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We shall deal in this paper with the cylindric algebras of Tarski, in
particular with the class of representable cylindric algebras. The
principal model-theoretic method exploited here is that of ultraproducts.
The model-theoretic results are connected with the equational character
of the class of representable cylindric algebras and with the problem
of finite axiomatizability of this class. |

The intent of Section 1 is mainly expository, and consists of a
simplified development of some general theorems about representable
algebras. Theorems 1.3, 1.4, 1.5, 1.8 and 1.13 seem to be new results.
Section 2 contains the main new result of the paper. There we show
that the class of representable three-dimensional cylindric algebras is
not finitely axiomatizable. The methods—apart from the use of an
ultraproduct construction—are similar to methods introduced by
Jénsson and Lyndon in the study of relation algebras. The fairly ‘“‘deep”
theorem of Bruck and Ryser concerning orders of finite projective
planes is used in an essential way.

1. Representable cylindric algebras. We assume as known the basic
definitions in the theory of cylindric algebras. We use the notation of
Henkin and Tarski [61]. Proofs of some elementary facts about cylindric
algebras may be found in Henkin [56]; in one essential theorem below
we use results of Halmos [62] and Galler [57]. Most of the results of
this section are due to Henkin and Tarski., We recall that #€o/, and
€%, are the classes of all representable cylindric algebras and of all
cylindric set algebras respectively, of dimension «.

~Theorem 1.1. Every Py-reduct of an REsL, is an REAL,.
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THE THEORY OF CYLINDRIC ALGEBRAS 239

Proof. It suffices to prove that, given a €%, A with base U and
a non-zero element x of A4, there is a homomorphism f of the fy-reduct
B of U into a €, such that f(x) + 0. Choose £t €. If s € U?, define
st e U* as follows:

s+() = £(x) if q..fra.nge of y,

s(y~1(x)) if x erange of y.
The required function f is defined as follows: f(y)={s € U’ : s+ ey},
for all y € A. :

Theorem 1.2. If x<f, then every AEs/, caﬁ be neatly embedded
n an RECAL . '

Proof. It suffices to prove the theorem for a €%, U with basoe U.
For each x €4 let flx)={t € U’ :t « ex}. Then f neatly embeds U
in a €. '

These two simple theorems are quite important for the present
development. The following theorem is a simple generalization of
Corollary 1.16 of Frayne—Morel-Scott [62]. For this theorem we suppose
that L is a first-order language with relation symbols, operation symbols
and individual constants, and we suppose that N is the set of non-
logical constants of L.

Theorem 1.3. Suppose XA is a class of L-structures and % is an
L-structure. Let & ={(F, K> : F is a finite subset of A and K is a finite
subset of N}. Suppose M is a subset of F such that for every {F, K) € F
there exists a pair (G, H) € M such that F CG and K C H. Suppose that
for every {F,K) € M the F-generated substructure of the K-reduct of A
18 a substructure of the K-reduct of some member of H . Then A can be
isomorphically embedded in an ultraproduct of members of A . ‘

Proof. For each (F,K) e M let Mpg={(@, Hyec A : FCG and
K CH}. Then {Mpx : {F, K) € M} has the finite intersection property
and so is included in an ultrafilter D on . For every (¥, K) e .# -
choose Brx € X such that the F-generated substructure of the K -reduct
of 9 is a substructure of the K-reduct of Brg. Then there is a function
f on 4 into TI¢r g e.r Brr/D such that fla)=g/D with g(F, K)=a
whenever a € F' and (I, K) € 4, and f is the required isomorphism.

From Theorems 1.1 through 1.3 we obtain the following two results
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at once. Recall that #%.o7, is the class of all locally finite dimensional
cylindric algebras of dimension o.

Lemma 1.4. If U is a G/, such that every finitely generated sub-
algebra of every finite reduct of U is representable, then U is isomorphically
embeddable in an witraproduct of representable L€ ’s.

Theorem 1.5. Every Z¥s, is isomorphically embeddable in an
ultraproduct of representable L€ ,’s.

Problem 1. Is every #%</, elementarily embeddable in an ultra-
product of representable F€7,’s?

Using a modified form of Theorem 1.3 it can be seen that appropriate
generalizations of Theorems 1.1 and 1.2 would serve to answer this
question positively.

Lemma 1.6. An ultraproduct of RE.sf’s is an REA .

