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ON AN ALGEBRA OF SETS OF FINITE SEQUENCES*

J. DONALD MONK

The algebras studied in this paper were suggested to the author by William Craig
as a possible substitute for cylindric algebras. Both kinds of algebras may be
considered as algebraic versions of first-order logic. Cylindric algebras can be
introduced as follows. Let £ be a first-order language, and let o be an Z-structure.
We assume that % has a simple infinite sequence »,, vy, - - - of individual variables,
and we take as known what it means for a sequence x = {x,, X, - - - of elements
of U to satisfy a formula ¢ of % in . Let * be the collection of all sequences x
which satisfy ¢ in 9. We can perform certain natural operations on the sets ¢,
of basic model-theoretic signiﬁcan&e’:\ Boolean operations ~¢* = ~g¥ % U J* =
m’; cylindrifications c¢¢* = Rn,$%; diagonal elements (0-ary operations)
d,, = v, = v,% In this way we make the class of all sets §* into an algebra; a natural
abstraction gives the class € of all cylindric set algebras (of dimension ). Thus this
method of constructing an algebraic counterpart of first-order logic is based upon
the notion of satisfaction of a formula by an infinite sequence of elements, Since,
however, a formula has only finitely many variables occurring in it, it may seem
more natural to consider satisfaction by a finite sequence of elements; then ¢*
becomes a collection of finite sequences of varying ranks (cf. Tarski [10]). In form-
ing an algebra of sets of finite sequences it turns out to be possible to get by with
only finitely many operations instead of the infinitely many ¢,’s and d,,’s of cylindric
algebras. Let & be the class of all algebras of sets of finite sequences (an exact
definition is given in §1). :

The purpose of this paper is to investigate some fundamental properties of the
class &. Like the class €, the class of isomorphs of members of & is not elementary
(Theorem 1.2). Corresponding to the class RCA,, of representable cylindric algebras
we can introduce in a natural way the class K of representable algebras over %.
But, while RCA,, is an equational class, K is not even an elementary class (Theorem
1.3). These two facts do not lie very deep. A harder question concerns the equations
which hold in all members of &. The main portion of the paper is devoted to show-
ing that a natural set of equations valid over % has no finite basis; for this pur-
pose we have to use a construction related to one used for a similar purpose in
the theory of cylindric algebras (see Monk [9]). We do not have explicit equations
for the variety &’ over &, but it appears likely that methods developed by Craig
will lead to a simple primitive recursive set of equations for &”’. Indeed, many of the
ideas in this paper should be useful in developing such a set of equations. Thus
the situation is probably different from the case of cylindric algebras; RCA,, is not
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finitely axiomatizable even by a schema of a certain sort, and the known equations
characterizing RCA,, are rather complicated (see Monk [9]).

The results obtained in this paper are, however, quite analogous to those obtained
in [9] for cylindric algebras. They contribute to the conjecture that no equational
form of first-order logic is finitely axiomatizable—more precisely, with respect to
any conception & of a set algebra (corresponding to the notion of satisfaction),
and any choice of basic operations, the corresponding class %’ is not finitely
axiomatizable. It appears difficult to give this conjecture a very precise form, since
there is a wide latitude of choice with regard to the fundamental operations as well
as the kinds of sequences considered in the satisfaction relation. The conjecture has
been verified for most brands of algebraic logic known to the author. In addition to
cylindric algebras and the modified conjecture in this paper it has been verified for
polyadic algebras with or without equality (Johnson [7]), diagonal-free cylindric
algebras (Johnson [7]), relation algebras (Monk [8]), some algebras considered by
C. Howard (cf. Craig [3]), and Copeland algebras (Copeland [2]). In the last two
cases (unpublished) a nonfinitizability result has been shown by D. Demaree,
using for Howard’s algebras a modification of the argument of the present paper.

I am indebted to William Craig for the suggestion to consider the algebras dis-
cussed in this paper, and also for many conversations which have clarified the
relationship of these algebras with cylindric algebras. As will be seen, these relation-
ships, which were first seen by Craig, are essential to the proof of the main result
(cf. also Bernays [1]). I am also grateful to J. S. Johnson for his help in preparing
this paper for publication.

