
notions corresponding to the fundamental Boolean operations v, A, = and the
distinguished Boolean elements F, I' of o are the usual set-theoretical
operations U, n, ~ and the distinguished sets 0, “U from the theory of Boolean
set algebras. But it is just as easy to realize that the operation corresponding
to the xth existential quantification 3, is just the xth cylindrification C, as
it was defined for subsets of a Cartesian space in an earlier part of this Fore-
word; similarly, the set corresponding to the x,A-equation v, = v, is the «, /-
diagonal set D, ,. Thus we arrive at a cylindric set algebra

@@ = <S5 u,n,~, Oa an Cm Dkl>x,/l<w

obtained by a “‘natural” isomorphic transformation from the cylindric algebra
of formulas . We are confronted here with a simple extension of the Boolean
parallelism between logical and set-theoretical notions, which is familiar to
every student of Boolean algebras; we believe that this fully clarifies our
motivation in selecting cylindrifications and diagonal elements as fundamental
notions for the theory of cylindric set algebras.

A thorough study of cylindric algebras of formulas is, of course, of para-
mount importance for our purposes. To secure the applicability of modern
algebraic notions and methods to this study, we enlarge the class of algebras
&z by including in it all the isomorphic images of its members (thus, in parti-
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cular, the cylindric algebras &, just described). We shall refer here to algebras
of the enlarged class as special cylindric algebras.

A problem which confronts us immediately in an algebraic discussion of
special cylindric algebras is that of providing a purely algebraic characterization
of these algebras, i.e., a characterization which refers exclusively to intrinsic
properties of algebras and which, in particular, does not use any metalogical
notions. The solution of this problem proves to be rather simple. First, we
know that all special cylindric algebras are infinite-dimensional and in fact have
dimension @. The infinite dimensionality is an algebraic expression of the fact
that the language A of predicate logic is provided with infinitely many variables.
At the same time, however, the language A has a clearly finitary character in
the sense that each of its expressions is a finite sequence of symbols. Thus, in
particular, every formula ¢ of A has only finitely many free variables. As a
consequence, for any given set of sentences X there are at most finitely many
indices x such that ¢ is not equivalent with 3, @ under X. This in turn implies
that every special cylindric algebra

A= 4, +,+, —,0,1, Ce> d:cl>;c,/1<m
satisfies the following postulate:

(Cg) For every element x of A there are at most finitely many ordinals »
such that ¢ x # x.

A cylindric algebra U, of arbitrary dimension «, which satisfies postulate
(Cg) (where « is assumed to range over all ordinals less than «) is referred to as
locally finite. All finite-dimensional cylindric algebras are, of course, locally
finite. As we have just seen, all special cylindric algebras are w-dimensional
and also locally finite. It turns out that the converse is also true: the class of
special cylindric algebras simply coincides with the class of locally finite
cylindric algebras of dimension w.

Historically, cylindric algebras were first defined as algebraic structures
A4, +,,—,0,1,¢,d;> <, satisfying the postulates for Boolean algebras
and the additional postulates (C;)~(Csg) (with a = w). Thus, what was origi-
nally meant by a cylindric algebra is what we mean here by a special cylindric
algebra. The class of these algebras was the sole subject matter of the theory
of cylindric algebras in the early stage of its development. Indeed, this class
provided an adequate and convenient tool for the algebraization of predicate
logic, and no wider class of algebras was needed for this purpose.

Soon, however, it was realized that the class of special cylindric algebras
has some serious defects when treated as the sole subject of research in an
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autonomous algebraic theory. In modern algebraic research one prefers to deal
with equational classes of algebras, i.e., classes of algebras characterized by
postulate systems in which every postulate has the form of an equation (an
identity); such classes are also referred to as varieties. Classes of algebras which
are not varieties are usually introduced in discussions as specialized subclasses
of varieties; e.g., one treats fields as a special class of rings. Probably the main
reason for this preference is the fact that every variety is closed under certain
general operations frequently used to construct new algebras from given ones;
we mean here the operations of forming subalgebras, homomorphic images,
and direct products. By a well known result of Garrett Birkhoff, the varieties
are precisely those classes of algebras which have all three of these closure
properties. The class of special cylindric algebras, however, is not a variety.
One of the postulates characterizing this class, in fact, (Cg), does not have the
form of an identity and cannot be equivalently replaced by any identity or any
system of identities. This follows from the simple observation that the direct
product of infinitely many locally finite cylindric algebras is not, in general,
locally finite.

Also for other, less technical reasons some modifications in the original
defiattion of cylindric algebras seemed desirable. The definition contained
certain assumptions which, from an intuitive point of view, have a highly
specialized character and considerably restrict the applicability of results im-
plied by this definition. One such assumption is the fixed dimension, , of all
algebras defined. Another is their local finiteness; thus, postulate (Cyg) is again
involved here. The restrictive character of these two assumptions becomes
obvious when we turn our attention to cylindric set algebras: we find there
algebras of all possible dimensions, and we easily construct algebras which
are or which are not locally finite. All these structures have, nevertheless, many
algebraic properties in common; it would not be purposeful to study these
properties within a theory whose results are established only for a narrow
class of such structures.

For all these reasons the original conception of a cylindric algebra has been
considerably extended: the restriction to dimension w has been removed,
postulate (Gg) has been deleted, and the definition has assumed the form given
in an earlier part of this Foreword.

* * *

This work is intended to give a detailed and comprehensive account of the
theory of cylindric algebras in its present stage of development. The work is to
appear in two parts, of which the first is presented in this volume.
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It is hoped that the reader will find this work to be largely self-contained.
Inevitably, certain elements of mathematical logic and set theory have been
presupposed; but these are of such a nature that they have undoubtedly been
absorbed by anyone who has studied some branch of modern mathematics.
On the other hand, the work has been based squarely upon the general theory
of Boolean algebras, and the reader who is unfamiliar with the basic parts of
that theory will find difficulty in following the text.

Immediately following this Foreword will be found a section entitled
“Preliminaries” in which we describe our notation for basic set-theoretical
and metalogical notions and explain concisely their meanings. For the most
part this material is standard and well known.

There follows a long chapter sketching a general theory of algebraic struc-
tures; we have designated it “Chapter 0" to emphasize that it is not properly
a part of the theory of cylindric algebras. Perhaps some words of explanation
are due the reader in this connection.

In the development of the theory of cylindric algebras various concepts are
involved which recur in many parts of modern algebra — concepts such as
subalgebra, isomorphism, and homomorphism. To give all the definitions and
derive all the needed properties of such concepts ab initio within the theory
of cylindric algebras would have been very tedious for the many readers already
acquainted with these ideas from their study of groups, rings, Boolean algebras,
etc. Moreover, the generality of the results and the simplicity of their proofs
would have been obscured by the specialized context of cylindric algebras.
For these reasons it was decided to segregate this material in a separate chapter
and present it in a more general form, as a kind of preface to the theory of
cylindric algebras. Subsequently, recognizing the increasing attention which
the general theory of algebraic structures is now receiving, we decided to
extend the material beyond the minimum needed for the purposes of the
present work, in order to achieve a unified and self-contained treatment.

Chapter 0 is an embodiment of these decisions and ideas. Essentially, it is
an outline of a course, entitled “General theory of algebraic structures”, which
has been given by Tarski at the University of California, Berkeley, evolving
over many years. The principal topics discussed consecutivelyein the five
sections, 0.1-0.5, of the chapter are: algebras and their subalgebras; isomor-
phisms, homomorphisms, and congruence relations; direct products and some
related notions (subdirect products, reduced products); polynomials and free
algebras; reducts. (The last of these notions is less known than the remaining
ones. A reduct of an algebra 9 is an algebra obtained by deleting some of the
fundamental operations of 9, and preserving the universe and the remaining



FOREWORD 13

operations unchanged. For instance, the additive group of a ring % is a reduct
of J1.) Some space in Chapter 0 is devoted to metamathematical and, specifically,
model-theoretical topics. Thus, metamathematical aspects of free algebras are
briefly discussed. Also, the model-theoretical notions of elementary, universal,
and equational classes of algebras are considered, and a concise account is given
of known results providing purely algebraic characterizations of these notions.

In Chapter 1 we commence the proper study of the theory of cylindric alge-
bras. The first section of the chapter, 1.1, contains a re-statement of the postu-
late system for cylindric algebras, as well as formal definitions of two important
classes of cylindric algebras previously mentioned in this Foreword — the
cylindric set algebras and the cylindric algebras of formulas. In the present
volume these two classes are not discussed in detail, but are extensively used
as an invaluable source of examples and illustrations. The section is concluded
with a preliminary discussion of the main representation problem for cylindric
algebras — the problem of representing these algebras isomorphically by means
of cylindric set algebras.

The succeeding sections of Chapter 1, 1.2-1.10, are largely devoted to a
development of the most elementary and basic consequences of the postulate
system for cylindric algebras. The procedure applied throughout these sections
can be described as follows: an arbitrary cylindric algebra, about which no
special assumptions are made, is regarded as fixed; within this algebra special
elements, sets of elements, and operations on elements are defined in terms of
the fundamental operations and distinguished elements of the algebra, and by
means of these definitions the basic properties of the notions defined are
derived from the general postulates for cylindric algebras. The use of set-
theoretical tools in this discussion is reduced to a minimum; no variables are
employed which represent arbitrary sets of elements, or operations on elements,
of the fixed algebra, or arbitrary members of some class of algebras. For these
reasons the portion of the work we are discussing may be called the elementary,
or arithmetical, part of the theory of cylindric algebras. (In metamathematics
the term ‘“‘elementary”, or “arithmetical”, is used to denote that part of the
theory of a class of mathematical structures which can be formalized within
first-order predicate logic; here, however, we use this term in a looser and
wider sense.)

Among the operations on elements of a fixed cylindric algebra 2 which are
discussed in Chapter 1, the unary substitution operations introduced in Section
1.5 deserve special attention. With each pair of ordinals «, A less than the
dimension of U there is correlated an operation of this kind, denoted by s and
called the «, A-substitution; it is defined by setting, for every element x of the
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algebra, six = c¢(d;-x) if ¥ # 4, and sfx = x if x = A. The operation
acquires a simple intuitive meaning when applied to cylindric algebras of
formulas. Indeed, it is easily seen that in this case s% (defined as above) is
just the operation on equivalence classes of formulas induced by the familiar
substitution operation on the formulas themselves. As is well known, the latter
operation consists in substituting the variable v, for all the free occurrences
of the variable v, in a given formula (and in changing bound variables of the
formula if this is necessary to avoid collisions). The reader is probably aware
of the significant role played by this substitution operation in formal logical
arguments in which some sentences are shown to be implied by others.

In the last section of Chapter 1, Section 1.11, we study elementary properties
of locally finite cylindric algebras. The importance of these algebras for the
main purposes of the present work has been emphasized in our earlier discussion.
From an abstract algebraic point of view the locally finite algebras form a rather
narrow and highly specialized class of cylindric algebras; for this very reason
their theory is richer and actually simpler than the general theory. We shall be
particularly interested in those properties of substitution operations in locally
finite algebras which cannot be extended to arbitrary cylindric algebras. Thus,
for instance, we shall show that the operation of multiple substitution (which
in its application to formulas, consists in simultaneously substituting new
variables for several free variables) can be adequately defined and studied for
all locally finite algebras of infinite dimension; we see no way of extending this
discussion to the general theory.

Chapter 2, which is the last chapter of this volume, contains what may be
called the properly algebraic part of the theory of cylindric algebras, in contrast
to the arithmetical part presented in Chapter 1. General set-theoretical concepts
are used in Chapter 2 to a much larger extent than in Chapter 1. As a rule, the
discussion in Chapter 2 does not refer to a single, fixed cylindric algebra.
Instead, the emphasis here is on relations between algebras and on operations
— such as formation of subalgebras, quotient algebras, or direct products —
which, when performed on given algebras, yield new ones.

In five sections, 2.1 and 2.3-2.6, we deal with the general algebraic notions
introduced in Chapter 0. However, our interest here is to find and study special
properties acquired by these notions when they are applied either to the class
of all cylindric algebras or to comprehensive subclasses of it. For instance, in
Section 2.4 there is a series of rather deep theorems that concern direct products
of countably complete cylindric algebras (i.e., cylindric algebras in which the
Boolean sum and product exist, not only for every pair, but for every countable
collection of elements). Section 2.6 contains a comprehensive discussion of
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reducts of cylindric algebras. The term “reduct” is used here in a restricted and
specialized sense. Given a cylindric algebra 9 of dimension « and an ordinal f
at most equal to o, by the f-reduct of 2 we understand the cylindric algebra B
(of dimension f) obtained from 9 by deleting the cylindrifications ¢, with
Kk = p and the diagonal elements d,, with ¥ = f or A = f; in particular, the
O-reduct is simply the Boolean part of 9. Subalgebras of reducts are called,
for brevity, subreducts; certain special subreducts, the so-called neat sub-
reducts, are singled out. A number of interesting and deep problems concern
embedding given cylindric algebras in algebras of higher dimensions, i.e.,
representing them as subreducts (or possibly neat subreducts) of such algebras;
these problems are exhaustively discussed in 2.6.

In the remaining two sections of Chapter 2, 2.2 and 2.7, some more specialized
notions are discussed, which do not have a general algebraic character. In
Section 2.2 we concern ourselves with structures obtained by relativization of
a cylindric algebra to one of its elements. This extends a construction well-
known from the theory of Boolean algebras; however, in contrast to the latter,
the structures obtained by relativizing cylindric algebras are not, in general,
cylindric algebras themselves. The discussion in Section 2.7 is closely related
to the basic results on Boolean algebras due to Stone: the embedding theorem
by which every Boolean algebra can be embedded as a subalgebra in a complete
atomic Boolean algebra, and the representation theorem by which every
Boolean algebra can be represented isomorphically as a Boolean set algebra.
It is known from the literature that these theorems partially extend to arbitrary
Boolean algebras with operators. In 2.7 we reconstruct the relevant results of
the theory of Boolean algebras with operators, and by applying them to
cylindric algebras we conclude that every cylindric algebra is embeddable in a
complete atomic cylindric algebra of the same dimension. With the help of this
embedding theorem we then show that every cylindric algebra 2 can be re-
presented isomorphically as a well determined algebra * in which, just as in
cylindric set algebras, the universe consists of subsets of a set and the Boolean
notions are the usual set-theoretical notions from the calculus of sets. However,
the specific “cylindric” notions of *, i.e., cylindrifications and diagonal
elements, are not unambiguously defined in set-theoretical terms and are
essentially as “abstract” in character as the corresponding notions in arbitrary
cylindric algebras. For this reason the result discussed cannot be regarded as an
intuitively satisfactory representation theorem for cylindric algebras. It pre-
sents, nevertheless, some intrinsic interest; and, in addition, it serves as an
auxiliary device in certain portions of the proper representation theory for
cylindric algebras, which will be developed in the second part of our work.
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At the end of this volume the reader will find a list of symbols and symbolic
expressions, a bibliography, and an index of names and subjects. The list of
symbols is quite long; this is largely caused by the fact that in various portions
of the volume we deal simultaneously with concepts from several different
domains — algebra, set theory, and metalogic. The list is included solely for
reference purposes, and probably there will be no need for the reader to consult
it until he covers a considerable portion of the volume. The bibliography is
intended to contain references to the whole existing literature on cylindric
algebras and closely related structures, such as relation and polyadic algebras
(not including, however, Boolean algebras and lattices). In addition, the
bibliography lists all the papers in other domains which are actually referred
to in the text.

The second part of the present work is still under preparation. It will begin
with a discussion of cylindric set algebras. In particular, some special cylindric
set algebras, with significant applications outside of the theory of cylindric
algebras, will be described in some detail. These set algebras are correlated,
in a manner described earlier in this Foreword, with certain first-order theories
familiar from various parts of mathematics.

A comprehensive account of the representation theory for cylindric algebras
will occupy the central position in the second volume. As a starting point for
this portion of our discussion we may consider the problem: is every cylindric
algebra isomorphic to a cylindric set algebra? We keep in mind, of course, the
fact that an analogous problem for Boolean algebras has an affirmative solution
and leads thus to a general representation theorem for those algebras. It turns
out, however, that the solution of the problem for cylindric algebras is negative.
The reason is that the class of cylindric set algebras proves to be highly speciali-
zed from a purely algebraic point of view. This is especially easily seen in the
case of algebras of finite dimension: a finite-dimensional cylindric set algebra
is always simple, in the sense of the general theory of algebras, and hence is
never isomorphic to a cylindric algebra which is not simple (such as a direct
product of two non-trivial cylindric algebras).

For this reason we re-formulate the problem and, in fact, replace in it the
cylindric set algebras by a wider class of algebras, much less specialized in its
algebraic properties, namely, the so-called generalized cylindric set algebras.
These are algebras which differ from ordinary cylindric set algebras in one
respect only: the a-dimensional Cartesian space “U is replaced everywhere in
their construction by any set which is a union of arbitrarily many pairwise
disjoint spaces of the same dimension. The class of generalized cylindric set
algebras, just as that of ordinary cylindric set algebras, has many features
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which make it well qualified for representing other “abstractly” defined classes
of algebras. The construction of the algebras in this class is in a sense ““‘concrete”
and rather simple; all the fundamental operations and distinguished elements
are unambiguously defined in set-theoretical terms, and the definitions are
uniform over the whole class; geometrical intuitions underlying the construction
give us a good insight into the structure of the algebras. Various properties
common to all generalized cylindric set algebras are intuitively evident and
hardly require rigorous proof, and many of them automatically extend to all
isomorphic algebras.

It is therefore regrettable that, except for algebras of dimension 1, the re-
formulated problem still turns out to have a negative solution: for every
o # 1 there is a cylindric algebra of dimension o which is not isomorphic
to any generalized cylindric set algebra. The proof (disregarding the trivial
case o« = 0) is less simple than that of the corresponding result for ordinary
cylindric set algebras. For each o = 2 it consists, first, in exhibiting an alge-
braic equation (essentially of the type given in Postulates (C,)-(C,)) which
is seen to hold identically in all generalized cylindric set algebras of dimension
o and, then, in constructing a cylindric algebra of the same dimension in
which this equation fails. A number of such equations are known at present;
the simplest of them (which works for every o = 3) is

€2(d20°Co(doy " €1(d12¢2X))) = €x(dyy ¢ (dyo°Co(doz " €2x))),
ie.,
saslsic,x = sisisdc,x.

In this situation it seems worthwhile to undertake a thorough study of those
algebras which can be represented isomorphically as generalized cylindric set
algebras. We call such algebras representable, for short, and by the represen-
tation theory we understand the totality of results concerning the class of
representable cylindric algebras. We could refer, more specifically, to the
representations discussed here as set-theoretical or geometrical representations,
in order to distinguish them from other representations of cylindric algebras
which are occasionally mentioned in this Foreword.

The following are among the more important results of the representation
theory which will be found in the second volume. Some rather simple and
interesting characteristic properties of representable algebras have been
established. For instance, it has been shown (rather unexpectedly) that a
cylindric algebra of dimension o is representable if and only if, for every
ordinal § > o, it can be embedded as a neat subreduct in some cylindric algebra
of dimension . This result permits us to derive various results of the represen-
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tation theory as direct corollaries from some theorems established in Section
2.6 of this volume. Notice that the characterization of a representable algebra
in terms of neat reducts, just like the characterization used in the definition
of such an algebra, is not intrinsic, in the sense that it involves mathematical
objects (in fact, certain cylindric algebras) from “outside” of the algebra
involved. However, it has been shown that for every o # O the class of re-
presentable cylindric algebras is a variety. Hence the representable cylindric
algebras can be intrinsically characterized by means of a system of algebraic
equations identically satisfied in all such algebras. For each « a suitable system
of equations has been constructed in an effective manner. For o = 0, 1, 2 the
systems turns out to be finite. It has been proved that for « > 2 each suitable
system must be infinite; no such systems known at present are provided with
a simple and perspicuous description. On the other hand, some rather general
and simple intrinsic conditions are known which are sufficient (though not
necessary) for an algebra to be representable. Thus some comprehensive and
simply defined classes of cylindric algebras prove to consist exclusively of
representable algebras; such is, e.g., the class of infinite-dimensional locally
finite algebras, as well as the wider class of infinite-dimensional algebras which
are semi-simple in the general algebraic sense. Certain fairly general methods
for constructing non-representable algebras have also been developed.

An outstanding open problem is that of exhibiting a class of cylindric algebras
which contains an isomorphic image of every cylindric algebra and hence serves
to represent the class of all these algebras, and which is at the same time
sufficiently “‘concrete” and simply constructed to qualify for this purpose from
an intuitive point of view. It is by no means certain or even highly plausible
that a satisfactory solution of this problem will ever be found.

In a portion of the second volume following the representation theory we
shall explore the connections between cylindric algebras and certain other
structures of related origin, primarily relation algebras and polyadic algebras.

A characteristic feature of the last portion of the volume will be the essential
role played in the discussion by notions and methods from the domain of
metalogic and metamathematics. In the first place the reader will find there a
detailed study of the relationship between cylindric algebras and predicate
logic. Thus, we shall establish the result, mentioned in an earlier part of this
Foreword, by which every special cylindric algebra, i.e., every locally finite
algebra of dimension @, can be isomorphically represented as a cylindric al-
gebra of formulas (in some formal language of predicate logic). This result
may be referred to as the metalogical representation theorem for special
cylindric algebras; it proves to be closely related to the well-known complete-
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ness theorem for predicate logic, due to Godel. We are also concerned with
other metalogical results about predicate logic, in particular those which can
be conveniently re-formulated in terms of cylindric algebras of formulas and
which in this new formulation express some interesting algebraic properties
of the algebras involved. By the metalogical representation theorem these
results extend at once to all special cylindric algebras. It may be interesting
to notice that, although the results thus extended are purely algebraic in both
form and content, no proofs of these results are available at present which are
not based, at least in part, on arguments of metalogical origin. Examples in the
opposite direction can also be given: some metalogical theorems concerning
predicate logic can be obtained most naturally as consequences of certain
results on special cylindric algebras which are proved by purely algebraic
methods.

The applicability of the metalogical representation theorems to the study of
special cylindric algebras suggests the idea of extending the notion of predicate
logic. In fact, it leads us to investigating new forms of this logic, which are
likely to yield analogous metalogical representation for various classes of non-
special cylindric algebras and thus to make metalogical methods available for
the discussion of these classes. We mention here three classes of cylindric
algebras for which the construction of suitable new systems of predicate logic
has brought interesting results, or at least has led to interesting problems.
These and some related classes, along with the corresponding systems of logic,
will be discussed in the last portion of the second volume, though not neces-
sarily in a detailed way.

The first of the three classes is that of locally finite cylindric algebras of
arbitrary infinite dimensions — thus, a natural extension of the class of special
cylindric algebras. The corresponding systems of predicate logic differ from
the ordinary systems at most in having more comprehensive sets of variables;
actually, systems are admitted in which the set of variables has any infinite
cardinality prescribed in advance. Obviously, the modification is not essential,
since the number of variables occurring in each particular formula continues
to be finite. As a consequence, the metalogical representation theorem and
other results previously mentioned extend with the greatest ease from special
cylindric algebras and ordinary systems of predicate logic to all locally finite
infinite-dimensional algebras and the modified systems of logic. Actually, in
our work all the results in question will be formulated and established from the
outset in this more general form.

The second class we have in mind is that of all finite-dimensional cylindric
algebras; the corresponding systems of predicate logic differ from the ordinary
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ones only in that each of them has but finitely many variables (the number of
variables serving in effect as a bound on the ranks of the predicates of the
system). The third class consists of infinite-dimensional cylindric algebras,
possibly with certain restricted completeness properties, i.e., algebras in which
the Boolean sum and products exist for every set of elements with cardinality
smaller than some infinite cardinal given in advance. The corresponding
logical systems are so-called systems of infinitary predicate logic, which pro-
mise to become important tools in the model-theoretical discussion of mathe-
matical structures. The most outstanding feature of these systems is the occur-
rence of formulas with infinitely many symbols. Not only may atomic formulas
be infinitely long, but some operations are admitted which always yield in-
finitely long formulas; such, in fact, are the operations of forming disjunctions
and conjunctions of a transfinite sequence of formulas (where the length of the
sequence is bounded from above by some fixed infinite cardinal). The relation-
ship between each of the last two classes of cylindric algebras and the corre-
sponding form of predicate logic is more complicated than in the case of
special cylindric algebras; the matter has not yet been thoroughly studied, so
that many important problems remain open. Naturally, then, our discussion
of this subject will be far from exhaustive.

To conclude, we shall mention still another group of problems which will be
studied in the last portion of the second volume. These are problems in which
various classes of cylindric algebras — or rather, more precisely, formalized
theories of such classes — appear, not as tools, but as subjects of metamathe-
matical investigation. Given a class of algebras (e.g., the class of all cylindric
algebras of a fixed dimension), the formalized theories which we discuss are
the elementary theory and the equational theory; the former is the set of all
elementary sentences, i.e., sentences formulated in predicate logic, which hold
in every algebra of the given class, while the latter is the (narrower) set of all
algebraic equations which hold in every such algebra. The problems with
which we are primarily concerned are those of decidability and finite axioma-
tizability of such theories. It will be seen from our discussion that the study of
the most natural and interesting problems of this kind, insofar as they concern
theories of cylindric algebras, has nearly been completed.

* & &

With the exception of the last portion of the second volume and some
fragments of Chapter 0, metamathematical (and metalogical) notions are used
in this work only in informal remarks and in the construction of certain
examples and counterexamples, but they do not occur in the statements and



FOREWORD 21

proofs of results. Normally a theorem formulated without the help of meta-
mathematical notions is provided with a proof in which these notions are not
involved; sometimes we shall return to the theorem in the last portion of the
second volume and show how it can be demonstrated by a different, meta-
mathematical method. There are, however, a few exceptional cases where we
are confronted with a purely algebraic result in the theory of cylindric algebras,
but where the only proof we know at present is a metamathematical one — at
least “in spirit”, if not in form; in such cases the theorem is stated without
proof at an appropriate place in the text, while its proof is given later, in the
metamathematical portion of our work.

It will be seen from these remarks that throughout this work we have been
at some pains to separate the algebraic from the metamathematical. In doing
so we have been motivated partly by the desire to make the bulk of the work
accessible to those readers whose knowledge of mathematical logic, and in
particular of that portion known as metalogic and metamathematics, may be
somewhat skimpy. But the procedure we have adopted has another, more
fundamental goal: the theory of cylindric algebras affords a means of investi-
gating the relationship between algebraic structures and logical systems, and,
in order to obtain a clear perception of this relationship, it seems quite essential
to keep each of these realms in distinct focus.

Nothing stated above implies that in our opinion there is any fundamental
difference between metamathematics and mathematics “proper”. Quite the
contrary: we believe that, from every reasonable point of view, metamathe-
matics is an integral part of mathematics. It is true that metamathematics
can be regarded as an autonomous mathematical discipline based upon its own
undefined notions and axioms. However, it can also be included, by means of
a suitable interpretation of its undefined notions, in a branch of mathematics
such as number theory (provided with a suitable set-theoretical basis) or set
theory. Metamathematics does not differ in these respects from other mathe-
matical disciplines, e.g., geometry. On the other hand, one could try to dis-
tinguish metamathematics from other mathematical disciplines by the peculiar
character of its subject matter: while, say, number theory deals with number
systems, in particular with the system of integers, and topology deals with
certain kinds of spatial configurations, metamathematics deals with logical and
mathematical disciplines themselves, or at least with those which have been
subjected to the process of formalization. One should not forget, however,
that what constitutes the subject of a mathematical discipline is often far from
being intuitively clear. For instance, as a result of the high degree of generality
and abstraction attained by present-day topology, the claim that certain kinds
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of spatial configurations form the subject of that discipline will probably be
doubted by many of those who work in it. For different reasons, one can wonder
whether three-dimensional analytic geometry deals with elements and parts
of a space, i.e., with points and sets of points, or with triples of real numbers
and sets of such triples characterized by algebraic equations.

Perhaps a more defensible means of distinguishing between mathematical
disciplines may be achieved by looking into the kinds of intuitions which
underlie their concepts and arguments, rather than by attempting to classify
their subject matters. From this point of view, for example, the theory of vector
spaces is essentially geometric in character, even though its theorems are
literally ““about” arbitrary elements and operations on these elements assumed
to satisfy certain algebraic identities. Similarly, one can discern specific in-
tuitions underlying metamathematical notions and arguments (although it is
not our intention here to analyze these intuitions). Thus, even if we had decided
to treat metamathematics consistently as a part of some classical mathematical
discipline such as number theory, and if we had translated all metamathematical
arguments into conventional number-theoretical terminology (concealing as
much as possible their metamathematical origin and content), this would not
by itself make our work more accessible to non-logicians. If a number-theorist
to whom metamathematical intuitions are foreign were to study such a number-
theoretical translation of a metamathematical proof, he would probably be
able to say at best that the argument seems to him technically correct, but
intuitively incomprehensible. For an analogous reason, although our intention
has been to provide purely algebraic proofs for those results not involving meta-
mathematical notions, we have avoided proofs which are algebraic in form, but
not ““in spirit”.

To conclude these remarks on mathematics versus metamathematics, we
should like to emphasize strongly our view that there is nothing objectionable
in principle to the use of metamathematical concepts and methods in establishing
algebraic results — just as there is nothing objectionable to the use of algebraic
techniques in solving metamathematical problems. Certainly there is an esthetic
satisfaction which derives from maintaining a sense of unity throughout the
development of a mathematical theory by avoiding any interposition of
extraneous concepts or methods. On the other hand, there is also undeniably
a feeling of astonishment, of intellectual excitement and challenge, which
accompanies the solution of a difficult problem in one scientific domain by
means of concepts and methods of another discipline thought to be very remote
and unconnected. This kind of cross-over, which is actually well known, seems
to be characteristic of contemporary mathematics and is probably one of the
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principal factors in preserving its unity against breakup by the centrifugal
forces of specialization. The phenomenon is abundantly illustrated in the theory
of cylindric algebras.

* * *

As is seen from the title page, this work is a joint effort by three authors.

The theory of cylindric algebras was founded by Tarski, in collaboration with
his former students Louise H. Chin (Lim) and Frederick B. Thompson, during
the period 1948-52. Soon thereafter Henkin became interested in the subject
and began to work with Tarski on its further development. In 1961 they
published a fairly extensive outline of their research, and the plan was first
formulated to prepare a detailed monograph on the subject. Subsequently
Monk’s substantial contributions to the theory made a joining of efforts
desirable, and thus the present team of authors was finally formed.

As regards the authorship of particular results incorporated in the work,
whenever these were first announced in an abstract, an article, or a doctoral
dissertation, whether by one or more co-authors or by others, the appropriate
citations are indicated by bibliographical references. Where a substantial result
appears here in print for the first time, we note its authorship by a direct
reference.

We wish to express our thanks to Gebhard Fuhrken, Bjarni Jénsson, and
Ralph McKenzie, who read parts of an earlier version of the work and made
many helpful suggestions. The authors have profited much from the devoted
work of several research assistants: Stephen Comer, Daniel Demaree, James
S. Johnson, Alan Kostinsky, Don Pigozzi, and Benjamin F. Wells III. We
feel impelled particularly to express here our deep gratitude to Pigozzi for
contributions far beyond the call of duty. Over a period of years he labored
on the technical preparation of the manuscript with devotion and care ex-
ceeding all our expectations. In the course of his labors he obtained many
specific results which we are pleased to be able to include in this work, giving
him, of course, explicit credit at the appropriate points; a number of them,
which will appear in the second volume of our work, form an essential part
of his doctoral dissertation. Over and beyond these major contributions, he
proposed illustrations, simplifications, and other minor improvements of the
original text in such abundance that any attempt to list them all would be
utterly impractical.

Able secretarial assistance was also an essential ingredient in the production
of the manuscript; here we credit Mrs. June Lewin, Mrs. Susan Moss, Mrs.
Dale Ogar, and Mrs. Mae Jean Ruehlman.
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PRELIMINARIES

We briefly discuss here the set-theoretical and metalogical notation which
will be applied throughout this work. A reader unfamiliar with the notions
introduced may find our discussion inadequate for understanding some of the
later material. In such cases he may wish to consult the books Suppes [60*]
(see the bibliography at the end of this volume), Bernays-Fraenkel [58%],
Monk [69*], and Sierpinski [65*] for further references on set-theoretical
matters, and Church [56*] for logical notions; the articles Tarski [54*], [55%],
and [65*] may also be of use in connection with the latter.

I. SET-THEORETICAL NOTIONS

As with most mathematical theories, the theory of cylindric algebras can be
adapted to any one of several underlying systems of set theory. We shall make
no effort to select a particular one and to exhibit in detail the development of
our algebraic theory within it. However, for the sake of definiteness the reader
may consider the well-known system of Bernays developed in Bernays-
Fraenkel [58*] or the one presented in Morse [65%]. Both systems can be
modified in various details so as to enhance their usefulness for our purposes.
In particular, Morse’s system presents certain peculiarities, the most striking
of which is the abolishment of all differences in the treatment of sentences and
class terms. For our purposes we prefer to deal with a more conventional
variant of Morse’s system, free of these peculiarities, as it is outlined in the
appendix of Kelley [55*] and developed in detail in Monk [69*]. With a few
exceptional points (which will be noted explicitly) this variant provides an
adequate framework for our developments.

In Morse’s (as well as Bernays’) system the universe of discourse is restricted
to those objects which are classes; we find it convenient to assume that this
restriction has been removed. The fundamental relation between objects is
that of membership. Any object, whether a class or not, which is a member
of some class will be referred to as an element. A class is called respectively a
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set, or a proper class, dependent on whether it is, or is not, an element. (This
distinction between two kinds of classes is a basic feature of both Bernays’
and Morse’s systems.) For instance, the class of all elements is a proper class.
Another example of a proper class, to which we shall frequently refer in this
work, is the class of Boolean algebras. In general the proper classes are “very
large”, since any class whose elements are in one-one correspondence with
those of a set is itself a set. Sometimes we shall speak of a family of sets instead
of a class of sets.

The formulas x, y, ... € 4 and x, y, ... ¢ 4 respectively express the facts that
X, y, ... belong — i.e., are members or elements of 4 — and do not belong
to the class 4. In this particular instance we have followed a common notational
convention which reserves the use of lower case letters to elements, never to
proper classes. However, we shall make no effort to observe this convention
rigorously throughout.

Given a formula @(x) we can consider those objects x which satisfy ¢(x);
i.e., for which this formula Aolds. We use the symbolic expression {x: ¢(x)} to
denote the class of all those elements x for which ¢(x) holds. Hence we have
ye{x:p(x)} iff yis an element and ¢(y) holds; here, as well as throughout
the monograph, we use “iff”” as an abbreviation for “if and only if”. If ¢(x)
holds for a proper class A, thus for a non-element, we have of coutse
A ¢ {x:9(x)}. In Morse’s system (as opposed to Bernays’ system) the class
{x:¢(x)} exists for each formula ¢(x). In a rigorous set-theoretical develop-
ment it is necessary to investigate for each formula ¢(x) whether or not the
class {x:¢(x)} introduced in the discussion is a set. In this work, however,
we shall make no explicit analysis of this kind; we shall simply treat the classes
denoted by expressions {x:¢@(x)} as sets whenever it appears intuitively ap-
propriate on the grounds that the set in question is not “too large”. Instead
of {x:¢(x) and Y(x)} we sometimes write {x:¢(x), Y(x)}, and similarly in
the case of more than two formulas. Also, in place of {x:x € 4 and ¢(x)} we
sometimes write {xeA4: @(x)}.

If 7(x) is a symbolic expression which represents an object for each value
of x satisfying ¢(x), then we let

AT(X):0(x)} = {y:y = 1(x) for some element x satisfying ¢(x)}.

The prescript x is necessary in principle because the expressions 7(x) and ¢(x)
may contain variables other than x. However, in these and analogous symbolic
expressions we shall omit the prescript whenever there appears to be no danger
of confusion. Similarly we let

w706 1)1 0(x, Y)} = {z:z = 1(x, y) for some x,y satisfying ¢(x, y)}.
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Note that in general the three expressions {7(x, y): ¢(x, »)}, ,{7(x, ¥): @(x, )},
and , {(x, y):¢(x, y)} have different meanings.
Using this notation we define in particular

= {x:x # x} (the empty set),
{x} = {y:y = x} (the singleton of x),
{x,y} = {z:z =x or z = y} (the unordered pair x,y),

etc. Inclusion and proper inclusion are represented by < and < respectively,
and their negations by & and ¢ ; the symbols 4 = B and B 2 A will be
used interchangeably, and the same applies to 4 = B and B o 4, etc. SbA
denotes the class of all subsets of A. Au B and A4 n B denote respectively the
union and the intersection of A and B. More generally, UC and NC denote
respectively the union and the intersection of all members of the class C. So,
in particular, MO is the universal class, i.e., the class of all elements; if however
in a given context we are dealing exclusively with subsets of a fixed class U,
then the notation M0 will be used to denote U. A still more general notation
than U4 and N4 is available. If 7(x) is an expression which denotes an object
for every value of x satisfying the condition ¢(x), we respectively denote by
U 7(x) and (N, 7(x) the union and the intersection of all those 7(x) which
are classes and for which x satisfies ¢(x). In this notation UA becomes U, _, x.
Further we let A ~ B = {x:x€ A4, x ¢ B} (the set-theoretical difference of 4
and B); in case B & A we refer to A ~ B as the complement of B with respect
to A and we sometimes use the alternative notation ,~B.

The ordered pair with first term x and second term y is the set {x,y) =
{{x}, {x, y}}; the ordered triple with first term x, second term y, and third
term z is defined to be <{x, y, z) = {{x, y), z); etc. By a (binary) relation we
shall understand a class of ordered pairs. By the above convention {{x, y):
@(x, y)} is the class of all ordered pairs {x, > satisfying the condition ¢(x, y).
Thus in particular {{x, y>:x = y} is the identity relation; we shall denote
it by Id. Consider further the relation {{x, y>:x < y}; this is what can be
called the inclusion relation. We shall not introduce any special symbol to
denote this relation, but we shall sometimes use the symbol < for this purpose
(although this symbol was originally introduced only in the context 4 < B,
and not to denote any specific set-theoretical entity). We shall apply the same
convention to other formulas of the form x¢y (where ¢ is a single symbol)
which will be introduced in our further discussion: we shall use ¢ as a relation
symbol-denoting the relation {{x, y)>:x¢@y}, so that, in case x and y are ele-
ments (and not proper classes), the formula x¢@y becomes equivalent to
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{x,y) € @. Conversely, if R is a relation we shall sometimes use xRy instead
of {x, y> € R. Instead of “x¢y and y\z”* we shall often use for brevity “xoyyz".
For any classes 4, B, C, ... we write

AxB = {{x,yy:x€ 4, ye B},
AxBxC = (AxB)xC,

etc. A x Bis called the product (or the Cartesian product) of A and B. For any
relations R and S we let

R|S = {{x, z): for some y, xRySz} (the relative product of R and S).
For any relation R we let

R™' = {{x, y)y:yRx} (the converse of the relation R);

DoR = {x: for some y, xRy} (the domain of the relation R);

RgR = {y: for some x, xRy} (the range of the relation R);

FdR = DoRU RgR (the field of the relation R).

Given any relation R and class 4 we let
ATR = {{x, y>:x € A, xRy} (R domain-restricted to A);
R*A = {y: for some x, xe 4 and xRy} (the R-image of A);

we also put R*x = R*{x}.

A function is a relation f such that for every x € Dof there is exactly one y
with {x, y> e f. This unique y is referred to as the x* value of f and is denoted
usually by fx; alternative notations are f(x), f,, =, f©, ete. If t(x) is an ex-
pression which denotes an element for each element x satisfying ¢(x), then
{{x, 7(x)>: @(x)} is clearly a function; as an abbreviated notation for this
function we shall use ,{t(x): ¢(x)), or sometimes . {t(x)}, - (The prescript x
will be omitted from these notations whenever there appears to be no danger
of confusion, in particular when x is the only variable appearing in the ex-
pressions 7(x) and ¢(x).) Moreover, we adopt a convention which allows us
in some cases to obtain an even shorter designation for this function. This
convention is analogous to the one adopted above for introducing relation
symbols. Instead of formulating this convention in general terms, we shall
explain it by examples. The symbol Sb was originally introduced, not to denote
a set-theoretical entity, but as a part of symbolic expressions such as SbA
denoting the class of all subsets of the class A. As is known from set theory,
Sbx is always a set when x is an element. Hence {Sbx:x is an element) is a
function whose domain is the universal class. According to our convention,
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we may use the same symbol Sb to denote this function, so that Sb = (Sbx:x is
an element). Similarly, in the expression R¥x (or R*4) neither * nor R*
were supposed heretofore to denote any set-theoretical entity. Our convention,
however, permits us to use R* as a function symbol denoting (R*x:R*x is
an element). For each relation R this is a function whose domain consists of
all those elements x for which R¥*x is also an element. Thus, if D is this
domain, we have R*X = (R*x:x e D). Of course, if f is introduced from the
outset as a function symbol, we have analogously f = {fx:x e Dof). It is
important to note that in connection with the symbolism {z(i):i e I’>) mathe-
maticians frequently use a different terminology (and we shall follow here this
custom). They speak of S = (z(i):iel), not as a function with domain I,
but as a system of elements 1(i) indexed by I (or by arbitrary elements i of I);
the element (i), i.e., the i value of S, is referred to as the i term of S and
is denoted much more frequently by S; than by Si. The difference is, of course,
purely verbal.

If Dof = A, we say that fis a function on 4. When dealing with functions
we use instead of relative multiplication the dual operation o called composition;
thus, if / and g are functions, then fog is also a function, f-g = g|f, and
(fog)x = f(gx) = fgx for any x € Do(f-g). If both f and f~' are functions
we say that f is one-one, and we refer to f~* as the inverse of f. If Dof = A
and Rgf = B, or Rgf < B, we say that f is a function from A onto B, or
into B, respectively; we also say that f maps 4 onto B, or into B.

Further, we let

4B = {f:fmaps A4 into B}.

4B is referred to as the (Cartesian) power of the set B with the exponent A or,
more simply, the A™ (Cartesian) power of B. If f is a one-one function from
A onto B, we also say that f establishes a one-one correspondence between
the elements of 4 and the elements of B. If 4 and B are sets we can express
this symbolically by the conjunction of the formulas fe“B and f~' e ®4.
If in particular fe“4 and f~' €44, fis called a permutation of A.

By the axiom of choice we mean the statement that for every class A4 of
non-empty sets there is a function F such that Fx e x for each x € 4. Through-
out the work we shall apply the axiom of choice whenever needed.

Given a function F we define PF, the (Cartesian) product of the function F,
by the formula

PF = {f: Dof = DoF, f,eF,for all aeDof}.

If in particular F = {t(x): @(x)), we use the notation PF = qu,(x)'c(x), and
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we refer to PF as the (Cartesian) product of all the sets t(x) with x satisfying
¢(x). If A and B are sets and F is the constant function with DoF = A and
RgF = {B}, then PF coincides with “B, the A™ Cartesian power of B. If F
is a function whose domain is a set and whose range consists exclusively of
non-empty sets, then PF # 0 by the axiom of choice.

For any given ge PF the set P of all fe PF such that f, # g, only for
finitely many a € Dof is called a weak (Cartesian) product of F or, specifically,
the weak (Cartesian) product of F relative to g. Again, if F is the constant
function with DoF = A and RgF = {B}, then P is called the A™ weak (Car-
tesian) power of B relative to g. These notions are rather rarely used, and we
do not introduce any special symbolic notation for them.

With every element a we correlate a function pj, called the a™ projection
and defined by the formula

Pia = ;< f,:fis a function, ae Dof >;

thus Do pj, is the class of all functions f suchthat a € Dof, and for every such
function f we have pj,f = f,. By this stipulation (P,,4;)1pj; is a function
from P, A4; onto A4;, provided 4; # 0 for all jeI ~ {i}.

An equivalence relation is a relation R which is transitive and symmetric
(i.e., R|IR = R and R™' = R). An equivalence relation R with field 4 is
always reflexive over A (i.e., A1Id = R). In connection with equivalence
relations R with field 4 we often use special notations. Namely, we write x/R
instead of R*x for x € 4, X/R instead of (R*)*X for X < 4, and in parti-
cular A/R instead of (R*)*4; x/R is called the equivalence class under R
(the R-equivalence class) containing x, or correlated with x. Similarly we let
S/R = {{x/R, y/R):xSy} for any relation S < 4 x 4. The notion of an
equivalence relation can be characterized in terms of R* by the following
condition: for all x, y € FdR, R*x = R*y iff xRy. Thus if R*x is a set for
every x € FdR, then R* is a function whose domain includes Fd R and which,
loosely speaking, “identifies” any two elements of FdR between which R
holds. However, even in case RXx is a proper class for some x’s in FdR, we
can still correlate with R a definite “identifying” function, namely a function
Tz whose domain is FdR and which satisfies the condition: zzx = 75y iff
xRy, for all x, y € FdR (for a possible definition of such a function see Mon-
tague-Scott-Tarski [72*]). For x € FdR the set tyx is called the R-fype of x.

Two classes X, Y are called disjoint if X nY = 0. A partition of a class 4
is a family P of pairwise disjoint non-empty subsets of 4 such that UP = 4;
thus the only partition of the empty set is empty. If P is a partition of 4 and
R = {{x,y)>:x,ye M for some M € P}, then R is an equivalence relation
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with field 4. Under the assumption that A4 is a set, the converse also holds:
if R is an equivalence relation with field 4, then A/R is a partition of 4, and
a one-one correspondence between partitions of 4 and equivalence relations
over A has been established.

A relation R which is reflexive over its field, anti-symmetric, and transitive
(i.e., (FAR)1Id = R, RanR™' = Id, and R|R < R) is called a partially order-
ing relation or a partial ordering. We frequently use the symbol < (or a symbol
of related shape) to represent a partial ordering R and the symbol = to re-
present its converse R~ (which is also a partial ordering). The most typical
example of a partial ordering is the inclusion relation <. An extensive termi-
nology has been introduced in the discussion of partially ordering relations.
Thus given any such relation R we say that an element z is an upper bound
(strictly speaking an R-upper bound), or a lower bound, of the elements x and y
if, respectively, xRz and yRz, or zRx and zRy. More generally we say that z
is an upper, or lower, bound of a class 4 if xRz, or zRx, for every x € 4. An
upper bound z is called the least upper bound if zRu for any other upper bound
u. If the least upper bound of a class 4 belongs to 4, it is referred to as the
greatest element of A. A maximal element of a class A is an element x e 4
such that x = y whenever xRy € 4. Analogously we define the notions of
greatest lower bound, least element, and minimal element. A partial ordering R
is said to be upper directing, or simply directing, if any two elements x, y € FdR
have an upper bound; it is said to be a lattice ordering, or a complete lattice
ordering, if, respectively, any pair of elements x, ye FdR, or every class
A < FdR, has both a least upper bound and a greatest lower bound. If Ris a
complete lattice ordering, then clearly FdR has least and greatest elements.

A partial ordering R is called a simple ordering if it is connected (i.e.,
(FdR) x (FdR) = RUR™1); it is called a well ordering if every non-empty
class 4 < FdR has a least element.

R being a partial ordering, every class 4 & FdR is said to be partially
ordered by R. In an analogous sense we say that A4 is directed by R, A is simply
ordered by R, etc.

We shall sometimes use a set-theoretical principle known as Zorn’s lemma,
which is known to be equivalent to the axiom of choice. By Zorn’s lemma,
if 4 is a non-empty set partially ordered by a relation R, and if every subset
of A simply ordered by R has an upper bound in A, then 4 has a maximal
element.

Ordinal numbers, sometimes briefly called just ordinals, are denoted by
lower case Greek letters «, B, 7, ..., and sets of ordinals by upper case Greek
letters I', 4, ©, ... . We assume that the notion of an ordinal has been defined
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in such a way that all ordinals are sets, every element of an ordinal is an
ordinal, and the class of all ordinals is well-ordered by the membership
relation €. £ < 5 (n > £) means by definition that £ and 5 are ordinals and
Een,and & £ (n = &) means that £ < 5 or else £ = g and ¢ is an ordinal.
Consequently every ordinal coincides with the set of all smaller ordinals;
& un proves to be the larger and £ ny the smaller of two ordinals &, . The
sum of two ordinals ¢ and # is denoted by ¢ + 5. The least ordinals are of
course 0, 1 = {0}, 2 = {0, 1}, etc. The least ordinal which is different from
0 and for which no immediately smaller ordinal exists is denoted by w.

If I' is a set of ordinals, then UT is the least upper bound of all ordinals in I"
with respect to the relation <. Since every ordinal y is also a set of ordinals,
we can consider in particular Uy. Tt is easily seen that Uy coincides with the
immediate predecessor of y if such an immediate predecessor exists, and other-
wise with y itself; thus the formula Uy = y expresses the fact that y is a limit
ordinal (not excluding the possibility that y = 0). If I" is any non-empty class
of ordinals, then MNI" proves to coincide with the least ordinal in I'.

It is known that every set 4 can be mapped in a one-one way onto an ordinal;
the least such ordinal is called the cardinality, or power, or the number of ele-
ments of A, and is denoted by |4|. An ordinal « is said to be a cardinal number,
or simply a cardinal, if o = |a|. A set A is called finite, or infinite, dependent
on whether 4] < o, or |A| = w; it is called denumerable if |A| = o, and
countable if [A] £ o. Finite ordinals coincide with finite cardinals; we identify
them with natural numbers (non-negative integers). Thus e is the set of all
natural numbers 0, 1, 2, ... . With every ordinal ¢ we correlate an infinite
cardinal @, by the following stipulations: @, = @; for £ # 0, @, is the least
cardinal greater than all @, with n < . It turns out that every infinite cardinal
can be represented in the form o, for some &.

The notions of the ordinal sum o+, product «-f, and power o of two
ordinals o and B are assumed to be known, and so are the corresponding
cardinal operations (restricted to the case when « and f are cardinals). We
do not need special symbols for the cardinal sum and product of cardinals
o and B since they coincide respectively with the ordinal sum and product in
case both o and f are finite or at least one of them is 0, and in the remaining
cases both the cardinal sum and product equal «Uf; in case « =0 or § =0
we can use, of course, o+ f§ or auf interchangeably to represent the cardinal
sum of o and f. On the other hand, we shall use the symbol o ambiguously,
denoting by it either the ordinal or the cardinal power (the latter, of course,
only in case both « and f are cardinals); if it is not quite clear from the context
in which sense the symbol is used, we shall expel possible doubts by an ex-
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plicit remark. The successor of a cardinal «, i.e., the least cardinal >, is
denoted by o™; thus if « is finite, then «™ = a+1, and if « = w,, then
a* = wgyq. By continuum hypothesis we understand the statement that
2% = w,; by the generalized continuum hypothesis, abbreviated €, the
statement that 2* = o™ for every infinite cardinal «. As is now known (see
P. J. Cohen [63*], [64*]), neither hypothesis can be confirmed or refuted on
the basis of the familiar axiom systems of set theory.

By an a-termed sequence or a sequence of length o we understand any
function f such that Dof = o. If a sequence (as a function) is one-one, then we
refer to it as a sequence without repeating terms or without repetitions. When
using this terminology we usually write f; instead of f¢ and we call f; the
& term of the sequence f; i.e., we treat a sequence of length o as a system
indexed by «. The set of all a-termed sequences f with Rgf < A coincides
of course with “4. For any a-termed sequence x we have x = (x,;:¢ < a) =
(Xg)e<q We also sometimes use the notation x = {xg, ..., Xz, ... Dz<,, as well
as X = {Xg, ..., X,—1y in case 0 < o < o. Analogously the range of the
sequence x is expressed by {Xg, ..., Xz ... Je<s OF {Xg, ..., X,_1}. By (a),
{a, b), etc. we respectively denote the 1-termed sequence x with x, = a, the
2-termed sequence x with x, = @ and x; = b, etc. In many situations we can
identify a 1-termed sequence {a) with the element ¢ without causing any
confusion. The expression <{a, b) is of course ambiguous and can be inter-
preted as denoting either an ordered pair or a 2-termed sequence. For most
purposes it is irrelevant which interpretation is meant, because the principal
property needed for the notation is that, for any x, y, 4, and v, {x, y> = <{u, v
iff x = u and y = v, and this property holds both for ordered pairs and for
2-termed sequences. Notice that under the second interpretation the Car-
tesian product Bx C of two sets B and C falls as a particular case under the
general notion of the Cartesian product P4 of a system A of sets; in fact we
have P{B, C) = BxC. If fis a function with domain Bx C, and xe Bx C
with x, = y and x; = z, then we use interchangeably the expressions fx,
Ky 2, [, and f(p, 2). If x is an o-termed and y a B-termed sequence, then
by the concatenation x"y of x and y we understand the («+ f)-termed sequence
z such that z; = x; for { < wand z,,, = y, for & < f. There is a consequence
of the axiom of choice known as the principle of dependent choices which it
is convenient to formulate in terms of sequences. According to this principle,
if R is a binary relation, 4 is a non-empty set, and if for every x € 4 there
is a ye 4 such that xRy, then corresponding to each a € 4 there is an -
termed sequence <{x,),., of elements of 4 such that x, = a and x, Rx,,
for every k¥ < . It is sometimes convenient to apply this principle rather
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than the axiom of choice itself; see, e.g., the proof of 2.4.25. For certain
purposes it proves convenient to have an extended notion of an a-termed
sequence and, more generally, of a system indexed by a class I, in such a way
that not only elements but also proper classes may appear as terms of a system.
To define these new notions let us agree to denote by X either X itself in
case X is a proper class, or else {X} in case X is an element. A relation S
will now be called a system indexed by I (in the new sense) if DoS = I and,
for every iel, S*i = X for some X; given i eI, X is called the i term of S
if S*i = X. In case I is an ordinal o we refer to S as an a-fermed sequence;
in case o = 2, 3, ... we may call S an ordered couple, triple, ... and may even
use the notation S = {4, B), S = {4, B,C), ..., where A is the 0" term
of S, B the 1% term, etc. (assuming it is clear from the context that this notation
is not used in the old sense). Obviously there is a natural one-one correspon-
dence between systems in the old sense and those systems in the new sense
in which no term is a proper class. The use of the new notion in our discussion
will be very restricted. Compare an analogous construction in R. M. Robin-
son [45%], applied to systems of set theory in which no individuals are admitted.

Any class of a-termed sequences is referred to as an a-ary relation. Note
that, since 0 is the only O-termed sequence, 0 and 1 are the only 0-ary relations.
By the field of an o-ary relation R we understand the set U__ Rgx; this is
the least class 4 such that R < “4. A relation whose field is included in 4
is called a relation on A. By the characteristic function of an a-ary relation R
on a class A we understand the function H defined by the formula H =
(Rx{1})u((*4 ~ R)x {0}), i.e.,, the function H with DoH = *4 such that
Hx =1if xeR and Hx = 0 if xe”4 ~ R. If R is an a-ary relation, then
o is referred to as a rank of R. A non-empty relation R uniquely determines
its rank, so that we can speak of the rank of R. Unfortunately, the empty
relation has every ordinal as a rank. This is a cause of some inconveniences.
Restricting ourselves to relations on an arbitrary non-empty class 4 fixed in
advance, we can avoid these inconveniences by means of the following obser-
vations: We notice that, if H is the characteristic function of some R which,
for some a, is an «-ary relation on A4, then « as well as R is uniquely determined
by H; thus « can be referred to as the rank of H. We also notice that for every
o there is a one-one correspondence between «-ary relations on A and their
characteristic functions. Thus we can redefine the notion of an «-ary relation
on A simply by identifying them with characteristic functions, and in this
way every o-ary relation on A4 will have a definite rank; see, for instance,
Fraissé [54*]. The only essential difference between the old and the new notion
of an a-ary relation on A is that under the new conception we have many
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copies of the old empty relation, one copy in each rank. Whenever in our
further discussion we shall speak of the rank of a relation on 4 without
assuming that R # 0, the reader should bear in mind the possibility of re-
defining the notion of a relation on 4 in the way just indicated.

Given an ordinal « and a non-empty class 4, by an «-ary operation on A
we understand any function O from “4 into 4, i.e., in case A4 is a set, any
member of “4. For an o-termed sequence x = {Xo, ..., Xz, ...)z<, We fre-
quently write O(Xo, ..., X¢, ...)¢<, instead of Ox; the notations O(x,:¢ < o)
and O(x,, ..., x,_1) (in case 0 < a < ) are similarly understood. If O is an
a-ary operation on A for some « and 4, then « is uniquely determined by O;
we call o the rank of O, in symbols pO = «. We say that a class B is closed
under O if O*(*B) € B < A. For o =1, 2,3, ... we speak of unary, binary,
ternary, ... relations and operations. In general an «-ary relation or operation
is called finitary if « < . The term “binary relation” is of course ambiguous,
but from what was pointed out before this ambiguity can hardly lead to any
confusion. As examples of binary operations on the class of all sets we may
mention the operation U of forming union and the operation n of forming
intersection. (Thus we extend to binary operations the conventions for intro-
ducing relation and function symbols which were previously stated.)

With every a-ary operation O on a class 4 we can correlate an (x+ 1)-ary
relation R with field = 4 by letting R = {x"<{Ox):xe“4}. (If « # 0, the
field of R is actually equal to 4; if « = 0 and A4 # 0, R is of the form {{a)}
and so its field is in general not equal to A.) This correlation is of course
one-one; in certain situations it proves convenient to identify a-ary operations
with the correlated (e + 1)-ary relations.

Every binary operation O on a class 4 can be extended in a natural way to
an operation on finite sequences x = {X,, ..., X, of positive length with
all terms x, in 4. The result of this extended operation is denoted by x,0...0x,_,
or sometimes by x,0x,0...0x,_; we define recursively

%00...0x,,_1 = xo for k = 1,
X00...0x, 1 = (%,0...0%,._,)Ox, _; for © > 1.

(We may say that this extension is made by association to the left; in general
there are also other, equally natural but not equivalent, ways of extending
the operation O.) Thus starting with the binary operation x we arrive at the
notion of the Cartesian product 4, x...xA,._; of sets 4, ..., 4.—¢. In a
similar way, starting with | and - we arrive at the notions of the relative product
Ryl...|R._; of relations Ry, ..., R,_; and the composition fyeo...of,_; of
functions f, ..., fy—1. For any x e Do(fye...of,~1) We can write fy...fi_ (X
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instead of (fye...of,—1)x. In case R, = S, or f; = g, for all 1 < x we let
Ry|...|Re_y = S™ (the k™ relative power of S), or fy..fi—1 = g™ (the ™
iteration of g).

In informal discourse we shall often use the term “operation” in a much
looser sense than in the above discussion. Thus, for example, we shall apply
this term to any function whose domain consists of arbitrary systems {x;:iel)
with {x;:iel} < A4, or of sets X < A, and whose range is a subset of 4
or sometimes even a subset of SbA.

An element of “4 is called a transformation of A. By a finite transformation
of a set A we understand a function e “4 such that the set B = {x:x € 4,
fx # x} is finite. Since (4 ~ B)1f = (4 ~ B)1Id, f is uniquely determined
by its restriction B f. If Bis represented as the range of a finite sequence without
repeating terms, B = {x 1k < v}, and if fx, = y, for every x < v, then the
finite transformation f'is denoted by [x,./y. 1 < v]4 or [x¢/Vos «-os Xy—1/Vy—1la-
(We usually omit the subscript , in the expression [x¢/Vo, ...» Xy—1/Vy—1]4-)
As particular cases of the general notation we use in the obvious sense the
expressions [x/y], [x/y, x'[y'] where x # x', etc. The transformation [x/y] is
called a replacement on A or, more specifically, the replacement of x by y in A;
[x/y, y/x] (with x # y) is called a fransposition on A or the transposition of x
and y in A. It is easily shown that every finite transformation of A can be
expressed as the composition of a finite sequence of replacements and trans-
positions. In certain portions of this work we shall deal with finite trans-
formations of an ordinal or a set of ordinals. In such a case we shall assume
that B has been represented as the range of a strictly increasing sequence of
ordinals; ie., B = {{.:k <v} where & < & < ... < &,_;. Under this
assumption the representation f = [Eo/no, ..., &,—1/n,—1] (Where n, = f&, for
K < v) is uniquely determined by the finite transformation f and we can refer
to it as the canonical representation of f.

By a relational structure we understand an ordered triple U = {4, R, O)
where 4 is a non-empty set, called the universe of A, R = (R;:iel) is a
system of finitary relations on 4, and O = (0;:je J) is a system of finitary
operations on A4. Instead of {4, R, O} we shall sometimes write {4, R;, 0,1 ic;-
We do not exclude the possibility that I or J is empty, in which case we write
{4, O) or {4, R). Since v-ary operations on 4 can be identified with special
(v+1)-ary relations on A, there would be no loss of generality if we restricted
ourselves to relational structures of the form {4, R); however, the use of the
notation {4, R, O) proves to be more convenient in many situations. If R
equals (S, or {S, T, etc., and J is empty, we write {4, S), or {4, S, T),
etc. instead of {4, R, O), and similarly in other analogous cases. (The reader
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may have noticed that our symbolism here, as well as in some other places,
is not unequivocal; since, for instance, we do not have any fixed stipulations
concerning the use of the variables R, O, S, T, ..., the expression {4, S, T
may represent either an arbitrary relational structure just as {4, R, O), or
a special structure {4, R, O) in which R = (S, T) and O = 0. We hope,
however, that in each individual case the meaning of our symbolic expressions
will be unambiguous.) When discussing a finitary relation S # 0, it is for the most
part irrelevant whether we consider S itself or the relational structure <4, S
in which 4 = FdS, e.g., instead of discussing partial orderings, or simple
orderings, or well-orderings, S we can discuss the corresponding structures
{4, S) called respectively partial ordering, or simple ordering, or well-ordering
structures. Two relational structures <4, R;, 0> ;.; and <A', R, O3, 1 iy
are called similar if I = I', J = J', any two relations R; and R} with i e[ are
of the same rank, and so are any two operations O; and O} with je J.

A relational structure {4, O;),_, in which all the operations O; are of posi-
tive rank is called an algebraic structure, or an algebra. (The exclusion of
operations of rank 0 is not essential, but proves convenient for our purposes.)
A general discussion of algebraic structures will be found in Chapter 0 of this
work. The subsequent chapters will be devoted to a detailed study of a special
kind of algebraic structures, namely cylindric algebras. It should be noticed
that various terminological conventions, notions, and results in Chapter 0
can easily be extended to arbitrary relational structures; see, e.g., the remarks
in 0.1.3, the notions of isomorphism in 0.2.1 and isomorphism type in 0.2.12,
and the discussion of direct products in Section 0.3.

With every well-ordering structure {4, S} we can correlate an ordinal «
by the following condition: there is a sequence x of length « such that Rgx = 4
and such that, for any ordinals £, n < o the formulas ¢ < n and x.Sx, are
equivalent. The ordinal uniquely determined by this condition is called the
order type or, simply, the fype of the structure (4, S. We often refer to « as
the (order) type of the set 4 under the relation .S (where an explicit reference
to S is occasionally omitted). The notion of an order type is usually intro-
duced in a more general way so that it applies to arbitrary simple ordering
structures; it is then defined as a particular case of the notion of isomorphism
type.

Besides the relational structures just considered, which should properly be
called first-order relational structures, we can also consider second-order re-
lational structures, such as pairs (4, R) where A is a non-empty set and R
is a system of finitary relations with fields included in Sh 4, triples {4, R, O)
where {4, R) is as before and O is a system of finitary operations on Sb4,
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and others; analogously we can consider third and higher-order relational
structures.

Two important examples of second-order structures are closed-set structures
and closure structures. A closed-set structure is a pair (4, F) satisfying the
conditions: F < ShA, and NL e F whenever L = F (so that, in particular,
A = N0eF). F is called the family of closed sets of the closed-set structure
{4, F). A closure structure is a pair {4, C) which satisfies the conditions:
C is a unary operation on SbA; X € CX = CCX; whenever X = Y < 4
we have also CX < CY. Cis called the closure operation of the closure structure
{4, C>. There is a close connection between these two kinds of structures. In
fact, with every closed-set structure % = {4, F) we can correlate a closure
structure A* = (A4, C) by letting CX = N{Y: X < Y e F} for every X < A.
This correlation proves to be one-one, and given a closure structure UA* =
(A, C> we can recover the closed-set structure U = {4, F> with which A*
is correlated by letting F = {X:CX = X € A}. A closed-set structure
A = {4, Fy is called inductive if UL € F for every non-empty subfamily L
of F directed by inclusion. Analogously, a closure structure U = {4, C) is
called inductive if C(UL) = U{CX:X e L} for every non-empty subfamily L
of Sb A directed by inclusion. Under the correlation described above inductive
closed-set structures go into inductive closure structures and conversely. A
closed-set structure A = (A4, F) is called complete if UL € F for every non-
empty subfamily L of F; such structures are correlated with complete closure
structures, i.e., closure structures {4, C)» in which C(UL) = U{CX:X e L}
for every non-empty L < SbA. Obviously, complete closed-set structures are
inductive, and similarly for complete closure structures. As we shall see in
Chapter 0, several important instances of closed-set structures and closure
structures are involved in the general theory of algebraic structures.”

To finish this survey of set-theoretical notions we discuss the notion of a
filter. A filter on a set A is a family F < SbA such that: (i) A€ F, (il) BnCe F
whenever B, Ce F, and (iii) C e F whenever Be F and B C < 4. F is
called principal if it has the form {X:B < X = A4} for some B & 4. F is
proper if F < SbA. An ultrafilter on A is a proper filter F on A such that
either Be F or 4~ Be F for every B = A. Every proper filter is included in
an ultrafilter, and consequently non-principal ultrafilters exist on every infinite
set. A family F < ShA has the finite intersection property provided that

1) Inductive closure structures were first considered in Tarski [30*], where the additional
assumption |4| = w occurs which is, however, of no consequence for most of the notions
and results there. See also J. Schmidt [52*], [53*].
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ML # 0 for every finite subset L of F. Every family with the finite intersection
property is included in a proper filter and hence in an ultrafilter.

II. METALOGICAL NOTIONS

Various metalogical notions will be involved in the discussions of this work;
all of them concern the well-known first-order predicate logic. The role of
these notions in our development is twofold. On the one hand, as mentioned
in the Foreword, cylindric algebras have been specifically designed as an
algebraic apparatus for studying predicate logic. On the other hand, when
discussing cylindric algebras, or for that matter any other kind of algebraic
structures, we usually base the discussion on a broad set-theoretical basis
without restricting ourselves to any specific formal language; frequently how-
ever we are interested in the most fundamental and elementary part of the
theory of these algebras, which can be developed without set-theoretical
apparatus and can therefore be formalized within predicate logic.

We begin with the description of the language of predicate logic or, as it is
frequently called, the first-order predicate language. Actually we will consider
not one language of predicate logic but a whole variety of such languages with
essentially the same structure. The basic components of each of these languages
(as of any other formal language) are symbols and (symbolic) expressions.
Expressions are treated as finite sequences of symbols, and symbols are syste-
matically identified with expressions of length 1. The fundamental operation
by which we form compound expressions from simpler ones is that of con-
catenation.

The set of symbols may be called the vocabulary of the language. It is divided
into four disjoint sets: the variables, the logical constants, the relation symbols
(also called predicates), and the operation symbols; symbols of the last two
sets are sometimes referred to jointly as non-logical constants. We may assume
that the form of the symbol determines to which of the four sets it belongs.
The variables are thought of as forming the set of all terms of a sequence
0 = {Vg, ..., Vg, ...)¢<, Of an arbitrary length «. Analogously, the relation
symbols are represented as the terms of a system I' = {(I';:iel) and the
operation symbols as the terms of a system 4 = {(4;:jeJ) with arbitrary
index sets I and J. The set X of logical constants, the sequence v, and the
systems I and A4 actually determine a given language A of predicate logic;
we can denote this language by A; . .. Conversely, a language A uniquely
determines the set of logical constants, the sequence of variables, and the
systems of relation symbols and operation symbols from which its expressions
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are formed. (If we wish, we can identify A with the ordered quadruple
(Z, v, I', 4}, thus interpreting the term “language” in a rather unusual
way.)

It seems convenient to assume that essentially the same symbols are used as
variables in all languages. More precisely, if vy, ..., Vs, ...D:<, and vy, ...,
D}, ---Ds<, are the sequences of variables in languages A and A’, then vy = v;
for every ¢ which is less than both « and o'. Thus, with every ordinal £ a
definite symbol is correlated which we shall denote by v, and in every
language A the sequence of variables is (v, ..., U, ... )s<, for some «; thus
only « varies from one language to another. For most purposes, however,
we can stipulate that « = ; in our further discussion, unless specified to the
contrary, this stipulation will always be tacitly assumed, and all references
to « will be omitted. For the first terms of the sequence v we introduce a typo-
graphically more convenient and somewhat shorter notation: x = v,, y = vy,
etc.

We assume that 2 consists of seven symbols: three sentential connectives —
the disjunction symbol A, the conjunction symbol K, and the negation symbol N —,
the existential quantifier Q, the equality (identity) symbol E, the truth symbol T,
and the falsehood symbol F. With the first five of these symbols we correlate
operations on expressions. In fact, for any two expressions ¢ and ¥ we put

OV Y = A" (the disjunction of ¢ and Y);
@AYy = K°p™ (the conjunction of ¢ and );
furthermore given any variable v and any expression ¢ we let
-9 = N°¢  (the negation of @);
3,0 = 00" (the existential quantification of ¢ with respect to v).

Thus, for every variable v, 3, is a unary operation on the set of expressions.
The operation correlated with the equality symbol will be discussed later.
Actually in the whole subsequent discussion we shall use not the metalogical
designations 4, K, ... of logical constants but the designations of the correlated
operations v, A, ... . (Note that in a disjunction @vy or a conjunction @AY
the sentential connective is assumed to precede the expressions ¢ and . Due
to this assumption we avoid the need for introducing parentheses in our formal
language; see fukasiewicz [63*].)

In terms of these operations we define several related operations on ex-
pressions. For any given expressions ¢, { and any variable v we let
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@ =Y = (m@) v Y (the implication with hypothesis ¢ and conclusion );
ey = (0> Y)A Y > @) (the equivalence between ¢ and );
V.o = =3,-¢ (the universal quantification of ¢ with respect to v).

The composition of finite sequences of existential quantifications 3, , ..., 3, _,
or universal quantifications V...,V ., will be denoted respectively by
auo“.u,c_l’ or Vuo...v,c_f

It should be emphasized that we can simultaneously modify in various ways
the set of logical constants for all languages of predicate logic if such a modifi-
cation proves convenient for certain purposes. For instance, we can omit one
of the sentential connectives 4 and K, say K, and define the operation A in
terms of the operations - and v: @ A Y = =(=¢@ v —y). Or we can add a new
sentential connective, say the implication symbol C, and define the operation
— in its terms: ¢ = ¥ = C @ y. Or, finally, we can either replace the exis-
tential quantifier by the universal quantifier or include both quantifiers in
the set 2.

Since we have agreed to use the same symbols for variables and logical
constants in all languages, a language A turns out to be determined entirely
by the systems I and 4 of relation and operation symbols, and possibly by
the length « of the sequence of variables. We can thus use a simplified notation:
A=A,  and even A = A, 4 in case o = o.

As regards the operation and relation symbols we stipulate that with each
of them some finite ordinal is correlated which is called the rank (place-
number) of the symbol; we may assume that the rank of the symbol can be
decoded from its form. Operation symbols of rank O are called individual
constants. With every operation symbol 4; of rank x # 0 we correlate a

k-ary operation 4; on the set of all expressions, defined by the formula

n

A
_ A N
A(0gs ooy Oq) = A4;706"...00 4

for any sequence <oy, ..., 0,1 of expressions. If 4; is of rank two we shall

most often write 6,4 ;0, instead of 4;(c, g). The sign over 4; will frequently
be omitted if this omission does not seem to cause any confusion. The inter-
section of all sets of expressions which contain all the variables and individual

constants as elements and are closed under the operations AAj correlated with
all the operation symvols 4; of positive rank occurring in the language A is
called the set of ferms and is denoted by Tu™ or simply 7. In some situations
it is convenient to make evident the dependence of the set 7u™), not on the
whole language A, but only on the number « of variables occurring in A. In
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such cases we shall denote this set by Tu® and we shall refer to its elements
as a-terms. A similar notation will be applied when needed to other symbolic
expressions introduced below, such as ®u™.

Relation symbols of rank O are called sentential constants. With every relation
symbol I'; of rank x # O we again correlate a k-ary operation on expressions

which is denoted by I';, often simplified to I';, and is defined analogously to A e
Again in case x = 2 we usually write o,I";0; instead of I',(c,, o). The logical
constants T, F, and E, though not included in the system {I';:iel), are
treated as relation symbols — T and F as sentential constants, and E as a
symbol of rank 2. The binary operation correlated with E is denoted by =;
thus ¢ $ 7 coincides with E”¢"t. For =(o = 1) we shall write o = .

By an atomic formula in the language A we understand either a sentential
constant of A, or an expression (oo, ..., 6,_1) where I'; is any relation
symbol of A of rank x # 0 and oy, ..., 6,y € Ty, or finally an expression
o = 1 where o and 7 are terms; the atomic formulas of the last kind are called
equations. The intersection of all sets of expressions containing every atomic
formula of A as an element and closed under the operations v, A, =1, and 3,
for every variable v is called the set of formulas in A and is denoted by ®u™
or simply Ppu.

We assume known what it means that a variable v occurs free at the k™ place
in a formula ¢, and also what it means that a formula \ has been obtained
from a formula ¢ by simultaneously substituting the terms oy, oy, ... for all
free occurrences of variables vg, vy, ... . We say that a variable occurs free or
bound in a given formula if it occurs so at some place; a formula in which no
variable occurs free is called a sentence, and the set of all sentences in A is
denoted by Zv® or simply 2v. If ¢ is a formula and {v,, ..., v;_ > is the
sequence of all variables occurring free in ¢ with vy = v, s 1?
and Ky, < ... < K,_;, then the closure of ¢, in symbols [¢], is the sentence
V,o.04., @ A sentence which is the closure of a quantifier-free formula is
called a universal sentence; the closure of an equation is called an identity.

We now turn to semantical (model-theoretical) notions which are relevant
for our discussion. The most fundamental among them is the notion of a
model. We want to explain roughly under what conditions a relational structure
is a model of a set of sentences in a language A.

Let A = (4, R, O) be a relational structure, with R = (R;:iel) and
0 =<0;:jeJ), and let A = A, , be a language of predicate logic, with
I' =(TI';:iel’y and 4 = {4;:je J'). We say that U is a realization structure
(or a possible realization, or a possible model) for A in case I =1', J = J',
the relation R; and the corresponding relation symbol I'; are of the same

iUy =0
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rank for every i € I, and so are the operation O; and the operation symbol 4;;
under the same conditions we say that A is a discourse language for %. Obvi-
ously, if K is any class of similar relational structures, and one of them is a
realization structure for a language A, then so is any other structure in K;
in this case K is called a realization class for A, and A a discourse language
for K. An analogous remark can be made in the opposite direction: if A =
A, .4 is a discourse language for a given structure A or a given class K of
similar structures, the same applies to any other language A’ = A, ., such
that the index sets of I and I, as well as of 4 and A’, coincide, and two
corresponding relation symbols I'; and I, as well as two corresponding
operation symbols 4; and 4], always have the same rank. Except for the
possible difference between « and o’ two such languages A and A’ differ in a
very inessential way, in fact, merely in the form of their relation and operation
symbols. In by far the most important case, when the ordinals « and o« are
infinite, the possible difference between them has very little influence on the
content of the notions we shall introduce. We shall talk as if a well-determined
discourse language A were correlated with any relational structure 2 or any
class K of similar structures; we may sometimes refer to A simply as the
language of 9 or K. All of the notions introduced in the next few pages should
be relativized to A, but we do not indicate this in our notation.

With any given realization structure A = {4, R;, 0>,y ;.; for A and any
given term 7 € Tu™ we now correlate a definite a-ary operation on 4, denoted
by 79 or ™, and called the operation in U represented by t. A precise
definition of ¥ involves a recursion on terms; we shall not formulate it
explicitly and shall restrict ourselves to an example. Suppose that O; is a
binary operation in U and 4; is the corresponding binary operation symbol
in A. Take v,4;(v;4;v,) for 7; then ® is defined by the formula

O = (x50;(x10;x0):x € “4).

More generally we can speak of a f-ary operation in U represented by t, in
symbols Z§® or (™, for any f < «. This operation is defined only for those
terms 7 in which no variable v, with ¢ = f occurs; since the value of ¥®x,
x €“4, does not depend on values of x, with £ = f, %ff‘) is fully determined
by the stipulation
TO(B1x) = T®x

for every x € 4.

We next correlate with the structure % and an arbitrary formula ¢ in A
an a-ary relation on A denoted by ¢ or 3™ and called the relation in U
defined by ¢. This is done by recursion on formulas. As an example, suppose
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O; and 4; are as before, and take 3, v,4;v; = v, for ¢; then
¢ = {x:xe%4 and x,0;y = x, for some ye A}.
If T, or F, is taken for @, we let 3 = “4, or ¢® = 0, respectively. Again
we can speak of the p-ary relation 3 or ¢ in U defined by ¢ for any
B < a; it is assumed that no variable v, ¢ = B, occurs free in ¢, and
the relation is determined by the stipulation
G = {Plx:x e g}

A f-ary operation Q on 4, f < a, is said to be defined by ¢ if the corre-
sponding (f+1)-ary relation on A4 is defined by ¢ in the sense just indicated.

Instead of saying that a sequence x € “4 belongs_ to ¢, we say that x satis-
fies @ in U, in symbols A F ¢[x]. We now stipulate that a formula ¢ is valid
or holds in a structure U or that U is a model of ¢, in symbols A F ¢, if x
satisfies ¢ for every x e “4; this terminology is applied mostly in case the
formula ¢ is a sentence. More generally, ¢ is said to hold in a class K of
realization structures for A, in symbols K k ¢, if A F ¢ for every 2 e K. By
the elementary ( first-order) theory of a structure ¥, or a class K of structures,
in symbols @pA, or OpK, we understand the set of all sentences of the
language A which hold in 2, or K, respectively. Two structures 2 and B are
called elementarily equivalent if @pW = Op B. If K is the class of all reali-
zation structures for A, then @pK is the class of all logically valid sentences;
we could call @pK the logic of the language A. A structure 9 is called a model
of a set @ of formulas (sentences) if ¥ is a model of every ¢ € @. The class of
all models of a formula ¢, or a set @, is denoted by Md ¢, or Md &. By saying
that a formula ¢, or a set @, characterizes a class K of structures we simply
mean that K = Md ¢, or K = Md ®.

A class K of structures is called an elementary class in the narrower sense,
for brevity an &%, if K can be characterized by a single sentence or, what
amounts to the same, by a finite set of sentences in the discourse language
A. It is called an elementary class in the wider sense or simply an elementary
class, for brevity an &%, if there is any set of sentences in A which charac-
terizes it, or, equivalently, if K = Md@pK. K is said to be respectively a
universal class in the narrower sense, or a universal class (in the wider sense),
— for brevity, a %%, or a %% ,, — if there is a universal sentence in A, or
a set of universal sentences in A, which characterizes K. Finally we say that K
is respectively an equational class in the narrower sense, an 2%, or an
equational class (in the wider sense), an &2% ,, if there is a finite, or an arbi-
trary, set of identities which characterizes K. An £2%, is also called a primi-
tive class or a variety.
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Given a formula ¢ and a set X of sentences we say that ¢ is a consequence
of %, in symbols X F ¢, if MdX = Md¢. Closely related to the notion of
consequence is that of derivability. To define this latter notion we first single
out a certain set A¢ of sentences (all of which are logically valid), called logical
axioms, and we then say that a formula ¢ in A is derivable from X if its closure
[p] is in every set © of sentences in A which includes 4£uZX and is such that
Y is in @ whenever y and y — Y are in @; see, e.g., Quine [55%] or Tarski
[65%]. In case the length « of the sequence of variables is infinite, it is well
known how the set 4¢ may be chosen, and under such a choice of 4¢ the notions
of consequence and of derivability prove to be coextensive; this is the content
of the famous completeness theorem. In case o is finite, the situation is more
involved; we shall encounter this problem in the second part of our work.

Two terms ¢ and 7 in a language A are called equivalent with respect to a
set X of sentences, in symbols ¢ =51, if 2 F o = 1. Similarly, two formulas
¢ and  are called equivalent with respect to X, in symbols ¢ =y, if
Y F ¢ o . Strictly speaking we should use the symbol =; as usual, how-
ever, the reference to A is omitted. Still in certain situations it proves con-
venient to make evident the length o of the sequence of variables; we write
then ={. In case £ = 0, we use the simpler symbol = or =®. (Notice that
for two terms ¢ and 7 the formulas ¢ = v and ¢ = 7 are equivalent, i.e.,
o and 7 are equivalent with respect to the empty set of formulas iff they are
identical; this is not true, however, in the case of formulas.) In case £ = OpK,
where K is a given class of structures, we write = instead of =;.

An important corollary of the completeness theorem is the compactness
theorem for predicate logic; by this theorem, whenever ¢ is a consequence
of a set X' of sentences, it is also a consequence of some finite subset of X.
This result, originally established for o infinite, easily extends to finite a.
Hence, if we denote by X the set of all sentences in A and by CO the set of all
consequences of a set ©® < X, then the pair (X, C) proves to be an inductive
closure structure. A set @ of sentences is called a theory or a deductively
closed set if CO = © < X; instead of saying that a sentence belongs to a
theory ©, we sometimes say that it is valid in ©. More generally, we say that
a formula ¢ is valid in © if its closure [¢] € ©. Similarly, a formula ¢ is said
to be logically valid if its closure is a logically valid sentence in the sense pre-
viously explained. Thus, if T denotes the set of all theories in the language A,
then the pair (X, T) is the inductive closed-set structure correlated with
{Z, C>. It should be pointed out that, for any class K of realization structures,
the theory @pK is a theory in the sense just established. Conversely, for any
theory O there is a class K of structures such that @ = @pK, namely K = Md 0.
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Every theory uniquely determines the language A in which the sentences of this
theory are formulated; we can thus speak of the language of a given theory. Of
course the language of @pK is the same as the discourse language of K. If @
and O’ are two theories in the same language and © < ©’, we refer to ©
as a subtheory of ©’, and to @ as an extension of ©.

In a portion of the second part of this work and occasionally in other places,
we shall be concerned with various special classes of theories such as complete
and consistent as well as axiomatizable, finitely axiomatizable, and decidable
theories; these notions are well known from the literature.



CHAPTER 0

GENERAL THEORY OF ALGEBRAS






0. GENERAL THEORY OF ALGEBRAS

In this chapter we introduce and discuss a series of notions from the general
theory of algebraic structures. Characteristic examples of such notions are those
of subalgebra, isomorphism, homomorphism, and direct products. These
notions can be rightly regarded as the most fundamental of modern algebra;
they play a basic role in all branches of contemporary algebraic research, in
particular in such highly developed theories as those of groups, rings, fields,
and lattices. Some further notions, e.g., ultraproducts and free algebras, will
be introduced here mainly because of their significance for model-theoretical
discussions of algebraic structures. Finally, we shall discuss briefly a few notions,
such as reducts, which are of lesser importance from a general viewpoint, but
are relevant for the main purpose of this book, i.e., for the study of cylindric
algebras.

