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ON THE FOUNDATIONS OF SET THEORY
J. D. MONK, University of Colorado

I want to discuss here the relevance to mathematicians, as teachers and
researchers, of some of the recent discoveries about axiomatic set theory. Most
readers have heard of these advances, which began just a few years ago with
Cohen's work. The results are certainly intellectually amazing to all of us. I
think they may even give rise to certain changes in our teaching and research,
and the purpose of this paper is to describe some possibilities along these lines.
To set the stage and fix the ideas I shall first describe a few of these discoveries
in a fairly precise way. Then, in the nonexact portion of the paper, I shall dis-
cuss some possible changes in teaching and research, and also some philosophi-
cal views which are affected by these discoveries.

1. A survey of results. A much more comprehensive (and more technical)
survey can be found in Mathias [7]. Here I state just a very few results, but I
wish to emphasize that the nonmathematical arguments of the next section
apply in some form to virtually all of the results described in [7]. I assume that
the reader has a modest acquaintance with the idea of a language and a meta-
language, and with the precise notions of a (first-order) sentence, a (formal)
proof, and a theorem. In this section I work in a metalanguage and talk about
the language of mathematics. I leave the metalanguage unspecified in detail;
to begin with I assume that it is rather weak, with just enough machinery to
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at Berkeley, he came to his present post at Colorado. His main research is in algebraic logic, and
he has published the books, Introduction to Set Theory (McGraw-Hill 1969) and (with L. Henkin
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formulate the above precise notions. If T is a list of sentences (thought of as
axioms for a certain theory), and ¢ is a single sentence, I write 7T |-¢ to indicate
that there is a formal proof of ¢ from T, i.e., that there is a list of sentences, each
of which is either a logical axiom, appears in the list 7', or is obtained from earlier
sentences of the list by applying a rule of inference. I write TH ¢ if there is no
proof of ¢ from T'. Before embarking on a description of set-theoretical matters
I want to mention two famous theorems of Gédel which form a background upon
which to view the latest results.

TueoreEM 1. (Incompleteness theorem.) If T is a consistent, sufficiently
strong, effective list of sentences, then there is a sentence ¢ such that TH¢ and
TH—¢.

Here “—” is an abbreviation for “not.” T is consistent if THy for some .
To say that T is sufficiently strong means, roughly speaking, that 7" embodies
enough mathematics to develop elementary number theory; technically speak-
ing, Peano arithmetic, P, is relatively interpretable in 7. To say that T is
effective means that the list 7" is presented in a reasonable manner—reasonable
enough for oe tno be able to recognize by some algorithm when a sentence is in
the list 7. Certainly T is effective if T is finite: to check if a sentence ¢ is in T’
just look through the whole list, a process which in principle terminates with
the last member of 7. But Theorem 1 applies to some infinite lists also. Pre-
cisely speaking, one assigns numbers, called Gidel numbers, to all sentences,
and T is called effective if the set of Gddel numbers of members of T is a re-
cursive set. Clearly, to express this notion of effectiveness my original weak
metalanguage must be strengthened enough to work in an elementary way with
recursive functions, integers, and sets of integers. The other theorems of this
section are also formulated in this stronger metalanguage, which is still much
weaker than the ordinary language of mathematics.

Theorem 1 itself has a profound philosophical significance. According to it,
one cannot hope to base all of conceivable mathematics on a single axiomatic
basis; it points out the necessity of a continuous search for additional axioms.
The importance of the theorem can be more appreciated in connection with the
opposed philosophical views of formalism and platonism which will be discussed
in section 2. I want to point out now, though, that the incompleteness theorem
has not had much effect on the attitude of the working mathematician. In con-
trast, the latest results concerning the independence of the Axiom of Choice
and the Continuum Hypothesis are already having an effect on teaching and
research. I think that one of the main reasons for the lesser practical significance
of the incompleteness theorem lies in the nature of the known proofs of the
theorem. The sentence ¢ whose existence is asserted in the theorem is effectively
constructed, but its intuitive meaning is not to be found in ordinary math-
ematics. [t can be interpreted as asserting a relationship between formal proofs
and its own Gédel number, and its construction is another instance of the well-
known Cantor diagonal method. Theorem 1, essentially due to Gédel, can be
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found in Tarski, Mostowski, Robinson [10] (it follows immediately from
Theorems I1, 17, 110, and 119 there).

If T is an effective list of sentences, one can effectively construct a number-
theoretic sentence Con1" which expresses the statement that 7" is consistent
(under a natural interpretation, via Gédel numbers).