We will use standard set-theoretical and logical notation. The set of all natural
numbers is w; letters i, j, k, I, - - - always denote natural numbers; each natural
number is identical with the set of its predecessors, i = {j:j < i}. The set of all
functions mapping A into B is denoted AB. “Dmn f” is the domain of the function
f. If u is a finite sequence, u # 0, then we let /u be Dmnu — 1; thus
u = {ug,** + , . @U is the set of all finite sequences of members of U. If fand g
are two finite sequences, then f " g is their concatentation: f"g =
<ﬁh e ’fDmnI-l, 8os' s gDmno-l)- 1) is the one-termed sequence with term s.
If fis a function mapping A into A, then f™ is the mth iterate of /(f° is the identity
function on 4). S(A) is the set of all subsets of 4. If fis a function, @o, *++, @—; €
Dmn f, all distinct, and by, - - -, by, are arbitrary, then fgo#*-1 is the function
g such that Dmnf = Dmn g, gx = fx for all xe Dmnf ~ {ao,- -, a;_,}, and
ga, = b, for each i < k. If 7(i) is a set-theoretical term, {7(i): i € I') is the function
with domain I whose value at i € I is 7(i). Algebras are denoted by capital German
letters and their universes by the corresponding Roman letter. In a Boolean algebra,
@ is the operation of symmetric difference.

§1. Representable # -algebras. An F-algebra is an algebra ¥ = (4, +, -, —,
P,P’, Q, Q', D) such that {4, +, -, —) is a Boolean algebra, P, P’, O, Q' € 44,
and D € A. F-algebras which play a central role in this paper are defined as fol-
lows. Let U be a nonempty set. We set W(U) = (S(U),v,n, ~, P, P’, Q, Q', D),
where

D={ueeU:u # 0and u, = u,}
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and for any X < «U,

PX ={ueceU:3se U(s) Nue X)},
P'X={ueeU:3se Ulun {(s) € X)},
QX ={ueeU:u +# 0and {uy,--,u,) € X},
QX ={ueeU:u # 0and {up,**+, Uy-1) € X}.
Subalgebras of the algebras A(U) are called set algebras. We let & be the collection
of all algebras A(U).
In any #-algebra % as above, we introduce certain defined operations. Let x € 4;
then
Rx = P'(Qx-D),
Rrx = P(Q'X'D),
Cpx = RI'QPRIx- Q™*'1,
Dpmsr = R'a"”D'Q"'”L
Dy, = CO e Cu—lCnH-l e Cn—x(Dox'Du' e 'Du-l.u) form+ 1 <n.

The following theorem expresses some elementary properties of the algebras A(U),
and a proof can be easily supplied.
THEOREM 1.1. In an algebra W(U), with x < @U, we have
(i) Q™(wU) = {ueeU:Dmnu = m}.
(i) Q™(¢U) ~ Q™"*'(@U) = {ueeU:Dmnu = m}.
(i) Rix = {uceU:(u=0and0ex) or (u # 0 and {uy ++ - wu,) € X)}.
G(v) Rx = {ueeU:(u=0and 0€x) or (u # 0 and {upy « -+ ty_y) € X)}.
(V) Cpx ={uceU:Dmnu > m + 1 and 3s € U(u] € x)}.
i) Ifk 20andmy < my < -+ < my, then
CnoCay ** Cpx = {uceU:Dmnu > my + 1 and 3so, - - -, 5 € U, uje. ™€ x}.

(vil) Dpmsy = {uceU:Dmnu > m + 2 and ty, = tp,1}.

(viii) If m + 1 < n, then D,, = {uceU:Dmnu > n + 1 and u,, = u,}.

In analogy with the theory of cylindric algebras, an #-algebra is called strongly
representable if it is isomorphic to a set algebra.

THEOREM 1.2. The class of strongly representable #-algebras is not closed under
ultrapowers and hence is not elementary or even PC,.

