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m-Semigroups, semigroups, and function representations
by
D. Monk (Boulder, Colo.) * and F. M. Sioson (Gainesville, FL)

An m-semigrowp is an algebraic structure % = {4, ( )> such that A
is w nonempty set, ( ) is an m-ary operation on 4, and the following
associative law holds:

(1) (@5 1) g v B —g)) = ((wu...wi(wprl...:ci.H,,)meﬂ...w:_,m_z) R

for all ¢ <m—1 and all ..., #am—z ¢ 4. Thus a 2-semigroup is just an
ordinary semigroup. In the articles Sioson [5], [6], [7] and Gluskin [2]
various results known for semigroups were generalized to the theory
of m-semigroups. In this paper we are concerned with the relationship
of m-semigroups with semigroups, and with the problem of representing
an m-semigroup as an m-semigroup of functions. The first question
has previously been considered by Banach, Fof [3], and Gluskin [2].

Forn e {0,1,2,...} an n-termed sequence is denoted by @ = (... p—1);
we write I(a) = n for the length of a. The empty set, 0, is also the empty
sequence, the unique 0-termed sequence. As usual, we identify a with (a).
The concatenation or jumtaposition of two sequences a = {@g...dy_1> and
b= (By...by-1)> is the sequence )

a"b = ab = {ay...p_1bg...bp_1> .

We will assume throughout that m > 2. In any m-semigroup
WA= <4, ()> the operation ( ) has a natural extension, still denoted
by ( ), to the set of all sequences of any length %k(m—1)+1, with & > 0.
Namely, by recursion with % > 1,

(2) (... Bpm-1y) = ((mo---wm-l)wm“-wk(m—l)) ’

for all @y, ..., Bpm-1) € A. The following general associative law then holds
(for the proof, see Bruck [1], p. 38):

THEOREM A. If U is m-semigroup, a,b,c are finite sequences of
elements of A, l(abe)=k(m—1)+1 and 1(b) = h(m—1)+1 for some
kb >0, then (ab) = (a(b)c).
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1. Embedding an m-semigroup in a semigroup. Given
a semigroup A= <4, -) we introduce an m-ary operation ( ) on 4 by
defining
(3

for all @, ..., Fm—y € 4. Clearly B = <4, ( )) is then an m-semigroup;
we say that B is the m-semigroup reduct of 9. In the next section we
will give an example of an m-semigroup which is not the reduct of any
semigroup (for each m > 2); such an example was first given by Banach
for m =3 (unpublished; see Lio$ [1]); the general case is implicit in
Post [4], p. 230. If € is an m-semigroup which is a subalgebra of B, then
we say that is a subreduct of UA. Lof [3] proved that every 3 -semigroup
is a subreduct of a semigroup, and Gluskin [2] stated (without proof)
that every m-semigroup is a subreduct of a semigroup, for any m > 2 (%),
In this section we will prove two theorems which constitute improvements
of Gluskin’s theorem. The method of proof applied will be useful in
section 2.

THEOREM 1. Any m-semigroup W is a subreduct of a semigroup B
such that A generates B and if W is a subreduct of a semigroup © then there
is & homomorphism of B into € which s the identity on A.

Proof. Let B be the set of all finite sequences of elements of 4;
under concatenation, B forms a semigroup B = (B, ~) (the free semigroup
with identity on A). Let R be the relation between elements of B such
that aRb iff there exist ¢,d, e e B such that I(d)=m, &= cde, and
b= c(d)e, for all a,beB. Let S be the smallest equivalence relation
with field B which includes R. Thus
(4) aSb iff there is a finite sequence a = ¢y, ..., ¢p—1 = b of elemenis of B

such that ¢;Reciwy or i1y Re; for each i< p—1,
for all a,b e R (we may have p =1, so that a=1b). If a,b,¢ce¢B and
aRb it is clear that [ac] R[bc] and [ca] R[cb]. Hence by (4) we infer that S
is a congruence relation on B. The semigroup (B/S)” will essentially
play the role of the semigroup B of the statement of the theorem, where
(B/8)” is B/S with the identity 0/8 removed. A similar notation G~ is

- used for any semigroup & with an external (i.e. prime) identity.