Proof. Suppose that for each ¢ €T U; is a ¥, with base U; and
x is in the universe B of [ J:er A, D is an ultrafilter over T, and x[D =+ 0.
It suffices to find a homomorphism f of []:er Ue/D into a €&, such
that f(x/D) = 0. Now there is an s € [[:er U such that s; € 2; whenever
tel and = += 0. Let s'(x)s=s4() for all x<a and te7, and let
8"(#)=8"(2)/D for all x<w«. Let ¥ be a function on [J:er U:/D into
[Iier Ui such that €(y/D)/D=y/D for all y € [[ier Us. Now for each
w € ([ [ter U:/D)* define m, as follows:

| §e) if 8" () =w(x),
o) = {%ﬂ(w(z)) if 8"() + w(),

for all x<w«. The desired function f is defined as follows:

f(y/D)={w € (ITter U:/D)* : {t : prio my € y:} € D}

for all y € B, where for each ¢ € T pr is the function mapping B into
A; such that pry(z)=z for all z € B.

The problem arises whether an ultraproduct of ¥.%,’s is isomorphic
to a €4,. For « finite the preceding proof can easily be modified to
give a positive answer. The answer is negative for « infinite, e.g., for
a=a. For, let T' be a set of cardinality 22” and for each ¢t €T let U;
be the €&, of all subsets of 2; thus U;=2 for all £ € T. By Theorem
1.25 of Frayne-Morel-Scott [62] choose D such that TJ:ex Us/D has
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cardinality 22*°. Now J[:er U:/D has just two elements, and a €7,
with base 2 has < 22° elements. The equation cocica( —doy - —dp2- —d32)=0
holds in %; for each { € T and hence also in T [ier 4:/D. It follows that
IIter %;/D is not isomorphic to a €&,

Theorem 1.7. Suppose W € €. Then the following conditions are
equivalent:

(i) AeR€A,;

(i1) every finite reduct of U is representable;

(iii) ewvery finitely generated subalgebra of N is representable;

(iv) every finitely generated subalgebra of every finite reduct of W is
representable.

This theorem can be easily derived from the preceding results,

For the next theorem we suppose that we are given first-order
languages Ly, L, ..., L, with sets of non-logical constants Ny, Ny, ..., N,
respectively, such that NoCN; C ... CN_ =J,., N,. Also suppose that
for each x<w 4, (vesp., I',) is a set of L -sentences (resp., L -formulas
with sole free variable vp) such that 40 C A4, C ... CAd,=), .4, (resp.,
nnChniC..Cr,=U... L)

Theorem 1.8. Suppose that U is an Lo-structure and that for every
x<w N is a substructure of the No-reduct of an L, -structure B, such that
B, is a model of A, and x satisfies  in B, for each « € A and each ¢ in I,

Then N is a substructure of the No-reduct of an L -structure € such
that € is a model of 4, and x satisfies ¢ in € for each x € A and each ¢
m I,

Proof. Foreach x<w, let M,={Acw : x<1}. Then {M, : x<w} is
included in an ultrafilter D on . The set [[,., B./D can be given a
natural L -structure, and one can easily define an isomorphic embedding
of U into the Ny-reduct of this structure so that the conclusion of the
theorem can be satisfied.

Theorems 1.1-1.8 are all of a rather elementary nature. The more
profound results of the representation theory stem from the following
theorem, which will not be proved here. A proof can be found by con-
sulting Halmos [1] and Galler [1]1.

1 Several simpler but unpublished proofs, due to Henkin and Tarski, are known.
Perhaps the simplest was used in a modified form in Daigneault-Monk [63].
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Theorem 1.9 (Tarski). For x>w, L€, C REAL,.

Theorem 1.10 2. Suppose W € €A ,. Then the following conditions
are equivalent: ' '

i) AeAECH,;
(ii) for every x<w, A can be neatly embedded in a €, +,,,
(iii) A can be neatly embedded in a €, ,,.

Proof. That (i) implies (ii) follows from Theorem 1.2; that (ii)
implies (iii) is seen by Theorem 1.8. Now assume (iii) holds. Then each
finite reduct of U is a subalgebra of a reduct of an F¥.</,, and so by
Theorem 1.9 is representable. Hence by Theorem 1.7 9 is representable

We are now in a posmon to descrlbe the class 9?%21 in model-
theoretlc terms. '

| Theorem 1'11: .9?’7’5.9/; s an ’é'qua‘tional clas‘-s A(in thev wider sense);
if a>w, then ACSL, is the least UC; including LEAL .