Proor. By Frayne, Morel and Scott [4] choose J, F such that |"%(2)/F| > 2%,
Now it is easily verified that

0y Q%1+ =D+ =D;3+ =Dy =0

holds in 2(2) and hence also in %(2)/F. Now suppose that 9(2)/F is strongly repre-
sentable; let f be an isomorphism from ‘A(2)/F into A(V). Then [U| < 2; for, sup-
pose on the contrary that |U| > 2. Let u€3U be one-one. Then ue Q*(wU) N
~Dy; N ~ Dya N ~ Dy,, contradicting the fact that (1) holds in ‘%(2)/F and hence
in A(V). Thus |U| < 2. But then |'%(2)/F| < 2%, contradiction.

Another natural representability notion is as follows. An F-algebra is repre-
sentable if it is isomorphic to a subdirect product of strongly representable &#-
algebras.

THEOREM 1.3. The class of representable % -algebras is not closed under ultra-
powers and hence is not elementary.
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Proor. First note
) If A is representable, then [ | Q™1 = 0.

mew
Indeed, suppose 0 # a < Q™1 for each m € w. Let f be a homomorphism of %
into A(U) such that Fa # 0. But (\peo Q™(¢U) = 0, so this is a contradiction.
Now let F be a nonprincipal ultrafilter over w. For each i € w let %, be the unique
element of ‘1, and let a; = {u}. Then for any mew, {i:aq e Qm™“2)} =
{mym+1,-..}€F, so 0 # a/F < Q™1 for each m € w. Hence by (1) ®*A(2)/F is
nonrepresentable.

§2, The main result. Let I' be the set of all equations of the form o-Q™1.
—-Qm*1] = 7. Q™. =Q™**1 which hold in all members of . Our main result is
that I' is not finitely based. It is an open question whether the equational closure
&' of & is finitely based.

The proof requires the consideration of a new kind of #-algebra. For any natural
number m, let %,, consist of all triples (R, f, n) satisfying the following conditions:

(I) R is an equivalence relation on n;

(2) fmaps n x n into m;

() Vi,j < n(fij = fji);

@) Yi,j, k, I < n(iRk and jRI = fij = fkl);

(5) Vi, j, k < n(iRjRkRi = |{fij, fjk, fki}| # 1).

Further, we let 8,, = {S(%,), Y, N, ~, P, P’, Q, Q', D), where D = {{R,f,n) €
Un:n # 0 and OR(n — 1)}, while for any (R, f, n) € %, and x S %,
PR, fim}=0 ifn=0,

={S,g,n—1DeU,:Vi,j<n— 1([iSjif ( + DR(j + 1)] and

gi=fi+1,j+ 1)} ifn#0;
Px = U, r.n3exP{(R, £, };

PR, fim)} =0 ifn=0,
={S,g,n—1)e¥,:Vi,j<n— 1([iSj iff iRj] and

gif = fij)} ifn # 0;
P'x = Ucn.s.mexP {{R, f, m};
QR fim)} = {(S,g,n+ 1) e Uy:Vi,j < n([iRj iff (i + 1)S(j + 1)] and

fij =g+ 1,j+ 1))
2x = U, r.nex @R, f, };
QR fim} = {{S,g,n+ 1) e U,:Vi,j < n([iRj iff iSj] and fij = gij)};

le = U(R.I,n)erl{<R’f; ”>}
Thus B,, is an F-algebra. Note that if m < n then %, < %,, B, < B,, but B,
is not a subalgebra of B,. In order to formulate some elementary properties of the
algebras B,, we introduce the following notation. For n€ w ~ 1 define p,: n—>n
by p0 =1, pul =2,--, psn —2) =n—1, pun — 1) = 0; and let A, = p; .
If{R,f,n)eU, and M < n, let {R,f,n) | M =S, g, M), where S = RN M
and for i, j € M, gij = fij.

THEOREM 2.1. In an algebra B,,, with x < U, we have

() Q*(#,) = {{R,fin>€Up:n = p}.