Note that if a,beB and aRb, then I(a)=I(b)+m—1. Hence

from (4),

(8) if ay;beB and aSb then I(a) = I(b) (mod m —1).

The following statement will be found useful in the proof of the theorem:

(6) if weA, beB, and £8b, then either b=, or else L(b) has the form
k(m—1)-+1 for some k>0, and (b) = .

(%gy evey D) = &g~ eee Tm—1

() This result was obtained independently, but definitely later, by the present
authors.
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To prove (6), by (4) let @ = ¢y, ..., ¢, = b be a finite sequence of elements
of B such that ¢;Ecs or ¢iyRe; for each ¢ < p—1. By induction on i we
prove the conclusion of (6), with b replaced by ¢;, for each ¢ < p—1. The
case ¢ =0 is trivial. We assume, inductively, that 0 < ¢ < p—1. By the
inductive assumption (on Z—1), we have two possibilities. First, we may
have ¢;-1 = @. Then clearly ¢;Ee; ., = @, and hence I(c;) = m and (¢;) = =,
as desired. Second, we may have ¢;_, of length k(m—1)+1 for some & > 0,
and (¢;-1) = @. We know that ¢, Re; or ¢;Re;—,. Both eases are treated
similarly, so we treat only the case ¢;_,Re¢;. Thus there are elements
d,¢e,f B such that I(e) = m, ¢;., = def, and e; = d(e)f. Hence, using
Theorem A,
(6) = (d(0)f) = (def) = (¢s-1) = =,

a8 desired. Thus (6) holds.
Now for each #e.d let f(z)= »/S, the S-equivalence class of 2.
From (6) it follows that f is 1-1. If =y, ..., %1 € 4, then

f{(mo---wm——l)) = (TyereBp—1)/S = Ty e T2 (8
= Go/8 oo BmafS = f(wg) oo f(@rn—s)
Thus U is isomorphic under f to a subreduct © of B/S; it is also clear

that € generates (B/S)”. Now suppose that € is a subreduct of a semi-
group D. Define g from B~ into D by:

g (Bgere Bnmr)) = (@) oo f@na)

for all 2y, ..., ¥p—1 € 4, 7 > 0. Clearly g is a homomorphism of B~ into D.
Now suppose that a Rb; choose, accordingly, ¢, d, e ¢ B such that I(d} = m,
a = cde, and b = c(d)e). Then

g(a} = g(e)-g(d)-g(e)

= ¢(c) f(do) e 'f(dm—-l) -g(e)

= g(¢) f{(do--- dm-1)) -4 (e)

== g(o)-f((@)-g(e)

=g(b).
It follows that if aSb then g(a)= g(b), for all a, b ¢ B~. Hence there is
a homomorphism % of (B/8)” into D such that i (a/S) = g(a) forall a ¢ B".
If me A, then h(f(s)) = h(2/8) = g(x)= f(x). The theorem now follows
by the well-known replacement principle.

For any a.and any ne{0,1,2,..} we let a® = aa..a (n times);
thus ¢® = 0. An element e of an m-semigroup % is called an identity of A
if (e'ae’) = a whenever a e A and i4j=m—1. It was shown in Sio-
son [7] that an m-semigroup with identity is a reduct of a semigroup.
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In semigroups an identity can always be adjoined externally; only one
new element, the identity, needs to be adjoined. This is no longer possible
for m-semigroups, as an example in the next section shows. Nevertheless,
an obvious consequence of Theorem 1 is the following

COROLLARY. Any m-semigroup can be extended to an m - semigroup
with identity.

An m-semigroup A is commudtative if -

(@g.e tom1) = (@ji0) o+ Bfm-1))

for all &g, ..., Gn—ed and for every permutation fof {0,1, ..., m—1}.
Analogously to Theorem 1 we have

TEEOREM 2. Every commutabive m-semigroup U is a subreduct of
a commutative semigroup B such that A generates B and if A is a subreduct
of & commutative semigroup © then there is a homomorphism of B into €
which s the identity on A.

Proof. We modify the proof of Theorem 1 by specifying that aEb
also if there exist ¢, d, e e B such that 1(d) = 2, & = cde, and b = cd, d,e.
The remainder of the proof of Theorem 1 goes through with the obvious
changes; B/S is a commutative semigroup, and D must be assumed to
be a commutative semigroup.

