Completions of BooLEAN Algebras with operators

By J. DoNnarp Monk 1), Boulder

(Eingegangen am 7. 5. 1969)

The notion of a BooLran algebra with operators was introduced by
Jonsson and Tarskr [5]. It encompasses as special cases relation algebras
(Tarskr [9]), closure algebras (McKinsey-TARSKI [6]), cylindric algebras
(HENkIN-TARSKI [4]), polyadic algebras (Harmos [2]), and other algebras
which have been studied in recent years. One of the basic results of [5] is
that any BooLkan algebra with operators can be extended to one that is
complete and atomie. The extension does not preserve any BooLEan sums
(joins) which are essentially infinite, however. It is the main purpose of this
paper to describe a completion that, while not atomic in general, does
preserve all sums (and products).

In section 1 the theory of such completions is extensively developed,
patterning the development after section 2 of [5]. It turns out that the
proofs are much simpler than in [5], so they are given only briefly. The
second short section of the paper deals briefly with completions of some of
the special kinds of algebras mentioned in the preceding paragraph.

We adopt the notation of [5], with the following exceptions and additions.
A Boorran algebra is treated as a structure % = (4, +, -, —). *X is the
set of all functions mapping Y into X. ™X is the set of all m-termed sequences
of members of X. Id is the identity {(z, z): x a set}.

f1 X is the restriction of f to X. Other set-theoretical conventions not
mentioned in [5] are the usual ones. For the theory of BooLEan algebras
we refer to StxorskI [8]. Particular use will be made of the theory of com-
pletions (§ 35 of [8]; see in particular Theorem 35.2). A Boorean algebra 9
is called tnjective if whenever B S % and B S € then there is a homo-

-morphism f of € into U such that Id{ B < f. In [8] it is shown that U is
injective iff 9 is complete. BooLxan algebras with operators will be treated
as algebras A = {4, +, , —, fiic;- We then let BIUA = (4, +, -, —).
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1. Completions in general

Throughout this section, unless mentioned to the contrary, we assume
that A and B are Boorran algebras and U is a completion of B (in the
sense mentioned above). If f is an m-ary operation on B, we define f*,
an m-ary operation on 4, by

fra= 3 fy
a;gyeinB
for any z €”4. Thus f* is a monotonic operation on 4.

Theorem 1.1. If f is @ monolonic operation on B, then f = f+. Clearly if
1s not monotonic then f L f*.

Theorem 1.2. If f is a completely additive operation on B, then f* is a
completely additive operation on A.

Proof. Say fis m-ary. Let ' € ™4 for each i € I, where I = 0; suppose
j<m and zi = 2% whenever ¢,2 € I and k€ m ~ {j}. Let

e d i P ;
y=Axb, ...,@_;, Y &, ., ..., 2_)

iel

(for any i€ I). Then
v fy= 3 fz

y=zc™p
(2) Yfrai=3 3 fw
' ‘ i€l i€l gizwe™B

Note that y > z* for each ¢ € I. Hence, since f* is monotonic,
(3) Y et <fry -

i€l
Conversely, suppose ¥y =z € ™B. Thus

(4) sEy=Yadg=3 X u

el tel x‘guEB

i

Now for 1 €1, 2} Z 1 € B, and k €m ~ {j} let v}:‘._ 2, and let v = z;- .
Then, by the complete additivity of f and usmg (4) S

Ja=)] Y [

el 1;2“63
But ifieland «i =u€ B, then xt 2 v“‘ Hence by (1), (2),
fry < 2f+ z'; ’ |

. el . '
together with (3), this completes the proof
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Theorem 1.2 cannot be 1mproved to assume, as in 2.4 of [5], simply
that f is additive. For, since sums are preserved in going from B to 9 f*
completely additive implies that f is completely additive. In fact, there
is a one-one correspondence between completely additive operations on B
and those on 4 which extend ones on B:

Theorem 1.3. If f s an m-ary completely additive operation on A and
f 1™B is an operation on B, then f = (f |"B)*

Proof. For any € ™A we have, by a simple inductive argument,

fe= 3 3 - Y  fyu= M fu

zo2¥gEB z4=9€EB Ty A=Y 1 EDB z=ye™mp
as desired.