() Q*(%y) ~ Q°* (Up) = (R, fn) € Upn:n = p}.
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(iii) Rx = {({R,f,n) € Up: (n = 0 and {0,0,0> € x) or (n # Oand 3{S, g, n) €
xVi, j < n([iSj iffl (i) R(psj)] and gij = f(pai, pa))}-

(iv) Rx = {(R,fin)eWUy:(n=0and €0,0,0) € x) or (n # 0 and 3(S, g, n) €
xVi, j < n([iSj iff (As)R(Asj)] and gij = f(Asi, Anj)))}-

V) Cx={R,fim)eUn:n=i+ 1 and I(S,g,n)ex({R, fin) | (n ~ {i}) =
S, g, m [ (n ~ {ih)}

Vi) Dyyyy ={{R,fin)eUp:n =i+ 2andiR(i + 1)}

A proof is routine.

Let % be an F-algebra, m < w. CA,% is then the algebra {4’, +’, -/, =/, ¢,
d{)s<msuchthat 4" = {xe 4:x < Q"1- —Q™*!1}, +’ and -’ are the restrictions
of the corresponding operations of 2, and for any x € 4’,

cix = ¢x-Q"l.-— Q"+l ifi<m
-'x= —x-Q"-—-Q"*11
dl,= Dy Q"-—Q"* ifi<j<m
diy= Dy - Q™"-—-0"*] fj<i<m
djy= Q1. -Q"*'1 ifi <m.
Thus CA,2 is an algebra in the similarity class of CA,’s.

We now assume the definition and basic properties of the algebras % of Monk
[9].

THEOREM 2.2. UL can be isomorphically imbedded in CA,B,.

Proor. For {R, f>em,, let

F{(R, o} = {(R, g, m): ¥i, j < n(iRj > fij = gij)};
for x < my, let
Fx = SJ F{(R, Y.
(R,f)ex

Clearly F is a Boolean isomorphism into, and Fd,; = dj; for all i,j < n. Next,
suppose (R, g, n) € Fe;x; say <R, g, n)> € F{(R,f)} with (R,f)eci{(S, h)} and
{S,hyex.Define k:n x n—>m:
kij = hij if i),
= gij if iSj.
Then <S,k,n)eUn (R, g nyecC{{S k,n)}, and (S, k,n)e F{S,h)}, so
{R, g, n) € C,Fx. The converse is similarly shown.

If % is an algebra similar to CA,,’s, m > 3, by Rd; % we mean the 3-reduct
of A. An F-algebra A is weakly representable provided that for every m > 3,
Rd; CA,YU is representable. Now by Corollary 1.9 of Monk [9] choose 3 < m, <
m; < my < --- such that for each i, Rd, 27,  is nonrepresentable. From Theorem
2.2 we infer that B,,,, is not weakly representable. Let # be any nonprincipal
ultrafilter over w; and let B’ = P;<,B,, ../#. We now prove a sequence of lemmas
aimed at showing that a certain algebra related to 8B’ is in &. From this the fact
that I" is not finitely based will follow easily.

Let = = {(x, y) € *Pi<wBnm,+i: for every new, {i: x, @ y; < Q"1} € #}. Clearly
= is a congruence relation on the Boolean part of Py, B+« The proof that it is
a congruence on ail of Py« By, +(is illustrated by checking the congruence property
with respect to P. Assume that x = y. Let n € w. We know that 7 = {i: x;- -y, <
Q"**1}e&F, Let i be an arbitrary member of 7, and assume that (R, f, p) € Px,- —Py,.
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Choose <S,g,p+ 1>ex; such that <R, f,p>eP{(S, g p+ 1>}. Thus
(S,g,p+1ex-—y, so (S,g,p+1>eQ"**l and hence p+1=>n+1,
i.e.,, p = n. Hence I < {i: Px;- —Py; < Q"1}, so the latter set is in #. By symmetry
we easily obtain Px = Py. Thus = is a congruence relation on P;.,B,, +;. Note
that x/# = y/# implies that x = y. Let € = Py ,Bp,+/=.

LeEMMA 2.3. Ifanequation o+ Q™+ = Q" 1= 7. Q™+ = Q™**1 holds in € then
the same equation holds in %'.