" Proof. The equivalence—1.10 (i) equivalent to 1.10 (iii)—can be
used to show that Z¢€, is closed under the operation of taking homo-
morphic images, so #%s/, is equational 3. If 4" is a UC, including
FE€sl, and if A € A€/, then by Theorem 1.5 U is a subalgebra of
a member of A", so A A .

Problem 3. For a>w: is there an EC, " such that ¥%.s/,C
C.%"C.%’%Ja{ ? S o :

.Actua.]ly we can give a more deta.lled description of the equational
. character of the class #%€/,, a description which shows the universal
character of #%€/, for equations. To this end we introduce the following
notation: if ¢ is an equation, I" is the set of x <« such that a symbol
¢, or d,; occurs in g, and 4 is a one-to-one function mapping I" into w,
then by é*(¢) we mean the equation obtained from ¢ by repla¢ing each
index » of symbols occurring in ¢ by d(x); é is called an w-mapping for .

2 From this theorem one can derive many generalizations of Theorem 1.9 in
a rather rapid fashion; see Monk [61]. Using the notation of that paper, the
following new result follows from the present Theorem 1.6: 9%/, # 2% o o and
the class of semi-simple €s,’s (x >> ) are not ECy’s; and in the same way one
can prove that X€«/, (x = ) is not an EC; (this was known previously because
of Feferman-Vaught [59], Corollary 6.7.2). ' :
. 3 For further details, see- Monk [61].
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Theorem 1.12. For each equation & in the elementary theory of
€l ,’s let S, be an w-mapping for . Then RE L, is the class of all models
of all equations & such that 6,*(c) holds in every L€,

Proof. Let Z={e: s is an equation identically satisfied in every
RE€A,} and let I'={e: 8,*(c) holds in every ¥¥«,). It suffices to
show that Y=T". First we take the case a>w. Note first that if 4, Cy
and y is a permutation of «, then ¢ holds in a %7, U iff .*(¢) holds in
the ay-reduct U’ of ; moreover 9 is representable iff A’ is, and U is
locally finite iff 9’ is. Hence ¢ € &' iff d,*(¢) € X. Now suppose ¢ &,
Then 4,*(¢) € Z, so in particular 6,*(¢) holds in every £%.«/, and hencg
by 1.9 and 1.2 in every £%/,,; thus ¢ € I. Suppose conversely that
g € I'. Then d,*(¢) holds in every #€/, and hence in every F%.s/,,
since the w-reduct of an XL ,is an XEA . By Theorem 1.5 6 *(s) € Z'
g6 e, -~ o )

Now we take the case x<w. If ¢ € %, then ¢ holds in every .%%’.sa! by
1.1, so that 4,*(¢) holds in every #%€</, and in particular in every
LC,, and ¢ € I Assume & € I Then by 1.5 4,*(¢) holds in every
REA, and s0 ¢ holds in every Z€</,. Hence by 1.2 e € .

The well known argument of Craig [53] can be modJﬁed to prove the
- following theorem.

Theorem 1.13. For x<w there is a prz’mz’iibe recursive set X of
equations such that AC=/, is the set of all models of X.

Proof 4. Let I'={¢: ¢ holds in every #%s/,}: Then by Theorem
2.11 of Henkin-Tarski [61], I" is recursively enumerable. Let f be a
primitive recursive function enumerating I', and let A={¢ : there is
a p<e such that ¢ has the form (p—y)+ ... +(p—p)=0, where
f(p)=¢ =y and — is symmetric difference}. Clearly A is pnmxtlve
recursive and %#%€.Z, is the set of all models of 4.

The problem still remains whether or not #%./, is finitely axioma-
“tizable for x<w 5. We treat this problem in the next section.