COROLLARY. Any commutative m-semigroup can be exviended to a com-
madative m-semigroup with identity.

2. Representation as an m~-semigroup of functions. From
Theorem 1 we know that every m-semigroup is isomorphic to an m-semi-
group of functions, the m-ary operation being defined as (m—1)-fold

composition of functions, since the corresponding result holds for semi- .

groups. However, there is a more natural notion of m-semigroup of
functions, which we now describe.

It Agy ..., Am-2 are non-empty sets we denote by S(4,....dn-s) the
set of all functions with domain | J;<m—1 4s which map A; into 444, for
i< m—2 and which map A,-. into 4,. An element of 8(4,...A4n-s) 18
called an (A4g... dn—2)-function. For any functions f, g, fo ¢ is the compo-
sition of f and g: (feg)(x) ——~f(g(w)) if # is in the domain of ¢ and g(w)
is in the domain of f. If fy, ..., fin—1 € S(4g... Am—s), We let

(1) (forr-Sme1) = Jfoo wus 0 fn1 -

Clearly then (fo...fm-1) € 8(4g... Am—s). A non-empty subset of $(dg... Am—2)
closed under ( ) is called an m-semigroup of (A,...An-2)-functions, or
just an m-semigroup of functions. Note that the natural representation
yielded by Theorem 1 and the theory of semigroups is a representation
as an m-semigroup of (4,...Ap-—s)-functions, with 4,= ... = dp-o-
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If the sets 4y, ..., Am—s are pairwise disjoint, then fo g¢ S(Adg... Am-s)
iff,0e8(4s... Am—s). In this casean m-semigroup of (4,... 4,,—2)-functions
is called a disjoint m-semigroup of functions.

ExampLi. The following example illustrates the notion just intro-
duced and clears up two natural questions which arose in section 1. Let p
Dbe the least positive prime divisor of m—1. Let A,, ..., Ap_s be pairwise
disjoint sets, each with exactly p elements, say d4; = {@gy oory @4,5-1} for
each ¢ < m—1. Let f be the (4,... An_s)-function such that f(ay) = Agi1,§
for i <m—2, j <P, fl@n—s) = o441 for § < p—1, and flan-sp_1) = ty.
Thus f is a permutation of | Ji<m-1 445 it is easily checked that the order
of f (in the group of all permutations of { Ji<m-1.44) is p(m—1). For each
i<p let gi=f" (ie, f composed with itself 1--i(m—1) times).
Then the elements gy, ..., gp—1 are all distinet, and {g,, ..., gp—1} forms
an m-semigroup B under the natural operation (7). For ¢ < p we have

)

(93

— fm(1+ im—1)) — ‘fl+('ni't+1) (m—1),_
p ’

since mi+1 == ¢ (modp), it follows that (47) £ ¢s. Thus B does not
have an identity.

It is impossible to adjoint just one new element e to B to form a new
m-semigroup in which e is an identity. To prove this, we suppose on the
contrary that this can be done. We derive a contradiction in each of
the cases m odd and m even. :

For m odd we have p = 2, and B has just two elements g, and ¢,.
The operation ( ) is determined as follows: for any ay, ..., @n_ € B,

¢, if there is an even number of i < m
(g e pey) = such that a;=g¢,,
go  otherwise .
Now (e"7°g3) € {0, ¢, e} TE (€"°g5) = e, then
o= ("7 g0) = (" 72" gg) = (") = . = (68) = th
a contradiction. Tf (6™ %) = ¢,, then
(3m_2!]o(11 = (ﬁnbw201)1~gﬂ%gl) = (em—sg;_;gl) = e = (gg‘—l.(ll) = o,
and hence
o= (6" ggy) = (" 2" o) = (6" ogt) = ... = (g0 =t ,
a contradiction. Finally, if (¢ °g;) = g,, then }
Fo= (g1") = (" *gagi' ™) = (" g0l qugT" ) = (go€™ g0e™ g0 )
= (") = o = (" V) = (6595 9 = (a0 T = 41 5
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again o contradiction. Thus a contradiction follows from the assumption
g=}
that m is odd. L
Now assume that m is even. Then G %) € {Goy ooy Gp—1, €}. If