Proor. For any term o, any structure 3, and any x € ®M, let ®x denote the
value of ¢ in M under the assignment x. Now let ¢ be the equation indicated in the
statement of the lemma, and let x € D, where D = P, ,B,, ;. Foreachi < wlet
pr; be the canonical homomorphism of ® onto 8B, .. Since ¢ holds in € we have

@®x-0"1-— Q™1 = ¥°x. Q™1 — Q™+,
in particular,
i 0(pri o - Q"1 = Q"] @ [(pre o - Q™1 — Q1] < Q" 1} e &
But the set on the left is just
{i:0(pr e x)- Q1- = Q**11 = #(pr.0 x)- QM1 — @™*11},
By the basic theorem on ultraproducts it follows that ¢ holds in 8’, as desired.

Lemma 2.3 will essentially yield later that 8’ is a model of I'. This will follow
from the fact that € is strongly representable. The purpose of the next few lemmas
is to establish this last fact.

LemMma 2.4, For each n, CA,%B’ is a simple CA,.

Proor. It is easily seen that CA4,%8’ is a CA4,; for example, to check that
ccx/F) = c,e(x/F) it is enough to show that c.c,x, € c,ex, for any k > n, and
this is easily carried out along the lines of the proof of 1.1 of Monk [9]. To show that
CA,%' is simple, it suffices to prove the following:

M pa2n xS Byyp, xS Q1 =0, and gy < gy <+~ < gy <n,
then Cp,Cy, -+ Coux = (KR, 8, 1) € Upysp:

3<S, 8 "> € X(<R,f; n) f (n ~ {Qo, s qk}) = <S! 8 n) [ (” ~ {qO’ Tty qh}))}9
where C,, is the operation in B, , ,.

We prove (1) by induction on 4; it is clear for # = 0. Now assume (1) for 4,
and suppose gy < q; <+ < gn41. The inclusion < follows directly from the
induction hypothesis. Assume (S, g, n)exand (R, f,m) | (n ~ {go, "+, Gns1}) =
<S’ 8, n> f (n ~ {qO: Tty qh-o-l})' Let

T=8S0%n~{gs:) V@19, (5 Gns1)iGnsr = sOT
ten ~ {qo,**, Gn+1(gn + 1 R1S5))}.

It is easily checked that T is an equivalence relation on n, and also that TN
Mn~{go, -+ ) = RO~ {go, -, qu}). Now for s,t€n~ {g,,,}, let
kst = gst. If g, Rt for some ten ~ {qo, <+, Gns1}, let kqy .18 = ksqn ., = kst
forallsen ~ {gy+1}, and let kg, .19, ., = ktt. In this case it is clear that (T’ k, n) €
Cq,.4.|{<Ss g, n)} and <st; n) f (n ~ {40, Tty qh}) = <Ts k9 n> T (ﬂ ~ {qOI ) qh})$
so the induction hypothesis gives the desired result. Now suppose —3ten ~
{90, - » n+1H(@n+1R?). Then for any sen ~ {qo, -+, gn} let kgy,y5 = ksgpsy =
S5Gn +y. Let {kgy 19,2 i < h} be distinct elements of m, + p different from all of
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kqns1s, s€n ~ {go,-+,qa}; and let kqqu,1 = kgny1q; for i < h. The desired
conclusion again follows. ’

Forn < p we define Fyp: PicoBm +1 > PicoBm+1 bY

(Fapx)i = KR, Lip): AR fip) [ mE Xy},
for x € PycyBp,+1and i < w, If x = y, then F;,x = F,,y. Thus there is a function
F,,: CA,C — CA,C such that F,(x/=) = F,,x = for any x/= € CA,C.

LeMMA 2.5. F,, is a neat embedding of CA, ¢ into CAG.

Proor. The nontrivial parts of the proof are to show that F,; is one-one and
that F,, preserves C, for i < n. Suppose 0 # x/= € CA,C. Thus x-(— Q"1+
Q**'1) =0and {i: x, < Q*1}¢F for a certain s€w. Thus I = {i: x, N (~ Q"1 U
Q") < Q°l and x; & Q°l}eF. Let i be an arbitrary member of I, i = n.
Choose (R,f,t)ex;~ Q°l. Thus (R,f;t) e ~(~Q"1 U Q"*]), so t=n.
Choose (S, g,p> € %py,+1 such that (S,g,p> [n= (R, f,n). Thus {(S,g,p>e
(Fapx); ~ Q**?~"1. We have thus shown that IN{i:i > n} < {i: (F,x), & Q**?~"1},
so it follows that F,,(x/=) # 0.