Most of the notions discussed can be loosely characterized as procedures
which apply to arbitrary algebraic structures (or systems of such structures) and
yield new algebraic structures. A few concepts of the same general character —
free products, direct and inverse limits, complex algebras — will be entirely
omitted in the present discussion. These are concepts whose role in algebraic
research is rather restricted and which have not yet been adequately studied
in the general theory of algebras. They are also without broader significance
for the theory developed in this book (although a special case of the notion
of a complex algebra is introduced and used in Chapter 2, Section 7).

We shall state a number of theorems expressing simple properties of the
notions introduced. Our purpose is to give a rather complete survey of the
basic properties and interconnections of these notions. As a consequence, many
theorems stated here will find no applications in the further chapters of this
work.

Most of the theorems have a purely algebraic character. In addition we shall
formulate some results with a metamathematical (model-theoretical) content.
They will be found in the final portions of certain sections, and as a rule will
not be applied in the proofs of purely algebraic results; however, we shall
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sometimes discuss informally the possibility of using them for such purposes.

The proofs of most of the theorems are straightforward. The material has
been arranged in such an order that the reader will be able to reconstruct many
of the less obvious proofs with a modest investment of effort. Frequently we
indicate the principal theorems, stated earlier, from which a given result can be
derived, and in more difficult cases we either supply sketches of proofs or refer
to the literature.

The available literature in the general theory of algebraic structures is still
rather scarce. To supplement some portions of this chapter the reader may
consult Birkhoff [67*], P. M. Cohn [65*%], Jonsson-Tarski [47*], and B. H.
Neumann [62%], as well as Gratzer [68*] where, in particufar, a comprehensive
bibliography of the field can be found.

0.1. ALGEBRAS AND THEIR SUBALGEBRAS

DerINITION 0.1.1. By an algebra (or an algebraic structure) we understand a
pair W = {4, Q) where A is a non-empty set and Q is a function which correlates
with every element i of its domain a finitary operation Q;, of positive rank, on
and to elements of A, so that 0 < pQ; < @ and Q;€?24A4. If DoQ = I, we
also use the notation A = {A, Q;>,;. A is called the universe of the algebra U
and is denoted by UvU; I is the index set of N, symbolically In; the operations
Q; are referred to as the fundamental operations of W and are denoted by Op{™.

REMARKS 0.1.2. German capitals 2, B, ... will be used to represent arbi-
trary algebras; if an algebra is denoted by a given German letter, say 2, it
will be assumed that the corresponding Roman letter, 4, denotes the universe
of A, 4 = UvA. Moreover, the superscript * in Op{® will be omitted when-
ever no confusion is likely to ensue. In addition to Op;, some special symbols
will be used to denote fundamental operations of algebras. In particular, the
symbols +, -, o, etc. will represent binary operations; thus, in general, these
symbols will function as variables (unless they are used to denote the familiar
arithmetical and set-theoretical operations in special algebraic structures). Of
course, we may also represent the fundamental operations and the index set
of an algebra by means of ordinary variables, e.g., Q; and I (as in Definition
0.1.1).

Although (in opposition to a widespread custom) we shall distinguish
between an algebra and its universe, we shall apply to an algebra various
notions which are properly applicable to the universe of this algebra. For
instance, we shall speak of elements of 9 meaning the elements of 4, we shall
call 2 finite if A4 is finite, etc.
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REMARKS 0.1.3. One often deals with structures which formally are not
algebras in the sense of Definition 0.1.1, but which can be subsumed under
this definition in a most obvious and natural way. For example, one considers
structures A = {4, O0;>,; where each Q; is either an operation as described
in 0.1.1, or is an element of 4, a so-called distinguished element. To subsume
such structures under algebras in the sense of 0.1.1, it suffices to identify each
element Q; € 4 with the constant operation Q; of rank 1 which assumes Q;
as its only value — or, speaking more pedantically, to replace each Q; by the
corresponding operation Q;. As another possibility we may concern ourselves
with structures such as % = (4, +, -, —> where + and - are binary operations
and — is a unary operation (on and to elements of 4); we identify this structure
9 with the algebra (4, Q,>,.; where Q,, Q, and Q, respectively coincide
with +, -, and —. Again, consider a structure A = {4, Qy, ds,>;, <, formed
by a non-empty set 4, an a-termed sequence of finitary operations Q. on
and to elements of 4, and a double sequence of distinguished elements
ds, € A indexed by ordered pairs <& #)eaxa, where o is an arbitrary
ordinal. We identify [ with the algebra ' = {4, Q}>,; where I = au(xxa),
Q: = Q; for ea, and Q. for ({,n)eaxa is the operation of rank
1 assuming dy, as the only value (recall that an ordered pair is never an
ordinal). In all such cases and other analogous ones we shall treat the
structures involved as algebras in the sense of 0.1.1 and, without any
comment, we shall apply to them the general algebraic notions discussed in
this chapter.

The fact that Definition 0.1.1 imposes no restrictions on index sets of algebras
secures some flexibility in algebraic constructions. But it also has some un-
desirable consequences: it enlarges the variety of algebraic structures beyond
necessity, and it sometimes forces us to make algebraically irrelevent dis-
tinctions. For example, in view of 0.1.1, two algebras U = {4, 0>, and
WA = (A4, Qs> ;y are always different unless I = J and Q; = Q; for each
iel. Thus an algebra A = <4, 0>, 1.3 = {4, @5, Q3) never coincides with
W = {4, Q24,0 4c0,1;» although for an algebraist the passage from A to A
consists simply in a trivial “renaming” of indices of fundamental operations.
(We do not claim that distinguishing 9 from %’ in analogous situations is
always algebraically irrelevant. For instance, by a similar “renaming” of
indices we can obtain, from any given algebra = {4, +, ) with two binary
operations, the so-called dual algebra ' = {4, -, +>. However, the dis-
tinction between an algebra and its dual and the discussion of mutual relations
between these two algebras are quite important for the study of some special
classes of algebras, e.g., lattices.)
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To avoid the undesirable consequences of 0.1.1 we could consider a rather
radical modification of the concept of an algebra which would eliminate
entirely the notion of an index set: an algebra would be defined as an ordered
pair {4, S)> where A4 is an arbitrary non-empty set and S is any set (not
system!) of finitary operations on A. It appears, however, that the new concept
of algebras is not refined enough to provide an adequate framework for
algebraic discussions. An algebraic structure {4, S in the new sense would
replace a whole class of algebras in the sense of 0.1.1, namely the class K of
all those algebras {4, Q,>,; for which § = {Q;:ieI}. Thus, all algebras of
K would be “identified”, in spite of the fact that they may differ from each
other in their basic algebraic properties. (In particular, under the new con-
ception of an algebra we would lack a simple framework for discussing rela-
tions between an algebra U = {4, +, > and its dual A = {4, -, +) since
these two algebras would always be replaced by one structure.)

A less radical method, which still removes many undesirable consequences
of Definition 0.1.1, consists in providing this definition with an additional
stipulation to the effect that the index set of an algebra is always a cardinal o
(so that the fundamental operations are indexed by arbitrary ordinals & < o).
The notion of an algebra thus restricted is in principle fully adequate for
algebraic discussions. In practice, however, the restriction leads to certain
complications in discussing algebras with infinite index sets. The compli-
cations would arise primarily in those constructions in which we pass from
one algebra to another by adjoining some new fundamental operations or
removing some old ones, without necessarily changing the cardinality of the
index sets. Thus, e.g., the discussion of reducts which will be outlined in the
last section of this chapter would assume a more involved form.

As a kind of compromise, we could stipulate that the index sets of algebras
are, not necessarily cardinals, but arbitrary ordinals (or, possibly, arbitrary
sets of ordinals). However, even this less restrictive assumption proves not
to be convenient for our purposes.

The term ‘“‘algebra” is sometimes used in reference to relational structures
which cannot easily be construed as algebras in the sense of Definition 0.1.1.
This applies in particular to so-called partial algebras, that is, structures
{A4, Q> where all Q;s are finitary partial operations on 4, i.e., functions
with DoQ; = 4 for some x, 0 < k < o, and RgQ; < 4, and also to in-
finitary (or partial infinitary) algebras, that is, structures {4, Q;>;, where all
Q,’s are operations (or partial operations) on 4, but not all of them are of
finite rank. Many of the notions and results discussed in this chapter can be
extended in a natural way to partial and infinitary algebras. For a discussion
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of partial and infinitary algebras see Bruck [66*] and Stomifski [59*], re-
spectively.

REMARKS 0.1.4. Various special algebras and special classes of algebras
have been thoroughly studied in modern mathematics. We shall mention here
some of them, in particular those which are involved in the general theory of
algebras or which will be used in this chapter to illustrate certain notions and
results of the general theory and to construct examples.

From the point of view of the general theory the simplest algebraic structures
are those in which all fundamental operations are unary (including the ““de-
generate” structures with no fundamental operations); these structures may
be called unary algebras. Unary algebras have certain strong properties which
do not extend to other algebras; these properties simplify the discussion of
unary algebras but at the same time considerably reduce the heuristic value
of the discussion for the general theory of algebraic structures. Nevertheless
unary algebras can sometimes be used advantageously as a source of simple
counterexamples. Probably the best known unary algebra is the algebra of
natural numbers {(w, S) where S is the successor operation, S¢ = ¢+1 for
all ¢ < o.

We turn to algebraic structures A = {4, +) with one binary operation;
they are sometimes referred to in the literature as groupoids. Most of the
structures of this kind which have been studied in modern algebra are semi-
groups, i.e., algebras in which the operation +, frequently referred to as
(semigroup) composition, is associative: x + (y + z) = (x + y) + z for any
x, y, z € A. Trivial examples of semigroups are algebras (4, +) with a con-
stant operation as well as those in which + coincides with 241pj, (or >41pj,),
ie., x+y = x (or x+y = y) for all x, y e A.

If the operation + in a semigroup is commutative, x+y = y+x for all
x,yed, N is called a commutative or Abelian semigroup; if, in addition,
x+x = x for every x € 4, i.e., every element x is idemmultiple, U is called a
semilattice. A semigroup 9 is a cancellation semigroup if x+y = x+z always
implies y = z, and so does y+x = z+x. A group can be defined as a semi-
group U in which, for any x, y € 4, there are u, v € 4 such that x+u =y =
v+x. By a zero (element) of a binary operation + on a set 4 we understand
an element z € 4 such that x+z = x = z+x for every x € 4; by a unit (ele-
ment) or an infinity element we understand an element ue€ A4 such that
x+u =u = u+x for every x € 4. If such an element z, or u, exists, it is
uniquely determined and is usually represented by 0, or 1, respectively;
thus the symbols 0 and 1 sometimes function as variables. (The unit element is
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occasionally denoted by co and referred to then as the infinity element.) If z
is a zero element of + and x+y = y+x = z, then y is called an inverse of x.
If + is a fundamental operation of the algebra 9 and has a zero element 0,
or a unit element 1, this element is often included in the definition of the
algebras as a distinguished element. Thus groups are sometimes treated as
structures {4, +, 0). We assume to be known what is meant by the v'* multiple
vx, 0 < v < o, of an element x of a semigroup; if the zero element O exists,
it is taken as the 0™ multiple Ox of any element x. The order of an element x
of a group is then the smallest number v such that 0 < v < @ and vx = 0,
or else the number O if no such v exists. A group U is called cyclic if
U = {va:v < w} v {vb:v < w} for some ae A, where b is an inverse of a;
it is called a forsion-free group, or a torsion (or periodic) group, if all its
elements are of order 0, or none are of order 0, respectively. U is bounded
(or of bounded period) if there is a positive v <  such that vx = 0 for every
x € 4; if, in particular, v = 2, 9 will be referred to as a Boolean group.

If the operation + in a semigroup {4, +) is not assumed to be commu-
tative, the multiplicative notation is usually applied rather than the additive
one. Thus, the composition of two elements x and y is denoted by x-y, the
inverse of an element x in a group by x~ !, and we speak respectively of idem-
potent elements and of a power x of an element rather than of idemmultiple
elements and of a multiple of an element. The meanings of the terms ‘“‘zero
(element)” and “unit (element)” are reversed. Thus a zero 0 of a semigroup
A = {4, > is an element z such that x-z = z = z-x for every xe 4; it is
also called an anmnihilator of the semigroup 2 (or the operation ).

We want to mention further some classes of algebras with two binary
operations. U = {4, +, -> is a ring if {4, +) is an Abelian group, {4, -) is
a semigroup, and two distributive laws hold: x-(y+z) = x-y + x-z and
(y+2)'x = y-x + z-x for all x, y, ze A. Consequently, the zero element of
the group {4, + ) is at the same time the zero (the annihilator) of the semigroup
{4, ->, and is called the zero of the ring 9; on the other hand, {4, -> may have
a unit, which is called the unit of the ring, while {4, +) as a group can never
have a unit (unless [4| = 1). The ring U is called commutative if - is commu-
tative. The definitions of various important subclasses of the class of rings,
such as the integral domains and the (commutative) fields, are assumed to be
known.

W =<4, +, > is called a lattice if {4, +> and {4, ) are commutative
semigroups satisfying the absorption law: x-(x+y) = x = x+x'y. As a
consequence, {4, +» and {4, ) are both semilattices, the zero 0 of {4, +)
(if it exists at all) coincides with the zero of {4, -> and is called the zero of
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the lattice 2, and analogously for the unit 1. The operations + and - in a
lattice are often referred to as join and meet and represented respectively by
v and A. The class of lattices is closely related to the class of lattice ordering
structures, i.e., structures {4, <) in which < is a lattice ordering with field 4
(see the Preliminaries). With every lattice U = {4, +, *> we can correlate
a lattice ordering structure A* = (4, £) by defining < as the relation which
holds between two elements x, y € 4 iff x+y = y (or, equivalently, x-y = x).
Conversely, given a lattice ordering structure B = (4, <) we construct the
lattice U for which A* = B by defining x+y and x-y as the least upper
bound and the greatest lower bound of elements x, y € 4 (under the partial
ordering <). Thus a natural one-one correspondence exists between the two
classes of structures.

Given a lattice {4, +, -) and any set X & 4, we denote by 2 X the least
upper bound and by IIX the greatest lower bound of the set X under the
relation £ (assuming that these bounds exist). The lattice is called a-complete
(« an infinite cardinal) if 2 X and I'1X exist for every set X < 4 with [X]| < a.
It is called countably complete, or complete, if it is w,-complete, or a-complete
for every infinite cardinal o, respectively.

A lattice A = {4, +, - is called modular if for all elements x, y,z€ 4
the modular law holds: x-(y + x-2z) = x-y + x-z (or, dually and equivalently,
x + y(x+z) = (x+y) - (x+2)); distributive lattices are defined analogously.
The subclass of distributive lattices formed by the so-called Boolean algebras
is of fundamental importance for the study of cylindric algebras. A Boolean
algebra W = {A, +, +) is a distributive lattice, with 0 and 1, in which for
every x € A there is a (uniquely determined) element —x, called the comple-
ment of x, such that x4+ (—x) = 1 and x - (—x) = 0. Boolean algebras will
be discussed in some detail in Section 1.1 of Chapter 1; it will prove convenient
for our purposes to define them, not simply as specialized lattices, but as
lattices enriched by a unary operation of complementation and two dis-
tinguished elements, 0 and 1.

DEerFINITION 0.1.5. By the similarity type of an algebra A = {A, O™, we
understand the system {p(Q\™)>, ;; two algebras are called similar if they have
the same similarity type. The similarity class of U is the class of all algebras
similar to W. We speak of a similarity type of algebras, meaning the similarity type
of some unspecified algebra W ; analogously for the notion of a similarity class.

By this definition, semigroups {4, +) discussed in 0.1.4 are of similarity
type {2, rings {4, +, > of type (2,2), and unary algebras {4, Q;>,; of
type <{1). A similarity type is simply a function whose range is a subset of
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o ~ 1. Note that a similarity class is always a proper class in Bernays’ or
Morse’s set theory.

ReMARK 0.1.6. In many discussions of special classes of algebraic structures,
such as groups, rings, etc., the underlying class can be construed in several
different ways, and both the fundamental operations and the similarity type
of the structures discussed are not unambiguously determined. For example,
we have defined groups in 0.1.4 as special algebras (G, ) of type (2); often,
however, groups are treated as algebras (G, -, ~'> of type (2, 1), where - is
the operation of composition and ~' the operation of inversion. In many
cases it is not even made clear which of the two notions of a group underlies
the discussion.

The source of this ambiguity lies in the fact that the classes of algebras
involved — the class K of groups {4, -) in the first sense and the class K*
of groups <{4,-, ~') in the second sense — are definitionally equivalent. By
saying this we mean that it is possible to establish a one-one correspondence
between structures in K and those in K* so as to satisfy the following con-
ditions: if & = (G,->eK and &* = (G*,-* ~1"> e K* are two corre-
sponding structures, then their universes G and G* coincide and the funda-
mental operations of either of the structures are definable in terms of the
fundamental operations of the other; moreover, the definitions of these
operations can be chosen in such a way that they are formally the same for
all the pairs of corresponding structures (&, &*) involved. This notion of
definitional equivalence has no precise meaning as long as we do not specify
the formal language in which the mutual definitions of fundamental operations
are supposed to be expressed. We arrive, for instance, at a precise (meta-
mathematical) notion of first-order definitional equivalence by stipulating that
the definitions should be formulated in the language of first-order predicate
logic. When speaking in this work of definitional equivalence without further
specification we shall always mean first-order definitional equivalence. In
particular we call two structures U and B definitionally equivalent if the classes
{2} and {WB} are definitionally equivalent in the sense just described.

It is easily seen that the classes of groups in the two senses, & and &,
are indeed first-order definitionally equivalent. In fact, with every group
A =4, )eK we correlate a group A* = (4%, -*, ~1) e K* by letting
A* = 4, x-*y = x-y for all x, ye 4, and by stipulating that, for any given
xeA, x~'"is the inverse of x: the only element z€ 4 such that, e.g., (x-z) x = x.
Conversely, given a group B = (B, ", “'> e K*, we obtain a group U =
(4, -y e K for which A* = B simply by letting A = (B, -'), i.e., by stipu-
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lating that 4 = B, and x-y = x'y for all x, y € B. An elementary argument
shows that in this way we actually establish a correspondence between K and
K* which is one-one and has also all the other desired properties.

On the other hand, consider the algebras {w, +) and <@, +, -), where
+ and - are the ordinary arithmetical operations of addition and multiplication.
Using the results in Presburger [30*] we can show that these two algebras are
not first-order definitionally equivalent, while it is easily seen that they are
second-order definitionally equivalent.

The notion of definitional equivalence naturally extends to relational struc-
tures of first and higher order, and to classes of such structures. For instance,
from the discussion of the correspondence between lattices and lattice ordering
structures in 0.1.4 we conclude at once that the class K of lattices <4, +, >
and the class K* of lattice ordering structures <4, <) are first-order defi-
nitionally equivalent. Furthermore, the two classes of second-order structures
briefly discussed in the Preliminaries, the class of closure structures and that of
closed-set structures, are easily seen to be second-order definitionally equivalent.

The practice of identifying two definitionally equivalent structures (or
classes of structures) is frequently harmless. From the remarks in 0.1.13 below
and especially from those which will be found in Section 0.4 under 0.4.14 it
will clearly appear, however, that this practice should be abandoned since in
certain situations it may lead to serious confusions.

RemMark 0.1.7. Throughout the work, when considering within a definition,
theorem, or proof several individual algebras or classes of algebras, we shall
tacitly assume that all of the algebras involved are of the same similarity type,
unless the opposite is explicitly stated or obviously follows from the context.

Actually, to simplify the exposition, we shall concentrate from now on until
the end of Section 0.4 on algebras of a special similarity type, namely of type
{2>. Nevertheless we shall sometimes discuss algebras of other similarity types
in informal remarks, e.g., as examples. We believe that the extension of the
definitions and theorems of this chapter to arbitrary algebras is a routine
matter. In those exceptional cases in which the exact form of the extension may
not be quite clear, we indicate the necessary modifications. We shall not
concern ourselves with the few notions occasionally discussed in the literature
(such as dual automorphisms and self-duality) which apply to algebras of
type (2> and do not extend in a natural or useful way to arbitrary algebraic
structures. In further chapters of the work we shall freely apply the definitions
and theorems of this chapter to algebras of different similarity types which will
be involved in our discussion.
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In the remaining part of this section and in Section 0.2 we assume that U
is a fixed (but otherwise arbitrary) algebra with a binary operation +, % =
{4, +® = {4, +). In addition to U we shall frequently consider some
other algebras, B = (B, +®> = (B, +), € = (C, +©) = (C, +), etc.

We now turn to the formation of subalgebras. This is the simplest process
of “reducing the size” of an algebra, of forming smaller algebras from a larger
one. Loosely speaking, the process consists in removing some elements from
the universe of the algebra without changing the fundamental operations of
the algebra.

DEFINITION 0.1.8. (i) A set B is called a subuniverse of U, in symbols Be Sufl,
if BS A and if x +®ye B for any x,y e B. An algebra B = (B, +®) is
called a subalgebra of U, and W is called a superalgebra or an extension of B,
in symbols B < A or A 2 B, if Be Su and if x +®y = x +®y for all
X,y € B. We put

SA = {B:B < A}

and, for every class K of algebras,
SK = U{SC:€ e K}.

(i) A subuniverse B and (in case B # 0) the correlated subalgebra B of U
are called proper if B # A. U is called a minimal algebra if it has no proper
subalgebra.

REMARK 0.1.9. By 0.1.8(i) the subuniverses of an algebra are subsets of its
universe. The only algebras (4, 4+ ) for which the converse holds are those
in which x+ye{x, y} for any x, ye A; obviously some of the ‘“trivial”
semigroups mentioned in 0.1.4 have this property.

The fundamental operations of an algebra 9 and of any one of its proper
subalgebras B = (B, +®) are not identical; +® is the intersection of +®
and *Bx B. Nevertheless, in agreement with 0.1.2, we shall generally use the
same symbol for the fundamental operations of an algebra and all its sub-
algebras.

The reader will have noticed that we have also decided to use the symbol =
for both set-theoretical inclusion and the analogous relation between a sub-
algebra and an algebra. We feel confident that this symbolic convention,
though formally incorrect, will not lead to any misunderstandings. The reader
will observe several analogous instances of formally incorrect notations in
our further discussion. We have, of course, been motivated by the desire to
simplify the symbolism and in particular to avoid introducing an excessive
number of new symbols.
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THEOREM 0.1.10. (1) USu = 4 € Su?l.

(i) If K = Su?, then NK e Su.

(iii) If K is a non-empty subfamily of Sul which is directed by the relation
<, then UK e Sudl.

(iv) NSud = 0e Su.

V) If Be Sul and B < D < A, then there is a maximal C e Sul such
that B < C < D.

0.1.10(ii) applies in particular to the case K = 0; by the intersection of the
empty set of subuniverses of 2 we understand the set A (see the Preliminaries).

REMARK 0.1.11. Parts (i)-(iii) of 0.1.10 express jointly the fact that <4, Su2)>
is an inductive closed-set structure (cf. the Preliminaries). This fact has many
implications. In particular, 0.1.10(v) can easily be derived from it by means
of Zorn’s lemma. As another consequence of 0.1.10(ii), the partial ordering
established in the family Su %[ by the inclusion relation proves to be a complete
lattice ordering. In fact, Su9 becomes the universe of a complete lattice if we
take XnY for the meet and N{Z: XvY < Ze Su} (ie., Sg™(XuY) ac-
cording to Definition 0.1.15 below) for the join of any two sets X, Y e Sufl.
In this lattice, the so-called lattice of subuniverses of A, the greatest lower
bound of any family L = Su% coincides with ML and the least upper bound
with N{Z:UL = Ze Su}; A is the unit and, in view of 0.1.10(iv), the empty
set 0 is the zero of the lattice.

In a certain sense the converse of 0.1.10(i)-(iv) holds: for every inductive
closed-set structure {4, L) with 0 € L there is an algebra 9 such that Uv ¥ = 4
and Su = L; see Birkhoff-Frink [48*], p. 300, Theorem 10.

It can be shown by means of simple examples that the conclusion of 0.1.10(iii)
in general fails if K is not directed by <, i.e., {4, Su2) is not in general a
complete closed-set structure. Only in special algebras 9 do we have {4, Su)
complete, e.g., in all unary algebras (cf. 0.1.4), and in those algebras A =
{4, +) in which x+y = x+z (or y+x = z+x) for all x, y,z€ 4.

THEOREM 0.1.12. (i) A <= A; if U = B = A, then A = B.
@) If B = N, then SuB = SuAnShB.
(i) If B = A, then € =B iff € =< A and C = B.

REMARK 0.1.13. By 0.1.12(i),(iii) the relation < between algebras defined in
0.1.8(i) establishes a partial ordering in every class of algebras. As opposed,
however, to observations in 0.1.11, this partial ordering is not in general a
lattice ordering even if restricted to the class S of subalgebras of a given
algebra . When so restricted, it is a lattice ordering, and actually a complete
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lattice ordering, in case 2 has a least subalgebra or, what amounts to the
same, the lattice of subuniverses of 9 has a least non-zero element.

Notice that in an algebra U with some distinguished elements every non-
empty subuniverse of 9 must contain all these distinguished elements, and
hence, by 0.1.10(ii), % has a least non-empty subuniverse and a least sub-
algebra. This may also be true, however, in case ¥ has no distinguished ele-
ments. A good illustration of these last remarks is provided by groups. We have
discussed various ways in which the notion of a group is treated. If a group &
is regarded as an algebra with composition - as the only fundamental opera-
tion, & = (G, -), then the subalgebras of & are always cancellation semi-
groups but are not necessarily groups, and & may have no least subalgebra;
¢’ = ({1}, -) is the unique minimal subalgebra but is not always the least
subalgebra, i.e., is not necessarily included in every subalgebra of &. For
instance, the additive group of integers has no least subalgebra. (It is easily
seen that the following three conditions are equivalent: all the subalgebras of
& are groups; & has a least subalgebra; & is a torsion group (cf. 0.1.4).) If,
however, 1 is included in the definition of & as a distinguished element,
& = (G, -, 1), then the subalgebras of & are cancellation semigroups with 1
and @& = ({1}, -, 1) is the least subalgebra of &. On the other hand, if a
group & is regarded as an algebra with two fundamental operations, com-
position - and inversion ~%, i.e., & = <G, -, ~'), then all subalgebras of ¢
are groups (i.e., subalgebras coincide with subgroups), and & = ({1},-, ™*>
is again the least subalgebra of & ; this remains true of course if, in addition,
1 is included in the definition of & as a distinguished element. We see thus that
in two definitionally equivalent algebras 9 and % the families Su and Su®B
may differ very essentially.

THEOREM 0.1.14. (i) For any class K of algebras, K < SK = SSK.

(if) For any classes K and L of algebras, the formulas K = SL and SK = SL
are equivalent, and each of them is implied by K < L.

(iii) For any class K of algebras, SK = Uy S{2}.

Let M be any class of algebras such that M = SM (e.g., any similarity class
of algebras). Let us assume the operation S is restricted to subclasses of M.
Then, by 0.1.14, M and S satisfy all the conditions stated in the Preliminaries
to characterize the notion of a complete closure structure. Disregarding certain
difficulties related to the foundations of set theory, we could simply say that
the ordered pair (M, S} is a complete closure structure.

DErFINITION 0.1.15. (i) For every set X = A the set N{B:X < Be Su} is
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called the subuniverse of U generated by X and is denoted by Sg™ X, or Sg X ;
in case X # 0, (SgX, +> is called the subalgebra generated by X and is
denoted by Sg™ X or SgX.

(if) For any given cardinal o we put

SUAU={GgX:0# X =4 and |X| <a}
and, more generally, for every class K of algebras,
S.K=U{S,E:€eK}.

B is called a finitely generated subalgebra of W (and B a finitely generated
subuniverse of AN) if B eS, AU

REMARK 0.1.16. By saying that an algebra 2 is finitely generated we mean
of course that it is so generated as its own subalgebra, i.e., that A e S, 9.

The notation S,K will be used mostly in Section 0.4 where it will help us
to formulate concisely several theorems on free algebras. Many of the ele-
mentary properties of S,K are analogous to those of SK.

THEOREM 0.1.17. Let X, Y = A and K < SbA. Then:
() X = SgX = SgSgX < 4 and in particular SgA = A;
(i) SgX < SgY whenever X = Y;
(ii) if K # O is directed by the relation <, then
Sg(UK) = U{SgZ:Z e K};
(iv) Sg0 = 0;
V) SgXesSull; XeSuliff X = SgX;
(vi) Sg(XuY) = Sg(XuSgY) = Sg(SgXuSgY);
(vii) Sg(UK) = Sg(U{SgZ:Z e K});
(vii) N{SgZ:Ze K} = Sg(N{SgZ:Z e K});
(ix) SgX =U{Sgz:Z < X, |Z|] < w};
(x) if X is a finitely generated subuniverse of U, then, for every Z = A
such that X = SgZ, there is a finite Z' < Z such that X = SgZ'.

Parts (i)-(iii) of 0.1.17 express jointly the fact that {4, Sg®) is an inductive
closure structure; parts (vi)—(x) are simple consequences of this fact. In view
of Definition 0.1.15(i), {4, Sg®) is the closure structure naturally correlated
with the closed-set structure {4, Su> which was discussed in 0.1.11; the
correlation in the opposite direction is expressed in 0.1.17(v). (Compare here
the Preliminaries, and see also 0.1.6.) 0.1.7(iv) is not a consequence of 0.1.17(i)-
(iii), but depends on the specific property of {4, Su) stated in 0.1.10(iv).

TueoreM 0.1.18. If B < A and X = B, then Sg®X = Sg®™ X, and
Cg®X = g™ X in case X # 0.
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THEOREM 0.1.19. For every X = A we have |X| £ |Sg X| £ |X|vw; hence
[Sg X| < o in case |X| £ o, and |Sg X| = |X| in case |X| = o.

Proor. Let <Yy, ..., Y, ...) <, D€ the sequence such that Y, = X and
Yer1 =Y u{x+y:x,ye¥,} for all x < w. It is seen at once that SgX =
U..,Y., and hence the theorem can easily be derived by means of some

familiar results from the general theory of sets.

REMARK 0.1.20. When extended to algebras 9 of arbitrary similarity type,
Theorem 0.1.19 undergoes a modification. We then have |[X| = [SgX]| =<
[X|upuew where f§ is the cardinality of the set of fundamental operations
of 9, and hence |Sg X| = |X| if both |X]| = f and |X| = @.

THEOREM 0.1.21. Let K be a class of algebras and o a cardinal. Then:
(i) SoK = $;K =0;

(i) S,K=58,5,K=8S8K = SS.K < SK;

(iii) S,K = SS K = SKn{U:|4| < «} in case o > o.

0.1.21(ii1) is a simple consequence of 0.1.19; when extended to algebras of
arbitrary classes, it requires the assumption o > fu® where f is the cardi-
nality of the set of fundamental operations of 2 (cf. 0.1.20).

By 0.1.21(i),(iii) the first inclusion symbol in 0.1.21(ii) can be replaced by
an identity symbol in case o < 2 or « > . It cannot be replaced in case
2 £ o £ . In fact, let A = {w, -> where - is the binary operation deter-
mined by the conditions: 0-4 = A+1 and k-1 =x for ¥ # 0 (x, 1 < o).
As is easily seen, the set @ ~ 1 (of positive integers) is a subuniverse of A
and hence B = (o ~ 1, -> = A. Moreover, I is generated by one element,
0, while B is not generated by any finite set of elements. Therefore, for every
a with 2 £ o £ @, we have B € SS9 and B ¢ S,SU. For no « can the second
inclusion symbol in 0.1.21(ii) be replaced by an identity symbol; this can be
shown by means of trivial counterexamples.

THEOREM 0.1.22. If Be Su, B < D = A, and SgD €S, U, then there is
a maximal C € Sufl such that B < C < D.

Theorem 0.1.22 is analogous to 0.1.10(v); again we are dealing with a parti-
cular case of a result which holds in all inductive closed-set structures and can
easily be established by means of Zorn’s lemma.

THEOREM 0.1.23. The following conditions are equivalent:
@) U is a minimal algebra;
(i) Su?d = {0, 4};
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(iii) for every non-empty X < A, A = SgX;
(@iv) for every ae 4, A = Sg{a}.

DErFINITION 0.1.24. By a union of a set K of algebras we understand an algebra
which is the least common extension of all algebras of K, i.e., the least upper
bound of K under the relation <. If such an algebra exists (and is uniquely
determined), it is denoted by UK.

It is obvious that a union of a set of algebras, if it exists, is always uniquely
determined.

THEOREM 0.1.25. For every set K of algebras and every algebra % the follow-
ing three conditions are equivalent:
(i B = UK;
(i) K< S%B and *B=U{>C:€eK};
(i) +® = U{+©:€ e K}, in other words, for any x, y, z we have x, y € B
and x +®y = z iff x,ye C and x +©y = z for some € e K.

In this theorem only the assertion that (i) implies (ii) is perhaps not quite
obvious. Assuming that (i) holds while (ii) fails, we can find elements x,, y, € B
such that {x,, yo> ¢ >C for every € e K. Disregarding the obvious case |B| =1,
we pick in B an element z # x, +® y, and we define an algebra 8’ = (B, +')
by stipulating x+'y = z if {x, > = {x¢, yo» and x+'y = x +®y otherwise.
Clearly K = $%’ while B = B’ does not hold, and this contradicts (i) in
view of 0.1.24.

Conditions 0.1.25(ii),(iii) must be appropriately modified when applied
to algebras of other similarity classes. If, e.g., in algebras of K all the
fundamental operations are of rank =v, 0 <v < @, and one of them
is actually of rank v, we respectively replace in 0.1.25(ii) *B and *C by *B
and *C. If, however, such an ordinal v does not exist, we replace the
second formula of 0.1.25(ii) by the condition: *B = U{*C:€ € K} for every
UE .

ReMARK 0.1.26. The empty set of algebras has no union. If |[K| = 1, then
UK obviously coincides with the only algebra in K. If |K| = 2 and in fact
K = {2, B}, then UK exists only in the trivial case when A = B or B = U;
UK coincides then with the larger of the algebras 9 and 9B, and hence belongs
to K. On the other hand, for every cardinal « > 2 we can construct a set K
with |K| = « such that UK exists although K has no largest algebra, so that
UK ¢ K. If, e.g.,, « = 3 and K consists of algebras <{0, 1}, u), <{0, 2}, u),
and ({1, 2}, u), then UK = <{0, 1, 2}, u)>. (More generally, for a given
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similarity class and cardinal « the following two conditions are equivalent:
(D) there is a set K of algebras of the given similarity class such that |K| = «,
UK exists, and K has no largest algebra, (IT) « > 1 and all the fundamental
operations of the algebras discussed are of rank <o.)

The notion of a union plays a rather important role in the study of unary
algebras. Every non-empty set of (similar) unary algebras with pairwise disjoint
universes has a union. More generally, each of the following two conditions is
both necessary and sufficient for a non-empty set K of unary algebras to have
a union: (III) the algebras of K have a common extension; (IV) Ox = O'x
for every couple of algebras U = (4, O0;),;, W =<4, 0, in K, every
xeAnA’, and every iel. In the realm of non-unary algebras these two
conditions (the second of them with appropriate changes) are still mutually
equivalent and are necessary, though by no means sufficient, for K to have
a union. In general, the existence of a union of arbitrary algebras is a rather
exceptional phenomenon. When considering unions of sets K of algebras in
the subsequent discussion, we shall restrict ourselves to sets directed by the
relation <. For such sets we can prove

THEOREM 0.1.27. (i) If K is a non-empty set of algebras directed by the
relation <, then UK exists.

(ii) In particular, for any algebra U, the set S U is directed by <, and
Us, o = A

In part (ii) of 0.1.27 we can replace w by any cardinal « 2 0. If 2 < v < o,
then the set S, is not, in general, directed by <, but we still have US, [ = A
in agreement with 0.1.24. (However, this last statement must be modified
when applied to algebras of other similarity types.)

We do not introduce any special symbol (analogous to S or S,) to denote
the operation which, with any given class K of algebras, correlates the class
of unions UL with L ranging over all non-empty subsets of K directed by the
relation <. This operation will be involved a few times in our further discussion.
Some elementary facts concerning classes of algebras which are closed under
the formation of unions are stated in the next theorem.

THEOREM 0.1.28. Consider the following conditions concerning a class K of
algebras.
(i) UL e K whenever L is a non-empty subset of K directed by <;
(i) A e K whenever S, A = K (or, equivalently, L = K whenever S L = K);
(i) A e K whenever S, A = S(KnSA);
(iv) AeK whenever S,A = SK (or, equivalently, L = K whenever S L = SK);
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v) AeKiff S A< K (or, equivalently, L = K iff S L = K);

(vi) SK= K.

Condition (i) implies (ii) and is implied by (iii}; under the assumption of (vi)
the three conditions are equivalent. Conditions (iv) and (v) are equivalent to each
other and are also equivalent to the conjunction of (vi) and any one of the con-
ditions (i)~(iii).

The proof is easy. Notice that Theorem 0.1.28 remains valid if in (i) the
word ““directed” is replaced by “simply ordered” or “well ordered”.

A class K of algebras satisfying condition 0.1.28(i) is sometimes called /ocal,
and so is the property of belonging to such a class. However, algebraists also
use the term “local” in some other related senses corresponding to other
conditions of 0.1.28.

RemMARK 0.1.29. To conclude this section we should like to mention some
further notions which can be defined in terms of subalgebras, namely the
important notions of independence. To define these notions conveniently, we
consider again a fixed algebra 9 and let

M = N{X:0 # X e Su};

thus M is the least non-empty subuniverse of 9 if such a subuniverse exists,
and is empty otherwise. We can distinguish three notions of independence;
a set X = A is called independent in the sense (I), (II), or (III) if it satisfies
respectively one of the following conditions:

@) forall Y, Z < X, if SgY = SgZ, then Y = Z;
) |X| =1, or else XaM = 0 and for all non-empty Y, Z < X, if
YnZ =0, then SgYnSgZ = M;
) |X| =1, or else XaM = 0 and for all non-empty Y, Z < X,
Sg¥nSgZ = MuSg(YnZ).

The following two conditions are easily seen each to be equivalent to (I):

(') y ¢ Sg(X ~ {y}) for all yeX;
A"y forall Y, Z < X, if SgY < SgZ, then Y < Z.

Clearly (III) implies (II), and (II) implies (I); the implications in the opposite
directions in general do not hold. With regard to any of the notions (I)-(III)
the following can be established: O is independent; if X is independent and
Y = X, then Y is independent; if every finite subset of X is independent,
then X is independent; every independent set is included in a maximal in-
dependent set.
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Among the three notions, the first one is probably the most important.
If a set X of elements of an algebra A = (4, + ) is independent in the sense
(I) and A = Sg X, we refer to X as an independent or irredundant base of U.
Not every algebra has an irredundant base. On the other hand, it is easily
seen that, if 9 is finitely generated, then every set ¥ which generates 9 in-
cludes a finite subset X which is an irredundant base of 2. Hence every finitely
generated algebra has a finite irredundant base, but no infinite irredundant
base. The same algebra may have many finite irredundant bases with different
cardinalities; however, two infinite irredundant bases of an algebra have the
same cardinality. It has been shown that, if k < 1 < p < @ and U has irre-
dundant bases X and Z with |X| = x and |Z] = pu, then it also has an irre-
dundant base ¥ with |Y| = A; cf. Tarski [68*], p. 282. This result applies to
arbitrary algebras in which all fundamental operations are of rank < 2. On
the other hand, it is easy to construct a four-element algebra with a single
ternary operation for which the result in its original formulation fails. (In a
certain form the result can be extended to arbitrary algebras in which the
ranks of all fundamental operations do not exceed a given natural number v;
the general result is, however, more involved and less interesting.)

It should be pointed out that there is still another notion of independence,
and actually one which has been the most extensively discussed in the litera-
ture; this notion cannot be simply defined in terms of subalgebras and will be
mentioned briefly in Section 0.4, Remark 0.4.56.



0.2. HOMOMORPHISMS, ISOMORPHISMS, CONGRUENCE RELATIONS,
AND IDEALS

The formation of homomorphic images, which will be discussed in this
section, is another process of reducing the size of an algebra. Roughly speaking,
in this case, instead of removing elements from the universe of a given algebra,
we identify some distinct elements, seeing to it, however, that the resulting
structure preserves the character of an algebra. The important notion of an
isomorphism is essentially a particular case of that of homomorphism. The
significance of this notion is due to the fact that in algebraic discussions we
consider almost exclusively those properties of algebraic structures which are
invariant under the formation of isomorphic images, in the sense that when they
apply to an algebra they apply to all isomorphic images as well. In particular,
all the so-called intrinsic properties of algebras are invariant in this sense. By
an intrinsic property of an algebra 2 we understand, loosely speaking, a
property which can be expressed entirely in terms of symbols denoting funda-
mental operations of 2, the membership symbol €, and variables ranging
exclusively over elements of the universe A4, subsets of A4, relations between
elements of A, sets of such subsets and relations, etc., and not, e.g., in case 4
is a family of sets, in terms of variables ranging over elements of UA. (Thus
the notion of an intrinsic property is of metamathematical nature; to be made
precise, it must be relativized to a well defined formal language.)

DermNITION 0.2.1. A4 function h is called a homomorphism on U, in symbols
he Ho, if Doh = A and, for any x, x',y,y' € A, the formulas hx = hx' and
hy = hy' imply W(x+y) = h(x'+y"); h is called an isomorphism on A, in
symbols heIs, if in addition h is one-one.

THEOREM 0.2.2. If h is any one-one function with Doh = A, then h e Isl.

THEOREM 0.2.3. If he Ho, or he IsA, and B = A, then Blhe Ho'V, or
Blh e Is®B, respectively.

TaEOREM 0.2.4. If he Ho, then there is a uniquely determined algebra B
satisfying the conditions: (i) B = Rgh; (ii) for any x,ye A, h(x+™y) =
hx +® hy.
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In view of 0.2.4 we define:

DEFINITION 0.2.5. (i) Let he Ho, or helsW. The algebra B uniquely
determined by conditions 0.2.4(i),(ii) is called the h-image of U, in symbols
h*A, and we say respectively that h maps U onto B homomorphically, or
isomorphically, or that h is a homomovphism, or isomorphism, from U onto
B, in symbols he Ho (U, B), or he Is(A, B).

(il) A homomorphism, or isomorphism, from W onto a subalgebra of B, i.e.,
a function he Ho, or h e IsU, such that h* = B, is referred to respectively
as a homomorphism, or isomorphism, from U into B, in symbols h € Hom (%, B),
or he Ism(U, B).

(iii) A homomorphism from W into N, i.e., a member of Hom (U, ), is called
an endomorphism of WA. An isomorphism from U onto U, ie., a member of
Is(, ), is called an automorphism of .

The symbolic expression /: A — B is sometimes used instead of s Hom(, B),
and there are analogous expressions for /e Ism (%, B), he Ho(N, B), and
hels(, B) (cf. MacLane [63*], p. 10).

We are frequently confronted with situations in which not the function 4
itself, but the restricted function 41h is a homomorphism on . In such
situations we sometimes say (not quite correctly) that 4 is a homomorphism
on 9 and we use / instead of 414 in the related notation. If, e.g., he Ho
and B = A, we write ~*B instead of (B1h)*B (cf. 0.2.3).

DEFINITION 0.2.6. 9 is said to be homomorphic to B, in symbols A = B
or BN, or isomorphic to B, in symbols A = B, if Ho(U, B) # 0, or
Is(U, B) # 0, respectively. We put

0 = {€: A= E},
and, for any class K of algebras,
HK = U{HG:C e K},
IK = U{I€: € e K}.

We do not introduce any special symbols to denote the relations between
the algebras 9 and B which are expressed by the formulas Hom (2, B) # 0
and Ism (2, B) # 0. These relations, however, can be conveniently expressed
using the symbols introduced in 0.2.6. In fact, we can treat >, =, and < as
relations in the sense of set theory, i.e., as classes of ordered couples, and we
can form the relative product of any two of these relations (see the Prelimi-
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naries). Then, obviously, A >=|< B iff Hom(A, B) # 0, and A = | = B iff
Ism (%, B) # 0.

REMARKS 0.2.7. Many obvious theorems can be formulated which express
the invariance under isomorphism of various properties of algebras; we have
in mind theorems of the form “If a given property P applies to 2, and A =~ B,
then P applies to B (or theorems of a related form, such as “If a given
relation R holds between elements x and y of A and A e Is(, B), then R
holds between the elements /sx, hy of B”’). No such theorems will be stated
here explicitly.

It is important to observe that, according to Definition 0.2.6, no two al-
gebras with distinct index sets are isomorphic, and this applies even to algebras
such as A = {4, Q\D,cp3 and WA = {4, Oz4,D,c00,1; Which are obtainable
from each other by trivial “renaming’ of indices of fundamental operations.
We could, of course, extend the notion of isomorphism to algebras with
(possibly) distinct index sets by stipulating that two algebras U = {4, Q;>,;
and B = (B, P;»,_, are called isomorphic in the wider sense if there is a
one-one function fe’J such that the algebras  and (B, P;;>,, are iso-
morphic in the sense of 0.2.6. This new notion, however, would not adequately
serve as a substitute for the old notion since algebraic discussions are by no
means restricted to those properties of algebras which are invariant under
isomorphism in the wider sense. To illustrate the last remark, consider an
arbitrary algebra A = {4, +, -) of similarity type (2, 2) and its dual algebra
A =<4, -, +>. Aand A are trivially isomorphic in the wider sense. Never-
theless A and ' may differ from each other in their most elementary and
basic properties, and therefore these properties are not invariant under iso-
morphism in the wider sense; e.g., if 9 is a ring with more than one element,
then ' is certainly not a ring. As opposed to isomorphism in the wider sense,
the notion of isomorphism in the sense of 0.2.6 can be fruitfully applied to
the case of dual algebras. In general, of course, two dual algebras are not
isomorphic in this sense. The property of being isomorphic (in the sense of
0.2.6) to its dual is an important property of algebraic structures; whenever
this property is established for all members of a class of algebra, it simplifies
considerably the study of this class. As is well known, the property discussed
applies, e.g., to arbitrary Boolean algebras but not to arbitrary lattices and not
even to arbitrary distributive lattices.

There is no doubt that our definitions of algebras and their isomorphisms,
0.1.1, 0.2.5, and 0.2.6, lead jointly to an inessential enlargement of the variety
of algebraic isomorphism types (cf. 0.2.12). It appears, however, that a proper
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way of eliminating this undesirable consequence consists in imposing a re-
striction on index sets of algebras rather than in widening the notion of iso-
morphism (cf. 0.1.3).

THEOREM 0.2.8. (i) Is(2, B) = Ho(U, B) = Hom (A, B) and
Is(, B) < Ism (A, B) = Hom (A, B).
(i) AMdeIs, A); if h = Ax{b} and B = {b}, then he Ho(, B).

THEOREM 0.2.9. The following three conditions are equivalent:
(i) hels(U, B),

() n~'els(B, A),

(iti) both he Ho(A, B) and h™* € Ho (B, A).

THEOREM 0.2.10. (i) Ifge Ho(, B) and he Ho(B, €), then ho-ge Ho (%, ©);
similarity with “Ho” replaced everywhere by “Hom”, “Is”, or “Ism”.

(ii) If g e Ho(A, B) and h is a function on B, then hog e Ho(U, €) implies
he Ho(®, §); similarly with “Ho” replaced in its last two occurrences by
“Hom”, “Is”, or “Ism”.

From 0.2.9 and 0.2.10(i) we easily conclude that the structure <{Is((, ), <>
is a group. It is a subgroup of the group of all permutations of 4 and is called
the group of automorphisms of . A study of intrinsic properties of this group
frequently leads to important conclusions concerning the algebra U itself. It
is known that every group is isomorphic to the group of automorphisms of
some algebra 9(; cf. Birkhoff [46*].

One of the reasons why an identification of two definitionally equivalent
algebras (see 0.1.6) in many cases does not lead to confusion is that the auto-
morphism groups of these two algebras are identical. More generally, the
following is true: if K and K* are definitionally equivalent classes of algebras,
and U, B are any two members of K with *, B* the two corresponding
members of K*, then we always have Is(, B) = Is(A*, B*) and hence the
formulas A = B and A* = B* are equivalent. This observation is rather
frequently used in practice, namely, in those cases in which it is simpler to
establish isomorphism for two members of one class rather than of another.
For instance, in order to establish the isomorphism of two groups (4, -, >
and (B, -, ~') it suffices to prove {4, > = (B, ->. All that has just been
said holds, not only for algebras, but also for any kind of relational structures,
and applies, not only to first-order definitional equivalence, but to definitional
equivalence with respect to any familiar system of logic.

THEOREM 0.2.11. (i) U = B for every one-element algebra B.
(i) A =~ A
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(i) A = B implies B = A, A =B, and B = AN.
i) WA =B = € implies U = €; A = B = € implies A = €.

REMARK 0.2.12. From 0.2.11 it follows in particular that =~ is an equi-
valence relation between algebras. Hence, as was pointed out in the Prelimi-
naries, there is a well defined function 7., hereafter denoted simply by «,
on the class of all algebras which satisfies the following condition: for
any algebras 9 and B, U = =B iff A = B. The values of the function
7 are referred to as isomorphism types; tl is the isomorphism type of the
algebra .

A =~ B obviously implies |4] = |B|. Only in some special classes of algebras
does the converse hold (so that, within these classes, isomorphism types of
algebras can be represented simply by cardinals). As examples we may mention
the classes of “trivial” semigroups described in 0.1.4, furthermore the class
of Boolean groups and, more generally, the class of all Abelian groups in
which all non-zero elements have the given prime order =.

THEOREM 0.2.13. (i) For every class K of algebras we have K < IK =
HK ¢ HK = HHK = HIK = IHK.

(ii) For any classes K and L of algebras, the formulas HK < HL and
K < HL are equivalent, and each of them is implied by K = L; similarly with
“H> replaced everywhere by “I”.

(iii) For any class K of algebras, HK = Uy H{A} and 1K = U, 1{}.

Since we are primarily interested in properties of algebras which are invariant
under isomorphisms, most classes K of algebras involved in our discussion are
closed under the formation of isomorphic images, i.e., satisfy the formula
K = K. On the other hand, we shall often be concerned with classes K which
are not closed under the formation of subalgebras or of homomorphic images,
i.e., for which K # SK or K % HK. For instance, referring to model-theoretic
notions introduced in the Preliminaries, it is easily seen that a class K which is
elementary (is an &% or an &%) always satisfies the formula K = IK, but
in general neither K = SK nor K = HK; if K is universal (a %% or a %%,),
we have K = IK = SK, but not in general K = HK; finally, for a class K
which is equational (an & 2% or an & 2% ,) we always have K = IK = SK = HK.

THEOREM 0.2.14. Assume that h € Hom (U, B). Then:
(i) A’ e Sul implies h*A' € Su'B;
(i) B e Su®B implies (h~*)*B e Sul;
(iii) if, in addition, g € Hom(A, B), X = A, and X1g = X1h, then (Sg X)1g
= (SgX)1h.
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THEOREM 0.2.15. The following conditions are equivalent:

(1) he Hom(U, B), or helsm(, B);

(ii) there is an W 2 WA and a ke Ho(W', V), or ke Is(A,B), such that
Alk = h.

Proor. To obtain the assertion that (i) implies (ii), we assume # e Hom(3(, B),
or helsm(%, B), and we pick an element ¢ such that for no x does {x, ¢)
belong to 4; we can take, e.g., 4 itself for c. We then let

C=(B~h*A)x {c}, A = AuC, and k = h u C1pj,

(where pj, is the 0" projection, so that pj,{x, y)» = x for all x and y). Since
AnC =0, k is clearly a function and we have Dok = A’, Rgk = B, and
A1k = h. By the axiom of choice there is a function f'e ®4’ such that kof =
B1Id. (If h is one-one, k is also one-one, and we can simply take k™' for f
without applying the axiom of choice.) We now define the algebra U’ =
{A4’, +') by stipulating that

x+'y = x+Wy if {x,y>e?4,
x+'y = flkx +®ky) if {x,yye?4d’ ~ 4.

As is easily seen, ke Ho(W,®B) if he Hom(A, B), and kels(W,B) if
heIsm(, B). In addition A’ = A, and the proof that (i) implies (ii) is com-
plete. The assertion that (ii) implies (i) follows directly from 0.2.14(i).

As direct consequences of 0.2.14 and 0.2.15 we obtain:
CoROLLARY 0.2.16. If A = | B, then A | = B.

CoROLLARY 0.2.17. () A<= | =B iff A=<= B.
) Ac|=zBif A=x|c B.

THEOREM 0.2.18. (i) If he Hom(A, B) and X < A, then h*(Sg¥X) =
Sg®h*X.

() If A = B, « is any cardinal, and W € S, A, then B €S, B.

(iii) If ge Ho(N, B), he Hom (B, N), A = Sg™X, and hgy = y for every
yeX, then gels(U, B) and h = g~ e Is(B, ).

0.2.18(i) can be derived from 0.2.14(i),(ii); 0.2.18(ii) follows directly from
0.2.18(i). In proving 0.2.18(iii) we make use of 0.2.14(iii).

THEOREM 0.2.19. For every class K of algebras and every cardinal a,
SHK < HSK, S,HK = HS,K = S,HS K = S HSK, SIK = ISK, and
S, IK = IS K.
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In proving this theorem we make use of 0.2.16, 0.2.17(ii), and 0.2.18().

The converse of 0.2.16 does not hold and the inclusions in 0.2.19 cannot
be replaced by equalities. In fact, let 9 be a two-element field and B be the
field of rational numbers (with the ordinary operations + and -). We can
easily show that A <| = B holds but A =|=< B does not hold, and thus
HS® is not included in SHYB; actually % € HS,%B, so that HS,B is not
included in either SH®B or S,HD.

Assuming that M is any class of algebras closed under the formation of
homomorphic images we can say (disregarding certain set-theoretical diffi-
culties) that the ordered pair <M, H) is, by 0.2.13, a complete closure structure.
From 0.2.13 and 0.2.19 we further conclude that under appropriate assump-
tions the same applies to the pairs (M, Iy, (M, HS), and (M, IS}, while the
pair (M, SH} is not in general a closure structure. (Compare the Preliminaries,
and the remarks following 0.1.14.)

We shall now discuss the important notion of a congruence relation and the
related operation of forming quotient algebras. This operation may first
appear to be a rather special case of the formation of homomorphic images.
It turns out, however, that the general operation reduces up to isomorphism
to the special one: every homomorphic image of an algebra can be isomorphical-
ly represented as a quotient algebra (cf. 0.2.23 below). The usefulness of the
notion of a quotient algebra is largely due to its intrinsic character: while
homomorphic images are built from arbitrary elements which may be com-
pletely extraneous to the original algebra, the elements of a quotient algebra
are special subsets of the original algebra, namely equivalence classes under a
congruence relation.

DEerINITION 0.2.20. A binary relation R is called a congruence relation on 9, in
symbols Re Co, if R is an equivalence relation on A, and, for any x,x’, y,y' € A,
the formulas xRx' and yRy" imply (x+y)R(x'+)"). The congruence relation R
is called proper if R # A x A.

In the “trivial” semigroups mentioned in 0.1.4, as well as in every two-
element algebra, every equivalence relation on the universe is a congruence
relation. It is easily seen that no other algebras of similarity type (2) have
this property. For algebras U = {4, 0;>,; of arbitrary similarity type we
have Co¥ = N,;Col4, Q).

We recall that, for every binary relation R and every x € DoR, RXx =
{y:xRy}; h being any function, #|h~" is a relation which holds between x
and y iff x, ye Doh and hx = hy.
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THEOREM 0.2.21. (1) Re CoU iff R is an equivalence relation on A and
R* e Ho¥l.

(ii) he Ho iff h is a function on A and h|h™" € Co; if Re Co and
h = ATR*, then h|h™' = R.

(iii) The function <h|h™*:he HoW) maps HoU onto CoU (in a many-one
way).

In view of 0.2.21(i) we define:

DEFINITION 0.2.22. If Re Co, the algebra (R*)* is called the quotient
algebra of A over R, symbolically U/R.

THeOREM 0.2.23. (i) If he Ho¥W and R = h|h™*, then h*A =~ /R, and in
fact h=| R* e Is(h*3, A/R).

(i) A > B iff A/R = B for some Re Coll.

(iii) Ifhe HoU, Re CoW, and R < h|h™*, then {{a/R, ha)y:ae A} e Ho(A/R).

THEOREM 0.2.24. Theorem 0.1.10 remains valid if 0, A, and Sul are re-
spectively replaced by A11d, A x A, and Co¥.

The proof of 0.2.24 is straight-forward. If we want, we can also derive this
theorem as an immediate corollary from 0.1.10, using the following observation
which shows that the notion of congruence relation can be subsumed under
that of subuniverse. For any given algebra U = (4, +) we form a new
algebra A* with the universe 4 x A4, two binary operations, +' and |, one
unary operation, ~', and the system of distinguished elements {x, x> where
x is any element of A. The operations +', |, and ~* are defined by the formulas:

0+ XL YD = x+x, y+y,
Cx, yyIKx, 'y = <x,y'> in case y = x/,
{x, ) 1x, ¥y = (x, y) otherwise,
a7 =Ky, X,

({4 x 4, +"> is what will be called in Section 0.3 the direct square of 9 and
denoted by 9 x ) It is easily seen that congruence relations of the original
algebra 9 are just non-empty subuniverses of 2*.

The above observation can be used to check some remarks and establish
some facts stated in the subsequent discussion. It permits us for instance to
derive 0.2.29 below as a direct corollary of 0.1.17.

Note that the part of 0.2.24 corresponding to 0.1.10(i), namely, that
NK e CoA whenever K = Co¥, applies in particular to K = 0; in ac-
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cordance with a general convention described in the Preliminaries, by the
intersection of the empty set of congruence relations on 9 we understand the
set A x A (cf. the remark immediately following 0.1.10).

In connection with Theorem 0.2.24 we can repeat, with obvious changes,
all the remarks in 0.1.11 concerning Theorem 0.1.10 and its implications.
Thus, by 0.2.24, {4 x 4, Co) is an inductive closed-set structure. As a
consequence, the inclusion relation establishes a complete lattice ordering
in Co. Hence Co becomes the universe of a complete lattice, the so-called
lattice of congruence relations on U, under appropriate definitions of join
and meet.

An intrinsic characterization of all those lattices which are isomorphic to
lattices of congruence relations on algebras can be found in the literature;
it turns out that the same characterization applies to those lattices which are
isomorphic to lattices of subuniverses. For the result concerning the lattices
of subuniverses cf. Birkhoff [67*], p. 187 ff. where further bibliographic
references can be found; cf. in addition Hanf [56*]. For the result concerning
the lattices of congruence relations see Grétzer-Schmidt [63*].

THEOREM 0.2.25. /(4 x A) is a one-element algebra while U[/(A11d) = .

THEOREM 0.2.26. If B = U and Re Co¥, then
(i) (Bx B)nRe CoB;

(ii)) R*Be Su and B/R = R*B/R € Su(A/R);

(iii) B/((B x B)aR) = {BIR, +®% e S(UA/R).

THEOREM 0.2.27. Let Re Co, K = {S:R < SeCoU}, and F = {(S|R:
SeK>. Then:
(i) F maps K onto Co(U/R) in a one-one way;
(i) F7'T = {{x, p>:x,ye A, (x/RT(y/R)} for every T e Co(A/R);
(i) if L = K, then F(NL) = NF*L;
(iv) A/S = (H/R)/FS = (U/R)/(S/R) for every SeK.

0.2.26(iii) and 0.2.27(iv) are generalizations of the so-called first and second
isomorphism theorems of group theory.

From 0.2.27 we can conclude that, for every algebra 9 and every Re Co¥l,
the lattice of congruence relations on /R is isomorphic to a sublattice of the
lattice of congruence relations on U (cf. the remarks following 0.2.24); the
universe of this sublattice is just the set K defined in 0.2.27.

DErINITION 0.2.28. For every relation X < A x A, the relation R =
N{Y:X < Ye CoU} is called the congruence relation generated by X and is
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denoted by Cg™X or CgX. We say that R is a finitely generated congruence
relation on A if R = CgX for some finite X = A X A.

THEOREM 0.2.29. Theorem 0.1.17 remains true if “A”, “Su”, and “Sg” are
respectively replaced by “A x A, “Co”, and “Cg”. However, part (iv) of
0.1.17 goes over into

Cg0 = A11d.

With obvious changes, we can repeat here the remarks immediately following
0.1.17.

THEOREM 0.2.30. If 0 # K < Co¥, then Cg(UK) = U{R,|...|R,_;:
0<v<oand Re K}.

THEOREM 0.2.31. For any R, Se Co the following five conditions are
equivalent: (i) R|S is symmetric, (i) R|S = S|R, (ili) R|S is transitive, (iv)
R|Se Co¥, and (v) R|S = Cg(RuUS).

PROOF: by 0.2.20 and 0.2.30.

If all the congruence relations on an algebra U satisfy the formulas of
0.2.31, then U is called an algebra with commuting congruence relations. Many
familiar algebras are of this kind, e.g., all groups and rings. If 9 is an algebra
with commuting congruence relations and & the lattice of congruence relations
on ¥, then, as a consequence of 0.2.31, the join of any two relations R, S in &
is simply R|.S (while their meet is, as always, Rn.S). Hence we can derive some
further properties of &; in particular, we can conclude that the lattice & is
modular. Cf. Birkhoft [67*], p. 162, Theorem 4.

THEOREM 0.2.32. (i) If W is a finitely generated algebra, then A x A is a
finitely generated congruence relation on .

(i) If ReCoWN, R=T < Ax A, and CgT is a finitely generated con-
gruence relation on W, then there is a maximal S € CoW such that R = S < T.

Proor: To obtain (i) it suffices to notice that A = Sg X implies

Ax A =Cg{{x,y+z):x,y,z€ X};

if X is finite, then obviously so is the set {{x, y+z):x, y, ze X}. 0.2.32(ii)
is an analogue of 0.1.22 and can easily be derived from 0.2.29(iii) by means
of Zorn’s lemma.

REMARK 0.2.33. It should be mentioned that 0.2.32(i) can be extended, not
to arbitrary algebras A = {4, Q;>,,, but only to those with finitely many
fundamental operations. For example, let A = <o, o x {v}) obviously,

v<o?
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for every v < @, o x {v} is a constant operation with v as its only value. As
is easily seen, 9 is minimal and hence is finitely generated (cf. 0.1.23) while
the congruence relation 4 x A4 is not.

DErFINITION 0.2.34. An algebra U is called simple if |A] = 2 and CoU =
{A11d, Ax A} (or, equivalently, if |Co| = 2).

TraeoreM 0.2.35. (i) If U is not simple, then there is an algebra % € S,
which is not simple, and which actually is not a subalgebra of any simple sub-
algebra of AV

(ii) If K is a set of simple algebras directed by the relation <, then UK is
simple.

Proor. By the hypothesis of (i) there is an R € Co such that A11d = R =
A x A and hence there must be three elements a, b, ¢ such that {a, ¢) e R~Id
and (b, ¢y € (4 xA) ~ R. We have B = Sg{aq, b, ¢} € S, and, by 0.2.26(i),
B is not simple, as required in the conclusion of (i). More generally, no al-
gebra € such that 8 = € < U is simple. (ii) follows by 0.1.28.

The observations made in 0.2.35 seem to be new. In connection with 0.2.35(i)
it may be interesting to mention as a curiosity that, if a unary algebra %A
(cf. 0.1.4) is simple, then either |4] = 2 or A e S,U.

THEOREM 0.2.36. The following two conditions are equivalent:

@) W is simple;

(ii) 4] = 2 and, for every h e Ho, either h € Is or h is a constant function.
Each of these conditions implies:

(iii) |4| = 2 and, whenever N = B, we have either W =~ B or else |B| = 1.

REMARK 0.2.37. Algebras satisfying condition 0.2.36(iii) may be called
pseudo-simple. Every finite pseudo-simple algebra is simple. In general, how-
ever, this does not apply to infinite algebras. For instance, given a prime num-
ber 7, let A, = {A4,, +')> be the Abelian group such that 4, is the set of all
rational numbers of the form v/n* where 0 £ v < 7 and 0 < ¥ < o, and +’
is the arithmetical addition modulo 1 (i.e., x+'y = x+y if x+y < 1, and
x+'y = (x+y)—1 otherwise). Then A, proves to be pseudo-simple but not
simple. It has also been shown that every pseudo-simple Abelian group which
is not simple is isomorphic to one of the groups A ; see Szélpal [49%]. A
necessary, though not sufficient, condition for an algebra  to be pseudo-
simple is that the set Co % be well-ordered by the relation < ; cf. Monk [62*].

1) This theorem was originally proved by the authors in a somewhat weaker form, with
8, replaced by “SsU”. The present form is due to Bjarni Jonsson.
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THEOREM 0.2.38. (i) If Re Co¥, then U/R is simple iff R is a maximal
proper congruence relation.

(i) If |4l =2 2 and Ax A is a finitely generated congruence relation on U,
then for each proper S e Co¥ there is an R such that S = Re Co and AR
is simple.

(iii) The conclusion of (ii) holds in particular if |A| = 2 and U is a finitely
generated algebra.

Proor: (i) by 0.2.27(i),(iii); (i) by 0.2.32(ii); (iii) by (ii) and 0.2.32(i).

From 0.2.38(iii) it follows that every pseudo-simple finitely generated al-
gebra is simple (see 0.2.37). This last observation and Theorem 0.2.38(iii)
itself extend only to algebras with finitely many operations (compare 0.2.33).")

DEFINITION 0.2.39. For any z€ A a set I = A is called a z-ideal of U, in
symbols I e ILN, if I = z|R for some Re CoU. The z-ideal I is called proper
if I # A.

REMARK 0.2.40. The z-ideals play a rather restricted role in the general
theory of algebras; their use is essentially confined to those cases when the
z-ideals function properly in a given algebra 9 — in the sense of Definition
0.2.47 below; cf. Remark 0.2.48.

THEOREM 0.2.41. For every ze A, Theorem 0.1.10 remains valid if O and
Sul are replaced everywhere by {z} and I, respectively.

To show, for example, that UK € I whenever 0 # K < IL.% and K is
directed by <, we let, for each I € K,

S; = MN{R:ReCoA, I < z/R}.

Hence, by 0.2.24, S;e Co and, as is easily seen, z/S; =I. Moreover,
{S;:J € K} is directed by <. Therefore, by applying 0.2.24 again, U{S;:
Je K} e Co and

UK = U{z/S;:J e K} = z/U{S;:J e K} e I, .

As in the case of 0.2.24 we can repeat here again, with obvious changes,
all that was said in 0.1.11. In particular, Theorem 0.2.41 leads, for any given
z € A, to the construction of the complete lattice of z-ideals of .

THEOREM 0.2.42. (i) If {z} € Sul, then 1L, = Su?l.
(i) If B =N, ze B, and 1 €I, then Bal € Il,B.
Proor: by 0.2.26(i).

1) 0.2.38(ii),(iii) and the subsequent remarks are due to Tarski.
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DEFINITION 0.2.43. For any z€ A and any X < A, the set N{Y:X <
Y e 11U} is called the z-ideal generated by X and is denoted by Ig®™X or Ig_X.
We say that 1 is a finitely generated z-ideal, or a principal z-ideal, of U if
= Ig X for some finite X = A, or for some X = A with |X| = 1, respectively.

THEOREM 0.2.44. For every ze€ A, Theorem 0.1.17 remains valid if “Su”
and “Sg” are respectively replaced by “Il,” and “Ig,”. However, 0.1.17(iv)
goes over into

1g.0 = {z} = Ig.{z}.
Compare here the remarks immediately following 0.1.17.

THEOREM 0.2.45. For every ze A we have:

(@) If X = A4, then N{R:Re Co, z|R 2 X} = Cg({z} xX) and Ig.X =
2/Cg({z) x X);

(@) IellNiff I € A and I = z/Cg({z} x I).

Proor. For any Re Co¥, z/R 2 X iff R 2 {z} xX. This gives the first
equality of (i), and using this equality we have

Ig.X = N{z/R:Re Co¥, z/R 2 X}
z/N{R:Re Co¥, z/|R 2 X}
z[{Cg({z} x X).

To prove (ii) let us assume I eI, . Then Ig,] =1 and, hence, taking
X =1 in the second equation of (i) we get I = z/Cg({z} x I). Thus I e I[,U
implies I £ 4 and I = z/Cg({z} x I). The implication in the opposite direction
is obvious.

I

If I is a z-ideal, then, in general, there may be many congruence relations
R such that z/R = I. From 0.2.45 we conclude that Cg({z} x I) is the least
congruence relation with this property. It can also be easily shown that there
is a largest congruence relation R with z/R = I.

THEOREM 0.2.46. For every ze A we have:

(i) I is a finitely generated z-ideal iff 1€ Il and Cg({z} x I) is a finitely
generated congruence relation;

(if) A4 is a finitely generated z-ideal iff A x A is a finitely generated con-
gruence relation;

(i) if IellU, I =« L = A, and Ig,L is a finitely generated z-ideal, then
there is a maximal J € ILN such that I = J < L.
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ProoF. If I = Ig, X, then, for any Re Co¥, z/R =2 X iff z/R = I; thus,
by 0.2.45(i), Cg({z} xI) = Cg({z} x X). Hence Cg({z} x I) is a finitely gener-
ated congruence relation whenever I is a finitely generated z-ideal. Now
assume I € I, and Cg({z} x I) is finitely generated. Then by 0.2.29(x) there
is an X < I with |X| < @ such that Cg({z} xX) = Cg({z} xI), and thus,
by 0.2.45,

I =z/Cg({z} xI) = z/Cg({z} x X) = Ig,X;

therefore, I is finitely generated. This proves (i). Since 4 x 4 = Cg({z} x A),
(ii) follows directly from (i). (iii) can easily be derived from 0.2.44 using Zorn’s
lemma.

We now turn to the discussion of those situations when, for every z-ideal I,
there is just one congruence relation R such that I = z/R.

DerNITION 0.2.47. We say that the z-ideals function properly in U if,
for any R,Se CoW, z|R = z|S implies R = S. If the z-ideals function
properly in U, then by the quotient algebra of U over a z-ideal I, symbolically
W/(I, z), we understand the algebra A|R where R is the unique congruence
relation on A such that z|R = I. We use analogously the symbols x|/(I, z) for
xed, Y[(I,z) for Y < A, S|(I,z) for S< AxA, and (I,z)X (instead of
R*).

REMARK 0.2.48. When applying the notion of an ideal to a particular
algebra, we usually fix an element ze 4 such that the z-ideals function
properly in 9, and we refer to these z-ideals simply as ideals; we write, e.g.,
I and /I instead of I and A/(I, z). An element z with this property
cannot always be found and, if it can be found, it is by no means uniquely
determined; we usually pick for z an element which is easily definable in
terms of fundamental operations of . Once z has been fixed and the z-ideals
have been shown to function properly, we have a one-one correspondence
between ideals and congruence relations (cf. Theorem 0.2.49 below), and we
can replace the latter by the former in the subsequent development. This
frequently simplifies the discussion. In fact, ideals, as subsets of 4, can in
principle be handled more easily than congruence relations which are subsets
of A x A; moreover, in all practically important cases the z-ideals, under a
proper choice of z, admit a simple characterization in terms of fundamental
operations on their elements without referring to the notion of a congruence
relation. Actually a metamathematical result is known by which the z-ideals,
in case they function properly, can always be characterized by means of first-
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order conditions involving only elements and fundamental operations of the
algebra; cf. here Vaught [66%].

A few examples may illustrate the above remarks. In the algebra A =
{4, +) where 4 = w and + is the ordinary addition of natural numbers,
the z-ideals do not function properly for any z. If 4 is the set of integers
(positive, negative, and 0) with the additional infinity element co, and + is
the addition of integers with the supplementary stipulation X400 = 00 +x = ©
for every x e A, then the z-ideals (ze€ A4) function properly iff z # co. If
& = <G, -y is a group, the z-ideals function properly for every z e G; if we
take z to be the unit element of &, then the z-ideals coincide with normal
subgroups. Similarly, if Jt is a ring, the z-ideals function properly for every
z € R; taking z to be the zero element 0, the z-ideals then coincide with ordi-
nary (two-sided) ring ideals. Thus, in particular, we recognize in 0.2.46 a
generalization of the well-known theorem by which every proper ideal in a
ring with unit can be extended to a maximal proper ideal.

It would be interesting to find a simple characterization of those algebras
in which there is an element z such that the z-ideals function properly, as well
as those in which this happens for every element z. In this connection compare
Jakubik [54*], Mal’cev [54*], and Valuce [63*].

THEOREM 0.2.49. Let z€ A and assume that the z-ideals function properly
in U; let
F = {z/R:Re Co).
Then:
(i) F maps CoW onto 11, in a one-one way;
(i) if L < Co¥, then F(NL) = NF*L.

Hence we see that, under the hypothesis of 0.2.49, the lattice of z-ideals
of A is isomorphic to the lattice of congruence relations on . Notice that
0.2.49(ii) does not require the assumption that the z-ideals function properly.

THEOREM 0.2.50. Assume that z € A.
(i) The following three conditions are equivalent:
(i") the z-ideals function properly in U;
(") for any Re CoW and X < A4, z|R = Ig, X iff R = Cg({z} x X);
(i") for any Re Co, R = Cg({z} x z/R).
(ii) If the z-ideals function properly in U, then R is a finitely generated con-
gruence relation iff R e Co and z[R is a finitely generated z-ideal.
Proor. That (i’) implies (i”) follows immediately from 0.2.45(i). Taking
X = z/R in (i") we get (i”), and (i”) obviously implies (i"). This proves (i).
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To obtain (ii) take I = z/R in 0.2.46(i) and use the fact that (i’) implies (i”)."

Without the assumption that the z-ideals function properly the congruence
relation R may be finitely generated even though the ideal z/R is not; an
example of such an R was pointed out by Joel Karnofsky.

TaeOREM 0.2.51. If ze A, Re Co¥ (or 1€ Il,), and the z-ideals function
properly in U, then the z|R-ideals (or z/(I, z)-ideals) function properly in U/R
(or /I, 2)). If Re CoW and z|R = I € ILN, then I|R € Il x(U/R).

Proor: by 0.2.27.

REMARK 0.2.52. Using 0.2.49 (and in some cases 0.2.51), we can auto-
matically express various theorems on congruence relations in the termino-
logy of z-ideals; we restrict ourselves, of course to those algebras in which
the z-ideals function properly. Thus we can establish a direct correspondence
between homomorphisms and z-ideals (cf. 0.2.21 and 0.2.23) as well as between
the z-ideals of U which include a given z-ideal I and the z/(I, z)-ideals of
A/(1, z) (cf. 0.2.27), and we can characterize simple algebras in terms of z-
ideals (cf. 0.2.34 and 0.2.38(i)). We shall not formulate explicitly the theorems
thus obtained.

1) The fact that the ideal z/R is finitely generated whenever R is finitely generated (under
the assumption that the z-ideals function properly) was pointed out by Bjarni Jonsson.
We do not give here Jonsson’s proof of this implication since we derive it as a direct con-
sequence from a more general result, 0.2.46(i), which was subsequently found.



0.3. DIRECT PRODUCTS AND RELATED NOTIONS

In this section we shall concern ourselves with an operation, called direct
multiplication, which when performed on a system (;:ieI) of similar
algebras yields an algebra B similar to the 9,’s. As opposed to the formation
of subalgebras and homomorphic images this operation leads from smaller,
simpler algebras to larger, more complicated ones. In this respect direct multi-
plication resembles the operation of forming the union of algebras (which we
introduced in passing at the end of Section 0.1), but its range of application
in the theory of algebras is much wider.

DerINITION 0.3.1. (i) By the direct (or cardinal) product of a system U of
algebras U; = {A;, +;> indexed by a set 1, symbolically P or P{;:ieI) or
P, U, we understand the algebra B = (B, + ) such that B = P, A; and +
is the operation defined by the formula

frg={fitigiiel)
for any f, g € B. The product P, N, in which I =2, Ay = €, and A, = D is
denoted by & xD; analogous notations are used for I = 3,4, ... If A, =€
for every i€l, the product P, N, is called the I™ direct power of the algebra
C and is denoted by '€.

(i) An algebra € is said to be a direct factor of the algebra B (or to divide
divectly the algebra B), in symbols €| B, if there is a system (U;:iel) of
algebras and an element je I such that B = P, U; and € = A, D

(iii) By P& we denote the class of all algebras isomorphic to direct powers
of €. More generally, for any class K of algebras we put

PK = I{P: A €K for some I}.
Notice a difference between the definition of PK and the definitions of the

analogous notions SK and HK (0.1.8(1) and 0.2.6): we include in PK, not
only the direct products of algebras in K, but also all isomorphic images of

1) Distinguish the symbol ““|” just introduced and the symbol | denoting the product
of relations. (Cf. 0.3.10(v) below.)
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such products. The reason is that we are mostly interested in classes K of
algebras which are invariant under isomorphism, i.e., for which IK = K. If
K is such a class, the same applies to SK and HK (actually HK is invariant
under isomorphism for every class K); however, in view of the special structure
of elements of direct products, this would not apply to PK if this class consisted
exclusively of the direct products of algebras in K.

TueoreM 0.3.2. (i) P o, = {1, +) where + is the unique binary opera-
tion on 1.

(i) P, 2 = A

(i) If j # k, then P, 3 A; = A; x A

In connection with 0.3.2(ii),(iii), P,.;,2; and P, ; ., ¥; for j # k are usually
identified with ; and U; x U,.

THEOREM 0.3.3. (i) If f is any permutation of the set I, then
Pir 2 = Picy U,
(i) Let J = <J;iiel)y be a system of sets, K = {{i,jy:iel,jeJ;}, and
{U;;:<0,j> € K) be a system of algebras. Then
PiEIPjeJ,-%{ij = P(i,j}EKQIij'

Theorem 0.3.3(i) is the general commutative law and Theorem 0.3.3(ii) the
general associative law for direct products.

THeOREM 0.3.4. (i) P, U, is a one-element algebra iff all N;s with i€l
are one-element algebras.
() If J = I and P, _,U; is a one-element algebra, then P, A; = P, ;A,.

Tueorem 0.3.5. P, B, < P, A, iff B, = A, for every iel.

We recall that pj; (the i projection) is the function whose domain consists
of all functions f with i € Dof and which is defined by the formula

Piif = [
We also recall the convention made in the remark following 0.2.5.

THEOREM 0.3.6. (i) pj; € Ho(P,;U,;, Aj) for every jel.
(i) If g;e Hom(€, ) for each i€l and h is the function on € such that

hx = {gx:iel)

for every x € C, then he Hom(€, P, ;%,), and pj;oh = g, for every iel. If,
moreover, g; is one-one for some jel, then he Ism(€, P, 2)).
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(iii) If g;€ Ho(U;, B,) for every i€l and h is the function on P, ; such
that

hf = (gl f):ie D)

for every fe P, W;, then he Ho(P,; W, Py B)), and pj;oh = g;°pj; for every
iel; similarly with “Ho” replaced by “Hom”, “Is”, or “Ism”.

(iv) he Ho(€, P, ) iff h is a function from € onto P;,;U,, and pj;oh € Ho(€,
A ) for every iel. ’

COROLLARY 0.3.7. (i) P, ; >= U; for every j € I; more generally, P, ;U; =
Pi;U; whenever J < 1.

() If € =< A; for every iel, then € >|< P N, If, moreover,
C x| U for some jeJ, then € =|<= P U,

(i) If A; = B, for every iel, then P A, = Py By similarly with =
replaced by “>| <, “=”, or “=|&”.

THEOREM 0.3.8. If' J < I, the following two conditions are equivalent:

@ Py U; == Py U

(i) Py =1 = U, for every jel ~ J.
Both conditions are satisfied if each algebra U; with ie I ~ J has a one-element
subalgebra.

The proof of this theorem is based primarily on 0.2.17 and 0.3.7(i),(ii); we
also use 0.2.11(1)-(iv) and a special form of 0.3.3(ii).

Tueorem 0.3.9. () If |I| = |J|, then '8 =~ '®.

() If K =U{J;:iel} and J;nJ, =0 for any two distinct i,i’ €I, then
KB =~ P;7'B.

(iii) Y(Piey A = Py,

@iv) '(IB) = 1(’B) = I*7P.

(V) If I # 0, then "% = A and 'Y 2| = A.

i) If J < I, then % =79 if, in addition, J # 0, then "% 2| = 73.

TreoreM 0.3.10. (i) UA|B iff AxC = B for some €.

(i) If |4] =1 or A = B, then A|V.

(i) AW, if AIB|C, then A|C.

(iv) If AW, then A <X B; if, in addition, N =| < B (or, in particular, if
B has a one-element subalgebra), then A =| < B.

V) If A =||B, then A | | B; similarly with =" replaced by “2.

i) If J < I, then Piy ;| Py,

(vii) If W,|B; for every iel, then P, A P B,
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REMARKS 0.3.11. Some properties of direct products of algebras follow
directly from purely set-theoretical properties of Cartesian products of sets.
E.g., it is easily seen that a denumerable algebra is not isomorphic to any
direct product of finite algebras; more generally, an algebra whose cardinality
is cofinal with  is not isomorphic to a direct product of algebras with smaller
cardinality.

Various notions which we have introduced so far for arbitrary algebras can
be extended in a most natural way to isomorphism types of algebras (cf.
0.2.12). For instance, given a system o = {a;:ie Iy of isomorphism types,
by the direct product Pu = P, 0, of this system we understand the uniquely
determined isomorphism type f satisfying the following condition: there is a
system (Q;:ieI) of algebras such that t9(; = o; for each ieI and ©(P,.; ;) = B.
As particular cases of this notion we obtain the direct product ax f of two
isomorphism types and the direct power “o of an isomorphism type (in view
of 0.3.9(i) we can restrict ourselves to the case when the exponent x in *o is
a cardinal). Analogously the relations <, =, and | between algebras induce
the corresponding relations between isomorphism types, which we may denote
respectively by the same symbols. From 0.3.2-0.3.10 we can immediately
derive various corollaries concerning the corresponding operations on and
relations between isomorphism types; actually these corollaries have as a rule
a somewhat simpler form than the original theorems. For illustration, consider
any class K # 0 of algebras such that for any algebras %A, B and € with
A~ BxE we have AN e K iff B, CeK; let T = {zA:WA e K}. Clearly & =
(K, x> and T = (T, x ) are again algebras (we disregard some inessential
set-theoretical difficulties which arise in case the classes K and 7 are not sets);
the isomorphism relation = restricted to K is a congruence relation on &,
and T =~ §/=~. However, & does not belong to any of the familiar classes of
algebras discussed in 0.1.4 since the operation x on algebras is neither com-
mutative nor associative. On the other hand, from 0.3.3(i) and 0.3.3(ii) (i.e.,
from what we call, not quite properly, the general commutative and associative
laws for direct product of algebras) we see at once that the corresponding
operation x on isomorphism types is commutative and associative and that
consequently T is a commutative semigroup. By 0.3.4(ii) this algebra has a
unit. By 0.3.10(i) | is a relation between elements «, f € T such that «|f iff
axy = f for some y € T. By 0.3.10(i),(iii) this relation is reflexive and transi-
tive; from the remarks in 0.3.33 below it will be seen that, in general, this
relation is not antisymmetric and hence does not establish a partial ordering
in the class of all isomorphism types.
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THEOREM 0.3.12. For any classes K and L of algebras and any cardinal o,
(i) K= IK = PK = PPK = PIK = IPK,
(i) PSK = SPK and PHK = HPK,
(iii) S,PK = S,PS,K = SPS,K = SPK,
(iv) the formulas K = PL and PK = PL are equivalent, and each of them
is implied by K < L.