THEOREM 2. (Godel's second underivability theorem.) If T is a consistent
sufficiently strong, effective list of sentences, then TH-ConT.

See Feferman [2] for a proof of this theorem; it is also pointed out in [2]
that one must take some care in the construction of the sentence ConT. This
second theorem of Gédel again puts a limitation on what one can do in the
foundations of mathematics. If T is a list of sentences which provides axioms
for a large portion of mathematics, then by Theorem 1 not all mathematics is
encompassed by 7. One is thus forced to be somewhat modest. Theorem 2
forces a more severe degree of modesty: it is impossible to prove the consistency
of T (without using devices not available in 7" itself). One would like to know
that working with 7" has some significance, which it does not if 7 is inconsistent;
so no method is available for logically proving that mathematics is significant.

I now turn to set theory. Students are taught these days that all mathemat-
ics can be based on set theory, indeed, that ordinary mathematics logically
speaking is just a branch of set theory. It is, in fact, well established that al-
most all mathematics can be reduced to set theory. The only doubts that may
arise concerning such a reduction have to do with the recently developed theory
of categories. Anyway, in talking about set theory I think one is talking about
essentially all of mathematics. I shall fix upon a particular list ZF of axioms for
set theory, the Zermelo-Fraenkel axioms. These are essentially the axioms used
in Bourbaki [1] and Halmos [5], but I assume that the axiom of regularity is
also included (see Monk [8]), while the Axiom of Choice is excluded. By the
Axiom of Choice, for short AC, I mean the statement that if 4 is a family of
nonempty sets, then there is a function f (called a choice function for A) such
that f(x) Ex for each x & 4. If 4 is a finite family (finite defined conventionally),
then such a function can be proved to exist within ZF, using only the simplest
set-theoretical axioms (this was overlooked in Hall, Spencer [4], p. 282). In
general, however, the existence of f requires infinitely many choices, and there is
no principle within ZF which makes this legal. The axiom of choice can be
proved equivalent, within ZF, to Zorn's lemma, to the Well-ordering Principle,
to Tukey’s lemma, etc. By the Continuum Hypothesis, for short CH, I mean the
statement that any infinite set of real numbers can be placed in one-to-one
correspondence either with the integers or with the set of all real numbers.
Finally, the Generalized Continuum Hypothesis, GCH for short, asserts that for
any infinite set X and any family ¥ of subsets of X, ¥ can be placed in one-to-
one correspondence either with a subset of X or with the set of all subsets of X.
Since in ZF+AC one can show that the reals can be placed in one-to-one cor-
respondence with the set of all subsets of Z (the set of integers), it follows that
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ZF+ACH—GCH—CH. Now I shall list a few of the important recent results in
the foundations of set theory.

TueoreM 3. (Godel, 1938.) Con(ZF)=Con(ZF+AC+GCH).
I could just as well formulate Theorem 3 as follows:
If ZF is consistent, then so is ZF4+AC+GCH.

Theorem 3 is written as a theorem of number theory as so to make more
precise the assumptions in the metalanguage and to establish a connection with
Theorem 2. The question of consistency of ZF+ A C+GCH reduces to the same
question for ZF. By Theorem 2 this latter question cannot be given a rigorous
affirmative answer. Since set theory, in particular ZF, has been used so much in
the last century, mathematicians have grown confident that it is, in fact, con-
sistent. Thus one can assert with the same degree of confidence that ZF+AC
+GCH is consistent.

THEOREM 4. (Cohen, 1963.) Con(ZF)=Con(ZF+AC+ —CH).

In Theorem 4, —CH can be taken in various very specific forms, such as
2R =N, or 28e=N; or 2% =N, ,,. The most general results of this sort have been

established by Easton and Solovay; see, e.g. [9].

THEOREM 5. (Fraenkel, Mostowski, Cohen, 1929-1963.) Con(ZF)=Con(ZF
+—40).

Again, - AC can be taken in many more definite forms, for example: there
is a countable collection of unordered pairs without a choice function.

TreorEM 6. (Vitali, 1905.) ZF4+ACH 3x (x is a set of real humbers, but x
is not Lebesgue measurable).

TrEOREM 7. (Solovay, 1965.) Con(ZF' +AC)=Con(ZF+ —AC+H Vx (if x is
a set of real numbers, then x is Lebesgue measurable)).