That F,, preserves C, for i < n is seen as in the proof of 1.2 of Monk [9].

Let D = {x € Pp<oCA,C: 3i < oV¥j = i(x; = Fyx)}. Let ~ = {(x, y) e 2D: 3i <
wVj = i(x; = y,)}. Clearly = is an equivalence relation on D. For x, y € D let

xX[® Y =y F Yuint < WA,
X[X yIx =Xy ynin < W)X,
~(x/x) = {~Xxp:n < w)|x.
For i < w let ¢)(x/~) = y/~, where for j < @
Y= 0 if} < is
=gox; ifj> 1
Finally, for i,j < w, let d, = x/~, where

x=0 ifh<iorh<j,
=dj ifi,j<h.
Let € be D/~ with all of these operations. The following lemma is easily checked.
LeMMA 2.6. € is a simple locally finite CA,,.
For ne w and x € CA,C, let x’ be the member of D such that for any i < w,
x{ =0 ifi <n,
= me ifn<i
Furthermore, let G,x = x’/~. Then, as is easily checked,
LemMmA 2.7. G, is a neat embedding of CA,E into €.
Our final lemma is as follows:
LemMA 2.8. € is strongly representable.
ProOOF. Let H be an isomorphism of € onto a set algebra with base U. We may
assume that A has the following additional property:

(1) IfecE, uec He,ve®U, and u [ Ae = v | Ae, then v € He. (See Henkin and
Tarski (5].) Now for any a € C we let

Ka = {ueeU:if ueU then 3ve HG,(a- Q"1 — Q" 1)u < v)).
It is easily checked that K preserves +, KO = 0, and K1 = 1. To check that K
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preserves —, suppose that Ka N Kb # 0, say ue Ka N Kb; we will show that
ab#0. Say u< ve HG,(a-Q"l-—Q0"**1) and u < we HG,(b-Q"1-— Q"*1).
Thus AG,(a-Q"1-— Q") S nand w|n=v|n so we HG,(a-Q"l- — Q"*'1)
by (1). Hence a-b # 0, as desired.
To show that X is one-one, suppose 0 # a e C. Say a = x/=, and choose new
such that {i: x, < Q"1} ¢ #. Thus {i: x; £ Q"1} e F. Now
{i:x, & O"1} = ,ﬂl {i: x- Q1. — Q'*11 # 0};

hence we may choose j < n such that {i:x,-Q'l-—Q'**1 # 0}e&#. Thus
a-Q'1-—Q'**1 # 0, so we may choose ve HG/a-Q'1- — Q’*'1). Clearly then
v|jeKa.

To show that K preserves P, we first show that

(2  Gy(Pa-Q"1-— Q") = S3_1SaZ3 - -+ S5€Gasa(@- Q"1 — Q*+21),
where Sjx = ¢;(d;;-x) in any cylindric algebra. To prove (2), let a = x/=, and let
i>n+ 1. Then
(Pa-Q™1-—Q"**1); = Fy(Pa-Q"1-—Q"**1)
={R,LiD:{R, f,i> | nePxy Q- — Q" 11} j < w)=.
On the other hand,

Sp-1Snz3 -+ SgcoGnea(@a- Q"1 —Q"*21)
= Gn+1(SR-15323 - -+ Sico(a- Q™*11- — Q**21)).
Now, with x and i as above,
[Sh-1S7=3 -+ - Sieo(a- Q**1- — Q" *?1)]
€ Sp-18523 - Soco(xy QM- = Q")) < w)f =,
Hence it suffices to take any j < w with j > n + 1 and show that