2. Non-finite axiomatizability of #%.</3. Since A€Ho=%Ffo and
RE s =B a1, these two classes are finitely axiomatizable. Also, Z#€s/ 5 is

4 For the purposes of this proof we shall 1dent1fy formulas with natural numbers,
5 If is also of interest to consider the case & > w, where of course finite axio-
matizability fails but Where the problem of a kind of umform infinite axio-
matizability is still open.. P .
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finitely axiomatizable, since Z% .« s the class of all models of the equations
defining €s/2’s together with two further equations (see Henkin and
Tarski [61], Theorem 2.18). The main purpose of this section, on the
other hand, is to show that #%.e/s is not finitely axiomatizable. The
method used involves two steps. First, non-representable €s/3’s are
associated with numbers m for which there is no projective plane of
order m, following the pattern of Lyndon [61]. Second, an ultraproduct

of these non-representable algebras is shown to be representable.

If R is an equivalence relation on 3, let (g) ={{«f} : « and f are

distinct R-equivalence classes}. Let G be any set with at least three
elements. Let G’ be the set of all pairs (R, > such that R is an equivalence

relation on 3, f mapé (‘g) into G, and the range of f does not consist

of exactly two elements. Let {A¢, U, N, ~> be the Boolean algebra
formed from all subsets of G'. For x, A<3 define

du={CB, > : (2 € BY;
e{(B, P}={(S, g5 18N (B ~ (=R O\ (3 ~ (2
and f{of}=g{yd} whenever
0 =any+{x}and 0 N3+ {x}};
e, 0=\ icq 0t} if a € 4g.

Fina,lly, let Ag=(4q, U, N, ~, ¢ dm'l>x.1<3"

3 Vx?

Lemma 2.1. ¢ is @ simple €3, in which the condition
(*) cxcla’zl |
holds for a + 0 and » + A.

Proof. We shall verify postulates P1~P8 of Henkin-Tarski [61],
simplicity, and (*). Of these, P1, P2, P3 and P6 obviously hold for Y.
Since ¢, is clearly completely additive, it suffices for P4 to assume that
z and y are atoms (singletons). Note also that P5 and simplicity are
implied by (*), and that (*) only needs to be proved for a a singleton,
in virtue of P3.

Verification of P4. We wish to show that ¢ ({(B, >} N c{{S, 9} =
=¢{(RB, H} N ¢ ({8, ¢} First suppose that (T, k) is a member of the
left-hand side of this equation. Then (R, f> €¢,{{S, ¢>} and (T, k) €
€ {(B, )} Thus TN (B ~ {x})2=R N (3 ~ {x}2=8 N (3 ~ {x})2 If
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0+any+{x and 0 = pNJ + {x} with « and g T-equivalence
classes while y and & are S-equivalence classes, let ¢ and § be R-
equivalence classes such that 0+ xNyNe # {x} and 0 =FNINE + {x};
then h{af}=f{ef}=g{yd}. Thus {7, k) ec {{R, >} N ¢ {S, g>}. Assume
conversely that this membership relation holds. Then B N (3 ~ {x})2=
=T N (8 ~ {%})2=8 N (3 ~ {x})2. Suppose « and # are R-equivalence
classes, y and & are S-equivalence classes, and 0 + x Ny = {x},
0 + N 0 * {x}. Then there are T-equivalence classes ¢ and £ such that
O+anyne+{x} and 0 8N INE *+ {x}. Hence f{xp}=h{eE}=
—gly8}. Thus <R, f> € c,{(S, 9>}, and <T, k) € 6,({CR, H} O 6,{CS, 9.

Verification of (*). We wish to show that (S, ¢> ec,c,{KR, f)}, with
%+ A Let 3={¢, A, pu}. Let T=[RN (3 ~{A})2]U [N (8~ {x})2]U
U {Gedy, Ay @ {epy € R and {Au) €8}, Clearly T is an equivalence

relation on 3. Let 5 be the set of functions on (%,) into @ whose range

has just one, or exactly three, elements. If {ud) €T, choose h € £ so
that A{[plr, [elr}=Ff{[plr, [*]r} if {ux) ¢ B ([u]r is the T-equivalence
clags of which u is a member). If {ux) €T, choose h € # so that
Mulr, [Alr}=g{lels, [Als} if {uA) ¢8. Finally, if (uid), {ux) ¢T,
choose % €5 such that A{{u]r, [x]Tj»: f{lelr, [¢1r} if {ux) ¢ R and
R{{p]z, [Alr}=g{{n]s, [A1s}if Cud) ¢ S. Then in any case <T',h)ec;{KR, )}
and <S’ g> € C,,{(T, h>}! 50 <Sv g> € cxcﬂ.{<R: f>}