(€*g5%) = e, then

m

o= () = (@R ) = (") =

(e = (g e,

which is impossible. Now assume that (e*g0 ") = gs, where i < p. Let

m m
j=p—iy, s =j(m—-1)+m—2, and tsé—s—(g—l). Then

Jo= (géﬂ'—p(m—l)) — (g(1)+i(m—l)gg(m—l)) — (gigg(m-l)) — (ezgg)

28— m 1?":’9" -1
= (Fgogs ) = (e'gogs ) = (19T = . = (€7¢° (& ))
e

= (egh) = (egog™") = (g

(m—1)t—(m—2)
o .

= g
Now it is easily seen that

(m—1)t—(m—2) = %f(s —1)(m—1)-+1,

and that

% (o) = (3 G+1)-1) 1)1

(m—1)t—

1~ 2)
Hence p does not divide %(3—1), and consequently ¢o =2 £ gy,

which contradicts the above calculation.

Hence for m odd or m even it is impossible to adjoin just one new
element to B to form an m-semigroup with identity. In particular it
follows that B is not a reduct of a semigroup, since otherwise this would
be possible.

THBOREM 3. Every m-semigroup s isomorphic to a disjoint m-semi-
group of fumctions.

Proof. Let M= (4,()) be any m-semigroup. By the corollary
to Theorem 1 we may assume that % has an identity e. We retain the
notation from the proof of Theorem 1. For each i< m—1 let
Bi={M: M ¢ BJS and there is an a ¢ M with I(a) = i+1}. From (5) we
see that the sets F, ..., En—, are pairwise disjoint. Now, since § iz a con-
gruence relation on B, for each @ ¢ A there is a function k., such that,
for each ‘e« B”, ka/8) = 2a/S. Also,

(8) for all ae B there is a b e B such that aSb and I(b) < m.

For, if aeB and n=1I(a)>m, then aS(@...@m-1)¥m...an_1, and
W(@ 1) @ e G a) = U(a) —mm -1 (cf. (5)); (8) then follows by induction.
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From (8) we see that ky maps (Jicm—1 Biinto | Jscm—; By, for each z e 4. If
@€ A,aeB,andl(a) = {41, then by (5) and (8), Ex(alB) e By i 4 < m—2,
and ki {a/S)e By if ¢ =m—2. Thus k. is an (Ey... Bm—s)-function, for
each v e d. If oy, ..., %m_1 ¢ A and a e B, then

k(.‘l‘,o...ﬁ?m—l)(a’/s) = (w()"'xm—l)a’ls = (zvo...wm_l a/AS')
= (Fzy © oo 0 Fupy) (0] 8) = (kg e by} (af8)

Thus % is a homomorphism of % into <S(By...Ba-s),( ). K z,yed
and ko= ky, then /8= (zen1)/8 = 0em1|S = kyem-1/8) = k,(emY8)
=y[S, and hence =y by (6). Thus % is an isomorphism, as
desired.

THEOREM 4. For any m-semigroup U the conjunction of the following
three conditions is necessary and sufficient for A to be isomorphic to a disjoint
m-semigroup of 1-1 functions.

(i) For all @y, .., Tm—n e A, if Y= (Yby...®n2) for some yeA then
Y= (YD in—s) = (Bg... Lm—2Y) fOr every ye A.

() For all 2y, ..., Tmeo, ¥, 2 € A, the equality (@;...8m—sy) = (Fo... Lm_s2)
implies that y = ».
(iii) For all i<m—2 and for all Yo, ..., Y1, Zoy.es2 € Ay if (Byeee Bn—i—s ¥ Y1)

= (Boeor Om—i—289---21) JfOr SOME Dy, ooy Brpy_o € A, then (uyy...y:v)
= (uzy...210) whenever « and v are sequences of elements of A such
that T(u)+1(v) = m—i—2.

Proof. The three conditions clearly hold in any disjoint m-semi-
group of 1-1 functions. Now assume that (i)-(ili) hold in an m-semi-
group U. First we want to see that it can be assumed that U has an identity.
To this end we modify the proof of Theorem 1 by letting aRb also in
the following two cases:

()]
(10)

a=0, I(b) =m—1, and y = (yb) for some y ¢ 4.

l(a) = f(b) < m, and there is a ceB with I(¢)= m—1I(a) such
that (ca) = (cb).