) KR, LD (R, f, i) | nePx;- Q8- — Q")
={R L) {R£,i) [ (n+ 1) €SH_1 5323 - - - Soco(xy Q"*11- — Q*+21)},

where the operations take place in 8B, . ;. If (R, f, i) is a member of the set on the
right-hand side, then there exist {(T,gn 7 + 1), {Tp-1, &a-1, 00 + 1D, -+, T, Lo,
n+ 1) such that (R, f,i) | n + 1€ C,{KT,, g, n + 1)} and (T, gnn+ 1)€
Dn-l.m <Tm &n, 1 + 1> € Cn-1{<Tn—b gn-1, 1 + l>} and (Tn-h En-1,1 + l) €
Dn—ﬁ.n—b "ty <Tlr P4TRL + l> € Co{<To, 8o, 1 + l>} and <T0, 8o, 1 + l> € X;. Re-
calling the definition of P in the algebra B, ,, we easily infer that (R, f,i) is a
member of the left-hand side of (3). The opposite inclusion in (3) follows similarly;
here the sequence (T, go, # + 1), -+, (T}, gn, n + 1> must be constructed. Thus
(3) and (2) both hold. From (2) it easily follows that KPa = PKa.

That K preserves P’, Q, and Q' is similarly shown; the counterparts of (2) are
then, respectively,
) Gu(P'a- Q" - — Q") = Gpryy(a- Q"+ —Q"+2),
) Grea(Qa- Q11— Q**21) = S783 -+ - Sp7Gy(a-Q"1- — Q"*11),
6)  Gpia(Qa Q"1 — Q™) = Gy(a- Q"1 — Q™*11).
This completes the proof.

With Lemma 2.8 we have completed the main technical results of the paper. We
now want to indicate the metamathematical significance of these results, and to this
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end we describe connections between the language of cylindric algebras and the
language for #-algebras.

Let Z be a first-order language for #-algebras, and let %, be a first-order
language for CA,,’s. We define a mapping £,,: Termsg, — Termsg:

€nty = 0+ Q"1 = Q"1
én(o+ ™) = fma' + én
Em(0-7) = €poeépT
€n(=0) = =£p0- Q™1 =01
Em(ei0) = Ciépo

Vo =0, ifi=j
En(dy) = {D;* Q™1+ =Q0"*11 ifi<j
Dy 0™ .=Q"*11 ifj< i

If o is a term in a language # and x € ®4, where % is an .#-structure, &*x denotes
the value of o in % under the assignment x of values to the variables.

LemMMmA 2.10. Let o and + be terms in &,,; then the following conditions are
equivalent:

(i) o = 7 holds in every representable CA,,.
(i) én0 = &, holds in every member of &.

PROOF. (i) = (ii). Let A = A(U) € &, and let B be the CA,, of all subsets of
mU. For any x € ®S(@U) define y = (x; " ™U:i{ < w). Then for any term p of
L By = ?:;“x. Hence (ii) easily follows from (i).

(i) = (i). For any x € ®S("U), p°x = &,p"x for any term p.

Hence (i) follows from (ii).

The same proof yields the following result.

LemMmA 2.10. Let o and v be terms in &,,; then the followmg conditions are
equivalent:

(i) o= 7 holds in every representable CA.,,.
(i) €no- Q™1+ = Q™+ = £,7. Q™+ = Q™**1 holds in every member of &.

The following lemma, easily proved, is also needed.

LemMA 2.11. Leti < w and let o and = be terms in ¥5. Let n = my, and assume
that §,0:0™« == Q"+11 = £, 7.Q"1+ = Q"*1 holds in B, . Then o = v holds in
Rbd3CA, B, 44

THEOREM 2.12. T does not have a finite basis.

Proor. By 2.3 and 2.8, B’ is a model of I'. We shall show that each algebra
B, +4 fails to be a model of I', so that the desired result follows from the basic
result on ultraproducts. From 2.2 and the discussion following it we see that
Rb,CA,B, 4 is a nonrepresentable CA3, where n = m;. Hence there is an equation
o = 7 of Z; which holds in every representable CA; but fails in Rb,CA,B, ... By
2.10 the equation {,0+Q"+==Q"*11 = £, 7. Q"= Q"**1 is a member of T,
while by 2.11 it fails to hold in 8B, ,,. This completes the proof.
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