In proving 0.3.12(ii), 0.3.5 and 0.3.7(iii) may be used.

The inequalities of 0.3.12(ii),(iii) cannot in general be replaced by equalities.
For example, if K consists exclusively of finite algebras, and |4| > 1 for some
A € K, then all the algebras in PSK and PHK are finite or non-denumerable
while SPK certainly contains denumerable algebras; under some suitable
further restrictions on K the same applies to HPK. With certain trivial ex-
ceptions S,PS K is obviously different from SPS,K. If 9 = {4, +,-) is a
field with |4] = avw,, then SPS A # SPIU.

THEOREM 0.3.13. Let K be a class of algebras.
(i) The following three conditions are equivalent:

K = 8K = HK = PK,
K = HSPK,
K = HSPL for some class L of algebras.

(i) HSPK is the intersection of all classes L such that K = L = HSPL,
Proor: by 0.2.19 and 0.3.12.

REMARK 0.3.14. A class L of algebras may be called algebraically closed if
it is closed under all the basic algebraic operations discussed in this and the
preceding two sections, i.e., under the formation of subalgebras, homomorphic
(and isomorphic) images, and direct products. As examples we may mention
the class of all semilattices 9 = {4, +) and all groups & = <G, -, ~*>
(cf. here 0.1.4 and 0.1.6); from 0.1.13 it is seen that, under the alternative
conception of a group discussed in 0.1.4, the class of all groups is not
algebraically closed.

From 0.3.13 we see that HSPK is the least algebraically closed class which
includes K; hence we can call HSPK the class algebraically generated by K.
For instance, the class of all one-element algebras (of a given similarity type)
is algebraically closed and is algebraically generated by the empty class. We
shall see in 0.3.17 that HSPK is also closed under the formation of unions
if this operation is restricted to sets of algebras directed by the relation &
(cf. 0.1.24 and 0.1.27).
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THEOREM 0.3.15. Let K and L be any classes of algebras, and let Q, Q', and
Q" be any finite compositions of all or some of the operations S, H, and P
(including compositions with repeating terms as well as the O-termed composition,
i.e., the identity operation). Then the two formulas HSPK = HSPL and
QK < HSPL are equivalent, and each of them is implied by Q'K < Q"L
Furthermore, the four formulas HSPS K < HSPL, QS ,K < HSPL,
HSPS K = HSPS,L, and QS,K = HSPS,L are equivalent for every cardi-
nal o, and each of them is implied by Q'S,K < Q"L as well as by Q'S,K <
Q’s,L.

The formulation of 0.3.15 may raise some doubts from the viewpoint of
axiomatic set theory: we speak of finite sequences of the operations S, H,
and P, while, for instance, in Bernays’ set theory no such entities as operations
on arbitrary classes and finite sequences of such operations exist. Without
too much trouble we could adjust the formulation of 0.3.15 to Bernays’ set
theory by eliminating any reference to “operations” and using the definition
of a finite sequence of classes given in the Preliminaries, but we abstain from
doing so since the new formulation would be more complicated and the whole
question is rather irrelevant for our purposes.

REMARK 0.3.16. It should be observed that both parts of Theorem 0.3.13
as well as Theorem 0.3.15 cease to be valid under any non-identical permu-
tation of H, S, and P in HSP. More generally, we cannot replace HSP in
0.3.13 and 0.3.15 by any finite composition Q of S, H, P, unless some occur-
rence of H in Q precedes some occurrence of S which in turn precedes some
occurrence of P. Compositions which satisfy the condition just mentioned
are the only ones for which QK = HSPK for all K.

The variety of compositions Q of S, H, and P have been studied in detail
by Don Pigozzi. He has arrived at the following conclusions, partly announced
in Pigozzi [66*]. (i) There are eighteen operations Q,, v < 18, such that every
composition Q coincides with one of them, i.e., QK = QK for some v < 18
and for every class K of algebras; these are the sixteen compositions without
repetition, Qu—Qys (the identity operation, S, H, P, SH, HS, etc.), and the
two operations Q;s = SPHS and Q,; = SHPS. (ii) No two operations Q,
and Q, with g, v < 18 and u # v coincide, i.e., no equality Q,K = QK is
satisfied by all classes K. (iii) Also no inclusion Q,K = Q,K, with p and v
as before, is satisfied by all classes K unless it is one of the inclusions which
trivially follow from 0.1.14, 0.2.13, 0.2.19, and 0.3.12. (iv) All the examples
needed for establishing (if) and (iii) are provided by two classes of algebras,
Ko and K;, each of which consists of a single Abelian group, K, = {2}
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and K; = {;}. We can take for 9, a torsion-free cyclic group and for A,
any torsion Abelian group which is not bounded (cf. 0.1.4); the situation does
not change if we include in K, and K, all isomorphic images of 2, and A,
respectively. Notice that HSPK, = HSPK, is the class of all commutative
semigroups. Actually, a class K consisting of a single algebra U is known
which alone suffices for establishing (ii) and (iii). The definition of this algebra
is, however, rather artificial; no single Abelian group can be used for this
purpose.

Continuing the remarks which follow 0.1.14 and 0.2.19 we can ask the
question: for which operations Q of the kind discussed is the pair (M, Q)
(where M is any class of algebras with M = QM) a closure structure? From
0.1.14, 0.2.19, and 0.3.12 it easily follows that K = QK for every class K,
and QK = QL whenever K < L; hence our problem reduces to the question:
for which operations Q do we always have QK = QQK? Since the operations
S, H, and their compositions were previously discussed, we restrict ourselves
now to those compositions Q which have P as a factor. The answer now easily
follows from 0.3.12, 0.3.15, and our recent remarks. It turns out that the only
operations Q of this kind for which (M, Q) is always a closure structure
are P, SP, HP, and HSP; moreover, it can be shown that for no such Q is
{M, Q) always a complete or even always an inductive closure structure.

THEOREM 0.3.17. (i) If L is a non-empty set of algebras directed by the
relation <, then UL e HSPL; if, moreover, K is any class of algebras, then
the formulas L = HSPK and UL € HSPK are equivalent.

(ii) In particular, for every algebra U and every class K of algebras, we have
A e HSPS A, and the formulas S,A = HSPK and A € HSPK are equivalent.

Proor. To prove the first half of (i), let 4 be the set of all fe P(B: B eL)
for which there is a 8 e L such that f; = f for every € with B = CelL.
Clearly, 0 # A€ SuP{B:BeL), whence U = <4, +>eSPL. From the
fact that L is directed by < we easily conclude that for every fe 4 there is
just one ce U{B:®B e L} such that, for some B el and for every € with
B = Cel, fy = c. Therefore we can define a function # with Doh = A4 by
stipulating that, for every fe 4, hf is the only element c just described. We
show without difficulty that he Ho(, UL), and hence ULe HSPL. The
second half of (i) follows from the first by 0.1.24 and 0.3.15. (ii) is simply a
particular case of (i) in view of 0.1.27(ii)."

1) Theorem 0.3.17 can also be derived as an immediate corollary from a model-theoretical
result, Theorem 0.4.63, which will be given in the next section; this was first pointed out

several years ago by Tarski. Subsequently Saunders MacLane suggested a purely mathe-
matical proof of 0.3.17, which was essentially the same as the one just outlined in the text.
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THEOREM 0.3.18. For every class K of algebras and every cardinal « = o,
HSPK = HSPS K.

Proor. We have K = HSPS K by 0.3.17, whence HSPK = HSPS_K by
0.3.15; on the other hand, HSPS_K = HSPS,K = HSPK by 0.1.15(ii)
and 0.3.15.

This theorem does not extend to any cardinal o < @.

THEOREM 0.3.19. (i) If K is a set of algebras, then
HSPK = HSP(P(B:%B € K}).

(i) Let K be any class of algebras, L = {8:B € lISK, B = w}, and M =
{B:BelS, K, B< w}. Then

HSPK = HSP(P(B: B e L)) = HSP(P(B: B € M)).

Proor. Since clearly K = H(P(B:B e K)) and P(B:BeK)ePK, (i)
follows by 0.3.15. Since, by 0.1.19, S,K = IM < IL < ISK, we ob-
tain HSPK = HSPL = HSPM by 0.3.15 and 0.3.18, and hence (ii) follows

by (0.

When extending 0.3.19(ii) to algebras of arbitrary similarity types, we replace
o by fuw where f is the cardinality of the index set in each of the algebras
involved.

REMARK 0.3.20. From 0.3.19 we see that every algebraically closed class of
algebras is algebraically generated by a single algebra (cf. 0.3.14). Notice that
0.3.19(i) cannot be applied to very comprehensive classes K of algebras, such
as the class of all groups, which are not sets in the sense of familiar axiomatic
systems of set theory and for which, therefore, the direct products P{(®B: % € K>
do not exist. On the other hand, the more involved construction given in
0.3.19(ii) can always be carried through, since the class of all algebras whose
universes consist exclusively of natural numbers is certainly a set, and so is
every subclass of this class.

We turn to the discussion of connections between direct products and
congruence relations.

THEOREM 0.3.21. Let R;e Co,; for every iel and let S = {{f, g>:f, g€ Pict W,
and f;R,g; for each iel}. Then Se Co(PiN,) and P, (/R = (P, AD/S.

0.3.21 is merely a translation of a part of 0.3.7(iii) in terms of congruence
relations.
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TuEOREM 0.3.22. For A = P, B, it is necessary and sufficient that there
exists a system R = (R;:iel) satisfying the following conditions:
() RelCod;
(i) Ny R, = 4114,
(i) Nyf(x;/R;) # O for every xe'4;
(iv) A/R; = B; for every iel.

Applying 0.2.27 we immediately obtain a generalization of Theorem 0.3.22
which gives a necessary and sufficient condition for %A/S =~ P, ®B;, where S
is any given congruence relation on 2; for this purpose it suffices to replace
A11d by S in 0.3.22(ii).

THEOREM 0.3.23. Every system R satisfying conditions 0.3.22(i),(iii) also
satisfies the following conditions:
) if J =1, K<1, and JaK =0, then (Ni;R) | (N, xR) = A X A4;
i) if jel, then R;|(NiynyR) = A X A;
(vii) if j,kel and j # k, then R;|R, = A x A.
In case |I| < o every system R satisfying conditions 0.3.22(i), and 0.3.23(v)
or 0.3.23(vi) satisfies 0.3.22(iii) as well.

The final statement of Theorem 0.3.23 can be easily proven by induction
on [I|. We may note that, even if 0 < |I| < o, condition 0.3.23(vii) together
with 0.3.22(i),(ii) is not sufficient to assure that 0.3.22(iii) holds.

Theorem 0.3.22 shows that the study of direct products of algebras largely
reduces to that of systems of congruence relations satisfying certain special
conditions. Such a reduction proves especially efficient in discussions con-
cerning direct decompositions of algebras. These are discussions in which we
consider the problem whether a given algebra is isomorphically representable
as a direct product of algebras of a certain kind, i.e., whether it is isomorphic
to, and not necessarily identical with, a direct product of those algebras.”

REMARK 0.3.24. A system (R;:i € I) satistying conditions 0.3.22(i)—(iii) may
be referred to as a system of complementary congruence relations on . A
relation S is called a factor congruence relation on U if it occurs in some system
of complementary congruence relations on . It can easily be shown that, for
S to be a factor congruence relation on [, it is necessary (and obviously
sufficient) that S occur in some system of just two complementary congruence

1) The possibility of representing direct decompositions of algebras in terms of congruence
relations was first noticed by Birkhoff for the case of a finite system of factors; see Birkhoff
[67%], p. 164, Theorem 5. An extension to arbitrary systems of factors can be found in
Hashimoto [57%].
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relations; in other words, S is a factor congruence relation on U iff S'e Co ¥
and there is a 7€ Co such that Sn7 = A11d and S|T = A x A. Obviously,
A1Id and A x A are factor congruence relations on .

Keeping these observations in mind we define:

DEerINITION 0.3.25. An algebra W is called directly indecomposable if |A| = 2
and if the formulas R, Se Co, RaS = A1ld, and R|S = A x A always
imply that either R = A x A (i.e., S = A1Id) or else S = AxA (ie, R =
A1Id).

In other words, following 0.3.24, U is directly indecomposable iff |4] = 2
and 2 has no factor congruence relation different from 4 x4 and A41I1d.
This formulation, when compared with Definition 0.2.34, exhibits at once a
close connection between the notions of simplicity and direct indecomposa-
bility; cf. also Theorem 0.3.58 below. We may note that, in contrast to 0.2.35(ii),
a directed union of directly indecomposable algebras is not necessarily directly
indecomposable.

In view of 0.3.24 we can re-formulate 0.3.25 using arbitrary systems of
complementary relations:

COROLLARY 0.3.26. U is directly indecomposable iff |A| = 2 and if, for
every system R satisfying conditions 0.3.22(i)-(iii) with |I| Z 2, there is a
jel such that R; = A x A (or, equivalently, there is a k €l such that R, =
A1Id while R; = A x A for every i€l ~ {k}).

Using 0.3.22, we can, of course, express the content of 0.3.25 and 0.3.26
equivalently in terms of isomorphisms and direct products:

CoRrOLLARY 0.3.27. The following three conditions are equivalent:

(i) A is directly indecomposable;

(i) 4] = 2, and heIs(A, B x €) always implies that either pjyoh is constant
and pj;oh e Is(U, €) or else pjy-h is constant and pj,-h € Is(U, B);

(iii) 4| = 2, and heIs(U, Pie; B,) with |I| = 2 always implies the existence
of akel such that pj.ohels(U, B,) while pjoh is constant for every
iel ~{k}.

Somewhat more interesting is the following corollary in which the relations
of isomorphism between algebras, but not the actual isomorphic mappings,
are involved.

CoRrOLLARY 0.3.28. The following three conditions are equivalent:
(1) W is directly indecomposable;
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(i) [4] = 2, and A = Bx € always implies that |B] =1 or |C| = 1;
(i) |4| = 2, and A = P;;;B; with |I| = 2 always implies that |B;| = 1
for some jel.

An obvious consequence of 0.3.28 is that every finite algebra whose cardi-
nality is a prime number is directly indecomposable. In some classes of algebras
the converse also holds. This applies, e.g., to all the “trivial” semigroups
mentioned in 0.1.4. It applies as well as to Boolean groups since the only
directly indecomposable Boolean groups are two-element groups; an analogous
remark applies to Boolean algebras. On the other hand, the converse fails in
the class of all groups; it is well known, e.g., that directly indecomposable
finite Abelian groups coincide with cyclic groups whose cardinality is a positive
power of a prime.

REMARK 0.3.29. Consider still the following conditions closely related to
0.3.28(ii), (iii) :

(i) 4] = 2, and A = B x € always implies that |B| = 1 or A = B;

i) 14] = 2, and N = B x € always implies that A = B or A = €;

(iii") 4| = 2, and A = P,.; B, always implies that, for every iel, either
Bl =1 or A = B;;

[ii”) 14| = 2, and A = P,y B; always implies that A = B; for some jel.

Each of these conditions is necessary but, in general, not sufficient for 2
to be directly indecomposable; each is sufficient in case 9 is finite. We are
confronted here with various notions of direct pseudo-indecomposability analo-
gous to the notion of pseudo-simplicity (cf. 0.2.37). It is easily seen that con-
ditions (ii’) and (iil") are equivalent and that each of them implies (iii”), which
in turn implies (ii"); the implications in the opposite direction do not hold.
Thus, e.g., every Boolean group of power 2 satisfies (ii”) but not (iii”). A
denumerable Boolean group satisfies (iii”) but neither (i) nor (iii"). Finally,
a denumerable atomless Boolean algebra satisfies (ii’) but is not directly
indecomposable.

By comparing 0.2.27 with 0.3.22, 0.3.23, and 0.3.25 we easily obtain various
conditions formulated entirely in terms of congruence relations on 2 which
are necessary and sufficient for /R to be isomorphic to P, B, or to be
directly indecomposable. We may note that the ring of integers furnishes an
example of a directly indecomposable algebra 9 such that, for some R e Co¥,
A/R is not directly indecomposable.

DEerFINITION 0.3.30. (i) An algebra W is called totally decomposable if there
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is a system (B;:iel) of directly indecomposable algebras such that A =
Pier B

(i1) U is said to be uniquely totally decomposable, or to have the unique
decomposition property, if U has a decomposition U = P, B, into directly
indecomposable factors B; and if, for any other decomposition A = P;;€; of
this kind, there is a one-one function f from I onto J such that B, = €, for
every iel.

In case an algebra A is uniquely totally decomposable we sometimes say
that the decomposition of 2 into indecomposable factors is wunique up to
isomorphism. There is a stronger variant of this notion, unicity up to order,
which is formulated in terms of systems of complementary congruence
relations.

THEOREM 0.3.31. (i) Every finite algebra is totally decomposable.
(ii) If a finite algebra W has the unique decomposition property, the same
applies to all direct factors of U.

In connection with 0.3.31(i) it should be mentioned that not every finite
algebra is uniquely totally decomposable. A simple example of a finite algebra
without the unique decomposition property is provided by the four-element
algebra (4, -) in which k-Ad = 3—x for x, A =0, 1, 2, 3 (cf. Jénsson-Tarski
[47*], pp. 61 f.). Nonetheless, unicity of decompositions does hold for many
important finite algebras. A fairly general result in this direction is the follow-
ing: If K is the class of all finite algebras ¥ = {4, +, O;>;; which have an
element O such that 0 is a zero for + and {0} € Su3, then every algebra in K
has the unique decomposition property (op. cit., p. 49, Theorem 3.10). Parti-
cular cases of this general result are the well-known unique decomposition
theorems for finite groups and for finite lattices (and semilattices) with a zero.
Infinite algebras are not, in general, totally decomposable as is seen by con-
sidering arbitrary denumerable Boolean groups and denumerable Boolean
algebras. Moreover, those infinite algebras which are totally decomposable
are not necessarily uniquely totally decomposable; in fact, examples to this
effect can be found among Abelian groups. (Cf. Jénsson [57%].)

REMARK 0.3.32. With regard to 0.3.31(ii) let us say that an algebra 2
hereditarily has a given property P if 2 as well as every direct factor of A
has the property P. Thus, by 0.3.31(ii), every finite algebra which has the
unique decomposition property has this property hereditarily. A Boolean
group U with [4| = 2® can serve as an example of an algebra which is totally
decomposable, but not hereditarily totally decomposable, since it has de-
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numerable direct factors which are not totally decomposable. Under the
assumption of the continuum hypothesis,  is also an example of an algebra
which has the unique decomposition property, but not hereditarily; no such
example independent of some analogous set-theoretical hypothesis is known.

Some related questions are: is there an algebra 9 with a direct factor B
such that 9 is uniquely totally decomposable and ¥ is totally but not uniquely
totally decomposable? Is there an algebra 9 which is hereditarily totally de-
composable and has the unique decomposition property, but does not have
this property hereditarily? The answer to these questions is negative in case U
is decomposable into finitely many indecomposable factors. On the other
hand, under certain set-theoretical hypotheses the answer to the first question
turns out to be affirmative; assuming, e.g., that 2° = 2°* = @, and 2°* = w,,
we can take for 9 and B two Boolean groups with cardinalities w; and @,,
respectively. (These assumptions, just as the continuum hypothesis, are now
known to be compatible with ordinary axioms of set theory; cf. Solovay
[65*].) The second question remains open.

REMARKS 0.3.33. Whenever the unique decomposition property is establish-
ed for the algebras of a given class K, the result has far reaching implications
and considerably simplifies the study of this class of algebras. Numerous
problems concerning direct products are known whose formulations are very
simple and which nevertheless present considerable difficulties when applied
to arbitrary algebras, but which become almost trivial when the algebras
involved are assumed to have the unique decomposition property hereditarily.
For illustration consider the following two properties of an algebra 9.

() For any algebras B and €, if A = Ax BxE, then A = Ax P = AxC
(or, equivalently, for every algebra B, if UA|B|A, then A = V).
(B) For any algebras B and €, if U = Bx B = €xC, then B = €.

We can show very easily that («) and (£) hold for every algebra 9 which is
hereditarily uniquely totally decomposable. The discussion of («) and (3) for
arbitrary algebras is difficult and is far from being completed. Examples of
groups, even of Abelian groups, as well as of Boolean algebras in which (o)
and (@) fail can be found in the literature but are by no means simple; cf.
Kinoshita [53*], Hanf [57*], Tarski [57*], Jonsson [57*], [S7a*], Sasiada [61%],
and Corner [64*]. A simple example of an algebra ¥ in which (8) fails, due to
J. C. C. McKinsey, is obtained by letting B = (e, S (the algebra of natural
numbers with the successor operation) and U = € = B x B; we have then
A= BxB = ExC but not B = €. No comparably simple counterexample
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for () is known. («) trivially holds if the algebra 9 is finite; the corresponding
result for () has been established in Lovasz [67*].

The notions of total and unique total decomposability extend automatically
from algebras to their isomorphism types. Problems referring to these notions
can be treated as problems concerning the algebra ¥ = (T, x ), where T
is the class of all isomorphism types (of a given similarity type), and various
subalgebras of & ; compare here 0.3.11. In particular, the properties of iso-
morphism types corresponding to («) and () (but not, e.g., the unique de-
composition property) are elementary in the metamathematical sense, i.e.,
they are expressible in the discourse language of T; see the Preliminaries.
(If U = <U, x) is a subalgebra of T such that yxdeU implies y,6 €U,
then to say that (o) applies to all types of U amounts to saying that the relation
| restricted to U is antisymmetric and hence establishes a partial order in U.)
Some remarks previously made can now be restated in the following way:
there are numerous problems in the elementary theories of the algebra & and
its subalgebras whose study, although presenting considerable difficulty in
general, becomes almost trivial when restricted to subalgebras 11 = (U, x>
in which U consists exclusively of types with the unique decomposition proper-
ty and is closed under the passage to direct factors. Under some additional
assumptions on 11 we can easily show, using the results in Presburger [30*],
Mostowski-Tarski [49*], and Mostowski [52*], that the elementary theory
of 1 is decidable. For instance, the following assumption is sufficient for this
purpose: there is a cardinal ¥ = @ such that, for every system {u;:je J)
of indecomposable types, P, o;eU iff {a;:jeJ} = U and |[J| < k. The
structure of 11 is especially simple in case x = @ and U is denumerable (thus,
e.g., in case U consists exclusively of types of finite algebras); 11 is then iso-
morphic either to the algebra (@ ~ {0}, ->, the multiplicative semigroup of
positive integers, or to some subalgebra of (@ ~ {0}, -)> generated by a
finite set of prime numbers. On the other hand, by an unpublished result of
Ralph McKenzie, the elementary theory of the whole algebra T = (T, x )
is undecidable, and the same applies to the subalgebra T’ = (T, x) of T
in which 7" is the set of all types of finite algebras.

A property of algebras which is frequently involved in discussing direct
decompositions and is closely related to the unique decomposition property
is the so-called refinement property.

DermviTION 0.3.34. (i) An algebra W is said to have the refinement property,
or to be refinable, if for any two direct decompositions of U, N = P, B; =
Py €, there are algebras ®;; with (i,jy € IxJ such that B; = P;;;D; for
each iel and €; = P, D;; for each jeJ.
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(ii) An algebra W is said to have the finite refinement property, or to be
finitely refinable, if for any two direct decompositions of W, A =~ Bx € = DxE,
there are algebras Fo, &1, Fa2> Tz such that B = FoxFy, € = FrxFs,
D= FoxFa and € = Fy X Fs.

Note that the B;’s and €;’s in 0.3.34(i) and B, €, D, and € in 0.3.34(ii) are
not assumed to be indecomposable. As in the case of unique total decompo-
sability, there is a stronger variant of the refinement property formulated in
terms of congruence relations.

THEOREM 0.3.35. For every algebra U, the following two conditions are
equivalent:

(@) U has the refinement property and is totally decomposable;

@ii) A is uniquely totally decomposable and all direct factors of U are totally
decomposable.

If, in particular, U is finite, then the refinement property, the finite refinement
property, and the unique decomposition property are equivalent.

By this theorem an algebra 9 which is totally decomposable cannot have
the refinement property if it is not hereditarily totally decomposable or does not
have the unique decomposition property. Hence, e.g., a Boolean group A with
|A| = 2® does not have the refinement property although, under the conti-
nuum hypothesis, it has the unique decomposition property; cf. 0.3.32. On
the other hand, we know many examples of infinite algebras which have the
refinement property but are not totally decomposable; for instance, all “trivial”
semigroups mentioned in 0.1.4 which are denumerable are of this kind. Also
all rings with unit, all lattices, and in particular all Boolean algebras have the
refinement property, while only some of them (e.g., only those Boolean algebras
which are complete and atomic) are totally decomposable. A Boolean group %
with 4] = @+ 22+ 22? + ... provides an example of an algebra which has
the refinement property, but not hereditarily. As a consequence of the fact
that |A4]| is cofinal with e, 2 proves to be directly pseudo-indecomposable in
the sense of condition (iii”) of 0.3.29 (cf. 0.3.11), and it is easily seen that
every algebra satisfying this condition has the refinement property; on the
other hand, Boolean groups with cardinalities 2, 2*“, ..., which are direct
factors of 9, do not have this property, although they satisfy 0.3.29(ii") and,
as a consequence, have the finite refinement property. From 0.3.35 it follows
that an algebra is totally decomposable and hereditarily refinable iff it here-
ditarily has the unique decomposition property. It is not known whether there
exists an algebra which is totally decomposable and refinable, but not here-
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ditarily refinable; this is an equivalent formulation of a problem mentioned
in 0.3.32.

The significance of the notion of the refinement property results from the
following observations. Some general methods are known which enable one to
establish this property for many important classes of algebras; when so esta-
blished and applied to algebras which are totally decomposable, it directly
implies the unique decomposition property. On the other hand, this property
can be meaningfully and fruitfully discussed also for those algebras which are
not totally decomposable. In many discussions only the finite refinement
property is needed.

In the following theorem we find an example of useful conclusions which
can be drawn from the refinement property for algebras not assumed to be
totally decomposable.

THEOREM 0.3.36. (i) If U has the refinement property, % is a direct product
of finitely many directly indecomposable algebras, and N = B x €, then € also
has the refinement property.

(i) Under the assumptions of (i), if in addition U = Bx ', then € = €.

(i) Parts (i) and (ii) remain valid if “‘refinement property” is replaced every-
where by “‘finite refinement property”.

The proof can be most conveniently carried through by induction on the
number of factors in B.

For more information on the refinement property see Jénsson-Tarski [47%],
Chang-Jénsson-Tarski [64*], Crawley-Jonsson [64*], and Jonsson [66%].

When applied to algebras which are not assumed to be totally decomposable,
the refinement property leads to especially interesting conclusions if it is com-
bined with the so-called remainder property.

DEFINITION 0.3.37. An algebra U is said to have the remainder, or infinite
chain, property if, for any two infinite sequences of algebras {8,:v < ) and
(C,:v < w) such that By = WA and B, = B, xC, for every v < o, there
is an algebra ® satisfying the formula

B, =2 DxE,,.:7m < 0

for every v < @.

THEOREM 0.3.38. (i) Every finite algebra has the remainder property.

(it) If an algebra is totally decomposable and if it together with all its factors
has the refinement property, then it also has the remainder property.

(iii) If an algebra has the remainder property, then all its direct factors have
this property.
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RemMARK 0.3.39. The class R of those algebras 2 which both have the re-
mainder property and are hereditarily refinable is especially interesting from
our point of view. (It is sufficient to assume for our purposes that the algebras
in R have the refinement property restricted to finite and denumerable de-
compositions.) R contains all the algebras which hereditarily have the unique
decomposition property, but it also contains many other algebras, for example,
all countably complete Boolean algebras (which in general are not totally
decomposable). If 9 is any algebra in R and T = {zB:B|A}, then the
structure <7, x, P) (with the operation P restricted to o-termed sequences
of isomorphism types) is what is called in the literature a generalized cardinal
algebra; cf. Tarski [49*], Part II, Section 5. This has far reaching implications
for the study of direct decompositions of algebras in R. In fact, generalized
cardinal algebras are known to possess a great variety of interesting arith-
metical properties; all these properties automatically apply to the isomorphism
types in 79 and carry with them interesting consequences for algebras 2
in R and their direct decompositions. In particular, it turns out that every
algebra 9 e R has the properties («) and (8) stated above in 0.3.33. We do not
assume in this monograph that the reader is familiar with the theory of cardinal
algebras. On the other hand, the class R is too special from the viewpoint of
the general theory of algebraic structures to be discussed with details in the
present chapter. In Section 2.4, however, we shall establish («), (8), and several
related properties for a comprehensive class of cylindric algebras using ex-
clusively the fact that the cylindric algebras involved belong to the class R.
It will be seen that the arguments applied there are much more intricate than
those which lead to analogous conclusions for the (more restricted) class of
algebras with the unique decomposition property.

We shall now discuss a special kind of subalgebra of a direct product called
a subdirect product; later on we consider a special kind of homomorphic
image called a reduced product, and a particular case of this notion, that of
an ultraproduct.

DEFINITION 0.3.40. An algebra B is called a subdirect product of a system
of algebras U = {U:iely if B = Py N; and pj; € Ho(B, A,) for each iel.
Given two algebras B and & we shall write 6 =4 € or € 24 B just in case
there is a system N of algebras such that B is a subdirect product of A and €
is the direct product of .

When using the notation just introduced, we should bear in mind that if,
for a given algebra €, there is a system 9 of algebras for which € = P, then
A is uniquely determined.
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In most cases we are interested in knowing whether an algebra B can be
isomorphigafly represented as (and not whether it actually coincides with) a
subdireet product of algebras ;. In this connection we note the following
immedjate consequence of Definition 0.3.40.

COROLLARY 0.3.41. If B =|<=4 Piy N;, then B =|< P, A; and B = A, for
each iel.

The symbol =4 will occur most frequently in such a context as the one
in the hypothesis of 0.3.41. Notice in this connection that the formulas
B =|cy Py and P, A; = € do not imply in general B x|<=4 €. The
implication may fail even if I = {0} and € = Ay; in fact, B =<4 P, A;
holds iff B = P, o, U;, while B =|=4 € never holds in case € is not of the
form € = P® for some system D of algebras.

The converse of Corollary 0.3.41 does not hold. To show this we take, e.g.,
for % the finite algebra (4, ) described following Theorem 0.3.31, and we
define two congruence relations R and S on % for which 8 | = (B/R) x (B/S)
holds while B =|<4 (B/R) x (B/S) fails. The details are left to the reader.

THEOREM 0.3.42. (1) P =4 P for every system U of algebras.

(i) If fis a permutation of the set I, then the formulas % =|< 4 P, and
B =|=q4 Py Uy are equivalent.

(iii) Let {J;:iel) be a system of sets, K = {<i,jy:iel, jeJ;}, and {U;:
{i,j> € K> be a system of algebras. If B,; =|=4 P, W;; for each iel and
C x|y Py DBy, then € x|y P 1ok Uiy

THEOREM 0.3.43. € = P,/ U, iff there is a system of algebras {B;:iel)
such that B; = N; for each iel and € =4 P,y B,

THEOREM 0.3.44. Under the hypothesis of 0.3.6(ii) we have h*€ =4 P, gF€;
hence, if hels€, then € ~|<= 4 P, gC.

TraeoreM 0.3.45. If J < I, the following two conditions are equivalent:
() Py == P Uss
(i) Pics; = A, for every iel ~ J.

In particular, if 0 # J < I, we have '% ~|<4 "% for every algebra B.

THEOREM 0.3.46. For WA ~|< 4 P,,; B, it is necessary and sufficient that there
exist a system R of relations satisfying conditions 0.3.22(i),(ii),(iv).

We obtain a generalization of 0.3.46 by changing 2 to /S at the beginning
of the theorem (where S is any congruence relation on %) and replacing
A11d by S in 0.3.22(ii). Compare the remark following 0.3.22.
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The following elementary observations may be of some interest. Every
subset of the universe of A x B is of course a binary relation R with DoR < A4
and RgR < B, and conversely. Some of these relations R are subuniverses of
Ax B, and the corresponding algebras (R, +) are subalgebras of Ax B
and, in some cases, subdirect products of the system {2, B). Among such
relations we find various structures discussed in the preceding section. This is
seen from the next theorem.

THEOREM 0.3.47. (i) The following two conditions are equivalent:
@i") he Hom(%, B);
i) he Su(Ux B) and h is a function with Doh = A.
Each of these conditions implies that A = <h, +> >|< B.
(i) The following two conditions are equivalent:
(ii") h e Ho(2, B);
(") he Su(A x B) and h is a function with Doh = A and Rgh = B.
Each of these conditions implies that 3 = <{h, +» = B and {h, +) =4 Ax V.
(iil) The above statements (i) and (ii) remain valid if we replace “Hom™ by
“Ism” in (i'), “Ho” by “Is” in (ii"), “function” by “‘one-one function” in (i")
and (ii"), and “z” by “=” in the last parts of (i) and (ii).
(iv) The following two conditions are equivalent:
(iv)) Re Co¥;
(iv") Re Su(AxA) and R is an equivalence relation on A.
Each of these conditions implies that {R, +) = W and {R, +> =4 AxA.

DErFINITION 0.3.48. An algebra W is called semisimple if it is isomorphic to
a subdirect product of simple algebras.

THEOREM 0.3.49. U is semisimple iff A11d is the intersection of all maximal

proper congruence relations on .
Proor: by 0.2.38(i) and 0.3.46.

From 0.3.49 we see that every semisimple algebra with more than one ele-
ment has at least one maximal proper congruence relation.

DEFINITION 0.3.50. (i) An algebra W is called weakly subdirectly indecom-
posable if |A| = 2 and if the formulas R, S € Co and RnS = A11d always
imply that R = A11d or S = A11d.

(if) An algebra W is called subdirectly indecomposable if |A| = 2 and if, for
every system R of relations satisfying conditions 0.3.22(i),(ii), there is an iel
such that R; = A11d.

By comparing 0.3.50 with 0.3.25 and 0.3.26 we notice immediately a close
connection between the notions of direct and subdirect indecomposability.
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On the other hand, we see that the conditions stated in 0.3.25 and 0.3.26 are
equivalent and characterize the same notion, while for the analogous conditions
in 0.3.50(i) and 0.3.50(ii) two different terms have been introduced. We shall
see below, in the remark following 0.3.58, that the two notions defined in
0.3.50 are actually different when applied to infinite algebras; it is easily seen,
however, that they coincide for finite algebras. The subdirectly indecomposable
algebras in the sense of 0.3.50(ii) play a much larger role in algebraic dis-
cussions than the weakly subdirectly indecomposable algebras in the sense of
0.3.50(i).

THEOREM 0.3.51. (i) If U is not weakly subdirectly indecomposable, then some
subalgebra of W with four generators is not weakly subdirectly indecomposable,
and actually is not a subalgebra of any weakly subdirectly indecomposable sub-
algebra of .

(if) The union of a set of weakly subdirectly indecomposable algebras which
is directed by the relation < is weakly subdirectly indecomposable.

ProOF. (i) Suppose R, Se€ CoA, RnS = A11d, and R, S # A1Id. Choose
{a,by e R ~ (A11d), {c,d)e S ~ (A11d). By 0.2.26(i), the algebra B =
Sg{a, b, ¢, d} is not weakly subdirectly indecomposable, as required in the
conclusion of (i). More generally, no algebra € such that B = € < % is
weakly subdirectly indecomposable. Hence (i) is proved, and (ii) follows from
(1) by 0.1.28.

Thus the property of being weakly subdirectly indecomposable, just as that
of being simple, is local (cf. the remark following 0.1.28). In contrast, the
properties of being directly and subdirectly indecomposable are not local.
In fact, let A = {4, +) be any infinite “trivial” semigroup (cf. 0.1.4) with
x+y = x for any x, ye 4. Since every subset of A is a subuniverse of 2,
the set L of all finite subalgebras of 9 whose cardinality is a prime number
is obviously directed by < ; moreover, all algebras in L are directly indeconi-
posable while % = UL is not. On the other hand, let U = (o, -) where
Kok = Kk and kol = lox = k+1 for Kk < A < w. Then, for each x < w,
kK # 0,1, the subalgebra B, = {x,-» is subdirectly indecomposable, but
A =U,_, B, is not. The last example is due to Ralph McKenzie, who called
our attention to the fact that the property of being subdirectly indecomposable
is not local.

A more concise form of 0.3.50(ii) is

COROLLARY 0.3.52. 9 is subdirectly indecomposable iff A1ld=N{R:
Alld = Re Co}, or, equivalently, iff there is a (uniquely determined) least
relation R such that A11d < Re Co.
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CoROLLARY 0.3.53. Let Re CoU. U/R is subdirectly indecomposable iff
R = N{S:R = Se CoA}, or, in other words, iff there are two elements x, y € A
such that R is a maximal congruence relation on  for which xRy does not hold.

THEOREM 0.3.54. For every algebra U there is a system {B;:iel) of sub-
directly indecomposable algebras (and, in fact, of algebras of the form ;= A/[S;
where S; e Co for each i el) such that A =|<=4 P, B,

Proor. We let I = (4 x A) ~ (411d) and, by applying Zorn’s lemma, we
pick for each (x,y) el a congruence relation S,, on A which is maximal
among congruence relations not containing <x, y). To complete the proof we
apply 0.3.46 and 0.3.53.

Theorem 0.3.54, which is due to Birkhoff [44*], accounts for much of the
usefulness of the notion of subdirect indecomposability. In opposition to the
case of direct decomposability we see that every algebra has a subdirect de-
composition into subdirectly indecomposable factors.

THEOREM 0.3.55. The following three conditions are equivalent:
(1) W is subdirectly indecomposable;
(i) |4] = 2, and, if h is an isomorphism from U onto a subdirect product
of (B;:iel), then pj;-hels(, B)) for some iel;
(iii) |4] = 2, and the formula A ~|<4 P,y B; always implies that A = B,
for some jel. ’

Theorem 0.3.54 may be used to show that 0.3.55(iii) implies 0.3.55(i).

THEOREM 0.3.56. Every weakly subdirectly indecomposable algebra U satisfies
the following condition:

(i) 14] = 2, and the formula N =| <4 B x € always implies that A = B or
A= C.

ReMARK 0.3.57. The converse of 0.3.56 does not hold. For example, every
infinite “trivial” semigroup satisfies 0.3.56(i) but is not weakly subdirectly
indecomposable; this is a consequence of those properties of “trivial” semi-
groups which were pointed out in 0.2.12 and in the remark following 0.2.20.
We see thus that the notion of weak subdirect indecomposability leads to a new
“pseudo-notion” (cf. 0.2.37 and 0.3.29). On the other hand, in view of Theorem
0.3.55, we do not know of any pseudo-notion induced in a natural way by the
proper notion of subdirect indecomposability.

THeOREM 0.3.58. (i) Every simple algebra is subdirectly indecomposable.
(ii) Every subdirectly indecomposable algebra is weakly subdirectly indecom-
posable.
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(iii) Every weakly subdirectly indecomposable algebra is directly indecom-
posable.

The converses of all three parts of 0.3.58 fail. In fact, the algebra € = {3, P},
where P is the unary operation on 3 such that PO = Pl = 0 and P2 = 1, is
subdirectly indecomposable but not simple; the ring of integers is weakly
subdirectly indecomposable but not subdirectly indecomposable; and, no
“trivial” semigroup A with 2 < |4| < o is weakly subdirectly indecomposable
although every such algebra for which |A4]| is a prime is directly indecomposable.

REMARK 0.3.59. In addition to the four notions involved in 0.3.58 we have
briefly considered five ““pseudo-notions”: pseudo-simplicity (0.2.37), three
variants of direct pseudo-indecomposability (0.3.29), and weak subdirect
pseudo-indecomposability (0.3.57). There are still two valid implications
between these notions which do not follow from our previous remarks: every
pseudo-simple algebra is subdirectly indecomposable, and every algebra
satisfying 0.3.56(i) satisfies also 0.3.29(ii"), i.e., the weakest condition of direct
pseudo-indecomposability. Using as counterexamples the special algebras
mentioned in 0.2.37, 0.3.29, 0.3.57, and in the remark following 0.3.58, we
can easily convince ourselves that no further implications hold between any
two of the nine notions discussed (disregarding, of course, all the implications
which follow by transitivity from those explicitly stated).

REMARK 0.3.60. By 0.3.42(i) direct products can be treated as particular
instances of subdirect products. Another important class of particular instances
of subdirect products is formed by the so-called weak direct products (known
also in the literature as direct sums). When introducing this notion in the
general theory of algebras it seems natural to restrict oneself to algebras of the
form B = (B, b, Q;>;; Where b is a distinguished element and {b} is a sub-
universe of . (It will be obvious that the discussion can be extended to any
class K of algebras provided there is a uniform method which permits us to
single out a one-element subalgebra in each algebra of K; thus, e.g., the notion
of weak direct product can be applied to the class of all algebras B =
{B, + > where + is a binary operation with zero.) Given a system
B = (BP:jeJ)y of algebras BY = (BYD, pD 0D, . by the weak direct
product of B we understand the subalgebra € of P whose universe C consists
of all those functions feP,;BY for which the set {j:jeJ, fj # bP} is
finite; thus C is what we have called in the Preliminaries the weak Cartesian
product of B relative to b = (b:jeJ). The formation of weak direct
products, just as that of ordinary direct products, is an operation which (when-
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ever applicable) correlates a well determined algebra with a given system of
algebras. The two operations have many properties in common; e.g., the
general commutative and associative laws, 0.3.3(i) and 0.3.3(ii), hold for both
kinds of direct products. Also various notions defined in terms of direct pro-
ducts and results concerning these notions extend in an obvious way to weak
direct products; we have in mind here such notions as direct power, unique
decomposition property, and refinement property. For any finite system of
algebras the direct product and the weak direct product obviously coincide.
Hence, for instance, the notion of a directly indecomposable algebra is the
same for both kinds of direct products. Properties («) and (£) discussed in
0.3.33 and 0.3.39 apply to all algebras which hereditarily have the unique weak
decomposition property and, more generally, to those which both are here-
ditarily weakly refinable and have the weak remainder property.

It should be pointed out that in discussions of various special classes of
algebras, in particular in the theories of groups and rings, weak direct products
actually play a more essential role than ordinary direct products. On the other
hand, weak products are of no importance for the discussion of some other
classes of algebras, for instance, of lattices with zero and unit. If we treat such
lattices as algebras with two distinguished elements, 0 and 1, which in general
do not coincide, our construction of weak products does not apply since the
algebras involved do not have one-element subalgebras. If we treat them as
algebras with one distinguished element, say 0, and only postulate the existence
of 1, then the weak direct product of an infinite system of such algebras (each
with at least two different elements) is never itself an algebra of this kind.
In particular a weak direct product of an infinite system of Boolean algebras
is not a Boolean algebra. For analogous reasons weak products will not be
involved in the discussion of cylindric algebras.

The notions of reduced product and ultraproduct, to which we now turn,
were introduced in the theory of algebras only a few years ago. During these
few years they have come to serve as a powerful instrument of research in the
theory of models — the study of relationships between mathematical properties
of algebras (and of other mathematical structures) and the form of sentences
expressing these properties in some formalism. With the help of reduced
products and ultraproducts several basic model-theoretical notions have been
characterized in mathematical terms and further consequences have been
derived from these characterizations by means of mathematical methods; this
has led in some cases to the solution of purely mathematical problems whose
metamathematical connections are quite remote.
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The use of reduced products and ultraproducts in this work will be rather
restricted. Here we define both notions and state some elementary consequences
of these definitions. For a detailed discussion see Frayne-Morel-Scott [62*];
further bibliographic references, in particular to £o$ [55a*], can also be found
there.

TueoreM 0.3.61. If U;:iel) is a system of algebras and F is a filter on I,
then {{f,g>:f,g€Pird; {itiel,f; =g} eF} is a congruence relation on
Pielg(i'

In view of this theorem we define:

DErFINITION 0.3.62. (i) For any system of algebras W = {N;:iel) and any
filter F on I we let

F® =F = {{f,g>:f,g€Picd; and {iziel, f; =g} e F}.
The algebra B = PU/F = P, ;/F is called the direct product of the system U
reduced by the filter F or, briefly, the F-reduced product of ; in case F is an
ultrafilter, B is called the F-ultraproduct of N. The terminology extends in an
obvious way to direct powers.

(il) For any algebra U we let UpU be the class of all algebras isomorphic to
ultrapowers of U; more generally, for any class K of algebras we put

UpK = I{P,;B,/F: B € 'K, F is an ultrafilter on I}.

Notice that, just as in the case of direct products, we include in UpK not
only all the ultraproducts of algebras in the class K but also all the isomorphic
images of these ultraproducts; cf. the comment following 0.3.1. We do not
introduce any special symbol to denote the class of all reduced products of
algebras in K (and their isomorphic images) since such a symbol is not needed
for the later discussion.

THEOREM 0.3.63. Let W = (U;:iel)> be a system of algebras and A =
(A;:iel) be the system of universes of these algebras.

() If F = {I}, then F = PA11d and PA/F ~ P

(i) If F = SbI, then F = PAxPA and PU[F is a one-element algebra.

(iiiy If F is a principal filter on I and, in fact, F = {X:J < X < I} where
J < I, then PUJF =~ P, U,

(iv) If F is a principal ultrafilter on I and, in fact, F = {X:je X < I} where
jel, then PUAIF = 9A;.

Since every filter on a finite set is principal, it follows from 0.3.63(iii),(iv)
that the notions of reduced product and ultraproduct present no interest when
applied to finite systems of algebras.
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TueoreM 0.3.64. Let J = {J;:iel) be a system of sets, K = {{i,j>:i€l,
je€Ji}, and A = {W;;:<i,j) € K be a system of algebras. For each i€l let
F; be a filter, or an ultrafilter, on J;, G be a filter, or an ultrafilter, on I, and
let H={X:X < K and {iciel, X¥XieF;} € G}. Then H is respectively a
filter, or an ultrafilter, on K, and

PieI(PjeJig[ij/Fi)/G = P(i,j)gK%{ij/H'

Proor. The desired isomorphism is the relation

KK Sfijije ‘]i>/Fi:ieI>/Gaf/H_> fe P{i,j)eK%tij}'

COROLLARY 0.3.65. Let {U;:iel) be a system of algebras, F a filter on I,
J a non-empty subset of I, and let G = {XnJ:X € F}. Then G is a filter on
J satisfying the following conditions:

@ if A; has a one-element subalgebra for every i€l ~ J, then
Py Wi/G = | = Py W/F;

(i) if JeF, then Pi;U;/G = P, U,/F;

(i) if {iel:|4;| = 2} = J, then P;A;/G = P, U,/F.

Moreover, in case F is an ultrafilter on I, G is an ultrafilter on J or else is identical
with SbJ (i.e., is the improper filter on J).

THEOREM 0.3.66. If {A;:iel), {B;:iel) are systems of algebras, F is a
Sfilter on I, and N; = B; for each i €l, then

Pt /F =] <= P B/F.
Proor. The relation
{SfIF®, fIFD): fe Py A}
is easily seen to be a function mapping P, ;/F isomorphically into P, B,/F.

THEOREM 0.3.67. For every algebra U, if F is a proper filter on I, then
A x| < UAF.
Proor. The function {(I x {a})/F:a € A) maps U isomorphically into ‘/F.

THEOREM 0.3.68. If {N;:iel), {B;:iel) are systems of algebras, F is a
filter on I, and W; = B, for each i€l, then

Pir W,/F = Pyt B,/F.

PRrOOF. Suppose f; € Ho(; B;) for each iel. For any given ge P, 4; we
let

g7 = {flg):iel).
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Then, as is easily seen, the relation
{<g/F9 g+/F>:g€ PiEIAi}
is a function which maps P, %;/F homomorphically onto P;; %B,/F.

THEOREM 0.3.69. For any classes K and L of algebras we have:
(i) K IK < UpK = UpUpK = UplK = IUpK = HPK,
(ii) UpSK = SUpK and UpHK = HUpK,
(iil) the formulas K = UpL and UpK < UpL are equivalent, and each of them
is implied by K = L.

Part (ii) of this theorem follows from 0.3.66 and 0.3.68.

Regarding the possibility of replacing the inclusions (ii) of 0.3.69 by equalities
see Remark 0.3.76 below. It has been observed by Ralph McKenzie that neither
of the inclusions UpPK < PUpK and PUpK < UpPK holds for all classes
K; both inclusions fail, e.g., for K = {9} where ¥ is the field of rational
numbers.

Theorem 0.3.69 permits us to supplement 0.3.15: the conclusion of this
theorem proves to hold if Q, Q’, Q" are assumed to be any compositions
of four operations, S, H, P, and Up. Another consequence of 0.3.69, to
which we shall refer later in this section, is

CorOLLARY 0.3.70. Let K be any class of algebras.
(i) The following three conditions are equivalent:
K = SK = UpK,
K = SUpK,
K = SUpL for some class L of algebras.
(ii) SUpK is the intersection of all classes L such that K = L = SUpL.
(iii) Parts (i) and (ii) remain true if “S” is replaced everywhere by “H”.

THEOREM 0.3.71. Theorem 0.3.17 remains true if “HSP” is replaced every-
where by “SUp”.

Proor. Consider any non-empty set L of algebras directed by the relation <.
By the axiom of choice P{A:Ael) # 0; let fe P(4:AelL). For each
ae UL we put

M,={W:iaeAd,Ael}, g, =M, x{a} u (L~M)1f;
clearly,
g.ePC4: Ae L.
Since L is directed by <, we easily see that the set
G = {X: for some Bel, {A:B < Ael} =X =L}
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is a proper filter on L; hence, by a well-known set-theoretical result, G can be
extended to an ultrafilter F on L. For every such ultrafilter F (or, more
generally, for every proper filter F =2 G) we show without difficulty that the
function

{g.F:aeUL)
is an isomorphism from UL into P(: € L)/F. Consequently,
ULeSUpL.

We have thus obtained the first part of 0.3.17(i)) with “HSP” replaced by
“SUp”; hence, with the help of 0.3.70(1), 0.1.24, and 0.1.27(ii), we easily
derive both the second part of 0.3.17(i) and 0.3.17(ii), again with “HSP”
replaced by “SUp”.

Theorem 0.3.71 is clearly an improvement of 0.3.17 (since every class of
the form HSPK is also of the form SUpL); an intermediate statement between
0.3.17 and 0.3.71 is one in which “HSP” in 0.3.17 is replaced by “SHP”.
By comparing the proofs of 0.3.17 and 0.3.71 we notice that they are based
on closely related ideas and that the proof of 0.3.17 implicitly involves the
notion of a reduced product.

THEOREM 0.3.72. (i) If A = (WU;:iel) is a system of algebras and
L={PsUA:J =L || <o},

then P e SUpL; hence, for any class K of algebras, L = SUpK implies
P e SUpK.

(i) For any class K of algebras, if 6 x € e SUpK whenever B, € e SUpK,
then PSUpK = SUpK.

Proor. Under the assumptions of (i) let

M={JJcl ] <o}
and
g = J1f:Je M) for every fe P, A;;

clearly g, belongs to the universe of Py, (P;; ;). Also let
G = {X: for some Je M, {N:J = NeM} < X = M};

G is a proper filter on M and hence can be extended to an ultrafilter F. For
every such ultrafilter F (and, more generally, for every proper filter F on M
which includes G) the function {g,/F:fe P, 4;> turns out to be an iso-
morphism from P into P, (P, U;)/F. Consequently, P2 e SUpL. Hence
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the remaining part of (i) follows immediately, and (ii) is an easy consequence
of (i).

The notions of reduced product and ultraproduct can be applied, not only
to algebras, but also to sets treated as universes of some (unspecified) algebras.
In fact, from Definition 0.3.62 it is seen that the universe of the F-reduced
product P;;9(;/F is fully determined by the system {4;:iel) of universes
and by the filter F, and does not depend at all on the fundamental operations
of algebras ;. We can thus speak of the F-reduced product of any system
(Ad;:iel) of (non-empty) sets; in agreement with our general symbolic con-
ventions in the Preliminaries referring to equivalence relations, we shall of
course denote the reduced product by P, 4;/F. In this context we come across
various purely set-theoretical problems concerning in particular the cardinality
of reduced products and ultraproducts. Many problems of this kind are still
open; in the next three theorems we state some of the results which are known
at present.

THEOREM 0.3.73. If |B| = o, then for every non-empty set I there is an ultra-
filter F on I such that |'B/F| = |'B|.

Proor. By 0.3.63(iv) the conclusion is obvious in case |I| < . If |I| = o,
we argue as in the proof of 0.3.72, choosing for the 9; any algebras such that
A; = B for every i eI. We obtain

Pier ;i 2| € Prop(Picy A)/F
whence, passing to universes,
"Bl < |Pyep’BJF|;
here F is an ultrafilter on M. Since [M| = ||, |”B| = |B| for every non-empty

Je M, and |°B| = 1 < |B|, we conclude that there is an ultrafilter F’ on I
for which ['B/F'| = |'B|.

THEOREM 0.3.74. If F is an ultrafilter on I, then |Pi A,/F| = @ or else
{i1|4;] = x} eF for some k < .

Proor. Assume {i:|4;| < x} ¢ F for each ¥ < . Let X be any finite sub-
set of P, A4;/F; thus X = {fP[F:4 < «} for some k < » and [ = {fP:
A < k) €*(P;;;4;). By the axiom of choice we can find a g € P, 4; such that
gi€d; ~{f*:1 <} whenever iel and |4;] > k. Our assumption implies
then that g/F # f® for each 1 < k and hence g/F e (P,,;4,/F)~X. Con-
sequently the set P, 4;/F is infinite.

THEOREM 0.3.75. If F is an ultrafilter on I, then P, A;[F| = 2° or else
|Picr4:/F| = 14| for some jel.
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The proof of this theorem is more difficult; compare Frayne-Morel-Scott
[62*], pp. 208 f. (Theorem 1.29).

REMARK 0.3.76. By 0.3.75, neither of the inclusions of 0.3.69(ii) can be
replaced by an equality. Indeed, 0.3.75 implies that for any class K of finite
algebras, every algebra in UpK is either finite or of cardinality 2. Thus if
all algebras in K are finite, the same holds for SK and HK, and therefore no
algebra belonging to UpSK or UpHK is denumerable. On the other hand,
if we take for K, e.g., the class of all finite algebras A = (A4, 241 pj,> (or
A = {4, A11d)), we easily see that both classes SUpK and HUpK contain
denumerable algebras among their members.

To conclude this section we shall discuss briefly model-theoretical properties
of ultraproducts (using various metalogical notions and symbols which were
introduced in the Preliminaries). The next theorem is a basic result in this
direction; practically all of the more profound applications of ultraproducts
in mathematics and metamathematics are based upon it.

Tueorem 0.3.77. Let {W;:iel) be a system of algebras, F be an ultrafilter
on I, and B = P, A,/F. Furthermore, let x € ®(P; .1 A)), and let ¢ be any for-
mula in the discourse language of B (and hence also in the language of U; for
each ielI). Then

() BE@[F*ex] iff {iel:U;F @[pj;ox]} € F.

Hence, in case ¢ is a sentence,

(i) BEo iff {iel:WA;E@}eF; in particular, we have B F ¢ whenever

A; E @ for every iel.

Theorem 0.3.77 is essentially due to Lo§ [55a*], p. 105, 2.6; for a proof of
it see Frayne-Morel-Scott [62*], pp. 213 f. An immediate corollary of 0.3.77(ii)
is

CoroLLARY 0.3.78. If A is any algebra, I any set, and F any ultrafilter
on I, then A and "Y[F are elementarily equivalent.

As a consequence of 0.3.77 (using the well-known theorem on the extension
of filters to ultrafilters) we obtain the model-theoretical compactness theorem:

If X is any set of sentences (in the language of the elementary theory of some
class of algebras) and every finite subset of X has a model, then X also has a
model.

The compactness theorem can be fruitfully applied in algebraic investi-
gations; its importance consists in the fact that in many cases it enables one to
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assert the existence of an algebra satisfying some prescribed condition, even
though no effective method for constructing such an algebra is available.
Instead of proving the compactness theorem by means of 0.3.77 we can derive
it directly from the completeness theorem for predicate logic; while neither
of these proofs is effective, the one based upon 0.3.77 provides us with much
more insight into the structure of algebras which can be claimed to be models
of the set X.

To illustrate the applicability of 0.3.77 (and also of the compactness theorem)
to specialized situations, consider the case when all the algebras U, are integral
domains. Then, by 0.3.77, their ultraproduct ¥ is also an integral domain.
On the other hand, it is well known that the direct product of %;’s is never an
integral domain (disregarding the trivial case when all %;’s with at most one
exception are one-element algebras). Since, by 0.3.63(i), the direct product is
isomorphic to a reduced product, we conclude that 0.3.77 does not extend to
direct products nor a fortiori to arbitrary reduced products.

Assume now that I consists of all natural numbers which are prime powers
and that, for each 7eI, U, is a finite (Galois) field with exactly 7 elements.
Let F be any non-principal ultrafilter on I; thus all complements of finite
subsets of I are members of F. By 0.3.77 the ultraproduct B = P, U,/F is
again a field which, in addition, exhibits the following particularities: every
property expressible in the language of the elementary theory of fields and
which holds in all finite fields holds in ¥ as well; the same applies to every
property which holds in ‘““almost all” finite fields, i.e., in all finite fields with
at least x elements, where x is some natural number given in advance. Thus,
for instance, every element of % is a sum of two squares, and any homogeneous
polynomial in % variables (x > 1) of degree < x, with coefficients in %, has
a non-trivial zero in B. Furthermore, for every ¥ < w, B has at least « ele-
ments (since “almost all” finite fields have at least x elements); hence B is
infinite and, in view of 0.3.75, actually has cardinality 2”. On the other hand,
nothing definite can be said about the characteristic of ®. By choosing F
appropriately, B can be forced to have any characteristic given in advance,
in particular characteristic zero, and this in spite of the fact that all the fields
A; have positive characteristic. If, in constructing B, we replace the set of all
powers of primes by the set of all primes (and thus restrict ourselves to finite
prime fields), then B always has characteristic zero. The observations just made
concerning the cardinality and characteristic of % by no means contradict
0.3.77; they simply show that, as a consequence of 0.3.77, the properties of
being finite, or infinite, and of having positive characteristic, or characteristic
zero, turn out not to be expressible in the language of the elementary theory of
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fields. (All the observations in this paragraph can be established as easily by
means of the compactness theorem.)

With a slight modification in the definition of ultraproducts Theorem 0.3.77
extends to arbitrary (first order) relational structures; cf. Frayne-Morel-Scott
[62*]. By applying this extended theorem (or, instead, the compactness theo-
rem) to ordered fields §§ = <F, +, -, £, thus to structures which are not
algebras in our sense, we obtain, e.g., the following result: for every ordered
field §§ there is a non-Archimedean ordered field ' which is elementarily
equivalent with ¥, i.e., which has all the properties of & expressible in the
discourse language of ¥; cf. Tarski [52]. The familiar methods of construc-
ting non-Archimedean ordered fields do not yield a field §' elementarily
equivalent with .

For the discussion to follow recall from the Preliminaries that “%%€.# is
an abbreviation for “the generalized continuum hypothesis”.

THEOREM 0.3.79. Let U and B be any two algebras.

(1) The condition UpAaUp B # 0 is sufficient for N and B to be elemen-
tarily equivalent.

(i) Under the assumption of 96 A, this condition is also necessary.

0.3.79() is a direct consequence of 0.3.77(ii). The proof of 0.3.79(ii) is much
more difficult; it is due to Keisler [61a*]. The question to what extent the role
of ¥€A# in 0.3.79(ii) is essential has not yet been cleared up."

REMARK 0.3.80. Let us agree to write 9 = ¥ in case the algebras U and
B are elementarily equivalent, and A = B in case UpAnUp B # 0. Thus
the relation = has a purely mathematical character, while the relation = has
a model-theoretical one. 0.3.79 shows that, assuming ¥ 2%, the two relations
coincide. (If the algebras involved are finite, each of these two relations coin-
cide with =.) Thus this theorem enables us, in principle, to establish the
relation = between two given algebras 9 and B by means of a metamathe-
matical argument, or to establish the elementary equivalence of these algebras
using purely mathematical methods. So far, however, in its application to
particular algebras Theorem 0.3.79 has proved useful mostly in the first
direction; in many cases the only proof of the formula 9 = % which is now
available is the one based upon the formula 9 = B which was previously
established by a metamathematical argument. Some other mathematical cha-

1) [Added in proof.] Recently Saharon Shelah has shown that the conclusion of 0.3.79 (ii)
holds without the assumption of %27 . In view of this result various statements and remarks
in our further discussion require adjustment.
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racterizations of elementary equivalence, in addition to the one given in 0.3.79,
are also known (cf. Fraissé [55*], Ehrenfeucht [61*], Taimanov [61*], Kochen
[61*], and Keisler [63*]). They are mathematically less elegant and more
involved, but have two virtues: they do not depend on ¥4 and turn out
to be more readily applicable in practice. In various particular situations
they have actually made it possible to establish the elementary equivalence of
given algebras by means of mathematical methods.

With the continuous use of 0.3.79 we can develop a whole theory of the
relation =. However (and rather unfortunately), this theory appears at present
to depend essentially on ¥%#. This applies even to the results expressing
the simplest and most basic properties of the relation =, namely to the state-
ments that = is an equivalence relation and that the partition induced by =
in any similarity class of algebras (with non-empty and at most denumerable
systems of operations) has cardinality 2°. The corresponding properties of =
are obvious, but we do not know how to establish these properties for =
without the help of 0.3.79. Another important property of = is expressed
in the following statement: For every infinite algebra 9 (with at most de-
numerably many fundamental operations)and everyinfinite cardinal §, thereis an
algebra % such that % = ¥ and |B| = B. The corresponding model-theoretical
result concerning the relation = is the well-known Lowenheim-Skolem theorem.

As corollaries of various results concerning the elementary equivalence of
algebras which are known from the literature, we can establish a number of
theorems connecting = with direct products and reduced products. Thus,
using the results in Mostowski [52*] and Feferman-Vaught [59%], we can
show that, for any two systems U = (;:iel) and B = (B;:iel) of alge-
bras and every filter F on I, the condition ; = %, for every i el implies
P/F = P®B/F and in particular P = P®B; also that, for every algebra €
and any infinite sets I and J, € = ’€. By a recent result of Fred Galvin we
have (’€/F)/G = '(€/G)/F for very algebra €. By another of his results,
for any algebras A, ¥, and €, the formula A = Ax Bx € implies A =
Ax B = AxE; in other words, the property («) discussed in 0.3.33, but
with “=” replaced by “=", holds for every algebra . Cf. here Galvin
[67*], p. 63. On the other hand, using the same example as in 0.3.33, we see
that the property (£), again with “=~” replaced by “=", fails for some
algebras. Other, more complicated, properties involving = and analogous to
those discussed in 0.3.30-0.3.39, such as the unique factorization and the
refinement properties, have not yet been studied.

In formulating the next few theorems we shall use the abbreviations &%,
&% ,, etc. introduced in the Preliminaries.
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Tueorem 0.3.81. Let K be any class of algebras included in a similarity
class L.
(i) The condition

K= UpK agnd L ~ K = Up(L ~ K)

is necessary for K to be an &%.
(ii) The condition

K = UpK = {2: UpAnK # 0}

is necessary for K to be an &% .
(iii) Under the assumption of GE€H, the conditions in (i) and (ii) are also
sufficient.

Parts (i) and (ii) of 0.3.81 are easy consequences of 0.3.77(ii) and 0.3.78.
Part (iii) can be established with the essential help of 0.3.79(ii); see Keisler
[61a*].

ReMARK 0.3.82. If we agree to denote by Up'K the class of all algebras
isomorphic to an ultrapower of some algebra in K, then the condition in
0.3.81(ii) can be expressed analogously to that in 0.3.81(i):

K = UpK and L~K = Up'(L~K).

On the other hand, let UfK = {A: UpAnK s 0}. The condition in 0.3.81(ii)
then assumes the form K = UpK = UfK or, equivalently, K = UfUpK;
another equivalent condition is: K = UfUpL for some class L. Theorem
0.3.81(ii),(iii) implies that (assuming ¥%#) UfUpK is the least class which
includes Kand is an &% ,, in other words, UfUpK = Mdfp K (cf. Keisler [61a*]).

The formula K = UfUpK expresses a purely mathematical property of a
class K of algebras, while the property of being an %, is of a model-theore-
tical nature. Regarding the relation between these two properties various
observations can be made which are analogous to those in 0.3.80 concerning
the relation between = and =. The difference is that, in the present case, the
model-theoretical property is the stronger one: it easily implies the mathe-
matical property, while the implication in the opposite direction depends on
GE A . At any rate, Theorem 0.3.81 gives an interesting and relatively simple
mathematical characterization of elementary classes of algebras (both in the
narrower and in the wider sense); this is important since most familiar classes
of algebras, such as groups, rings, integral domains, and fields, are actually
EC’s or £F,’s.

We know various properties of classes of algebras which are stronger than
the one expressed by the formula K = UfUpK, and which therefore imply
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that K is an &%,. From 0.3.67 and 0.3.69() it easily follows that such is,
e.g., the property of being an algebraically closed class, K = HSPK (cf.
0.3.14). In Section 0.4 we shall discuss a model-theoretical characterization
of this property; as we shall see there, the proof that every algebraically closed
class is an &%, does not depend on 9% . The same applies to the property
K = SUpK, which is weaker than K = HSPK. This property was discussed
in 0.3.70 and 0.3.71; its model-theoretical characterization is given in the
following

THEOREM 0.3.83. Given any class K of algebras, the condition K = SUpK
is necessary and sufficient for K to be a U%E ,.

This is a result of Lo§ [55a*], p. 105, 2.5 (obtained without the help of
GEH).

ReMARK 0.3.84. Using 0.3.83 we can of course “‘translate” every mathe-
matical statement concerning classes K of algebras with K = SUpK into a
model-theoretical statement on #%,’s, and conversely. For instance, it is
obvious that every %%, is an &%, and hence, by 0.3.81(ii) and 0.3.83, we
obtain the mathematical statement: K = SUpK always implies K = UfUpK,
where Uf is the operation defined in 0.3.82. (This implication can also be
easily derived from 0.3.67 and 0.3.69(i).) On the other hand, using 0.3.83 we
can derive from 0.3.71 and 0.3.72 the following properties of %% 4’s: (1) if K
is a #%, and L is a subset of K ordered by the relation <, then UL e K;
2) if Kis a #6,, A = W:ield, and {P,,;U;:J = I,]|J] < o} = K, then
Pl € K. Both these statements, however, can be established as easily by means
of direct model-theoretical arguments. Actually (1) is almost obvious; a model-
theoretical proof of (2) (in a somewhat weaker form) is outlined in Tarski
[54*], p. 587. Moreover, by a result of Vaught in Feferman-Vaught [59%],
p. 84, Corollary 6.7.2, the property (2) applies not only to #%,’s but to arbi-
trary £%,’s; hence, by making use of 0.3.81(iii), we conclude that, under the
assumption of ¥%.#, 0.3.72 remains valid if “SUp” is replaced everywhere
by “UfUp”.

By rearranging the succession of theorems we could use (1) and (2) to derive
0.3.71 and 0.3.72 (as well as 0.3.17) as simple corollaries from 0.3.83.

REMARK 0.3.85. We may mention here still another mathematical charac-
terization of % ,’s (announced in Tarski [53*] and established in Tarski [54*],
p- 578, Theorem 1.2). It is conceptually simpler than the one given in 0.3.83
since it does not involve the notion of an ultraproduct; it involves instead the
notions of a partial subalgebra and of isomorphism of such subalgebras. By
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a partial subalgebra of an algebra % = {4, +) we understand any structure
{B, +') where B is any non-empty subset of 4 (not necessarily a subuniverse
of A) and + is the operation + with the domain restricted to the set {{x, y):
x,y, x+yeB}. Thus (B, +') is in general not an algebra in the sense of
0.1.1, but is one of the partial algebras which were mentioned briefly in 0.1.3.
Let PsQ and Ps 2 be respectively the classes of all partial subalgebras and
all finite partial subalgebras of an algebra 9(; the meaning of PsK and Ps K
for a class K of algebras is obvious. It now turns out that the following con-
dition is necessary and sufficient for K to be a #%,:

(D IK = K, and, for every U, A e K whenever Ps AU = PsK.
It may be noticed that the closely related condition

(ID IK = K, and, for every A, A e K whenever S U = SK (or, equivalently
by 0.1.28, A e K iff S,A = K)

is only necessary, but not sufficient, for K to be a #%,; this condition will
be satisfied, e.g., by the class K of all torsion groups & = <G, -, ~') although
K is not a %%, and not even an &%,." Using either 0.3.81(ii) and 0.3.83 or
else the second characterization of %% ,’s we can easily establish the following
rather important and by no means obvious model-theoretical result (cf. Tarski
[54*], p. 583, Theorem 1.6, and £o0§ [55%], p. 49, Theorem 7).

THEOREM 0.3.86. If K is an &%, then SK is a UE .

ReMARK 0.3.87. To obtain a mathematical characterization of #%’s, we
first notice that a class K is a %% iff it is both an &% and a %% ,, and then we
apply 0.3.81(i),(iii) and 0.3.83; the resulting characterization is rather compli-
cated (K = SUpK and L~ K = Up(L ~K)) but turns out to be independent
of €. However, as indicated in Vaught [54*], a simple variant of the
second characterization of %% 4’s proves to be adequate for this purpose as
well.

REMARK 0.3.88. Theorems 0.3.81 and 0.3.83 are samples of a rather long
series of related results which have been obtained in the theory of models (cf.
Lyndon [59%], [59a*], Los$-Suszko [57*], Chang [59*], and Keisler [65%]). As
was already mentioned, another result of the same kind will be discussed in
the next section.

1) The close relation between (I) and (II) is made even more evident by the following
observations: A class of algebras satisfies (1) iff it can be characterized by a set of universal
sentences in ordinary predicate logic. On the other hand, a class satisfies (II) iff it can be
characterized by a set of universal sentences in predicate logic with infinitely long formulas,
and in fact of sentences each containing only finitely many distinct variables. Cf. Tarski [58*].






0.4. POLYNOMIALS AND FREE ALGEBRAS

In the first half of this section we discuss polynomials over a given algebra .
Polynomials are, loosely speaking, all the operations, of finite or infinite rank,
which can be obtained from purely set-theoretical operations, namely pro-
jections pj,, and the fundamental operations of 2 by composition. The most
convenient way of defining the set of polynomials of a given rank « over an
algebra U consists in introducing this set as a special subuniverse of the direct
power ““9(. Hence this set induces a subalgebra of ““9( called the polynomial
algebra of rank o over . Thus the polynomial algebras are constructed by
essentially the same method as subdirect products (discussed in the preceding
section), i.e., by forming subalgebras of direct products; in the present case,
however, this method assumes a highly specialized character.

Throughout this section o and f will represent arbitrary cardinals different
from 0. On the other hand, by & we shall represent, as usual, an arbitrary
ordinal.

DEerINITION 0.4.1. For every algebra U and every cardinal o # 0, the set
PIL of polynomials in o variables, or polynomial operations with rank o, over U
is the subuniverse of “* generated by the set {*A' pjs:& < a}; the correlated
algebra PLA = (PLU, +) (where + is, of course, the fundamental operation
of “) is called the polynomial algebra of rank o over . The class PI of all
polynomials over N is defined by

PI = U{PL:B + 0}.

Thus P/, contains as elements A11d, {(x+x:x€ A), {x+(x+x):xe A,
etc. Among elements of PLA we find 241 pj, = {(x:{x, y)> € 24), 241 pj, =
ik, yy €Ay, + = {x+y:lx, py e 2Ay, {y+x:{x, > € 24D, {x+(y+x):
{x, y> € 24), ete.

We could define the set PL3, not only for a cardinal, but for every ordinal o;
more generally, we could define P/, for every index set I. These extensions
of the notion of polynomials do not appear to be either essential or useful.
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REMARK 0.4.2. For some purposes an extension of the notion of poly-
nomials in a different direction proves to be useful. The set of polynomials
(in o variables over %) in the wider sense is the subuniverse of “9( generated
by the set consisting of all projections “47pj,, & < o, and of all constant
functions “4 x {c} where ¢ is any element of A.

The notion of a polynomial originated with the discussion of various number
fields and has been subsequently extended first to abstract rings and fields,
and then to arbitrary algebras. The notion had originally a metamathematical
character and was related to what is now technically called a “term” in the
elementary theory of algebras. It has been reconstrued in mathematical terms
and in this process has undergone some modifications. It is easily seen that
what are normally called polynomials with coefficients from a field § =
{F, +, -> can be identified with polynomials over % in the wider sense just
defined, at least in the case of an infinite field; if §§ is a field of characteristic 0,
then polynomials with integral coefficients can be identified with polynomials
over ¢ in the sense of 0.4.1 (including for this purpose —1 as a distinguished
element in the definition of ).

As almost immediate consequences of 0.4.1 we obtain 0.4.3 and 0.4.4:
THeOREM 0.4.3. BLA S, . PIL.

THEOREM 0.4.4. (i) If |A| = 1, then |{*4A1pj::¢ < a}| =1 = [PLYA| (for
every o).

(i) If 4| > 1, then |{*A1pj::¢ < a}| = o £ |PLY| £ avw; if, in addition,
o = o, then |PLY| = a.

(iii) The fundamental operation + of U is a member of PL,.

PrOOF. (i) is obvious, and (ii) follows from 0.1.19. Since + = (*41 pj,) +’
(A1 pj,), +" being the fundamental operation of 49, (iii) follows.

0.4.4(i) holds for algebras of any similarity classes. When extending 0.4.4(ii)
to other similarity classes, we apply 0.1.20 with |X| = «. Note that, if fis a
x-ary fundamental operation of an algebra 9, then fe P

THEOREM 0.4.5. If O e PLA, Q = {Q::¢ < aye*PLU, and C(O, Q) =
{O{Qx:¢ < ay:xe’d), then C(O, Q) e PLAL
PrOOF. For a given Q e “P[,¥, let
B =1{0:0e"4, C(0, Q) e PL}.

It is easily seen that Be Su(™*) and that {*41pj.:¢{ < a} = B. Hence
PL = B, and the theorem follows.
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THEOREM 0.4.6. PI is the least class K satisfying the following conditions:
(i) *41pj: € K for every a and every ordinal & < o
(1) the fundamental operation + of U belongs to K;

(i) for any two cardinals o, B # 0, if OeKn™A4, Qe*Kn"4A4), and
C(0, Q) is defined as in 0.4.5, then C(O, Q) € K.

Proor. By 0.4.1, 0.4.4(iii), and 0.4.5, K = P/ satisfies (i)-(iii), and hence,
if K is the smallest class satisfying (i)-(iii), we have K < PI/9l. Also, for any «,
“AnK is a subuniverse of “*9 which includes {*41pj.:¢ < o}, and so
PLA = “AnK; thus PIA < K, and the proof is complete.

REMARK 0.4.7. The operation on functions described in 0.4.5 can be called
generalized composition. When performed on a function O in « variables and
an a-termed sequence Q of functions in § variables, it yields the function
C(0, Q) in f variables; in case @ = f = 1 it reduces to ordinary composition.
Thus, 0.4.6 justifies the remark made at the beginning of this section regarding
the possibility of defining polynomials over 9 as operations obtained from
projections and fundamental operations of 9 by composition. Besides gener-
alized composition, there is another related operation, called superposition,
under which P/9( is closed; cf. Jénsson-Tarski [51], p. 895.

With an obvious modification of condition (ii), Theorem 0.4.6 extends to
algebras 9 of arbitrary similarity classes.

THEOREM 0.4.8. (i) If 0 # I' < o and O € PLA, then the following con-

ditions are equivalent:
(i) 0eSg®W{"41pj.:¢el};
(i") Ox = Oy whenever x,ye€*4 and I' x = I'1y.

(i) If0#T <« and |I'| = 8, then

Sg®PA 41 pje: & e I} = P

(i) If o = B, PLA = | = PLA.

Proor. (i) The set of all O € PL satisfying (i”) is clearly a subuniverse of
PBLA which includes {*41pj.:£el}; thus (') implies (i”). Turning to the
implication in the opposite direction we let B = Sg®-®{*41pj.:ée}. We
will need the following lemma whose proof is almost identical to that of 0.4.5:

(1) If OePLA, Q =(0:¢<aye’B, and C(0, Q) = {O{Qx:& < a):
x € %4y, then C(0, Q)€ B.

Now suppose O € PLI satisfies condition (i”). Since I' 0, there is a
o €I’ such that

V) Mo = I1id.
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Let Q = (*471pj,e:& < a). Then
3) Qe’B
and by (2) we have
I'x = TMCAT pjax:é < a)
for every x € “A. Consequently, if C(O, Q) is defined as in (1), from (i") we get
Ox = O{(*A1 pj,ox:¢ < ay = C(0, Q)x

for every x € “4, and thus O = C(O, Q). Therefore O € B by (1) and (3), i.e.,
O satisfies condition (i').

(i1) Let /2 be a one-one function from f onto I'. Let F = {{Q(x-h):x € *4A):
Qe’Ay. Clearly FeIsm(", ). Since F*{#41pj.:é < B} = {*A1pj:
& eI}, the desired conclusion follows by 0.2.18(i).

(iii): by (ii).

The implication from (i”) to (i’) in Theorem 0.4.8 was pointed out by Don
Pigozzi.

A consequence of 0.4.8(i) and 0.1.17(ix) is the following theorem which
shows that every polynomial in infinitely many variables essentially depends
only on finitely many of its arguments:

THEOREM 0.4.9. For every Q € PL N there is a finite I' < o such that Qx = Qy
whenever x,y € *4 and I' x = I'1y.

In terms of polynomials we obtain a simple description of the subuniverse
generated by a given set X:

THEOREM 0.4.10. (i) If x € “A, then
Sg®{x.:¢ea} = {Qx:Q € PLA}

or, more concisely,
Sg®Rgx = pi(PL).
(i) If X < A, then

Sg®X = U{Q*(*X):x < », Q e PLU}
and, for every o Z o,
Sg™X = U{0*("X):Q € PL}.

Proor. (i) By 0.2.14(i) and 0.3.6(i), pj*(PLRl) is a subuniverse of 9; it
clearly includes Rgx, so SgRgx < pj*(PL2). Also, by 0.2.14(ii), (41
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Piy) " D*SgRgx is a subuniverse of “*9( including {*41pj.:¢ < «}, and hence
Pi%(PLA) = SgRgx easily follows.
(i)): by (i) and 0.1.17(ix).

TueoreM 0.4.11. (@) If A = B, then VLA = PLB.
@) If A = B, then PLA = PLD.
(i) RLA = VLA for any non-empty set 1.
Proor. (i) Let

F = (*B10Q:Q € PL>.

Then clearly F € Hom(B[, 2, “*B). It is easily checked that {*41pj::¢ <o} =
(F~Y*(P1,®B) € Su("*A). Hence PLA = (F~YH*(PL,YB). Similarly PLYB <
F*(PLA). Thus F € Ho(PLA, PI.%®B), and (i) holds.

(ii) By hypothesis there is an & € Ho(3, B). We let

G = {{{hox, hQx>:xe€*4}:Q € PLIA>,
and argue as in (i) to show that G € Ho(*BL 2, BL,B).
(iii) Let
H = {KOx:¢ < aytiely:xe*('4)>:0 e PLAD.

By arguing again as in (i) we show that H € Ho(RL2, BL(*A)). Suppose now
0,0 ePlLI and Q # Q'. Say, Qy # Q'y for a given ye“4. Let x =
ygiiely:& < ay. Then, for any iel, (HQx)i = Qy # Q'y = (HQ'x)i, so
that HQ # HQ'. Thus H e Is(PLA, PL(A)), and the proof is complete.

From 0.4.10(i) we see that every subuniverse of an algebra 2 is closed under
all polynomial operations over 9; by analyzing the proof of 0.4.11(ii) we
easily conclude that every homomorphism on 9 preserves all these operations.

The two algebras, 9 and 9%, involved in the next two theorems are not
assumed to be similar.

THEOREM 0.4.12. For any two algebras N and B with non-empty index sets,
the following five conditions are equivalent:

() every fundamental operation of % is a polynomial over U;

(i) PLB = PLA for every k with 0 < k < ®;

(i) PL,B = PLA for some o = w;

(iv) PL®B = PLA for every a;

(v) PI%B = PI.

ProoF. Note that each condition (i)—(v) implies that 4 = B. Clearly (iv)
implies (v), (v) implies (iii), and (ii) implies (i); also, (i) implies (iv) since,
by 0.4.5,

{"B1pje:¢ < a} = PLA € Su("*DB),
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so that PLB = PLI. It remains to show that (iii) implies (ii). Since
{*B1pj::¢ < x} = PLAL, it suffices to show that P/ e Su("*®B). Let Q; be
any fundamental operation of %, say Q, is A-ary, and let 7' = {(T,: & < 2> e *PL 9.
Let R = {Q;(A41x):x € *B). Now Q; € P[5 by 0.4.4(iii), and hence R € P, =
PIA (cf. proof of 0.4.8(ii)). Let h € *PL. 9 be such that T < A. Then, by 0.4.5,
C(R, h) € PIL (we use here the notation of 0.4.5). It is easily checked that
C(R, h) = QT::& < Ay, Q; being the fundamental operation of “5% corre-
sponding to Q;; this completes the proof of (ii).

THEOREM 0.4.13. For any two algebras U and B with non-empty index sets,
each of the conditions 0.4.12(i)-0.4.12(v) implies:
(vi) A = B;
(vii) Suf = SulB;
(viii) if W = A, B =B, and A’ = B', then PIB' = PIY';
(ix) Sg®PX = Sg™X for every X < A;
(x) HoU = HoB, and PIh*B = PIW*U for every he Ho,
(xi) Co = CoB, and PI(B|R) = PIU/R) for every Re Co¥;
(xii) PI(*®B) < PI(*) for every set I,
(xiii) if A = Py A and B = P,y B, then PIB;, = PIA; for every icl.
Proor. Clearly (i) implies (vi), and (iii) implies (vii) by 0.4.10(ii). To see
that (iv) implies (viii) observe that

PIW =U_,,{"4'10Q:0 e PLA}
and

PI® =U_,{"B'10:0¢ P,B}
(cf. the proof of 0.4.11(i)). (i) implies the first inclusion of (x), and, since

PIR*UA = U, {{<hox, hOx):x € “4}:Q € PLA}
and
PIh*B = U, {{<hox, hQx):x €*B}:Q e P, B}

(cf. the proof of 0.4.11(ii)), we see that (iv) implies the second inclusion of (x).
Furthermore, (vii) obviously implies (ix), and (x) implies (xi) by 0.2.21.