The conditions (5) and (6) still hold (to prove (6) it is necessary to
use (ii)). Furthermore, § is still a congruence relation on B, and f is an
isomorphism of ¥ onto a subreduct of B/S (here it is necessary to use (i)
and (iii)). The m-semigroup reduct of B/S has an identity and satisties
(i)-(iii). To prove this it suffices to show that B/S itself is a left-cancellative
Semigroup. Assume, then, that /8.y/S = »/8-2/S. We may assume that
#, Y, 2 have length < m, and in fact that » has length m~1. f y = 2= 0,
then trivially y/8 = 2/8. Assume that y = 0 while 2 % 0 (similar to the

,
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case # = 0 while ¥ # 0). Then I(z) = m —1 by (5), and 282287, ... Tu—3(@m_s2);
hence  o@oXy... Lo STy Loy coe bn—-s(@m—22), and S0 (Gp@e®y... Bpo) S
(@0Bo8y ... Tr—g(Tm—22)). Thus by (), (8@, .. Cnms) = (BT e Bin1)m_22)).
Then (ii) yields #m—s = (#m-22), so that 08z, as desired. Finally, suppose
that ¥, 2 # 0. Then by (5), 1(2) = I(y). Write & = uw, where 1(v) = m —1(2)
(=0 if I(z)=1). Then u(vy)SxySzzSu(vz). Let n= m~(l(u)+1),
Then (23w (vy)) Sabu{vy) Sxbu (vz) 8 (zhu(vz)). Hence by (6), (w52 (vy))
= (rgu(vz)). By (ii), (vy) = (v2), and hence y/8 = /8.

Therefore we may assume that 2 has an identity. We now apply
the same modification as above to the proof of Theorem 1. We find then
that the function % in the proof of Theorem 3 is still 1-1. Furthermore,
¥ is now 1-1 for each = € A. For, assume that <y,...y>/8 and <{z...2:)/8
are members of By with k((Yo...¥:/8) = ka((&...2:>[8); thus {ay,...ys)/8
= {@p...2d[8. It §=m—(i+1), then (2/yy...ys)Sy,...y:80%2,...2¢8
(@72y...21). Hence by (6), (&7,...41) = (#72;...25), 50 Yoo Y)[8 = (7o 2)d[S.

An m-semigroup U is an m-group if for every ¢ < m and for all
Bgy «oey Tm—y € A there is a unique y e A such that (4;... 21 YT1.e C—2) = By, .
The theory of m-groups was extensively developed in Post [4].

If A, ..., Ao are non-empty sets and feS(4,... 4m_z), then f is
called an onto (4,...Am-z)-function if f maps A; onto A;y, for each
i< m—2, and A, . onto A,.

THEOREM 5. Every m;group 18 isomorphic to a disjoint m-group
of 1-1 onto functions.

Proof. An m-group is known to satisfy conditions (i)-(iii) of Theo-
rem 4. Hence we may continue the notation of Theorems 1, 3, and 4.
The mapping % is one-one even if %Y has no identity, since there
is a sequence y of length m—1 of elements of A such that (2y) = @ for
all . It remains to show that k, is onto for each z e 4. If ¥ ¢ 4, choose
Zoy -y 2m-z € A such that (a%...2n_2)=1y. Then ky(2...2n—2/S) = y/8;
thus k; maps E,» onto H,. Now suppose that a e Band I < I(a) = 4 < m.
Choose ¥y .-y Ym—1 € 4 such that (ay¥;...Ym-1) = @, and choose z ¢ A such
that (y,...Yym-12) = a,. Then )

[z2as...as-1]8[ oYy . Ym-12ay.2. 0111 S[ay... ¥ @341 ,

and hence ki(za,...a;.,/S) = a/S, as desired.

CoroLLARY (Post’s Coset Theorem). Every m-group is a subreduct
of a group.

In Post [4], p. 230, an example is given of an m-group which is
not a reduct of a group (in fact, as is easily seen, the m- group desecribed

is not even a reduct of a semigroup; this is another example of the kind
described at the beginning of this section).
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