Verification of P7. We wish to show that d,;=c,(d,, d,), where
#, A #+ u. First suppose » + A. Clearly d,,-d,,={{32% 0>} and hence the
desired result follows. Second, suppose x=1. Let (R, F) €@. Let
3={xuv}, and let

{ 32if GadeR
Koeptds oy, paep, ppy, <)} if (wv) ¢ B,

Clearly 8§ is an equivalence relation on 3.
Let g=0 if () € R, and let g be such that g([x]s, [v]s)=f([#]r, [*]r)
if (wv) ¢ R. Then <8,¢)> €d,, and (R, > €c,{<{S,g>}, so (B, [)>ecd,,.

Verification of P8. By the complete additivity of ¢, it suffices to show
that ¢ {(R, >} N¢c,{{S,g>}=0, where {(xi) e BRNS, (B, [) + S, g,
and » + A. We cannot have R =S = 32, since then f=¢g=0and (R, f)={8,9).
Say {xAu}=3. Suppose (T, &) cc {(B, >} Nc LS, g} If R=8, then
since B + 32 and (xd) € R, we have (4u)> ¢ R, and so {(Au) ¢ 8; hence
> ¢ T and f([Ale, [ule)=h([A1z, [ulz)=9([21s, [u]s), so that f=g and
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(R, f>=<8, g, which contradicts an earlier assumption. Thus R + 8.
By symmetry we may assume that E=3?% while S = 32. In particular,
¢Aud> € R ~ 8, which contradicts <T', &) € c,{<(B, [>} N ¢ {<S, 9}

Lemma- 2.‘2. If G has at least four elements and if @ s a line in
a projective plane P, then g € £E A3 C.

Proof. Let U=P f-vG. Define

F{R, Hy={w e Us:x,=ax, iff {x4) e R,
and f{xf} € z,x; whenever x € «,
Aef, and & * f};

Fla)=Urea F{t}

for a € Ag. Clearly F preserves | J. If x € F{(R, f>} N F{{8, g>}, then
xd> e R iff x, =z, iff (xA) €8, and so R=S8; since furthermore two
distinct lines intersect in exactly one point, we have f=g. It follows
that F(a) N F(—a)=0 for all a € Ag. If x € U3, let B={{xl) : x,=x,};
thus R is an equivalence relation on 3, Let f{xf}==x; @ whenever

x€wx, Aef, and & = f. Then f maps (123) into G, and the range of f

does not consist of exactly two elements. Clearly = € F{{R, f>}. Hence
Fla) U F(~a)=1 for all a € Ag, and F preserves —. Let (R, ) e
be given. If R=32, let = € U3 be such that ap=x; =22. If R has exactly
two equivalence classes o={xi} and B={u}, let z, be a point not
on G and let z,=2; be a further point on the line z,f{xf}. If R has
three equivalence classes but the range of f is a singleton {u}, let x be
a point not on G and let 2; and 2, be two further points on the line Zowu.
Finally, if R has three equivalence classes and the range of f consists of
three distinct elements, let xp be a point not on @, let 2; be a further
point on the line 2pf{{0}{1}}, and let zz=mxof{{0}{2}} -xaf{{1}{2}}. In any
of these cases, z € F{{(R, f>}. Hence F(a) + 0 whenever a =+ 0, and so
F is one-to-one. Clearly F(d,,)=D,; whenever x, A< 3. Finally, suppose
x € F(e {(R,}). Say xeF{{8S,g>}, where SN (3 ~ {x})2=R N (3 ~ {x})?
and f{af}=g{yd} whenever 0 + a Ny #+ {x}and 0 + f N § + {x}. Let
- Ya=x, for every 1 €3 ~ {x}. If {x} is not an R-equivalence class, say

¢ Throughout the remainder of the paper we follow the notation of Pickert [5_5]
for projecti\ie_a_ planes, except that: a line is considered to be the set of all points
lying on it, PQ is the line joining P and @, and - m is the intersection point of I
and m. R ' , L ' :
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(xA> € R and let y,=z, If the R-equivalence classes are {x} and {iu},
let y, be a third point on the line a,f{{x}{iu}}. If the R-equivalence
classes are {x}, {A} and {u} and if the range of f is a singleton, let y,
be a fourth point on the line through f{{i}{u}}, x; and z,. Lastly if the
R-equivalence classes are {x}, {1} and {u} and if the range of { has exactly
three elements, let y,=z;f{{x}{2}} -2,f{{x}{u}}. In any of these cases
it is easily seen that y e F{(R,[>}, so that x eC F{(R,>}. Thus
F(c (R, H}) CC F{{R, f>} The converse is verified in a similar manner.