For any o and any set I, Q € PL(*) iff there is an O € PL such that
(Qx)i = O<x;i:& < ay for every x € “(*) and i e I; similarly with % in place
of 9 (cf. the proof of 0.4.11(iii)). Thus (iv) implies (xii). Finally, it is obvious
that (x) implies (xiii).

RemARKS 0.4.14. Theorems 0.4.12 and 0.4.13 clearly remain valid if all the
inclusions are replaced in them by equations. (Of course, condition 0.4.12(i)
should be formulated then in both directions; in (viii) the formulas A’ = A
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and B’ < B should be left unchanged.) We thus obtain a number of con-
ditions which are necessary and sufficient for two algebras, possibly of different
similarity classes, to have the same sets of polynomials.

We shall refer to two algebras 9 and ¥ for which P/ = PI® as polyno-
mially equivalent. 1t can easily be realized that the notion of polynomial equiva-
lence is a special case of the notion of (first-order) definitional equivalence,
which was discussed in 0.1.6. In fact, the algebras 2 and ¥ are polynomially
equivalent if they are definitionally equivalent and, moreover, the fundamental
operations of either of these algebras can be defined in terms of the fundamental
operations of the other by means of special (first-order) sentences having the
form of identities. If, for instance, + is a constant in the discourse language for
A denoting a binary fundamental operation of 9, this operation must be
definable by means of a formula

V, x+y =1

where 7 is a term in the discourse language of ¥ containing no variables
different from x and y. From 0.4.12 and 0.4.1 it is seen that for every algebra 9%
we can construct many different algebras polynomially equivalent with 9,
simply by adjoining any polynomials of finite rank over 2 to the system of
fundamental operations of 9 (or else by removing some suitable operations,
e.g., any projections “41pj,, £ < k < w, which may occur in this system).

Following the lines of Remark 0.1.6, we can extend the notion of polynomial
equivalence to classes of algebras. Two classes K and K*, each consisting of
similar algebras, are called polynomially equivalent if it is possible to establish
a one-one correspondence between algebras in K and those in K* in such a
way that any two corresponding algebras 9 € K and U* e K* have the same
universe, and the fundamental operations of either of these algebras are defi-
nable in terms of fundamental operations of the other by means of identities
(of the form prescribed above); moreover, a fixed system of such identities
can be chosen which can serve as a system of mutual definitions for funda-
mental operations of all pairs <%, 2A*> of corresponding algebras.”) For illus-
tration consider the class K of all groups & = <G, -, ~*>. With each group
& e K we correlate the algebra &* = (G, :) where : is the righthand division,
i.e., x:y is the (uniquely determined) element z € G such that x = y-z. Letting

1) The notion of polynomial equivalence was introduced in Mal’cev [58*] under the name
rational equivalence. For a simple purely mathematical characterization of polynomially
equivalent classes of algebras, applying to the case when the classes involved are equational,
see op. cit. p. 32, Theorem 6. Cf. also Felscher [68*].
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K* = {B*: & € K}, we easily see that the classes K and K* are polynomially
equivalent. As mutual definitions of fundamental operations for any pair
(@, &*> of corresponding algebras we can use in one direction the formula

vy = p—1
V,,xy=y"1x

and in the other direction the formulas
V.,xp=pyi((x:x):x), V x ' =(x:x):x.

Another well known example of polynomially equivalent classes is provided
by the class of Boolean algebras B = (B, v, A, —) treated as distributive
lattices with join v, meet A, and the additional unary operation — of forming
complements, and the class of Boolean rings B* = (B, +, -, 1), i.e., rings
with unit in which every element is idempotent.

Two definitionally equivalent algebras or classes of algebras may differ
considerably in many important algebraic aspects. For instance (as is seen from
0.1.6 and the remarks following 0.1.13) two groups & = <G, -, **> and ¢’ =
{G, +», with the same universe and the same group composition, are defi-
nitionally equivalent but, in general, Su @ # Su ¢’ and, in fact, Su® < Su®’;
if K is the class of all groups <G, -, ~'> and K’ the class of all groups <G, >,
then K is closed under the formation of subalgebras while K’ is not. In this
example, if H is a common subuniverse of two corresponding groups & and
(', then the induced subalgebras § = <(H, -, ~'> and ' = <{H, -> are still
definitionally equivalent; we also have Ho® = Ho®’', Co® = Co &', and
the groups &/R and &'/R are definitionally equivalent for every Re Co &;
finally, both classes K and K’ are closed under the formation of homomorphic
images and direct products. However, these similarities between K and K’
and between their corresponding members do not extend to all definitionally
equivalent classes of algebras, as is easily shown by examples.

On the other hand, the connections between two polynomially equivalent
algebras (or classes of algebras) are much closer. By 0.4.13 any two such
algebras, 9 and B, have the same subuniverses, the same homomorphisms,
and the same congruence relations; two corresponding subalgebras, or homo-
morphic images, of 9 and B are again polynomially equivalent; in case U
and B are direct products of two systems of algebras (:ieI) and (Bi:iel),
any two corresponding factors, 2} and %], are polynomially equivalent as
well. If K and K* are two polynomially equivalent classes of algebras, and
A = W:iel) and A* = (AF:iel) are two systems of correlated algebras
in these classes, then one can show that P and P(* are again polynomially
equivalent. The fact that <K, K*) is a pair of polynomially equivalent classes
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implies that the same is true of the pairs (SK, SK*), (HK, HK*), and
({PK, PK*>. Moreover, the formulas K = SK and K* = SK* are equivalent,
and so are the formulas K = HK and K* = HK*, as well as K = PK and
K* = PK*; thus, in particular, if one of the classes K and K* is algebraically
closed, then so is the other. We can sum up most of the facts just mentioned
by saying that the function F = (U*:9 e K} isomorphically maps the struc-
ture (K, =, <, P> onto the structure (K* <, =<, P>, and that this iso-
morphism extends from classes K and K* to their algebraic closures HSPK
and HSPK*. K and K* also have many model-theoretical properties in com-
mon; e.g., if one of these classesis an &%, a %%, oran £2%, then so is the
other.

From these remarks it is clearly seen that two polynomially equivalent
algebras (or classes of algebras) can be used interchangeably in various al-
gebraic arguments. In ordinary algebraic discussions two such algebras are
often identified, and such an identification — as opposed to that of two arbi-
trary algebras which are definitionally, but not polynomially, equivalent —
does not lead in general to any confusion.

Polynomials find an application in the discussion of ideals. As we shall see
below, in terms of polynomials we can formulate a useful, though rather
special, condition under which, for every element z of an algebra %, the z-
ideals function properly in 9 (cf. 0.2.40 and 0.2.48).

DeriNiTION 0.4.15. A binary operation Q is called a group-forming polynomial
over N if O € PL,A and {A, Q) is a group.

For instance, in every Boolean algebra 9 = {4, +, -, —) the operation
Q=< x"—y+y —x: x,y€ Ay, known as symmetric difference, is a group-
forming polynomial.

TueoreM 0.4.16. If U has a group-forming polynomial and R, S € Co ¥, then
Cg(RuS) = R|S = S|R.

ProoF. Let - be a group-forming polynomial over U, so that B = {4, -
is a group. By 0.4.13 we have Co = Co B and hence R, S'e CoB. There-
fore, by a familiar result from group theory, R|S = S|R; an application of
0.2.31 completes the proof.

In connection with 0.4.16 cf. 0.4.48 below.

THEOREM 0.4.17. Assume that U has a group-forming polynomial -; let ~1

be, as usual, the operation of forming inverses in the group {A, >, and let z
be any element of A. Then the following conditions hold:
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() ITell,A and R = {{x,y):x,ye A and x-y~*-zel} iff Re CoW and
z|R =1T;

@) IeIl A if

(ii"y zel < A4,
(i) z-x"'-zel whenever x €1,
and
(i) (x+x)-(y+y)"'-zel whenever x,x',y,y € A and
xy tz,x-() tzel;

(iii) the z-ideals function properly in U ;

iv) if I, J eIl N, then Ig(IuJ) = {x:x€ A, and x-y~'-zel for some
yeld}.

Proor. Let B = {4, -> and 1 be the unit of the group V.

(@) If Re Co¥W and z/R = I, then, by 0.4.13, Re Co®B. Hence, by using
elements of group theory, we show that, for any x, y € 4, the formulas xRy,
(xy™MR1, and (x'y~'-z)Rz, ie., x-y~'-zel, are mutually equivalent.
Therefore

(D R={{x,p>:x,yed and x-y~t-zel}.

Also, I e IL% by 0.2.39. If, conversely, I € I, and (1) holds, we have z/S =1
for some S e Co9. Hence, by what has just been proved, we obtain (1) with
R replaced by S. Therefore R = S, so that Re Co and z/R = I.

(ii) Assume first I € I/,9. This implies (ii’) at once. Furthermore, z/R = I
for some R e Co¥l. Hence we have (1) by (i). Since zRx whenever x € I, and
(x+x")R(y+y") whenever xRy and x'Ry’, we obtain (ii") and (ii"”) by apply-
ing (1).

Assume now, conversely, that (ii")—(ii”) hold, and let R be the relation
defined by (1). By (ii’) and (1) we have xRx for every x € 4, so that the field
of R is A. By applying (1), (ii”) with x replaced by x-y~'-z, and then (1)
again, we conclude that R is symmetric. From (ii”) and (1) we see that R
preserves +, i.e., xRy and x'Ry’ imply (x+x")R(y+)"). By an easy induction
this extends from + to every polynomial operation over 9 and hence, in
particular, to -. Hence, if xRy and yRz, we obtain (x-y ' ))R(y-y ' 2),
i.e., xRz. Thus R is transitive and therefore R e Co%. Finally, (1) implies:
xRz iff xel, so that I = z/R and I e I1,.

(iii) follows immediately from (i) and 0.2.47; (iv) is a consequence of (iii),
0.2.49 and 0.4.16.

Conclusions (i), (ii), and (iv) of this theorem become simpler, of course, if
we take as z the unit element of the group {4, ->. When referring 0.4.17 to
algebras of other similarity types, condition 0.4.17(ii”) must be modified or
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supplemented; for example, for algebras {4, +, -, —) of the similarity type
(2,2, 1), we must supplement (ii”) in the following way:

(c+x) (p+y) "z (eox) (pey) oz (=x) (=) zel
whenever x-y~ -z, x'-(y)"'-zel.

In connection with 0.4.17(ii) recall the result of Vaught [66%] mentioned
previously in 0.2.48.

ReMARK 0.4.18. From 0.4.16 and 0.4.17 we see that every algebra with a
group-forming polynomial has the following two important properties: all
its congruence relations commute (R[S = S|R) and its z-ideals function
properly (for every element z of the algebra). It is a common phenomenon
that these two properties go together, that is, either both hold or both fail in
given algebras. In general, however, it is not true that the two properties are
equivalent, and not even that one of them implies the other. In fact, if U =
{4, + > is the algebra of integers with an additional infinity element co dis-
cussed in 0.2.48, then the congruence relations on 9 commute, but the oo-
ideals do not function properly. In the other direction, let R and S be the
equivalence relations on the set 6 associated respectively with the partitions
{{0, 1}, {2, 3}, {4, 5}} and {{1, 2}, {3, 4}, {5, 0}}; let K be the set of all unary
operations Q such that {R, S} = Co<6, Q); finally let B = <6, 0>, It can
be shown that Co®B = {611d, R, S, 6 x 6}. Hence the z-ideals of B function
properly (for z =0, ..., 5), but R|S # S|R. (Cf. Mal'cev [54*] and Valuce
[63*].)

Some further properties of polynomials and polynomial algebras can or
actually will be obtained as simple consequences from the discussion of free
algebras, to which we turn now. Compare here, e.g., 0.4.51.

The notion of a free algebra is of model-theoretical origin. We can charac-
terize a free algebra with o generators over a class K of similar algebras as an
algebra (of the same similarity class) which is generated by a set G with cardi-
nality o such that an equation (in the discourse language of K) with x variables,
Kk = «, is satisfied by any given x distinct elements of G iff it is identically
satisfied in every algebra of K. This characterization implies that any two
free algebras over the same class K and with the same number « of generators
are isomorphic. Actually, we shall choose, for each K and each o, a well
defined algebra of this kind with a fixed set of generators and refer to it as
the free algebra over K with o generators, in symbols §1,K; to express the fact
that an algebra 9 is a free algebra over K with « generators we shall, of course,
use the formula W =~ Fr K.
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The model-theoretical characterization of free algebras leads to a simple
metamathematical construction of §t,K, which will be described at the end
of this section. It seems preferable, however, to base the discussion of free
algebras on a purely mathematical construction, for, in consequence, we
acquire in free algebras an instrument for studying some model-theoretical
notions by means of mathematical methods. The role of free algebras becomes
thus analogous to that of reduced products and ultraproducts (cf. the remarks
preceding 0.3.61 as well as Remarks 0.3.80 and 0.3.82), although their range
of applications is much narrower: reduced products and ultraproducts are
used in the study of arbitrary elementary properties of algebras (i.e., properties
which can be formulated in the language of first-order logic), while free algebras
are applied to the discussion of those properties which can be expressed by
means of identities.

Several different mathematical methods of constructing free algebras are
known. We could use, e.g., polynomials and polynomial algebras for this
purpose. In fact, as we shall see below, &t,K could simply be defined as the
a-polynomial algebra over the direct product of algebras of K (although this
construction has to be modified in case K is a class of algebras which is not a
set; cf. 0.4.50 below). However, the definition of &t,K which we shall actually
accept here is based upon a different, conceptually simpler idea; it can be
viewed as an exact mathematical paraphrase of the metamathematical con-
struction mentioned above."

DEerFINITION 0.4.19. (i) For every (non-zero cardinal) o we let
Fr,=N{X:au%X € X} and Fr, = {Fr,, *Fr,11d);

&t is called the absolutely free algebra (of similarity type <{2)) with «
generators. The ordinals ¢ < a are referred to as letters and the elements
x € Fr, as words of the algebra I,

(i) For every class K of algebras (of similarity type {2)) and for every o we let

Cr,K = N{R:Re CoFr, and Ft,/R e ISK};

1) The notion of a free algebra was first studied for the special case of groups; indeed,
the definition of an abstract group first given by Cayley in the 1850’s was metamathematical
— using generators and defining relations — and clearly implied the notion of a free group
as a special case, although free groups were evidently first studied and named by Jakob Nielson
in 1921. The general definition, patterned after that for groups and hence metamathematical
in nature, was given in Birkhoff [35*]. The equivalent characterization in terms of polynomial
algebras can be found in McKinsey-Tarski [44*], while the characterization in terms of
extending to homomorphisms is due to the Bourbaki school (cf. Samuel [48*]). The present
mathematical formulation, while closely related to the metamathematical definition, appears
to be new; it is related to constructions given in Felscher [65*] and Kerkhoff [65*].
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we also let
Fr,K = Fr,/Cr,K and ¥t K = Fr,/Cr. K.

&1, K is called the free algebra over K with o generators.
In case K = {N} we shall write Cr, N, Fr, 3, F1, instead of Cr,{A}, etc.

REMARKS 0.4.20. According to 0.4.19(i), Fr, is the smallest set which con-
tains all ordinals £ < « and is closed under the operation of forming ordered
pairs; 1, is the algebra (4, +)» where 4 = Fr, and x+y = {x, y) for all
x,ye€A.

The definitions of Fr, and &, must of course be modified when applied to
algebras of other similarity types. In general, for algebras of the similarity
type {p;:iel) (cf. 0.1.5) we define Fr, as the intersection of all sets X such
that « < X, and {7, y)> € X whenever i €I and y € *'X; we let §v, = <Fr,, O Dir
where Q; is a p;-termed operation on Fr, such that Q;y = (i, y) for all iel,
yePiFr,. For the special case of algebras of similarity type <{2)> we have
simplified this definition, but the reader should have no trouble in carrying
through the development in the general case.

From the formula defining Cr,K in 0.4.19(ii) it follows immediately by
0.2.24(ii) that Cr,K € Colr,. This justifies the definition of Fr,K and Fr,K
given in the later part of 0.4.19(ii). Just as Fr, and v, the notation Fr,K and
&1, K will be used for classes K of algebras of arbitrary similarity types.

THEOREM 0.4.21. If K is the similarity class of §t,, then Cr,K = Fr,11d
and Fr K = F1,.

THEOREM 0.4.22. For every class K of algebras and every o. we have
&r,Ke SPS, . K = SPK.
Proor: by 0.3.12 and 0.3.46.

DeriNiTION 0.4.23. Given an algebra W and a class K of algebras, we say
that a set X K-fieely generates U if W = SgX and, for every BeK and
fe*B, there is an he Hom(%, B) such that h 2 f.

THeorReM 0.4.24. If X K-freely generates U, then, for every B e K and
f€*B, there is just one h e Hom(, B) such that h = f.
Proor: by 0.2.14ii).

THEOREM 0.4.25. (1) If {X;:iel} and {U;:iel} are each directed by the
relation <= and X; K-freely generates U; for each iel, then U{X;:iel} K-
freely generates U{;:ieI}.
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(i) In particular, if ©g X = U and, for each finite subset Y of X, Y K-freely
generates ©qY, then X K-freely generates .
Proor: by 0.1.27, 0.4.24.

THEOREM 0.4.26. (i) If X K-freely generates A and K 2 L, then X L-freely
generates .

(i) Let Q be any composition of some or all of the operations S, H, and P.
Then X K-freely generates U iff X QK-freely generates .

PrOOF. (i) is obvious. To prove (ii), in view of (i), 0.2.18(i), and 0.4.23 it
suffices to show that, if X K-freely generates 9, then X HK- and PK-freely
generates . Suppose first that ge Ho(®B, €), BeK, and fe*C. By the
axiom of choice there is an f’ € *B such that gof” = f. Since X K-freely
generates 9, f' can be extended to a (uniquely determined) 4 € Hom(2(, B).
Then geohe Hom(, €) and goh = f. Suppose now that €e’K, B = PG,
and f'e *B. Then, for each i e, we have pj;ofe *C,, and hence there exists a
gi€ Hom(¥, €)) such that g; = pj;of. Therefore, by 0.3.6(ii),

h={gx:iely:xe Ay e Hom(U, B),
and clearly 4 = f.

THEOREM 0.4.27. (i) If « is any non-zero cardinal and K is the similarity class
of algebras of type {23, then o K-freely generates F1,.

(ii) More generally, if K is any class of algebras, then o/Cr,K (i.e., {¢/Cr,K:
& < a}) Kefreely generates K.

Proor. (i) Assume B = (B, +) € K and fe*B. Since o < Fr,, fis a sub-
set of Fr,x B. Therefore, let h = Sg®«*®)f, 5o that h 2 f. Clearly z e h iff
either z € f or else for some x', x” € Fr, and y’, y” € B we have z = {{x', x"),
Y'+y"> and {x', y'>, {x", y"> € h. Using this and letting

A = {x:x e Fr, and there is just one y € B such that {x, y) € h},

we easily show that o & 4, and <{x',x") e 4 whenever x', x" € A. Hence
A = Fr, and therefore % is a function with Doh = Fr,. By applying 0.3.47(i)
we obtain at once & € Hom(gt,, B)."

(i) Assume now B e K and fe KB, Then «1(f-(Cr,K)*) e “B whence,
by (i), there is an h e Hom(J1,, B) such that A 2 o1 (f+(Cr,K)*). Then, by
0.2.23(i), Fr,/(hh~ ') € ISK and hence Cr,K < h|h~*; by 0.2.23(iii), the relation
k = {{a/Cr,K, hay:a e Fr,} is a member of Ho(Fr,K). Clearly k = f and
k € Hom(Ft,K, 9B).

1) The original proof of 0.4.27(i) was somewhat more involved. The present version, based
upon 0.3.47(i), was suggested to the authors by Karl-Heinz Diener.
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THEOREM 0.4.28. If X K-freely generates U, Y K-freely generates B, fe*Y,
f7te'X, and WA, B e HSPK, then there is just one hels(, B) such that
h=2f.

PrOOF. Choose he Hom(U,B) and ke Hom(B,A) such that 72 f,
k=2 f~'. By 0.2.14(iii)) we have k-h = A1Id and hok = B1Id. Hence
hels(, B). The uniqueness of % follows from 0.4.24.

THEOREM 0.4.29. The following two conditions are equivalent:

() A = Fr,K;

(i) A e HSPK and there exists a set X such that X K-freely generates U
and |X| = |o/Cr,K].

In (if) HSPK can be replaced by SPK.

Proor. (i) implies (ii) by 0.4.22 and 0.4.27(ii). (ii) implies (i) because of the
implication just established, together with 0.4.28. The same argument can be
used after the indicated replacement.

Theorem 0.4.29 may be called the fundamental theorem on free algebras. It
provides a very useful and easily applicable characteristic property of free
algebras and their isomorphic images, which yields interesting and important
consequences. In particular, this theorem leads to various methods of con-
structing free algebras which are different from the method used in the original
definition 0.4.19.

THEOREM 0.4.30. Let K be the similarity class containing the algebra A and
let X = A. In order for X to K-freely generate N it is necessary and sufficient
that it satisfy the conditions

i A= CgX,

(ii) if x,ye A, then x+y ¢ X,
and, moreover, that U satisfy the condition

(i) if x,y,x',y' €A and x+y = x'+)’, then x = X" and y = y'.

ProoOF. Assume X K-freely generates 9. Let « = |X]| and f be an a-termed
sequence without repetitions and with Rgf = X. Then by 0.4.27(i) and 0.4.28
there is an & e Is(Fr,, ) such that f < A Thus A*¢ = X and hence con-
ditions (i)-(iii) hold.

Now assume (i)-(iii) hold and take B = (B, +»>e K and fe*B. Since
X < 4, fis a subset of A4x B. Therefore, let h = Sg®**®)f, so that 4 2 f.
Clearly, z € h iff either z € f or else for some a,a’ € 4 and b, ' € B we have
z = <{a+Ma', b+®b") and <a, by, {a’, b’y € h. Using this fact and letting

C = {a:a e A and there is just one b € B such that {a, b) € A},
we conclude respectively from (ii) and (iii) that X = C and C e Su?(. Hence
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C = A by (i), and thus % is a function with Doh = A. By applying 0.3.47(i)
we obtain at once s € Hom(2, B). Therefore, X K-freely generates 9.

Compare the second half of this proof with the proof of 0.4.27(i).

It is easily seen that, if K is the whole similarity class of an algebra ¥, then
there is at most one subset X of 4 which K-freely generates 9; in fact, X if
it exists must be the set of all those elements of 4 which do not belong to the
range of +.

TraeoreM 0.4.31. U = Fr, iff there is a set X with |X| = a satisfying con-
ditions 0.4.30(i)-(iii).
Proor: by 0.4.27(i), 0.4.29, and 0.4.30.

Theorems 0.4.30 and 0.4.31 must be appropriately modified when applied to
other similarity classes. For example, when applying it to algebras {4, +, —)
of similarity type {2, 1), we have to supplement 0.4.30(i)-(iii) by the following
conditions:

(ii") if xe A, then —x ¢ X;

(iii") if x,x € A and —x = —X', then x = x';
(iv) if x,y,z€ A, then x+y # —z.

As an interesting application of 0.4.30 we give

THEOREM 0.4.32. If 1 £ B £ o and 2 £y < o, then *Fty = Fr,. More
generally, if 2 < y and (PUw) = «, then "Fry = F1,.

Proor. We apply 0.4.30 with U = "F1,;. Denoting by + the fundamental
operation of ¥, we see that 0.4.30(iii) holds. The set X satisfying 0.4.30(i),(ii)
is defined by the formula

X = {x:x€"Frg, and x; e p for some e y}.

To verify 0.4.30() let B be the set of all b e Fry such that, for every ae 4,
be Rga implies ae SgX; then notice that f < Be Su@r, Finally, it is
easy to show that | X| = a.

When applying this theorem to algebras of an arbitrary similarity type
{p;:iel) with I # 0, we have to replace w (in all its occurrences except the
one in the formula 2 < y < w) by |[[|ue® or, what amounts to the same,
by [Fryl.

Theorem 0.4.32 provides examples of algebras 9 which do not possess
property (f) discussed in 0.3.33, i.e., for which there exist non-isomorphic
algebras B, € such that A = Bx B = € x €. In fact, to obtain such examples
we let A = B = Fr;xFry, and € = Fry, where 1 £ f< . For algebras of
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type <1 and B = 1 the first part of 0.4.32 was found by J. C. C. McKinsey
who used it just for the purpose of constructing an algebra for which () fails
to hold. (He actually considered, not Jr;, but the algebra of natural numbers
with the successor operation, {®, S, which is isomorphic with J1, by 0.4.30;
cf. 0.3.33.) The generalization of McKinsey’s result to algebras of arbitrary
types and to arbitrary f with 1 < f £ o was recently obtained and com-
municated to the authors by Karl-Heinz Diener.

THeorREM 0.4.33. (i) If |4]| = 1 for every U e K, or if a = 1 and {a} € Su
for every N eK and every ae A, then Cr,K = Fr,xFr, and |o/Cr,K| =
|[Fr,K| = 1.

(i) If |4] > 1 for some e K and a > 1, or else if {a} ¢ Sul for some
W e K and some a € A, then Cr,K # Fr,x Fr,, the function {{[Cr,K:&ea) is
one-one, |o/Cr K| = a, and o < |Fr,K| £ avw (whence |Fr,K| = o in case
o = o).

ProoOF. (i) is clear. To prove (ii), first consider the case when « > 1 and
|[A] > 1 for a given e K. Then, obviously, for any two distinct &, 1 < «
there is an fe “4 such that f& # fi. In view of 0.4.27(i), f can be extended
to a (uniquely determined) ke Hom(Jt, ). Clearly Cr,K < hlh™' and
(& ny ¢ hlh™1. Since ¢ and n are arbitrary, we conclude that (¢/Cr,K:¢ € o)
is one-one. An application of 0.1.19 completes the proof.

Now assume that {a} ¢ Sufl for a given A e K and a given a € 4. Letting
f = (o/Cr,K) x {a} we obtain e “/“*K4 and Rgf = {a}. By applying 0.4.27(ii)
we extend f'to an & € Hom(gr,K, ). Since h*Fr,K € Sudl, we have hA*Fr,K o
{a}; therefore 1K is not a one-element algebra, and hence Cr,K # Fr,x Fr,.
Furthermore, the function {&/Cr,K:&ea) is one-one (obviously in case
o = 1, and by what was shown above in case « > 1); together with 0.1.19
this implies the remaining conclusions of (ii).

RemARK 0.4.34. Notice that the formula {a} € Su( when applied to an
algebra A = (4, +) means simply that a+a = a. To extend 0.4.33(ii) to
algebras of arbitrary similarity types apply 0.1.20 with |X| = a.

TraeorEM 0.4.35. If fe Ho(Fr, K, B), ge Ho (U, B), and N e HSPK, then
there is an h e Hom(x, K, N) such that g-h = f.

PrOOF. By the axiom of choice there is a ke *“4 such that gek =
(a/Cr,K)1f. The desired homomorphism 4 is obtained by applying 0.4.26(ii)
and 0.4.27(ii) (cf. 0.2.14(ii)).

THEOREM 0.4.36. For every class K of algebras and every o we have
Cr,K = Cr,QK and Fr,K = Fr,QK
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where Q is any composition of some or all of the operations S, H, P, and S,
with f > a.
Proor. It clearly suffices to establish two special formulas:

e Cr,K = Cr,HK and (2) cr,K e Cr,PK.
To obtain (1) notice first that the formula amounts to
N{R:Re CoFr,, Ft,/Re ISHK} 2 N{S:S e CoFr,, F1,/S € ISK}.

Thus consider an R € Cot, with §t,/R e ISHK = HSK. Hence, for some
g, A, and B we have A = B e K and g e Ho(A, F1,/R). By 0.4.35 there is an
h e Hom(Jr,, A) such that goh = R*X. By letting S = hlh~' we obtain
S < R, Se Co%r,, and Fr,/S = A*Ft, < B e K, whence Fr,/S € ISK. Since
the argument holds for an arbitrary R, the proof of (1) is complete.

To prove (2) consider any R e Cor, such that &r,/R e ISPK. Hence, for
some f we have fe Ism(Fr,/R, PA) where 2 € 'K. By letting

S; = (PiiofoR*) | (pjsof-R*)71,

we obtain R = N{S;:iel}, {S;:iel} = CoFr,, and F1,/S; = (Pj;i°f) * (Ft./R)
< A; whence §r,/S; € ISK, for each iel. The observation that, again, this
argument holds for an arbitrary R completes the proof of (2).

THEOREM 0.4.37. Let K and L be any classes of algebras, o. any non-zero
cardinal, and Qq, Q,, Qs, and Q4 any compositions of some or all of the opera-
tions S, H, P, and S; with f > a.

@ If QK =2 Q,L, then Cr,K < Cr,L and Ft,K = Fr,L.

(i) If Q;K = Q,L or, more generally, if Q;K =2 Q,L and Q;L 2 Q/K,
then Cr,K = Cr,L and {r,K = Fr,L.

THEOREM 0.4.38. (i) If K is any set of algebras, then
Fr.K = Fr (P(B: B e K)).

(i) If K is any class of algebras, and L and M are the sets defined in 0.3.19(ii),
then
dr,K = Fr(P(B: B e L)) = Fr,(P(B: B e M)).
PRrOOF: (i) directly by 0.4.37(ii), since P(®B: DB € K) e PK and K = H(P(®D:
B e K>); (ii) by 0.3.19(ii) and 0.4.37(ii).

TreoreM 0.4.39. S_.K = HJ1,K for every class K of algebras and every o.
PROOF: by 0.4.27 and 0.4.33.
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THEOREM 0.4.40. For every class K of algebras and every o we have
(i) HSPFr,K = HSPS,.K = HSPK;

(i) HSPFr, K = HSPK in case a = .

Proor: (i) by 0.3.15, 0.4.22, and 0.4.39; (ii) by (i) and 0.3.18.

TueoreM 0.4.41. For every class K of algebras,
K< U, HF1,K = HSPK.
Proor: by 0.4.26, 0.4.27, 0.4.39 and 0.4.40(i).

TueoreM 0.4.42. For any classes K and L of algebras and every a, the following
conditions are equivalent:

@ Cr,K = Cr,L,

(i) Fr.K = Fr.L,

(i) HSPK =S, L.
In case o = o, these conditions are also equivalent to

(iv) HSPK = L.

PrOOF. (i)—(iii) are equivalent by 0.4.22, 0.4.37(i), and 0.4.39. Clearly
(iv) implies (iii). If (iii) holds and o = o, then, by 0.3.18, L = HSPL =
HSPS .L < HSPK.

TraeoreM 0.4.43. For any classes K and L of algebras and every o, the follow-
ing conditions are equivalent:

(i) Cr,K = Cr,l,

(i) Jr.K =Tl

(i) Fr K = Fr,L,

(iv) K = FrL = FrK,

(v) HSPK=S,.L and HSPL 2 S, K.
In case « =z w, these conditions are also equivalent to

(vi) HSPK = HSPL.

PRrOOF. (i), (iv), and (v) are equivalent by 0.4.42. Obviously (i) implies (ii),
(iii) implies (iv), and (ii) implies (iii). If « = , (vi) is equivalent to (i)-(v) by
0.4.42 and 0.3.15.

Concerning the possibility of replacing 0.4.40(i),(ii), 0.4.42(iii),(iv), and
0.4.43(v),(vi) by various related formulas compare 0.3.15-0.3.16.

THEOREM 0.4.44. If any one of the conditions 0.4.42(i)-(iii) holds for a given
o, it also holds for every f < o and, in case 0. Z w, for any [ whatsoever. The
same applies to conditions 0.4.43(i)—(v).
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THEOREM 0.4.45. For every algebra I and every o,
B, 7 PLA

More specifically, there is just one he Ho(J,, BL,A) such that hé = A1 pj;
for every & < o
Proor: by 0.4.1, 0.4.27, and 0.4.24.

In view of 0.4.45 we introduce the following notation:

DEFINITION 0.4.46. Given an algebra U and a cardinal o # 0, Pd™ denotes
the unique he Ho(Jx,, PLA) such that hé = *A1pj, for every & < a. For
any u € Fr,, we refer to PA™u as the polynomial in o variables determined by
the word u.

REMARKS 0.4.47. The notation Pd(™ enables us to relate polynomials over
different algebras. Two polynomials over two (similar) algebras, Q over %
and Q' over W', can be called conjugated polynomials if there is an o and a
word u € Fr, for which Q = Pd{®u and Q' = Pd™u (so that, consequently,
both Q and Q' are polynomials in « variables). For example let ¥ = {4, +),
A = (A4, +'>, and let O and Q' be polynomials determined by the formulas

O, y,2z) = (x+2)+(y+2) for x,y,z€ 4,
Q'(x,y,2) = (x+'2)+' (y+'2) for x,y,ze A'.
Q and Q' are indeed conjugated polynomials since by letting o = 3 and

u = <0, 25,41, 25>

we obtain u € Fr,, Q = Pd™u, and Q' = Pd(™u. Two such polynomials are
frequently referred to as polynomials of the same form, or even as identical
polynomials (over different algebras); we prefer the term ‘“‘conjugated poly-
nomials” since it is more neutral and not misleading.

The notion of conjugated polynomials is implicitly involved in the notion
of polynomially equivalent classes of algebras, which was discussed in 0.4.14.
Actually, we can use 0.4.46 to formulate a precise definition of the latter notion
in mathematical terms; the formulation of such a definition is left to the reader.

We could generalize the notation introduced in 0.4.46 by relativizing it to
an arbitrary class K containing 9: Pd®™ would be defined as the unique
h e Ho(3, K, BLA) such that A(¢/Cr,K) = “41pj. for every & < a.

It should be pointed out that in many cases a condition which is imposed
on all algebras of a class K and is formulated in terms of the notion Pd{® or
Pd®) can be simplified by eliminating this notion and using polynomials
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over free algebras instead. Consider for instance the following condition in
which K is assumed to be an algebraically closed class of similar algebras:

(I) there is a ue Frs such that (Pd{Pu)(x, y, y) = x and
(Pd{Pu)(x, x, y) = y for all e K and x, y e A.

Clearly, this condition expresses the following fact: with every algebra 9 € K
we can correlate a polynomial O, in 3 variables over 2 so that all polynomials
so correlated are of the same form and that, for all A e K and x, y € 4, we
have Qu(x, y, ) = x and Qy(x, x, y) = y. It is easily seen that the same fact
can be expressed somewhat more simply, without using Pd{™:

(X) there is a Q € PL;§,K such that Q(x,y,y) = x and
O(x, x,y) =y for all x,yeFrK,

o in (II) represents an arbitrary cardinal = 3.
We can use either (I) or (II) to formulate an interesting result stated and
proved in Mal'cev [54*]. We shall actually use (II):

THEOREM 0.4.48. If K = HSPK and o = 3, then the following two con-
ditions are equivalent:

(i) R|S = S|R for all R, Se€ CoW and all e K;

(ii) there is a Q e PL%t,K such that Q(x, y, y) = x and Q(x, x, y) = y for
all x,y e Fr,K.

This theorem can be applied to the class K of all groups treated as algebras
® = <G, -, 7'> of type <2, 1>. It is known that K = HSPK. Furthermore,
in every group & € K, and in particular in §1,K, we can construct a poly-
nomial Q in 3 variables such that Q(x, y, y) = x and Q(x, x, y) = y for any
x, y € G; in fact, it suffices to set O(x, y, z) = (x-y~")-z. Hence, as an imme-
diate consequence of 0.4.48, we obtain the well-known fact that the con-
gruence relations in every group commute. 0.4.48 is closely connected with
0.4.16, but we will not analyze here the connection in detail.

THEOREM 0.4.49. For every algebra U and every o, the set {*A1pj.:¢ < o}
{W}-freely generates PLA and |{*A1pj.:& < a}| = |a/Cr,U|.

Proor. If |[4| = 1, the desired conclusion follows from 0.4.4(i) and 0.4.33(1).
Assume |4| > 1. Then by 0.4.4(ii) and 0.4.33 we obtain |{*41pj.:¢ < a}| =
a = |o/Cr,A|. Set h = {*A1pj::¢& < a) and let f be any function from
{*A1pjs:& < o} into A. By 0.3.6(1) we have

g = "“A1pj,,, € Ho(**U, A).
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Hence PLA1ge Hom(PLA, A), and f< PLA1g. Thus {*A1pj:¢ < o}
{A}-freely generates PRI A, as was to be shown.

THEOREM 0.4.50. Let o be any non-zero cardinal.
(i) For every algebra A, Fr, U = PLA.
(ii) For every set K of algebras,

Tt K = BLP(B: B e KD).
(iii) For every class K of algebras, if L. and M are defined as in 0.3.19(ii), then
Fr. K = RLP(B: Bel)) = VLP(B: B e M)).
Proor: by 0.4.29, 0.4.38, 0.4.49.

This theorem, and in particular its part (iii), shows that free algebras can be
constructed as special polynomial algebras, in agreement with the remarks
preceding Definition 0.4.19. The construction of a free algebra over a class K
described in this definition could be loosely characterized as a construction
“from above” or “from the outside”, as opposed to the construction described
in 0.4.50 — a construction “from below” or “from the inside”.

THEOREM 0.4.51. For every algebra U and any o and f we have
(1) Fr,A = PLA = Fr,Fr,A = Fr, PlA = PLFTA = PILBIA.
If, moreover, o < B or else if @ < B (and o is arbitrary), then
(i) Fr, A = Fr,Fr,A = Fr, PlA = PLA = PLFr,A = PILRLA.
Proor: by 0.4.40(ii), 0.4.42, 0.4.43, 0.4.50().

The parts of this theorem which concern only polynomial algebras could be
proved with no special difficulties in the first half of this section, before intro-
ducing the notion of a free algebra.

0.4.51(ii) may fail in case f < o and < . Consider, e.g., any non-com-
mutative semigroup . Then, as is easily seen, B!, and hence also B, R, A
is commutative while P, is not; therefore PLA and PI, B[, A are not
isomorphic.

Toeorem 0.4.52. (i) If X K-freely generates W and X 2 Y # 0, then Y
K-freely generates ©g™Y.

(@ii) If |Bl > 1 for some BeK, X K-freely generates A, W = SqY, and
X2Y, then X =Y.

PrOOF. (i): by 0.2.14(i) and 0.4.23.

(ii) Suppose on the contrary that xeX ~ Y. Choose B e K such that
|B] > 1. From 0.4.23 we conclude that there are f, g € Hom(2(, B) such that
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fx # gx and Y1f=Y1g. Hence by 0.2.14(ili) we obtain f = g, which is
impossible.

From 0.4.52(ii) we see that a set X which K-freely generates an algebra
is an irredundant base of 9 in the sense of 0.1.29.

THEOREM 0.4.53. (1) If 0 # I’ < « and |I'| = B, then Sg®K(|Cr,K) is
K-freely generated by I'|Cr,K and is isomorphic to FzK.

(i) If « = B, then FrK = | = Fr,K and FrK < Fr K.

ProOF: (i) by 0.4.27(ii), 0.4.33, 0.4.29, 0.4.52(i); (ii) by (i), 0.4.22, 0.4.39.

By comparing 0.4.51 with 0.4.53(ii), we obtain some further formulas
analogous to 0.4.51(i),(ii). Thus, if « < B, we have

BLA = BLBLA = BLA = BLBLA.

THEOREM 0.4.54. Assuming that |B| > 1 for some BeK, and o = o, or
else that @ > |B| > 1 for some B € K (and o is arbitrary), we have:
O if Fr,K = SgX, then |X| = o;
(i) if X K-freely generates Jt, K, then |X| = a;
(iii) if Fr K = FK, then o = B;
iv) if FrK = Fe K, then p = a;
) if Fr.K = FK, then o = B.

For o = o this theorem follows almost immediately, using 0.1.17(ix),(x),
0.4.27, and 0.4.52(ii) (cf. also Fujiwara [55*%]). For « < e the proof'is essentially
given in Jonsson-Tarski [61*], where some related results can also be found.

A well-known example of a class of algebras which satisfies conditions
(i)~(v) of 0.4.54 are the groups. On the other hand, a class K of infinite algebras
is constructed in op. cit. for which these conditions fail; actually in this class
any two algebras J1,K and F1,K with «, # < @ are isomorphic. (Consequent-
ly, in opposition to 0.4.43(ii),(iii), the formulas Jr,K = Fr,K and Fr,K =
1K are, in general, not equivalent; as is easily seen, Fr,K = F1,K never
holds unless « = f.)

THEOREM 0.4.55 The assumption
HSPK = HSP{A: A eK, |4] < o}

implies the following conclusion:
1K is K-freely generated by every set X such that |X| = « < 0, X € Fr,K,
and ©gX = FrK.
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The proof can be found in Jénsson-Tarski [61*]. For a more suggestive
form of the assumption of this theorem see 0.4.64 below.

Theorems 0.4.54 and 0.4.55 extend to algebras of arbitrary similarity types.
In the really interesting case, however, that of finite o, the two theorems are of
relatively little value when directly applied to algebras with infinite index sets,
since, in this case, the hypotheses of both of them frequently fail (so that the
theorems hold only vacuously). Concerning this situation compare Remark
0.5.18 in the next section.

In 0.4.42, 0.4.43, 0.4.53, and 0.4.54 we have concerned ourselves with
relations between {r,K and §Fr,L as well as between F1,K and Fr,K. More
generally, one can study relations between $§1,K and §r,L where K, L are any
two classes of algebras and «, f are any two cardinals. In particular, one can
look for conditions under which these two free algebras are isomorphic. This
problem, however, easily reduces to those previously discussed. In fact, as is
easily seen from 0.4.42, 0.4.43 and 0.4.53, the formula

Jr, K = Frl
is equivalent to
%raK = §(3:r¢:cl' = %rﬂL’
or else to

dependent on whether o < f or o = f.

REMARK 0.4.56. An important notion which admits a simple definition in
terms of freely generating sets is that of a new notion of an independent set
of elements of an algebra, which is closely related to the three notions of
independence briefly discussed in Remark 0.1.29. It is, however, stronger
than all of them. Given an algebra 9, a set X = A is independent in the new
sense iff either X is empty or X {2}-freely generates ©g®X. All the properties
of independent sets listed in 0.1.29 apply to the new notion of independence
as well. The Abelian groups (G, +) in which all elements are of the same
prime order # > O provide an interesting example of a class of algebras for
which all the four notions of independence coincide. For further information
concerning independent sets see Marczewski [66*] where in particular a com-
prehensive bibliography of the subject can be found.

In the last portion of this section we state a few model-theoretical results
which involve free algebras. The first of them is of the same general character
as Theorems 0.4.53(ii) and 0.4.54 (iii)—~(iv), i.e., it concerns the relationship
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between two free algebras over the same class but with different numbers of
generators.

TraeorREM 0.4.57. For every class K of algebras and any o, p = o, the alge-
bras Ft,K and Ft,K are elementarily equivalent.

For the proof see Tarski-Vaught [57%], p. 98, Theorem 3.5.

Assuming 96 and applying 0.3.79 we conclude from 0.4.57 that, for
every class K of algebras and any infinite o and f3,

Up&t, KnUpFr,K +# 0.

Thus we have here a new result concerning the relation = which was discussed
in 0.3.80.

Theorem 0.4.57 does not extend to finite cardinals. For instance, in case K
is the class of all groups, the free groups §1;K and Fr,K are not elementarily
equivalent since the former is commutative while the latter is not (cf. the
remarks following 0.4.51). It seems very likely that any two free groups &t,K
and J1;K with o, f = 2 are elementarily equivalent; however, no proof of
this statement has yet been found.

We want now to describe the metamathematical construction of free algebras
which was mentioned in the remarks preceding 0.4.19. To this end consider
the discourse language of the similarity class of algebras of type (2> (cf. 0.1.5).
We assume that this language has been provided with « different variables
arranged as usual in the sequence {v;:{ < a); here « is an arbitrary non-zero
cardinal which is regarded as fixed in each construction of a free algebra, but
varies from one construction to another. As we know, the language has a
binary operation symbol, say +, as the only non-logical constant; this operation
symbol induces a binary operation on expressions also denoted by +. We
recall that the set Tu(® of all a-terms (or simply terms) is the least set containing
all variables and closed under the operation +, and that two a-terms ¢ and

7 are called equivalent with respect to a class K of algebras, in symbols o=z,
if KEo =1.

TrEOREM 0.4.58. (i) (Tp™, +) is an algebra and {Tp®, +> = Sg{v,:
& < al.

(i) For every class K of algebras, = € Co{Tu®, +> and hence {Tu*,
+ /= is also an algebra.

DEFINITION 0.4.59. The algebra Tm, = (Tu®, 4+ is called the fiee term
algebra. For every class K of algebras, the algebra Tm,K = Tm, /= is
called the term algebra of K.
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THEOREM 0.4.60. (i) There is a unique f such that felIs(Tm,, §1,) and
Joe = & for every & < a.

The unique f of (i) satisfies also the following conditions:

(i) <o, 1y e =@ iff { fo, fr> € Cr,K, for any a-terms o, v and every class K
of algebras;

(i) 6 = Pd™(fo) for every term o and every algebra .

Proor. It follows immediately from 0.4.30 and 0.4.59 that, if K is a similarity
class, then {v.:{ < a} K-freely generates Tm,. This fact combined with
0.4.27(i) and 0.4.28 gives (i). To show (ii) we first prove the following result:

(1) if Kis any class of algebras, then {v,/=:¢ < «} K-freely generates Tm,K.

Assume B e K and g is a function from {v,/=:¢ < a} into B, and set
®) h = {6®x:0eTp®)
where x is the a-termed sequence of elements of B such that x, = g(vs/={)
for every ¢ < a. It is easily seen that
3) go(=@P)* < he Hom(ITm,, B).
From (2) we get =& < hlh™!; hence, by (3) and 0.2.23(iii),
k = {o/=®, ho)y:0 € T} € Hom(Tm, K, B).
Since it is clear that g = &, (1) is proved.

Let K be any class of algebras. Then for any B €K and ge ®¢*¢<“B we
have

g S (F9x:0 € Tu™) € Hom(Tm,, B)
where x € “B and x; = gv; for every ¢ < «. Thus we easily conclude that
=@ = N{hh™*:B e K, he Hom(Tm,, B)}.
Hence, by 0.2.23(i), 0.3.12(ii), and 0.3.46 along with the remark just following it,
Tm,K e SPK;
furthermore, in view of 0.4.33 it is seen that {(1)5/5}(“), EICr,KY:& <} is a
one-one function. Combining these two facts with (1), 0.4.27(ii), and 0.4.28

we obtain a function k e Is(Tm,K, Fr,K) such that k(v,/=¢) = ¢/Cr,K for
every ¢ < a. Therefore, by 0.2.14(iii),

(Cr,KyXof = ko(=).

Hence, since f and k are both one-one, we immediately get (ii).
To complete the proof of the theorem observe that, if I" is the set of all a-



0.4.61 POLYNOMIALS AND FREE ALGEBRAS 145

terms ¢ such that the equality of (iii) holds, then {v;:¢ < «} = I' € SuZm,;
thus we have (iii).

THEOREM 0.4.61. Fr, = Tm,, and Fr,K = Tm, K for every class K of
algebras.
Proof: by 0.4.60.

From 0.4.60(ii) we can easily derive the model-theoretical characterization
of free algebras. We give here a precise formulation of this result:

Let K be a class of algebras containing at least one algebra with twe or more
elements. For U = F1,K it is necessary and sufficient that there exists a set
X with cardinality o which generates U and satisfies the following two con-
ditions:

(I) every equation ¢ which is satisfied in W under some assignment of distinct
elements of X to the variables in ¢ is satisfied identically in all algebras of K;

(II) every equation ¢ which is satisfied identically in all algebras of K is
satisfied in W under every such assignment.

It may also be noticed that the above condition (1) is necessary and sufficient
for a given set X generating A to K-freely generate 2.

The metamathematical construction of free algebras which has just been
outlined (in 0.4.58-0.4.61) leads to several interesting model-theoretical
results; we will state one of them below as Theorem 0.4.63. The validity of
these results depends on the assumption that « = o, i.e., that the underlying
elementary theory of algebras is provided with infinitely many variables; we
simply let @ = o.

We recall that a class K of algebras is an equational class, K is an £2%,,
if there is a set I' of identities such that K = MdTI.

THEOREM 0.4.62. K is an &%, iff, for every algebra A, = < =
implies U € K.

The most important consequence of 0.4.60 and, more generally, the most
important application of the theory of free algebras to model theory is the
following

THEOREM 0.4.63. For every class K of algebras the following conditions are
equivalent :
(i) K is an £2%,,
(i) K =SK = HK = PK,
(iii) K = HSPK,
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Proor. (ii) and (iii) are equivalent by 0.3.13. Consider the additional con-
dition:

@v) AeK for all N such that Cr K = Cr .

Then (i) and (iv) are equivalent by 0.4.60(ii) and 0.4.62; moreover, (iii) and (iv)
are equivalent by 0.4.42(i),(iv).

This result, without condition (iii), is the well-known theorem of Birkhoff
[35%], p. 441, Theorem 10. It shows that the mathematical notion of an alge-
braically closed class (cf. 0.3.14) and the model-theoretical notion of an equa-
tional class (in the wider sense) extensionally coincide. Several variants of
0.4.63 are known. Cf. Tarski [55%], pp. 58 ff., and Sain [65*]; in both these
papers further bibliographic references are given. (A correction to Tarski [55%]
can be found in Tarski [58%], p. 175.)

REMARKS 0.4.64. In view of 0.3.13, Theorem 0.4.63 immediately implies
that, for every class K of algebras, HSPK is the least equational class which
includes K. This permits us, for instance, to give the assumption of 0.4.55
the following equivalent form: every identity which holds in all finite algebras
of K holds also in all algebras of K.

ReMARKS 0.4.65. To conclude this section we wish to discuss briefly a
certain generalization of the notion of a free algebra. We have here in mind
the notion of a conditionally free algebra, more specifically, a free algebra
over a given class K of similar algebras, with generators subject to certain
gonditions. These conditions are expressed by equations in the discourse lan-
cuage A of K or, what amounts to the same, of the similarity class L which
includes K; they are called defining relations, and the algebra itself is referred
to as a free algebra with defining relations.

To formulate a model-theoretical characterization of this notion, we denote
by X the set of equations in terms of which the defining relations are expressed,
and we agree to call a sequence x = <{x,).., of elements in an algebra B
of L Z-appropriate if it satisfies all the equations of Z. (It is assumed here that
the sequence of variables v, in the discourse language A of L is of length «
where « is a cardinal; whether the sequence x = {(x;)., satisfies an equation
of % with the variables v, , ..., v, _, depends, of course, exclusively on the
terms x,, ..., X,__, of this sequence.) We can now say that 2 is a free algebra
over L, with an o-termed sequence g = {g;>.., of generators and with de-
fining relations expressed by equations of a set X, if (I) 2 is an algebra in L
and g is a X-appropriate sequence of elements of ; (II) 2 is generated by
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the range of g; and (III) whenever an equation in A is satisfied by g, it is also
satisfied by every XZ-appropriate sequence of elements of every algebra in L,
and conversely. Notice that equations of the set ¥ may imply that certain
terms in every X-appropriate sequence are equal; as a consequence, the car-
dinality of the range of the sequence g may be in some cases smaller than o.

Just as in the case of ordinary free algebras, we can replace this charac-
terization by a purely mathematical construction, in which, in addition, the
sequence of generators is fixed, so that the algebra 9 becomes uniquely deter-
mined by the class K of algebras, the cardinal «, and the set of defining relations.
To this end we use ordered pairs of words <{w, u), i.e., of elements w, u e Fr,,
as mathematical substitutes for equations in X; we can simply identify these
pairs with defining relations. If, for instance, K is a class of algebras (B, +)
and a defining relation is expressed by the equation

v+ (v,+0v) = (v:+v,)+v,

we identify the defining relation with the pair {(w, u) where w = (¢, {(n, D)
and u = (& n), (. Let FrSK be the free algebra over K with « generators
and with the set S of defining relations. The desired definition of FrVK is
obtained by a simple modification of Definition 0.4.19(i) of &t,K; in fact,
we let
Cr®K = N{R:R € CoFr,, F1,/R € ISK, S = R}
and
FOK = Fr,/CrOK.

On the basis of this definition we could develop the whole theory of Fr9K
and carry over to it most of the results obtained for &t,K; the formulations
of results are, of course, more complicated. In particular, we can extend the
notion of a set K-freely generating a given algebra, which was defined in
0.4.23. In fact, given an algebra % € L we say that a sequence x € “4 K-freely
generates N under a set S < Fr,x Fr, (of defining relations) if (I) x is S-
appropriate; (II) U is generated by Rgx; and (III) for any B € K and any
S-appropriate y € “B there exists a (unique) homomorphism % from 2 into
% such that hx, = y, for every £ < «. (We can formally define the term *S-
appropriate” by saying that an «-termed sequence x of elements of 2 is S-
appropriate if S < hlh~! where h is the unique homomorphism from {r,
into A4 such that h{ = x, for every ¢ < «.) Theorem 0.4.29, the fundamental
theorem on free algebras, assumes now the following form: =~ FVK iff
A e SPK and there is a sequence x € “4 which K-freely generates 2 under S.

It should be emphasized that, while the notion of a free algebra with defining
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relations is closely related in content to the original notion of free algebra,
it is far more comprehensive in scope. In fact, it can easily be shown that for
any congruence relation R on the free algebra Jr,K we have

FrK/R = F1OK;

consequently, any algebra is isomorphic to some free algebra with defining
relations.

It is seen from the above remarks that the notion discussed is conceptually
rather involved. The notion is now intensely used in the discussion of groups
and semigroups, but has not found so far many applications elsewhere; see,
for instance, Magnus-Karrass-Solitar [66*] and Adjan [66*]. In the theory of
cylindric algebras only a very special case of this notion will be involved (see
Chapter 2, Definition 2.5.31). These are the reasons why free algebras with
defining relations are not discussed here in a systematic way. Nevertheless it
seems likely that this notion will become a useful tool in the general theory
of algebras, especially in the study of some metamathematical aspects of the
theory; cf. here Lyndon [62*].

We may mention still another notion of a general algebraic character which
is closely related to that of a free algebra (and essentially can be subsumed
under the notion of a free algebra with defining relations). It is the notion of a
free product of algebras. In this case again a study of the notion within the
framework of the general theory of algebras seems desirable and promises to
be fruitful. For work in this direction see £0§ [65%].



0.5. REDUCTS

Like the formation of subalgebras and homomorphic images, the formation
of reducts is an operation “reducing the size of an algebra”. Loosely speaking,
when taking a reduct of an algebra we leave the universe unchanged but discard
some of the fundamental operations. In consequence, the formation of reducts
(as opposed to all the operations on algebras previously discussed) leads, as a
rule, from algebras of a given similarity class to algebras of a different similarity
class.

Some particular cases of the notion of a reduct are known from the discussion
of special classes of algebras. If, for instance, we form a reduct of a ring by
discarding the multiplication, we arrive at what is called the additive group of
a ring. In its general form the notion of a reduct was introduced in Tarski [54*],
p. 580. The notion is much less known and less frequently discussed than the
notions introduced in the previous sections. It proves to be really useful when
applied to algebras with infinitely many operations, for it enables one to reduce
some problems concerning such algebras to analogous problems for algebras
with finitely many operations.

DEFINITION 0.5.1. Let U = {4, Q,>,; be an algebra, J be any set, and r
be a one-one function from J into 1. The algebra B = (A4, Q,;>;., is called
the r-reduct of U and denoted by ROV or, simply, by ROCU. In case r = J1Id
(and thus J < I), we call B the J-reduct of A and denote it by Rod,A. If J is
finite, Rd; W is called a finite reduct of A.

For any class K of similar algebras we set

RAPK = {RdPA:A e K}
and, if J =1,
Rd,K = {Jb,A:A e K}.

REMARK 0.5.2. In the discussion of special classes of algebras it sometimes
appears desirable to use the term “reduct” in a more restricted sense. Assume,
e.g., that we are interested in groups with operators, i.e., in algebras ¥ =
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{4, +, 0;>,,; where {4, +) is a group and all O;’s are unary operations
distributive with respect to +. If one undertakes a systematic study of reducts
of such algebras, it seems reasonable to restrict oneself to reducts of the
form {4, +, O0,;>; (which continue to be groups with operators), dis-
regarding entirely those reducts in which the operation + has been removed.
The way in which the notion of a reduct should be restricted varies from one
particular case to another and is determined by the actual interests of al-
gebraists.

The reducts occasionally prove useful in establishing the isomorphism of
structures. Thus to prove the isomorphism of two groups {4,:, ~'» and
(B, -, ~* it suffices to do so for their reducts {4, -)> and {B, ->, since the
class of groups {4,-:, ~'> and that of corresponding reducts {4, ) are
definitionally equivalent (cf. 0.1.6 and the remarks following 0.2.10). For the
same reason, two Boolean algebras {4, +, -, —,0,1> and (B, +, -, —,0, 1>
(cf. 0.1.4) are isomorphic whenever their reducts {4, +> and (B, +) (or
{4, -» and {B, -)) are isomorphic.

All the theorems on reducts stated in this section are simple and similar
in character: they establish basic connections between properties of algebras
and properties of their reducts.

TaeoreM 0.5.3. (1) If r is a one-one function from J into In%, then
UpROOUA = UvW, InROVUA = J, and Op;ROVA = Op,; A for every jel.

(i) If J < InU, then UvRd,A = UvA, InRd,A = J, and Op;Rd,A =
Op; N for every jeJ.

From now on until the end of this section the variable r is assumed to
represent an arbitrary one-one function whose range is included in the index
set of a given algebra (or in the common index set of all algebras of a given
class or a given system of algebras). An analogous stipulation applies to the
variable J.

THEOREM 0.5.4. (i) Sud = SuMdDYU.
(i) If A = B, then RHVA = RHPB.
(iii) RA®SK < SRA™K.
(iv) Sg™PWY < Sg™X and SgT"NYX < ROV Sg™X, for every X < A.
(v) Sg®X = U{Sg"™ WX :J < In, |J| < o} for every X < A.
(vi) If RODU is minimal, or finitely generated, then so is .
(vii) If K is a non-empty set of algebras directed by the relation <, then so is
RA®K, and we have URAWK = RAVUK; in particular, URA®S_ A = RdOPY
for every algebra .
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One can show by simple examples that the implications and inclusions stated
in 0.5.4 cannot in general be replaced by equivalences and equalities. The same
applies to 0.5.12 and 0.5.13 below.

THEOREM 0.5.5. (i) If ' is a ome-one function with Rgr' < Rgr, then
ROCIRDOY = R,
(i) If J' = J, then by Rd,A = by A.

DEFINITION 0.5.6. An algebra B is called a subreduct of an algebra U, in
symbols B =" A, or A 2" B, if InB < InWA and B = Rd,, .

If, eg., § = (F, +, -) is a field with zero element O, then the multipli-
cative group of &, (F ~ {0}, -), is a subreduct of .

THEOREM 0.5.7. (1) If W = B, then W =" B; in case A and B are similar,
the converse also holds.

) If A <="B <" U, then A = B.

(i) If A<="B <" C, then A =T €.

By 0.5.7 the relation <" establishes a partial ordering in every class of algebras.
Hence we can speak of the least upper bound of algebras under this relation
and formulate the following

DErFINITION 0.5.8. By a reduct union of a set K of (not necessarily similar)
algebras we understand an algebra which is the least upper bound of K under
the relation <". If such an algebra exists, it is denoted by UK.

ReMARK 0.5.9. U" is the only operation considered in this chapter which
can be applied to a set of non-similar algebras. It is closely related in its
properties to the operation U defined in 0.1.24 and, as will be stated in
0.5.10(iii), it reduces to the latter when applied to a set of similar algebras.

TueoreM 0.5.10. Assuming that UK exists, the following conditions hold:
(i) U{UvA: Ae K} = Uv U'K;

(i) U{InA:A e K} = InU'K;

(iii) if K is a set of similar algebras, then U'K = UK.

THEOREM 0.5.11. (i) If K is a non-empty set of algebras directed by the
relation <", then UK exists.
(i) In particular, for any algebra A we have U'K = U if K is any one of the
following three sets:
@) {Rd,A:J < In, |J| < o},
(") U{Rd;S A:J = In¥, |J| < o},
@iy U{S Rd,A:J = In, |J| < o}
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THEOREM 0.5.12. (i) Ho% = HoRDDUA and IsA = IsRHPU.
(i) Ho(, B) < Ho(RDPUA, ROWVB) and Is(A, B) < Is(RdVUA, ROVDV).
(i) For every class K of similar algebras, RAHK < HRA®VK and
RA®IK = IRd®K.
(iv) CoA = CoRDVIA.
(v) Cg™MY = Cg™X for every X < A.
(vi) If ROVU is simple, then N is simple.
(vil) 1L < ILROPU for every z € A.
(viii) If the z-ideals function properly in RO, then the z-ideals function
properly in A as well.

THEOREM 0.5.13. (1) ROV(P,_,B;) = P, RONB,.
(i) ROCIA) = TRHVA.
(iii) RAVPK = PRAVK.
(iv) If A =4 P, B, then ROPA =4 P, RODB,.
(v) If ROVU is directly indecomposable, weakly subdirectly indecomposable,
or subdirectly indecomposable, then so is 9.
(vi) ROO(P,_;B,/F) = P, RODDB,/F for every filter F on I.
(vii) ROCUA/F) = "RODUJF for every filter F on I.
(viii) RAPUpK = UpRd®K.

REMARK 0.5.14. It is easy to construct an algebra 9 such that U is semi-
simple but RO@A is not, or such that ROV is semisimple but A is not.
The same applies to the notion of pseudo-simplicity and the various notions
of pseudo-indecomposability (cf. 0.3.59).

THEOREM 0.5.15. Let K be any class of similar algebras; put K' = SUpK.
() If L is a non-empty set of algebras directed by the relation =" such
that UL is similar to algebras in K, then the following two conditions are
equivalent:
(i") AeSRd,, oK’ for each AelL;
(i) UlLeK.
(i) In particular, for any algebra W similar to algebras in K, the following
conditions are equivalent:
(i) AekK’;
(ii") Rd,A e Rd;K’ for every finite J = In;
(i) Sg"™®MX e SRA;K’ for every finite J = In and finite X < A.
This theorem clearly extends and improves 0.3.71. The proof of 0.5.15(i)
is entirely analogous to that of 0.3.71(i); 0.5.15(ii) follows directly from 0.5.15(i)
and 0.5.113i).
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THEOREM 0.5.16. For every cardinal o # 0,
(i) PLRDDA = PLA, PLROOUA = ROV PLA, and PIRDOUA < PIA;
(i) Fr,RAVK == ROOFr, K.

THEOREM 0.5.17. Let K be a class of similar algebras and 1 their common
index set. If, for each finite J < I, the class Rd;K satisfies 0.4.54(i) (with K
replaced by Rd;K), or the conclusion of 0.4.55 (with the same replacement),
then so does K; similarly for 0.4.54(ii)—(v).

For a proof of 0.5.17 see Keisler [61*].

REMARK 0.5.18. Theorem 0.5.17 essentially extends the range of appli-
cability of 0.4.54, and 0.4.55. As was pointed out in the remark immediately
following 0.4.55, Theorems 0.4.54 and 0.4.55 in the case of finite « have rela-
tively little value when applied to classes K of algebras with infinite index sets,
since many such classes contain no finite algebras. However, it can well happen
that, for every finite subset J of the index set, the class HSPRd;K contains a
finite algebra, with more than one element, among its members. Then, by
applying 0.4.36 and 0.4.54, we infer that conditions 0.4.54(i)-(v) hold for
each of the classes Rd;K and that consequently, by 0.5.17, they hold for the
class K itself. A similar remark applies to 0.4.55.

REMARKS 0.5.19. We want still to discuss briefly some model-theoretical
properties of reducts; a more detailed discussion of these properties can be
found in Tarski [54*], [55*%]. The most important questions here are of the
following type: is a given property preserved when we pass from any class K
of similar algebras to the class RA”K or Rd,K of its reducts (for any given
function r or set J)? With respect to all model-theoretical properties of K
defined in the Preliminaries — thus, the properties of being elementary, uni-
versal, or equational (in the narrower or wider sense) — the answers to these
questions prove to be negative. As instructive examples consider the classes
K, of all commutative rings and K, of all integral domains, both treated as
classes of algebraic structures A = {4, +, —, -> of the type (2, 1,2) with
the common index set 3 = {0, 1,2}; let J = 2 = {0, 1}. As is well known,
K, and K, are %’s, hence also £%¢’s, and K, is actually an £2%. Rd;K,,
the class of all additive groups of rings, turns out to coincide with that of all
Abelian groups, and hence it preserves the properties of K; just mentioned.
On the other hand, Rd;K, does not preserve the properties of K,. In fact,
let A’ be the additive group of integers and A" = A’ x B where B is the
additive group of rationals. A’ and A” are known to be elementarily equiva-
lent; cf. Szmielew [55*], p. 268, Theorem 6.6. Clearly A’ € Rd,K,; it can



154 GENERAL THEORY OF ALGEBRAS 0.5.20

easily be shown, however, that 9" ¢ Rd;K,. Hence we conclude at once that
Rd;K, is not a %% and not even an &% or an &% ,.

From these negative observations we can draw by means of 0.3.83 some
algebraic conclusions. Consider the algebraic properties of K expressed by
the formula

K = SK, K = HK, K = PK, K = UpK.

By 0.5.13(ii),(viii) the last two properties are preserved by the classes of
reducts; but the first two are not. In fact, the class K, of integral domains
provides an example of a class K such that K = SK = UpK but, for some r,
RA™K s SRA™K. Also it is easy to construct a class K which is equational
and hence satisfies the formulas K = SK = HK = PK while, for some r,
SRAMK # RAMK % HRIMK.

In view of the above remarks the following result, which improves 0.3.86,
may appear somewhat unexpected.

THEOREM 0.5.20. If K is an &%y, then SRAVK is a UE ,.

This is a consequence of 0.3.70(i), 0.3.83, and 0.5.13(viii). The result was
first proved by a different method in Tarski [54*], p. 585, Theorem 1.9.

Applying 0.3.71 and 0.3.83 we can obtain a model-theoretical version of
0.5.15 which states various properties of %% ,’s involving reducts and reduct
unions. This version is, however, obvious and almost trivial; in a different
arrangement of material it could be used to give an alternative proof of the
original Theorem 0.5.15.

ReMARK 0.5.21. Since there are classes of algebras which are elementary
while their corresponding classes of reducts are not, it appears natural to
single out those classes K of (similar) algebras which can be represented in
the form K = Rd®™L where L is an &%, or an £%,. Such a class K is respec-
tively called pseudo-elementary in the narrower sense, or pseudo-elementary
(in the wider sense), for brevity a €, or a #%,. Obviously, every &% is a
PE and every €, a PF,; by 0.5.19 the converses do not hold. 0.5.13(viii)
implies that 2% ,’s share an important property with &%,’s — the closure
under the formation of ultraproducts. By 0.5.20, Theorem 0.3.86 also extends
from &€ s to PE’s.

REMARK 0.5.22. The notion of reduct, like many other notions discussed
in this chapter, extends in a natural way to arbitrary relational structures,
and many results stated here apply with obvious changes to the extended
notion. This is important for the purposes of the general theory of algebras
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since it frequently happens that a class K of algebras can be naturally repre-
sented as the class of reducts of a class L of relational structures; from known
properties of the class L we may then be able to draw some conclusions con-
cerning the class K. In principle, we could always construe L as a class of alge-
bras. This is a consequence of the simple observation that a relation can
always be replaced by its characteristic function; cf. the Preliminaries. Such a
procedure, however, would be rather unnatural and would present some dis-
advantages from a heuristic point of view.

If s a relational structure {4, R;, O;>,; .., With relations R; and operations
0;, each of its reducts is determined by two functions, r and s with ranges
included in I and J, respectively, or by two sets, a subset I’ of I and a subset
J" of J. Thus we have to use the symbolic expressions Rd™A and Rd,, ;A
to denote reducts of 9(, and similarly Rd**L and Rd,, , L for classes of reducts.
In case r or I' is empty, the resulting reducts are algebras. If a class K of algebras
(or, more generally, of relational structures) can be represented in the form
K = Rd™9L where L is an elementary class of relational structures, K can
still be called pseudo-elementary. Since, e.g., Theorems 0.5.13(viii) and 0.5.20
apply to the extended reducts (see Frayne-Morel-Scott [62*] for the necessary
changes in definitions of reduced product and ultraproduct), a class K of
algebras which is pseudo-elementary in the extended sense is still closed under
the formation of ultraproducts, and the class SK is universal.

To give a rather interesting example, consider a class K of algebras U =
{4, 0;>,.; Let L be the class of all relational structures i = {4, R, 0;>,,
such that A = {4, O;);, is an algebra in K and R is a congruence relation
of U different from A1Id and 4 x A. As is easily seen, the class K’ = Rd, ,L
is the class of all those algebras 9 € K which are not simple. Thus, if K is
elementary, the class K’ of all non-simple algebras in K is pseudo-elementary.
It is known that, in general, K’ is not elementary. (For the case of the class K
of groups this is stated in Tarski [52a], p. 717, footnote 17.) We mention here
some further classes K’ which by means of an analogous argument can be
shown to be pseudo-elementary in case K itself is elementary: the class of
all algebras in K which have a proper subalgebra, or are directly decom-
posable, or are weakly subdirectly decomposable; the class of all algebras
which have a subalgebra, or have a quotient algebra, belonging to K; the
class of all algebras which are isomorphic to direct products of two, or of any
other fixed finite number, of algebras in K. Many other examples of this kind
are known.






PROBLEMS

PrOBLEM 0.1. Let U be a finite algebra such thai every subset of A consisting
of a single element is a subuniverse of 9. Does N necessarily have the unique
decomposition property?

For related results see McKenzie [70*]. In particular it is stated there that
Problem 0.1 admits an affirmative solution when restricted to semigroups.

ProOBLEM 0.2. Does there exist an algebra which is uniquely totally decom-
posable and all factors of which are totally decomposable but not all are uniquely
totally decomposable?

Compare the solution of a weaker problem, obtained moreover on the basis
of a special set-theoretical hypothesis, in 0.3.32.

ProBLEM 0.3. Can one prove without the help of any set-theoretical hypothesis
like the continuum hypothesis that there is an algebra which is uniquely totally
decomposable but does not have the refinement property?

ProBLEM 0.4. Is there an algebra which has the remainder property and the
finite refinement property but fails to have the general refinement property
(possibly restricted to the case of denumerably many factors)?

This problem was raised by Robert Bradford.

PrOBLEM 0.5. Let F denote the set of all factor congruence relations on a
given algebra . By a complement of a congruence relation R € F we understand
any congruence relation S€F such that RnS = A11d and R|S = A4 x A.
Consider the following two properties of U: (i) every R € FU has just one
complement; (ii) the system FU = (FU,|,n) is a distributive lattice or — what
amounts to the same in this case — a Boolean algebra (in the sense of Remarks
0.1.4). Does (i) always imply (ii) ? If not, does (i) imply (ii) in caseFN is a lattice
or A x A is a finitely generated congruence relation or both?

It is known that condition (ii) is equivalent to: (iii) 2 has the strict refinement
property. (This is the stronger variant of the refinement property mentioned in
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connection with 0.3.34. Cf. Chang-Jonsson-Tarski [64*].) Notice that in general
& is not an algebra at all, since the set F9( is not necessarily closed under the
operations | and a; if, however, 2 is an algebra, then it is a lattice and actually
a modular lattice.

PRrOBLEM 0.6. For |A] = o, does there exist a cardinal o = o and an ultra-
filter F on a such that o < |*A|F| < 2*?
This problem is formulated in Frayne-Morel-Scott [62*], p. 208.

ProBLEM 0.7. Consider the infinite sequence of operations (from and to
classes of algebras) P, PUp, PUpP, ... . Are all the operations in this sequence
distinct?

ProBLEM 0.8. Is it possible to prove without Y€ that any two elementarily
equivalent algebras have isomorphic ultrapowers?

PrOBLEM 0.9. Let the formula W = B express the fact that the algebras A
and B have some isomorphic ultrapowers. Can one prove without the help of
GEH that = is an equivalence relation and that the partition induced by this
relation in any similarity class of algebras, with non-empty and at most denumer-
able systems of fundamental operations, has the cardinality of the set of real
numbers?

In connection with the last two problems compare 0.3.79 and 0.3.80. Both
problems are formulated in Keisler [61a*], p. 487."

1) [Added in proof.] The last two problems have recently been solved affirmatively by
Saharon Shelah; cf. footnote!) on p. 113.
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1. ELEMENTARY PROPERTIES OF CYLINDRIC ALGEBRAS

In this chapter we shall define the class of cylindric algebras and develop
the most basic portion of its elementary (arithmetical) theory. In the course
of the development we shall have occasion to introduce various concepts which
play a fundamental role in the later, more specialized discussion.

1.1. CYLINDRIC ALGEBRAS

A cylindric algebra is a Boolean algebra enriched by certain additional
operations. Before beginning the discussion of cylindric algebras we establish
the terminology and notation to be used in dealing with the Boolean part of
the algebra. As a general reference for the theory of Boolean algebras see
Halmos [63*] or Sikorski [64*].

A Boolean algebra is an algebraic structure U = {4, +,-, —,0, 1) in
which + and - are binary operations and — is a unary operation on 4, while
0 and 1 are distinguished elements of 4, and which satisfies certain well-known
postulates. We may mention, e.g., the following postulates which are known
to be adequate for this purpose when satisfied for arbitrary x, y,ze€ 4:

(Bo) x+y = y+x, Xty =yex,

By x+(y2) = x+y)(x+2), x:(y+2) =xy+x-2,
B,) x+0=ux, x'1=x,

By) x+-x=1, x+—x =01

Given a Boolean algebra U, for any x,yed we let x—y = x-—y and
x®y =(x—y)+(y—x); we also let x <y, or y = x, iff x+y =y, and
x < y,ory>x,iff both x £ y and x # y. x—y is called the difference of x
and y, x®y the symmetric difference of x and y, and < is called the inclusion
relation. The class of all Boolean algebras is denoted by BA. We also use

1) This postulate system is essentially due to Huntington [04*], p. 292 f. but contains a
modification suggested by Bernstein [50*].
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“BA” just as an abbreviation for “Boolean algebra”, saying, e.g., that a given
algebra 2 is a BA. We use the same convention with respect to various classes
introduced below, such as the class CA of all cylindric algebras. If U =
{4, +,+, —,0,1) is a BA, then {4, +, -) is a lattice, and we apply to A
the terminology for lattices introduced in Remarks 0.1.4; in particular, 2
and [1I® (or simply 2 and I']) are the infinitary generalizations of + and -,
respectively. We assume as known the notion of an atom. U is atomic if for
every non-zero x € A there is an atom y such that y < x. 4¢9 is the set of
all atoms of .

A field of sets is a non-empty family F of sets such that F is closed under
u, n, and complementation with respect to UF, and such that 0, UF € F. Note
that {0} is a field of sets. A Boolean set algebra is a structure (4, u, n, ~,
0, U4> where A4 is a field of sets; UA is the unit set of both the field of
sets and the Boolean set algebra just mentioned. Clearly such a structure is
a Boolean algebra.

We also assume as known the notions of ideal and filter (or dual ideal)
in a Boolean algebra. A brief discussion of these notions will be found in
Chapter 2; see the remarks preceding 2.3.4. Other more special notions will
be introduced when needed in the further discussion.

DerINITION 1.1.1. By a cylindric algebra of dimension o, where o is any ordinal
number, we mean an algebraic structure

m: = <A9 += Ty T 09 17 C;ca dxl>x,i<a

such that 0, 1, and d, are distinguished elements of A (for all k, A < a), —
and ¢, are unary operations on A (for all k < ), + and - are binary operations
on A, and such that the following postulates are satisfied for any x,y € A and
any ¥, A, u < o

(Cy) the structure {A, +,-, —,0,1> is a BA;
(Cp c0=0;

(Cy) x £ ¢x (ie., x+c.x = c.x);

(C3) culx-cey) = cex-cy;

(Cy) cpx = 3¢5

(Cs) de = 1;

(Co) if K # A, 1, then d,, = cx(d,hc'dlcy);

(C,) if K # 2, then ¢(d,;-x) ¢ (d;-—x) = 0.9

1) A definition with essentially the same postulate system was published in Tarski-Thomp-
son [52]; see also Thompson [52], p. 10. It may be mentioned that Postulate (C;) was used
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The class of all cylindric algebras is denoted by CA, and the class of all cylindric
algebras of dimension o by CA,. The elements d,; are called diagonal elements,
and the operations ¢, are called cylindrifications. The structure BN = (A, +,
-, —, 0, 1) is the Boolean part of .

The meanings of the symbols +, ..., ¢,, and d,; of course depend on (and
are uniquely determined by) the cylindric algebra [ which is formed from the
operations and elements denoted by these symbols. Theoretically we should
make this dependence explicit, e.g., by providing each of these symbols with
the superscript . In practice, however, the superscript will be omitted when-
ever there is no possibility of confusion. Analogous remarks apply to all
symbols and technical terms which will be introduced in our further discussion
and which designate notions relative to a given algebra ; cf. here 0.1.2.

According to 1.1.1 cylindric algebras are Boolean algebras with additional
operations indexed by ordinals. The notion of a cylindric algebra as a structure
with operations indexed by an arbitrary set could also be introduced; the
generality thereby gained is slight, however, and the Definition 1.1.1 allows
more ease of expression. Elementary notions specific for the Boolean part of
an U e CA, will be applied also to U itself. Thus, e.g., A is atomic, or countably
complete, iff B is atomic, or countably complete.

Sometimes we shall have to deal, not with CA’s, but with algebras similar
to them in the sense of 0.1.5. As was pointed out in 0.1.3, we have to change
Definition 1.1.1 slightly in order to apply to CA’s the terminology of the
general theory of algebraic structures. The only modification of any substance
consists in replacing the distinguished elements 0, 1, d,; by the constant unary
operations 0’, 1/, d’, respectively, assuming these elements as their unique
values. With this modification an algebra %’ is similar to CA,’s in the sense
of 0.1.5 iff

B =B, +,,-,0,1, s d;,</1>x,,1<<x

’ YK

trary unary operations on B; we do not require the operations 0’, 1/, d/, to be
constant since the similarity type of an algebra depends exclusively on the
ranks of its fundamental operations. It proves, however, more convenient
for our purposes to use the term “similar” in this context in a more restrictive

where + and - are arbitrary binary operations while —, 0', 1’, ¢, d., are arbi-

originally in the following form:
if k% A then dgs- ce(da - x) = x.

The modified formulation actually adopted both here and in op. cit. is due to a suggestion
of Roger Lyndon.
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sense, and to call B’ similar to CA,’s just in case the operations 0, 1’, d;, are
actually constant. We can now return to our original definition of CA,’s and

refer to a structure B as similar to a CA, if
§B = <B; +a Ty T O, 19 cm dk).>x,l<a
where +, -, ..., d; represent objects of the same kinds as they do in 1.1.1.

DerINITION 1.1.2. B is a diagonal-free cylindric algebra of dimension o, in
symbols B € Df,, if B is an algebraic structure {B, +, -, —, 0, 1, ¢, >, ., where
+,°,—,0,1, and ¢, are as in 1.1.1, and Postulates (Cy)—(C4) of 1.1.1 hold.

If A =<4, +,-,—,0,1, ¢, d,), <, € CA,, the diagonal-free part of U is
the structure DU = <4, +, -, —,0,1, ¢,

Kk<a®

Various definitions and conventions introduced for CA’s will be automa-
tically carried over to Df’s without explicit statement. Thus if 9 e Df,, then
BIY is its Boolean part.

Our main concern here is with cylindric algebras (with diagonal elements),
and the class Df, will play only a minor role in our discussion.

Obviously we have

THEOREM 1.1.3. If A e CA,, then DjU e Df,.

Clearly, if % is a CA, then DfU is a reduct of ¥ (cf. 0.5.1); however, it is
easily seen from 1.5.24 below that not every diagonal-free cylindric algebra
is a reduct of a CA.

Singly the postulates (C,)-(C,) are well known. (C,) expresses the normality
of each of the operations ¢, (in the sense of Jénsson-Tarski [51], p. 877).
Postulate (C;) may be called the modular law in view of its close analogy to
the modular laws in lattices (see the definition of modular lattices in 0.1.4).
(C,) expresses the commutativity of the operations c,.

To obtain the simplest (and rather trivial) examples of CA’s, we notice that
every Boolean algebra A = {4, +,-, —,0,1) can be transformed into a
CA, (of any prescribed dimension «) just by letting ¢,.x = x and d,; = 1 for
every x € 4 and all k, A < . The algebras thus obtained present little interest
as cylindric algebras; the discussion of these algebras reduces entirely to that
of their Boolean parts. In Section 1.3 we shall say something more about these
algebras, and in particular we shall agree to refer to them as discrete CA’s;
cf. Definition 1.3.10 and the immediately following theorems.

ReMARKS 1.1.4. We now discuss briefly two construction methods which
lead to two important classes of CA’s — the cylindric set algebras and the
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cylindric algebras of formulas. In the second part of this work these two classes
of CA’s will be intensively studied in their own right and in their relation to
arbitrary CA’s. It seems desirable, however, to introduce the two notions at
this early stage since their discussion throws much light on our motives in
designing the general notion of cylindric algebras and in selecting the postulate
system; moreover, the two classes of CA’s will serve as a rich source of examples
and counterexamples, and will help to illustrate the content of particular
results. We shall sometimes refer informally to algebras of the two classes as
special cylindric algebras, occasionally including also the discrete algebras under
this term. (We do not use the term “special cylindric algebra” here in the same
sense as in the Foreword.)

The discussion of the first class of special CA’s, that of cylindric set algebras,
leads naturally to most of our terminology adopted in the general theory.
The construction of these is set-theoretical or — in some very general and
abstract sense — geometrical in character. The basic ideas are found in the
analytical geometry of real three-dimensional space. If R is the set of real
numbers, we apply customary geometric terminology to the space *R, except
that we speak of the 0-, 1-, and 2-coordinates of a point rather than its x-, y-,
and z-coordinates. On point sets of >R we can of course perform the ordinary
set-theoretical operations of union, intersection, and complementation (with
respect to *R). We are also interested in the less familiar operation of cylindri-
fication parallel to an axis: if x < 3 and X < *R, let

C.X ={y:ye’®R and y, = x, for some x e X and all 4 # «}.

Thus C X is the cylinder generated by moving the point set X parallel to the
Kx-axis. Moreover, certain special point sets of >R are of interest to us. These
are, first of all, the empty point set 0 and the whole space *R. Then, if
K, A <3, let

D,, = {x:xe>R, x, = x,}.