Here ZF' is obtained from ZF by replacing the usual axiom of infinity by a
stronger one which asserts the existence of an uncountable strongly inaccessible
cardinal. This stronger axiom is coming more and more to be an accepted part
of set theory. For example, category theory appears to require this axiom, or
even stronger axioms, to justify its methods. Intuitively, Con(ZF'+AC) seems
as plausible as Con(ZF+AC); like ZF+ AC itself, the consequences of ZF'+AC
have been rather well worked-out and some confidence can be placed in its
consistency. Since, however, ZF'4+AC + Con(ZF+AC), the new axiom of in-
finity is much stronger than the old axiom (see Theorem 2).

THEOREM 8. (Solovay.) Con(ZF)=»Con(ZF+ —AC+3x (x is a set of real
numbers and x is not Lebesgue measurable)).

By Theorem 8, the Axiom of Choice is not equivalent to the existence of
non-Lebesgue-measurable sets of real numbers.
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These theorems I have listed represent a small sampling of results known
in this area; they are sufficient to form a basis for the non-mathematical argu-
ments in the next section. The interested reader can think of many familiar
theorems whose proofs involve the Axiom of Choice, for example, and ask
whether results similar to the above for Lebesgue measure hold. Thus the exis-
tence of Hamel bases, the Hahn-Banach extension theorem, the Boolean prime
ideal theorem, the Banach-Tarski paradox, and the extendability of a partial
order to a linear order are theorems which give rise to independence questions
of this sort. Even assuming the Axiom of Choice, many statements of a set-
theoretical nature have until recently been open. Examples are: the existence of
a nontrivial measure on the set of all subsets of a set, and Souslin’s hypothesis.
Some of these many natural hypotheses have now been settled (in the sense of
being shown independent), while others are still under attack. The intuitive
remarks in the next section apply to all of these questions.

2. Meaning of the results. What do these results “do” for the ordinary
mathematician? Before indicating some specific possibilities along these lines,
it is worthwhile briefly to take a deeper view of the significance of the results.
The results throw a great deal of light on a certain dichotomy in the philesophy
of mathematics which now has a long history. Without trying to connect
theories in the philosophy of mathematics with broader philosophical trends, I
will distinguish two extreme views, platonism and formalism. These are not the
only possible philosophies of mathematics. For example, intuitionism has a
great appeal and is close to the beliefs of many practicing mathematicians. But
the philosophies of most mathematicians can be construed as somewhere in
the range between extreme platonism and extreme formalism. Practicing math-
ematicians, consciously or not, subscribe to some philosophy of mathematics
(if unstudied, it is usually inconsistent). If you make a simple reference to the
real numbers, you express a tendency toward platonism. And if you refer to a
theorem as correct because it follows from the axioms of set theory, you tend
toward formalism.

According to extreme platonism, mathematical objects are real, as real as
the world we live in. Thus infinite sets exist, not just as a mental construct but
in a real sense, perhaps in a “hyperworld.” Similarly, nondenumerable sets,
real numbers, choice functions, Lebesgue measure, etc., have a real existence.
From the point of view of platonism, the purpose of a mathematician is to dis-
cover some of the facts of nature. His job is thus quite similar to that of a
physicist, chemist, or biologist. The various possible axioms of set theory are
then either true or false, and one of the main aims in the foundations of math-
ematics is to develop correct intuitions so as to determine which are the true
axioms; these may then be taken as a rigorous basis for set theory. Actually, for
a platonist, axiomatic development of set theory is not essential, but is perhaps
useful to keep from making mistakes. (Even a platonist, however, will admit the
importance of axiomatic treatments outside set theory, as in topology or group
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theory, because of the usefulness of axiomatizations for abstractions and classi-
fications.)

A strict formalist, on the other hand, does not believe that any mathematical
objects have a real existence. For him, mathematics is just the business of de-
riving sentences from axioms. It is a game, in that some definite rules must be
followed in such derivations. Unsolved problems give rise to goals for the game;
the winner is the one who solves the problem. The analogy with games like
chess and go is very close. A formalist chooses which game to play, that is, which
axioms to take and which problem to work on, using practical and artistic
criteria. One set of axioms may be best suited to be a base for a physical theory
like relativity, for example, and hence because of the predictive ability of the
physical theory this set of axioms has a practical value. And, of course, some
problems are more practical in nature than others. The criteria for choosing
axioms and problems, when not practical in nature, are extremely varied. A
certain axiom may enable one to resolve many questions that are difficult with-
out its aid; assuming that GCH, for example, infinite cardinal arithmetic is
very much simplified. Many investigations are made in order to try to relate
two seemingly distant areas in mathematics; one may cite the duality theory for
Boolean algebras, relating algebraic to topological structures, or the investiga-
tion of closure algebras—doing topology within algebra. These two criteria for
choosing the right game are just examples, and are undoubtedly not the most
important of those criteria which are not based on practical considerations.