Theorem 1.3. cannot be strengthened by assuming that f is merely
additive. In fact, let B be the BooLEan algebra of finite and cofinite subsets
of w, %A the BooLEan algebra of all subsets of w. Thus 9 is a completion
of B. Let f be a homomorphism of 9 onto its two-element subalgebra
such that fa = 0 for each finite subset a of w, and let g = f } B. Then
g* a = 1if a is & cofinite subset of w, and g* @ = 0 otherwise. Hence f = ¢*.

By 1.3, each completely additive operation on B has exactly one ex-
tension which is a completely additive operation on A. This is in contrast
with the situation for perfect extensions (see [5], p. 913).

Theorem 1.4. If g is an m-ary operation on B and f is a completely additive
m-ary operation on A such that f 1™ B < g, then f < g*.

| Proof. For any x € ™4 we have

Cfe= X fy . byl3
: rzye™p e
< Y gy=g'=.
z=yc™B

The example following 1.3 shows that one cannot merely take f additive
in 1.4. In fact, in 1.4 one cannot even assume that g is completely additive
when f is merely additive. For, let % and B be as before, let f be as in the
former example, and for any z € Blet go={j:3i (S 2i¢€ z)}. We
may choose f so that f{1,3,5,...} = 1; but g* {1,8,5,...}=0.

- Theorem 1.5.
() +* = +.
(i) - o

(i) Iff B X {b} then j“r Aw{b}

(iv) Iffx =X, for all x E’”B (where i< m) then j+ z = for all

4 Math.N_achr.er,Bd. 16, H.1—6
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Theorem 1.6. If f and g are respectively m- and (m + n)-ary operations
on B with g(x"y) = fx for oll x€™B and y €"B, then g*(2"y) = f"
for all xE™A and y €"A.

Theorem 1.7. If f is a completely additive m-ary opemtwn on B and
Tos +« o5 Gy QTE M-QTY Operations on B, then

(f(g()’-' :gm 1) f+<g():g0’--'7gm-1>"

Proof. Assume that a' €4 for each i <n, and y= 2. ..%" %,
Then

fGor-- o GuNVy= 2 (flg0, - s0n))z

y=2eMN R
-y ... ¥
xOEZOEnB xm—izzm~1enB

(f{Gos -+ s @) & -+ " 2" 7)

xogzOE"’B_ | g—lmgm-icnp
' m—1y .
Slgoud, . gy 2"70);

an easy inductive argument using the complete additivity of f*, which
follows from 1.2, then gives

FGos o s Iy =1"C 3 g0z, .. Y gui2)
20=:c"R gM—1z,chp
= ftgs 20, ..., g5_ 2"

= (f+ <gg 3 s vy gm-1+)) .7/:
as desired.

Again, in 1.7 f must be assumed to be completely additive. In the

example following 1.4, let f* = f } B. Then f* is additive, g is completely
additive, while (f"-g)* & f"*og* since (f’o¢)*{0,2,...} =0 while

F*r9*{0,2,...} = 1. This observation is relevant to the followmg theorem
also.

‘Theorem 1.8. If f is a completely additive m-ary operation on B and
Jos - - +s Y-y are monotone n-ary operations on B, then
190 - G DY =S98 s ]
Proof. Let  €* 4. Then |
(f[g(}’ LIRS gm—i])+ X = 2 f(g() Yy, .. ) gmmiy) '

x=zyep

= )/ AN A

zzye™B
éf"—(g(; x?_' v ey g;;_lx).
=g, .. ..95_ D =.
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To establish the other direction, an easy induction using the complete
additivity of f* gives

(f+[96r:-~,9ni-1])x=f+( E GoYos -« «» 2 Im—1 ym—i)
wZ?l(}EnB TZYy — 16”’3
=23 ) S(G090> >0 Ym-1)-
z2Zy "B T2y 1E"B
Nowif 2 = 9o, ..., Y1, 166 2 =29+ +++ + y,_; since g; is monotone,

7:¥: < gz Thus
(f+[g(;k"' 5gm 1])x< 2 fgﬂz ":gm*lz)

a=ze"B

= f[gOJ voery gm—l])+ x

which completes the proof.