Thus D, is a diagonal plane in 3R if x # A, and D, = *R. Now suppose
A is a family of subsets of *R which is closed under the Boolean operations
and under C.(x < 3), and contains all the sets D,; (x, 1 < 3). Let A =
{4,u,n,:5~,0,°R, C, D, ;> ;.5 Then it is easily verified that 9 is a three-
dimensional cylindric algebra. For example, (C;) holds since, if k¥ # A,  and
A # p, the diagonal plane D,, can be obtained by cylindrifying the diagonal
line D;, nD,,, while in case A = y the space >R can be obtained by cylindrifying
the plane D, ; (C;) holds since cylindrification by C, or C, of disjoint subsets
of the plane D,; for x # A leads to disjoint subsets of the space. Further
elementary properties and notions are suggested upon considering this CA,.
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For example we clearly have C(~C.X) = ~C X and C (XuY) = CXuCY
whenever k¥ < 3 and X, Y < *R. Much of Chapter 1 will be devoted to the
proof of such elementary laws directly from the postulates.

This construction can obviously be generalized by taking an arbitrary set
U instead of R and an arbitrary ordinal « instead of 3:*)

DeriniTiON 1.1.5. (i) For any set U, any ordinal o, and any x < o we let
CEOD, or CU, or even simply C,, be the function from Sb*U into Sb*U such that

C.X ={y:ye®U and for some x € X we have y, = x, for all A # «k}

for every X < “U.
(ii) For any set U, any ordinal o, and any k, A < o we denote the set
1y eV, ye = i}
by D5, or DY, or even simply D,;.

(iii) A is an a-dimensional cylindric field of sets iff there is a set U, called the
base of A, such that A is a non-empty subset of Sb*U closed under all the opera-
tions U, n, ~ (i.e., .y~), and C, (for x < &) and containing all the sets D,,.

(iv) W is a cylindric set algebra of dimension o. with base U iff A = {4, v, n,
~,0,%U, Cy, Dys>, 1<, Where A is an a-dimensional cylindric field of sets with
base U. In case A = Sb*U, A and W are respectively called a full cylindric
field of sets and a full cylindric set algebra.

When referring to cylindric set algebras in informal remarks, we shall use
geometrical terminology (extending the usual terminology of analytic geometry).
Thus the set “U, the o™ Cartesian power of U in the sense of the Preliminaries,
is also called the «-dimensional (Cartesian) space with base U (or over U).
Elements of this set are referred to as points and subsets as point sets. If x is
a point of “U and hence a sequence {(x;:¢ < a), we refer to the £™ projection
of x, pjzx = x;, as the £™ coordinate of x. A point set X such that X = C X
is called a cylinder parallel to the k™ axis or, for brevity, a k-cylinder. An
a-dimensional cylindric field of sets A, or cylindric set algebra 2, with the
base U will sometimes be referred to as a field, or an algebra, in the space *U;
this space is clearly the unit set of both the space 4 and the algebra .

In application to set algebras we shall use the symbol “C” and “D” to
replace ““c” and “d”, not only in the basic situation referred to in 1.1.5, but
also in some related contexts introduced below in 1.7.1, 1.8.1, and 1.9.1.

THEOREM 1.1.6. Every cylindric set algebra of dimension o is a CA,.

1) The construction in its essential parts was first carried out in Tarski [31]; see in particular
the last paragraph of the paper.
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The proof presents no difficulty.

For the purpose of graphic illustration, we shall frequently use 2-dimen-
sional cylindric set algebras, since in this case the base U can be pictured as a
segment and 2U as a square. For instance, in Fig. 1.1.7 we exhibit a cylindric
field of subsets of 2U, a member X of this field, and the cylinders C,X and
C,X. Fig. 1.1.8 helps to check the validity of Postulate (Cs).

X

0O

lX

/ COX

U~

i

Fig. 1.1.7

M CoXn €Y = Co(Xn CyY)

Fig. 1.1.8



168 PROPERTIES OF CYLINDRIC ALGEBRAS 1.1.9

It is easily seen how Definition 1.1.5 should be modified to obtain the notions
of an a-dimensional diagonal-free cylindric field of sets and of a diagonal-free
cylindric set algebra of dimension o. One has only to disregard everything in
1.1.5 having to do with diagonal elements, and then to replace the Cartesian
power “U by the more general Cartesian product P,_, U, where {U,:¢ < o)
is any o-termed sequence of sets. Clearly, every diagonal-free cylindric set
algebra of dimension « is a Df,.

We now turn to the second class of special algebras, the cylindric algebras
of formulas. The construction of these algebras has a metamathematical or
rather metalogical character and resembles the metamathematical construction
of free algebras (cf. Section 0.4).

DEFINITION 1.1.9. For each language A of predicate logic we let Fm™ be
the algebra

<¢.U'(A)9 V,A, 1, F) Ta avka v, = v}.>x,/1<a

where o, is the length of the sequence of variables of A. Fm™ is called the free
algebra of formulas (in A).

Recall here that v, A and — are treated as operations on formulas, as is
3,, for each x < «; cf. the Preliminaries. To justify the terminology introduced
in 1.1.9 notice that, K being the class of all algebras similar to CA’s, the algebra
Fm® is seen to be K-freely generated, in the sense of 0.4.23, by the set 4 of
all those atomic formulas in A which contain some non-logical constants
(assuming A # 0).

THEOREM 1.1.10. Let A be a language of predicate logic in which the sequence
of variables has length o. We then have:

@) FmW is similar to CA,’s;

(i) if X is a set of sentences of A, then =z CoFm™ (i.e., =; is a con-
gruence relation of Fm®™) and Fm™/=;e CA,.

The proof of 1.1.10 is straightforward. To prove the last part of 1.1.10(ii)
we have to check that postulates (Cy)~(C;) hold in Fm®™/=;. Indeed, in the
process of checking these postulates the logical origin of cylindric algebras
comes to light. We shall illustrate this by considering two postulates, (C;)and (C).

It is well known that, for any formulas ¢ and ¥ and any variable v, with
K < o, the formulas :

3, (pad, ¥) and 3, oad, ¥
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are logically equivalent. In fact, this equivalence is one of the basic laws by
means of which any formula can be equivalently expressed in the prenex
normal form. The fact that (C;) holds in Fm®)/=; is an immediate conse-
quence of this equivalence.

On the other hand, (C;) expresses a simple property of the operation of
substituting one variable for another in a given formula. This metalogical
operation is well known and need not be described here in detail. Roughly
speaking, to substitute v, for v, in ¢ we simply replace v, in all its free occur-
rences by v;; if, however, v; occurs bound in ¢, then to avoid “collisions”
we may have to begin by picking a “non-colliding™ variable v, (e.g., a variable
not occurring in ¢ at all) and replacing v, by v, wherever the former is bound
in @. If Y and ¥ are respectively the formulas obtained from ¢ and —¢ by
substituting v, for v,, then clearly /' = — (assuming that the same variable
v, was used in eliminating the bound occurrences of v, from ¢ and from =¢).
On the other hand, it is known (and can easily be checked) that, in case x # 4,
the formulas 3, (v, = v;A @) and 3, (v, = v, A=) are respectively equiva-
lent to  and .Y Hence the formula

ﬁ[avk(vk = vl A (p) A avn(vk = v}, A ﬂ(p)]

is logically valid, and consequently (C,) holds in Fm)/=;. The role of (C,)
in discussion of properties of the substitution operation will be seen further
in Sections 1.5 and 1.11.

DerINITION 1.1.11. Given a language A of predicate logic and a set X of
sentences in A, the algebra Fm™)|=; is referred to as a cylindric algebra of
formulas or, more specifically, as the (cylindric) algebra of formulas (in A)
associated with X.»

RemARKs 1.1.12. At many places in the later discussion it will prove con-
venient to use cylindric algebras of formulas associated with a theory © rather

1) This observation was made in Tarski [51*]; its significance for the formulation of
predicate logic is discussed in Tarski [65%].

2) The method of constructing algebras of formulas (correlated with a set of sentences X))
was originally applied to languages containing sentential connectives but not necessarily
quantifiers, so that the construction led to Boolean algebras rather than cylindric algebras.
In this form, but with the use of somewhat different terminology, the method was outlined
in Tarski [35*]; see, in particular, Theorem 4 on p. 510, as well as the footnote on pp. 511 f.
where references to some earlier papers of B. A. Bernstein, E. V. Huntington, and Tarski
are also given. In its application to languages with quantifiers the method was discussed at
some length in Henkin-Tarski [61]; cf. pp. 85 ff., as well as historical remarks on pp. 111 f.
For misinformation concerning the history of this method see the footnote on p. 245 f. in
Rasiowa-Sikorski [63*] and compare it with the article of J. C. C. McKinsey quoted there.
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than with an arbitrary set of sentences X. Actually no generality would be lost
even if we agreed to use the notion of an algebra of formulas exclusively in this
restricted context. This follows from the simple fact that, for any set of sen-
tences ¥ in a language A, we have Fm¥/=; = Fm®W/=4 where O is the set
of all formulas of A which are consequences of X, i.e., @ = @pMdX (cf. the
Preliminaries).

The metalogical method of constructing CA’s suggests an alternative termi-
nology for abstract cylindric algebras. Thus recalling that the operation on
formulas correlated with the (existential) quantifier is termed (existential)
quantification (with respect to a variable), we could extend this terminology
to arbitrary CA’s and refer to the operations c, as quantifications or, more
specifically, existential quantifications. Similarly, the elements d,; could be
called identity elements, and the CA’s themselves could be referred to as
quantifier algebras. We shall occasionally indicate how this alternative termi-
nology could be extended to other notions which will be introduced in our
discussion.!

ReMARKS 1.1.13. We refer to cylindric set algebras and cylindric algebras
of formulas as “special CA’s” not only because of the specialized structure
of their elements. The class of CA’s obtained from these algebras by adjoining
all their isomorphic images turns out to be still rather restricted and in this
sense “special”’. However, the special algebras include those CA’s for whose
study the general theory of CA’s was originally designed and which greatly
influenced its subsequent development; they continue to play a predominant
part in applications of the general theory. Hence, naturally, the problems of
characterizing those algebras which can be isomorphically represented as
special CA’s (of either of the two classes) have become outstanding problems
of the theory of CA’s. These problems, which are known as the representation
problems, will be studied exhaustively in Part IT of our work. Some preliminary
remarks seem, however, to be appropriate at this point.

We concentrate first on cylindric set algebras of finite dimension. It is easily
seen that every cylindric set algebra of given dimension « < o is simple and
therefore subdirectly (and directly) indecomposable in the sense of the general
theory of algebras; cf. 0.3.58. Hence, when discussing the problem which
CA/s are isomorphic to cylindric set algebras, we restrict ourselves to sub-
directly indecomposable algebras. (As we shall see in Chapter 2, for all CA’s
of finite dimension the notions of simplicity, subdirect indecomposability, and

1) The algebraic structures referred to as quantifier algebras in Halmos [56b] roughly
correspond to what we call here diagonal-free CA’s.
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direct indecomposability coincide.) On the other hand, as a consequence of a
theorem of Birkhoff, 0.3.54, every CA, is isomorphic to a subdirect product
of subdirectly indecomposable CA,’s. Thus we are naturally led to the problem
of characterizing those CA,’s which are isomorphic to subdirect products of
cylindric set algebras, and we agree to call such algebras representable. An
immediate consequence of this definition is that, for « < @, CA,’s isomorphic
to set algebras are just those representable CA,’s which are subdirectly in-
decomposable.

We extend our definition of representability, without any change in its
formulation, to algebras of infinite dimension. In this case, however, an in-
tuitive justification of the definition is less clear, since cylindric set algebras
of infinite dimension are not, in general, subdirectly indecomposable. For
® = o, no intrinsic property is known which singles out the algebras isomorphic
to set algebras from among all representable CA,’s.

The definition of representability can be formulated equivalently in a
different, more geometrical way, by generalizing the notion of a set algebra
given in 1.1.5. The generalization consists in taking for the unit set ¥ of the
algebra, not a Cartesian space "U, but a union of pairwise disjoint Cartesian
spaces, i.e., a set of the form U, ,*U; where U;nU; = 0 for any two distinct
i,jel. The defining formulas for the operations C, = C1 from ShV into
SbV and the sets D, , are obtained from those in 1.1.5 by changing “U to V.
Then a family 4 of subsets of V' is called an (a-dimensional) generalized cylin-
dric field of sets if A is closed under all the operations u, n, ,~, CI'? (for
k < o) and contains all the sets DL}!; in this case the algebra {4, u, n, ,~,
0,V, €Y, DTS .-, is called a generalized cylindric set algebra (of dimension
o). A generalized set algebra is easily seen to be a CA, and it turns out that a
CA, with o # 0 is representable iff it is isomorphic to some generalized set
algebra.

This, by the way, is not the case for « = 0. In fact, while CA’s coincide
with arbitrary Boolean algebras, there is just one generalized set algebra
of dimension O and it is a 2-element Boolean set algebra.

A simple consequence of the definition of representability is that all CA.’s
with « = 0,1 and all discrete CA’s are representable. On the other hand,
we shall see still in this part of our work (cf. 2.6.44) that there exist non-
representable CA,’s for every o = 2.

An important goal of the representation theory of CA’s is to provide a
workable criterion, i.e., a necessary and sufficient condition, for the repre-
sentability of a CA. The criterion should be formulated, if possible, in terms
of intrinsic properties of the CA’s involved. It should be simple and powerful
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enough to be applicable to the problems of representability of various indivi-
dually defined CA’s as well as to various general problems concerning the
class of representable CA’s. No such simple criterion has yet been found.
The theory of representation developed in Part II will provide, however, in
addition to some complicated necessary and sufficient conditions, a number
of interesting partial criteria, i.e., sufficient conditions, for representability of
a CA; we shall learn that several rather comprehensive classes of CA’s, with
simple intrinsic characterizations, are included in the class of representable
CA’s. Thus, e.g., we shall see that all CA’s of infinite dimension which are
semisimple in the sense of 0.3.48 are representable.

One of the main results of the representation theory is that, for any given o,
the class of all representable CA,’s, just as the class of all CA_’s, is equational,
i.e., can be characterized by a set of identities. From 1.1.1 we see that the class
of all CA,’s is characterized by a set I" of identities obtained from one of its
finite subsets 4 by replacing all the indices of cylindrifications c, and diagonal
elements d,; occurring in the identities of 4 by arbitrary ordinals < o; thus,
in case oo < w, the set I itself is finite. In contrast to this, it will be shown that
a set of identities characterizing the class of representable CA,’s for any o > 2
is always infinite and cannot be obtained from any of its finite subsets in the
way just indicated. Except for the cases o = 0, 1,2, we do not know any
simple description of a set of identities characterizing the class of representable
CA’s; in Part II however a rather complicated set of such identities for an
arbitrary o« > 2 will be explicitly described.

The notions discussed so far in 1.1.13 extend in a natural way to Df’s.
Again a Df is said to be representable if it is isomorphic to a subdirect product
of diagonal-free set algebras. By generalizing the original notion of a cylindric
set algebra we have obtained the notion of a generalized cylindric set algebra.
In essentially the same way we pass from the original diagonal-free cylindric
set algebras to generalized diagonal-free cylindric set algebras; a unit set of
such an algebra is a set ¥ of the form U, (P._,U{) where, for each ¢ < a,
UPnUY = 0 for any two distinct i,je I. As before, a Df, with « # 0 is
representable iff it is isomorphic to a generalized diagonal-free cylindric set
algebra.

In opposition to CA,’s, every Df,, not only with o = 0, 1, but also with
o = 2 proves to be representable. On the other hand, for every o = 3 there are
non-representable Df,’s. Just as the class of representable CA,’s, the class of
representable Df,’s is equational for every given o. All the resulst just mentioned
will be established in Part II.

We now consider the second class of special CA’s, i.e., algebras of formulas
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(associated with sets of sentences in first-order languages). The representation
problem involving these special algebras largely reduces to the problem pre-
viously discussed. In fact, all the CA’s which are isomorphically representable as
algebras of formulas can easily be shown to be representable in the original
sense, i.e., as subdirect products of set algebras. (For this purpose we could
make use of 0.3.46, or rather the remark immediately following it.) The con-
verse, however, is by no means true except for CA’s of finite dimension. As
regards CA’s of infinite dimension, it is not difficult to provide an intrinsic
characterization of all those algebras isomorphic to algebras of formulas.
Indeed, they can be singled out from among all CA’s and all representable
CA’s (of the same dimension) by means of a simple, very restrictive property
of a finitary character. More specifically, the class of these CA’s proves to
coincide with the class of locally finite-dimensional cylindric algebras, which
will be defined and discussed in Section 1.11.

With every set of sentences in a first-order language it proves convenient
to associate, in addition to a cylindric algebra of formulas, a closely related
Boolean algebra of sentences. This can be carried through in the following
way.

THEOREM 1.1.14. Let A be a language of predicate logic and U be the
algebra
VN, v, A, =, F, T

Then W is similar to BA’s, and for any ¥ = v we have 2Zv®n=;) e CoU
and A/CZv® n=;) e BA.

In analogy to Fm™ the algebra 9 from 1.1.14 may be called the free algebra
of sentences (in A).

DerINITION 1.1.15. Let A and U be as in 1.1.14. If £ = Zv™, we refer
to A/(2Zv™n=;) as a Boolean algebra of sentences or, more specifically, as
the (Boolean) algebra of sentences (in A) associated with X.

ReMARK 1.1.16. There is of course a close connection between the Boolean
algebra B = A/?Zv®n=;) just defined and the cylindric algebra € =
¥mA/=;. In fact, as a direct consequence of 0.2.26(iii) (the first isomorphism
theorem), we conclude that % is isomorphic to the algebra B’ = (Zv®/=;,
+,+,—,0,1) where +,-, —, 0,1 are the operations and distinguished ele-
ments of € induced by the corresponding notions v, A, =, F, T of Fm® (B’ is
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thus a subalgebra of B! €). For this reason either of the two algebras % and B’
will be referred to in informal remarks as the algebra of sentences associated
with 2. The remark at the beginning of 1.1.12 applies to Boolean algebras of
sentences as well. Notice thatin case o = 0 the algebras 9 and Fm™® coincide,
and so do B and €.



1.2. CYLINDRIFICATIONS

In this section we present the most basic laws which hold for cylindrifications
in arbitrary CA’s. Since the diagonal elements play no role in the discussion,
we can assume in this section that 9 is just an arbitrary Df,. x, A will range
over ordinals less than o, and x, y, z will range over elements of 4 or possibly
systems of elements of A.

From (C,) and (C,) we obtain

THEOREM 1.2.1. ¢x =0 iff x = 0.
Taking x = 1 in (C,) we arrive at
THEOREM 1.2.2. ¢ 1 = 1.

THEOREM 1.2.3. c.c. .y = ¢ ).
Proor. Put x = 1 in (C;) and use 1.2.2.

COROLLARY 1.2.4. x = c.x iff x = c.y for some ye A.

Thus the set of so-called fixed points of the function ¢, coincides with the
range of c,.

THEOREM 1.2.5. x°¢.y =0 iff y-c.x =0.
Proor. By (C;) we have ¢ (x-c.y) = ¢ (y-c.x). Hence the theorem follows
by 1.2.1.

In the terminology of the theory of Boolean algebras, Theorem 1.2.5 ex-
presses the fact that c is a self~conjugate operation on BIA; cf. Jonsson-
Tarski [51], p. 903. Every such operation is known to be completely additive
in the sense of op. cit., and indeed this will be evident from the fact that in
the following proof only 1.2.5 is employed.

THEOREM 1.2.6. (i) If 2, z; exists, then so does 2. c.z; and we have
¢(Xicr2) = i S
(i) In particular, c (x+y) = ¢ x+c. ).
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Proor. It suffices, of course, to prove (i). Let w = 2, z;. Since ¢,w* —c,w = 0,
we see by 1.2.5 that w-c,—cw = 0; hence z;'c,—cw = 0 for each iel.
Another application of 1.2.5 then gives ¢.z;*—cw = 0, or c¢.z; < c.w, for
each i e I. That is, c,w is an upper bound for the set of all elements ¢, z; with
iel.

Now suppose that ¢ is any other upper bound of these elements: c,.z; < ¢
for all ieI. Then c¢.z;—t = 0, and so z;:c,—t = 0, by 1.2.5, for each ie I
It follows that w-c,—¢ =0 and hence, by a final application of 1.2.5,
cw-—t=0,o0r cw=t.

The following two corollaries follow just from the fact that ¢ is additive,
i.e., from 1.2.6 (ii).

COROLLARY 1.2.7. If x < y, then ¢.x =< ¢,.).

COROLLARY 1.2.8. (i) ¢x—c.y < ¢ (x—);

(i) c¢x®c.y = o (x®y).

Proor. (i) By additivity we have ¢.x = ¢ (x-y)+c(x-—y), and hence by
1.2.7 it follows that c.x < ¢ y+c(x—y). The desired result is now obvious.

(i) By (i) and additivity we get

cxx®cxy = (Cxx_cxy)'*_(cny“ckx) § Cx(x“)’)"‘cx()"‘x) = Cx(‘x@y)-

Notice that, in view of (C,), (C,), 1.2.3, and 1.2.6(ii), for each U e Df, and
each particular ¥ < a, {4, +, -, —, 0, 1, ¢,> is a closure algebra in the sense
of McKinsey-Tarski [44*], pp. 145 f., Definition 1.1. For this reason we shall
sometimes say that x is closed under c,, or simply x-closed, when ¢ .x = Xx,
and x is open under ¢, or simply x-open, when —x is x-closed, i.e., c,—x =
—Xx. Occasionally the x-closed elements will also be called x-cylinders; this
seems to be especially appropriate when they appear as members of a cylindric
set algebra.

The following two theorems are consequences of the fact that {4, +, -,
—,0,1,c.> is a closure algebra.

THEOREM 1.2.9. x Z ¢,y iff ¢.x = ¢ ).
Proor. If ¢.x < ¢y, then x < ¢ .y by (C,). Conversely, if x < c,y, then
¢.x £ ¢y by 1.2.3 and 1.2.7.

From 1.2.4 and 1.2.9 we see that c.x can be characterized as the least x-
cylinder which includes x. Thus the operation ¢, could be defined in terms
of the set of x-cylinders, and could be replaced by this set in the list of primitive
notions of CA’s. (Of course, after this replacement the CA’s would no longer
be algebras in the sense of 0.1.1.)
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TreoreM 1.2.10. If 11, c.z; exists, then ¢ (Il c.z) = Tl cez;; in parti-
cular, c(c.x-¢.y) = ¢ X" C. ).

Proor. Let w = I, c.z;. Then w < ¢z, and so ¢,w < c,z;, by 1.2.9, for
each iel. But then ¢.w < w, and the desired conclusion follows by (C,).

THEOREM 1.2.11. ¢, —cXx = —c.X.
Proor. Since —c.x-c.c.x =0 by 1.2.3, we get ¢, x-c,—cx =0 by 1.2.5,
so that c,—c.x < —c.x. The opposite inclusion is a particular case of (C,).

CoRrOLLARY 1.2.12. (i) ¢x =x iff ¢,.—x = —X.
() cx—cy) = cx—c..
Proor: (i) directly by 1.2.11; (ii) by (C;) and 1.2.11.

1.2.12(ii) has a form closely related to that of (C;); both are modular laws
for c,, the latter under multiplication and the former under subtraction.

In the terminology of closure algebras (cf. the remarks following 1.2.8)
either of the statements 1.2.11 and 1.2.12(i) expresses the fact that, in the closure
algebra {4, +, -, —,0, 1, ¢,» which is the reduct of an 9 € CA, every closed
element is open (and conversely).

The statements 1.2.1-1.2.12 have been derived exclusively from Postulates
(Cy), (C,), and (C,) (in addition, of course, to (C,)). Some of the statements
can be used to replace equivalently (C,)-(C,) in the original postulate system.
For example, it can be shown that we can replace (C,)~(C;) by 1.2.2, 1.2.3,
and 1.2.5; alternatively, retaining (C,), we can replace (C;) and (C;) by
1.2.12(ii) or else by 1.2.6(ii) and 1.2.11.

When applied to the case @ = 1 the observations just made provide new
characterizations of CA,’s and Df,’s. It turns out, for instance, that Df,’s
coincide with those closure algebras in which each closed element is open.
(In connection with such closure algebras cf. Halmos [56], pp. 222 ff. and
Rubin [56].)

The following two theorems, which are easy to prove, furnish simple and
rather trivial methods for constructing Df;’s and CA/’s.

THEOREM 1.2.13. If (A, +, -, —,0, 1> € BA, then
{A4,+,,—,0,1,411d,1> e CA, (and {A, +, -, —,0,1, A11d> e Df,).

THEOREM 1.2.14. If {A, +,:, —,0,1> e BA and if f is a function on A
such that, for every xe A, fx =0 or fx =1 according as x =0 or x # 0,
th€7’l <A9 +> Ty T 0, 1:]; 1> € CAl (and <A9 +’ s T 0, 1sf> € Dfl)

Concerning the Df;’s and CA,’s just described compare Remark 2.3.15 in
the next chapter.
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We now turn to laws in which more than one cylindrification is involved,
and which depend on (C,).

THEOREM 1.2.15. ¢x-¢;y =0 iff ¢;x- ¢,y = 0.
PrROOF: by 1.2.5 and (C,).

THEOREM 1.2.16. ¢, —c;x¢c;—¢,—x = 0.

ProoF. From (C,) we see that c;x+c,—x = 1, and hence —¢;x-—c,—x = 0.
Then by 1.2.11 we have ¢;—c¢;x ¢, —c,—x = 0, and an application of 1.2.15
gives the desired conclusion.

A more intuitive form of the preceding theorem is given as 1.4.4(iv) below-

THEOREM 1.2.17. If k,A <, oe®n, te’n, and Rgo = Rgt, then
Cpoee-Co X = CponCp X

Proor. An inductive proof can be based on 1.2.3 and the following lemma:
(1) if p < o, peta, and « is a permutation of y, then
Cpor+CpuyX =€, o, X

The lemma follows from (C,), since = can be expressed as a product of trans-
positions (v, v+1) where v+1 < p.

Theorem 1.2.17 will be used in Section 1.7 to define a generalized cylindrifi-
cation, ¢, for any finite subset I' of a.



1.3. DIAGONAL ELEMENTS

We present now the most basic laws involving diagonal elements. Throughout
this section and the remainder of this chapter, unless otherwise stated, it is
tacitly assumed that 9 is a fixed but arbitrary CA, with any given dimension «;
K, A, 4, v, &, p are any ordinals less than o; and x, y, z, w are arbitrary ele-
ments of 4. In further chapters of our work these and similar assumptions
will not always be explicitly stated. Of course they will be omitted only when
the possibility of confusion seems negligible.

THeOREM 1.3.1. d,, =d,,.

Proor. If k = 4, there is nothing to prove. Otherwise, we apply (C,), takmg
x = d,,, to get ¢(d,;-d; ) c(d,;-—d;) = 0. But by (Cs) and (C4) we have
¢ (de;-dy) = d;; = 1. Hence using 1.2.1 we obtain d;-—d, =0, ie.
d,; £ d;,. The inclusion in the opposite direction is obtained by symmetry.

THEOREM 1.3.2. cd,; = 1.
Proor. If k¥ = A, the result is immediate from (Cs) and 1.2.2. If x # A,
then by (Cs), (Cq), and 1.3.1 we have c.d,; = c(d,,-d,) = d,;, = 1.

The proofs of 1.3.1 and 1.3.2 make no use of Axiom (C,). We can, there-
fore, apply these theorems to derive (C,) by putting x = 1 in (C;) — provided
o > 1. But (C,) is independent of the remaining axioms if o = 1.

THEOREM 1.3.3. If Kk # A, u, then ¢, d;, = d,,.
Proor. Apply c, to each side of the equation (Cg). The result then follows
from 1.2.3.

THEOREM 1.3.4. If & # A, then ¢ (d, ;- —x) = —c(d,;"x).
Proor. The product of c(d,;-—x) and c(d,;-x) is 0 by (C;), and their
sum is 1 by 1.2.6 and 1.3.2. The theorem follows by (Cy).

CoOROLLARY 1.3.5. If k¥ # A, u, then ¢ (d;.-—d,,) = —d;,.
THEOREM 1.3.6. If k # A, then ¢ (d,;-x"y) = ¢ (d;-x) ¢ (d.; ).
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Proor. We have ¢ (d,;"(x+y)) = c(d,; x)+c(d,;"y) by 1.2.6. Thus by
1.3.4 the operation on A which assigns c,(d,;-x) to x is an endomorphism
of BIUA. Hence the desired result follows.

The endomorphism (¢ (d,;-x):x e A) for ¥ # A involved in the proof of
1.3.6 will be studied in greater detail in Section 1.5. Using (C;) we see that
(C,) is just a special case of 1.3.6. Hence 1.3.6 could replace (C,) in Definition
1.1.1.

THEOREM 1.3.7. d,;-d;, =d,;-d,,.

Proor. If A = k or 1 = u, the result is immediate. If 4 # x and A # p,
then by (C,) and (Cs) we have d,;-d;, < d,,, and the theorem follows by
1.3.1 and symmetry.

THEOREM 1.3.8. d, ;¢ x =0 iff x =0.
Proor: by 1.2.5 and 1.3.2.

THEOREM 1.3.9. If K # A, then d;-c(d,; x) = d.;-x.
PrOOF. We have d;-—x = ¢ (d, ;- —x) = —c(d,;-x) by (C,) and (C,);
hence d,;-c(d,; x) < d,;-x. The opposite inequality follows from (C,).

It is easy to see that 1.3.9 could also replace (C,) in Definition 1.1.1.

1.3.1-1.3.9 give the most useful properties of diagonal elements. We now
discuss cylindric algebras in which all the diagonal elements and cylindri-
fications are trivial.

DeFINITION 1.3.10. U is discrete if d,; =1 and ¢ .x = x for all k,2 < o
and all x € A.

Discrete CA’s are in a sense degenerate and in some cases will explicitly be
ruled out of consideration.
We now state formally a fact noted in the remarks preceding 1.1.4.

THEOREM 1.3.11. Suppose N = {A, +, -, —,0, 1) is a BA. For each k < «
let ¢, = A11d, and for all k, A < o let d,; = 1. Then W' = {4, +, -, —,0,1,
Co» A1) a<q 15 @ discrete CA,.

The term “discrete” derives of course from the fact that each closure opera-
tion ¢, is discrete. Although by 1.3.11 discrete CA’s exist in profusion, it is
easily seen that a cylindric set algebra on a base with at least two elements
is never discrete if « > 1. A cylindric algebra of formulas associated with a
theory O is discrete iff the sentence V,V, x = y is valid in ©. Such theories
© are rather trivial.
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THEOREM 1.3.12. For any given k the following two conditions are equivalent:

(1) W is a discrete CA;

(i) for all x, c,x = x.
Moreover, for any given A # x, (i) is also equivalent to the condition

(iii) d,; = 1.

Proor. Obviously (i) implies (ii); if @ < 1, it is also clear that (ii) implies (i).
Assuming o > 1 and 1 # x it is easily seen using 1.3.2 that (ii) implies (iii).

Finally, we show that (iii) implies (i). Suppose x # A and d,; = 1. First
we establish:

) if u # x, then d, = 1.

To prove (1) we may assume that u # 1. Then d,, = ¢,(d;-d;,) = ¢;d;, = 1
by (Cs) and 1.3.2. Now suppose pu, v < o. By 1.3.1 and 1.3.7 we have
d, d,, = d,,. Hence, by (1) and (Cs), d,, = 1. Thus

2 d, =1 forall g,v<a

Suppose u < a. Choose veoa~ {u}. Then by (2) and (C;) we have
¢, x'¢c,—x = c,(d,,-x)-c,(d,, - —x) = 0. Hence from 1.2.3 and 1.2.5 we infer
that ¢,x-—x = 0, and then by (C,) that ¢,x = x. In view of (2) this com-
pletes the proof.

THEOREM 1.3.13. If a > 2, then W is a discrete CA, iff there exist distinct
K, A such that c, = c,.

ProOF. The necessity is immediate from 1.3.10. Now assume ¢, = c; with
K, A distinct. Choose u # x, A. Then, by 1.3.2 and 1.3.3, d,, = ¢;,d,, = 1,
so U is discrete by 1.3.12.

The conclusion of Theorem 1.3.13 is easily seen to fail for o = 2.

THEOREM 1.3.14. If o > 2, then W is a discrete CA, iff there exist k, A, i1, v
with «, A, p distinct such that d,; = d,,.

Proor. The existence of such «, A, u, v is obviously necessary for 9 to be
discrete when « > 2. Now assume that «, 4, u are distinct and d,; = d,,,.
Applying c, to both sides of the equality and using 1.3.2 and 1.3.3, we get
d,; = 1. Hence, by 1.3.12, U is discrete.

CoroLLARY 1.3.15. If U is non-discrete, then |u| < |A|. In particular, every
non-discrete CA, with o = o is infinite.

In case a < w, we can obtain a better estimate for the lower bound of the
cardinalities of non-discrete CA,’s; cf. 2.4.72 and 2.4.73 below.
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THEOREM 1.3.16. (i) Every CA, is discrete.
(i) Every e CA, with |A] < 2 is discrete.
PrOOF: (i) by 1.3.10; (i) by (C,), 1.2.2, and 1.3.12.

We conclude this section with three theorems about complements of diagonal
elements. The first theorem will be generalized and the discussion continued in
Section 1.9.

DEerINITION 1.3.17. A complement of a diagonal element is called a co-diagonal
element.

THEOREM 1.3.18. Assume that x # A. Then
(@) cecal—dercex ci(dis  €eX)] < €5(—dm6ex);
(i) cc—dy; =c—d; = c;—d,;;
(iii) if in addition p # v, then c.c;—d,,; = c,c,—d, .
Proor. Notice first of all that —c(—d,;-cx) < d,; + —cx by (Cy).
From this is follows that

(l) dkl TCX— Cl(— dxl . Crcx) =GX -t — cl("‘ dml : Cxx)'

Using the hypothesis k¥ # A we have

Celdez ea(—dearcex)] = — ¢ [dy; - —ci(—d;z )] by 1.3.4
S —¢ldeeex s — (= diyreex)] by 1.2.7
= —c[ex - —c)(—d; )] by (1)
= —[cx ¢ —¢;)(—dy; X)) by (Cs)
= —CX + — ¢, —(—dy;r6x)
S —x+¢(—deyreex) by (C).

It follows that c;(—d, ;- c.x) = c.x-c[d,;-c;(—d,;-c.x)], and hence, by 1.2.9,
C(—diear o) 2 {ex ¢ [dy cu(—dsr e )]}
= ¢ y[cex dyyr ci(—dizm X)) by (C3), (Ca)
= €3 [des" Ca(diar €ex) Ci(—dizrcex)] by 1.3.9
= ¢ [c;de; €i(dar €ex) - ci(—diy 6ex)] by (Cs)
= ¢.C;[—d; cx-c (d;rcex)] by (Cs), 1.3.2.
Thus part (i) of the theorem is proved. Setting x = 1 in (i) and using (C,)

and 1.3.2 we easily obtain c,c;—d,; = c¢;—d,;, and with the help of (C,) and
1.3.1 we infer in a similar manner that ¢.c;—d,, = ¢, —d,;. Thus (ii) holds.
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Suppose now that x # p (as well as ¥ # 4). Then by (C,), 1.2.12(), and
1.3.3 we get

2 €, —dey = ¢;—dyy,
and hence
€€ —dyy = (c,dy i —dy ) by 1.3.2
= Cu,cx(duk' - dk/’l.) by (2)7 (CS)’ (C4-)
= cﬂ—cx(dlm-—cl—du) by 1.3.4
> cﬂ—~c,€(dlm-d“) by (C,), 1.2.7
= cﬂ_dﬂl by (C6)'

Therefore, by (C,) and 1.2.9 we conclude that c.c,—d,; = c;c,—d,,, and it
is clear that this result holds whenever k¥ # A, regardless of whether x = pu
or k¥ # u. By iterated use of this result we get

C c,c —d

xcl‘dxl % =y Spv 2 cyccl_dx,l

provided x # A and u # v, and hence (iii) is proved.

1.3.18(ii),(iii) provide us with a variety of symbolic expressions which can
be used to represent one and the same element c¢,—dy; (in a given CA, with
o = 2). In fact, we can use for this purpose any one of the expressions ¢; —dg,
cocy—dyy, as well as ¢, —d,,, ¢;—d,;, and c.c;,—d,; where xk and A are any
two distinct ordinals <a.

The two equations in 1.3.18(ii),(iii) correspond to the following two logically
valid formulas:

dxs#yeddxs#y;

3 x#yed I z#w

The inclusion 1.3.18(i) is also related to certain logically valid formulas. Let,
for instance, I be any predicate of rank 1 in a language of predicate logic.
Then the implication

A3, (x#yalxaly)->V A (x#yaly)
and hence also the implication
1A, (x#yATxAly) > (x#yaTly)

is easily seen to be logically valid. The second implication is just one of the
formulas corresponding to 1.3.18(i).
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THEOREM 1.3.19. If x # A, the following conditions are equivalent:
(l) ‘x'crc_dtcl = 0:

(i) x £ d,; and ¢ x = x;

(ili) x =£d,, and c,x = x for all p, v.

Proor. To show that (i) implies (iii) notice that the hypothesis implies
« = 2; hence by (Cs) we may assume that u # v. Since x-¢,—d,, = 0 by
1.3.18 (cf. the remark immediately following 1.3.18), we infer by 1.2.5 that
¢, x-—d,, =0;s0 by (C;) x = ¢,x £d,,. Hence

x=d, x
=d,c,(d, x) by 1.3.9
=d,¢cx
= C,X.

(iii) obviously implies (ii). Assume finally that (ii) holds. Then ¢.x - —d,, =
x - —d,; = 0; thus, by 1.2.5, x-¢,—d,; = 0, and (i) holds. The proof is now
complete.

THEOREM 1.3.20. If k # A, then ¢, x-—c,—d,; = x* —c.—d,,.
ProOOF. By taking x-—c —d,; for x in 1.3.19 we obtain

CK(X : _Cx“dxl) =X _Cx—dxl'
However, by (C;) and 1.2.11 we have
Cx(x : “Cx*dxl) =X — G — dxl'

The conclusion follows immediately.



1.4. DUALITY

As is well known, whenever the algebra B = (B, +, -, —,0, 1> is a BA,
the algebra B° = (B, -, +, —, 1,0) is also a BA called the dual of B, and
the operation — is an isomorphism from %8 onto 87 as well as from 8 onto B
(in the sense of 0.2.5). This notion of duality can be extended to CA,’s:

DEFINITION 1.4.1. We define the operation ¢ on the CA, U by letting clx =
—c,—x for all x € A. The operations ¢ thus defined are called inner cylindri-
Sfications. We also let %° = {4, -, +, —, 1,0, ¢, —d, Ww.i<q Similar notation

is applied to diagonal-free cylindric algebras.

To illustrate this definition consider the special classes of non-trivial CA’s
discussed in Section 1.1. First suppose 2 is a cylindric set algebra of dimension
a with base U; naturally the x™ inner cylindrification of 9 will be denoted
by C2. For any X € A, C2X is the set of all y € *U such that for every x € *U,
if x, = y, whenever A # &, then x € X. In the geometric terminology of 1.1.4
we see that C2X is the largest cylinder with axis parallel to the x-axis which
is included in X. Hence the name “inner cylindrification”; in this context the
old operations ¢, could be referred to as outer cylindrifications. The application
of ¢? in a simple situation is illustrated in Fig. 1.4.3.

On the other hand, let X be a set of sentences and ¢ a formula of a language
A. Then, in the CA of formulas associated with X, cI(p/=j;) is easily seen to be
the equivalence class of the formula V, ¢. Thus, e.g., cjcldy, is the equi-
valence class of the formula V,V x =y. For this reason the operations
c? could also be called universal quantifications. The logically valid formula
V,.¢ = 3, ¢ gives rise to the inequality c/x < c.x, valid in any CA, (see
1.4.4(i) below).

THEOREM 1.4.2. A° is a CA,, and the operation — is an isomorphism from
A onto W°. If B e Df,, then B° € DS, and — is an isomorphism from B onto B°.
Proor. The fact that — is a one-one function from 4 onto 4, and indeed
an isomorphism from the Boolean part B[ onto BIA, is well known. The
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X
cx

Fig. 1.4.3

fact that — carries ¢, into ¢ (i.e., that —c.x = ¢Z—x for all x € 4) and d,,
into —d,, is completely obvious. Thus — is an isomorphism from 9 onto °.
Hence, as observed in the remarks beginning Section 0.2, ° must satisfy all
of the algebraic laws (in particular, all identities) which are satisfied by 9.
Therefore, A’ must be a CA, by 1.1.1. This can also be shown by checking
directly that 9° satisfies (Co)~(C,).

If a notion introduced in this work is explicitly or implicitly relativized to a
given cylindric algebra 9, then the same notion relativized to 9 is referred
to as the dual of the original notion. If the symbol for the original notion is
provided with the superscript “*, then the dual symbol is obtained by replacing
@ py @9 jf however, an expl1c1t reference to 9 is not made in the original
symbol (cf the remarks immediately followmg 1.1.1), then in forming the dual
symbol we use the 51mpler superscript ? in place of ™. From 1.4.1 and 1.4.2
we see that the symbol ¢ has been introduced consistently with this convention,
and that +7, %, -, 0% 1%, and d_J are respectively synonymous with -, +, —,
1, 0 and —d,,. Analogous conclusions can easily be obtained for other notions
using 1.4.2 and the relevant definitions; e.g., the duals of the notions =<, >,
and IT are respectively =, I'l, and 2. (Notice an exception to our convention:
the symbol C? casually introduced in remarks following 1.4.1 to represent the
x™ inner cyhndrlﬁcatlon of a cylindric set algebra 9 cannot be interpreted as
an abbreviation for C®, In fact A° is not a cylindric set algebra according
to our Definition 1.1.5 and € has no meamng whatever. We can only say
that C? is an alternative symbol for denoting ¢ in case U is a cylindric set
algebra.) From 1.1.1 and 1.4.2 we easily see that the duals of dual notions are
the original notions, e.g., (<9)’ = ¢,. A notion is called self-dual if it coincides
with its dual; thus complementation is self-dual.
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If, in any theorem, we replace all the notions involved by their duals, we
obtain what we call the dual of the theorem. The dual of a theorem will be
denoted by affixing the superscript ° to the number of the theorem. Thus,
e.g., the dual of 1.2.1, denoted by 1.2.1, is the following statement:

Ax=1iff x=1

(for all x < « and x € 4). We shall rarely, if ever, formulate the dual theorems
explicitly, but we shall use them and refer to them in our arguments.

THEOREM 1.4.4. (i) clx < ¢.x;

(i) c.cix = cx;

(ii) Zeex = cex;

(i) ceclx < cley;

(V) cx £ Gy iff ¢;x < cfy;

(Vl) ifK # l’ then cx(dxl.x) = cz(—dx}.—'—x);
(vii) if & # A, then c,cid,; < d,, for all pu,v;
(viii) ¢I¢;—d,; = ¢.c;—d,;.

Proor. Statements (i)—(iii) follow from the most elementary laws of Section
1.2. Formula (iv) is a direct consequence of 1.2.16, and condition (v) is a
restatement of 1.2.15. As to (vi), we have ¢)(—d,,;+x) = —¢,—(—d,,+x) =
—c¢(d, ;" —x) = c(d,; x). To prove (vii), we may assume that p # v. Then

od
¢ C3dy; = ¢,—c;—dy;

=c.—¢c,—d,; by 1.3.18
= —Clcc/l—‘dxl

= —c,c,—d,, by 1.3.18
= czcﬁduv

é duv by (C2)a'

Finally, formula (viii) follows directly from 1.3.18.

REMARK 1.4.5. By comparing 1.4.4(viii) with 1.3.18(ii),(iii) we obtain new
expressions representing the element ¢, —dg; (cf. the remark following 1.3.18).
Instances of such expressions are cic; —dgy, and cfc,—d,,; to represent the
complement —c,—do; we can use cJdgy, cZdy, ¢ocldyy, and cfeldy,. In all
these expressions 0 and 1 may be replaced respectively by any two distinct
ordinals x and A.






1.5. SUBSTITUTIONS

In this section we consider certain operations, defined in terms of cylindri-
fications and diagonal elements, which are suggested by the discussion of the
special CA’s introduced in Section 1.1, and which play a useful role in devel-
oping the general theory of CA’s.

DeriNiTION 1.5.1. For any k, A < o and x € A we set
x if k=14,
ck(dlc}\,.x) !f K # ;I'

In case U is a discrete CA, we obviously have sfx = x for any x, A < «
and any x € 4.

The metalogical interpretation of the operation s is simple. Let X be a set
of sentences in a language A and U be the CA of formulas associated with X.
Any given element x of 9 is an equivalence class ¢/=; where ¢ is a formula
in A. By comparing 1.5.1 with the remarks following 1.1.10 we see at once
that s%x is the equivalence class Y//=; where V is the formula obtained from ¢
by substituting the variable v, for v,.

Turning to the geometrical (or set-theoretical) interpretation, we consider
an arbitrary set algebra 9 of dimension « with base U, a subset X of “U, and
two distinct ordinals x, A < . We let X’ be the set of all points x € X such
that x,, = x,. Then s{X is simply the cylinder obtained by moving X" parallel
to the x-axis. (In Fig. 1.5.2 this process is represented for « = 2.) There seems
to be no standard geometric term for this operation; if, however, C;X = X
(and x # 1), the operation is just that of reflection in the hyperplane D,;.
In real three-dimensional space the set sC; X can also be obtained from C, X
by a rotation of 90° about the 2-axis.

Since the intuitive meaning of the operation sf is simpler and clearer in its
metalogical rather than geometrical interpretation, we shall use a term of
metalogical origin to refer to this operation in informal remarks; in fact, we
shall call it substitution or, more specifically the A-for-x substitution.

six =
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TueoREM 1.5.3. (i) If X, z; exists, then X.;ssz; exists, and s52z; =
2, Skz;; in particular Si(x+y) = six+sy;

@) si—x = —six.

PrOOF: by 1.2.6 and 1.3.4.

In view of part (ii) of this theorem, part (i) remains valid if 2 and + are
respectively replaced by I1 and -; (i) and (ii) jointly imply that s{0 = 0 and
s¥1 = 1. With these supplements Theorem 1.5.3 shows the function sj to be
an endomorphism, and in fact what is called a complete endomorphism, of the
Boolean algebra B

THEOREM 1.5.4. (i) If x # u, then sid,, = d,,;
(i) If x # u, v then sid,, = d,,.
ProOF. Both statements are obvious if x = A. If x # A, then (i) follows
from (Cg) and 1.3.1, and (ii) follows from (C;), 1.3.2, and 1.3.3.

By 1.3.9 we have
THEOREM 1.5.5. d;-sfx =d,,;-x.

THEOREM 1.5.6. d,;-skx = d,;-six.

PrROOF. If u = x or pu = A the theorem reduces to 1.5.5. If u # x and
p# A, then d-six = c,(d; d . x) = ¢, (dy;rd,; x) = dy;shx by (Cy),
1.3.1, 1.3.3, and 1.3.7.
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THEOREM 1.5.7. d,;, is the least element x such that sx = 1.
Proor. By 1.5.4(i), d,; does satisfy the equation sid,, = 1. Now suppose
stx = 1. Then d;-x = d,,;-skx = d,; by 1.5.5, and hence d,, < x.

From 1.5.7 we see that, in principle, the operations s could be taken as
fundamental operations in 1.1.1 in place of the elements d,;.

THEOREM 1.5.8. (i) sfc.x = ¢.Xx;

(i) if pu # x, 4, then sc,x = c,six.

Proor. For both (i) and (ii) we may assume that x % A. Then (i) follows
by (C;) and 1.3.2, and (ii) follows from (Cj;), (C,), and 1.3.3.

THEOREM 1.5.9. (i) ¢;s5x = ¢,Spx;

(ii) if k # A, then ¢, six = six.

Proor. The first equation follows immediately from (C,); the second is
implied by 1.2.3.

THeOREM 1.5.10. (i) If x # u, then sisipx = s;x;

(i) sistx = sfstx;

(i) if A # p # K # v, then sisix = s§shx;

(iv) skshx = sskx;

(v) sistx = shx;

(vi) sfisix = sisix.

Proor. Equation (i) is immediate by 1.5.1 and 1.5.8(i). Applying ¢, to both
sides of 1.5.6 gives (ii) if k # A4; the case x = 4 is trivial. (iii) follows from
(Cy), (Cy), 1.3.3, and 1.5.1. If k = 4, k¥ = p, or A = p, then (iv) is trivial by
1.51. If x # A, k # p, and A 5 p, then (iv) is a special case of (iii). From
(ii) we easily deduce (v), and (vi) follows from (ii) and (iv).

THEOREM 1.5.11. (i) sistc.x = sfe.x;
(i) siskc.cx = s)shc.cx.

Proor. Equation (i) follows from 1.5.8(i) and 1.5.10(vi), and (ii) is obtained
from (i) using (Cy).

DEFINITION 1.5.12. For any k, A, i < o and x € A we set
WSGe, A)x = shsishx.

The operation ,s(x, A) acquires a simple meaning when applied to the special
CA’s introduced in Section 0.1, and specifically to those elements of the algebras
which are p-closed.



192 PROPERTIES OF CYLINDRIC ALGEBRAS 1.5.12

First, consider the metalogical interpretation. Let % be a CA, of formulas
associated with a set of sentences X in a language A; thus the elements of A
are the equivalence classes ¢/=y of formulas ¢ in A. The operation ,s(x, 4)
is closely related to the familiar metalogical operation of interchanging the
variables v, and v, (or rather the free occurrences of these variables) in a
formula ¢. The latter operation does not have to be described here in detail.
It should only be pointed out that, in case the language is provided with
sufficiently many distinct variables, the operation reduces to a succession of
simple substitutions of one variable for another. In fact, to interchange v,
and v, in ¢ we can first pick any variable v, which does not occur in ¢,
and then substitute successively v, for v, in ¢, v, for v, in the resulting formula
¢’, and finally v, for v, in the formula obtained from ¢’ by this second substi-
tution. Hence if v, does not occur in ¢ and therefore the element x = ¢/=y
is p-closed, then by 1.5.12, ,s(x, A)x is the equivalence class of the formula
obtained from ¢ by interchanging v, and v;.

It should be mentioned that both the operation of substituting v, for v, and
that of interchanging v, and v, are particular cases of a general metalogical
operation: that of simultaneously substituting several variables v, , ..., v, _,
for given variables v, ..., v, _ . Interchanging v, and v, means the same as
simultaneously substituting v, for v, and v, for v.. The operation of substi-
tuting many variables simultaneously, just as that of interchanging two varia-
bles, can be reduced to a succession of substitutions of single variables in case
the language is provided with sufficiently many distinct variables. In Section
1.11 we shall introduce and study an operation in CA’s corresponding to that
of simultaneous substitution; just as in the case of ,s(x, 4), this operation will
be defined as a composition of operations s (cf. 1.11.9). However, to obtain
satisfactory results about this operation we shall have to restrict ourselves
in that discussion to special classes of CA’s which will be defined in an earlier
part of Section 1.11.

Turning now to the set-theoretical interpretation, consider a CA 9[ of sets,
say of dimension 3, and let X be any 2-cylinder of 9. From 1.5.12 we easily
conclude that

25(03 ])X = {x:x = <x0’ xla x2> € 3Ua <x13 )g03 x2> GX}'
Thus in this case ,s(0, 1)X is obtained from X by reflection in the plane Dy,
(and hence coincides with s{X if C;X = X). If binary relations on U are
identified with 2-cylinders included in 3U (and this seems to be a natural
procedure in discussing three-dimensional set algebras), then the operation

»5(0, 1) when applied to binary relations coincides with the familiar operation
of forming converses.
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THEOREM 1.5.13. (i) .s(x, A)x = six;
(i) ,s(x, A)x = sltx;
(iii) ,s(x, K)x = six.
Proor: by 1.5.10(v).
THEOREM 1.5.14. If x, A, o # v, then
WS¢, Deex = s(4, k)e e x.
Proor. By 1.5.13 we may assume that x, 4, u, v are distinct. Then
sisisisic,c x = sistsisisic,cx by (Cy), 1.5.11(1)
= shsisic,siste,x by 1.5.8(ii), 1.5.10(iii)
= s*s’s¥s*c ¢ x by 1.5.8(ii), 1.5.11(i)

u KkSATy Uy

= s's’s¥c;shc e x by 1.5.9(i), 1.5.10(ii)

K " A VRV

= s¥s*s*c c.x by 1.5.9(ii), 1.5.11(i)

Kk u v

= s¥s*c s*c x by (Cy), 1.5.8(ii), 1.5.10(iii)

KvTviu

= sisfc,cx by (Ca), 1.5.8(i), 1.5.11().

L T

Hence, applying s to both sides and using 1.5.9(ii) and 1.5.11(i), the desired
result follows.

The result just obtained gives rise to a natural question: can Theorem 1.5.14
be improved by omitting all references to v (and hence by replacing ¢ x by x
in the conclusion)? It is easily seen that the improved theorem holds for the
special algebras of Section 1.1 (and hence, in view of 0.4.63, for all representable
algebras in the sense of 1.1.13). In particular, it becomes obviously true when
applied to CA’s of formulas. As was previously pointed out, the operation
of interchanging two variables, v, and v;, in a formula ¢ reduces to a succession
of simple substitutions of one variable for another. This process is not uniquely
determined; for instance, after having picked a variable v, not occurring
in ¢, we can substitute successively either v, for v, v, for v,, and v, for v,,
or else v, for v,, v, for v;, and v, for v,. The outcome is the same in both cases,
and this is just the content of the improved Theorem 1.5.14. In Part II of this
work we shall see, however, that Theorem 1.5.14 in the improved form does not
hold in the general theory of CA’s: for each « = 3 there is a CA, in which
it fails.

THEOREM 1.5.15. If {x, A}n{p, v} = 0, then

WS(k, A)eex = s, A)c,cx.
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Proor. By 1.5.13(iii) we may assume that x, 4, 1, v are distinct. Then

WuS(, e c,x = shisisie,c,x by (C,) and 1.5.12
= sksfsisic,c,x by 1.5.11(i)

= sis)c,sishe,x by (C,), 1.5.8(ii), 1.5.10(ii)
= ,8(x, 1)c,c,x by 1.5.8(ii), 1.5.11().
TreOREM 1.5.16. () If X,,z; exists, then X s(x, )z, exists, and
WS, D22y = 2y S, Az in particular, s(k, A)(x+y) = ,s(k, Dx+ ,5(¢, Ay;
(i) ,s(r, H—x = —,s(x, H)x.
PRrROOF: by 1.5.3.

Thus ,s(x, ), like sj, is a complete endomorphism of BIYA; cf. the remark
immediately following 1.5.3.
THEOREM 1.5.17. If K, A, t # v, then
(S@<, A) ,s(x, 1)e,e,x = ¢, c.x.
Proor. We have
WSG¢, ) ,8(x, A)eex = ,8(4, k) ,5(k, A)c,c,x by 1.5.14
= shsisissishc,c,x
= C,C,X by 1.5.11().

Theorem 1.5.17 implies that, in case «, 4, 4 # v, the function ,s(x, 4) is a
permutation of the set of all elements c,¢,x (and in fact a permutation of a very
special kind usually called an inversion). Thus, in particular, when restricted
to this set the function ,s(x, 1) is one-one.

THEOREM 1.5.18. If x, 4, u, v, & are distinct, then

vS(, 2) (k. [I,)C‘,ng = ,s(4, 19),8(x, l)cvcéx'
Proor. We have

WS, 1) ,s(i, pe,cex = s;sjsﬁsﬁs"js‘gcvcéx by 1.5.15
= sysfstsisysic,cx by 1.5.10(ii)
= sysishsrsic,c.x by 1.5.11(3)
= sjs)sisisic,cx by 1.5.10(iii)
= sjs)shsisisic,cox by 1.5.11(i)
= sisisisysisic,cx by 1.5.10(iii)

I

WS4, 1) s(x, A)eycex by 1.5.15.
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In connection with 1.5.17 and 1.5.18 the question arises whether these
theorems can be improved by omitting all references to v in the former and
to & in the latter. The situation turns out to be exactly the same as in the case
of Theorem 1.5.14, and we can repeat here with minor changes the remarks
concerning that theorem.

THEOREM 1.5.19. If K, A, p, v are distinct, then
@) sk, D)stx = s5 s(x, A)x;

@) ,s(x, A)shx = s s(x, A)x.

Proor. To prove (i) we compute:

Py — eVeKehcl
WS, A)stx = skshsistix

= s)siststx by 1.5.10(iii)
= s'shsksix by 1.5.10(i), (iv)
= sk s(x, H)x by 1.5.10(iii).

A similar computation gives (ii):

WS(c, Dstx = sksistsix

= s'skstsix by 1.5.10(i), (iv)
= s)shsishx by 1.5.10(iii)
= sis)sistx by 1.5.10(ii), (iv)

sk s(x, A)x.

THEOREM 1.5.20. If x, A, p are distinct, then

WS, Aste,x = sfe,x.

Proor. We have

WS(, A)ske,x = sksiskc,x by 1.5.10(i)
= shshc,x by 1.5.10(v)
= sfc,x by 1.5.8(1), (ii).

THEOREM 1.5.21. If x, A, u are distinct, then

C, w80, A, x = ,s(x, A)c e x.
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Proor. We have

CeuS(ic, A)e,x = cshsishc,x by 1.5.12
= c,sksishc,x by 1.5.9(1)
= ¢,sistc,x by 1.5.10(i)
= sfc,shc,x by 1.5.8(ii)
= sfc;she,x by 1.5.9(i)
= s5C;C,X by 1.5.8(1)
= ¢,85¢,C,X by 1.5.8(ii)
= sksfc;c,x by 1.5.8(1), (i)
= shsfistcc,x by 1.5.8(1)

= ,8(k, e, x.

This completes our exposition of the basic properties of the operations sj and
.S(x, A). As was previously mentioned, in Section 1.11 we shall introduce and
study (for a special class of CA’s) the general notion of substitution operator,
corresponding to the metalogical operation of the simultaneous substitution
of several variables. In discussing this notion we shall make essential use of
various properties of s?. On the other hand, the results concerning ,s(x, 4)
will find applications in Part IT of this work. We note in passing that, by
1.4.4(vi), both s§ and ,s(x, A) are self-dual (see the remark following 1.4.2).

REMARK 1.5.22. The operation s§ can sometimes be applied successfully in
proving general laws of the theory of CA’s, the formulation of which do not
involve, implicitly or explicitly, either the operation itself or, more generally,
the notion of diagonal elements. The proof of our next theorem provides an
interesting example.

Consider the following inequality (first discussed in Thompson [52]):

Cxx' Cx)’ : CuZ § Cxclcu [Cu(C}_x' Cx)’) ' CA(CMX‘ ch) . Ck(cuy . C).Z)]-

This inequality (for distinct «, A, y) is again an instance of formulas which are
identically satisfied in all special CA’s but which can be shown (and will be
shown in Part II) to fail in the general case. From the following theorem") it is
seen, however, that in a somewhat weaker formulation the inequality does hold
for arbitrary CA’s.

1) Due to Henkin [67], p. 33, where the theorem is given a metalogical rather than
algebraic formulation.
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THEOREM 1.5.23. c.c,x ¢,y ¢,c,z < ¢,.¢;¢,[c,(c;€,x° €. C,p) " €,(C,C,x"C,.C,2)
¢ (c,c,y €162

Proor. The inequality can easily be checked in case any two of the ordinals
K, A, u, and v are identical; therefore we assume that they are all distinct. For
brevity we let

X' =c¢x, ¥y =c¢y and 2z’ = c_z.
Let also
w = ¢, (c;x"- ¢y cu(c,x" ¢ z') e e,y ¢;2').

Then

A, /A ! ’, Py BN Y !
$yx e () 876,2) S x'ry six' - g(c, ' she,z)

IIA

cuex' e ') ¢, shx ¢ 0 (c, )y’ si2')
c e (cx e y): s’vlcux’ “she 2’ e e,y ¢;z)]
cu [C/,t(clx, : Clcy/) : Sé(cuxl : CKZ’) ' Cx(cuy, : CAZ,)]

CuW.

IIAIIA

IIA

Hence we successively obtain

Ayt 1 . eh ’ .

S [syx (- sic,z)] £ c.c 0w

Ayt o v ! .

csix"-c(c,y §,C,2 )= CeCyC, W,
A /. Y ’ .
SN AR P U T A S ST L

A ’, ’, ’
sp(ex’ ;)" ¢,2') £ e m.

Applying s} to both sides of this inequality and using 1.5.8(i) and 1.5.10(v),
we easily obtain ¢.x'-¢c;y"-c,z’ < c.c;c,w as desired.

REMARKS 1.5.24. The inequality in 1.5.23 is formulated entirely in terms
of fundamental operations of Df’s. Since, however, in the proof of 1.5.23 we
have made essential use of the operations s}, and hence implicitly of diagonal
elements, we have not established the fact that this inequality is identically
satisfied in arbitrary Df’s. Actually it will be shown in Part II that the inequality
(with say k =0, A = 1, p = 2, and v = 3) fails in some Df, for each o = 4
and that, consequently, in every proof of the inequality diagonal elements,
and some of the postulates (Cs5)—(C;), must be essentially involved. It will also
be shown that no such inequality exists in case o < 2: in this case every equa-
tion (and hence, obviously, every inequality) not involving diagonal elements
which holds in all CA’s holds in all Df;’s as well. For « = 3 the analogous
problem is still open.
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On the other hand, for every a = 2 there are Df,’s which are not diagonal-
free parts of CA,’s in the sense of 1.1.2. In fact, for any given o = 2 it is easy
to construct a Df, 9 such that, in opposition to 1.3.12, the equation ¢ox = x

is identically satisfied in 2 while ¢,x = x is not.



1.6. DIMENSION SETS

DEFINITION 1.6.1. By the dimension set of x, in symbols A®™x, or simply Ax,
is meant the set of all x for which ¢,.x # x.

This notion (introduced in Tarski-Thompson [52], where the term “dimension
index’” was used) will be employed later in this chapter to define some important
classes of cylindric algebras. In the case of cylindric set algebras, 4X is the set
of all k < « such that X does not form a cylinder parallel to the k™ axis.

In the case of a cylindric algebra of formulas associated with a theory O,
A(p/=) consists of all x < o such that d, ¢ & ¢ — or, equivalently,
va(p <> ¢ —is not valid in ©. Hence, 4(¢/=,) contains only x for which v,
is free in ¢@. But it does not necessarily contain all such . For instance, if {
is any formula in which v, does not occur free and if we let ¢ = Y Av, = v,,
then V, ¢ < ¢ is logically valid and hence valid in O, so that « ¢ A(¢/=o).
It is easily seen however that the following holds: A(¢/=,) contains all those
and only those x for which v, is free in every formula i belonging to the
equivalence class ¢/=,. If we agree to call v, essentially free in ¢ (with respect
to @) just in case v, is free in every formula belonging to ¢/=, — or, what
amounts to the same, in case V, ¢ <> ¢ is not valid in ® — then we can
also say that A(p/=,) is the set of all those ¥ < « for which v, is essentially
free in ¢. If, in particular, 4(p/=¢) = 0, then no variable v, occurs essentially
free in ¢ with respect to @, whence ¢ « [¢] is in @ and therefore (¢p/=y) =
([¢l/=¢); we recall here that [¢] is the sentence which is the closure of ¢
(cf. the Preliminaries). If, conversely, there is a sentence ¢ such that ¢ = ¢
is valid in @ or, what amounts to the same, (¢/=¢) = ([¢]/=0), then, as is
easily seen, A(p/=4) = 0.

THEOREM 1.6.2. A0 and Al are empty.

THEOREM 1.6.3. U is discrete iff Ax = 0 for all x € A.
Proor: by 1.3.12.

THEOREM 1.6.4. If d,; # 1, then Ad,; = {k, A}.
ProOF: by 1.3.2 and 1.3.3.



200 PROPERTIES OF CYLINDRIC ALGEBRAS 1.6.5

TueoreM 1.6.5. If 2. z; exists, then A(X,;z) < U
Alx+y) esdxudy.

‘PrOQE. If k ¢ U, 4z, then c.z; = z; for every iel, and it follows that
Kk g M2,z;) by 1.2.6.

Tueorem 1.6.6. If 11, z; exists, then ALl z;) = U, ,4z; in particular,
A(x-y) € Axudy.

Proor. The proof is analogous to that of 1.6.5, 1.2.10 being used instead
of 1.2.6.

.1dz;; in particular,

It is easy to obtain examples to show that equality cannot replace inclusion
in Theorems 1.6.5 and 1.6.6; for example, we may take any non-discrete
CA, U, an element x € 4, and an index k¥ < o for which c.x # x, and let
y=—x

THEOREM 1.6.7. (i) A(—x) = Ax.
(i) If A4y = 0, then
Ax = A(x-y)ud(x - —y) = A(x+y)vd(x + —Y).
ProoF. (i) follows directly from 1.2.12. Since x = x-y+x-—y, we have,
by 1.6.5, Ax = A(x-y)ud(x-—y). The inclusion in the opposite direction
follows from 1.6.6 and part (i) of our theorem, using the fact that 4y = 0.

Thus, Ax = A(x-y)ud(x - —y). The remaining part of the conclusion is then
obtained by means of (i).

THEOREM 1.6.8. A(c,x) S Ax ~ {x}.
Proor. If 1 ¢ Ax ~ {k}, then 1 ¢ Ax or A = k. In either case c,c.x = c.x
by (C,) or 1.2.3.

It is easily seen that the inclusion symbol in 1.6.8 can be replaced by the
equality symbol in case « = 1. In general, however, this cannot be done. If,
e.g., A is a non-discrete CA, with « = 2 and if x = dy;, then Ax = {0, 1}
by 1.3.12 and 1.6.4; hence Ax ~ {0} = {1}, while dcyx is empty by 1.3.2
and 1.6.2.

The remaining theorems in this section are less obvious and some of them
are more difficult to prove.

THEOREM 1.6.9. (i) For any x and 2,
A(cx-'dxﬂ) = 0.
(ii) More generally, for any element x we have

A(x-c,—d, ;) = Ax
provided x # A.
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PRroOF. (i) is obtained directly from 1.3.18. From 1.6.7(ii) we get Ax =
A(x- ¢, —d, ;) uAd(x-cd, ;). However, A(x-c2d,;) = 0 by 1.3.19. This proves (ii).

Theorem 1.6.9 (ii) was pointed out by Don Pigozzi.

THEOREM 1.6.10. If k& # A, {x, A} & Ax, and Ax # O or, more generally,
x-c,—d.; # 0, then

A(x+d,) = A(x - —d,;) = Axu{x, A}.

ProoF. In view of 1.6.9(ii) we can disregard the premiss Ax # 0 and
assume x-c,—d,; # 0. We begin by proving the following lemma:

(1) For any element y with {x, A} & 4y, the following conditions are equi-
valent:

(a) y'cx_dx). =0, (b) y- —d; =0, (C) }"dxz‘cx—du =0.

As is easily seen from 1.3.18(ii), we can assume, without loss of generality,
that k ¢ Ay. Then the equivalence of (a) and (b) follows immediately by 1.2.5.
(a) clearly implies (c). The converse is obtained by applying c, to both sides
of (¢) and using (C;), 1.3.2, and the fact that c_y = y. This proves (1).

In view of the premiss x-c,—d,; # 0 we have, taking x for y in (1),

2 x+—d, #0 and x-d,;-¢c,—d,; #0.
In establishing the conclusion of the theorem we first want to show
3) {x, A} = 4(x-d,;) and {x, A} < A(x-—d,,).

Suppose {x, A} & 4(x-d,;) and apply (1), taking y to be x-d.. Then
x-d,;-c.—d,, = 0, which contradicts (2). Thus the first inclusion of (3) holds.
Now suppose {k, A} & 4(x-—d,;) and again apply (1), this time taking
x+—d,; for y. We get x+—d,; = 0, which contradicts (2), and thus the
second inclusion of (3) holds.

We next show

Q) Ax = A(x-d,;) and dx < A(x- —d,)).

To prove (4) we will use the premiss {x, A} & Ax; say x ¢ Ax. Assume, first
- of all, that u ¢ 4(x-d,;). We then have ¢, (x-d,;) = x-d,;; applying ¢, to both
sides of this equation and using (Cj), (C,), and 1.3.2 we get ¢,x = x. Thus
u¢ Ax and the first inclusion of (4) is proved. Now assume u ¢ A(x - —d,;).
We then have c,(x- —d,;) = x- —d,;; again applying c, to both sides of this
equation we obtain c,(x-¢,—d,;) = x-¢,—d,;. Thus u ¢ 4x by 1.6.9(ii), and
the second inclusion of (4) is proved.
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Finally, by 1.6.4, 1.6.6, and 1.6.7 we have immediately
A(x-d,;) € Adxu{k, A} and A(x-—d,;) < Axu{x, 1};
these inclusions along with those of (3) and (4) establish the desired conclusions.

COROLLARY 1.6.11. Suppose U is not discrete. If & < o, or, more generally,
if o ~ Ax| < o for some x € A, then there is a y € A such that Ay = o.

THEOREM 1.6.12. If x ¢ Ax, A ¢ Ay, and k # A, then Axvudy < A(x-d,; +

y=d)u{x, 1}.
PrOOF. Suppose p ¢ A(x-d,; + y-—d, Ju{x, A}. Then p # «, A, and

cux.dxl + Cuy'_dx}. = cu(x.dxl + y'—du) = x'dxl + y._dx).'

Hence ¢,x-d,; = x-d,; and c,y-—d,; = y-—d,;. Applying c, to both sides
of the first of these two equations, we obtain ¢,x = Xx, i.e., u ¢ 4x. Applying
c, to both sides of the second equation we get, using 1.3.18 and 1.3.20,
¢,y =y, or u¢ Ay. This completes the proof.!

THEOREM 1.6.13. A(s5x) < (Adx ~ {x})u{i}.
Proor: by 1.6.4, 1.6.6, and 1.6.8.

THEOREM 1.6.14. sfx = x iff k = A or x ¢ Ax.
ProoF: by 1.5.8(i) and 1.5.9(i).

THEOREM 1.6.15. If k€ Ax and A ¢ Ax, then A(six) = (4dx ~ {x})u{4}.
Proor. By 1.6.13 we have A(sfx) = (dx ~ {x})u{A}. We claim that

) A€ A(shx).

For otherwise we have six = ¢;s5x = ¢ s2x = ¢x by 1.5.9() and the fact
that A¢ Ax. Multiplying by d,; on both sides of the resulting equation
six = ¢x we get d;-x = d,;-c.x by 1.5.5. Applying ¢, we then infer that
x = c¢.x, which contradicts the assumption x € Ax. Thus (1) holds.

Now using 1.6.13 and 1.5.11(i)) we see that Ax = A(s}six) < (4(skx) ~
{A)u{x}. Hence Ax ~ {x} = A(sx), and the desired conclusion follows by
1.

THEOREM 1.6.16. Suppose p # k, A. Then:
() if k, A ¢ Ac,x or k, A e Ac,x, then A(,s(x, A)c,x) = Ac,x;
(i) if k e Ac,x and A ¢ Ac,x, then A(,s(x, A)c,x) = (dc,x ~ {k})u{A};
(ii)) if x ¢ Adc,x and ) € Ac,x, then A(,s(x, A)c,x) = (dc,x ~ {A})u{k}.
1) 1.6.10 and 1.6.11 were proved by Tarski, while 1.6.12 is due to Jack Silver; 1.6.10-1.6.12
are lemmas leading to Theorem 1.11.4 below.
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Proor. If x, A¢ Acx, then ,s(x,)c,x = c,x; if x, Ledc,x, then
A(,s(x, A)c,x) = Ac,x by 1.6.15. Thus (i) holds. That (i) and (iii) hold follows
from 1.6.15 and the following observations: under the hypothesis of (ii)
we have ,s(x, A)c,x = sjc,x, while under the hypothesis of (i) we get
LS(K, A)e,x = ske,x.

TueEOREM 1.6.17. (i) Acix = Ac,—x;
(i) A°%x = Ax.
ProoF: by 1.4.1, 1.4.2, and 1.6.7 (cf. the remarks following 1.4.2).

To complete this section we introduce some notions which are directly
defined in terms of the dimension set.

DrrInNiTION 1.6.18. (i) Let I' be any (not necessarily finite) subset of o. An
element x is called a (I')-closed element or a (I')-cylinder if Axal’ = 0. We
denote the set of (I')-closed elements by CI.U and let C[A = (CLA, +, -,
—,0,1>.

(il) An element x is called zero-dimensional if Ax = 0. We denote the set of
zero-dimensional elements by ZdW and let 300 = {Zd¥, +, -, —, 0, 1.

A metalogical interpretation of Zd( is clear: if 9 is a cylindric algebra of
formulas, then Zd9 is the set of all those elements of 9 which are equivalence
classes of sentences, i.e., of formulas without free variables; compare the
remarks following 1.6.1. Thus, if % is the cylindric algebra of formulas as-
sociated with a theory @, 3b% is the Boolean algebra of sentences associated
with @; cf. 1.1.15 and 1.1.16.

THeOREM 1.6.19. CL. for every I' = o (I' not necessarily finite) and 3dA
are BA’s. In fact, €[ is a subalgebra of BIA, and ZdW is a subalgebra of
S

Proor. The proof reduces to showing that the sets C/ 2 and Zd¥ are
closed under +, -, — and contain 0 and 1 as elements. This follows imme-
diately from 1.6.2 and 1.6.5-1.6.7.

It will be seen in Section 2.6 that €[, can be represented in a natural way
as the Boolean part of a subreduct of ¥ (cf. 0.5.6).

By 1.6.3 a CA 9 is discrete iff all its elements are zero-dimensional, i.e., if
ZdU = BI. It may be pointed out that a non-discrete CA may contain many
zero-dimensional elements in addition to 0 and 1. For instance, in the cylindric
algebra of formulas associated with a theory ©, the zero-dimensional elements
coincide with equivalence classes of sentences; if the theory @ is not complete,
there are sentences in the language of © which are not valid in @ and whose
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negations are also not valid, and the equivalence classes of such sentences are
different from 0 and 1. As is easily seen, a finite-dimensional cylindric set algebra
has no zero-dimensional members different from O (the empty set) and 1 (the
whole space). It is not difficult, however, to exhibit infinite-dimensional cylin-
dric set algebras which have such members.

As was mentioned in the remarks following 1.3.18, every CA, U with o = 2
has just one element of the form c¢,—d,; = c.c;—d,,; for some «x, 1 < a,
Kk # A; from what we have already seen in 1.6.9 and 1.6.10, this element
appears to play a distinguished role in the algebra . The following theorem,
which was brought to our attention by Don Pigozzi, throws further light on
this point.

THEOREM 1.6.20. For any x, A < a with Kk # A, ¢,—d,, is the least element
ae A such that x € Zd for every x = a.

Proor. By 1.6.9, for every x = c¢,—d,, we have Adx = A(c,—d,;) = 0.
Conversely, suppose x € Zd9 for all x = a. Then, in particular, {x, 1} & da
and A(a+d,;) = 0; hence a = ¢,—d,; by 1.6.107 and 1.6.17(ii).

We shall see in Section 2.4 that zero-dimensional elements play an essential
role in the study of direct decompositions of CA’s. In particular, we shall
state a result concerning direct decompositions which is closely related to
1.6.20; cf. Theorem 2.4.37.



1.7. GENERALIZED CYLINDRIFICATIONS

We now turn to generalizations of the elementary notions introduced so
far. In this section we consider direct generalizations of the notions of cylindri-
fication and inner cylindrification.

DEFINITION 1.7.1. We let c(g)x = x, and, if I' is any non-empty finite subset
of o, we let ¢ryx = ¢ ...c.._ x forall xe A where |I'| = A and (Ko, ..., %;_ 1)
is the strictly increasing sequence whose range is I'. The operations c, are
called generalized cylindrifications.

Notice the difference between ¢, and ¢, where x is any finite ordinal.
¢, is of course one of the fundamental operations of the algebra A e CA,
(provided k¥ < ). On the other hand, x as a finite ordinal is also a finite set
of ordinals, k = {£:& < k} (cf. the Preliminaries), and hence the meaning
of ¢, is determined by 1.7.1: ¢ox = x and ¢yx = ¢,...¢,_;x when x > 0.

There seems to be no natural way of extending 1.7.1 to infinite sets I" for
arbitrary CA’s.

COROLLARY 1.7.2. If I' is a finite subset of «, A < ®, and x is a function
Jrom A onto I', then ¢ryx = ¢, ...c, X
Proor: by 1.2.17.

In a cylindric set algebra 2 with base U, C,X is the set of all y € *U such
that there is an x € X with x, = y, for all x e~ I'; thus C )X is obtained
from X by cylindrifying along all x-axes for x € I'. In the cylindric algebra
of formulas associated with a set X of sentences, ¢ (¢/=;) is the equivalence
class of the formula 3, ..3, ¢ where I' = {xo,...,%x;_4} and u, =
ea,s Thus ¢y could have been termed alternatively a
generalized (existential) quantification.

Through the rest of this chapter I', 4, and © will represent finite subsets

of a (or sometimes sequences of such subsets) unless otherwise indicated.

Voo woosUyg =0

THEOREM 1.7.3. €(1)CigX = C(p_4)X-
Proor: by 1.2.17.
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THEOREM 1.7.4. €(y) = Gy

THEOREM 1.7.5. For any sequence {I',.:x < B) of finite subsets of «, the
structure <A, +, -, —, 0, 1, ¢ >, .5 is a diagonal-free cylindric algebra.

Proor. By 1.1.2 the proof of the theorem amounts to showing that the
following four equations hold for any 4 and @ (finite subsets of «):

@ <0 = 0;

) X S CiaX;

&) Cay(X Cuy) = CupX Sy
“) CaCo* = o)X

The first three equations are easily proved by induction on |4|, and (4) follows
from 1.7.3.

An important consequence of 1.7.5 is that all the theorems of Section 1.2
extend automatically to generalized cylindrifications, and the same applies to
parts of 1.4.4; cf. the initial remarks of Section 1.2 and the proof of 1.4.4(1)—(v).

TueoreM 1.7.6. If I' # O, then the following two conditions are equivalent:
@) A is discrete;

(i) for all x, ¢ryx = x.

Proor: by (C,) and 1.3.12.

In contrast with 1.3.13, we may have a non-discrete CA, with ¢ > 2 and
distinct I and 4 such that ¢x = ¢ 4x for all x. This is the case, for example,
with certain CAj’s considered in Part II, where cx = ¢;)x = 1 for all
x # 0, while, of course, ¢,,0 = ¢;,0 = 0.

TueorREM 1.7.7. (i) A(cryx) < dx~1T.

(i) cryx = Cernaxy-

Proor. (i) is proved by induction on |I'|, using 1.6.8. To prove (ii) notice
that, by 1.7.3, c;)X = €0 S raax¥, and then argue by induction on
II' ~ Ax|, using (i).

THEOREM 1.7.8. ¢5x = —cy—x.
Proor: by 1.7.1 and the remarks following 1.4.3.

¢ can of course be called a generalized inner cylindrification. In a cylindric

set algebra C,JX is the largest ¥ = X which for each x € I' forms a cylinder

parallel to the x-axis. In the cylindric algebra associated with a set of sentences
%, ¢ (¢/=y) is the equivalence class of V, ...V, _ ¢ where I' = {K,, ...,

Uz—-1
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Ky—1} and ug = v, ...,u; 4 = v _ . For this reason ¢, may alternatively

be called a generalized universal quantification.

REMARK 1.7.9. We would like to note here in connection with 1.7.5 and
the remark immediately following it that, given any CA, 9 and any sequence
(I':x < B) of finite subsets of o, and letting B = <4, +, -, —, 0, 1, ¢ > <p
we have

c(rkgﬁ‘) = c® and c(rkgma) = cf?’a).

Thus, for example, from 1.4.4(iv) (which is easily seen to hold for all Df’s)
and 1.7.5 we obtain

) )
CryCeaX < Sy Sy

In the last two theorems of this section generalized cylindrification is applied
to the discussion of the notions of (I')-closed and zero-dimensional elements
introduced at the end of Section 1.6 (see Definition 1.6.18).

TueoreM 1.7.10. (i) Let I' be any (not necessarily finite) subset of o. Then
ClIIA = {x:x €A, cqyx = x for every finite A = I'}. If [I'| < o, then CI;U =
{x:xed, crx = x} = Rgcgy.

(i) ZdU = CLA = {x:x€ A, cuyx = x for every finite A < o}. If & < o,
then ZdU = {x:x € A4, c,yx = x} = Rgc,.

Proor. 1.2.4, 1.7.5, and 1.7.7 together give the second part of (i); the first
part is obvious. (ii) follows easily from (i).

THEOREM 1.7.11. (i) If |4x| < @, then ¢, x € ZdU; if, moreover, x <
yeZd¥, then ¢ x < y.

(i) If « < @ and x € 4, then ¢ 4)x = Cyyx.

Proor. The first part of (i) is an immediate consequence of 1.7.7(ii), and
(ii) is an immediate consequence of 1.7.7(ii); the second part of (i) follows
from 1.2.7 and 1.7.10(i).

Theorem 1.7.11(i) can clearly be expressed in the following way: c.,,x
when Ax is finite is the least zero-dimensional element = x; similarly, ¢ Ax‘;x
is the largest zero-dimensional element of U =< x.

Let 9 be a CA of formulas and x an element of 9 which is the equivalence
class of a formula ¢. It is easily seen that Ax is finite; therefore, c 4, x and
X exist, and as zero-dimensional elements they must be the equivalence
classes of sentences (cf. the remark following 1.6.18). If in fact uy, ..., #,—4
are all the variables occurring free in ¢, or, at least, all the variables
essentially free in ¢, then c ,x corresponds to 3 @ and c,Sx corre-
sponds to V, ., o, ie., to [p].

UQ*Uge — 1






1.8. GENERALIZED DIAGONAL ELEMENTS

In this section we generalize the notion of a diagonal element. The relations
between these generalized diagonal elements and generalized cylindrifications
are frequently analogous to those between the diagonal elements d,; and the
cylindrifications c,.

DEFINITION 1.8.1. We let dp =11, d,.;. The elements d are called
generalized diagonal elements.

In agreement with remarks following 1.1.5, we shall use D to denote
generalized diagonal elements in cylindric set algebras; analogously for
generalized co-diagonal elements which will be introduced in the next section.

COROLLARY 1.8.2. d, = 1.

In the cylindric algebra of formulas associated with a set of sentences X, d
is the element ¢/=5 where ¢ is a conjunction of all formulas v, = v, forx,AeT;
if ' =0, we may take T for ¢. On the other hand, in a cylindric set
algebra Dy is the linear subspace characterized by the system of equations
x, = x, for all k, AeT.

Tueorem 1.8.3. (i) d,, = 1;
(i) d{x,l} =d.;;
(iii) if I' < A, then dp = dy.

THEOREM 1.8.4. If I'nd # 0, then dp-dy = dp_,.