The results of section 1 have different meanings for platonists and formalists.
The incompleteness theorem (Theorem 1) shows the platonist that he cannot
hope to capture all of mathematics in a completely rigorous form for once and
for all. There will remain beyond any fixed rigorous framework a statement
whose truth must be determined by intuition. On the other hand, a strict
formalist may even doubt that Theorem 1 says something relevant to his ac-
tivity, since, as I indicated in section 1, the formulation and proof of Theorem 1
require a metalanguage stronger than the minimal one needed to understand the
notions of proof and theorem which are the basic “rules of the game” for the
formalist. But if the formalist does admit the usual intuitive meaning of
Theorem 1, the theorem will just be taken as evidence that one cannot be con-
tent with just one axiom system if one wants to develop a comprehensive part
of mathematics. To a platonist, Theorem 2 shows again the weakness of axiom
systems; to him a system such as ZF, for example, is obviously consistent, since
all the axioms of ZF are intuitively true. A formalist would also view Theorem
2 as showing a weakness of formal systems, again, if he admitted the usual
intuitive meaning of the theorem. The other results in Section 1, independence
results in set theory, give several examples of important statements which
cannot be decided on the basis of the usual axioms of set theory. Here the
platonist will try to investigate the situation further, in hopes of finding an
impelling intuitive principle with the aid of which these statements can be re-
solved one way or the other. The formalist will simply view the results as giving
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rise to several alternative paths of development of set theory.

These two philosophical viewpoints do not make much difference in the
communication of mathematical results to other mathematicians. A correct
mathematical argument from given premises is recognized as such by a platonist
and by a formalist. The philosophical questions inherent in the dichotomy can
be, and are, ignored in the writing of most mathematicians. In the main this
indifference to the philosophy of mathematics has had a good effect on the
progress of mathematics; mathematicians have insisted on proving theorems
rather than spending a bulk of their time with difficult and ultimately inclusive
philosophical speculations. Nonetheless, the two views have an effect on the
direction of mathematical research. For example, a platonist may convince
himself that CH is false (cf. Gédel [3]). He is then less likely to try to derive
consequences from CH. But a formalist may very well like CH and even GCH
because he can prove many nice theorems with their aid.

My remarks so far in this section concern mathematics itself, or at least
mathematical research. I now turn to some specific possibilities for change in
teaching and research which might come about because of the recent inde-
pendence results. Mainly I will discuss the definition of the real number system.
In beginning analysis courses it is customary to give the main properties of the
real numbers and perhaps to carry out one of the constructions of the reals
from the rationals. Many constructions of the reals are known; the ones using
Dedekind cuts and Cauchy sequences are the most popular. All of these con-
structions turn out to be equivalent. This fact is rightly used, I think, as evi-
dence for the naturalness of the notion of real number. Another basic, and
satisfying, result here is uniqueness: any two Dedekind-complete ordered fields
are isomorphic. But what are the real numbers? Under a platonistic point of
view, the real numbers exist in nature; in teaching beginning mathematicians
it would be nice to be able to point and say: here they are. A natural definition
would be as an isomorphism equivalence class of Dedekind complete ordered
fields. However, such classes are too big, and are not admitted as existing in
ZF. There is a sophisticated way of chopping such classes down to a manageable
size, but the method is not suitable for elementary classes (cf. Monk [8], p.
114). The only natural way out seems to be to fix upon a definite construction of
the reals in order to give a specific definition for them. Then different mathema-
ticians will have different definitions, but at least they can be shown equivalent.

Frequently the uniqueness theorem is used as a basis for asserting that all
questions about the real numbers can be resolved, at least theoretically: any-
thing true of one Dedekind-complete ordered field is true of another. But then
Theorems 3 and 4 pose a puzzle. CH is a property of. the real numbers (in a
broad sense), and it is consistent to assume CH, but also consistent to assume
—CH (assuming ZF consistent). A closer analysis reveals the true state of
affairs. Call a Dedekind-complete ordered field a system of real numbers. 1t is
then provable within ZF that CH holds with respect to one system of real
numbers if and only if it holds with respect to any other system of real numbers.
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But neither side of this biconditional is actually provable in ZF. One may say
that the uniqueness theorem (theoretically) reduces all questions about the
reals to purely foundational, set-theoretical questions. It seems to me to be
appropriate to bring discussions such as this down to the teaching level. Stu-
dents should be aware of the possibility of getting different conceptions of the
real numbers by choosing one or another of various hypotheses such as CH.
It also seems to me that it would be useful to make students aware of the al-
ternative philosophies of platonism and formalism.