Lemma 2.3. If G has at least four elements but is finite, and if Ue
is representable, then @ is a line in some projective plane. - ~

Proof. Since U¢ is simple, the hypothesis implies the existence of
an isomorphism F of g onto a €F3 with base U. We may assume
that U N G=0. Let P=G U U; members of P are the points of our
projective plane. For the lines of P we take G together with all sets

lL(:'t:, w)={z, u} U {o : Couu) € F{(R, f >1h

where x €@, we U, R has equivalence classes {0} and {12}, and
f{{0}{12}}==. To show that we have a projective plane, we shall verify
the conditions (1.1), (1.2), (1.16), (1.17) and (1.18) of Pickert [55]. To
do this we first need two auxiliary results:

(a) If u,veU, zeG, and v € L(z, u), then u € L{x, v).

To prove (a), we may assume that  + v. Let § have equivalence classes
{01}, {2}, and let g be such that g{{01}{2}}==. Then with R and { as
above we have doi-cifdR, fp}={8,¢>}. Hence DN C1F{(R,f>}=
=F{{S, g>}. By assumption {vuu) € F{(R, [}, so wwud € F{S, o}
Now let T' have equivalence classes {02}, {1}, and let A be such that
R{{02}{1}} ==. Then doz-co{<S, gb}= (KT} by}, 50 Curud € FICT, by). Also,
diz-co{(T, B)}={{R, >}, so {wwv) € F{R, >} and u sL(x, v)

(b) If w,ve U, z @G, and v e L(z, u), then {J(x, u)=L(zx, v).

To prove (b), by (a) and symmetry it suffices to'show that L(z,u)C L(x,v).
Suppose w e L{x, ) and w + v + w + u. We are given that {wuu) e
€ F{(R, >} and {vuw) € F{(R, >} As in the proof of (a) we see _tha.t
(vou) e F{(S, g>). Let V have equivalence classes {0}, {1}, {2}, with k

mapping (g) onto {z}. Then ci{(B, H} N Go{(&_ Py={8 9, <V, K>}
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Hence (wvu) € F{(S, 9>} U FKV, k)}; since clearly {wou) ¢ FLS, o},
we have (wvud € F(V, kD). Now diz-c2{CV, k>}={(R, >}, so {www) €
F{(R, >} and hence w € L(z, v).

Now to verify the axioms for a projective plane, we note that (1.1)
and (1.16) are obvious. To verify (1.2), suppose that P; lies on I,
i,k=1,2, while 1; % 15. If one of 1, 15 is @, then obviously Py=Fs.
Suppose lLi=L(z,u) and 1lz=L(y,v). If P e@, then Pi=z=y. If
P, e@, then P1=P;. If Ps ¢ G, then L(x, u)=L(z, Ps)=L(y, v), which
contradicts the assumption 1; # lp. One argues similarly if P;e@.
Suppose P1, P ¢ G. Then L(x, u)=L{z, P1) and L{y, v)=L(y, P1); since
Py e L(x, P1) N Ly, P1) we have {(P:PiP1>e F{(ZR, f)} N F{R, g},
where the range of f is {z} and the range of g is {y}. Hence z=y since
F preserves —, and L(z, u)=L(y, v), again a contradiction. Thus (1.2)
holds.

To verify (1.17), note that G intersects each line L{x, u). Now suppose
two distinct lines L(x, ) and L(y, v) are given. We may assume that
z +y and % =+ v. Let B have equivalence classes {0} and {12} and

let f and g map (122) onto {z} and {y}respectively. Let § have equivalence
classes {01} and {2}. Then it is easily seen that

(©) dor-cole{(B, D) O <R, g>N =S, B> + b maps (S) onto {2}, with
z %+ x,Y)

Now since ¢ is finite, there is an % such that {vvu) € F{S, )} "
Say h maps (‘g) onto {z}. If z=x, then {vuu) € F{R, f)} so that

v € L(z, u) N L(y, v). If z=y, then {vuu) e F{{R, g>} so that « € L{y,v)N
L{z, u). Assume z #+ z,y. Then by (c) choose w such that {wwvu) e

F(e{<B,r}Nca{(R,g)>}). Then (wuu) e F{{R,f>} and (www) e F{{R,¢)},
so w € L(z, u) N L(y, v). Thus (1.17) holds.