Let B = (B, +, *, —, fiier b6 a BooLran algebra with operators.
A completion of B is an algebra A = (4, +, «, —, i )cr, wWhere BIU is
a completion of BI B. If each operation f; is completely additive, we
call B completely additive. Thus if B is completely additive, then A is
complete. With a given BoorLgan algebra with operators 2 we suppose
associated a first-order logic £y. A term ¢ of Xy is positive if — does not
occur in it; an equation ¢ = 7 is positive if both ¢ and v are positive. If

. . . . n~
¢ 18 & term with variables among %, ...,%,_,, then ¢ is the naturally
associated nm-ary operation on A.

Theorem 1.9. If B is a completion of a completely additive BooLEan

algebra with operators U, then a positive equation ¢ = 1 holds tn U iff it holds
in B.

 n~B+ n~
Proof. By induction on terms one easily shows that ¢ = o for
any positive term ¢ with variables among v, . .., v,_,. Hence 1.9 follows

{(cf. RiBEIRO [7]).

Theorem 1.10. With 9 and B as in 1.9, if ¢ is a conjunction or disjunction
of formulas of the form ¢ = 0 or ¢ = 0, o positive, and if T and 9 are positive,
then @ — v = o holds in A iff it holds in B. |

Corollary 1.11. If f, g € B and f and g are congugate then f* and g*
are conjugate.

As is shown in [5], p. 921, Theorem 1.9 does not extend to inequalities
0 % 7, even if ¢ and 7 are positive; it does not extend to equations ¢ = 7
with ¢ and 7 arbitrary, as is shown in HENKIN MONK TARSKI [3], Remark
2,719. - '
One of the basic propermes of completmns of BooLEan algebras is their
minimality (35.2 (iv) of [8]): if 2 is a completion of B and B is a subalgebra

4
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of a complete algebra €, then there is an isomorphism f of € into € such
that Id" B = f. This extends in the following modified form to BooLran
algebras with operators.

Theorem 1.12. Let 9, B, € be BoorLran algebras with operators, A a com-
pletion of B, B completely additive, B a subalgebra of €, € complete, BL B
a reqular subalyebra of BIE. Then there is an isomorphism f of A into €
such that Id> B < f.

‘ g
Proof. For any ¢ € 4, let fa = )] b. Although it is well-known

a<bchB
that f is a complete BooLEan isomorphism into, we present a proof for

the sake of completeness. We have fa -f(— a) = 0. Further,

o 2 o
l=—a+(—a)= )} b+ 3} ¢ =30,
| oEbEB  —dzceB beT
| B
where T = {b € B: a =b or — a =b}. Obviously, then, 1 = }'b,
, beT
s |
hence 1 = 3] b. But this means that fe + f(— a) = 1. Thus
VT
f—a) = —fa.
- © 9 oA
Next, obviously 3 fa, <f 3 a,.If }] o, = b € B, then
i€ i1 i€l |
% o 2
b=) Y c=}){c€B:3icl{c<b a)}
i€l ba;2eeB

B 1 ‘
- Z{ceB:EiEI(cgb-ai)}zi’{céB:SiEI(Géb - @)}

¢ ¢ ¢ ¢ c
=Y ¥ o= 3 o= }Yfa
i€l ba;zeEB i€l a;2¢€B i€l

o g
Hence f )] a; < }) fa;, as desired.
i€l ieT ,
Finally, f preserves non-BooLEan operations: let
U=A(d, +, =, 91> ¢ € I, g; m-ary. Then for any x € ™4,

: ¢
fola=f ) %yv= 3 By

xzye™B zzyE™B
=g¢ Y y=g (fou),
AU o r2ye™B
and the proof is complete.
- The. restriction in 1.12 that BL B is a regular subalgebra of BIE is
es_sentia-l. In vfact, let A and B be as in the example following 1.3, with
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the following two non-BOOLEan operatlons Bor={:3i(j=2ieb),