Similarly, in the important applications of the Axiom of Choice I think it is
appropriate to point out various alternatives that exist. Above all, I think a
retreat from dogmatism is called for. In proving the existence of non-Lebesgue-
measurable sets, it should be pointed out that, at a price, one can as well as-
sume that every set of real numbers is Lebesgue-measurable. Similar remarks
are appropriate whenever the mathematical or foundational results are of
significant import to most mathematicians; certainly when one discusses such
topics as the Hahn-Banach theorem, Souslin’s hypothesis, the existence of
maximal ideals, Tychonoff's theorem, etc.

The possibilities for remarks in classroom teaching thus appear to be very
great, even though one cannot expect of teachers more than a mention of the
independence results in question, since the proofs seem as yet inaccessible to an
audience not able to devote some months to a study of these matters.

Possible uses of these results in research are rather obvious, but limited.
Thus most mathematicians do not work in areas where a choice of CH or— CH
would make a big difference. And most modern mathematics depends funda-
mentally on the Axiom of Choice, so that the independence results such as I
have mentioned are not of great practical import. But there are some instances
in research where a new foundational hypothesis might prove useful. An analyst
might like to assume that every set of real numbers is Lebesgue measurable.
This can be done even while retaining a weak form of the Axiom of Choice.
Again, the assumption that 2% =N, might facilitate the construction of counter-
examples in certain contexts. Research based on Souslin’s hypothesis has not
been done very much. Many more possibilities could be stated, and research
using these unusual hypotheses is needed. From a platonistic point of view such
research might lead to a better insight into the nature of our underlying set
theory.

I hope that the discussion I have given will convince more mathematicians
to become familiar with the results obtained in the foundations of set theory
and keep these results in mind in their teaching and research.

This article is the approximate text of a talk given at the Rocky Mountain Section meeting of
the Mathematical Association in May, 1969. I wish to thank Gebhard Fuhrken and Watson Fulks
for useful comments on a first draft of this article.
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THINKING GEOMETRICALLY*
DANIEL PEDOE, University of Minnesota

To many people the word “geometry” inevitably suggests a figure, a draw-
ing. We are aware of the fact, apparently overlooked by Euclid, that we
have to be very careful in arguing from a figure, that we may unwittingly as-
sume properties which are not deducible from the given hypotheses, and may
therefore arrive at incorrect logical conclusions. This may be a partial explana-
tion of the fact that the whole subject of geometry, especially elementary
geometry, is under attack these days. The leader of the attack, and a very
formidable person he is, seems to be my old friend Prof. Jean Dieudonné.
He is, of course, a very fine geometer, and a well-known member of the Bourbaki
school.

Dieudonné has made his views known on a number of occasions, and most
explicitly perhaps in a long preface to a book Linear algebra and geometry, pub-

* This paper is based on lectures given at the Universities of South Carolina and Toronto in
the spring of 1968, and at Makerere College, Uganda and the University of the Witwatersrand
in the summer of 1969. The invited address to the North Central Section of the MAA in April,
1969 contained similar material.

Prof. Pedoe studied at the Universities of London, Cambridge, and the Institute for Advanced
Study. He held instructorships at Southampton, Birmingham, and London, a readership in the
Univ. of London, and Professorships at Khartoum, Singapore, Purdue University, and his present
post, the Univ. of Minnesota.

Dan Pedoe is well known for his elegant geometrical expositions in many articles, films, and
books. The latter include the 3 vol. Methods of Algebraic Geometry (with W. Hodge, Cambridge U.
Press, 1947-1953), Circles (Pergamon Press, 1957), Gentle Art of Mathematics (English U. Press,
1958, Penguin, 1963), Geometric Introduction to Linear Algebra (Wiley, 1963), Introduction to Pro-
Jjective Geometry (Pergamon, 1964), and Course of Geometry for Colleges and Universities (Cambridge
U. Press, forthcoming). He received an MAA Lester Ford Award in 1968. Editor.
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