Proor. Clearly we have d. , < d.-d, by 1.8.3(iii). To establish the in-
equality in the other direction, and hence the theorem, it is sufficient to show
that, if keI’ and Ae 4, then d.-d; < d,,. To this end, choose pel'nd
(which is possible by the hypothesis). Thus d < d,, and d, < d,;, so that
dy+d, £d,,-d,; = d,,; by 1.3.7, and this completes the proof.

THEOREM 1.8.5. Suppose B is a finite set of diagonal elements of U, each
different from 1. Let R be the least equivalence relation including the set
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{<x, Ay:d,, € B} and let E be the set of all R-equivalence classes (i.e., E =
FdR/|R). Then E and all members of E are finite, and we have

I1B =T1,_,4,.

Proor. Let
S = {Kx, Ay:d,, € Byu{{k, ky:for some 4, d, € B};

then R = U, ., 8™, and S < SPTif 1 < u £ v < . (Recall that S™ is
the p™ relative power of S; see the Preliminaries.) By 1.3.14, the assumption
that B is finite implies that S and S™ are finite for each pew ~ 1. By an
easy induction on pu we prove that I'IB = IT{d,;:(x, 4> e ST} for all
pew~1. Since S is finite, we must have R = S for some pew~ 1.

Therefore, 1B = [1{d,,:{x, 1) € R}, whence the conclusion easily follows.

THEOREM 1.8.6. If 0 < k < 0 and {©,:A < k) is a sequence of mutually
disjoint finite subsets of o, then cy(dg, +...-dg ) =d -d
particular, ¢rydy = d ..

Proor. It clearly suffices to treat the case in which I has exactly one element,
say v. If v¢ ©,, then ¢, d, = d, by 1.2.10 and 1.3.3. Thus the desired equation
follows in case v ¢ @, for all 1 < k. Now assume that ve @, for a certain
A < k. Then

€)) Cv(d@o Teedt d@,c_l) = Cvdal : Huex~{ﬂ.} d@,;

oo~T " Y90, ~r> I

If v is the only member of ©,, the desired conclusion follows from 1.8.2 and
1.8.3(i). If, on the other hand, v, £ € @, with v # £, we can set 4 = O, ~ {v}
and apply 1.8.4 to get dg, = d,-d,.. Since v ¢ A, we have (as noted above)
¢d, = d,, whence ¢d, =c/(d,d,) =d,cd,.=d, by 132, and the
desired conclusion follows by (1).

COROLLARY 1.8.7. ¢nydp = 1 and c¢ydp = 1.

THEOREM 1.8.8. Let (I'.:x < A) and {d,.:x < uy be sequences of finite
subsets of o satisfying the following conditions:

i) 0< i p< o;

(i) dp,d,, #1 forall k <X and v < p;

(i) ' al',=0ifk<v<Ai and 4,04, =0if x <v < pu;

(i) II,..,d; = HKudAK.
Then A = p, and there is a permutation ¢ of A such that I, = A, for all k < A.

Proor. By symmetry it clearly suffices to prove the following statement:

) if ¥ < A, then there is a v < u such that I', < 4,.
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To prove (1), first assume that I, & U, ,4,; say el ~U _ 4,. Since
dr. # 1, by 1.8.3() we may choose nel,~ {{}. Let @ = U _ 4, ~ {n}.
Then

1=cell,,d, by 1.8.2,1.8.3,1.8.6
= coll,.,dp, by (iv)
<d, by 1.8.6.

But this implies that 9 is discrete, which clearly contradicts (ii). Thus the
assumption I', & U, _ 4, is false; we have

@ r.cyu,_.A4,

k= “My<p
Now if (1) is false, then by (2) there exist distinct v, v' < pu such that
rend,, rnd, #0. Say &'elnd, and ¢"el'nd,,. Let A =U, _ 4,

{&’, &"}. Then, applying c 4, to both sides of equation (iv), we easily mfer
that 1 = d,,, by 1.8.6, which leads to a contradiction as before. Thus (1) is
true, and the proof is complete.

THEOREM 1.8.9. If I has at least two elements and I' # A, then the following
conditions are equivalent:

(1) W is discrete;

(i) dp =13

(iii) dp = d,.

Proor. (i) is equivalent to (ii) by 1.3.12, and (ii) is equivalent to (iii) by
1.8.8.

THEOREM 1.8.10. If' I" = A, then ¢r\(d - x) cy(ds- —x) = 0.

Proor. First we prove:

(1) if x ¢ I, then cry(dp, g X) Cry(dryggy - —%) = 0.

To prove (1) we proceed by induction on [I'|. If I' = 0, (1) is trivial. Suppose
then that 4 ¢ I'u{x} and the conclusion of (1) holds for every x. We want
to obtain the same conclusion with I" replaced by I'u{i}. Bearing in mind
that dp . 5 = drogg des by 1.8.4, we see that, for every x € 4,

Sroun@rops * %) = c<nCildropg - dea s X)

= C(r)(dl"u{k} : c}»(dn‘l . X))
—¢ry(dpy g - —€i(dy, - X)) by induction hypothesis
== C(F)(dl"u{x} ccy(dy; - —x) byl.34

_C(Fu{l})(dl"u{lc,l} C—X).

IIA
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This completes the inductive proof of (1). Turning to the proof of the theorem
itself, choose k€ 4 ~ I'. Since, for any xe 4, ¢)(d s x) = ¢(dp, gy %) by
1.8.3(iii), the desired result follows at once from (1).

CoROLLARY 1.8.11. Suppose k¢ I. Let cy = c| = ¢y, dyo =dj; =1,
and dy, = diy =dp .y Then {4, +,-, —,0,1,¢,d.,> .., is a CA,.
Proor: by 1.7.5, 1.8.7, and 1.8.10.

IfI' = 4 and in fact A ~I' = {k}, we see from 1.8.11 that the function
on 4 which correlates ¢,(d4-x) with every x € 4 is a complete endomorphism
of B1U; cf. the remark following 1.5.3. From 1.8.6 we see that this result
cannot be extended to the case when |4 ~ T'| = 2.

THeEOREM 1.8.12. If I' = A, we have:
(1) cry(dg-(x+p) = cry(dsx)+cr(dyp);
(ii) C(r)(dA'x')/') = C(r)(dA'x)'C(r)(dA ¥);
(iii) C(T)(dA T—X) = C(r)dA—C(r)(dA'x)§
@iv) dA-c(r)(dA-x) =d,-x.
PRrROOF. (i) is obvious. For the proof of (ii) it is convenient to denote
¢(d4-2z) by f(z) for each z e A. Then, by (i) and 1.8.10,

S f(p) = f&) - [f e p) + f(=x )] = f(x) [ p)-

Since f(x-y) £ f(x), (i) is proved. (iv) is an easy consequence of (i) and
1.8.10; this is the case also for (iii), as is readily seen by observing that only
(C,) and (C,) were used in the proof of 1.3.9.

THEOREM 1.8.13. (i) If I'nd = 0 or |4| < 2, then ¢ 5d, = d.

(i) If 'nd # 0 and |4] 2 2, then ¢, 5d, = c{d;.

ProorF. (i) follows from 1.4.4(iii) and 1.7.5 (cf. Remark 1.7.9) along with
1.8.2, 1.8.3, and 1.8.6. We now turn to (ii). Let pueI'nd and ved ~ {u}.
Then by (i), 1.2.6°, 1.7.3%, and 1.8.4 we have

0

2 — 0 . — 0 .0
¢ryda = €5 G(dany  din) = €5 (dan " G-

Hence c,5d, = cfdy; by 1.3.19 and 1.6.9()°; cf. also Remark 1.4.5. This
completes the proof.

THEOREM 1.8.14. (i) If K ¢ I', then sid; = dp;

(D) if keI, then sidr = d 1 )00

Proor. (i) follows from 1.5.8(i) and 1.8.6, and (ii) results from 1.8.4 and
1.8.6.
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THEOREM 1.8.15. If 1 < w and d,_+# 1 for each k < 1, then AI1, _,d, ) =
U, ., 4,; in particular, if dp # 1, then A(dp) =T.

ProoF. By 1.6.4 and 1.6.6 it is clear that A(Il,_,d, )< U, _,4,. To
prove the converse inclusion we may, by 1.8.4, assume that A,n4, = 0 for
Kk < pu < A. The converse inclusion then follows by 1.8.6 and 1.8.8.






1.9. GENERALIZED CO-DIAGONAL ELEMENTS

The notion of a co-diagonal element can be generalized in much the same
way as that of a diagonal element. The usefulness of the generalization is
somewhat limited, however: it will be applied primarily in the detailed in-
vestigation of some rather restricted classes of cylindric algebras.?

The reader may find it difficult to grasp the intuitive source and content
of many of the theorems in this section; since, in addition, some proofs are
complicated, he may not see any justification for including these results in
the work. In most cases a metalogical interpretation of the results proves
helpful. It turns out that in this interpretation the results discussed correspond
to certain logical statements which have a clear intuitive content and are
obviously true, although their formal derivations from logical axioms are not
quite trivial. It seems to be of some interest that the simple postulates under-
lying the general theory of CA’s are adequate for an algebraic reconstruction
of all these derivations, and it becomes clear that an essential simplification
of many proofs in the present section can hardly be expected.

Independently of the above observations it should be borne in mind that the
theorems stated here function primarily as lemmas which are useful in certain
later portions of our discussion. The reader may therefore find it convenient
to postpone the study of the material given in this section until it is actually
needed in Chapter 2.

Throughout this section R, S, and T will represent finite relations < o x ¢,
and I', 4, and © will continue to represent finite subsets of «.

DeFNTiON 1.9.1. We let dR =11, s x.;g—d.;. The elements dR are
called generalized co-diagonal elements.

In a cylindric algebra of formulas, dR is the equivalence class of the con-
junction of all the formulas v, 5% v, with <{x, 4> € R and k # 1. If Re«11d,
we may take T as the formula determining dR.

1) The material given in this section was first presented in Monk [64a], where it formed

an essential part of the proof that all the monadic-generated CA’s defined in 2.2.16 below
are representable.
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THEOREM 1.9.2. (i) d(R™!) = dR.

(ii)) d(R ~ Id) = dR.

(iii) dR=1iff RcIdor 0 =1 (i.e., A is a singleton).

(iv) d(RuS) = dR-dS.

(v) If R < S, then dR = dS.

Proor. (i), (iv), and (v) follow directly from 1.9.1, while (i) is an easy
consequence of 1.3.1. In order to see that (iii) holds we need only observe that,
by 1.3.2, —d,, for k¥ # A is never equal to 1 unless 1 = 0.

If a CA, 9 is discrete, then we have either dR = 1 or dR = 0 for every R,
according as R < Id or R & Id. If, conversely, we have dR = 0 or dR = 1
for every R (or, equivalently, if we have dR = 0 for every R ¢ Id), then A
is discrete provided o > 1. However, we may have dR = 0 even if 9 is not
discrete. Thus, if @ = k where 1 < ¥ < o, and if 9 is a cylindric set algebra
whose base has less than x elements, then d(x xx) = 0; cf. 2.4.61 and the
remark following 2.4.62 below.

THEOREM 1.9.3. If S = Rn[(I' x x)u(ax )], then ¢ydR = ¢,dS-d(R ~ S).
Proor. From 1.2.11, 1.3.3, and 1.7.1 we conclude that ¢ —d,;, = —d,,
if ¥, A¢ I'. The proof is completed by an easy induction on |[R].

The next two theorems are trivially true when applied to cylindric algebras
of formulas; we have only to keep in mind that the operation ¢, corresponds
to universal quantification and s} to substitution (see the remarks following
1.5.1 and 1.7.8).

THEOREM 1.9.4. Let S = Ra[(I'xo)u(axTI)].

(i) If S < Id, then c;5dR = dR = ¢,dR.

(i) If S & Id, then c,5dR = 0.

Proor. (i) By applying 1.9.2(ii),(iii) and 1.9.3 we obtain immediately
¢ydR = dR. Hence the dual formula ¢, 5dR = dR can be derived by 1.4.4(iii);
cf. Remark 1.7.9.

(if) By 1.2.6(i) and 1.7.8 we have

¢ iR = —X{cyde: <K, Ay € R~Id}.

Since S & Id implies the existence of (x, A) € R~ Id such that keI or
A€, the conclusion of (ii) follows by 1.3.2.

TaeorREM 1.9.5. (i) If <{x, Ay € (RUR™ ') ~ Id, then sidR = 0.
(ii) Suppose <k, Ly ¢ (RUR ') ~1Id and let [ be the function on R~ Id
determined by the conditions
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S vy = vy if p, v #* &,

S, k) = {p, Ay and [k, v) = {4, v).
Then
ssdR = d(Rg/).

Proor. (i) follows easily from the definitions of the notions involved; (ii) is
obtained with the help of 1.5.3 and 1.5.4.

In the next few theorems we deal with products of diagonal and co-diagonal
elements, i.e., with elements of the form Il ,  rd.;-IL, r—d,; they
can sometimes be represented more simply as d-dR. Such products are of
interest to us primarily in the case when 7’aR or (I'xI')n(R ~ Id) is empty
(for otherwise they are equal to 0). In this case the products can be subsumed
under the general Boolean-algebraic notion of constituents of a given set,
and in fact they can be treated as constituents of the set of all diagonal ele-
ments. We want to explain here the meaning of this notion, especially since it
will play a role in some portions of our further discussion.

Given a Boolean algebra 2, and a set B of its elements, by a constituent
associated with B, or, more briefly, a constituent of B, we understand an arbi-
trary element of the form

IxTL, —y = [IX-S¥

where X and Y are any disjoint finite subsets of B. It is well known that, if
the set B generates 2 (in the sense of 0.1.15(i)), so does the set of constituents
of B; in fact, every element of A is then a sum of finitely many constituents
of B.1If, in particular, B is finite, then the constituents I[IX—2(B ~ X) can
be called minimal constituents of B. It is known that the sum of all minimal
constituents is always 1, and that any two distinct minimal constituents are
disjoint. In case the finite set B generates A, the set of non-zero minimal
constituents also generates 9 and coincides with the set of all atoms of .
As in other analogous cases we shall apply the notion of a constituent not
only to BA’s, but also to CA’s.

THEOREM 1.9.6. Let S = Ru{{x, A):x eI, and {u, Ay e RUR™' for some
uel ~{A}}. Then
dp-dR = d,-3s.

ProoF. By 1.9.2(v) we have d.-dS < d-dR. For the inclusion in the
opposite direction it suffices to note that if kel', uel ~{i}, and {u, 1) €
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RUR™", we obtain with the help of 1.3.7
dFaR é dkﬂ. —dul é _dx}.'

THEOREM 1.9.7. Let P be a partition of a set I. For every A < I such that
|[4n0B| =1 for each ® € P we have

[ppded(d x 4) =T, [dg-d(6 x (I' ~ O))].

Proor. Consider the equation to be proved as the conjunction of two
inclusions. By 1.9.2(v) it is clear that [l,_,d(@ x(I' ~ ©)) £ d(4x4), and
this directly implies one inclusion. Now suppose that <k, 1> e @ x ([~ ©)
for some © € P. There exists an Q € P such that 1€ Q and ©nQ = 0. There
exist also a pe An® and a v € 4nQ. With the help of 1.3.7 we obtain

H@eP d@ : a(A X A) é dxu ) dlv : _duv é - dk).ﬂ
and hence the other inclusion easily follows.

TuaeoreM 1.9.8. Suppose I' # 0.
() If B={d,:x, €T}, X < B, and 11X —-2(B ~ X) # 0, then there is
a unique partition P of I such that

[Mx-2B~Xx) =11,_,[de-dO x (I ~ O)].

(i) Let K be the set of all ordered pairs {P, A) such that P is a partition
of I'y A = T, and |An®| = 1 for each ® € P. We then have

Z<1f’,A>eK Hlppde-d(4xa)] = 1.

Proor. Let R = {Kx, Ay:d,, e X}. If {(x,x>¢ R for some xel, then
1 =d,eB~X; hence [IX ~2(B~ X) =0, which contradicts the hypo-
thesis of (i). Therefore R is reflexive over I', and for a similar reason R is
symmetric and transitive and thus is an equivalence relation over I'. Let
P = I'|R be the associated partition of I'. We then have that [1X —~2(B ~ X)
equals

(1) I, ,de-d(@ x (I' ~ O)).

In order to complete the proof of (i) observe that, if P and P’ are distinct
partitions of I', then the product (1) and the corresponding product associated
with P’ are disjoint, and hence distinct if different from O.

(i1) follows easily from (i), 1.9.7, and- the fact that the sum of all minimal
constituents of a finite set B is the unit element.
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TaeEOREM 1.9.9. If I' = A = O, then ¢ 4,d(4 % 0) £ ¢,d(I'x O).

PrROOF. By an easy inductive argument it is seen that we may confine our-
selves to the case where 4 = I'u{x} for a given x ¢ I'. We now distinguish
three possible cases.

(D) [I'] = 0. This case is obvious in view of 1.9.2(iii).
dn) |I'| =1, say I' = {4}. Then, with @' = O ~ {x, 1},
cnd(4 x 0) = c.c;d({x, 1} x O)

= ¢ [—dey - d({2} x ©)- d({x} x ©")]
= ¢, ¢;[—dy, d({A} x @")-std({1} x @")] by 1.9.5(ii)
< ¢ [—d; - d{A} x )] by 1.3.18(i)
= cnd(I' x O).

(II) |I'| > 1. For each A eI" we have

¢ryd(I"x 0) = ¢ [d({4} x ©) - d((I" ~ {A}) x (O ~ {A}))]

~ [ X 0) AT~ DX (@~ )] by 193
= C(r~{;,})[cxci.a({’c5 A} x 0)- d((r ~ {4 (©~{] by dn
= ¢yl d(4x 0) - d((I' ~ {A}) x {K})] by 1.9.3.
Hence
¢rnd'x0) = 2 er < [c.d(4 % ©)-d(I" ~ {A}) x {x})]
and
) C(r)d_(F X 0) Z ¢r [c,d(4 % ©)- Zzer d((T" ~ {A}) x {x})].

If AeTl, then d.,-d(I'x ') < d((I' ~ {A}) x {x}) by 1.9.2(v) and 1.9.6. There-
fore
A=) £ 3T x )+, 3T ~ (43 x (i)

=2, AT ~ {A}) x{x}) by 1.9.2(v).
Hence by (2), 1.9.2(v), and 1.9.3 we have
cnd( x O) 2 ¢py[cd(4x 0)-d(I'xIN)] = c(4,d(4 x ).
This completes the proof.

COROLLARY 1.9.10. If I' S A, then ¢ 4d(4xA4) £ ¢yd(I' x I).
Proor: by 1.9.9. (There is a simple direct proof of this corollary; cf. the
proof of Lemma 2.2.20 in the next chapter.)

The following theorem is a generalization of 1.3.18.
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TaeOREM 1.9.11. (i) c(FN{K})cT(FxF) = cnd(I'xT).
(i) If || = |4], then cqyd(I' x I') = ¢ ,d(4 x 4).
Proor. (i) We have
CrmpepdT X T) £ ¢ryd(I'x T)
< c(“{w})c_i((l" ~{x})xT) by 1.9.9
= Cpmppyd@ X T).
Thus (i) holds.
(ii) It suffices to note that, if x € I' and A ¢ I, then

cnd(I' x I') = siepd(I'x I) by 1.5.8(i)
= S5C I X ) by (i)
= CpmpeySidT % 1) by 1.5.8(ii)
= Cpm oy d (T ~ {) U {AD) x (T ~ {x}) u{2})] by 1.9.5(ii)

= C((T~{lc})u{).})d_[((r ~{rHUu{AD) x ((I' ~ {x})u{i})] Dby ().
The desired result then follows by induction.

Corollary 1.9.10 and Theorem 1.9.11(ii) become self-evident when applied
to cylindric algebras of formulas. In this application the elements of the form
crd(I'xI') acquire an especially simple meaning; indeed, it is easily seen
that each such element is the equivalence class of a sentence which has no non-
logical constants and expresses in a natural way the fact that there are at least
|| elements. E.g., in case |I'| = 3, c(,-)cT(FxF ) corresponds to the sentence
3d,,.(x # yAx 7 zAy # z). Hence, in the application discussed, the meaning
of ¢yd(I'x I') depends only on the cardinality of I', and this makes 1.9.11(ii)
obvious. Also, assuming that o and 6 4 are sentences corresponding respectively
to ¢d(I'x I') and cy4,d(4 x 4), it is clearly seen that o, implies o whenever
I' < 4 (or, more generally, || < |4]); this is just the content of Corollary
1.9.10.

THEOREM 1.9.12. (i) If0# A < I and A eI ~ A, then
CZC(A)E(A xTI) = C(Auu})&((A u{i}) xT).
@) If keI, then
C(T~{K}(§Cwa({x} X F) = C(r)a(r XF)

ProoF. (i) From 1.9.9 we get ¢ 4, d((4u{A}) x ') £ c,yd(4 x I), so, by
1.2.7° and 1.4.4ii),

c(AU“})cT((A u{AYxT) £ cfeyd(4xT).
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We now proceed to prove the inclusion in the opposite direction. Let x € 4
and I'" = I' ~ (4u{1}); then

ceyd(AxT) < e d({x} xI7)
cZestd({x} xI'") by 1.5.8(1)
c,s5d({x} xI'") by 1.4.4(iii), 1.5.9(1)
= ¢, d({A} xI') by 1.9.5(ii).

Therefore,
clepnd(AxT) < cleyd(4 xT) - c;d({A} x I)
c; [l yd(4 xI)-d({A} x I')] by (C;) and 1.4.4(ii)
< ¢ ledAxT) A< I)] by (CD
= ;¢ pld(AdxT)-d({A} xI")] by 1.9.3
= cuoupd(4u{A}) xT) by 1.9.2(iv).

Il

This completes the argument.
(if) It is enough to prove the following lemma by induction on |0]:
(1) If keI’ and ® = I' ~ {x}, then

o)k d({K} X I) = co,4 (O U{x}) x I).

The case © = 0 is trivial. Assume (1), and suppose that Ae I ~ {x} and
A ¢ 0. Then

It

ey d({xc} x I by 1.7.3°
= CgC(@u{n})a((@ u{x})xI) by (1)
= C(@u{l}u{k})a((@ u{Atu{x})xI) by (i),

which completes the inductive proof.

C(@uu}gcxa({’c} xI)

The content of Theorem 1.9.12, just as with 1.9.11, becomes self-evident
when applied to cylindric algebras of formulas. For instance, 1.9.12(ii) when
so applied with I' = {0, 1, 2} and x = 2 expresses the well-known fact that
the sentences ny d.(x# zAy # z) and nyz(x # pAX £ ZAy 5% 7) are logi-
cally equivalent. It may be noted that, although this equivalence is intuitively
clear, its formal derivation from the usual axioms of predicate logic is not
completely trivial, and the proof becomes even more complicated when
analogous sentences with a larger number of variables are involved; this
reflects itself to some extent in the proof of 1.9.12.
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Our next theorem, 1.9.13, when combined with some earlier and more
elementary results (1.8.5, 1.8.14, 1.9.3, and 1.9.5) reduces the cylindrification
of any product of diagonal and co-diagonal elements to a succession of Boolean
operations performed on diagonal elements and elements of the form
¢ryd(I" x I'). The significance of the whole procedure will become clear only
in the next chapter. The final conclusions will be drawn and presented in a
simple form in Theorem 2.1.17, for which 1.9.13 will serve as the principal
lemma. Some further comments, concerning, in particular, a metalogical
interpretation of the results, will be found in the Remarks 2.1.18.

TaEOREM 1.9.13. If k¢ T, then
e d({x} xI) = T, . [—d(4 x 4) + ¢ 40, d (AU {x}) x (4U{K})].
Proor. If 4 = I', then
¢ d({x} xI')-d(4 x4) £ ¢ [d({x} x 4)-d(4 x 4)] by 1.9.2(v), 1.9.3
= ¢, d((du{x}) x (4u{x})) by 1.9.2(iv)

< Copnd(Au{r}) x (4u{x}).
Hence

Ced({ic} xI) £ —d(A x4) + €4y d(AU{x}) x (AU {xc}).
Since this inequality holds for every 4 < I', we have
cd({x}xT) = I‘IA sr [—d(4x4)+ C(Au{x})a((A u{x}) x (4u{x})].

To prove the opposite inequality we will make use of 1.9.8. Assume, then,
that P is an arbitrary partition of I', and that Q is any subset of I' such that
[2n®| = 1 for each ® € P. Then

d@x Q) 1gpdo T, o [—d(4x4) + €y, d(Au{K}) x (4u{}))]
< Igpde C(Qu{x})a((g u{x}) x (Qu{x}))

<11, pde- cd({x} x Q) by 1.9.9
= ¢, (ITypde- d({K} x Q) by 1.8.6
< ¢ d({x} x T by 1.9.6.

An application of 1.9.8 completes the proof.
The following theorem is a generalization of 1.8.15.

THEOREM 1.9.14. Let A be a non-discrete CA, and B a finite subset of
diagonal and co-diagonal elements of U such that I1B # 0. Then

ATIB) = U _p4x = {x:d,, € B or —d,;, € B for some J # x}.

xeB
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Proor. We may, of course, assume o« = 2. Let I' = U,_,4x, and notice
that, by 1.6.4 and 1.6.7, I' = {x:d,, € B or —d,; € B for some 1 # k}. Also
observe that IIB-co—dyy # 0 (cf. the remark after 1.3.18); for, if
I1B-cy—dy; = 0, then, by 1.3.19, IIB < d, for all x, A < a. This implies
that B consists exclusively of diagonal elements; hence, using 1.6.9(1) and
1.8.7 we have

0 = cry(TIB-co—dgy) = ¢l 1B co—dgy = co—dy;.
This is impossible since ¥ is assumed to be non-discrete. Therefore,
[1B-cy—dy, # 0.

Consider any x e I' and assume, by way of contradiction, that x ¢ A(I1B).
Then we must have either d,, € B or —d,; € B for some A # «; since also
{x, 2} & A(IB) by assumption, 1.6.10 gives us

A(LB) = A0 IB)u{x, 2}.

This contradicts the assumption « ¢ A(HB), and thus, in fact, x is contained
in A(IB). This shows I' € A(I1B). The inclusion in the opposite direction
is an immediate consequence of 1.6.4, 1.6.5, and 1.6.7, which completes the
proof.

COROLLARY 1.9.15. If B is a finite set of diagonal and co-diagonal elements,
C is another such set, and I1B-T1C # 0, then

AT1B-T1Ic) = Ad1B)v4ad10C).

The proof is trivial in case U is discrete. In the other case apply 1.9.14
directly.

COROLLARY 1.9.16. (i) If dR # 0, then A(dR) = Fd(R ~ Id).
(ii) If 0  d(I'x 4) # 1, then A’ x 4)) = T'uA.

In connection with 1.9.16(i) and its proof see the remark following 1.9.2.






1.10. ATOMS AND RECTANGULAR ELEMENTS

We recall that by atoms of a cylindric algebra % we understand atoms of
its Boolean part BI, and that the set of these atoms is denoted by 479l
Remembering that €[, is a BA (see 1.6.19) we now define:

DEFINITION 1.10.1. By a I'-atom of U we mean an atom of G, i.e., an
element of AtE[ .

According to our convention the set I' in 1.10.1 is assumed to be finite.
This restriction, however, is not essential; in view of 1.6.18 and 1.6.19 we
could consider Q-atoms for an arbitrary set Q < a.

In an atomic cylindric set algebra whose atoms are singletons, the {x}-
atoms are just lines parallel to the x-axis; I'-atoms are linear subspaces parallel
to the subspace spanned by the set of all A-axes for AeT.

COROLLARY 1.10.2. The O-atoms of W coincide with the atoms of U, i.e.,
At CLA = A1,

THEOREM 1.10.3. (i) If I' = 4 and x is a I'-atom, then c X is a A-atom.

() If I = A, k¢ 4, and x is a A-atom, then x-dp ., is a (4 ~I)-atom.

ProoF. (i) Under the hypothesis of (i) we have 0 < x < ¢x by 1.7.5,
$0 Cx # 0. Now suppose ¢, Xy # 0 where y e CL,A. Then, by 1.7.5,
x+y # 0. Since y € C[;A and x is a I'-atom, it follows that x < y, and hence,
by 1.7.5 again, that c4x < y. This shows that c.,,x is a 4-atom.

(i) Since cy(xdp ) = x°dy; =x by 1.8.3(1) and 1.8.6, we have
x+dp g # 0. Also, x-dp ., € Cl, A by 1.8.6.

Now suppose x+dp .-y # 0 where y € Cl,._ . Then ci4(x-d ) # 0,
and, since cyyx = x, we obtain x-¢(dp yy) # 0. Since x is a 4-atom,
it follows that

0)) x = C(A)(dru{,c} Y)
Now
C(A)(dru{x} y) = C(T)C(A~r)(dru{x}'y) = C(T)(dTu{tc} ‘y).
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Hence, by (1) and 1.8.12(iv),

% droug = dropg So@ropg ') = drop 'y = -
This proves that x-d ., is a (4 ~ I')-atom.

CorOLLARY 1.104. (1) If I''A< O, k¢ 0O, and x is a I'-atom, then
coyX A o is a (O ~ A)-atom.
(D) If, in particular, x is an atom and x ¢ O, then cgyx-dg ., is an atom.

THEOREM 1.10.5. (i) If x is a I'-atom, then either Ax = 0 or else Ax = a~T;
in case |lu~T| 22 we have Ax =0 iff x < cidyy, and Ax = o ~T iff
x £ cp—dgyy.

@) If, in particular, x is an atom, then either Ax = 0 or else Ax = o; in
case oo = 2 we have Ax = 0 iff x < c{dy; and Ax = o iff x £ co—dy;.

(i) If x is an atom, then clx = 0 for every x € Ax, and A(cqyx) = Ax ~T
for every I' = a such that |o~1T| = 2.

Proor. For the proof of (i) we may suppose

M la~T] =2
since, otherwise, (i) obviously holds. Assume Ax # o ~ 1T, ie., Ax c a~T

(dxnI' = 0 by the hypothesis of (i)). Then because of (1) we may choose
K, A < o such that

) K,Aea~I, K #A4,
and
3) CX = X.

Using (3) and 1.3.2 we obtain c(x-d,;) = x; hence x-d,; % 0. Therefore,
since x is a I'-atom, and d,; € C/ by (2) and 1.6.4, we have x < d,,. This
inclusion when combined with (2) and (3) gives 4x = 0 and x =< cidyy, by
1.3.19 (cf. Remark 1.4.5). The proof of (i) is completed by observing that,
if Ax = o ~ T, then x-cy—dy; # 0 by 1.6.9(ii), and hence x < ¢,—d,, since
co—do; € CIA. Taking I' to be empty in (i) we obtain (ii).

We now turn to the proof of (iii). Assume x is an atom. Then the first part
of the conclusion of (iii) is an easy consequence of 1.6.17(ii). In order to see
that the second part of the conclusion holds, assume, on the contrary, that
lo ~TI'| = 2 and A(¢ryx) = Ax ~I'. Then, a fortiori,

@ Ax # 0,

and hence we know by part (ii) of the present theorem that Ax = «. There-
fore, A(cyX) = a ~1I, and since cyx is a I'-atom by 1.10.3(), we have
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A(cryx) = 0 upon applying part (i). Furthermore, in light of the assumption
le~TI'| = 2 we can conclude from (i) that cx < cjdy;. Hence x < cfdo,
and 4x = 0 by 1.3.19. This contradicts (4), and the proof is complete.

It will be seen in Chapter 2 that the assumption |0~ I'| = 2 is necessary
both in (i) and (iii); cf. the remark after 2.1.22.

From 1.10.5(ii) we see that two very different kinds of atoms occur in
cylindric algebras.

The notion of an atom is a purely Boolean concept. In the theory of CA’s
a special role is played by certain atoms, called rectangular atoms, which are
distinguished by means of a condition expressed in terms of cylindrifications.
This condition may be applied to non-atomic elements as well and leads to the
following

DeFINITION 1.10.6. An element x is said to be rectangular iff ¢ryx-c4x =
CranX for all T and A.

Clearly all zero-dimensional elements are rectangular. In a non-discrete
CA the element d,, with x # A is not rectangular, as is easily seen from 1.10.6
by letting I' = {x} and 4 = {1}. In a cylindric set algebra of dimension 2
an element x is rectangular iff it is a “generalized rectangle” in the sense that
whenever (ug, u;», {vy, vy € x we also have {uy, v,), {vy, Uy € x (see Fig.
1.10.7). A generalization to higher finite dimensions is given in 1.10.12 below;
from this it results that a rectangular element of a finite-dimensional cylindric
set algebra can be regarded as the Cartesian product of its projections on each
coordinate axis.

Fig. 1.10.7
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COROLLARY 1.10.8. If x is a rectangular element, then so is ¢ x.

THEOREM 1.10.9. The following two conditions are equivalent:

(1) x is rectangular;

(i) for every I' and for any x, A such that k # 2, we have ¢ r )X €ro X =
CaryX.

Proor. The necessity of (ii) is clear from 1.10.6. Now assume that (ii) holds.
We shall show that cyx-cyx = ¢4 by induction on the number of
elements of © = (I' ~ A)u(4 ~T).

Indeed, if @ is empty, then I' = 4, and there is nothing to prove. Therefore,
assume inductively that © is non-empty. If either of the sets I' or 4 is included
in the other, the desired result is immediate. Hence we can assume that there
are elements kel'~A4 and Aed~T. Now (I' ~(du{x})uv((du{x})~T) =
O ~ {x}, and thus, by the induction hypothesis, ;)X € 1,0 = Craopepn-
Similarly, ¢ y)X* CpX = € aayoa*- Hence

X X = Sramoun™ Srnmoun®
= CiramX by (ii)
= X CapX,
and the inductive proof is complete.

TueOREM 1.10.10. If x is a rectangular element and O < |I| < o, then
Micrearyx = ey
where A = N, T;.
ProoF: by induction on the number of elements of I, using 1.10.6.

TuporeM 1.10.11. The following two conditions are equivalent:

(i) x is rectangular,

(i) x =11, Cir~ X for every non-empty I' < a.
If 0 < |4x| < o, (i) is also equivalent to

(i) x =TT, Clunmap®s
hence, if 0 < a < o, (i) is equivalent to

(iv) x = H/l<ozc(oz~{l})x‘

Proor. The implication from (i) to (ii) is a special case of 1.10.10. To show
the implication in the opposite direction consider any 4 and @ and set
I' = Au@O. Then using (i) and (C,) we get

X = C(A)Hzer Cr~upnX
= Hzerw Cr~upX* C(A)Hxat Sr~up*

= Hzerw Cr~ppX” ]‘—‘[AEA X



1.10.12 ATOMS AND RECTANGULAR ELEMENTS 229
and hence

@) CapyX = HleF~A Cr~upx-

Similarly we obtain
@ CoX = HAer~@ Cr~ppX and € gx = Hle]‘~(An@) Ca~upn*-
(1) and (2) immediately imply

Cay¥ " X = Cuney¥s

and thus x is rectangular by 1.10.6.

Now we assume Ax is finite and non-empty. Trivially (ii) implies (iii). To
show, conversely, that (iii) implies (ii) we take any non-empty I' < o and
compute:

Hlerc(FN{l})x = Hlefc((FnAx)~{/1})x by 1.7.7(ii)

= H;.eAx Cradn~up* 0y (Cy), 1.7.3

SIL s~ by (C,), 1.7.3,1.7.5
=X by (iii).

On the other hand, x < II, ¢, x by (C;) and 1.7.5. Since I' was an
arbitrary (finite) subset of o, we obtain (iii).

Under the hypothesis 0 < « < o, (iv) is a trivial consequence of (ii) and is
easily seen to imply (ii). This completes the proof.

ReMARK 1.10.12. By applying 1.10.11 to cylindric set algebras of finite
dimension « we see that the rectangular sets X in such algebras can be charac-
terized as “‘generalized parallelepipeds” (or “generalized boxes”), i.e., as sets
which are Cartesian products of their projections on all coordinate axes:

X =P __ pi.*X.
The next theorem is rather special and has a restricted scope of application.

THEOREM 1.10.13. Let o < @ and let A be a CA, such that for every x # 0
we have c,x = 1.

@) If Il 2 2, z is rectangular, and O # z < dr, then ¢, .z is a (« ~T)-
atom.

(i) Ifin particular o = 2, z is rectangular, and 0 # z < d; for all x, A < o,
then z is an atom.

Proor. Let 4 = o ~T. Assume that ¢z -y # 0 for some y € 4 such that
¢y = y- We wish to show that ¢ 4z < y. Since |I'| = 2, there are @, P # I’
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such that Oud =T and @nd = 0. Then

o)z =) = w(Cnz*y) oz —¥) by hypothesis of theorem
= ) [Cay(Cyz " 1) So)(Cay - — )] by (C3), 1.7.5
= o) [C@)(Cayz " dr* ¥) Co)(Caz dr* =)l
by hypothesis of (i)

= ¢e)[C@)(cuyz " dr) " ay(dr - ¥)  Coy(C(Z dp) - co)dr- -l
by 1.8.12(ii)

= ¢y [Cuvm? Cavey?” c@(dr-y) ceoydr- -1
by hypothesis of (i)

= Co) [C(A)Z -dp- C(qs)(dr ¥ C(@)(dr el
by hypothesis of (i), 1.10.6

= Coy(Cyz dp-y-dr-—y) by 1.8.12(iv)
= 0.

Thus c4yz-—y =0, i.e., ¢4z < y as desired. Hence we obtain the conclusion
of (i). Since (ii) is a particular case of (i), the proof is complete.

The premisses of 1.10.13 are rather restrictive, but it can be shown by means
of simple examples that none of them can be dropped. This applies in the first
place to the premiss: ¢,x = 1 for all x # 0. It can easily be shown that an
equivalent form of this condition (for « < ) is: the only two zero-dimensional
elements are 0 and 1; cf. 1.7.10(ii). It will be seen from the discussion in
Section 2.4 that the condition in the second form characterizes those CA’s
which are directly indecomposable in the sense of 0.3.25. As regards the
premiss o < o, a generalization of 1.10.13 to infinite-dimensional algebras is
known, but this requires imposing on U additional conditions which deprive
the result of much of its interest. The premisses [I'| = 2 in 1.10.13(i) and
o = 2 in 1.10.13(ii) prove also to be essential.



1.11. LOCALLY FINITE-DIMENSIONAL AND DIMENSION-COMPLEMENTED
CYLINDRIC ALGEBRAS

In this section we discuss elementary properties of two important classes
of cylindric algebras — the locally finite-dimensional CA,’s and the dimension-
complemented CA,’s. Both these notions are of interest only when applied to
CA.’s with o = o since, as is seen from 1.11.3 below, they prove to be trivial
in case o < .

The metalogical aspect of the theory of CA’s leads in a most natural way
to the first of these notions; for some elaboration of this remark see 1.11.2.
The second notion is more general than the first (disregarding the trivial case
o < ). It turns out, however, that most of the interesting results concerning
the first notion easily extend to the second. This is the reason why in the present
section we shall deal primarily with dimension-complemented algebras. How-
ever, the intuitive background of the second notion is less clear and its connec-
tion with metalogical representations of CA’s is much looser than in the case
of the first notion. Again we shall have something to add to this point in
1.11.2.9

DeriniTioN 1.11.1. (i) W is called a locally finite-dimensional, or simply a
locally finite, cylindric algebra of dimension o, in symbols W € Lf,, if |Ax] < o
for every x e A.

(i) U is a dimension-complemented cylindric algebra of dimension o, in sym-
bols A € Dc,, if Ax # o for every x € A.

Examples of dimension-complemented cylindric algebras which are not
locally finite are easily constructed. They can be found, e.g., among subalgebras
of any infinite-dimensional full cylindric set algebra whose base contains at
least two different elements.

ReMARKs 1.11.2. In anylanguage A of predicate logic in which the sequence
of variables is of length o all the cylindric algebras of formulas are easily

1) The class of locally finite-dimensional algebras was first defined in Tarski-Thompson [52].
The class of dimension-complemented algebras was first introduced by a different though
equivalent definition in Henkin [55a], pp. 90 f.; cf. here footnote 1 on p. 233.
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seen to be Lf,’s. This is a direct consequence of the trivial fact that every for-
mula in A is a finite string of symbols and hence contains only finitely many
variables. In case « = it turns out that, conversely, every Lf, is isomorphic
with an algebra of formulas in some such language A. Assume for the moment
that the construction of cylindric algebras of formulas described in 1.1.11
(or, more specifically, the definition of the relation =; underlying this con-
struction) is based upon the syntactical notion of derivability rather that the
semantical notion of consequence; cf. the Preliminaries. In this case the
converse theorem is pretty trivial and its proof is straightforward; loosely
speaking, we simply check that the postulates characterizing CA’s form an
adequate algebraic transcription of axioms of predicate logic. Moreover, if
we extend literally an appropriate version of the syntactical notion of deriva-
bility (e.g., the notion defined in Monk [65a]) to languages A with o < w,
then the converse theorem also extends to CA,’s with « < @ and implies that
every CA of finite dimension is isomorphic with an algebra of formulas.

Actually, however, our construction of cylindric algebras of formulas is
implicitly based upon the semantical notion of consequence. As a result, the
converse theorem acquires a somewhat deeper character and its proof depends,
explicitly or implicitly (according as to the method of proof chosen), on the
completeness theorem for predicate logic; such a proof will be given in detailed
form in Part II of our work. Since, moreover, the completeness theorem in its
usual form fails for languages with finitely many variables, the converse theorem
applies only to Lf’s of infinite dimension.

In a certain portion of Part IT we shall discuss a comprehensive class of
formal languages which, in addition to languages A described in the Prelimi-
naries, contains also analogously constructed languages with infinitely long
expressions. In such infinitary languages we can form disjunctions and conjunc-
tions of any sequence of formulas whose length is smaller than some fixed
infinite (regular) cardinal x > w; relation symbols and operation symbols
may be of finite or infinite rank, but at any rate of rank < x; the length «
of the sequence of variables is usually assumed to be at least equal to x. Our
construction of cylindric algebras of formulas easily extends to these infinitary
languages. However, in opposition to the case of finitary languages, the resulting
algebras are no longer locally finite-dimensional. They still prove to be dimen-
sion-complemented. In fact, they all belong to a certain class of CA,’s which is
intermediate between Lf, and Dc, and is characterized by the following con-
dition: the cardinality of the dimension set of every element x in such an al-
gebra is smaller than the cardinality of the dimension « of the whole algebra.

Since all cylindric algebras of formulas of infinite dimension « are repre-
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sentable in the sense of 1.1.13, the same applies to all Lf,’s. In Part IT it will
be shown that all Dc,’s are also representable. Actually, it will be proved there
that the class of representable CA,’s (with o = ) is algebraically generated
in the sense of 0.3.14 by either of the classes Lf, or Dc,.

THEOREM 1.11.3. (i) If o 2 o, then Lf, = Dc,.

(i) If o < o, then Lf, = CA,.

(iii) If 0 < o < o, then W is dimension-complemented iff it is discrete.
(iv) Every discrete CA, is locally finite.

Proor: (i), (ii), and (iv) by the definitions involved; (iii) by 1.6.11.

THEOREM 1.11.4. For o = o the following conditions are equivalent:
() AeDe,;
(i) o~ U, _yAx is non-empty for every finite X = A;
(iii) o~ U, ydx is infinite for every finite X = A.Y
Proor. Obviously (iii) implies (ii) and (ii) implies (i). It remains to show
that (i) implies (iii); to this end assume U € Dc,. Then, by 1.6.11,

(1) o ~ Ax is infinite for each x € A.

We shall prove (iii) by induction on |X|. The case |X| = 0 is trivial, and the
case |X| = 1is covered by (1). Now assume inductively that |X| > 1, and,
to derive a contradiction, that o ~ U, _,Ax is finite. Choose y,ze X, y # =
By (1) there exist x, A such that x ¢ 4x, A ¢ 4z, and k # A. Then

o~ [(UxeX~{y,z} Ax) UA(y'dxl +z- _dnﬂ)]
is finite by 1.6.12. This contradicts the induction hypothesis. Hence (iii) holds.

REemMARK 1.11.5. Theorem 1.11.4 suggests a generalization of the notion of
dimension-complementedness. A CA, % may be called x-dimension-comple-
mented (x any cardinal) if o« # U, Ax whenever X = 4 and |X| < k. By
1.11.4, the class of x-dimension-complemented CA’s for 2 < k < o coincides
with that of dimension-complemented CA’s in the sense of 1.11.1. On the
other hand, one can easily show by means of examples that the class of x-
and A-dimension-complemented CA,’s are distinct whenever k < 4 < |0 and
A > . The class of x-dimension-complemented CA’s contains in particular
the CA’s of formulas in infinitary languages mentioned in 1.11.2.

1) Henkin [55a] originally defined the notion of a Dc, by means of the condition 1.11.4(jii).
Later Tarski showed that this condition was equivalent to 1.11.4(ii). The final simplification,
leading to Definition 1.11.1(ii) and Theorem 1.11.4, is due to Jack Silver.
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THEOREM 1.11.6. For every U € Dc, and x < o we have:

. _ i
® CX = 2, Sx
and, more generally,
X = 2 Six

for any set I' such that o« ~Ax = T < «;
(i) if « = 2 and k < a, then

Zxaezqdml = Zu<,1<ad,u1 =1
and
_ _ 0
]‘——'[/1<9ch11 - H‘u,},<adﬂl . C0d01-

Proor. (i) In view of 1.11.3@ili) and the remark immediately following
1.5.1 we can assume that « = w. Clearly six < c.x for every AeI'. Now
assume that s§x < y for all Ael. By 1.11.4 there is a Aea~ (dxudy);
hence Ael’, ¢;x = x, and ¢;y = y. Then ¢;s5x < y by 1.2.9, and therefore
c.x = y by 1.5.8(1) and 1.5.9(i). This completes the proof of (i).

(i) We first choose x, u < o« with x # u. To obtain the formula for 2,
we respectively replace x, x, and I' in (i) by y, d,,, and o ~ {k}; to obtain
the formula for I'l, we replace x, x, and I" by y, —d,,, and o, and then use
Remark 1.4.5.

Thus in a D¢, a cylindrification can be expressed in terms of the operations
sb. We have already seen in 1.5.7 that the diagonal elements can also be so
expressed. This paves the way for a possible new treatment of Dc,’s. The Dc,’s
in this new sense would be algebraic structures

%{* = <A9 +a Ty T Oa 19 S,;>K,/1<a

each correlated with a Dc, in the old sense, with 4, +, ..., 1 taken from A
and s§ defined as in 1.5.1. The relation between the classes of Dc,’s in the old
and the new sense can be described as a variant of definitional equivalence
discussed in 0.1.6. This would not be, however, the ordinary first-order
definitional equivalence. The problem naturally arises of providing a simple
and elegant characterization of Dc,’s in the new sense. A solution of this
problem can be found in Preller [70]."

In Section 1.5 we came across various simple equations which do not hold
in every CA, but which do hold in all the special CA,’s discussed in Section 1.1.

1) Earlier work in this direction was done in Galler [57] and LeBlanc [61]. See also Preller
[68] where algebraic structures related to 2(* but of a more general nature are studied.
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Consequently, these equations hold in all representable CA’s and hence, in
particular, in all D¢,’s; cf. the remarks following 1.5.14 and the concluding
remark of 1.11.2. Actually, we shall see later (cf. 2.6.53) that all the conditions
of the form “a given equation holds in all algebras of the class K” are equi-
valent if we take for K any one of the following classes: Lf,, Dc,, the class of
all cylindric set algebras of dimension «, and the class of all representable
CA.’s, where o is any given infinite ordinal.

The next theorem provides a new example of an equation (given in the form
of an inclusion) which will be shown in 2.6.42 not to hold in arbitrary CA.’s;
we shall show here by a simple direct argument that it holds in every Dc,.

TreEOREM 1.11.7. If A eDc,, x, A < o, Kk # A, and x, y € A, then
CK(X )’ ) Cﬂ.(x : “)’)) é C}.(Ck'x ! '—dK}.)'

Proor. By 1.11.4 choose pea~ (dxudyu{x, A}). Now by 1.3.9 we have
x-y-c(x-—y-d,;)-d,, = 0. Hence

x')" Cl('x . “)" dﬂ}.) é X _d[ul é c/l(ckx : mdul)'

Also, x-y-c;(x- —y-—d,;) S c;(cx- —d,y),s0xy-c,(x- —p) S c;(cx- —d,,).
By 1.2.9 it follows that c (x-y-c,(x-—»)) < c)(cx- —d,;). Applying s to
both sides of this inequality, the desired resuit follows.

TraEOREM 1.11.8. Suppose U € Dc,.

() If x € AtU, then Ax = 0.

(i) If o« = 2 and c{dy; = 0, then U is atomless.
ProOF: by 1.10.5(ii) and 1.11.1(ii).

In the remainder of this section we shall be concerned with a generalization
of the operation s (and also ,s(x, 1)) in certain CA,’s 9. The new operations
will be correlated not only with a pair of ordinals x, 1 < «, but with each pair
of finite sequences (x¢, ..., K,_1), {Ag, ..., 4,—1y of ordinals <a. Just as
the operation s in its metalogical interpretation corresponds to the substi-
tution of a variable v, for v, in a formula ¢, so the generalized operation
corresponds to the simultaneous substitution of variables v, , ..., v,  for
Vs -+os U, > of. the remarks following 1.5.12. We shall refer to the generalized
operation as the substitution operator, and we shall denote it by s. (There
will be no conflict with the use of s in the expressions s} and ,s(x, A) since
the letter s will now appear in a different symbolic context.) It proves more
convenient to relativize the substitution operator to an arbitrary finite trans-
formation of « rather than to two finite sequences of ordinals <a. Thus s
will correlate with every finite transformation t of o a function s, from A4 to 4
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(which, in fact, will be a Boolean endomorphism of 2); s, generalizes the
operation sf in the sense that if 7 is the replacement [ic/i], then s, coincides
with s§. The difference between these two approaches may seem to be rather
insignificant and purely formal since, as we recall from the Preliminaries,
every finite transformation 7 of « has a unique canonical representation
v = [&o/os --+» Ev—1/My—1] in terms of two finite sequences of ordinals. How-
ever, the relativization of the substitution operator to finite transformations
suggests the idea of further generalizing this notion, and indeed of extending
it to arbitrary transformations of «. We shall see that to some extent this idea
can be materialized."

In the whole discussion the cylindric algebras involved will be assumed to
be Dc,’s, and the part of the discussion relating to substitutions for arbitrary
(not necessarily finite) transformations will be restricted to Lf,’s. It is known
that these restrictions are essential. In particular, it will be seen from results
in Part II of this work that it is impossible to define a substitution operator
for arbitrary CA’s which would agree in its basic properties with the notions
we will introduce for Dc’s and Lf’s.

DEFINITION 1.11.9. Let % be a Dc, with o = . By the substitution operator s
(or ™) we understand the function which correlates with every finite transfor-
mation t of o« a unary operation s, on A determined by the following stipulation:

If © = [1o/Vos -+-s M—1/Vx—1] IS the canonical representation of t© (u, v € *a,
o < oo < Wye—y), if x is any element of A, and if 1y, ..., n._4 are in this order
the first x ordinals in o ~ (AxURg U Rgv), then

— g7o T — 1 gHO =1y 2)
S = STO ... sTeolsho gty

REMARK 1.11.10. Definition 1.11.9 can be applied in particular to any CA
of formulas in a language A with variables arranged in a transfinite sequence
of length . In fact, we know that every such algebra 9 is an Lf and hence
also a Dc. The elements of 9 are equivalence classes correlated with formulas

1) The idea of relativizing the substitution operator to arbitrary transformations of o
originates with Halmos, and underlies his development of the theory of polyadic algebras;
cf. Halmos [57]. In this theory the substitution operator is not defined in terms of cylindrifi-
cations and diagonal elements, but is treated as a primitive notion, and its fundamental
properties are simply postulated. Details will be found in Part II.

2) The theory of the substitution operator based upon Definition 1.11.9 was developed early
in the study of cylindric algebras; it provided an apparatus used in the proof of the repre-
sentation theorem for locally finite algebras. The representation theorem was first announced
in Tarski [52], but the theory of the substitution operator was not published at that time.
A few years later this theory was independently developed by Galler [57].
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in A. Let © = [uo/Vo, .., le—1/Vi—1] be a finite transformation of «, ¢ be any
formula in A, and ¢ be the formula obtained by simultaneously substituting
the variables v, , ..., v,  for Vs -ees U, _, Tespectively; cf. the remarks after
1.5.12. From Definition 1.11.9 it follows then that, if x is the equivalence class
of ¢, then s.x is the equivalence class of .

The intuitive meaning of the operator s as applied to cylindric set algebras
is less clear. If 9( is a dimension-complemented cylindric set algebra, say with
base U and dimension « = o, if 7 is a finite transformation of «, and if X is
any member of A4, then 1.11.9 yields

s. X = {x:xe®U and xe7te X}.

The following theorem expresses some basic properties of the operator s. It
will be seen that the proof of this theorem, which is based directly on Definition
1.11.9, is somewhat complicated in details. The theorem could be easily derived
as a corollary from a general result in the theory of semigroups established in
Jénsson [62]; however, we do not wish to assume here knowledge of Jonsson’s
paper. Our further discussion will be based exclusively on Theorem 1.11.11
and will not revert to Definition 1.11.9.

THEOREM 1.11.11. Let U be a Dc, with o = ». We then have:
(i) For all k, A <o, s /3 = S

(i) For all x, A, p < o with x # 4, if p¢ Ax, then s;;; ;% = ,s(ic, )x.

(iii) For every finite transformation t of o and every x,ye A, s(x+y) =
sx+s.y, s(xy) =sxsy s,—x = —sx, and also s0 =0 and s,1 = 1; in
other words, s, is an endomorphism of BIU.

(iv) If ¢ and © are any two finite transformations of «, then s, = s,es,.

Proor. (i) follows from 1.5.11(i), and (ii) follows from 1.5.10(iii), 1.5.11(),
and 1.5.15.

For the proof of (iii) and (iv) we will need some lemmas. In these lemmas,
and throughout the remaining part of the proof, it will be convenient to
represent the function sjr0esi=io...osi=<=D simply as sy, whenever u and v
are functions from the same finite subset of w into « and m is the unique
strictly increasing sequence such that Rgnm = Dou = Dov.

1) If x < o, if y,v, n, pe”a, if y, n, p are one-one, and if
(RgmuRgp)n(dxVRguuRgv) = 0, then

Tty — P ol
STSRX = SPSpX.

Indeed, (1) is easily established if RgmnRgp = 0 by making use of 1.5.10(iii)
and 1.5.11(ii). To prove (1) in general, note that there is a ¢ € "o with £ one-
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one, Rgén(dxuRguuRgv) =0, and Rgén(RgnuRgp) =0, and then use
the special case just established.

(2) Let t be a finite transformation of a. If k < @, if u,we“q, if u and =
are one-one, if {A:74 # A} € Rgy, and if Rgnn(dxURguut*Rgp) = 0,
then

[N 7
$.X = s, shox.

(2) is an easy consequence of (1), 1.5.8(i), and 1.5.10(iii),(v).

Now we turn to the proof of (iii). Let x and y be given; let = be a finite
transformation and let x < ®w. Let u be a one-one function in “«
such that {A:71 # 1} < Rgu. Choose me“a such that 7 is one-one and
Rgnn(dxudyvRguut*Rgu) = 0. Then

s(x+y) = 57,5%(x+) by (2)
= ST, SeX+ Sy Sy by 1.5.3(1)
= sx+s.y by (2).
Furthermore, it is clear that s,—x = —s.x; hence the remaining formulas

of (iii) are established.

For (iv), let ¢ and 7 be finite transformations of «. Then there is a ¥k < @
and a pe*o such that u is one-one, {A:7l # A}u{l:od # A} < Rgu, and
o*Rguut*Rgu = Rgu. There exist 7, p € o such that = and p are one-one,
Rgnn(dxuRgp) =0, and Rgpn(dsxURguuRgn) = 0. Thus, by (2),

— P GH T it
3 $,8.X = 55, ShST, ShX.

We now claim that, for any 1 < «,

oMz P ol (x~)Im
4) SoSeX = Si1muconSoon Sty S(h ~ 2y leo SuX-

For A =0, (4) reduces to (3). Assuming that (4) holds for 4 < x we prove
it for A+1. Let

(5) TH; = H’r]?
we then have

— JAMm P leln (k¥ op
SeSeX = 871 e S S SoTS (e~ 231 2o S X by (4), 1.5.10(iii)

oA 75 (K~ (A+ 1)1 s
= S oS Sty Sy S SO L (G 1)) e SAX by 1.5.10(1i), (5)

— JAMr P <P Ta ot (K~(A+1N)IT 1
= 571 gerouSoon S Spr oSt m (44 1)1 rou Se X by 1.5.10(iii)

— oAz P Pn Ta it K~(A+1))In :5
= S goron o S Soren S S m (14 1)) 1o X by 1.5.10(ii)

A+ 1)1 ~A+ 1)
sGT lgﬁmpsﬁms;‘sgiNfH 1§§1Zusﬁx by (5), 1.5.10(iii).
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This completes the inductive proof of (4). By taking A = x in (4) and using
(2), 1.5.8(1), and 1.5.10() we get

— o7 no_
S8 X = Saorousn = 50.%.

X.
The theorem is thus proved.

Tueorem 1.11.12. Let N e Dc, with « 2 o and let o, T be finite transfor-
mations of o; suppose ¥, A < o and, as usual, let I' be a finite subset of a, R a
finite subset of ax o, and x any element of A. We then have:

() Sy =AlId.
(i) If © is one-ome, then s, is an automorphism of BIU.
(i) If ye T4 and X, y; exists, then 2, _;s,y; also exists and we have

Stziely i = Zie[ S Vis

similarly, with <2 replaced by “I1”. In other words, s, is a complete endo-
morphism of BLU.

Av) If (@~ I)1o = (a~T) 17, then s,crx = S.CpX.

W) If Ax1o = Ax11, then s,x = sx.

(i) If (x7")*I = 4 and A1t is one-one, then Cr)s,X = $.C 4.

(vii) s dp = d_.

(viii) If <{x, Ay € R~Id and tx = 1A, then s, dR = 0.

(ix) If tx # tA whenever {x, 2y € R~ Id, then s, dR = d{{tx, tA):
{k, Ay € R}.

(x) A(s,x) < t*4x.

Proor. (i): by setting x = 4 in 1.11.11(i).

(ii) Since 7 is a one-one finite transformation, it is easily seen that ¢~ ' is
also a one-one finite transformation and tet™! = 77 'o7 = a1Id. Hence,
by (i) and 1.11.11(iv), s,es,-; = s,_,os, = A1Id. This clearly implies that s,
is one-one and Rgs, = A; the conclusion now follows by 1.11.11(ii).

(iii) 7 can be written as a composition of transpositions and replacements:
T = 0¢°...0,-y. Foreach u < v, if ¢, is a replacement, then s, is a complete
endomorphism by 1.11.11(i) and 1.5.3 (cf. the remark following 1.5.3). If o,
is a transposition, then s, is a complete endomorphism by (ii). (An auto-
morphism of a BA is automatically a complete automorphism; cf. the remarks
beginning Section 0.2.)

(iv) By a simple inductive argument it is seen that we may restrict ourselves
to the case |I'| = 1, say I' = {x}. There is a u€a ~ (dxvu{x}). Then
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S;C X = s skc.x by 1.5.8(1)

a K

= S e/ by 1.11.113), 1.11.11(iv)

Sro[k/u]CKx

. K
= $.S;CX

= §.C.X

Tk

(v) Let I' = {k:0x # 1x}. Then |I'| < @, I' € « ~ Ax, and hence ¢)x = x
and (o« ~I)10 = (¢~ I)17. Thus (iv) yields (v).

(vi) Again a simple inductive argument shows that it is sufficient to treat
the case in which |[I'| = 1, say I' = {x}. Two cases may then occur. First,
we may have 4 = 0. Then, for some pe€a ~ {x} we have

— _ K K _
CuSeX = CuSpeupee® = GeSp S X = SpS.X = S.X.

Secondly, we have 4 = {1} for some A. Then (([x/2, A/x]o7)” )*1 = {4},
and hence [k/4, A/x]ot can be written as a product of transpositions and
replacements p such that (p~*)*A = {1}. It is easily seen using 1.5.8(ii) that
for any such transformation p we have s,c;y = ¢;s,y for every ye 4, and
hence s, /; 111X = CiSpesaeteX- APPLYING Sp; 5. to both sides of this
equation we get

$:CaX = Sy a, 2184516/ 2, 410t

= CSpe/ a2/ TSI/ 2 ATt by 1.5.21

= C_S.X,

KTT

as desired.

(vii) By an easy induction using 1.8.4 we may restrict ourselves to the case
'l =2, say I = {x, A} with x # A. By 1.5.4 the desired equation s d,; =
d,. ., clearly holds whenever 7 is a replacement or a transposition, and hence
it holds for any finite transformation .

(viii) By (vii), s,dR <s,—d,; = —d

(ix): obvious.

(x) Suppose k¢ t*4x. Let I' = (1" ")*«k, and let 1€« ~ {x}. Choose &
such that (a~I1o = (.~ 1t while o*I' = {i}. Now 4x1t = dxTlo
since AxnI" = 0. Hence by (v) and (vi) we have

0.

TK,TA

CeS:X = €S, X = $,C0yX = S X.

Thus x ¢ A(s,x) as desired. This completes the proof of the theorem.
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We now restrict ourselves to locally finite CA,’s and define for them the
generalized substitution operator applicable to arbitrary, not only finite,
transformations of «. Also the notion of generalized cylindrification discussed
in Section 1.7 undergoes a further generalization and becomes relativized to
an arbitrary, and not only finite, subset of «. The reader will readily notice,
however, that both ‘“‘generalizations’ have a purely formal character: the new
operations trivially reduce to the old ones simply using the fact that all the
elements in the algebras discussed have finite dimension sets.

DerFNITION 1.11.13. Let A be a Lf, with « = o. By the generalized substi-
tution operator s* we understand the function which correlates with every trans-
Sformation t of o a unary operation s} on A defined by the formula

STX = Sgteo@mdnnia X
for every x e A. Also for an arbitrary (not necessarily finite) subset I' of o
we set
+
X = CraanX-
THEOREM 1.11.14. Let N e Lf, o = , and let x,y € A. Let I', A = o (both
possibly infinite), and let o, T €« Then:
() cipx = cyx if I is finite;
(i) ¢i)0 =0;
o
(1.11) x+§ C(r)ic, + +
) C(f)()i' <)) = o)
) ryCaX = Sroas
(vi) s}x = sux if t is a finite transformation of o;
(vii) s} is an endomorphism of BIA;
(viil) s, = A11d;
(ix) st =srost;
()f) if @~I)1o = (a~I)11, then sfciyx = sfcpx;
(xi) if Ax1o = Ax11, then s}x = s} x;
(xii) if (t7')*I = O and O17 is one-one, then cjpystx = s} cly x;
(xiii) s d; =d, ; for all x, 2 < a;
Proor. Conditions (ii), (iil), (vi), (viii), (xi), and (xiii) are obvious. As to
(i), we have, by 1.7.3,

— — S
CX = Craax)Car~a0X = Sradx® = SnyX-
To prove (iv), note that ci,p = cy.,,», and hence, by 1.7.7(i),

1) Various parts of 1.11.14 were used in Halmos [57], [57a] to construct postulate systems
for arbitrary polyadic algebras with equality.
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A(x-cpyy) € Axudy. Let © = I'n(dxudy). Then
X Y = Craan® Sy
= CoyX " C@)

) (X" €6)))

= C(FnA(x‘cJ“(r)y))(x “Crndy))
ot
= c(r)(x C(r))’)-

Condition (v) is proved analogously.

Taking (vii) next, it is clear that s} —z = —s¥z for any ze 4. If u,ve 4,
let p=dultu(e~dwlid, p = Avitu(a~dv)1ld, p” = A@u+v)lzu
(0~ A(u+o)11Id, and p” = (duvdv)Ttu(x ~ (duvdv))1Id. Since A(u+v)
< Aduvdv, we have Aulp” = Aulp, Avlp” = Avlp’, and A(u+v)1p” =
A(u+v)1p”. Hence

s (u+v) = s, (u+0)

= s, (u+v) by 1.11.12(v)
=S, U+S,.0 by 1.11.12(iii)
= S,U+s,0v by 1.11.12(v)
= s u+siv.

To prove (ix), let v = AxTtu(a~Ax)11d, o' = A(s] x)1ou(a~ (4ds} x))11d,
p = Ax1(oot)u(a~ Ax)11d, and ¢" = t*AxTou(a ~t*4x)11d. Then
Ax1(¢"-1") = Ax1p, and

srsix = s.s.x
= S,.5.X by 1.11.12(v),(x)
= S X by 1.11.113v)
=5,X by 1.11.12(v)
=s'x

For (x), note that dcjx = Ac, 4,x S dx~T (by 1.7.7). Hence
Acix1o = Acix11, and the result follows by (xi).
Considering (xii) we let @ = I'nt*4x, let Ae o~ @, and for each ¥ < «
let
K if K € Ax,

pr =4 if ke d ~ Ax,

[ K otherwise.
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Then (p~)*® = Ondx, so (p~1)*P1p is one-one, and
St X = C(gy8,X
= 5,C(,- 1y by 1.11.12(vi)

Spc(@nAx)x
= sfclx

Finally, with regard to (xiv) we note that by (vi) and 1.11.11(i) we have
Ste/a7% = S3x. The conclusion of (xiv) now follows immediately. The theorem
is thus proved.

In contrast to 1.11.12(iii), it may be noted that s is not always a complete
endomorphism of BIU. For example, let B be the a-dimensional full cylindric
set algebra with base 2 = {0, 1} (« = ), and let U be the subalgebra of B
whose universe consists of all sets X = *2 such that [A®X]| < w. It is easily
seen that I1%)_ d,, = 0. If we let 0 = ax 1, i.e., ok = 0 for all x < o, then
sfd,, =1 for all x, 4 <o, and so [I®™_ s¥d., =1#0.

K,A<a @

REMARK 1.11.15. From 1.11.14(ii)—(v) it follows that for Lf,’s Theorem 1.7.5
applies to operations ¢, (where I' need not be finite).

The operators s and cj, will be discussed further in Part II. We may
mention that, with the aid of 1.11.6, d; and dR can be similarly generalized
to infinite I' and R if the CA discussed is dimension-complemented. All these
generalizations clearly require some assumptions concerning the existence
of certain infinite sums and products. For work related to this problem see
Mangani [66b] and Lucas [68].






PROBLEMS

ProBLEM 1.1. Boolean algebras can be treated as algebraic structures U =
A, +, =) where + and — have the usual meaning. Clearly, the class of BA’s
so treated is definitionally — and, in fact, polynomially — equivalent with the
class of BA’s described at the beginning of Section 1.1. Is it true that BA’s under
the new treatment can be characterized as algebras {A, +, —) satisfying the
Jollowing postulates for any x, y,z€ A:

Ry x+y=y+x,
(Ry) x+(y+2) = (x+))+z,
R3) —[-x+))+ —(x+ —p] =x?

This problem originates with Herbert Robbins. It is related to an old result
in Huntington [33*] and [33a*] from which it follows that Postulates (R,)
and (R,) together with a postulate very similar to (R;) do characterize BA’s.
It is known that every finite algebra satisfying (R,)—(R;) is a BA.

PROBLEM 1.2. Is there a finite set of identities (By)-(B,) with the following
properties: (i) the identities (By)-(B,) contain only variables and symbols for
fundamental operations and distinguished elements of Boolean algebras; (ii) the
identities (Bo)~(B,) hold in all Boolean algebras but do not form an adequate
postulate system for Boolean algebras; (iii) the identities (By)—-(B,) and (C,)-(C,)
Jjointly form an adequate postulate system for cylindric algebras of dimension
o > 27

Notice that postulate (C) is not listed in condition (iii); for an explanation
see the remark following 1.3.2.

PrROBLEM 1.3. In 1.5.23 an equation with 3 different variables is given which
does not involve diagonal elements and is identically satisfied in all cylindric
algebras of dimension 4 (or more), but not in all diagonal-free cylindric algebras
of dimension 4. Is there an equation with the same properties in which only one
variable or only two different variables occur?
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PROBLEM 1.4. Is there an equation which does not involve diagonal elements
and is identically satisfied in all cylindric algebras of dimension 3 but not in all
diagonal-free cylindric algebras of the same dimension?

Concerning analogous problems for cylindric algebras of dimension less
than 3 see 1.5.24.



CHAPTER 2

GENERAL ALGEBRAIC NOTIONS APPLIED
TO CYLINDRIC ALGEBRAS






2. GENERAL ALGEBRAIC NOTIONS APPLIED TO
CYLINDRIC ALGEBRAS

In this chapter we discuss the application to cylindric algebras of the general
algebraic notions defined in Chapter 0 for arbitrary algebras. We shall see that
in many cases the original definitions of these notions can be modified using
specific properties of CA’s, so as to make them more adaptable for the purposes
of our work. We shall pay particular attention to those properties of the notions
discussed which, while formulated in general algebraic terms, do not apply
to all algebras, but are applicable either to all CA’s or at least to all algebras
in some special classes of CA’s; cf. 2.1.1, 2.1.14, and 2.3.22. Some further
results which conceptually belong to this discussion will be found only in the
second part of this work (since their proofs depend on the representation
theory which is developed there). Sections 2.2 and 2.7 differ somewhat in their
character from the remaining sections. In 2.2 we extend the notion of a rela-
tivized algebra from the theory of BA’s to that of CA’s. The discussion in 2.7
is related to the fact that cylindric algebras can be subsumed under a com-
prehensive class of algebras known in the literature as Boolean algebras with
operators; without presupposing any knowledge of the general theory of those
algebras, we re-formulate and re-establish some general results concerning
Boolean algebras with operators in their application to the special class of
cylindric algebras.

The algebraic notions involved in our discussion will be applied not only
to the cylindric algebra 2, but also to the Boolean algebra B9, the Boolean
part of 2. When applying a term from the general theory of algebras, not to a
CA A but to its Boolean part BIA, we shall provide this term with the adjective
“Boolean” and then refer it directly to . Thus we shall speak of subalgebras
of 9, using this term in the sense of 0.1.8, but we shall also speak of Boolean
subalgebras of I, meaning subalgebras of BIA. This convention extends the
related stipulations made in Chapter 1 (see the remarks following 1.1.1).
Exceptions to this convention will be pointed out explicitly.
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2.1. SUBALGEBRAS

We shall be concerned here with the notion of subuniverse and several other
notions defined in its terms. Definitions of these notions were given in Section
0.1.

A subuniverse of an algebra 9 is by definition any subset of its universe 4
which is closed under all fundamental operations of . Among fundamental
operations of CA’s we find some operations in the usual sense — Boolean
operations +, -, — and cylindrifications ¢, — as well as certain distinguished
elements, namely 0, 1, and the diagonal elements d,,. In the general theory
of algebras distinguished elements are identified with constant operations of
rank 1, and therefore they belong to every non-empty subuniverse. Conse-
quently, a subuniverse of a CA 9 can be defined as any subset of A which is
either empty or else contains the elements 0, 1, d,; and is closed under Boolean
operations and cylindrifications. As is well known from the theory of Boolean
algebras, we may omit the elements 0, 1 and either one of the operations +, -
from this list since, e.g., 0 = —(x+ —x), | = x+ —x, and x'y = —(—x+
—»). The resulting definition of subuniverse is more suitable for the dis-
cussion of CA’s; the modification extends, of course, to such derivative notions
as those of subalgebra and the subuniverse (or subalgebra) generated by
a given set of elements.

THeoREM 2.1.1. SCA, = CA,; that is, the class CA, is closed under the
Jformation of subalgebras.

REMARK 2.1.2. A proof of 2.1.1 based directly upon the definitions of the
notions involved is entirely routine. On the other hand, we can prove 2.1.1
by means of a very concise model-theoretic argument: we use the simple
observation that by the very form of its definition CA, is an equational class
of algebras, and then we apply the general theorem 0.4.63 from which it
follows that SK = K holds for every equational class K. Similar remarks
apply to the analogous theorems 2.3.1 and 2.4.1 below.

In connection with the next theorem see 1.6.1 and 1.11.1 for the definitions
of 4, Lf,, and Dc,. Recall that, by 0.1.8(i), the symbol *“<=” is used to denote,
not only the relation between a subset and a set, but also that between a
subalgebra and an algebra.

Tueorem 2.1.3. (i) If A = B e CA, and x € A, then A™x = A®x.
(ii) SLf, = Lf, and SDc, = Dc,.
Proor. (i) follows directly from 1.6.1, and (ii) follows from 2.1.1 and (i).
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LemMA 2.1.4. If B is an infinite cardinal, I < o, A e CA,, X = 4, and
|[dxnl'| < B for each x € X, then |AxnI'| < f for each x e Sg X.
ProoF: by 1.6.4, 1.6.5, 1.6.7, and 1.6.8.

In connection with the statement of 2.1.4 recall that Sg X is the subuniverse
of 9 generated by X, i.e.,, SgX = 0if X =0, and if X # 0, then SgX is
the smallest subset B of 4 such that X < B, d,; € B for all k, A < a, and B
is closed under Boolean operations and cylindrifications.

THEOREM 2.1.5. Assume o = o, W e CA,, and 0 # X < A.

@) If |4x| < |a| for each xe X, then ©gX €Dc,; if |Ax| < o for each
xe X, then SgX e Lf,.

() If 'coa, la~T| 2 w, and Ax = I for each x € X, then SgX € Dc,;
if in addition |I'| < o, then ©gX e Lf,.

ProoF. Apply 2.1.4, taking o for I' to obtain (i) and o ~ I" for I' to obtain
(ii).

CoOROLLARY 2.1.6. If A e CA, and B = {x:x€ 4, |4x| < o}, then Be Sul
and the subalgebra B of W with universe B is the largest subalgebra of U which
is an Lf,.

Recall that Su? is the class of all subuniverses of 2.

THEOREM 2.1.7. Assume o 2 », A e CA,, and 0 # X < A. Then the follow-
ing two conditions are equivalent:

(i) ©@gX eDc,;

(i) le~U, 44yl = o for every finite Y = X.

Proor. (i) implies (ii) by 1.11.4, and from 0.1.17(ix) and 2.1.5(ii) we obtain
the implication in the opposite direction.

THEOREM 2.1.8. For a CA, U to be an Lf, it is necessary and sufficient that
there exist a set X such that A = SgX and Ax is a finite ordinal for every
xeX.

Proor. The sufficiency of the condition follows immediately from 2.1.5(i).
Set

B = Sg{x:xe A, Ax = |Ax|};

to show the necessity of the condition we shall prove by induction on |[4x| ~
Ax| that xe B for every xe 4. If ||4x| ~ Ax| = 0, then Ax = |4x| (since
Ax is finite) and hence x € B trivially. Assume now that ||dx] ~ 4x| > 0,
and consider any

ey Ae|dx] ~ Ax.
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Then, because |4x| < o, there exists a
2 Kedx ~ |Ax]|.
By (1), (2), and 1.6.15 we have
A(s5x) = (Ax ~ {x})u{A},
and hence, again using (1) and (2),
A5 ~ AS5x) = |Ax] ~ A(S5x) = (4] ~ 4x) ~ {2

This along with (1) and the induction hypothesis gives s¥x € B, and, because
x = siskx by (1), 1.5.8(i), and 1.5.10(v), we obtain x € B. Hence B = A and
the proof is complete.

THEOREM 2.1.9. Let A e CA, and A = SgX. We then have:
@) 1X] = 4] = [ofv][X[vo;
(i) |A] = |aju|X]| in case U is not discrete;
(iii) |A] = |«|u|X]| in case W is not discrete and either o = ® or | X| = o.
ProorF: (i) by 0.1.20; (i) by (i) and 1.3.15; (iii) by (i) and (ii).

The cardinality of discrete CA’s is essentially a problem of the theory of
Boolean algebras. In connection with 2.1.9 compare 2.4.72 and 2.4.73 below.

THEOREM 2.1.10. All finitely generated CAy’s and CA,’s are finite.

Proor. This is obvious for CA’s since it is well known that every finitely-
generated BA is finite. Let A e CA; and U = SgX with |X| < w. Let
Y = Gg®™X; thus |Y| < @. Now Y ucy*Y is closed under c,, and hence,
as is easily seen, so is A4 = Sg®¥(Y ucy*Y). Consequently, |4| < o.

The least upper bound for the cardinality of a finitely generated CA,
(dependent on the number of its generators) will be established in 2.5.62.
Theorem 2.1.10 does not extend to CA,’s with & = 2. In fact we have

TeEOREM 2.1.11. () If o0 = 2, there is a CA, W with one generator such
that |A| = |o|Uw and hence U is infinite.)

(i) If 2= 0 < @ and v < o, then there is a CA, U with one generator
such that v < |4] < o.

(iii) For any distinct x, A < o the algebra W in either (i) or (ii) can be chosen
so that there exists an a € A such that W = Sg{a} and da = {k, 1}.

PrROOF. Suppose « = 2 and consider any fixed & such that 1 £ ¢ £ w.

1) This theorem was proved in Thompson [52], p. 51, Theorem 3, by a different method.
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Let B be the full cylindric set algebra with base &, and dimension o and let
A = Sg{X} where X = {u:pe®, p, < py}. We shall define a sequence
Ye®B by recursion: Y, = %, ¥; = C)X, and Y,,, = Cy(C(¥, ~ X)nX)
if 0 < A < w. It is clear that RgY = 4. Also, as is easily seen by induction,

Y,={uwpe, 1=}

forall 1 < . If £ = o, then Y is an infinite sequence without repeating terms,
Hence the algebra U is infinite and (i) follows by 2.1.9 (2 is obviously non-
discrete). In case & = v < @, clearly |RgY| = v+1. On the other hand, in
this case 2 is obviously finite if @ < w. Thus (i) holds. In order to prove
(iii) observe that, with obvious modifications, the above proof goes through
when we take X = {u:ue®, p, < u}.

If we carry the above proof further, we quickly arrive at the following
interesting result:

If2 a0 <wandl £ k < o, then the cylindric set algebra (with dimension
) of all subsets of *k is generated by a single element.

THEOREM 2.1.12. Suppose U eDc, with o = w and U = SgX. Let ¥ =
Sg®W({d,,;:x, A < a}u{s,x:x€ X, ¢ a finite transformation of o}). Then A
coincides with the unique subset of A which includes Y and is closed under —
and all the operations ¢, or, equivalently, is closed under all the operations c,
and <& (x < o).

Proor. Let K be the set of all B such that Y < B < 4 and B is closed
under — and ¢, for each ¥ < «. We want to prove that K contains exactly
one set, namely 4. In order to do this we shall show that MK = 4. Since
X c Y, it is clear that X < NK. Also, obviously d,, e NK for all x, A < a,
and NK is closed under — and ¢, for each x < a. It remains to show that
NK is closed under +. This will allow us to conclude that Sg X < MK, and
hence 4 = NK as desired.

For any given y € NK, let B, be the set of all ze NK such that s,z+y and
—s,z+y € NK for every finite transformation ¢ of o. Clearly B, is closed
under —. Suppose k < o, z€ B, and ¢ is a finite transformation of «. Let
I' be a finite subset of o such that (x ~ )16 = (x ~I'1Id and ¢*I" = TI.
Then thereis a A e o ~ (dzudyul), and s,c.z+y = 5,C;852+y = ¢;(5,55z+Y)
by 1.5.8(i), 1.5.9(), and 1.11.12(vi). Since z € B,, we have s,s5z+y € (1K, and
hence s,c.z+y = c,(s,s5z+y) € NK. Similarly, —s,cz+y = —s,c;s5z+y =
—c;(s,85z+ —), and we infer that —s,c.z+yeMNK. Thus we have shown
that B, is closed under an arbitrary cylindrification c,. If y €Y, then clearly
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Y = B,, and hence B,e K, NK < B,. In particular, z+y e NK whenever
ze NK. This being true for any yeY, we infer that ¥ = B, and hence
B, e K, NK < B,, for each we NK. Thus MK is closed under +.

Now let L be the set of all C such that Y < C < 4 and C is closed under
¢, and ¢ for each k < o. To complete the proof of the theorem we want
to show that NL = A. Since MNL includes Y and is closed under all the c’s,
it suffices by the first part of the proof to prove that ML is closed under —.
To this end let D be the set of all y € ML such that —y e NL. Since Y is closed
under —, we have Y < D. Also, if ye D and k < o, then —¢.y = cl—ye L
and —cZy = ¢,—y e NL; hence ¢,y and ¢y e D. This shows that D is closed
under ¢, and ¢ for each k < a. Therefore D = (1L, i.e., ML is closed under —.
The proof is finished.

Theorem 2.1.12 is an algebraic analogue of the well-known metalogical
theorem according to which any formula of first-order logic can be put in
prenex normal form.

THeoreM 2.1.13. If K is a subset of CA,, Lf,, or Dc, directed by <, then
UK e CA,, UK e Lf,, or UK € Dc,, respectively.

ProoF. Under the hypothesis K = CA, compare Remark 2.1.2 and use
information in 0.3.84. Under the remaining two hypotheses a direct argument
based on 1.11.1 and 2.1.3(i) leads quickly to the indicated conclusions.

el
In the last part of this section we deal with minimal CA,’s. We recall Defi-
nition 0.1.8(ii) which introduces this notion in a general algebraic setting.

THEOREM 2.1.14. Every CA, has exactly one subalgebra which is minimal.

DEFINITION 2.1.15. We let Mn, be the class of all minimal cylindric algebras
of dimension o.

Clearly, Mn, consists of all one- and two-element Boolean algebras, and
Mn, consists of all one- and two-element CA;’s; note that all two-element
CA/’s are isomorphic. Only in Mn, do we meet non-trivial algebras.

Recalling the remarks at the beginning of this section and comparing them
with 0.1.23 we see that a CA U is minimal iff the only subset of its universe 4
which contains all the elements d,; and is closed under Boolean operations
and cylindrifications is A itself. Speaking more loosely, 2 is minimal iff all
its elements can be obtained from the diagonal elements by a succession of
Boolean operations and cylindrifications. This leads to a simple interpretation
of minimal CA’s in the metalogical setting: a cylindric algebra of formulas
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associated with a set of sentences in a language A of predicate logic is minimal
iff all its elements are equivalence classes correlated with those formulas of A
which contain equations v, = v, as their only atomic parts (and therefore
which do not contain any non-logical constants). As a consequence, when
discussing minimal CA’s of formulas we can always assume, without any loss
of generality, that the underlying language A itself does not contain any non-
logical constants. Conversely, all CA’s of formulas constructed in such a
language are minimal.

THEOREM 2.1.16. Mn, < Lf,.
PrOOF: by 2.1.5(i).

In connection with the next theorem, 2.1.17 (a particular case of Theorem 12
in Monk [64a]), recall that CI% is the set of (I')-closed elements of 9 and
B0 is the BA of zero-dimensional elements of 9; cf. 1.6.18. See also 1.7.1
and 1.9.1 for the meaning of c,d(x x k).

THEOREM 2.1.17. Let W e Mn,, a, = C(K)a(rcx k) for every k < (a+1)nw
(whence, in particular, ay = 1, and a; =1 if « > 0), and

B={d,:k, A <atu{a. .k < (e+1)nw}.