To prove (1.18), let z, y, z be distinct elements of @, and let u € U.
If R has equivalence classes {0} and {12} and f maps (12?’) onto {z}, then

co{(R, [)}=diz. Hence {uuu)cCoF{(R, >}, so choose v such that

(vuu) € F{(R, f>}. It is easily seen that z,y, u, v are four points no
three of which are collinear.

7 It is only here that the assumption that @ ig finite is used. The necessity for

sorne assumption to assure the existence of 2 was first noticed in another context
by Tarski; see Lyndon [56].
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The above three lemmas were suggested by the work of Lyndon [61]
on relation algebras. Now we can prove the main result of this section.

Theorem 2.4. REf3 is not fintlely axiomatizable 8.

Proof. Let M={m € w : 3<m and there is no projective plane of
order m}. By the Bruck-Ryser theorem [40], M is infinite. For each
meM let Kp={ne M :m<n}. Then {K, :m e M} has the finite
intersection property and so there is an ultrafilter D on the set of all
subsets of M such that {K, : m e M} C D. For each m € M let G, be
a set with m +1 elements. Then by Lemma 2.3, %¢ , is non-representable
for each m e M. The proof will be complete when we show that
B =1Imenu Ue,,/D is representable.

Let H=T]Jmes Gn/D. By Theorem 6.5 of Kochen [61], H has 2%
elements. Hence by Lemma 2.2, %y is representable. We shall show
that B is isomorphic to a subalgebra of Uy. Using Theorem 2.2 of
Frayne~-Morel-Scott [62], we easily see that B is atomic and that for
each atom b of B there is an equivalence relation R on 3 and a function

R
ge HmEM Gm( 2)

such that b=Ah/D, where hnp={(R,gny} for each meM. We let

h=s(R, g), and we define ¢’ mapping (g) into TImem G as follows:

(g'{oB})m = gm{oB}
for all {xf}¢e (}22) and all m € M. If & maps (12{) into [ [mea @m, define

k* as follows:

(km) {oeB}=(k{oB})m;

thus k* EHmEM Gm(lzi).

Let € be a choice function for H and let = be the natural mapping
of T menm Gm onto H. The isomorphism F embedding B in Ny is defined
as follows:

F(B)={(R, 9> : (R, (¥ o g)*)|D<b}

for all beB. Clearly F(3X)=Jzex F(z) whenever 3X exists; F
- preserves —; and F is one-to-one. If %, A< 3, then

8 Building upon Lyndon [61] the corresponding result for relation algebras can
also be proved in a fashion analogous to the proof below. Theorem 2.4 is not
surprising then, in view of Monk {61a].
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(B,g) € F(d,) iff {m: (R, (€og)h>edy}eD
M {m: Ay eR}eD .
iff (xdyeR
iﬁ.‘ <R’ g> € dm’t'

To show that F(cb)=c, F(b) for all b € B it suffices to take the case
in which b is an atom &Z(R, f)/D. Assume <8, g> € F(c, (R, {)/D). Then
(S, (€ o g)*)| D <c (R, f)|D andhence {m : {8, (€ o g)ny €¢,{(R, fmp}}€D.
Thus SN @B~ =RBN @~ K2 and {m: (¥ o g)a{ap} = fnlyd}
whenever 0 = &Ny = {x} and 0 + BN & =+ {x}} € D. It follows that
(% 0 9){af}/D=f{yd}/D whenever 0 = « Ny * {x}and 0 = f N J =+ {x};
hence g{af}=(n o f'){yd} under these circumstances, and thus ¢S, g) €
¢ 6, ((Rymofd}). Cleatly {(B,wof>)=F((R,N)D), so <3,g5¢€
& o, F(/(R, f)/D). Hence Fle, (R, f)[D)C c,F(#(R,f)D), and the
converse is proved in a similar fashion. This completes the proof. o

The above method does not immediately extend to higher dimensions,
so the following problem is open.

Problem 4. TFor 3<a<w, is A€, finitely axiomatizable?