Bo={:31( < .‘Zz +1€b)}, f& =f3,fF=f2*. LetC be a perfect

extension of B. It is easily verified that € has exactly one more atom, say z,

than B, and that = < b for each cofinite subset b of w. Now suppose that ¢

is an isomorphism from 9 into € with Idl' B &g. Then z < g {0, 2,4, .. .}

orz<g{1,3,5,...};sayx <¢g{0,2,4,...}. Then, as is easily checked,
C

g{0,2,4,...} = )} {27} + «. Then

1€w

gfiu {0,2,,4...} =0;

fgg{0’2»4: }>f1x"" nf?b>m’

r=beB

a contradiction. _

We may mention that another important property of BooLEan algebras,
that any algebra can be imbedded in an injective — because complete
algebras are injective (see [8], section 33) —, fails for BooLEan algebras
with operators, as we will see in our discussion of special algebras below.

2. Completions of special algebras

The discussion of the preceding section is fully applicable only to
completely additive BoorLEan algebras with operators. For this reason
we shall concern ourselves only with relation and cylindric algebras. It
is well-known that the operations in closure and polyadic algebras are not,
in general, completely additive. S

~ From 1.10 and the axioms given for relation algebras in [5], it follows
that a completion of a relation algebra is again a relation algebra; by 4.10
of [5], simplicity is preserved. An easy argument shows that a completion
of an integral relation algebra is again integral. We do not know whether
a completion of a representable relation algebra is again representable.
Since by Tarskr [10] the class RAA of representable relation algebras is
equational, this problem is related to the problem whether RRA can be
characterized relative to the BooLEan algebra axioms by positive equatlons
The following are partial results relevant to these problems S

~ Theorem 2.1. If 9 satisfies the hypothests of 4.32 or of 4. 33 of [5] cmd B
18 @ completion of A, then ?B 18 regpresentable :

Theorem 2.2. I f A is a relatwn algebm of cla.ss ? (z = 1 2 ) then so is
any completwn of %I -‘ | s o ,
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Both theorems can be shown by adjoining O’ as a new O-ary operation.

Turning to cylindric algebras, we see that a completion of a (simple)
€A, is again a (simple) &A,, by [3], remark 1.3.6 and 2.3.142), It can be
shown that a completion of a hereditarily non-discrete £, is never locally
finite. Again it is an open problem whether the completion of a representable
€A, is representable. In this connection the following two partial results
may be of interest. We use the notation of [3].

Theorem 2.3. Any completion of a dimension complemented EA, of
infinite dimension is representable.

Proof. Say % is a completion of B. For x < « and @ € A we then have
c,a= 3 e, b= 3 38D by 1.11.6 of [3]

a=bER a=bCB A<«
=) X &b
Ala a=bcHB
®
A<

hence ¥ is representable by 2.6.54 of [3].

Theorem 2.4. If U is a completion of B and B = Nr, B", B’ a complete
EA, ., o> then U is representable.

Proof. If (b 1 €1I) is a system of elements of B such that )b,
€l

exists, then 2 b, = Z’ b;. In fact, suppose x € B’ is an upper bound for
i€1 i€l |

each b; . Then for each 7 € I and each finite I' S (¢ + @) ~ «, ¢ipy T = b;-

Let y = HSB omx T = {I': T finite, I' & (& + @) ~ o}. Then 4y = «,

y is an upper bound for each b;, so Z’ b, <y <=z, as deSired; Thus BI B

i€l -
is a regular subalgebra of B[ B’. The desu'ed conclusion now follows by
1.12 and 2.6.36 of [3). -

We understand the notion of in]ectlve EA, in the natural Way
Theorem 2.3. The only injective EAL’s are the one-element EA;s.

- Proof. Suppose % is an injective £A, with more than one element.
“Then there is a simple £, B such that |8 |>| 4 | and € & B, where €
is the two-element subalgebra, of %. But clearly then there is no homo-
morphism from B into A, contradiction. -

For more mformatlon on m]ecﬁlve EAs see COMER [1]

© 2) Except for sunphclty this was shown in MaNGANI [111.

S p—
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