We then have:

(i) 4= Sg®MB;
more generally, for each I' < «,

(i) CLA = Sg®M(BnCLA)
and

BaClLA = {d;:x,lea~TIu{a., k < (x+1)nw};
(i) ZdU = Sg®{a.:x < (a+1)nw}.
Proor. For each 4 < «, we let

B, ={d.:x, e d}u{a. x < (a+1)nw};

observe that B = B, and BnCIl3 = B, .. We begin by proving the following
lemma:

(1) if 4,0 < o and [O] < o, then ¢,Sg®*B, = Sg®'¥B, 4.

It clearly suffices to consider only the case where @ = {x}. Let C and D be
the set of all finite sums of constituents associated with B, and B,_,,,, re-
spectively (cf. the remarks preceding 1.9.6). We must show that ¢, x e D for
each x e C. In fact, since ¢, is additive by 1.2.6, it is enough to consider the
case when xe 4 and x is simply a constituent of By, specifically, x =
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ITX —2Y where X and Y consist exclusively of diagonal elements d,, with
Aed ~ {x}; indeed, it is clear that all the elements of B, not of this form
are contained in B, _,,, and this in turn implies that these elements are also
r-closed (this last implication is an instance of the last formula of (ii) which
obviously holds). The proof of the lemma is completed by observing that if
A4,Q < o and |4], |Q| < o, then by 1.9.11(ii) and 1.9.13, ¢ (II,_, —d,)e D
if k¥ ¢ A4, while by 1.5.1, 1.5.3, and 1.5.4 we have

CK(dK}L . I—Iueﬂ dkﬂ : HVEA - d;cv) = Hue!)
provided k # 1 and k ¢ QuA.
An immediate consequence of (1) is that Sg®'*B is closed under ¢, for

each k¥ < «, and from this (i) follows at once.
In order to prove the first formula of (ii) it suffices to show that

d}«ﬂ . HveA. - d/’Lv

2 xe Sg®™p, for all xeA.

To see that it does suffice notice that for any I' < « we have, by (2) and
0.1.17(ii),

CLA < U{Sg®WB, :xe A, Axal' = 0} = Sg®(BnCl),

while the inclusion in the opposite direction follows immediately from 1.6.19.
Now in order to prove (2) we first observe that for any x € 4 there exists, in
view of (i) and 0.1.17(ix), a finite 4 <  such that x € Sg®'® B,. Hence, letting
O = An(o~ Ax), we conclude from (1) that

— (BIA) BIUA
X =CoxeSgPVB, o = Sg®VB, .

This completes the proof of (ii) (it has previously been observed that the
second formula of (ii) obviously holds). Finally, (iii) follows directly from (ii)
and 1.6.18(ii).

ReMARKS 2.1.18. To appreciate what has been achieved in Theorem 2.1.17,
recall that all elements of a Mn, 9 are obtained from the diagonal elements d, ,
by performing Boolean operations and cylindrifications arbitrarily many times
and in an arbitrary order. Cylindrifications are operations of a more compli-
cated nature and less easy to handle than Boolean operations. From 2.1.17(i)
it appears that a process is available which considerably restricts, and in a
sense eliminates, the use of cylindrifications in constructing elements of Mn,’s.
To this end, for any given Mn, 9, we form a set B of its elements by adjoining
to the d,;’s some additional elements a, whose construction involves cylindri-
fications but is otherwise quite simple, namely, a, = ¢, d(x x k). It turns out
now that all the elements of 9 can be constructed from elements of B by using
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exclusively Boolean operations and hence can be represented, e.g., as finite
sums of constituents of B. This is expressed concisely by the formula 2.1.17().
By 2.1.17(ii) every element x € 4 can be obtained by means of Boolean opera-
tions from those elements in B whose dimension sets are included in Ax; in
particular, by 2.1.17(iii), every zero-dimensional element can be so obtained
from the elements a, alone. The set B can be called a Boolean base of the
Mn, U, and the process just described can be referred to as the process of
eliminating cylindrifications for Mn_s.

This leads to a simple metalogical interpretation of the results. In this
interpretation the process of eliminating cylindrifications goes over into the
well-known process of eliminating quantifiers, applied in the present case to
the so-called theory of identity, i.e., the predicate logic with identity symbol
but without any non-logical constants. To be more specific, we restrict our-
selves to interpreting 2.1.17(iii). Let 2 be the CA of formulas associated with
the theory of identity, i.e., with the empty set of sentences in a language A
without non-logical constants; thus 9 is minimal. The zero-dimensional
elements are the equivalence classes of formulas of A which contain at least
one sentence. The elements g, are correlated with certain sentences o, which
express in a natural way the fact that the universe contains at least x distinct
elements (kx < w). The sentences obtained by combining ¢,’s by means of
sentential connectives are usually referred to as numerical sentences. Theorem
2.1.17(iii) appears now as an algebraic translation of the well-known meta-
logical result by which every sentence in A is logically equivalent to a numerical
sentence®).

In Section 2.2 the method of eliminating cylindrifications will be developed
for a class of CA’s more comprehensive then that of minimal algebras, namely,
for the so-called monadic-generated CA’s; cf. 2.2.24. It should be emphasized,
however, that this method can be fruitfully applied only to rather special and
restricted classes of cylindric algebras. If we consider, in particular, cylindric
algebras of formulas, the method proves applicable primarily to those algebras
which are associated with decidable theories. In fact, in its metalogical form, it
is actually one of the most important means of obtaining affirmative solutions
of decision problems. These questions will be further discussed in Part II of
this work.

When the process of eliminating cylindrifications has been successfully
worked out for a given class K of cylindric algebras (or for a particular CA),
it usually gives us much insight into the structure of the algebras involved. This

1) See Hilbert-Bernays [34*], pp. 164 ff. A footnote on p. 200 op. cit. gives references to
earlier papers in this direction.
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is especially true in those cases in which the construction of the Boolean base B
is uniform for all algebras 9 belonging to K and is simple enough to provide
us with additional information about elements of B and Boolean relations
holding among them. Since every element of 9 is a finite sum of mutually
disjoint constituents of B, it is especially important for us to learn which
constituents are different from zero. This information helps us indeed in
establishing a unique canonical form for elements of 9. In case B is finite we
may restrict our attention to minimal constituents; in fact, the set of non-zero
minimal constituents of B coincides then with the set of all atoms of ¥, and its
cardinality determines completely the structure of the Boolean part of .

In the case of minimal CA’s the results in 2.1.17 actually provide a uniform
and simple construction of a Boolean base B for every Mn 9. Using these
results we shall establish in the next few theorems several basic properties of
minimal CA’s. Further applications of 2.1.17 will be found in Section 2.4 and
2.5 as well as in Part II. Of special importance is Theorem 2.5.25 in which a
simple criterion for isomorphism of two Mn,’s will be established, which will
lead to an exhaustive description of all isomorphism types of Mn,’s. In
Part II we shall establish the fact that every Mn, is representable, i.e.,
isomorphic to a subdirect product of cylindric set algebras (cf. Remark 1.1.13).
We shall also see there that the decision problem for the set of identities holding
in all Mn,’s admits an affirmative solution. Altogether these are indeed the best
results that one can hope to get from the application of our method.

TrEOREM 2.1.19. Every Mn, with o < w is finite.
PrOOF: by 2.1.17(i) and the theory of BA’s.

The cardinality of finite-dimensional Mn,’s will be determined exactly in
2.4.69.

THEOREM 2.1.20. Let A € Mn, with o = w. We then have:

(i) either cidyy = 1, W is discrete, and |A| < 2, or else cidyy # 1, U is
not discrete, and |A| = |o|;

(i) either cidgy = 0 and U is atomless, or else c{dyy # 0 and cldyy is the
only atom of .

Proor. By 1.2.1° and 1.3.12(i),(iii) we have U discrete iff cJdg; = 1 (cf.
Remark 1.4.5). Hence (i) follows from 2.1.9(iii) and the well-known fact that
every BA with more than one element includes a two-element subalgebra.

If a, for k < o are defined as in Theorem 2.1.17, we see by 1.9.10 that
a,+cidy; = 0 for every x = 2 and thus c)d,, is disjoint from any a, different
from 1. Using this fact we conclude from 2.1.17(iii) that ¢jdy; includes no
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zero-dimensional element other than itself and 0. Hence, by 1.6.20°,
) either cddy; = 0 or ¢idy, is an atom of .

On the other hand, by 1.10.5(ii), 1.11.3(i), 1.11.8(i), and 2.1.16 we see that
every atom of 9 is included in c{d,;. This fact along with (1) implies (ii).

REMARK 2.1.21. By combining 2.1.20 with certain known facts from the
theory of BA’s we conclude that the Boolean parts of Mn,’s with « = @ are
of four different isomorphism types; these are the types of one-element BA’s,
two-element BA’s, denumerable atomless BA’s, and denumerable BA’s with
a single atom.

THEOREM 2.1.22. If U e Mn, and x € A, then |4x| # 1.
Proor. By 2.1.17(ii),(iii)) we have CI, .U = Zd for every x < a.

A consequence of this theorem is the necessity of the condition | ~ I'| = 2
in the statement of Theorem 1.10.5(i). Indeed, if 9 is the minimal subalgebra
of any cylindric set algebra in the space “2 with 2 £ o < w, and I' is any
subset of o such that |« ~I'| = 1, then using 2.1.17(iii) and 2.1.22 it can
easily be shown that Zd = {0, “2} and thus that “2 is a I'-atom. On the
other hand, the formula 2 < C{D,,; does not hold since CJD,, is empty.
Hence we see that the second part of 1.10.5(i) may fail if the premiss |a~I"| = 2
is omitted or replaced by « ~ I" # 0. Analogous remarks apply to 1.10.5(iii).

THEOREM 2.1.23. Let U € Mn,, and let a, be as in Theorem 2.1.17 for every
Kk < (e+1)nw; in addition, set b = Hl<(a+1)nwal if l{a,:A < (a+1)no}| < o,
and b = 0 otherwise. Then we have:

@) BdU is atomic and At3dN = ({a,—a,.1:x < anw}u{b})~ {0};

(ii) either 3 is finite or else it is denumerable and, in fact, isomorphic to the
Boolean set algebra of all finite subsets of w and their complements.

Proor. Set B = {a,:x < («+1)nw} and notice that, by 1.9.10,

¢)) a, = a4, for every x < anwm.

Therefore, since a, = a; = 1, we see that every constituent of B can be
represented either as an element of B or as the difference of two elements
of B. Thus from 2.1.17(iii) we conclude that every element of 3b% can be
represented as a finite sum of elements of {g,—a,,;:x < anw}uB. From this
fact together with (1) part (i) follows at once; in addition it follows that every
element of 3b 2 is the sum of a finite number of atoms, and by the theory of
BA’s this leads easily to part (ii).
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REMARKS 2.1.24. Theorem 2.1.23(1) admits a simple metalogical interpre-
tation. Let A and 2, just as in 2.1.18, be respectively a language of predicate
logic without non-logical constants and the CA of formulas associated with the
theory of identity. Given any sentence ¢ in A, let @[¢], the theory generated
by ¢, be the set of all sentences which are consequences of ¢. Notice that the
elements a,—a,,, correspond to the sentences 7, = o,A=0,. expressing
the fact that the universe has exactly x elements. The metalogical result to the
effect that every sentence in A is equivalent to a numerical sentence (cf. 2.1.18)
implies as a corollary that the theories ©[r,] are complete and consistent, and
that every sentence ¢ in A for which ®[¢] is complete and consistent is equi-
valent to one of the sentences 7,. It is easily seen that the equivalence classes
of sentences ¢ with this property are just the atoms of the algebra of sentences
associated with the theory of identity, i.e., the Boolean algebra 3d 9 of zero-
dimensional elements, and hence 2.1.23(i) is simply an algebraic translation
of our corollary.

Several equivalent formulations of the second part of the disjunction 2.1.23(ii)
are known from the theory of Boolean algebras. One of them is: 3b % has an
ordered base of type w; another is: 9 has exactly one proper maximal ideal
which is not principal (compare in this connection the discussion in Remark
2.5.56 below).

We shall resume the discussion of minimal algebras in the last part of Section
2.4 (beginning with 2.4.61).



2.2. RELATIVIZATION OF CYLINDRIC ALGEBRAS

The notion of a relativized algebra which will be discussed in this section
does not have a general algebraic character. It has been introduced in the theory
of Boolean algebras and will be extended here to arbitrary cylindric algebras.
In opposition to BA’s, the algebras obtained by relativizing CA’s are not
necessarily CA’s themselves.

Since BA’s coincide with CA’s, the following definition comprehends that
of a relativized BA as a special case.

DermNiTION 2.2.1. Let A =<4, +, -, —,0,1,¢,d,>, ;. be a CA,, and
suppose be A. Let RLW = {x-b:xe A}, and for all x,ye RLA and all
K,A<ua let x+'y=x4+y, x'y=xy, ='x=>b-—x, 00=0, 1'=0,
cx=cxb,and d; =d-b. Let RLA = (RLA, 4,7, =/, 0,1, ¢, d > oo
We refer to R, as the algebra obtained by relativizing the CA, U to b, or
simply as a cylindric-relativized algebra of dimension o. The class of all cylindric-
relativized algebras of dimension o is denoted by Cr,.

‘We came across a particular case of cylindric-relativized algebras as far back
as in Section 1.1. In fact, as is easily seen, the algebras [, where A is the full
cylindric set algebra in a space “U and ¥ is a subset of “U of the form U,_,*W;
with W’s pairwise disjoint, are among the generalized cylindric set algebras
defined in 1.1.13; actually generalized cylindric set algebras coincide with
subalgebras of the relativized algebras just described.

In the discussion of Cr’s we shall be particularly interested here in conditions
under which a cylindric-relativized algebra is a cylindric algebra. We begin
the discussion by noticing two almost obvious facts. The first is that an iso-

morphic image of a Cr, is again a Cr,. The second is stated here formally:

TrEOREM 2.2.2. CA, < Cr,.
Proor. A = R, A for any CA, .

THEOREM 2.2.3. If U e CA, and b e A, then R satisfies all of the axioms
of 1.1.1 except perhaps (C,) and (Cg). RLA is a CA, iff the following two
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conditions are satisfied (in N) for all k, A < o and for all x € RLA:

() clerx-b) b = cy(eex-b);

(i) b = ¢(dyzb).

ProoF. Let RLA = (RLA, +', -, =,0', 1/, ¢, d;., >, ; -, That condition (C,)
holds is known (cf. the opening comments of this section), and it is obvious
that (Cy), (C,), and (Cs) hold. To verify (Cs), notice that, if x < « and
X, y € R, then
Clxcy-b)-b

Il

(x-cey)
= c(x c) b
cx ¢ yb by (C;) for A
= C/X*C.}.
Asto (Cy), if k, A <o, K # A, and x € RLY, then
ci(dl, - x)-ci(d, —'x) = c(d; x-b) c(dy; " —xb) D
< C(dg D) Cldys - )
= 0.

Thus R, satisfies all the axioms of 1.1.1 except possibly (C,) and (Cg).
Clearly (i) holds in U for all x, A < o and every x € R, iff (C,) holds in
RLA. I R,A e CA,, then 1’ = ¢/d!,, and hence b < ¢ (d;-b), i.e., (i) holds.

Now suppose (ii) holds and x # A, u. Then
Ce(derdi) = cldper duy0) b
= §(d,,"b)b
=d,;,"sth-b
=d,;, b by (ii)
=d},.
Hence (Cg) holds in J[,. This completes the proof of 2.2.3.

THEOREM 2.2.4. (i) CA, = Cry and CA, = Cr,.

(ii) CA, < Cr, for o> 1.

PROOEF. (i) is an obvious consequence of 2.2.3. In view of 2.2.2, for (ii) we
need only show that Cr, & CA, for o = 2. Let U be the full cylindric set
algebra in the space “U where |U| > 2. Let b = —Dg;. Then R, A = (RL,
+, =0, 1, e A, i<, fails to satisfy the axioms (C,) and (Cy) for
cylindric algebras. For, b = d},, but c{(d},-d},) = 0 # b, and (Cy) fails.
Also, if f, ge®U, (0 ~2)1f = (@ ~2)1g, and gl = f0 # f1 # g0 # gl, then
fecyci{g} ~ cicg{g}, and (C,) fails.

It
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In connection with 2.2.3 and the proof of 2.2.4(ii), we may mention that
there are cylindric-relativized algebras in which (C,) holds and (Cy) fails,
and others in which (Cs) holds and (C,) fails.

THEOREM 2.2.5. Let BeCr,, say B=RA=RLYA, +', ', =, 0,1, c,

di Des<q where U e CA, and be A. Let xe B and x, A, p < o. We then have:
@) d, = djs
(i) ¢/}, = d, if & # 4 a5
(i) €/(d), - d) < Ay, if & # A s
(i) clcjel(u-dl,) dl, S Cx if K £ X £ A K3
V) ceicp(cicaci(cic,ci(x-dr ) d) ) -dr ) dy, S ex if i # A # p# k.
Proor. Clearly (i) and (ii) hold in B; cf. (C;), 1.3.1, and 1.3.3. As to (iii),
by (C¢) we have

Cé(d;x ' d;cu) = cx(dlx : dlcu ' b) : b é cx(dlk : dmt) : b = d;u

Thus (iii) holds. To prove (iv) and (v), assume that x # A # u # x and
x € B. Then

Il !t A7 Y. A
CKCACK(X dlcu) dku

CK(Cl(Cic(x ' dmz) : b) ' b) ! dlcu : b
Cx(c/lcx(x ' dlcu) : b) : dlcu -b
clck(x ' dlcp,) ' dlcu b by (Cz)a (C3)7 (C4)

Il

Il

= ¢;(x-d) b by (C3), 1.3.3,1.3.9
= gx,
and (iv) holds.
To aid in the proof of (v) set
M y=cx-d,-d;,

and observe that by 1.3.7 and 1.3.9 we have
@) ¢y-d, =yand ¢;y-d,; =y.
Computing we get
c,;c,ic,;(x-d,’d)-d;” = ¢ (c,(c(x-d)-b)-b)-d,, b
< ckcﬂcx(x- d,d)~d,w-b
=c,C(x-d)d;, b by (C,), 1.2.3

=c(c,x-d;-d;) b by (C3), (Cy), 1.3.3.
Thus, by (1),

©) ciciCalx-dy;)-d) S c.p-b.

KopK =
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Continuing the computation,
ceici(ceyb) e = culeelcey-b)b)-dy) - 0
= 6600y dy b
= ;¢ y-d, b by (Cy), 1.2.3
= ¢)(cy-dy)-b by (Cs), 1.3.3.

Hence from (2) we conclude that
4 Gelci(cy b)- iy < b,
Repeating exactly the proof of (4) except that x, A and p are now replaced
respectively by 4, 4, and k we obtain
c,;c/{cl:(c,ly-b)-d,'“I < cuy'b;
then (1) gives

%) c,ciccy-b)-di, = cx.

" KA =

The inclusion (v) follows directly from (3), (4), and (5).

REMARK 2.2.6. In 2.2.5(iv) the sequence c/cjc. of cylindrifications can be
replaced by any finite sequence of cylindrifications ¢, and c;. Analogously,
the three sequences c,c;c,, c;cic;, and cc.c. in 2.2.5(v) can be replaced,
respectively, by any three sequences of cylindrifications with indices y and A
in the first sequence, A and x in the second, and x and g in the third.

In view of 2.2.3 and 2.2.5 the question naturally arises whether the class Cr,
can be characterized as the class of all algebras satisfying postulates (C,)-(Cs),
(Cs), and (C;) together with identities 2.2.5(1)-(iii) and all those identities
obtained from 2.2.5(iv),(v) in the way just indicated. By 2.2.4(i) the answer
to this question is trivially affirmative in case « = 0, 1. By a result of Henkin
it is also affirmative for « = 2; in this case all the equations of 2.2.5 reduce
to the one equation dj, = d},. On the other hand, the answer is negative
for every o > 2 since it has turned out that for no such « is Cr, an equational
class. Recall that by 0.4.63 a class of algebras is equational iff it is closed under
the formation of subalgebras, homomorphic images, and direct products.
However, the class Cr, is not closed under the formation of subalgebras for
any o > 2; this has been shown by Diane Resek for « = 4, and it has been
observed by Henkin that with small modification the same method can be
used for « = 3. It may be noticed that by Theorem 2.2.8(iii) below the class
Cr, is closed under the formation of direct products; the problem whether it
is closed under the formation of homomorphic images is still open. It is also
not known whether Cr, with « = 3 is an elementary class.
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THEOREM 2.2.7. Let W e CA, and be A. Let ¢, d,, be defined as in 2.2.1,
and 8%, 8(x, A) be the unary operations on RL, determined by the formulas

LX) i K
for every x = b. We then have:
(i) §kx = six-b for every x < b;
(i) if RA € CA,, then ,3(k, )x = ,s(k, A)x- b for every x < b;
(iii) if RL,A e CA, and ,s(x, 2) = ,5(4, ), then 5k, 1) = ,5(4, k).
PROOF. (i) is obvious. To prove (ii) we may assume that R € CA,; we
then have

x if k=24, o
v = { o (300, D = S5,
K

S0, Dx = 8ishsix

= $85(shx - b) by (i)

— (s b)) by ()

— $(sistx- b) by 1.5.3, 2.2.3(ii)
= si(s§spx-b)-b by (i)

= shsisiue b by 1.5.3, 2.2.3(ii)
= Sk, )x-b.

(iii) is an immediate consequence of (ii). Note that 4 is the domain of both
«S(x, ) and ,s(4, ) while R, is the domain of both ,3(x, 4) and ,3(4, ).

THEOREM 2.2.8. (i) If (U;:ieI>eCA, and beP,_ A;, then:
i) Pielgmbi%i = R (P, Ay);
(i") if F is a filter on I, then (PR, A)/F = R, z(P,, A/F).
(ii) If (®B;:ie Iy e'Cr, and F is a filter on I, then P, %B;/F € Cr,.
(i) PCr, = Cr,.
@iv) UpCr, = Cr,.
(v) UpSCr, = SCr,.
ProoF. (I') Let B; = R, A; for each iel, € = P, %A, and D = P, B,.
Clearly RLE = D, +®%® and -%© coincide respectively with +® and
® @O — 0@ and 16O = |®_If x e P, B, then
OOy . _(O)y — <bi . _(‘Hi)xi:ie D= <_(%i)xi:ie D= __.(D)x;
cOx = b cOx = (b;- cMxiiel) = (<PBx;iiel) = Px;
and
d 00 = p.d © = (b-d Miiely = (d . B:iely = 4.

Thus R,E = D, and (') holds.
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The isomorphism needed in (i”) is the function G determined by the con-
ditions
DoG = PB and G(x/F®) = x/[F®

for every x € PB, where B = (B;:iel).
Conditions (ii), (iii), (iv) easily follow from (i). (v) is a consequence of (iv)
and 0.3.69(ii).

RemARrk 2.2.9. From 2.2.8(v) it follows, in view of 0.3.83, that SCr, is a
universal class. Actually, however, it is known that SCr, is an equational
class for every «. For « = 0, 1, 2 this trivially follows from 2.2.4(i) and from
Henkin’s result concerning Cr, which was stated in 2.2.6. For all finite « = 3
the result was established by Diane Resek with the help of Don Pigozzi. Her
proof provides actually an infinite system of equations characterizing each
CA,. In case o = 3, this system (in a simplified form actually due to Henkin)
consists of postulates (Cy)—(C3), (Cs), and (C;), equations 2.2.5(1)—(iii), and
all the equations obtained from 2.2.5(iv),(v) in the way indicated in 2.2.6.
The equations characterizing SCr, for « > 3 are similar in structure but
become more complicated as o increases. Pigozzi and Resek, following a
suggestion of Henkin, extended the result from finite to infinite «’s.? For each
o = 3 there is no finite system of equations characterizing the class SCr,.

The proofs of some of the results mentioned in 2.2.6 and 2.2.9 will be found
in Part II.

THEOREM 2.2.10. Let A e CA, and be A. If ¢,b-c;b = b < s5b for any two
distinct x, A < o or, equivalently, s5b-sib = b for any k, A < a, then R[,A e CA,.

ProoF. Let x, A be any two distinct ordinals < «. Then either of the two
conditions imposed on b in the hypothesis implies b < s%b and hence ¢, b < s5b
by 1.5.9(ii). Since the inclusion in the opposite direction always holds, we
conclude that ¢ b = s5b for every pair of distinct x, A < «, whenever one of
the two conditions mentioned above holds. The equivalence of these two
conditions is now evident, and we shall prove that either of them gives
R, A e CA,.

For this purpose it suffices by 2.2.3 to show that

) (€% D)+ b = ¢;(coxb)

for any x < b and any two distinct x, A < o. Under these assumptions we

1) Pigozzi has also found another, simpler proof of the result discussed which applies at

once to all «’s without distinction, but does not provide a system of equations characterizing
SCry.
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obtain, using (C;) several times,
ccxb) b = c(c)(x-b)-b)-b

= ¢ (c)(x b c;b)-c.brc;b)-b

= ¢ (c,(x ¢cb) cb-c;b) b

= ¢ (c;(x-¢b) ¢;,b) b
c.C(x-cb-c,b)-b
= ¢, C,(x-b)b.

Similarly, ¢,(c.x-b) b = c;c(xb) b, and (1) follows.

REMARK 2.2.11. The condition imposed on an element b in the hypothesis
of Theorem 2.2.10 acquires an interesting meaning when referred to set algebras.

Consider, in fact, a Cartesian space *U and a point p in this space. The set
“U@ of all those points x € “U which differ from p in only finitely many coordi-
nates, i.e., for which the set {&:¢ < «, x; # p.} is finite, can be called the
weak Cartesian space with base U and dimension o, determined by p. (Another
name for “U® is the o™ weak Cartesian power of U relative to p; cf. the
Preliminaries.) In case & < @ we obviously have *U® = *U for every p € “U,
i.e., weak Cartesian spaces coincide then with ordinary Cartesian spaces.

Let now U be any cylindric set algebra in the space “U. Let FU be the
family of all sets X € 4 which satisfy the hypothesis of 2.2.10 (with b replaced
by X), i.e., such that

ssXasiX = X

for any two x, A < o. It turns out (rather easily, though perhaps unexpectedly)
that for « = 3 the family F consists of those sets X € A which are unions
of pairwise-disjoint weak Cartesian subspaces of *U:

X = U. oy @)

iel *i

where p; € “Y; and Y; < U for every i eI, and *¥?)n*Y {?? = 0 for any two
distinct 7, j € I. For o = 2 the family proves to consist simply of all Cartesian
subspaces “Y of “U which belong to A4.

By 2.2.10 all the relativized algebras R[,A with ¥ e F are CA’s. If, in
particular, V' is a weak Cartesian space, a subalgebra of [, can be referred
to as a weak cylindric set algebra. As will be shown in Part II, weak Cartesian
spaces and weak set algebras can be used in characterizing representable CA’s
instead of ordinary Cartesian spaces and set algebras. In order to be more
specific, consider a fixed but arbitrary « and let K be the class of isomorphic
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images of subdirect products of weak cylindric set algebras of dimension o;
equivalently, K can be charactetized as the class of all algebras which are
isomorphic to a subalgebra of Rl where A is any ordinary cylindric set
algebra in a space “U and V is a union of pairwise disjoint weak Cartesian
subspaces of “U (U can be assumed here to be the full cylindric set algebra
in the space *U). It is an easy matter to show that, if ¥ is a union of pairwise
disjoint ordinary subspaces of “U, i.e., if W is of the form U,,;*Y; where
Y; € U foreveryiel, and Y;nY; = O for any distinct i, j € I, then W is also
the union of a system of pairwise disjoint weak subspaces of “U. Thus we see
that K includes all generalized cylindric set algebras in the sense of 1.1.13,
and it then follows from the discussion in 1.1.13 that K contains every repre-
sentable CA,. It will turn out that K actually coincides with the class of repre-
sentable CA,’s. From this statement and the result on the family F9[ previously
stated we obtain the following corollary: a CA, with o = 3 is representable
iff it is isomorphic to a subalgebra of an algebra R{, A where U is a cylindric
set algebra and ¥ e FI. A further consequence of these results is: if 9 is a
representable CA, with « = 2 and b is any of the elements described in 2.2.10,
then N, 4 is also a representable CA,. All the notions and results mentioned
in the present remarks will be discussed in Part II.

THEOREM 2.2.12. Let A e CA, and be A. If b e ZdU, then R,A e CA, and
BORLA = R, 309U

Proor. It follows directly from 2.2.10 that R, is a CA,. If x e R,3dDU,
then x < b and A®™x = 0; hence, for any k < a, ™MWy = Wx-b =
x-b = x, so that AWy = 0 and x e ZdR[,A. If x e ZdR[,A, then x < b
and A®®®yx = 0; hence <™x < ™Mb =b, x = cPWx = cBx-b = Wx
for any k < o, and so x € R, 30U Thus ZdR[,A = R/, ZdU. It then follows
easily that ZoNA = NI, 30

Unlike the conditions stated in 2.2.3, the condition on b given in 2.2.10, or
a fortiori, in 2.2.12, which is sufficient for [, to be a CA,, is by no means
necessary. In practice, however, when constructing in this part of our work a
relativized cylindric algebra [, from a given cylindric algebra %, we restrict
ourselves mostly to the case considered in 2.2.12, ie., we assume that the
element b is zero-dimensional; the results stated in Corollary 2.3.27 and
Theorem 2.4.7 in the following two sections account for the importance of
this particular case. Relativization to elements which are not zero-dimensional
is used primarily for constructing counterexamples. However, the special
form of relativization described in the next theorem presents an exception to
the last remark. The theorem is rather restricted in scope but, as we shall see
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below (cf. 2.2.23), it underlies a general method of extending identities establish-
ed for CA’s.

THEOREM 2.2.13. Let A e CA,, ac A, and Aa < {k} S «; assume that
IT,. sta exists and set b =11, s%a. Then R,A e CA,.
Proor. By 1.6.13 we have

) Asta = {4} for every A < o.
Consider any g, v < « such that p % v. Then
s'b =11, s'ska by 1.5.3
= sﬁsza-nlew w shsta
= sa-11, ., s5a by (1), 1.5.8(i), 1.5.10(ii)
= H%M{u}sja.

Similarly, s}b = I1,_, ., s5a, and thus

skb - s;b = b.

Since this equality also holds (trivially) in case u = v, we may apply 2.2.10
to obtain the desired conclusion.

This theorem clearly contains 2.2.12 (excluding the second part of its con-
clusion) as a special case.

THEOREM 2.2.14. If N e CA, and be ZdU, then for any given x < o the
following three conditions are equivalent:

1) RLA is a discrete CA;

(i) for all x £ b, ¢.x = x;

(iii) for all x < b, x € Zd.
Moreover, for any given i < a, A # i, (i) is also equivalent to either of the
two conditions:

(iv) b <dg;

) b-c,—d,, =0.

Proor. The equivalence of (i), (ii), and (iii) follows immediately from
1.3.12, 1.6.3, and 2.2.12. By 1.3.12 and 2.2.1, (i) and (iv) are easily seen to
imply one another; to see that (iv) and (v) are equivalent use 1.2.5.

Theorem 2.2.14 is closely related to some results in Chapter 1 and can be
regarded simply as a restatement of Theorems 1.3.12 and 1.6.3. It may be
noticed that 1.3.19 and 1.6.20 can be derived from 2.2.14 as immediate corol-
laries.
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The relativization process of 2.2.1 can be applied to any U similar to CA,’s.
If we relativize a Cr,, we clearly obtain a new Cr,. In particular we have the
following

THEOREM 2.2.15. Let A e CA,, be A, and c € RL,A. Let C = {x-c:xe RLA}
and € = (C, +', ', =, 0,1V, ¢, d;> ., where +', ', etc. are defined as in

> Tk? Tk

2.2.1 with RLA and € in place of A and R, respectively. Then
¢ =R

Proor. Clearly C = R, and +', -, —', 0', and 1’ equal the corresponding
fundamental operations of R If xe C and x, A < o, then, using the ob-
vious fact that ¢ < b, we have

Iy ~ARGAY L., . o h. — . — RIA)
cix =Wy c=cx-b-c=cx-c=cFWy,

K

RG0! S o AP TC
d:ca—dm(lb) C'—dqu*dmc—dfm ).

It is also true that whenever 9 e SCr, and b€ 4 then R{, % € SCr,. For the
case « = 3 compare 2.2.9 and 2.2.5.

We shall now apply some properties of relativized algebras to the discussion
of a new class of cylindric algebras defined as follows:

DEerFINITION 2.2.16. U is called a monadic-generated CA, if W € CA, and there
is a set X such that W = ©g X, and |Ax| £ 1 for every xe X.

COROLLARY 2.2.17. (i) All CAy’s and CA,’s are monadic-generated.

(i) For every u, the class of monadic-generated CA,’s includes Mn, and is
included in Lf,.

ProOF: (i) is obvious; (ii) by 0.1.23 and 2.1.5(@).

REMARK 2.2.18. By 2.2.17, and in view of 1.11.2, every monadic-generated
CA, with « = o can be isomorphically represented as an algebra of formulas
associated with a set of sentences in a language A of predicate logic. From
2.2.16 it is seen that for A we can always choose a language in which all non-
logical predicates are of rank 0 or 1 (and no operation symbols occur). Such
a language is usually referred to as a language of monadic predicate logic. If,
conversely, A is a language of monadic predicate logic, then every algebra
of formulas associated with A is monadic-generated.

THEOREM 2.2.19. For a CA, U to be monadic-generated it is necessary and
sufficient that there exist a set X such that W = SgX and, for every xe X,
Adx =0 or dx = 1.
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Proor. The condition is sufficient by 2.2.16. In order to prove necessity,
choose ¥ < A such that % = SgY and |4y| = 1 for every y Y. For each
yeY let y =séy if |[dy] =1 and 4y = {&}; let y = y if |Ay| = 0. Then
it is readily seen from 1.5.8(i), 1.5.10(v) and 1.6.13 that X = {)y":y e Y} has
the desired properties.

We now want to develop the process of eliminating cylindrifications for the
class of monadic-generated CA,’s, thus extending the corresponding result
for minimal CA,’s, Theorem 2.1.17. To this end, which will be achieved in
Theorem 2.2.24, we shall need three lemmas, 2.2.20-2.2.22, which improve
some earlier theorems, 1.9.10, 1.9.11(ii), and 1.9.13. In establishing the last
two of these lemmas the concept of relativized algebras will be applied.?

LeEmMMA 2.2.20. Let AeCA, xe€d, and Ax < 1. If 'c A< a and
4] < o, then

cu(ddx 4)-T1,45%%) < cry(@(I" x )11, _p5%).
Proor. We immediately have

ddx )11, %% < dxI)-11 . Ox.

Hence,
(A x 4)-1T,.489%) < e (AT x 1) -11,ps5x) by 1.7.5
= ¢ryCu~py @I x )11 ;%) by 1.7.3
= ¢y dT x 1) 11, 55x) by 1.6.13,1.7.5,1.9.3.

Corollary 1.9.10 is clearly a particular case of Lemma 2.2.20, obtained by
setting x = 1.

Lemma 2.2.21. Let NeCA, xeW, and Ax = 1. If I', A < a and |I'| =
4] < o, then

ey AT xT)-T1 1s°x) = ¢ p(d(4 x 4)-T1 _,s°x).

unel' “p pned~p

ProoF. In this proof we make an essential use of 1.9.11(ii). (Again, the
latter theorem is but a particular case of the present lemma.)
It is clear that we may assume I', 4 # 0. For each © < « with |0] < @

we let xg = I os%; notice that x, = 1 and,

D for any finite @, O’ S a, xg° X = Xg e and dxy S O;
1) The basic results on monadic-generated CA’s presented here originate with Monk. In
particular, 2.2.21, 2.2.22, and 2.2.24 correspond respectively to Theorems 8, 10, and 12 of

Monk [64a]. However, the actual proofs of 2.2.21 and 2.2.22 given here use the method of
relativization which is based on 2.2.13 and is due to Pigozzi and Tarski.
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the latter inclusion follows by 1.6.13. By 1.5.8(i), 1.5.9(i), and the premiss
Ax < {0} we have

2 ;8% = ¢osfx = cox for any A < «,
and hence
3) Xg £ ¢ox for any @ = o, 0 < |O] < .

Consider any finite ¢ < « and k € @. Then, by (2),
0
X = Xpn gy CSkX = Xpn g oo

and thus, by (2) and (3), ¢ Xp = Xg . if @] = 2 and ¢xg = cox if & = {x}.
From this result we obtain by a simple inductive argument:

) CoyXe = Cox for any @ < o, 0 < |O] < w.
Keeping (4) in mind, we prove the lemma under the assumption « < . Let
(5) B=RA=B, +,,—,0,1,¢,d>
Then B e CA, by 2.2.13, and hence from 1.9.11(ii) we obtain
6) ¢y d'(T'xI) = c(,,d'(4 x 4).

Now
A=<y =11{-"d,:<x, Ay e T x ) ~Id}

=IT{x, — (d;-x,): {x, Ay e (' xT) ~ Id}
=x, [1{—d,:<x, > e [ xI)~Id} ‘
=x,-d('xI).
Using this result and arguing by induction on |I'| we have
(@' (T T) = X, ¢ (d(I' % I) - Xp).

The latter equation when combined with a similar one for 4 enables us to
conclude from (6) that

@) Xy (AT X ) - xp) = X, €4 (d(4 x 4) - x).
Now (1) implies that

A(cr(dI" x T xp)) = A(cia(d(d x 4) - x4) = 0;
therefore, applying c(,, to both members of (7) and using (4), we obtain
(®) cox* (AT X I xp) = x4 (d(A x 4) - x4).
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From (3) and the assumption I', 4 # 0 we infer that x, x, < cyx and hence
that the initial factor ¢,x of both members of the equation (8) may be removed;
the resulting equality is the conclusion of the lemma.

We now take up the case o = w. To begin with notice that both
cr(d(I'x I xp) and cy4(d(4 x 4)-x,) belong to Sg®™{x}. Thus we may
assume without loss of generality that 9 is generated by x and consequently,
in view of 2.1.5(i), that Y e Lf,. Let o be any finite permutation of o such
that ¢*(I'u4d) < o and let f§ be the least ordinal including o*(I"u4). Let

(9) @ = <A: +, =, Oa 1, Ce> dlcl>;c,}.<ﬂ'

Clearly € e CA;. (By (9), € is a reduct of the CA, 9 in the sense of 0.5.1, and
actually a reduct in the more special sense in which this notion will be intro-
duced and discussed in Section 2.6. However, the only property of reducts
which we use in the present proof is that a reduct of a CA in the sense of 2.6.1
is always a CA itself.) Since f < w, we can, because of (9) and the first part
of our proof, apply the present lemma with €, ¢*I', and ¥4 in place of U, I,
and 4, respectively. This gives

(10) c(a*r)(c—i-(a*F X 6*) X up) = C(G*A)(aﬂ(a*A X 6FA) X i g)
We have by 1.5.11(i) and 1.11.11(i),(iv) that
(11) Sa,_1xo_*l—‘ - xr al’ld So,_ixo,*A = xA.

Applying s, to both members of the equation (10) and using (11) and
1.11.12(vi),(ix), the conclusion of the lemma is easily obtained.

LevMa 2.2.22. Let A e CA,, xe€ A, and Ax < 1. Assume I' < o, |I'| < o,
and k € o ~ I'. Then, setting A* = Au{x} for every A = I, we have

c(d({x} x I - s%x) =
I-IAEF[_(CT(A X A) ' H Sox)+C(A+)(a_(A+ X A+) : ]._] ped+ ng)].

ued
Proor. For each finite © < a we let xo = 11
2.2.21; similarly we let (—x)g = I
O < o we set

0 .
ucoS,X> as in the proof of

o .
w0 —S,X. Moreover, for every finite

he = d(O x O) - x,.

We will first prove the lemma under the assumption o« < . This proof
falls into two distinct parts. In the first part we follow closely the lines of the
argument in that part of the proof of 2.2.21 which leads to the formula (7);
we use, however, 1.9.13 instead of 1.9.11(ii). In this way we arrive at the
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following result:
(1) If?coa, |P <ow,and Lea~ P, then

Yooy c(d({A} x ®)- x{z}) = XYoo ® Hggqs[“ d@xQ)+ C(guu})hrzum]-
From here on we proceed as follows. Clearly, for every 4 < I' we have
d({r} X I) Xy hy < By S Cye by
Hence, since x ¢ Ahyudc .\, ., we have
) e(d({rx} x I xy) S T o p(= Ayt ey yhyo).
On the other hand, for each ® = T,
Xor (=X)pmo Tler(—hatcignhys)
= X+ '("x)r~9'HASQ(—hA+C(A+)hA+)
= Xg+ (= X)pg I co(—d(Adx4)+ — X4 Xg+ Coquylige)
= Xg+ (=X)rep" HAE@(“’CT(A x 4)+ C(A+)hA+)
= Xg+ (—X)r~o" CK(CT({K} X @)'x{x})Q
this last equality is obtained by observing that x ¢ @ and applying (1). There-
fore, since (— X)Xy < d({x} x ('~ ©)) by 1.5.6, we may conclude that
3 x9+-(_x)r~9'HAsr(_hA+C(A+)hA+) =
X+ (=X d({xc} x 1) - xy).
Now 25 (Xg* (—X),.o) is easily seen to be the sum of all minimal consti-

tuents of the set {s0x:u € I'}, and hence equals 1; therefore, x,,, = Zocr(Xer
(—X)r~e). Making use of this latter equation we easily obtain from (3)

x{K}-HAEr(—hA+c(A+)hA+) = Xy ¢ (d({x} xF)~x{K}).
Applying c, to both sides of this inequality we get
) cox T e p(—hytcyeyhys) £ cox - c(d({K} x I) - x).

Furthermore, since x, = cox and —/hy+C+\ly+ = ¢ox, (4) also holds if
the initial factor cox is removed. The resulting equation together with (2)
gives the conclusion of the lemma.

The argument by which the lemma for the case @ = o is obtained from
the case a < w is entirely analogous to the argument given in the last para-

graph of the proof of 2.2.21. The details are left to the reader.
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REMARK 2.2.23. In proving Lemmas 2.2.21 and 2.2.22, and more specifically,
in deriving these lemmas from the corresponding but more special results in
Section 1.9, we have used a general method based upon Theorem 2.2.13. (The
same method could be used, by the way, to derive 2.2.20 from 1.9.10.) The
method can be described as an application of a general metamathematical
theorem concerning identities in cylindric algebras. The formulation of this
theorem, which will be discussed in Part II of our work, is somewhat involved
and will not be given. We should like only to mention that it is closely related
to a well-known metalogical theorem by which a valid sentence of predicate
logic continues to be logically valid if all its quantifiers are relativized to a unary
predicate not occurring in the sentence; cf., for instance, Tarski-Mostowski-
Robinson [53*], pp. 24 fI.

THEOREM 2.2.24. Let U be a monadic-generated CA,, and more specifically
let A = SgX where Ax = 1 for every x € X. Let

C={a(Y,2):YvZ< X,|YUZ|<w,YnZ =0,k < (¢+1)nw}

where
a (Y, Z) = cooldex ) - 11, (A1 Sy — 2 ,s92)],
and let
B={d K i<ajuf{sixixe X, & <ajuC.

We then have

(@) A = Sg®¥B;
more generally, for each I' < «a,

(i1) CIA = Sg®(BnCI )
and

BaClA = {d;:x, Aea~Tiu{six:xe X, (ca~T}uC;
(iii) ZdU = Sg®C,
ProoF. For each 4 < «, we let
By = {d,:x, Ae dju{six:xe X, e A}uC;
observe that B = B, and BaCI.% = B, ... We begin by proving the following
lemma:
(1) if 4,0 < o and |0] < o, then ¢, Sg®*®B, = Sg®™B, .

1t clearly suffices to consider only the case where © = {x}. Let D and E be
the set of all finite sums of constituents associated with B, and B,_,,,
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respectively. We must show that c,we E for each we D. In fact, since ¢,
is additive by 1.2.6, it is enough to consider the case when k€4 and w is
simply a constituent of By, specifically, w = [1U — XV where U and ¥V
consist exclusively of diagonal elements d,, with Ae 4 ~ {x} and the ele-
ments sox with x € X; indeed, it is clear that all the elements of B, not of
this form are containedin B, ,,,, and this in turn implies that these elements
are also x-closed. (This last implication is an instance of the last formula
of (ii) which obviously holds in light of 1.6.15.) The proof of the lemma is
completed by observing first of all that, by 2.2.21 and 2.2.22,

CK(HVGA - dK.'V : H

V!

cY Sgy ’ HZEZ _ng) ek

if k¢ A and ¥,Z = X with |[YUZ| < @ and YnZ = 0 (in applying 2.2.22
we take [ 1Y — 2Z for x); while on the other hand, by 1.5.1, 1.5.3, 1.5.4, and
1.5.11(1) we have

cx(drcl : I—Iﬂeg dxu : H
IIueQ dlﬂ ' HveA - d/lv : ].-I

provided k¥ # A, k¢ QuAd, and Y, Z =< X with |[YuZ| < ®w and YnZ = 0.
To complete the argument, turn back to the proof of 2.1.17 and follow

exactly the way in which that theorem was derived from lemma (1) stated
there.

0 1 0
ved dKV ’ Her Sy l_[zeZ - SKZ) =

yeY S(iy ’ ]‘_IZEZ - S(}{Z

The specific assumption in 2.2.24 to the effect that Ax < 1 for every x € X
does not imply any loss of generality in view of 2.2.19.

COROLLARY 2.2.25. If the hypothesis of 2.2.24 is supplemented by the premiss
|X| < o, and if, in formulas for C and a Y, Z), Z is replaced by X ~Y,
then the conclusions 2.2.24(i)-(iii) continue to hold.

Proor. In view of 1.2.6 and the remarks preceding 1.9.6, it is easily seen
that each element (Y, Z) with YuZ < X, |YuZ| < ow, YnZ =0, and
K < (¢+1)nw can be represented as a finite sum of elements of the form
a(Y,X~Y) where Y < X and |Y| < w. Hence, the corollary follows
immediately from 2.2.24.

COROLLARY 2.2.26. Every finitely generated CA, witho < @ which is monad-
ic-generated is finite.
PrOOF: by 2.2.24 and the theory of BA’s.

From 2.2.24 we can actually derive a stronger conclusion: for fixed finite
o and f, the cardinalities of all monadic-generated CA_’s with f generators
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are bounded above (by a finite cardinal). In Section 2.5 the least upper bound
for these cardinalities will be established; cf. 2.5.60 and 2.5.61.

In view of 2.2.17, Corollary 2.2.26 comprehends as particular cases both
Theorem 2.1.10 concerning CA;’s and Theorem 2.1.19 applying to Mn,’s.
With the help of 2.2.24 and 2.2.25 we will establish in Section 2.5 some further
properties of monadic-generated algebras analogous to those stated for minimal
algebras in 2.1.23; cf. 2.5.65 and 2.5.66.

2.2.26 implies directly that every finitely generated monadic-generated CA
of finite dimension is atomic. From 2.2.25 we can easily obtain a description
of all atoms of such an algebra in terms of the set X of its generators (with
the property that Ax < 1 for every x € X). We shall state here explicitly only
a rather special result in this direction which will be needed for our further
discussion; namely, using 2.2.25, we shall give a description of all zero-
dimensional atoms of a finitely generated CA;:

THEOREM 2.2.27. Assume e CA, X is a finite subset of A, and A = SgX.
Then

AtAnzd W = {11, ., oy —codIW — Z(X ~W)):Y < X} ~ {0},

and hence
(At AnZd A| < 21X,
PrOOF. Let
hy =11V = 2(X~7)

for each Y = X. Notice that the Ay’s are exactly the minimal constituents of
the set X and that distinct ¥, Z = X correspond to distinct constituents.
Some simple consequences of these facts, which we will find useful in the
present proof, are the following:

(D cihy-cohy =0 for any Y, Z = X such that ¥ # Z;
2 [T, cx —cohw = 0;
3) IL, . ey —Cohw < hy for every Y = X.

In order to see (1) note that
cghy - Cohy = co(cohy - hz) = co(hy - hy);

both (2) and (3) are simple consequences of the fact that 2, cy /iy = 1.
From 2.2.25 we have that the atoms of 9 are just the non-zero minimal
constituents of B = Xu{cyhy:Y < X}. Let

y=hy HzEr( Cohy HWeSb x~k — Soltws
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where ¥ = X and K = Sb X, be an arbitrary minimal constituent of B, and
assume, in addition, that y is zero-dimensional and different from 0. Then

y=cy= CghY'HzEKCOhZ'HWGSbX~K = Cohyy.
Hence by (1) we have K < {Y} since y # 0; however, because of (2), K
cannot be empty for the same reason. Therefore, we have K = {Y} and
¥ =hy cohy Ty ey —cohy.

From this last formula and (3) we conclude that

y= HY#WEX — Cohy.

This completes the proof.

In connection with this theorem compare 2.3.32.

Further applications of the method of eliminating cylindrifications for
monadic-generated algebras will be found in Section 2.5, and in Part IT where
in particular it will be established that every monadic-generated algebra is
representable (cf. 1.1.13).



2.3. HOMOMORPHISMS, ISOMORPHISMS, AND IDEALS

In this section we discuss for cylindric algebras the notions of homomorphism
and isomorphism, as well as certain derivative notions, in the first place that of
ideal. These are notions which for arbitrary algebraic structures were discussed
in Section 0.2. As usual, the general definitions of these notions can be modified
by using specific properties of CA’s. In particular, a homomorphism f from a
CA 9 onto a CA B (i.e., a member f of Ho(, B)) is defined to be a function
with domain 4 and range B which preserves the fundamental operations and
distinguished elements, in the sense that f(x+®y) = fx+®fy, ..., fd P =
d, ®; but in listing these conditions we can omit those involving the distinguish-
ed elements O and 1 and any one of the three Boolean operations +, -, —
Analogously, in defining an isomorphism from 2 onto B we can omit con-
ditions involving two of the Boolean operations, either + and —, or - and —.
With respect to some derivative notions, in fact, those of ideal and simple
algebra, the modifications which can be made in the general definitions are
more essential; they will be described explicitly in Theorems 2.3.7 and 2.3.14.
It will be seen from these theorems that in the case of CA’s these two notions
acquire a more elementary character, and can be defined in terms of simple
conditions imposed on the elements of a CA.

THEOREM 2.3.1. HCA, = CA,; that is, a homomorphic image of a CA,
is a CA,.

Concerning the proof of 2.3.1 cf. 2.1.2.

TueorReM 2.3.2. If A e CA,, fe Ho(N, B), and x € A, then A®fx = A®x.

TueOREM 2.3.3. HLf, = Lf,, HDc, = Dc,, and HMn, = Mn,.
PRrOOF: by 0.2.14(ii) and 2.3.2.

It goes without saying that CA,, Lf,, Dc,, and Mn, are closed under the
formation of isomorphisms as well. Further observations of this kind will not
be stated explicitly; cf. 0.2.7.
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We now turn to the discussion of ideals in cylindric algebras. We assume
as known the notion of an ideal in a Boolean algebra 2. This notion can be
subsumed under the general notion of a z-ideal defined in 0.2.39. Indeed,
since the operation of symmetric difference, @, is a group-forming polynomial
(i.e., a binary polynomial operation such that {4, ®) is a group), we may
apply 0.4.17 to infer that for each z the z-ideals are properly functioning,
and that consequently they are in a natural one-one correspondence with the
congruence relations of .

In the theory of BA’s we fix z in either one of two different ways,
choosing z = 0 or z = 1; we agree to refer to O-ideals simply as ideals, and
to 1-ideals as filters of . It can easily be shown that these definitions of an
ideal and a filter in a BA are equivalent to the usual ones. (There is a third
method of introducing filters for a BA 2(, namely, as ideals of its dual 9°.)

We shall now apply an analogous procedure to cylindric algebras except
that we restrict ourselves to 0-ideals without extending the use of the term
“filter”.

THEOREM 2.3.4. For any W e CA,,

(i) @ is a group-forming polynomial over A,

(i) the z-ideals of U function properly for every z € A.
PRrOOF: (i) by the theory of BA’s; (ii) by (i) and 0.4.17(iii).

DEerINITION 2.3.5. By an ideal of a CA, U we mean a 0-ideal of U, i.e., any
set O/R where R is a congruence relation over .

REMARKS 2.3.6. The terminology developed in Section 0.2 for z-ideals will
be applied to Boolean and cylindric algebras without the use of the subscript
z (z = 0 in our case). Thus I/ (the set of ideals of %), Ig®™X (the ideal of ¥
generated by X), etc. will denote Boolean or cylindric notions, dependent
on whether % e BA or e CA. By a Boolean ideal of a CA U we mean, of
course, an ideal of BII.

By 2.3.4 and 0.2.49, ideals of a CA U are in natural one-one correspondence
with congruence relations on 2. Because of this fact we can eliminate congru-
ence relations entirely from the discussion of CA’s and can consistently use
ideals instead; the advantages of this procedure were explained in 0.2.48.

Since ideals replace congruence relations, with every ideal I of a CA U we
can correlate a quotient algebra /I. The significance of ideals for the theory
of CA’s results primarily from the fact that these quotient algebras provide a
standard isomorphic representation for arbitrary homomorphic images. This
representation is based upon the following two statements:
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(@) If e CA, and I € 11U, then A = /L. In fact {x[I:x € A) € Ho(, A/I),
where x/[I is determined for all x € I by the formula x[I = {y:ye 4, x ® yel}.

(IT) If A e CA, and A = B, then there is an I € I1A such that B = A/I.
In fact, if he Ho(¥, B), we can let I = (h~*)* 0® and we obtain h™*|{x/I:
x € A> e Is(B, A/I).

In view of 2.3.4, (I) and (II) are direct applications of the general theory of
algebras. Cf. 0.2.21, 0.2.23, and 0.2.52; also, use 0.4.17(i) to derive the specific
formula for x/I in (I).

Using 0.2.49 and 2.3.4 we can automatically express various other results
for CA,’s concerning congruence relations in the terminology of ideals. Except
for a few cases where these results play a special role in the further develop-
ment (cf., e.g., 2.4.40 below), we shall not explicitly formulate them. In what
follows we shall often refer, during the course of an argument, to a definition
or theorem concerning congruence relations when, actually, the corresponding
result for ideals is needed. It will be left to the reader to supply the proper
translation. An elementary characterization of ideals in CA’s independent of
the notion of congruence relations is given in

THEOREM 2.3.7. A set I is an ideal of a CA, N iff the following conditions
hold.:
(i) I is a Boolean ideal of ¥, i.e.,
i) 0el <= 4,
and, for all x,y € A,
(") if x,yel, then x+yel,
@) if xel and y < x, then yel.
(i) For any xel and x < o, c,xel.V
ProoF. First suppose that I is an ideal of U, i.e., a O-ideal of ¥ in the
sense of 0.2.39. A direct proof that I satisfies (i) and (ii) is not difficult; because
of 2.3.4, we may if we wish apply 0.4.17(ii) instead, with - replaced by ®
and z by 0. Condition (i") coincides with 0.4.17(ii"). Conditions (i"), (i), (ii)
can all be obtained by suitably applying 0.4.17(ii"”); we omit details.
Assume now, conversely, that (i) and (ii) hold. To show that I is an ideal
of 9, it suffices by 0.4.17(ii) to establish the following conditions:

ey Oecl c A.

1) In Tarski-Thompson [52] Theorem 2.3.7 is taken for the definition of ideals in CA’s.
It is also stated there that the relations between ideals and homomorphisms is exactly the same
in cylindric algebras as in Boolean algebras; this amounts to saying in our present terminology
that in both classes of algebras the ideals function properly.
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@ If x®y, X ®y' el, then (x+x)® (y+yHel, xx)® (yy)el,
and —x @ —yel for all x,y,x',y €A.
3 Ifx®yel, then cx @ c.yel for all x,ye A4 and k < a.

(1) and (2) follow from (i) and the theory of Boolean ideals. If x ® y € I, then
X ®c.y = c(x @y el by 1.2.8311) and (ii), and hence c.x @ ¢,y €I by (i).
Thus (3) holds, and the proof is complete by 0.4.17(ii).

As a direct consequence of 2.3.7 we obtain the dual theorem 2.3.7° which
gives a simple characterization of dual ideals in a CA, %, i.e., ideals in A°
(cf. the remark following 1.4.3); as in the case of BA’s the dual ideals prove
to coincide with 1-ideals in U itself. For further reference we state here ex-
plicitly 2.3.7% in a somewhat simplified form in which conditions corresponding
to (i) and (i”') are replaced by one condition:

A set I is a dual ideal of a CA, W if the following conditions hold:
() I is a filter of U, i.e.,

(i) 1el < 4;

(i") if ye A and x, —x+yel, then yel.
() If xel and x < a, then cIxel.

Of course the original theorem can be simplified in a similar manner.

TueoreM 2.3.8. If A e CA, and X = A, then Ig X is the set of all ye A
such that y < cp(Xo+...+X._) for some xe*X with k < @ and some
I' < o with [T < o.

PrOOF. Let I be the set of all y € A such that y < ¢py(xo+ ... +x,4) for
some x € “X with k < @ and some I' € o with |[I'| < @. Clearly I < IgX.
To prove the inclusion in the opposite direction, it suffices to show that
X = Iell. Obviously, X = I, 0el = 4, yel whenever y < xel, and
c.x € I whenever x € I and x < a. Thus, in view of 2.3.7, it only remains to
prove that y+z el when y, zel. Say

VS epXot . tx ) and z = ¢ y(Wot ..+ Wi 1)

where k, . < o, xe*X, we*X, I''4 < o, and |I], 4] < o. Then both
y and z are = ,(Xot...+XeqFwot...+w, ), so that y+z =
Sromot o+ Xy +Wot...+w,_y) and y+zel

We shall see from 2.3.9 and 2.3.10 that the construction given in 2.3.8 of
the ideal generated by a set X can be simplified in various ways under special
assumptions on X.

COROLLARY 2.3.9. Let A e CA,.
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(@) If X = 4 and |Ax| < o for each x € X, then
IgX ={y:yed,y = clyepyXot - T Cux._yXu—1 for some k < @ and x € *X}.
() If X = Zd, then
Ig®X = Ig®WX = {y:yed,y < Xo+...+ X, for some k < ® and x €*X}.
(iii) If K < IIY, then
Ig®UK = Ig®"UK = {xo+... + X1k < @, {Xo, ..., X} < UK}.

COROLLARY 2.3.10. Let e CA,.
(i) If x € A, then the principal ideal 1g{x} is determined by the formula

Ig{x} ={y:ye A,y < cx for some finite I < a}.
(ii) If xe A and |Ax| < o, then
Ig{x} = Ig{ciu} = {y € 4,y < Gt} = Rl
(i) If x € ZdU, then
Ig(x} = Ig®™{x} = {y:ye A, y < x} = RL.
(iv) If X = 4 and |X| < o, then IgX = Ig{>X}.

We know from 0.2.41 (and the subsequent remark) that in every algebra A
the z-ideals form a complete lattice under appropriate operations of join and
meet. This general result can of course be applied to ideals in CA’s. As we
shall see from the next theorem, the resulting lattice proves to be distributive
and actually exhibits a stronger property: it satisfies the distributive law for
meets over arbitrary (infinite) joins. This is a generalization of a known result
from the theory of Boolean algebras. Complete lattices which satisfy this
particular distributive law coincide with complete Brouwerian lattices; cf.
Birkhoff [67*], p. 128, Theorem 24. They can be characterized as duals of
complete Brouwerian algebras in the sense of McKinsey-Tarski [46*] (which
are also known as complete Brouwerian logics).

TueoreM 2.3.11. Let N e CA,; let I+J = Ig(TuJ) forany I,J € I, and
ik = 18(Uiex Ji)

for any set K and any J € XII%. We have then:

@) <IIA, +, n) is a complete lattice with the zero element {0} and the unit
element A. In this lattice 2y J, and Ny J, are respectively the least upper
bound and greatest lower bound of ideals J, with k € K.

(i) If I eIIU and J € *1IA, then

In2, i Jp = Zx(Ind)).
Hence, in particular, the lattice {II, +, n) is distributive.
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Proor. (i) follows immediately from 0.1.11 in the light of the remark
following 0.2.41. Now in order to prove

)] In2, g Jy, = 2 (InJ)

it suffices to show I n2 xJ, S 2..x(I nJy) since the inclusion in the opposite
direction is obvious (and, incidently, holds in every lattice). Assume that
aeln,gJy; then, by 2.3.9(ii), a = xo+...+x,._, for some x < @ and
{x0s ey X1} S UpexJi- Furthermore, we have by 2.3.7(G") that {x, ...,
X.~1} € I since, for each 4 < x, x, < a while ael. Thus {xq, ..., X._1}
U,x(InJ,) and consequently a € 2, «(InJ,) by 2.3.9(ii).

The ordinary distributive law,

In(J+J) = Ind)+{nJ)

for any I, J, J e 11, follows as a particular case of (1); and, by applying
this law several times, we obtain the second distributive law,

I+(UnJ)y =T+Nn(I+J)
for any I, J,J e II.

Our formulation of 2.3.11 assumes that Ny xJ, = 4 in case K = 0 (as in
the Preliminaries).
It is known that the distributive law for joins over infinite meets,

I+ Mg Jy = My +J),

fails in the lattice of ideals of infinite BA’s; hence it does not hold in general
for the ideals of CA’s.

An intrinsic characterization of lattices of ideals of BA’s is known from the
literature; cf. Tarski [37*], p. 188. From 1.3.11 and our next theorem it follows
that this characterization applies to lattices of ideals of Lf,’s as well. For
o = o, no intrinsic characterization is known for the lattices of ideals of
arbitrary CA,’s.

In reference to the following theorem, recall that Ism(, B) is the set of
all isomorphisms from 2 into B (cf. 0.2.5(ii)).

Tueorem 2.3.12. Let A e CA; let F and G be the functions defined respec-
tively for I € Il and J € 1130 by the formulas

FI = InZd¥, GJ = Ig®J;

finally, let & = {IIU, +, n) be the lattice of ideals of W described in 2.3.11
and let &' = {II13dA, +', n> be the analogously defined lattice of ideals of
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the Boolean algebra 3dU. Under these assumptions we have:
(1) GFI <1 for every 1 eIl and FGJ = J for every J e I1I3d 9.
(ii) F maps IIA onto 113dA and G is one-one; in fact, G € Ism(L', Q).
If, moreover, W € Lf,, we have:
(iii) Fels(g, &), GelIs(¥, ), and F~* = G.
(iv) FI = {c x:x €I} for every I €I, and

GJ = {x:xed, c ,xeJ}

Sfor every JeIl3dA.

Proor. We first observe that RgG < I/ and RgF < I/3bU both hold;
the first inclusion is obvious while the second is implied by 0.2.42(ii) and
2.3.7(@i). The first part of (i) then follows from the definition of F and G, and
the second part if an easy consequence of the fact that, by 2.3.9(ii),

1 GJ = {x:xe A, x £y for some yeJ}

for each J e I13b .

For the proof of (ii), first note that F maps I/ onto I/3bd% and G is one-
one; both these facts follow immediately from the second part of (i), ie.,
that FoG = I/30U1Id. In order to prove that G e Ism(¥, &), i.e., that G
maps &' isomorphically into &, it remains only to show that, for any
J,J eligdbA, GU+'J)=GJ+GJ and G(JnJ) = GinGJ'. By (1) and
2.3.9(iii) it is sufficient for the proof of the first of these equations to show
that, for every x € 4, x < a+™a’ for some aeJ and a’ € J' iff x = b+ b’
for some be GJ, b’ € GJ'; but given a, a’ we let b = x-a and b’ = x-a’ while,
if b,b" are given, by (1) we may choose @, a’ such that b < aeJ and
b <adel. GUnJ) = GJnGJ is proven analogously.

To prove (iii) and (iv) we observe first of all that, if I € I/ where  is an
arbitrary CA,, we have by 1.7.11 and 2.3.7 that x € I iff c 4, x € InZd¥, i.e.,

® xel iff ¢, x€FI,

for all xe A such that |[Ax| < w. From this it follows that the inclusion
I = GFI holds in case 2 € Lf,, since then we have x < ¢, x € FI and thus
x € GFI, for each x € I. This along with the first part of (i) shows that G-F =
IIANId, and the latter fact combined with (ii) gives (iii). The inclusion
FI 2 {c 4 x:x €I} follows from (2), while the inclusion in the opposite
direction is a simple consequence of the fact that c 4, x = x for every x € Zd3.
The second equality of (iv) is gotten immediately upon substituting GJ for I
in (2) and recalling that, by (ii), FGJ = J. This completes the proof of the
theorem.
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Part (ii) of 2.3.12 cannot be improved by saying that F € Ho(€, &'), because
it is easy to construct a CA with ideals I and I’ such that FI+'FI' <F (I+1').
From 2.3.12(iii) it is seen that, in case 9 € Lf,, the theory of ideals in  reduces
to that of ideals in 30 . If 3d U has a simple structure, its ideals and those
of 9 can be easily determined. For example, Theorem 2.1.23 can be used to
describe the lattice of ideals of any Mn,.

From 2.3.12 we see that every ideal I of an Lf, has a set of zero-dimensional
generators; in fact, by 2.3.12(iii) we have I = IgFI. Actually, using 2.3.9(i)
we can say even more: if I is generated by X < A4, then there is a set ¥ of
zero-dimensional generators of I such that |Y| < |X|; we can take for Y the
set {C4X:x € X}. This last observation leads us to the following interesting
property of Lf’s: Every ideal I of an Lf,% which is generated by a countable
set has a (countable) irredundant base; i.e., there is ¥ & 4 such that I = IgY
and I o IgY’ for every Y’ < Y. In fact, if I = Ig{x,.:x < {} where { £ o,
we can set

Y = {CgrXec — Zz<xc(4x,1)xz5’c < ¢} ~ {0}

REMARKS 2.3.13. Theorem 2.3.12 leads to a clear and relatively simple
metalogical interpretation of ideals in cylindric algebras. Actually, it is more
convenient to interpret the dual ideals and relate them, with the help of 2.3.12%,
to filters in Boolean algebras of zero-dimensional elements.

We consider a theory @ in a language A, and let 9 be the associated CA,
of formulas; then Zd U is the BA of sentences associated with @ (cf. 1.1.16
and the remark immediately following 1.6.18). We assume o = w. Each
formula ¢ in A determines one of the elements of ¥, namely, the equivalence
class @/=¢4. The elements of 30 are those elements /=, of U determined
by a sentence ¢ in A. Thus, corresponding to any dual ideal I of A we may
consider the correlated set @ of formulas where @ = UI; and corresponding
to any filter J of b 9 we may consider the correlated set X of all those sentences
which are in UJ.

To characterize all sets ® and X obtained in this way we recall the simple
characterization of dual ideals in CA’s and filters of BA’s given in connection
2.3.7° (see the remark immediately following 2.3.7). We easily see that the
sets X are characterized by the following conditions: X contains all sentences
valid in @; if ¢ and ¢ - { belong to X, then { also belongs to X. From this
we conclude at once that the sets X correlated with filters in 30 are simply
theories which include @; such theories are usually called extensions of @.
(The completeness theorem of predicate logic is essentially involved in obtaining
this characterization of the sets X, and the same applies, not only to some
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later parts of these remarks, but also to certain remarks made further on in
the chapter; compare here 1.11.2.) On the other hand, the sets & are charac-
terized by the three conditions: they contain all formulas ¢ valid in @ (i.e.,
whose closures [¢] belong to O); if ¢, ¢ —» Y € @, then Y € @; if ¢ € P, then,
for every ¥ < «, ¥, ¢ € @ (and hence also [¢] € ®). This description of the
sets @ is simple enough. A still simpler characterization can be obtained,
however, from part (iv) of 2.3.12°: a set @ of formulas is correlated with a
dual ideal in 9 iff there is an extension @’ of the theory © such that @ consists
of just those formulas whose closures are valid in @’. This theory @’ is simply
the set of all those sentences which belong to .

We wish to discuss briefly one further metalogical interpretation, namely,
that of a quotient algebra /I. Thus let A be, as before, the algebra of formulas
associated with a theory of ©. Along with an ideal I we consider the corre-
sponding dual ideal I° given by the formula I? = {—x:x e I}. Although we
have decided to use the ordinary ideals (i.e., O-ideals) in the construction of
quotient algebras, we could equally well use dual ideals (i.e., 1-ideals) for the
same purpose; and indeed, by returning to congruence relations, we can easily
see that actually /I and /I° are the same algebra (cf. 0.2.47). Now the dual
ideal I° is a set of equivalence classes of formulas, and its union UI° is a set
of formulas. As we know from the preceding remarks, there is a well determined
extension @’ of the theory © such that UI° consists of just those formulas
whose closures belong to @'. Let ' be the algebra of formulas associated
with ©’. A moment’s reflection suffices to perceive that, although the algebra
A/I° is not itself a cylindric algebra of formulas, it is isomorphic to ’; the
argument is based upon the second isomorphism theorem, 0.2.27(iv).

A consequence of these observations is: if 9 is the algebra of formulas
associated with the theory @, then every homomorphic image of ¥ is iso-
morphic to an algebra of formulas 9’ associated with some theory @' which
is an extension of @. It is easily seen, again using 0.2.27(iv), that the converse
of this statement also holds: every algebra of formulas ' associated with an
extension O’ of @ is a homomorphic image of 9. Assume in particular that
0, is the logic of the given language A (cf. the Preliminaries), so that every
theory in A is an extension of @,. Let 9, be the algebra of formulas associated
with the theory ©,. We see then that the class of all homomorphic images of
A, coincides with the class of all cylindric algebras of formulas in the language
A and their isomorphic images.

In the next few theorems we are concerned with simple CA’s and maximal
ideals. Notice first that, by results from the general theory of algebras, a CA 9
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is simple iff it has just two ideals (or, equivalently, if I/ = {{0}, 4} and
0 # 1); also, for any given ideal I of 9, the algebra 2(/I is simple iff I is a
maximal proper ideal.

THEOREM 2.3.14. For any CA, U the following conditions are equivalent:

@) A is simple;

(i) |4| > 1, and for every non-zero x e A there is a finite subset I' of o
such that cpx = 1.
Each of these conditions implies:

(iti) |ZdU| = 2 or, equivalently, |A] > 1 and Zd = {0, 1}.

In case W e Lf, the three conditions (i)-(iii) are equivalent to each other and
also equivalent to

@v) 14| > 1, and ¢ 44x = 1 for every non-zero x e A0

ProoF: by 0.2.34, 1.7.11(i), and 2.3.10(i),(i).

It will be seen in Section 2.4 that for o = @ conditions (i) and (iii) are not
in general equivalent; compare 2.4.14 and 2.4.50.

REMARKS 2.3.15. Examples of simple CA,’s are numerous. In case o = 0
we know from the theory of BA’s that the only simple algebras are those with
two elements. In case o = 1 an elementary construction of all simple CA;’s
(and Df,’s) is fully described in 1.2.14. From this construction it is seen that
there is a one-one correspondence between BA’s and simple CA;’s and that
actually the two classes of algebras are first-order definitionally equivalent
(cf. 0.1.6). For o = 2 (as well as for « = 1) trivial examples of simple algebras
are provided by two-element algebras; as is seen from 2.3.14 and 1.6.3 these
are the only simple CA,’s which are discrete. Non-discrete simple algebras
can easily be found among the special algebras of Section 1.1. Thus a CA,
(with o = o) of formulas associated with a complete consistent theory O is
always simple because it is locally finite and contains just two zero-dimensional
elements (compare the remarks following 1.6.19); moreover, 2 has more than
two clements provided the sentence J,,x 5% y is valid in @. Conversely, the
discussion in 1.11.2 and 2.3.13 shows that, for « = @, every simple Lf, with
more than two elements is isomorphic with an algebra of formulas associated
with a complete consistent theory.

If 1 £ o < oand |U| = 2, then the full cylindric set algebra of dimension
o and with base U is again a simple algebra with more than two elements.
In case & = o and |U| = 2 the full cylindric set algebra in the space “U is

1) The essential parts of this theorem were stated in Tarski-Thompson [52].
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not simple. However, we shall now describe a class of simple set algebras
which proves to be quite comprehensive.

Let o = @ and U be a non-empty set, and for each finite subset I" of o define
Ry to be the equivalence relation which holds between any two elements x and y
of *U iff I'x =I'ly. If X is a non-empty subset of “U for which there
exists a finite I' = « such that

(I) RI‘*X = Xa

then, as is easily seen, C X = “U; moreover, the set of all X = “U which
satisfy (I) for some finite I' < « is clearly a subuniverse of the full set algebra
in the space “U. Therefore, every set algebra in the space *U which is generated
by an arbitrary set of elements X < *U satisfying the condition (I) for some
finite I' < o is an example of a simple set algebra of dimension o = .
Actually, if we denote by K, the class of all algebras defined in this manner,
we can easily convince ourselves that for each algebra U the following three
conditions are equivalent: 9 is a simple Lf,, 9 is isomorphic with an algebra
in K,, and U is isomorphic to an algebra of formulas associated with a com-
plete and consistent theory.

In spite of certain similarities between 2.3.14(ii) and the condition used in
defining Lf,’s, there are simple CA’s which are not locally finite; cf. Theorem
2.5.24 below.

As an immediate consequence of 2.3.14 we have

CoROLLARY 2.3.16. (i) If a CA, U is simple, then every subalgebra of U is
simple.

(i) If a CA, A is not simple, then there is a subalgebra of U generated by one
element which is not simple and which is actually not a subalgebra of any simple
subalgebra of .

Neither part of 2.3.16 extends to arbitrary algebras.

THEOREM 2.3.17. If A e CA,, then for every proper I €Il there is a maxi-
mal proper J € IIW such that J 2 1.
PrOOF: by 0.2.46(iii), since 4 = Ig{1} by 2.3.10.

THEOREM 2.3.18. If U e CA, and I € IIN, then the following conditions are
equivalent:
@) I is a maximal proper ideal of ;
(ii) for each x € A, either x €l or else —cyx €l for some finite subset I
of o, but not both.
In case U e Lf, each of these two conditions is equivalent to the condition:
(ii) for all x € A, either xel or —c 4 x €1, but not both.



290 GENERAL ALGEBRAIC NOTIONS 2.3.19

Proor: by 0.2.38 and 2.3.14.
From 2.3.18 and 0.2.42(ii) we further obtain

CoROLLARY 2.3.19. If A = B e CA, and I is a maximal proper ideal of B,
then Anl is a maximal proper ideal of .

THEOREM 2.3.20. For any CA, U the following conditions are equivalent:

(i) A is simple;

(i) 4] > 1, and A = B whenever N = B and |B| > 1.

Proor. That (i) implies (ii) is obvious (cf. 0.2.36). If (ii) holds, let I be a
maximal proper ideal of ¥ (by 2.3.17). Then A = /I and |4/I| > 1, so
A = W/I. Since /I is simple by 0.2.38, U is simple as well.

ReMARK 2.3.21. From 2.3.20 it is seen that for cylindric algebras the notions
of simplicity and pseudo-simplicity coincide; cf. 0.2.37.

THEOREM 2.3.22. If U is a finitely generated Dc, with o = @ which either is
simple or satisfies the condition ¢, —doy = 1, then 9 is generated by a single
element.

ProoF. We can restrict ourselves to the case when ¢, —dy; = 1. In fact,
every simple CA, satisfies this condition (unless |[4]| = 2, in which case the
conclusion of the theorem trivially holds). Further, it suffices to assume that 9
is generated by two elements x, y, and show that it is generated by just one
element. By 1.11.4 we may choose distinct x, L € a ~ (dxudy). Let z = x-d,,
+ y-—d,;. Then A = Sg{z}. To prove this, note that z-d,; = x-d,, and
z-—d,; = y-—d,,. Thus

CK(Z' dkl) = Ck(x. dlc}.) = X ctcdlcl = X.
Hence x € Sg{z}. Similarly,
Ck(z‘ndxl) = Cx(y'_dlcl) =Y C— dxl =)'C — d01 = ).
Hence also y € Sg{z}. Consequently, A = Sg{z}, as desired.

ReMARKS 2.3.23. In its metalogical interpretation Theorem 2.3.22 (due in
the present form to Henkin) is closely related to the following elementary fact:
for any two finitary relations R and S there is a relation 7" such that T is defi-
nable in terms of R and S (in a language of predicate logic provided with
infinitely many variables) and, conversely, both R and S are definable in
terms of 7. The relation T can be constructed in several different ways. Cf.
Goodman [43*].

For each o # 0, every finite discrete CA, % with more than two atoms is an
example of a non-simple finitely generated Dc, which is not generated by one
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element; for « = @ we can also easily obtain a non-discrete CA, 9’ with these
properties by setting A’ = A x B where A is as above and B is any finitely
generated non-discrete Lf,. Thus the hypothesis of simplicity in 2.3.22 cannot
be entirely omitted. On the other hand, the premiss « = @ in 2.3.22 is not
essential: the conclusion trivially holds in case 2 < « < .

It will be shown in Section 2.6, Remark 2.6.25, that for every finite & > 0
there is a simple finite CA, which is not generated by any single element.
(However, we may recall that any full cylindric set algebra of dimension a,
with 1 < « < o, and with finite base is generated by a single element; cf.
the remark following 2.1.11.) The problem is open whether, in case ¢ = @,
Theorem 2.3.22 extends from Dc,’s to arbitrary finitely generated simple CA,’s.

THEOREM 2.3.24. If W is a simple CA, and |A| > |«|vw, then there is a
B = A such that |B| = |o|vw, B is simple, and B is not finitely generated.”

ProoF. Clearly there is a sequence <€, .:x < @) € “SI such that |C, | =
lejuw and C, = C,, 4, for all kK < w. By 2.3.16(i) the CA, B = U{€,:x < v}
has the properties indicated in the conclusion of the theorem.

REMARK 2.3.25. From 2.3.24 we can infer that for every « there is a simple
Lf, of power |x|uw which is not finitely generated. For, let § = (Jo]uw)*, and
let 4 be the family of all X < “B with the following property: there is a finite
I' = o such that whenever o € X we have also 7 € X for every sequence 7 € “f
which coincides with o on I'. It is easily seen that 4 is a cylindric field of sub-
sets of “f, and that the associated CA, 9 with universe A is simple, locally
finite, and such that |4| > |o|uw. Hence the CA, B given by 2.3.24 is simple,
locally finite, not finitely generated, and satisfies |B| = |o|Vw.

As was pointed out in 2.3.6, a homomorphic image of a CA 9 can always
be represented isomorphically as a quotient algebra /I over an ideal I, and
thus as an algebra whose elements are certain subsets of the universe 4. It
will be seen from the next theorem that in certain special though important
cases the representation of a homomorphic image undergoes a further simplifi-
cation: the quotient algebra /I can be transformed isomorphically into a
relativized algebra R, hence into an algebra whose elements are among
those of 4, and whose operations are very closely related to those of 9.

THEOREM 2.3.26. For every e CA, and be ZdU we have:
@) if h=<{x-b:xe Ay, then he Ho(W, RL,A) and (h~)*0 = Ig{—b};
(i) A = RLA.

1) Theorem 2.3.24 is a very special case of a general model-theoretical result in Hanf [62a*],
p. 38.
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ProoOF. (i) is easily checked by means of 2.2.1 and 2.3.10(ii). (ii) is an
immediate consequence of (i).

COROLLARY 2.3.27. For every ¥ e CA, we have:

() if beZd, then A/Ig{b} = RI_,A;

(i) more generally, if be A and |4b] < @, then U[Ig{b} = Rl_c 4.

Proor. (i) follows easily from 2.3.26(i) (cf. 2.3.6, in particular statement
(ID)). (ii) follows from (i), 1.7.11(i), and 2.3.10(ii).

We see that, if b € Zd9, the relativized algebra R, is not only a CA, but
is actually a homomorphic image of the original CA (; this supplements
Theorem 2.2.12. Obviously, every algebra % isomorphic with R, is also a
homomorphic image of 2. We shall now show that, under certain rather
restrictive assumptions concerning U and B, the converse of this last state-
ment is likewise true.

THEOREM 2.3.28. Assume o < w, W is a finitely generated CA,, and B is a
finite CA,.

() If he Ho(, B), then there is a b e ZdW such that (h~*)*0® = Ig{b}.

(i) If %A = B, then there is a ¢ € Zd such that B = RN,

ProOF. It seems to be more convenient in this proof to deal with con-
gruence relations rather than ideals. By 2.3.10(ii),(iv) we see that in order to
prove (i) it is sufficient to prove that (A~*)*0® is a finitely generated ideal;
hence, in view of 0.2.50(ii) and 2.3.4(ii), we need only show that AlA™* is a
finitely generated congruence relation on A.

Because of the hypothesis of the theorem, there exists a finite subset X of
A such that X generates 9 and, in addition,

(1) h*X = B.
Let
X =Xu{x+y:x,yeXju{—x:xeX}uU__ cEXu{d :x, 1 <o}
and set
) R = Cg™(hlh~ n(X x X")).

Then, since X and hence also X’ is finite, we have that R is finitely generated.
Clearly R < hlh~'. Consequently, to complete the proof of (i) it remains only
to show 4lh™' = R, and for this purpose we shall first prove that every element
of A4 is in the relation R to some element of X, i.e., that

3) R*X = A.
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Suppose now that a, b € R*X, say xRa and yRb where x, y € X; then
@ (x+y)R(a+Db).

However, from (1) we see that there is a z € X such that 4z = h(x-+y); thus
zR(x+y) by (2). Combining this with (4) we get zR(a+Db), i.e., a+b e R*X.
Therefore, R*X is closed under the operation +, and in a similar way using
(1) and (2) we can show that R*X is closed under — and all the cylindrifi-
cations c,. It follows immediately from (1) and (2) that R*X contains all the
diagonal elements d,,;; thus R*X is a subuniverse of . Since the inclusion
X € R*X is obvious, we obtain (3).

Now consider any a, b€ A such that ha = hb. By (3) there are x, ye X
such that

®) XRa and yRb.
Then, since R < Alh™1, we have
hx = ha = hb = hy,

and hence xRy by (2); this combines with (5) to give aRb. Therefore, we have
shown #|h~" = R. This completes the proof of (i), and (ii) is an immediate
consequence of (i), 2.3.6(IT), and 2.3.27(i).

TueOREM 2.3.29. Let W be a finitely generated CA, with o < o.

() Ifae A, he Ho, |h*A| < o, and ha # 0", then there is an x € At
such that x < a.

(i) If for every non-zero x € A there is an he Ho such that |h*4] < o
and hx # 0% then U is atomic.

Proor. By 2.3.28(i) and the hypothesis of (i) we have (A~*)*0® = Ig{h}
for some b e Zd; furthermore, the premiss ha # 0® implies that we do not
have a £ b, i.e., that

) a-—b #0.
By 2.3.6(1I) and 2.3.27(i) we obtain
h*A = WTg{b} =~ RI_U;

hence R{_, ¥ is finite and thus atomic. From this latter fact and (1) we con-
clude that there is an x e ArR[_,A such that x £ a. The conclusion of (i)
now follows since it is clear that ArR(_,A = 479 (ii) follows immediately
from (i).

The two immediately preceding theorems, due to Tarski, will find some
interesting applications in Section 2.5; cf. 2.5.7 and 2.5.9.



294 GENERAL ALGEBRAIC NOTIONS 2.3.30

Tueorem 2.3.30. If A e CA,, with |A] > 2 and o 2 o, and b e AtU, then
Ig{b} is a proper ideal.

Proor. If Ig{b} were not a proper ideal, then by 2.3.10(i) we would have
¢pb =1 for some finite I' < . In view of 1.10.5(ii),(iii) this means that
Ab = 0 and thus b = 1. However, this is impossible since b is an atom and
4] > 2.

As a consequence of this theorem we have that every simple CA, with
o = o and with more than two elements is atomless. This result will be
generalized in 2.4.54 below.

THEOREM 2.3.31. For any CA, % with a = 2 we have:
() If A = Sg X and |X| < o, then

AtUnZdU = {1V —Z(X ~Y))-cldy,:Y = X}~ {0}.

(i) If U is finitely generated, then
cidy; = 2(A4tAnZdN),

and thus cldy; = 0 whenever U is atomless.

ProoOF. Let X be as in the hypothesis of (i) and let B = Ny A By
0.2.18(i) and 2.3.26(1) we have B = Sg{x-cld,;:x e X}. Furthermore, since
¥ is discrete by 2.2.14, we see that B = Sg®®{x-cldy,:x € X}. Therefore,
from 2.2.1 and the theory of BA’s we may conclude that

) AtB = {1y —Z(X ~Y))-cidy,:Y = X}~ {0}
and
Q) cddg, = 2AtD.

However, At B = AtAnZdY by 1.10.5(ii); hence (i) and (ii) follow respec-
tively from (1) and (2).

It may be interesting to compare 2.3.31 with 2.2.27; we notice that the
descriptions of zero-dimensional atoms in finitely generated CA,’s are very
different in the two cases o = 1 and « > 1. Nevertheless, we shall see in the
following corollary that both descriptions yield the same upper bounds for
the cardinalities of the sets of these atoms, and it will be seen from Theorem
2.5.11 below that this upper bound is actually the least upper bound.

COROLLARY 2.3.32. For every CA, U, if A = SgX and |X| < o, then

|4t AnZdA| < 21X,
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Proor: for a = 0 by the theory of BA’s, for « = 1 by 2.2.27, and for o > 2
by 2.3.31().

Don Pigozzi has observed that there is a simple direct proof of 2.3.32 which
does not involve diagonal elements so that it applies also to diagonal-free
algebras. Thus 2.3.32 holds for these algebras as well.

COROLLARY 2.3.33. For every Dc, U we have:

Q) If A = SgX and |X| < o, then |ArYA| < 2X1.

(i) If A is finitely generated and o = 2, then cidy, = 2 AtN, and thus A
is atomless iff cidy, = 0.

Proor. By 1.11.8(i), AtA = Zd9. Thus (i) follows from 2.3.32 and (ii)
from 2.3.31(ii).

Compare 2.3.33(ii) with 1.11.8(ii).






2.4. DIRECT PRODUCTS AND RELATED NOTIONS

We begin this section by discussing the closure properties of various classes
of CA’s under the formation of direct products. Direct decompositions of
CA’s and their zero-dimensional parts make up our next topic. This leads
naturally to the discussion of the refinement and remainder properties; it
turns out that these two properties hold for a comprehensive class of cylindric
algebras. Now as we know from Section 0.3, several interesting and rather
deep theorems involving direct products can be established for all algebras
which possess the refinement and remainder properties. Since the results in
their general algebraic form were stated in Section 0.3 without proof, in the
present section we shall give detailed proofs of these results as applied to
cylindric algebras. In the last part of the section we discuss subdirect and
reduced products of CA’s.

THEOREM 2.4.1. PCA, = CA,; that is, the class CA, is closed under the
formation of direct products.

Again this theorem can be proved directly, or one can appeal to the equa-
tional character of the class CA, (cf. 2.1.2). From 2.1.1, 2.3.1, and 2.4.1 we
see that HSPCA, = CA,, so that CA, is an algebraically closed class (cf.
0.3.14).

THEOREM 2.4.2. If B eCA, and fe P, B, then Af = U, Af..
Proor. The condition x € Af is equivalent to c,f # f, which in turn is
equivalent to the existence of an i €1 such that ¢, f; # f;, i.e., to k € Ui Af;.

CororLLARY 2.4.3. 8d(P,.;B,) = P..; 309,

COROLLARY 2.4.4. Let B eLf,.

(i) If & < o, then P, B, € Lf,.

(i) If o« = o, then P, B, e Lf, iff |{iziel, B; is non-discrete}| < o. Thus
we always have P, B, e Lf, in case |I| < o.

Proor. (i) is obvious since Lf, = CA, for o < @, and (ii) follows readily
from 2.4.2 with the help of 1.3.12(i),(ii) and 1.6.3.
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COROLLARY 2.4.5. (i) If 0 < 1 < o, then " € D¢, iff A€ Dc,.

(i) If A = |a| > 0, then *A e Dc, iff A is a discrete CA,.

ProOF. In case a < o, (i) and (ii) are both trivial since Dc, consists just of
the discrete CA.’s if @ > 0. Assume now that « = . Then (i) follows from
1.11.4 and 2.4.2, and the only part of (ii) that requires proof is that *9 ¢ Dc,
whenever 2 is non-discrete and A = |«|. This, however, is an easy consequence
of 1.3.12(i),(ii) along with 2.4.2.

REMARKS 2.4.6. In connection with 2.4.5 the problem arises whether the
classes Dc, are closed under the formation of direct products of systems
indexed by sets of cardinality <|«|. Clearly, in case 0 < a < , Dc, is closed
under the formation of arbitrary direct products, for D¢, coincides then with
the class of discrete CA,’s. The following example shows, however, that for
o = o none of the classes Dc, is closed even under the formation of finite
direct products. Let € be the full cylindric set algebra of all subsets of “2.
Let X = {f:fe®2, fic =0 for all even x < a} and ¥ = {f:fe2, fic =0
for all odd x <a}. Let A = Gg©{X} and B = Sg©{Y}. By 2.1.5(i),
A, B € Dc,, but Ax B ¢ Dc, since 4(X,Y) = o by 2.4.2.

From 2.4.4 and 2.4.5 we see that, in case « = o, neither of the classes Lf,
or Dc, is closed under the formation of direct powers, although both are
closed under the formation of finite direct powers. Hence, by a theorem of
Mostowski [52*], p. 25, Theorem 5.32, the classes Lf, and Dc, are not ele-
mentary for « = o (although they clearly are elementary for o < ®).

If A e Mn, (with o arbitrary) and |4| > 1, then clearly 9 x 9 ¢ Mn,. Thus
2.4.4 and even 2.4.5 cannot be extended to Mn,’s.

The next theorem can be called the fundamental theorem on direct de-
composition of CA’s. We know from 0.3.22 that every direct decomposition
of an algebra 9,

A =P, B,

can be characterized by means of an appropriate system of congruence rela-
tions, and that the ¥, can be isomorphically represented by the corresponding
quotient algebras; from remarks in 2.3.6 it follows that in the case of CA’s
the congruence relations can be replaced by ideals. It turns out that the ideals
involved are of a very special kind, namely, principal ideals generated by zero-
dimensional elements. Hence, a further simplification is possible: a direct
decomposition of a CA can be characterized in terms of a system of zero-
dimensional elements. (The elements forming such a system turn out to be the
complements of those generating the above mentioned principal ideals.) Thus,
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in view of Theorem 2.3.27, 9 can be isomorphically represented as the product
of the relativized algebras correlated with these elements. This generalization
of a well-known result from the theory of Boolean algebras is precisely the
content of the next theorem.”

TueoreM 2.4.7. Let A e CA,. For A = P, B, it is necessary and sufficient
that there exists a system {x;:ieI) of elements of A satisfying the following
conditions:

(i) x;€ ZdU for every iel;

() x;-x; =0if i,jel and i # j;

(i) Xjerx; = 1;

(iv) RLA = B, for every iel;

(V) for all ye'A the sum 2 ir(yi x;) exists.

Proor. To prove the necessity of (i)-(v) we may assume that 9 = P, B,.
For each iel let x; = {0®2:jel~ {i}>u{i, 1®)}. Conditions (i)-(iii)
are then obvious. For any i e I the function < f;:f'e R/ A is an isomorphism
of RL, A onto B;; thus (iv) holds. Finally, if y € ‘4, then clearly 2, ;(y; x,) =
{yLi):ieI), and (v) holds.

In order to show that (i)—(v) are sufficient take J; = Ig{—x;} for each
iel. Suppose z € N J;. Then by (i) and 2.3.10(iii) we have z < —x; for each
iel, and hence z < I1,; —x; = 0 by (iii). Thus

® nieIJi = {0}.

Now consider any y e ’A4. Setting z = 2;,(y;*X;), which exists by (v), we
see from (ii) that
yix; =z x; for each iel.

In view of (i) and 2.3.26(i) this implies that z € M,;(y;/J;), and hence we have
shown that

2 N (yilJ;) # 0 for every ye’A.
Finally, by (i), (iv), and 2.3.27(i) we have
) A/J; = B, for each iel.

From (1), (2), and (3) we may conclude by 0.2.49 and 0.3.22 that ¥ =~ P, %B,.

Note that, by 2.2.12, 2.4.7(i) implies that R 2 is a CA,; 2.2.12 will be
used below in several instances without citation.

1) The subsequent part of the present section beginning with 2.4.7 and ending with 2.4.32
is essentially due to Tarski except as otherwise noted.
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CoROLLARY 2.4.8. For every CA, U the following two conditions are equi-
valent:

) B|A

() B = RLA for some be ZdN.

Proor. The fact that (i) implies (i) follows immediately from 2.4.7. To
obtain the implication in the opposite direction we apply 2.4.7 again, letting
I'=2 xy=0>5, and x; = —b.

From the theory of BA’s it is well known that every BA ¥ with |B| > 1 is
homomorphic to a two-element algebra and hence B >|< € for every BA €
(B == € trivially if |C] = 1). Another known result from the theory of
BA’s is: for every BA U and every non-zero element b € 4 we have R, A == A
(cf., for instance, Keisler-Tarski [64*], p. 292, Theorem 4.20). The two results
are essentially equivalent by 0.3.8 and 2.4.8 (with « = 0). The situation changes
when we turn to CA_’s for any o # 0. We can then easily construct two alge-
bras B and € such that |B| > 1 but the formula B >=|< € does not hold;
hence, again by 0.3.8 and 2.4.8, there is a CA, 9 and a non-zero element
be A with 4b = 0 such that R =~|< A fails.

A system x € T4 satisfying conditions (i)-(iii) and (v) of 2.4.7 may be called
a decomposition system for the CA, ; in analogy to the notation for con-
gruence relations it could also be referred to as a system of complementary
elements. Condition (v) in 2.4.7 and in the definition of decomposition system
can obviously be omitted in case I is finite or, more generally, in case |I| < f8
and 9 is assumed to be f-complete (i.c., the sum 2, ;x; is assumed to exist
whenever x € 74 and [J]| < ). Actually a weaker assumption suffices for this
purpose. To formulate it conveniently we define:

DEFINITION 2.4.9. Elements x, y of a CA, U are said to be separable if there
is an element z € ZdW such that x < z and y < —z. W is called separably B-
complete (f a cardinal) if 2 ierX; exists Jor any system (x;:i€l) of pairwise
separable elements of A for which |I| < B; it is called separably complete if it
is separably B-complete for every cardinal B. A separably w-complete CA, is
also called separably countably complete.

Obviously every CA which is f-complete in the ordinary sense is separably
B-complete (but not conversely, as is easily seen). If f < o, then every CA
is separably f-complete. Furthermore, if 2 is separably S-complete, then
3bA is f-complete; this follows from a known theorem by which, for any
given BA %, the existence of all sums 2, ;x; of pairwise disjoint elements of
B with |I| < p implies that B is f-complete (cf. Smith-Tarski [57*], p. 249,
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Theorem 3.5). Notice the following, seemingly weaker but actually equivalent,
definition of separable f-completeness:

A CA, U is separably P-complete iff X, (y; z;) exists for every system
y€'ZdW of pairwise disjoint elements and every system ze'A with |I| < p.

The proof of equivalence is based entirely on the general theory of Boolean
algebras.

CoroLLARY 2.4.10. Assume that |I| < o or, more generally, that for some
cardinal B, |I| < p and U is a separably B-complete CA,. For A = P, B, it
is necessary and sufficient that there exist a system {x;:i€I) of elements of
A such that the conditions 2.4.7(i)-(iv) hold.

Just as in the case of ordinary f-completeness we have

THEOREM 2.4.11. For any system of CA.’s (B;:iel) and any cardinal f,
Pict B, is separably P-complete iff B; is separably P-complete for each iel.

ProOF. By 2.4.2, elements f, g € P;,; B; are separable iff f; and g; are sepa-
rable for each i € I. Hence the equivalence stated in the theorem follows from
the theory of BA’s.

When applying this theorem in our further discussion we shall generally
omit explicit reference to it.

THEOREM 2.4.12. If U is a separably B-complete CA,, € € 'BA, and |I| < B,
then the following two conditions are equivalent:

(i) There is a system B € CA, such that A = P, B, and 30 B; = €, for
each iel.

(i) B3O = P, €,.

PROOF: by 2.2.12, 2.4.3, and 2.4.10.

Recall the definition 0.3.34 of algebras with the refinement property.

THEOREM 2.4.13. Every CA, has the refinement property.

PrOOF. Assume that 9 = P, %; =~ P, ;€;. By this assumption and 2.4.7
we may choose two decomposition systems (cf. the remarks following 2.4.8)
{x;:iel) and (y;:jeJ) for A such that R A = B, for all iel and
R, A = € for all jeJ. Let z = {x;y;:iel, jeJ). Then it can easily be
checked that, for each ie I, {z;;:j € J) is a decomposition system for RI_ A,
and similarly, for each je J, {z;;:i€I) is a decomposition system for RI, A.
Hence, by 2.4.7, B; = P, Rl U for each ie I, and €; = P, R, A for each
je€J, as desired.
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As we know from the remarks following 0.3.35, the principal significance
of the refinement property for the theory of direct decompositions is that every
algebra which has this property and is totally decomposable also has the
unique decomposition property. Our next task, therefore, is to describe those
CA’s which are totally decomposable; this will be done in 2.4.18. To this end,
however, we first have to turn our attention to directly indecomposable CA’s.

THEOREM 2.4.14. For any CA, U the following conditions are equivalent:
(i) W is directly indecomposable;
(i) 30U is directly indecomposable;
(i) |Zd | = 2, or, equivalently, |A| > 1 and Zd = {0,1}.7
Proor. (i) and (i) are equivalent by 2.4.12 (with f = ), and the equiva-
lence of (ii) and (iii) is a well-known fact from the theory of Boolean algebras.

By comparing this theorem with 2.3.14 we conclude that directly indecompo-
sable Lf,’s coincide with simple Lf,’s. This fact, along with some supplementary
information, will be stated formally in Theorem 2.4.43 below.

COROLLARY 2.4.15. If U is directly indecomposable, then so is every sub-
algebra of .

THEOREM 2.4.16. (i) If a CA, U is not directly indecomposable, then there is
a subalgebra of W, generated by a single element, which is not directly inde-
composable and, in fact, is not a subalgebra of any directly indecomposable
subalgebra of .

(i) If K is a non-empty set of directly indecomposable CA’s directed by the
relation <, then UK is directly indecomposable.

ProoF: (i) by 2.4.14; (i) by (i) and 0.1.28.

THEOREM 2.4.17. (i) Every finite directly indecomposable CA, is simple.

(ii) Every finite CA, is isomorphic to a direct product of simple CA’s.

Proor: (i) by 1.3.15, 2.3.14, and 2.4.14 (cf. the remark after 2.4.14); (ii) by
(i) and 0.3.31.

THEOREM 2.4.18. For any CA, U the following four conditions are equivalent:
(@) U is separably complete and 3dU is atomic;
(i) A is totally decomposable;
(i) A is uniquely totally decomposable;
(iv) W and all of its direct factors are uniquely totally decomposable.
All these conditions are satisfied if, in particular, U is finite.

1) This theorem and the essential parts of two related results, Theorems 2.4.43 and 2.4.52,
were stated in Tarski-Thompson [52].



2.4.19 DIRECT PRODUCTS AND RELATED NOTIONS 303

PRrOOF. Obviously (iv) implies (iii), and (iii) implies (ii).

Assume now that (i) holds, i.e., 9 is totally decomposable; then clearly
B0 is atomic. Moreover, there is a system <{x;:i e I) of elements of 4 satis-
fying 2.4.7()-(iii),(v) with RI_ directly indecomposable for each i€, i.e.,
x; is an atom of ZdU for each iel. Now let (y;:jeJ) be any system of
pairwise separable elements of A. Then for any iel there is at most one
Jj €J such that x;-y; # 0. For assume that x;-y; # 0 and consider any k # j.
Then there is a ze Zd¥ such that y; <z and y, £ —z, and thus x; < z
since x; is an atom of 3b% and x;-z # 0; hence x; 'y, < z*—z = 0. There-
fore, the sum ZjEJ(xi- y;) exists for each ie I, and we set

z = <ZjeJ(xi'J’j):ieI>;

then, since {x;:i e I satisfies 2.4.7(v), it follows that 2, z; exists. It is easily
checked that 2, z; is the least upper bound of {y;:j € J}. Thus (ii) implies (i).

Finally, if (i) holds, then, by 2.4.11, % and all its direct factors are separably
complete; furthermore, their zero-dimensional parts are both complete and
atomic. From 2.4.12 it follows then that 9(, as well as every direct factor of 2,
is totally decomposable, and the refinement property implies that the decom-
position is unique (cf. 0.3.35 and 2.4.13). Thus conditions (i)-(iv) are actually
equivalent. The last part of the theorem follows by 0.3.31(i).

REMARK 2.4.19. We know from Chapter 0 (cf. 0.3.33) that condition
2.4.18(iv) has far-reaching implications. Many basic problems concerning
direct products admit positive solutions for algebras which satisfy this con-
dition, i.e., which hereditarily have the unique decomposition property, while
the discussion of these problems for arbitrary algebras presents considerable
difficulties. To concentrate on the same problems as in Chapter 0 we recall,
for instance, that every algebra ¥ satisfying 2.4.18(iv) has the following two
properties:

(x) For any algebra B, if UA|B|A, then A = B.
(B) For any algebras B and €, if A = BxB = €xC, then B = C.

Unfortunately, as is seen from 2.4.18(i), the class of CA’s which hereditarily
have the unique decomposition property is rather restricted. As was mentioned
in 0.3.33, the properties () and (8) may fail for Boolean algebras, i.e., for
CAy’s, and hence also for discrete CA,’s of arbitrary dimension a. Thus the
problem arises of finding a naturally defined class K of algebras which is
essentially more comprehensive than the class described in 2.4.18(i) and for
which («), () and various analogous properties can be established. We shall
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present an affirmative solution of this problem here by showing that the class
of all separably countably complete CA,’s can serve as K.

Our discussion will be based exclusively upon certain properties of the class
of separably countably complete CA’s listed in the next theorem. The discussion
will thus have a general algebraic character, in that it will apply to any class
of algebras having these properties.

THEOREM 2.4.20. The class K of all separably countably complete CA,’s
satisfies the following conditions:

@) if A, BekK, then Ax B eK;

(i) if B|AeK, then B eK,;

(iii) every algebra U € K has the finite refinement property;

(iv) every algebra U € K has the remainder property.V

Proor. (i)-(iii) follow immediately from 2.4.11 and 2.4.13. To prove (iv),
let Uk < @) and (B,:x < o) be systems of CA’s such that U, is sepa-
rably countably complete, and such that A, =~ .., x B, for each ¥ < w.
Using 2.4.7 one sees that there is a sequence ¢ € “4, such that the following
conditions hold for each x < ®:

1) 4a, = 0;

@ G Z Gy

3 R, Ao = A
Q) R, o Yo = B,

Let ¢ =1 ___ a, and € = R A, (cf. the remarks preceding 2.4.10). From
(1), using 1.2.10 and 1.2.11, we obtain

Q) Ac = 0;
©) A(a, — a..,) = 0 for each ¥ < w.
Furthermore, from (2) and the elementary theory of BA’s we obtain
@) e+ 2, (Aeis — Aerse1) = a, for each x < o.
By (4)—(7) and 2.4.10 the desired conclusion of the theorem follows.
1) It is known from the literature that the countably complete BA’s form a class K satisfying
conditions 2.4.20(1)—(iv) and hence also all the consequences of these conditions (cf. Tarski
[49%1, pp. 200-214). This result is, of course, a particular case of 2.4.20. On the other hand,

a generalization of 2.4.20 is also known; it concerns algebras which, like CA,’s, have
BA’s as reducts (cf. Tarski [66]).
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In connection with 2.4.20(iii)) we note that by 2.4.13 all algebras € eK
actually have the full refinement property; however only the finite refinement
property will be used in the subsequent discussion.

The fact that every separably countably complete CA, has the properties
(o) and (B) stated above will be expressed in Theorems 2.4.24 and 2.4.31 (the
latter in a more general form). To prove these results we shall need a series
of auxiliary theorems, some of which, e.g., 2.4.29, are of interest in their own
right.

If T is the class of all isomorphism types correlated with algebras 2 of any
class K of algebras satisfying 2.4.20(i)-(iv), then the structure <7, x, P} (cf.
0.3.11) proves to be a finitely closed generalized cardinal algebra in the sense
of Tarski [49*], p. 69, Definition 5.1, except that only the finite refinement
property is assumed to hold. The proofs of Theorems 2.4.21 to 2.4.31 below
have been obtained essentially by paraphrasing those of corresponding results
in the general theory of cardinal algebras which can be found in op. cit.,
Sections 1 and 2.

We begin with a simple consequence of the finite refinement property (which
actually applies to arbitrary cylindric algebras, and not only to separably
countably complete CA’s).

THEOREM 2.4.21. If A, B, and € are separably countably complete CA’s
and A x B = ExE, then there exist W, B', € such that A = A xA' xE,
BB xB'xE, and € = A' xB' xC.

PRrROOF. By applying 2.4.20(iii) we obtain D € *CA, such that A = Dy x D4,
BD,xD;, and € = PyxD, =@ D, xD;. Applying 2.4.20(iii) again to
this last formula we obtain & € 4CA, such that ®, = €, xE,, D, =~ €, xE;,
D, = €, xE,, and D; =@ €, xE;. Letting A’ = €y, B' = €3, and ¢ =
€, x €,, the desired conclusions are easily verified.

THEOREM 2.4.22. If the CA, U is separably countably complete, then the
following conditions are equivalent:

@ A= AxB, (@) *B|A, (i) A= Ax V.

Proor. (i) implies (ii) by 2.4.20(iv). If A = E€x*YB, then Ax YV =
Ex°Bx*B =~ Ex°B = A. Thus (ii) implies (iii). Finally, if % = Ax P,
then Ax B = Ax*BxB = Ax B =~ A, and hence (iii) implies ().

THEOREM 2.4.23. If U is a separably countably complete CA, and A =
Ax B, for each k < o, then A =~ AxP__, B

k<o K*

ProoOF. By 2.4.22 we have 9 = A x *%B, for each x < w. Hence by 2.4.20(iv)
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there is a € € CA, such that % = €xP__,“%B,. Therefore
AxP

0B 2 ExP _, B xP _, B, =2CxP__ B, =AU

THEOREM 2.4.24. If A and B are separably countably complete CA’s, U| B,
and B| U, then A = B.

Proor. Say B =~ Ax € and A = BxD. Then A = AxExD. Hence, by
2422, A =2 Ax*Cx?D, and so A =2 AxCx*DxC ~ AxE = B.

Theorem 2.4.24 may be called the Cantor-Bernstein Theorem for direct
products.

THEOREM 2.4.25. If U, B, and € are separably countably complete CA,’s
and AxC =~ BxC, then there are W, B, and D such that Y = ' xD,
BB xD, and €= A'xC = B'xC.

ProOOF. Let K be the set of all quadruples & = (&, &;, &,, &;) of separably
countably complete CAs such that @,x &, & &, x&,, and let R be the
binary relation which holds between two members I, N e K iff M, =
Mo x Ny, My = Ny x Ny, and WM, = Ny xN,. If M e K, then by the finite
refinement property we obtain an 9t € K such that IMRI. Since, moreover,
<A, B, €, A € K by hypothesis, we apply the principle of dependent choices
and obtain an infinite sequence of quadruples @@, @), @) . e K such
that Q@ = (A, B, €, A> and YO RLDREP ... In other words, we
obtain four sequences €, 5§, &, H € “CA, satisfying the following conditions
(where x ranges over all finite ordinals):

)] Co=A Fo=9TB, G =C, and H, = A;

@ Cx G, = FxB,;

©) € = Gy X D1

) S = Fuw1 X D13

©) Oy = Fus1 X G g

6) C, T O, O, are separably countably complete CA,’s.

Applying 2.4.20(iv) to (3) and (4) we obtain CA;’s A’ and B’ such that, for
each k < o,

(M G = WUxP, (,Oessrr and T = B' %P, Dusiri
Let ® = P___9.+1 Then from (7) with x = 0 and (1) we get

K<o

®) A= A'XxD and B = B'xD.
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Now by (7) we see that ®" | P, €, , while from (1), (2), (5), and 2.4.20(iv)
we have P___ G, | ®, = €. Thus ®A’ | €, and hence by 2.4.22 € =~ ' x €.
Similarly, € = B’ x €. Together with (8) this completes the proof of the theo-
rem.

THEOREM 2.4.26. If A, B and € are separably countably complete CA’s
and AxC = BxE, or AxC| BxE, then there is a € e CA, such that
UxE = BxC, or UxC' | BxE, respectively, and € = € x €.

Proor. First suppose Ax € = Bx €. Let A, B’, D satisfy the conclusion
of 2.4.25. Let € = *UA' x*B’. Then A' x ¢ =~ €' =~ B’'xE’, and hence

AUxE =2 DxAUXxC =2 DxP' xC =~ BxE.

Finally, by 2.4.22 we have € = €x U =~ €x*%’, and hence € = €' x €.
The second part of the theorem easily follows from the first.

TreEOREM 2.4.27. If CAs B and € are separably countably complete,
kK < o, and Ax*C | Bx**1E, then A| B xC.

Proor. The conclusion is obvious for ¥ = 0. For ¥ = 1 we apply 2.4.26
to get a CA, € such that UxC' | BxExE =~ BxE; hence A| BxE.
The general case is obtained from the case x = 1 by induction.

THeOREM 2.4.28. If U, B, € are separably countably complete CA’s, k < o,
and U x*C = Bx*C, then UxE = BxC.

Proor. By 2.4.27 we have AxC|BxE, and similarly Bx €| Ax E.
Hence, by 2.4.24, Ax € = BxCE.

THEOREM 2.4.29. If the CA, B is separably countably complete, {3, :x < v
is a system of CAs, and P.., .| B for each ). < o, then P__ %A.| B.

ProoF. By hypothesis, for each 4 < @ choose €, such that 8 =~ €, x P, _, ..
Then for every 1 < o we have

C,xP ;A =€, xAyxP .

Hence we may apply 2.4.25 to obtain %', B, D e “CA, such that, for every
A< o,

C,2AxD,, € xAy=B;xD,,
and

Pec W, = W x P, = ByxP. ;%

Hence B;xB =~ B;xC,xP,,A, = €, xP.,A, =~ B. Since this holds
for every 1 < o, we infer from 2.4.23 that B =~ BxP___ B,



308 GENERAL ALGEBRAIC NOTIONS 2.4.30
Now for each A <o let 8] =€, xP., A/ xP _, B, Then By =

CoxP. B, =~ BxP _, B, ~ B. Furthermore, for each 1 <  we have
G X Wy = €y xPecs i WP B X,
= Pecis 1 Wix Py, B, x D,
= € xPc, Wix P, B,
= B
Hence, applying 2.4.20(iv), we see that P___ %, | B, as desired.

THEOREM 2.4.30. If A, B, € are separably countably complete CA.’s,
0<x <o, and "UxC | *BxE, then AxC| B xE.

PrOOF.D The case x = 1 is trivial. We now assume that ¥ > 1, and make
the following inductive assumption:

(1) f0< A<k, A", B", € are separably countably complete, and
/IQI// X @// l A%u X @u’ then 9{// X @'// l SB// X @//.

We assume that *9 x € | *B x €. Let K'be the set of all triples & = (&, &, ;>
of separably countably complete CA,’s such that *€, x &, | *€, x &,, and let
R be the binary relation holding between two triples &, $ e K iff

(2) Gox®, = 29Hox D2 G, 12D x9,, and Gy x G, = Hox H1 X D,

Clearly <%, %, €) € K. In order to apply the principle of dependent choices,
we have to show that, for any & € K, there is an $ € K such that &R$. Since
& € K there is a D for which

3) o x G xD = G xG,.
Let 1 < @ be such that 2% < k¥ < 2**!, Then
(21@0 XG,) | ("G x G,) | (G xG,) | (21(2@1) x ©,),

so (¥*®yx®,) | (3'(*®,) x®,). Hence by (1) we have &, x®, | 2@, x §,,
say

4) Gox®,xE = 2@ x©,.

1) The proof of 2.4.30 given here is a rearrangement and slight amplification of a known
proof of the corresponding result in the general theory of cardinal algebras; cf. Tarski [49%],
p. 30, Theorem 2.31. This simplification (due to Monk) can also be carried through in the
general case.
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Consequently, we have

FLE, x O)x*TIE, x T, x @, x €)
16, x 6,) by (4)
= FT2H, x T2, x G, x ©,
T2, X FTEG, X Gy x B, x D by (3)
> (T2, x*TIH, x D) x <G,

Therefore, applying 2.4.27 we obtain *~ (&, x )| (* 2@, x* 1@, x D x §,),
say

®) 20, XTI, x Dx G = T, x ©) x F.

Hence

IR

IR

222G xF TG, x [ 2 TG, x @) x F

& FTIE, x TG, x B) x by (4)
& Gy x G, x Dx*"2H, x "2, by (5)
& 272G, KTLG, by (3).
Thus by two applications of 2.4.28 we obtain
6) G, xG,xF = @, xE,.

Hence we have

(B x @) x (B, x ExF) = (g x G, x €)x (G, xF)

> 2@ x G, x @, xF by (4)
~ (G, x©,) by (6).
Now applying 2.4.21 we obtain 9, 9, 9, such that
@) Gox @, = *9ox D2y B xExF = 29, x Ds,

and @, x®, =~ HyxH; xH,.

Thus

"Dox D2 X THD1 X D2) =2 200 x D2 X THDo X D1 X D2)
Box G, x "X B x,) by (7)
> Box@x* G x G, xF) by (6)
(26, x <716, x Gg) x X2
10, X Ex ) by (5)
G TR ) by (7)
RO X T D1 % D)

IR

i — IR

I
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Hence by 2.4.27 we have 9y X 9, | *D( x H,. This shows that $ € K and,
by virtue of (7), that GRH.

We can now apply the principle of dependent choices (just as in the proof
of 2.4.25). We conclude that there exist three sequences ', B’, €’ € “CA,
satisfying the following conditions for all u < w:

® A, B,, and € are separably countably complete CA,’s;

) Ay =A By, =P, and € = €;

(10) U, xC 1 *B,x E,;

(11) W, x € =2, xC s

(12) C, 128, xC ;

(13) BxC, =W xB,, xC, .

Applying 2.4.20(iv) to (11) we obtain a CA, J such that, for every u < o,
(14) W x € = IxP, W,

From (13) we get by induction

(15) By x 6y = B/ xCxP,_, A,

for every u < . Now by (13) and (14) we have J| U, ., x€ | B, xC;;
thus, by (15), SxP,., A, | By x €, for each u < w. Hence, by 2.4.29,
SxP,_ A, | ByxE, From (14), with g =0, we then infer that
Ay x E | By x €, ie., AxE | B x €, and the inductive proof of the theorem
is complete.

THEOREM 2.4.31. If two CAs U and B are separably countably complete,
0< k<o, and "W "B, or “U = *B, then A| B, or U = B, respectively.
ProoF: by 2.4.24 and 2.4.30.

We wish to state here without proof two further consequences of 2.4.20
which deserve interest:

(y) If all B,’s with A < o are separably countably complete CA,’s, and
W, | B, forall k, A < o, then there is a € such that U, | €| B, forallk, A < o.

®) If A is a separably countably complete CA,, 0 <k, A < w, k and A
are relatively prime, and *U = *®B, then there is a € such that A = *€ and
B~ *C.

() is called the interpolation theorem and (3) Euclid’s Theorem. The deri-
vation of these results from 2.4.20 can again be found in Tarski [49*], pp.
27 ff. and 33 ff.
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REMARKS 2.4.32. As was pointed out at an earlier place, the results stated
in 2.4.21-2.4.31 extend to members of an arbitrary class K of algebras satisfying
conditions (i)—(iv) of 2.4.20. In particular, we can apply these results to locally
finite cylindric algebras taking for K the class of separably countably complete
Lf’s. In case o = o this class K, however, does not present much interest
since it turns out to be very restricted: K consists then just of those algebras
which can be isomorphically represented as products ¥ x P, B,, where
is a countably complete discrete CA, and {{B,:x < v) is a finite sequence
of directly indecomposable Lf,’s. Even more restricted, by the way, is the
class of all countably complete Lf’s with « = @, which simply coincides
with that of countably complete discrete CA,’s. (The last two observations
were made by Monk.)

There is a method which permits us to extend most of the results presented
in 2.4.21-2.4.31 to a much wider and more interesting class of Lf’s of infinite
dimension. For any given « = o let L, be the class of all those Lf,’s 2 which
are separably countably complete in the following weak sense: the sum 2/,
exists for every countable system x of pairwise separable elements of 9 such
that U, 4x; is finite. A subclass of L, is the class L, of all those Lf,’s 9 in
which Z,;x; exists for every countable xe’4 with |[U,4x;| < o. As will
be seen in Part 1I, the algebras of L, appear in a natural way in the discussion
of a class of infinitary languages related to those mentioned in 1.11.2.

To extend the results discussed to algebras in L, we proceed as follows.
Given any system ¥ = (U;:iel) of Lf’s, let B be the largest locally finite
subalgebra of P, ;; the existence of such a subalgebra is secured by 2.1.6.
We refer to ¥ as the Lf,-direct product or, more briefly, the Lf-product of the
system 9, and we denote it by P or \P,.; ;. (The use of this notation does
not extend beyond the present remarks.) As is easily seen, |P,.;%; is a subdirect
product of Lf,’s 9, i € I, in the sense of 0.3.40. It also proves to be a particular
case of the general notion of the K-direct product (where K is any class of
similar algebras) which originates in the theory of categories; cf. Preller [68*].
In general P and P do not coincide simply because the ordinary direct
product of Lf,’s is not always an Lf,. Nevertheless, P9 and P have many
properties in common. In particular, the general commutative and associative
laws formulated in 0.3.3 continue to hold if Pis replaced by |P (and the algebras
involved are assumed to be locally finite), and the same applies to 0.3.4.
Furthermore, Theorem 2.4.20 remains valid when we take K to be L,, if the
notions occurring in this theorem, and in particular that of the remainder
property in 2.4.20(iv), are understood to be defined in terms of Lf-products
rather than ordinary direct products; the proof requires but little change in
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the original argument. On the other hand, the only properties of direct products
used in the proofs of the results stated in 2.4.21-2.4.31 are various special
commutative and associative laws and the properties listed in 2.4.20. Hence,
by repeating almost literally the original proofs, we can conclude that results
entirely analogous to those in 2.4.21-2.4.31 hold for Lf-products of arbitrary
algebras in L,. We now make the following two observations: (I) in view of
2.4.4(ii), P and P coincide for every finite system U of Lf,’s; (II) with the
exception of 2.4.22, 2.4.23, and 2.4.29 all the results in 2.4.21-2.4.31 involve
exclusively finite products. Our final conclusion is that, with only the exceptions
mentioned, all the results stated in 2.4.21-2.4.31 for direct products of sepa-
rably countably complete CA,’s continue to hold for (ordinary) direct products
of arbitrary algebras in L,.

REMARKS 2.4.33. An interesting general result which encompasses most of
the theorems 2.4.21-2.4.31 can be derived (as a rather special consequence)
from the work of Bradford [65*]. Essentially the result has a purely mathe-
matical character, but it will be more convenient here to put it in metamathe-
matical terms. To shorten the formulation we introduce some special stipu-
lations. We notice that in most of the theorems 2.4.21 to 2.4.31 we were
concerned with formulas of the type

(E) oo X o x ety Aoy L x A1,y

where the variables A, ..., %,_; range over algebras and xq, ..., %,_q,
Ags ---» A, stand for constants representing finite cardinals or the cardinal w.
(Two such formulas with the same u and o, ..., A,_; may still differ, of

course, in the exponents Ko, ..., Ay, -...) With every formula of type (E) we
correlate the following formula:

(E) Ko 0o+t Ky Oy = Ao 0o 4ot Ayog 0y

in which the variables oo, ..., %, ; range over cardinals, &g, ...,%,_q,
Aoy +-s Ay—1 stand for the same constants as before, and + and - denote,
respectively, cardinal addition and cardinal multiplication. We notice that all

the theorems 2.4.21 through 2.4.31 with the exception of 2.4.23 and 2.4.29
can be put in the following schematic form:

&) If Ao, ..., A, are any algebras in K which satisfy a given finite system
of formulas of type (E) with p = v, then there are algebras U,, ..., U, ., in
K such that W, ..., U, , ._, satisfy another finite system of formulas of type (E)
with p =v + .

Here we do not exclude the case # = 0. With every statement of form ()
we correlate a statement of form (X') obtained by referring to cardinals
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Oy --o» O, o— less than or equal to o instead of algebras in K, and by replacing
formulas of (E) by the correlated formulas of type (E’). The general result
in which we are interested can now be formulated as follows:

For every statement (%) the following three conditions are equivalent:
() The statement (X) holds for every class K satisfying 2.4.20(i)-(iv) with
the word “finite” in (iii) omitted.
(A1) The statement (X) holds for the class C, of all separably countably com-
plete CA’s.
(M) The correlated statement (¥') is true.

It may be noticed that condition (III) can be replaced by an obviously
equivalent condition (III') formulated in purely algebraic terms:

(III"y The statement (X) holds for the class of all complete and atomic Boolean
algebras with at most o atoms.

Actually, the equivalence of (III) and (III') is used in proving that (II)
implies (IIT). Note that in (I) we require each 9 € K to have the refinement
property; it is not known whether the finite refinement property suffices for
this purpose, but it is known that the denumerable refinement property (i.e.,
the property formulated in 0.3.34(i) with the restrictions |I| £ o, |J| £ )
does suffice.

The proof of this general result is long and difficult; it uses in particular
the fact that Theorem 2.4.31 holds in every class K satisfying conditions
2.4.20(i)-(iv). From the proof of the result it is seen that, not only are its
three parts (I)-(III) equivalent, but their equivalence can be established on
the basis of the system of set theory underlying our whole work. (Concerning
the underlying system see the beginning of the Preliminaries.) The general
result has many important consequences. It clearly implies as particular cases
all theorems 2.4.21 to 2.4.31 except 2.4.23 and 2.4.29; it also implies the
statement (3) formulated above. Some further interesting implications of the
general result are of metamathematical character. To obtain them we use the
following known facts (essentially due to Presburger [30*]): there is an auto-
matic method for deciding whether or not any given statement of form (X')
holds in our system of set theory, and in each particular case either the state-
ment or its negation is actually provable in this system. By combining these
facts with the general result we arrive at the following conclusions: there is
an automatic method for deciding whether or not any given statement of
form (£) holds for every class K satisfying conditions 2.4.20(i)-(iv) — or,
equivalently, whether or not such a statement holds for the class C,; given a
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statement of form (), either it is provable (in set theory) that the statement
holds for C,, or else it is provable that its negation holds for C,.

We may point out a possible slight improvement of the preceding develop-
ment. Instead of basing the discussion on the result that the class K of all
separably countably complete CA.’s satisfies 2.4.20(1)-(iv), we can dispense
with K altogether and use merely the fact that each individual separably
countably complete CA, ® hereditarily has the refinement property (possibly
restricted to finite or denumerable decompositions) and also has the remainder
property; the results of the discussion will still have a general algebraic character
and will apply to all algebras with these properties. By analyzing the proofs of
Theorems 2.4.21-2.4.31 as well as of the general result stated above, we can
convince ourselves that with very slight changes in the formulations of the
results the proofs remain valid in the new setting. To illustrate the way in
which the results have to be re-formulated, we restrict our attention to 2.4.31;
it now assumes the form:

If D is any separably countably complete CA,, 0 < k < o, and *A | *B | D,
or U = “B | D, then | B, or N = B, respectively.

The whole improvement just described may seem very insignificant and is
undoubtedly of no relevance whatsoever for the theory of CA’s. It has never-
theless some importance from a general algebraic point of view since it permits
one to apply the results of our discussion to any algebra ©© which has the
properties mentioned above, but which is not a member of any class K
satisfying 2.4.20(i))—(iv). Examples of such algebras are known.

REMARK 2.4.34. The problem naturally arises whether the assumption of
separable countable completeness in the preceding theorems (2.4.21-2.4.31) is
essential, and whether, by means of some other method, these theorems could
be extended to arbitrary CA’s. We shall concentrate our attention upon
Theorems 2.4.24 and 2.4.31. It is known that these two theorems do not apply
to all BA’s; counterexamples can be found in Kinoshita [53*] and Hanf [57*].
Hence, automatically, the theorems do not apply to all discrete CA,’s. Actually,
it is easily seen that they fail for some non-discrete CA,’s as well. In fact, let
A" and B’ be two discrete CA’s for which 2.4.24, or 2.4.31, fails, i.e., for which
A B A, or WxUA = B'xB’, holds but A’ = B’ does not hold. Fur-
ther, let € be any non-discrete directly indecomposable CA, (cf. 2.3.15). From
0.3.36(ii) and 2.4.13 it follows that the algebras U = A'x € and B = B'x €
provide the desired counterexample.

We may still be dissatisfied with this result and ask the further question:
do the theorems discussed apply at least to those CA,’s which are hereditarily



2.4.35 DIRECT PRODUCTS AND RELATED NOTIONS 315

non-discrete, in the sense that they have no discrete factors with more than
one element? (The use of the term ‘“hereditarily non-discrete” in this sense is
not in full agreement with the general stipulation made at the beginning of
0.3.32, since every CA, has a one-element direct factor, which is trivially
discrete.) In Theorem 2.4.36 we shall give a negative answer to this question.

The proof of 2.4.36 will be based upon a lemma, 2.4.35. This lemma is in a
sense a converse of 2.4.12. By 2.4.12 the study of direct decompositions of a
separably complete CA, U reduces to the study of direct decompositions of
the correlated BA 3b9. By 2.4.35, corresponding to each BA 9 there is an
hereditarily non-discrete CA, 9 such that 3b% = B, and isomorphisms
between factors of % induce isomorphisms between factors of 9.

LemMA 2.4.35. If % is a BA, then there is a CA, U satisfying the following
conditions:

() B=3d;

(i) for all a,be B, RI,B = RLYB iff RLA =~ R
In addition, N can be chosen so that

(i) A e Lf,
and

(iv) U has no discrete factor with more than one element.")

Proor. It is well known that % is isomorphic to a Boolean set algebra
D = (D, u, n, y~,0, U, whose elements are subsets of some set U satisfying
the following conditions:

(1) if X is an arbitrary system of members of D indexed by a set I and
U, X; = U, then U,_, X, = U for some finite J < I;

(2) for every x, ye U with x # y, there is an X € D such that x € X while
yEX.

(The existence of such a set algebra © is an easy consequence of the well-
known theorem of Stone [34*] by which every Boolean algebra is isomorphic
to the Boolean set algebra of all closed and open sets of a totally disconnected
compact space.) Without loss of generality, we may assume that 8 = D,
i.e., that ¥ is a Boolean algebra of subsets of U satisfying (1) and (2).
Choose a directly indecomposable CA, € and consider the cylindric algebra
UG. For each feYC, let F, be the function on C determined by the formula
Frc = (f~')*c for every c € C. Furthermore, let A’ = {f:fe YC, RgF,; < B}.

1) Lemma 2.4.35 follows from an analysis of the proof of a general result in Jonsson [57*]
concerning a comprehensive class of algebras, the so-called centerless algebras.
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Then
3) each fe A" has a finite range.

In order to prove this it suffices to show that, for each fe 4’, F;c is empty
for all but a finite number of ¢ € C. This, however, follows immediately from
(1) and the fact that FycnF,c’ is empty whenever ¢ # ¢’. We also have

@) A’ € SuUC.

In fact we clearly have 0,1,d,, e 4" for all x,A <oa. If fed’ and ceC,
then F_,c = F;—ce B, and thus —fe A". If f, g€ A" and ce C, then

Frige=U,,  _(FdnFze);

since, by (3), F; and F, take the empty set as value for all but a finite number
of elements of C, it follows that F,, e B. Hence f+g € A’. Similarly, it is
seen that A’ is closed under ¢, for each k¥ < «, and (4) is established.

Let 9’ be the subalgebra of Y€ with universe A’. By 0.3.58 and 2.3.15,
€ can be chosen so that it is a non-discrete Lf, in addition to being directly
indecomposable. Hence, by (3) we have

%) A e Lf,.
We also get:
(6) A’ has no discrete factor with more than one element.

To show this, consider any non-zero fe A'. Then fx # 0 for some x e U.
Since € is directly indecomposable and non-discrete, it must have more than
two elements, and all elements different from 0 and 1® must have non-
empty dimension sets; hence there is a ¢ e C such that ¢ <© fx and 4©¢
is non-empty. Let
g=(Frfx x {cHu(U ~ F fx)1f.
Clearly, ge A’, g < f, and Ag is non-empty by 2.4.2. Therefore, using 2.2.14
and 2.4.8 we see that 9’ has no non-trivial discrete factors, and (6) is established.
Now consider the function G € B4’ such that, for each X € B,
GX =(1©:xeX>ud0®:xeU ~ X).

Clearly G € Ism(%B, 30U’). Suppose fe Zd'. Since Af is empty, we have
A©fx empty for each x € X by 2.4.2. Since € is directly indecomposable,
it follows by 2.4.14 that fx = 0© or fx = 1 for each x e U. Since fe A',
we have that F,1® € B, and thus GF,1® = f. This shows that RgG = Zd¥l',
and hence we obtain

@) G e Is(B, 30 A.
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Suppose X, Y € B and R A = Ry A'. Clearly (SbXnB)1G € Is(RlxB,
BoRexA) and (SHY nB)Y1 G e Is(RlyB, ZoRlyA’), so that RiyB = R,DB.

Suppose now, conversely, that Ry B = RI;B, and let H e Is(R(xB, R(,D).
Consider any y € Y. Notice that, by (1), all the sets H 'Z where y € Z € BaShY
have at least one element in common, and that from (2) we can conclude
without difficulty that they have at most one element in common. Hence,
there is a uniquely determined function /# on Y to X such that, for each y €Y,

{hy} =N{H 'Z:ye Ze BnSbY}.

By a similar argument, which also uses (1) and (2), we can show that f actually
establishes a one-one correspondence between the elements of ¥ and X, and,
furthermore, that
HW = (b~ Y)W
for each We BnShX.
Now for each fe RlxU let

Hf = {fhy:yeY>u0®:peU~Y).

It will be shown that H e Is(Rlgx A, RigyA"). If 0© # ce C, then we have
Fg,c = (h"")*F;c = HF;ce B. Also, Fg0© = (h"")*F,0®u(U ~Y)eB.
Hence Hfe Rlgy', and RgH < RlgA'. H is clearly seen to be a homo-
morphism from Rl A" into RlsA'. If 0 # fe RigyW', choose x € X such
that fx # 09; then (Hf)h 'x # 09, and thus Hf # 0. Therefore, H is
one-one. If g e Rigy A, let

f=<{gh ™ 'x:xe XDu0®:xe U~ X);

then f'e Rlgx and Hf = g. Hence RgH = RlgyA’, and it has been shown
that H € IS(?RIGXQI', %IGY%[I),
In this way the following equivalence has been established:

®) for all X,YeB, R®B = RLB iff Ry = Ry, A,

We have thus constructed a CA_ A’ which, by (5) and (6), satisfies con-
ditions (iii) and (iv) of the conclusion of the lemma (with 2 replaced by U’),
and, moreover, which satisfies conditions (7) and (8) for an appropriately
chosen G. It remains to be shown that " can be replaced by an isomorphic
CA, U in such a way that the identity function can be taken for G, and
consequently conditions (7) and (8) will go over into parts (i) and (ii) of the
conclusion. To achieve this we simply apply the method of the general theory
of algebras (called sometimes the “exchange method”) which was used in the
proof of 0.2.15.
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THEOREM 2.4.36. For any given a = 1 there are Lf,’s A, B, and D satisfying
the following conditions:

(i) none of the algebras U, B, or D has a discrete direct factor with more
than one element;

(i) AxAxDxD holds while A = AxD fails;

(i) A|B|A and Ax A = Bx B hold while A = B fails.

Proor. By Hanf [57*] there are BA’s A’ and D’ such that A" = A’ x D' x D’
holds while U’ = W x D’ fails. Let A be a CA, which satisfies conditions
()—(iv) of 2.4.35 with B replaced by A’. From 2.4.35(i),(ii) we easily conclude
that there is a CA, ® such that A =~ Ax D x D holds while A = A x D fails.
By 2.3.3 and 2.4.35(ii), A, D, AxD e Lf,. Furthermore, 2.4.35(iv) shows
that 9, and hence also ® and A x D, has no discrete factor with more than
one element. Taking B = AxD we see then that conditions (i)-(iii) hold.

We can use Lemma 2.4.35 for still another purpose. When applied to CA’s
the three notions of pseudo-direct indecomposability characterized by the
conditions (ii"), (ii”), and (iii”") in 0.3.29 prove to be distinct from each other
and from the notion of direct indecomposability. This can easily be seen by
considering discrete CA,’s corresponding to the following BA’s: (1) a de-
numerable atomless BA, (2) the Boolean set algebra of all finite subsets of @
and their complements, and (3) the BA “9( where 9 is a two-clement BA.
However, with the help of 2.4.35 we can also obtain CA.’s A and ¥ with
o = 1 which are hereditarily non-discrete in addition to being locally finite,
and such that 9 satisfies (i) but is not directly indecomposable, while B
satisfies (iii”) but not (ii’). As regards the relation between (ii”) and (iii"”), if 9
is any directly indecomposable CA, and B = wu|4|, then #9 satisfies the
first of these conditions but not the second. However, from 2.4.4(ii) it
is easily seen that for all non-discrete Lf,’s with « =  these two conditions
coincide.

In passing we may mention that all the results established so far in this
section extend with practically no changes to arbitrary Df’s.

The notion of hereditarily non-discrete CA,’s, which played an essential
part in the last portion of our discussion, has some intrinsic importance;
therefore we wish to discuss it a little further in two theorems of more general
character, 2.4.37 and 2.4.38. These two theorems are closely related to 1.6.20
and, like the latter, were proved by Don Pigozzi; also the remarks following
2.4.38 are due to him.

THEOREM 2.4.37. For any A, B, € € CA, with « = 2 the following two con-
pitions are equivalent:
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(i) A= BxC, B is discrete, and € has no discrete factor with more than
one element;

(i) B = Rl g, A and € = Rl _4, A.

ProOF. Consider any a € ZdU such that R[_ A is discrete and R, A has
no discrete factor with more than one element. Then, by 2.2.14, —a-cy—dg; =0
(cf. the remark after 1.3.18). Also by 2.2.14 we have, for all non-zero x € 4,
that x < a implies x-cy—dy; # 0, and this just means that a £ c;—dg;.
Hence, a = ¢;—dy;, and in light of 2.4.7 we see that (i) implies (ii). The
implication in the opposite direction is proved similarly.

CoroLLARY 2.4.38. A4 CA, U with « = 2 has no discrete direct factor with
more than one element iff ¢,—dyy = 1.

From 2.4.37 it follows immediately that every CA, with o = 2 has a direct
decomposition, unique up to isomorphism, into two factors one of which is
discrete and the other hereditarily non-discrete. The proof of this result makes
essential use of diagonal elements and as a consequence it does not extend
to CA,’s (nor, by the way, to arbitrary Df,’s with « = 1). To obtain a simple
example of a CA,; 9 without the desired decomposition we consider a two-
element CA; B and a four-element simple CA; € (cf. 2.3.15), and we take
for U the subalgebra of “®B x € generated by the set of all atoms.

From 2.4.38 it is seen that, for any given o = 2, the class of hereditarily
non-discrete CA,’s is equational, and hence is closed under the formation
of subalgebras, homomorphic images, and direct products. It can easily be
shown that, in case o = 1, this class is not equational and is actually not closed
under the formation of either subalgebras or homomorphic images. It is,
however, closed under the formation of direct products, and even under sub-
direct products (a fact which was implicitly used in the proof of 2.4.35).

It should be pointed out that in some of our earlier results we dealt with
hereditary non-discreteness without using the term explicitly. In particular,
by 1.11.8(ii), every hereditarily non-discrete Dc, with « = 2 is atomless while,
by 2.3.31(ii), every finitely generated atomless CA, with « = 2 is hereditarily
non-discrete; see also 2.1.20(ii).

We now turn to the discussion of subdirect products and related notions.
In the second part of this work the notion of subdirect product will play a large
role because, as we have seen, the class of representable CA’s is defined in its
terms; cf. Remarks 1.1.13.

In the next few theorems we shall be concerned with subdirect decompo-
sitions of CA’s given by formulas of the type

A x|cy Py B,
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The first two of these theorems are simple adaptations of certain results from
the general theory of algebras which make them useful tools in our further
discussion. We know that every subdirect decomposition of an algebra 9 can
be characterized in terms of a system of congruence relations of U and that,
in case A is a CA, congruence relations can be replaced by ideals (cf. 2.3.6).
In 2.4.40 we formulate explicitly the final outcome of this transformation.
In 2.4.39 we state a simple condition, formulated in terms of homomorphisms,
which is necessary and sufficient for a given CA 9 to be representable iso-
morphically as a subdirect product of some CA’s belonging to a given class K.
It will be seen from the proof of 2.4.39 that this condition has been obtained
by simplifying a closely related but somewhat more complicated condition
which performs the same function for an arbitrary algebra 2 and a class K
of arbitrary algebras (similar to 9(); it will also be seen that in this simplification
only Boolean properties are used.

THEOREM 2.4.39. For any K = CA, and W e CA, the following conditions
are equivalent:

(i) A =|=q4 PB for some system B of algebras in K;

(ii) for every non-zero x € A there is a B € K and an fe Ho(U, B) such that
Sx # 0,

Proor. With the help of 0.3.46 we easily show that, for algebras and classes
of algebras of arbitrary character, condition (i) is equivalent to:

@ii") for any two distinct elements x,ye A, there is a BeK and an

feHo(U, B) such that fx +# fy.

In the domain of CA’s, (ii") obviously implies (ii). To obtain the implication
in the opposite direction consider any x, y € 4 with x s y. Then x@®y
0 whence, by (ii), f(x@®®y) # fOW; therefore, fx®®fy # 0%, and
finally fx # fy. This completes the proof.

THEOREM 2.4.40. For any W € CA, and any system B € 'CA,, the following
conditions are equivalent:

(i) A =<, PYB;

(ii) there is a system J € "I such that N, J; = {0}, and AT, = B, for
each iel.

Proor: by 0.2.49, 0.3.46, and 2.3.4.

It should be pointed out that, in contrast to our findings on direct de-
compositions, it is not possible in general to characterize a subdirect decom-
position of a CA 9 in terms of a system of its elements such that the decompo-
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sition can be represented isomorphically by means of the corresponding
relativized algebras (cf. the remarks preceding 2.4.7). This can, of course, be
done (using 2.3.26) in case all ideals of 9 are principal and are generated by
zero-dimensional elements. However, the class of CA’s satisfying these con-
ditions proves to consist just of those algebras which are direct products of
finitely many simple algebras. While it thus contains all finite CA’s, by 2.4.17(ii),
it is otherwise rather narrow.

The following two theorems are formal analogues of results on direct de-
compositions, but are restricted to the case of finitely many factors. The first
states that CA’s have the finite refinement property for subdirect decompo-
sitions; by the second theorem, an irredundant subdirect decomposition of a
CA into finitely many subdirectly indecomposable factors, if it exists, is
uniquely determined up to isomorphism. (Notice that, by 0.3.54 and 2.3.1,
every CA, can be subdirectly decomposed into subdirectly indecomposable
CA.’s, but the number of factors in this decomposition is not in general finite.)
Both theorems discussed are consequences of the distributivity of the lattice
of ideals in every CA.

THEOREM 2.4.41. Let e CA,. If pv<o, A=xcyP._, B, and
A =<y P, o, €, then there is a system {D.;:x < p, L < v) of CA)s such
that B, =|=4 P,o, D, for each x < p, and €, 2|4 P..,D,; for each
A<,

Proor. In accordance with 2.4.40, choose sequences K € “I/9 and L e *II
such that N, , K, = N, L, ={0}, AK, =B, for each x <y, and
A/L, 2 €, for each 1 <v. By 2.3.11(if) we have, for any x < yu and
LA <y,

Ig(K L) Ig(K, UL,) = Ig(K u(L,nL,)).
Hence, by an easy inductive generalization,
M N, <. Ig(K WLy = Ig(K, v, ., L;)
= Ig(K,u{0})
=K,
for every x < p. Similarly, we have
2 Nec, Ig(K VL) = L,

for each A < v. For k < pand 1 <v let D, = A/Ig(K,uL,). The desired
conclusions of the theorem follow by (1), (2), 0.2.27, and 2.4.40.
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It can be shown by means of an example that Theorem 2.4.41 does not
extend to infinite compositions.

THEOREM 2.4.42. Let e CA,. Assume that p,v < o, A 2|4 P.<,B,,
A =|cy P,o,C,, and all the algebras B, with k < p and €, with A < v are
subdirectly indecomposable. In addition assume that there is no set I < p
for which U =|=y Peer B, and no set 4 < v for which A =|<4 P, ,€,.
Under these assumptions we have p = v, and there is a permutation ¢ of p
such that B, = €, for each x < p.

Proor. By 2.4.40 and the irredundancy of the two decompositions, there
are sequences K € “Il and L e I/ satisfying the following conditions:

M Ne< K = N,< Ly = {0};

) A/K, = B, for each k¥ < u, and
W/L, = €, for each 1 < v;

3 K. K, for k,x" < pu, k# x', and

Ly¢ L, for LA <v, As#A.
It was seen in the proof of 2.4.41 that (1) and 2.3.11(ii) imply
K.=N,_,Ig(K,uL))

for each x < u. Therefore, it follows from (2), 0.3.53, and the subdirect in-
decomposability of B, that, for some 4 < v, we have Ig(K, uL,;) = K,, and
thus L, < K,. Similarly, for each 1 < v there is a x < u such that K, < L,.
Consequently, (3) implies that u = v and that there exists a permutation ¢
of u such that K, = L, for all ¥ < p. The desired conclusion now follows
by (2).

It should be pointed out that 2.4.41 and 2.4.42 do not seem to have impli-
cations comparable in strength with the consequences of their analogues in
the theory of direct decompositions. In particular we see no way of deriving
2.4.42 directly from 2.4.41; indeed, the significance of 2.4.41 for the theory
of subdirect decompositions does not appear great.

THEOREM 2.4.43. If W € Lf, (in particular, if Wis any CA, with o« < ), then
the following conditions are equivalent:
@) U is simple;
(i) A is subdirectly indecomposable;
(iii) U is weakly subdirectly indecomposable;
@iv) U is directly indecomposable.
Proor: by 0.3.58, 2.3.14, and 2.4.14.
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THEOREM 2.4.44. For any e CA, the following conditions are equivalent.

(i) A is subdirectly indecomposable.

(ii) There is an x€ A, x # 0, such that for every ye A with y # 0 there
is a finite subset I of « for which x < ¢(y.

Proor. By 0.3.52, (i) holds iff the set {Ig{x}:xe A~ {0}} of proper
principal ideals of 9 has a least member (under the relation <). The equi-
valence of (i) and (ii) now follows by 2.3.10(i).

COROLLARY 2.4.45. (i) If W is a subdirectly indecomposable CA,, then there
is a subalgebra B of W generated by one element which is subdirectly indecom-
posable, and actually such that every algebra € with B = € < U is subdirectly
indecomposable.

(i) If K is a non-empty set of CA,’s directed by the relation = and no member
of K is subdirectly indecomposable, then UK is not subdirectly indecomposable.

THEOREM 2.4.46. For any e CA, the following conditions are equivalent:
(i) W is weakly subdirectly indecomposable.
(i) |A| > 1 and for every non-zero element x of A we have

2{cpx: T o, I <o} =1

Proor. Suppose U is not weakly subdirectly indecomposable. Then, by
0.3.50, let I and J be ideals of U such that I, J # {0} and InJ = {0}. Choose
xel~ {0} and y e J ~ {0}. Then for every finite I' < o we have ¢ x-yelnJ
and hence ¢ x'y =0, or cpx = —y. It follows that 2{cpx:I S o,
|I'| < o} either does not exist, or exists and is different from 1.

The converse is proved similarly.

COROLLARY 2.4.47. (i) A subalgebra of a weakly subdirectly indecomposable
CA, is weakly subdirectly indecomposable.

() If a CA, W is not weakly subdirectly indecomposable, then there is a
subalgebra of W generated by two elements which is not weakly subdirectly
indecomposable and, in fact, is not a subalgebra of any weakly subdirectly
indecomposable subalgebra of .

PRrOOF. (i) obviously follows by 2.4.46. To obtain (ii) assume that 2 is not
weakly subdirectly indecomposable. Then by 2.4.46 there exist two elements
X,y €A such that x # 0, y # 1, and ¢ x < y for every finite I' = o. The
subalgebra Sq{x, y} clearly has the desired properties.

REMARKS 2.4.48. We have previously established two results, 2.3.16(i) and
2.4.15, entirely analogous to 2.4.47(i). The three results can be restated by
saying that the classes of simple, directly indecomposable, and weakly sub-
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directly indecomposable CA,’s are closed under the formation of subalgebras.

These three classes are also closed under the formation of unions of sets
of algebras directed by inclusion, i.e., they are local in the sense that they
satisfy 0.1.28(i). For the class of directly indecomposable CA s this was
explicitly established in 2.4.16(ii). For the other two classes it follows from
the corresponding results in Chapter 0, 0.2.35(ii) and 0.3.51(ii), concerning
arbitrary algebras. In addition we have two results specific for CA,’s which,
in view of 0.1.28, immediately imply the local character of the two classes
discussed. These are 2.3.16(ii) and 2.4.47(ii); they are somewhat stronger than
the corresponding results in Chapter 0, 0.2.35(1) and 0.3.51().

On the other hand, it will be seen at the end of 2.4.50 that the class of sub-
directly indecomposable CA.’s with o« = o is neither local nor closed under
the formation of subalgebras. Somewhat related properties of this class, which
will not be discussed here in detail, were stated in 2.4.45.

THEOREM 2.4.49. (i) If U is a CA, with at least one atom, then U is weakly
subdirectly indecomposable iff it is subdirectly indecomposable.

(i) If A is an |o| "-complete CA,, then A is weakly subdirectly indecomposable
iff it is directly indecomposable.

Proor. (i) By 0.3.58 we know that 9 is weakly subdirectly indecomposable
if U is subdirectly indecomposable. Now suppose 2 is weakly subdirectly
indecomposable. Let x be an atom of . If y is a non-zero element of 4, by
2.4.46 we see that there is a finite I' < o such that x-c, y # 0. Hence,
x = ¢pyy- By 2.4.44, A is subdirectly indecomposable.

(i) By 0.3.58, U is directly indecomposable if 9 is weakly subdirectly
indecomposable. Now suppose U is directly indecomposable. If x is a non-
zero element of A, it is easily seen, using 1.2.6, that A(X{c,x:T < «,
II'l < w}) = 0. Hence Z{c(r)x:l" c o |[I'l <o} =1 by 24.14. Thus U is
weakly subdirectly indecomposable by 2.4.46.

REMARKS 2.4.50. By 2.4.43 the notion of simplicity and the various notions
of indecomposability discussed in this section coincide when restricted to
Lf,’s; by 2.4.48 and 2.4.49 some of these notions coincide also under some
other assumptions. From the following examples it will be seen, however,
that for the whole class CA, with « = ® no two of these notions coincide.

Example (I). We shall obtain a CA, 5 which is subdirectly indecomposable
but not simple by considering the full cylindric set algebra U in the space
*2 and letting X, be the weak Cartesian subspace of *2 determined by o« x {0},
i.e., the set of all fe*2 such that {x:x < «a, fic = 1} is finite. With the help
of 2.4.44 and 2.3.14 it is easily seen that the weak cylindric set algebra
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B = Rl A has the desired properties; for x in both 2.4.44(ii) and 2.3.14(ii)
we take {f} where fk = 0 for all ¥ < a.

Example (II). To obtain a CA, € which is weakly subdirectly indecompo-
sable but not subdirectly indecomposable, we consider U, X,, and B as de-
fined in (I). Let {4,:x < o} be a partition of « into infinite pairwise disjoint
sets, and, for each k < w, let

Ye={f:fe X, fu=0forall peU,_.4,}.

Finally set € = Gg®{Y,:x < w}. It is easily seen that for every Z e C there
is a k < @ such that 4Z = U,_, 4,, and hence, for this x, Z = ¢rY, does
not hold for any finite I' = « unless Z = 0. This shows € not to be sub-
directly indecomposable by 2.4.44, while, on the other hand € is easily seen
to be weakly subdirectly indecomposable by (I) and 2.4.47(i).

Example (III). Finally we outline the construction of a CA, ® which is
directly indecomposable without being weakly subdirectly indecomposable.
Let 2 and X, be as in (I), and let X, be the weak Cartesian subspace of *2
determined by ax {1}; set X = X,uX,. Finally, denote the set of all finite
subsets of X by K, and take ® = Sg**®K. D is easily seen not to be weakly
subdirectly indecomposable.

It is, however, more difficult to show that D is directly indecomposable.
For each I' < « and finite 4 = « we have

(1) cuy*Se®({dy;:x, AeTTUK) € Sg®D({d,; ik, he '~ A} uK).

The critical step in the proof of (1) consists in first observing that, for every
pu<oandall Z,WeD, ¢,Z-cW < c,(Z-W) and hence

WUZ W) = ¢, Z+ [CW +c(Z-W)],

and then applying the latter formula to the case where Z € Sg®'®{d,;:x, le '}
and X ~WeK (cf. 2.1.17(0)). We now use (1) to show that Ze K or
X ~Z e K whenever Z e Zd® (compare here the proof of 2.1.17). Finally,
by applying 2.4.14, we conclude that ® is directly indecomposable.

Example (II) is due to Stephen Comer. He also observed that this example
can be used to show that the class of subdirectly indecomposable CA,’s with
o Z o is not closed under the formation of subalgebras. As was noticed by
Don Pigozzi, by means of the same example one can show that this class is
not local. In fact, the algebra €, which is not subdirectly indecomposable,
is the union of its directly indecomposable subalgebras €, = Sg©{Y,: k < 4}
for A < . Pigozzi also pointed out that the algebra € is a D¢, and that the
constructions in Examples (I) and (III) can be modified so as to yield Dc,’s;
thus no part of 2.4.43 extends from Lf,’s to Dc,’s.
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Recall that, by 0.3.48, an algebra is semisimple iff it is isomorphic to a sub-
direct product of simple algebras.

DErFINITION 2.4.51. The class of all semisimple CA,’s will be denoted by Ss,.

THEOREM 2.4.52. Given a CA, U, consider the three following conditions:

(i) Aelf,;

(ii) every proper ideal of W is the intersection of all maximal proper ideals
which include it;

(iii)) A e Ss,.
Condition (i) implies (ii), and (ii) implies (iii).

Proor. It follows directly from 0.2.27(i),(iii) and 0.3.49 (cf. also 2.3.6) that
(i) is equivalent to

(") HA < Ss,.

Thus (ii) obviously implies (iii). Lf, = Ss, by 0.3.54 and 2.4.43, and hence (i)
implies (ii") by 2.3.3; thus (i) implies (ii).

In case « is finite, Lf, = CA, and hence conditions (i)-(iii) of 2.4.52 are
trivially equivalent. For « = o we will see in 2.5.24 that (ii) does not imply (i).
Also in this case (iii) does not imply (ii) because it will be shown in 2.4.59 that
HSs, s Ss, for o = o.

THEOREM 2.4.53. Ss, = SSs, = PSs,. If « < o, then CA, = Ss, = HSs,.
ProoF: by 0.3.42(iii), 0.3.43, 2.3.1, 2.3.16(i), and 2.4.52.

TraeoREM 2.4.54. Suppose o = @ and A € Ss,.

() If x e AtU, then Ax = 0.

(i) If cidyy = 0, then U is atomless.

Proor. If 9 is simple and x € A7, then by 2.3.30 we must have |4| = 2
and x = 1. Thus both (i) and (ii) hold in case ¥ is simple. Turning to the
general case we let x € A#9(. By 0.3.48 there is a system B = (B;:iel) of
simple CA_’s and an & € Ism(, P®B) such that

€] (pj;oh)*4 = B, for every iel.
Let j be an arbitrary element of I such that (hx); # 0®7, and consider any
y € A such that
2 (hy); <@ (hx);.
Then x-y = 0 since x is an atom and y cannot include x because of (2). Thus,
again using (2), we get

(hy); = (hx);-®) (hy); = h(x-y); = 0®9;
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in view of (1) this shows that (4x); is an atom. Therefore, we have proved that
(hx); € At B;u{0®?} for every iel.

Now this result together with the fact that the theorem holds for simple alge-
bras gives 4®J(hx); = 0 for each i € I. Hence Ax = 0 by 2.4.2, and (i) holds.
Part (ii) follows from (i) and 1.10.5(ii).

This theorem as well as some results upon which its proof rests (2.3.30 and
part (iii) of 1.10.5) are due to Don Pigozzi.

By 2.4.54(ii) any simple CA, 9 with & = ® and with more than two ele-
ments is atomless. From 1.11.8(ii) we see that, if 9 is dimension-comple-
mented, then the same conclusion holds when the premiss that 9 is simple is
weakened to require only that 9 be directly indecomposable. It would be
interesting to find a natural common generalization of 2.4.54 and 1.11.8.

For the next theorem recall the definitions of reduced product and ultra-
product given in 0.3.62.

THEOREM 2.4.55. Every reduced product and, in particular, every ultraproduct
of a system of CA.’s is a CA,.
Proor: by 2.3.1 and 2.4.1.

REMARK 2.4.56. In addition to the class CA,, the class of discrete CA s
and that of hereditarily non-discrete CA.’s for « = 2 are equational and
hence also closed under the formation of reduced products and ultraproducts;
cf. 0.4.63, 1.3.10, and the remarks following 2.4.38.

From 2.3.14 it is easily seen that the class of simple CA.’s with « < @ is
elementary, and therefore by 0.3.77 we have

THEOREM 2.4.57. For o < @ every ultraproduct of a system of simple CA,’s
is a simple CA,.

REMARKS 2.4.58. For each « < o the class of simple CA’s is elementary
in the narrower sense (i.e., it can be characterized by a single first order sen-
tence). Hence its complement, i.e., the class of CA,’s which are not simple,
is also elementary and therefore is closed under the formation of ultraproducts.
Of course, in view of 2.4.43, we can replace “simple” by “subdirectly indecom-
posable”, etc., in this remark and in 2.4.57.

Turning now to the case « = w, we are confronted with four distinct classes
— the classes of CA,’s which are simple, or subdirectly indecomposable, or
weakly subdirectly indecomposable, or directly indecomposable. It can be
shown by means of an example that none of these classes is closed under the
formation of ultraproducts or even ultrapowers, and hence none is elementary.
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In view of 0.3.58 it suffices for this purpose to exhibit a simple CA, A and
an ultrafilter F on o such that “Y/F is not directly indecomposable. In fact
it suffices to take for ¢ any simple non-discrete CA, (cf. 2.3.15) and for F
any non-principal ultrafilter on w. As regards the complements of these classes,
they are not elementary either, but, with the exception of the class of sub-
directly indecomposable CA,’s, they are closed under the formation of ultra-
products. This follows from some simple observations in the general theory
of algebras, which, by the way, are not dependent on the assumption « = ®;
cf. 0.5.22.

REMARK 2.4.59. We want still to discuss the problem whether the classes
Lf,, Dc,, and Ss, are closed under ultraproducts and ultrapowers. For « < @
the problem is trivial in view of 1.11.3, 2.4.53, and 2.4.57. The following
example will show that none of the three classes has these closure properties
when o = w. Let A be any simple, non-discrete Lf, (cf. 2.3.15). Let
I={I'"T'cua|l'|<w}, and let F be any ultrafilter on I such that
{A:T < Ael}eF for every I' e I. We claim that the algebra B = "/F is
not semisimple. Suppose, on the contrary, that B were semisimple. Since B
is hereditarily non-discrete, it would be isomorphic to a subdirect product
of a system (€;:j e J) of simple, non-discrete CA,’s (cf. the remarks following
2.4.38). Now for each €; we have

(&) Hrdd}%) = 0.

In order to prove (1) suppose that x € €; and x < d{*? for every I' € I, and
consider any 4 € I. Choosing distinct x, A € « ~ 4 we have, by 1.8.6 and the
fact that €; is non-discrete, ¢ (“)x < d {7 < 19, Hence ¢ {*’x # 1)
for every I' € I, and by 2.3.14 this implies x = 02 since €; is simple.

Because (1) holds for each €; we have also that (1) holds when €, is replaced
by %B. This, however, is impossible because it is clear that {(d{P:4 e ID/F #
0®, while

(AW 4 e IY[F < d®

for every I' € I. Thus B is not semisimple. It can also easily be shown that B
is not a Dc,.

The above example implies, of course, that the classes Lf,, Dc,, and Ss,,
with « = o, are not elementary. For the first two of these classes this result
was previously obtained by a different method; cf. 2.4.6. Using 2.4.53 we can
further conclude from this result that HSs,  Ss,» (in opposition to the

1) This observation was first made (using a different argument) and communicated to the
authors by Jerzy Los.
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formulas stated in 2.4.53). Taking 9 in the same example to be minimal, we
also arrive at the conclusion that the class Mn, with « = o is not closed under
the formation of ultraproducts and ultrapowers.

REMARK 2.4.60. In 2.4.58 and 2.4.59 we have come across various classes
of CA,’s which are not elementary and hence not universal, but which have
many properties in common with universal classes: they are local and closed
under the formation of subalgebras and isomorphic images; equivalently, they
satisfy the condition (II) formulated in 0.3.85. The following classes belong
here: Lf,, Dc,, and the classes of simple, directly indecomposable, and weakly
subdirectly indecomposable CA.’s, all with « = @ (cf. 2.4.48).

To conclude this section we take up again the discussion of minimal algebras.

We begin with a classification of all those CA’s in which the minimal sub-
algebras are simple or, what amounts to the same by 2.4.43, directly inde-
composable:

DEerINITION 2.4.61. A CA, U is said to be of characteristic x if the minimal
subalgebra of W is simple, and either (i) k = 0, and ¢, , {,} d(A+1)x (A+1)) # 0
for every A < anw, or else (ii) k is the least A < anw such that

oA+ x (G+1) = 0.

COROLLARY 2.4.62. For any CA, A with a simple minimal subalgebra there
is exactly one x such that A is of characteristic i; this x is finite and < «.

To obtain examples of CA’s with various characteristics, consider a cylindric
set algebra 9 of dimension « and base U # 0; as is easily seen from 2.4.61,
A is of characteristic 0 in case |U| = anw, and of characteristic |U| otherwise.
In metalogical interpretation, the characteristic of a CA, associated with a
(first order) theory @ is 0 iff @ is consistent and all its models are of cardinality
= anw; it is of characteristic A where 0 < A < anow iff @ is again consistent
and all its models are of cardinality A.

In the next theorem we give a modification of Definition 2.4.61 in which
the notion of simplicity is not explicitly involved.

THEOREM 2.4.63. (i) A CA, U is of characteristic O iff 0 # 1 and
cd(Ax ) =1 for every 2 < (a+1)no.

(i) In case k¥ >0, a CA, W is of characteristic x iff k < anw, 0 # 1,
Codk xK) = 1, and ¢, d((k+1) x (k+1)) = 0.

Proor. By 2.1.17(iii) and 2.3.14 the minimal subalgebra of 9 is simple
iff 0 # 1 and cmd—(/lxi)e{o, 1} for every 4 < (a+1)nw. (i) and (ii) now
follow from 1.9.10 and 2.4.61.
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REMARK 2.4.64. From 2.4.63 it is seen that, for any x < anw, the class
of CA,’s of characteristic x becomes equational when one includes in it all
one-element algebras.

COROLLARY 2.4.65. (i) Every CA, with more than one element and with
o £ 1 is of characteristic 0.

(i) A CA, U is of characteristic 1 iff W is discrete, A has more than one ele-
ment, and o > 1.

No characteristic is ascribed to a cylindric algebra whose minimal sub-
algebra is not simple, i.e., consists of just one element or contains more than
two zero-dimensional elements. In Remark 2.5.29 we shall discuss informally
a more general notion, that of characteristic set, which refers to arbitrary
CA’s. We shall see right now, however, that our present notion of charac-
teristic provides by itself a classification of all those CA’s whose minimal
subalgebra contains only a finite number of zero-dimensional elements; this
is a rather comprehensive class of CA’s which includes, in particular, all finite-
dimensional CA’s and also all finite CA’s. A classification of algebras of this
class in terms of characteristic results from the next two theorems, by which
every such algebra can be directly decomposed into finitely many algebras
with definite characteristics, and this decomposition is unique up to isomorphism.

THEOREM 2.4.66. Let A be a CA, with « < o or, more generally, any CA,
in which the set B of all zero-dimensional elements of its minimal subalgebra
is finite. Let B' be the subset of B consisting of all elements c , d(Ax 2) with
A< (at+Dno. Set by =1IIB, b, = cydxxK) =y ,d((x+1) x (+1))
when 0 < kx < anow, and I' = {k:x < ano, b, # 0}.

Under these assumptions the set I' is finite, each of the algebras Rl, U is a
CA, of characteristic x, and

Ax=P

xel’

R, A

ProoF. By 2.1.23(i) we have that {b.:x < anw} ~ {0} is the set of atoms
of the zero-dimensional part of the minimal subalgebra of . Consequently,
the hypothesis assures us that I’ is finite. Thus, since conditions (i)—(iii) of
2.4.7 obviously hold when I' is taken for I and <{b.:xeI) is taken for
{x;:ie Iy, we have by 2.4.10 that

Ax~P

kel

R, 2.

1) Theorem 2.4.66 is analogous to Theorems 4.35 and 4.36 of Jonsson-Tarski [52] con-
cerning relation algebras.
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It can easily be checked, with the aid of 2.4.63, that R, A is of characteristic
Kk for each ke .

THEOREM 2.4.67. Let B and B’ be two systems of CA.’s indexed respectively
by two finite subsets I' and I'" of w. If B, is of characteristic x for each x €T,
B is of characteristic L for each A eI”’, and

Peer®B. = Py B,

kel

then I' = I'', and B, = B, for each xeT.

ProoF. By 2.4.13 we see that there are algebras €,,; with {x, A> e I'xI"
such that B, = P,_. €, for all keI and B, = P_,C, forall Ael". For
any fixed <x, A> e 'xI"" we have €, | B, and €, | B, and hence by 2.4.64
we may conclude that either |C,;| = 1 or €, is at the same time of charac-
teristic ¥ and A. Thus, by 2.4.62, |C,,| = 1 whenever x # A. The desired
conclusion now follows at once.

In the theorems which follow we shall apply the notion of characteristic
(and in particular the decomposition theorem 2.4.66) to the problem of com-
puting cardinalities of Mn,’s. In view of Theorem 2.1.20(i) we restrict our-
selves to the case of finite-dimensional algebras.

THEOREM 2.4.68. Let U be a Mn, of characteristic k. For each finite 4 < «
let m A be the total number of partitions of A in case k = 0, and the number
of partitions of A into at most k subsets in case x > 0. We then have:

(i) 14| = 2™* for any o < o
and, more generally,

(i) |CL,. A| = 2™ for an arbitrary o and any finite A < a.

Proor. It suffices to prove (ii) since (i) is an obvious special case of (ii).
By 2.1.17(Gii) and 2.3.14 we have C/ _ A = Sg®({d,,:x, A€ 4}). Since
4] < o, €I, is finite, and the atoms of €[, ., are exactly the non-zero
elements of the form Il,_,d, d(@ x @) where P is a partition of 4 and
|©nQ] =1 for each Qe P (cf. 1.9.7 and 1.9.8). Now by 1.8.3(i), 1.8.6, and
1.9.4(i) we have

cu~eyll loepdo d(@ x )] = d(O x O).

Thus [1,_,d,-d(@ x @) = 0 iff « is finite and P is a partition of 4 into more
than x subsets. The desired conclusion readily follows.

By 2.4.68(i) and 2.1.20(i) any two Mn,’s of the same characteristic have the
same cardinality. For instance, |4]| = 2 for every Mn, 9 of characteristic I,
and |A4| = 22*"" for every finite-dimensional Mn, of characteristic 2.
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We shall see in the next section (Theorem 2.5.30) that any two Mn,’s of
the same characteristic are actually isomorphic.

THEOREM 2.4.69. Let U be an Mn, with o < w. Let I' and n, A be defined
as in 2.4.66 and 2.4.68, respectively. Then

|4] =TT 27

kel

PRroOF: by 2.3.3, 2.4.66, and 2.4.68(i).

Theorem 2.4.71 below can be regarded as a kind of converse of the theorem
just proved. In establishing 2.4.71 we shall make use of the following

TueOREM 2.4.70. If U and B are Mn,’s of characteristic k and A, respectively,
and © # A, then A x B € Mn,.

Proor. Let € be the minimal subalgebra of A xB. We may suppose,
without loss of generality, that x < A, and we consider first the case « # 0.
Then c,{*d(Ax )™ = 0® while c,{®d(A x ))® = 1®. Hence, (0™, 1®y e C,
and it easily follows that (0™, b) e C for every b € B. By complementation
we also find (1™, 0™®% e C, and therefore, by symmetry, <a, 0®) e C for
every a € A. Hence, as is readily seen, € = A x B. The same conclusion is
obtained by a similar argument in case x = 0.

Notice that the algebra A x B of 2.4.70 is not simple and hence has no
characteristic. On the other hand, if ¥ = A, then A x B is of characteristic k
(by 2.4.64), but is not minimal.

THEOREM 2.4.71. Suppose 0 < o < o, and let w A be defined as in 2.4.68.
If I' is any non-empty finite subset of o, then there is an W € Mn,, such that

4] =1 .27

kel

Proor. Choose %, to be a Mn, of characteristic k for each xk e I'. (From
the remark following 2.4.62 we see that such a B, can always be chosen.)
Then, by 2.4.70 and an easy inductive argument, we obtain P . B, e Mn,.
The desired conclusion follows by 2.4.68(i).
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