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SUBSTITUTIONLESS PREDICATE LOGIC
WITH IDENTITY*

By DoNaLp MoNK in BERkELEY, Calif.

Introduction. The mainobject of this paper is to simplify the usual frame-
work for predicate logic (with identity). The motivation is analogous to that
of the preceding papers of Tarski [14] and of Kalish and Montague [11]. In
those papers, working with the ordinary rules of formula formation, the
authors give very simple axiom systems for the universally valid formulas
and sentences of predicate logic. Thus in describing the axioms of system
S, of [14] only two notions of any degree of complexity at all appear: the
notion of the set of variables occurring in a formula, and the notion of sub-
stituting one variable for another in an atomic formula. By modifying the
formation rules of predicate logic we will be able to eliminate this last
notion.

The modification consists in having after each non-logical predicate a
fixed string of variables depending upon the particular predicate but not
changing for different occurrences of the same predicate. Identity is consider-
ed as a logical notion, and so full substitution is allowed in atomic identity
formulas. The possibility of still obtaining an adequate system of predicate
logic using this formation rule may be illustrated by the following example.
In ordinary logic, let 7 be a binary predicate. Then the formula

o vy = A\ [vo=v, > A v (v,= v, > 7 vy v))]

is universally valid. If (v, v,) is considered to be the fixed string of variables
associated with 7z, then this formula may be considered as a definition of the
formula 7 v, v,.

The possibility of formalizing predicate logic in this way was recognized
by Henkin and Tarski in [9]; there they state (without proof) that the power
of expression and proof does not change upon going over to the new form-
ation rule.

‘We shall now describe the contents of the paper in detail. In section 1 we
define precisely the new formation rule mentioned above. Then we prove the
theorem of Henkin and Tarski about the preservation of the power of ex-
pression and proof. Our first axiom system, £, for the substitutionless predic-
ate logic is then described. Using the theory of cylindric algebras and the

* Eingegangen am 30. 10. 1962.
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known completeness of the system &, of [14], £ is proven complete (in
Theorem 6). A more direct proof, in the style of Henkin’s completeness proof,
is then outlined. Our second system, £,, is then defined. This system seems to
us especially simple; in its definition the only non-elementary notion re-
quired is that of the set of occurrences of a variable in a formula. Some sys-
tems related to £ and £, are described. All of these systems are much simpler
than the systems one would get in a natural way from the theorem of Hen-
kin and Tarski. Next, primarily with the view of indicating the utility of £
or £, as a basis for higher logical investigations, we indicate the respect in
which operations and individuals can be discussed within these systems;
this is the known and trivial method of “pushing” the operation symbols
and individual constants into the metalanguage.

None of these observations can be applied to predicate logic without ident-
ity ; we close section 1 with more specific remarks to this effect. In section 2
we discuss independence questions for the systems £, £,, etc. introduced in
the first section. The methods used in § 2 are applied in § 3 to show the in-
dependence of the system &, and variants of [14].

We use the notation of [14], with the following additions. If f and ¢ are
functions, fg is the composition of f and g, i. e., the function 4 such that & (7)
= f (g (3)) for all 7 such that ¢ is in the domain of g and g (z) is in the domain
of f; ¢ is not in the domain of » except under these conditions. If f is a fune-
tion and a is in the domain of f, by f (b/a) we understand the function A
such that kb (x) = f (x) for  in the domain of f, z + a, and & (@) = b. For any
function f, rng f is the range of f. If 4 is any set, 4 is the number of elements
of A. The function v is biunique and has domain w and range VR. The set
VR is well-ordered by the relation < such that a < 8 if and only if v~ (x) <
v (8),foralla, e VR. Ifp,py e FM,weletprypy = —(p > —v), ¢ vy
=gy poy=@->yArlpy—>e,andVap=—Aac-gplg
e FM and a, e VR with a = §, welet S(B/a)p = A a (a=f —¢). If a = p,
let S(B/a) @ = @. As mentioned in [14], the formula §(f/a) ¢ is logically
equivalent to the formula obtained from ¢ by replacing each free occurrence
of & in p by a free occurrence of 8, after renaming bound variables, if neces-
sary?,

§1. Substitutionless Predicate Logic

The new rule of formation mentioned above is embodied in the following
definitions. We now assume that with each 7w € PR there is associated a biuni-
que function u ™ e "VR, wherer (7) =n.Ifp e "VR,welet D (n,p) = {i:i < n

! This paper was prepared for publication while the author was working on a
research project in the foundations of mathematics, directed by Professor Alfred
Tarski and supported by the National Science Foundation (Grant No. G 19673).
The author wishes to express his sincere thanks to Professor Tarski for suggest-
ing many of the problems treated in this paper.
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and g¢ + w7 ()}. The standard atomic formulas are the expressions a= f§ and
7 o uw” for arbitrary a, e VR andwe PR ; the set of all standard atomic form-
ulas is denoted by ATS. A standard formula is an expression belonging to
every set I" such that (1) AT'S CI'; (1) ¢ — y € I' whenever ¢, y eI'; (4i)
— @ eI whenever ¢ €I'; (iv) Aa ¢ €I’ wheneverpel’ and a € VR. The set
of all standard formulas is denoted by FMS, and the set of all standard
sentences by ST'S. Note that ATS C AT, FMS C FM and STS CST. A
subset I" of FMS is complete if I' = UF ~ FMS, and a subset of I" of ST'S
is complete if I' = US N ST'S. Thus complete is used in four different senses,
applying to subsets of FM, ST, FMS or ST'S; but it will always be clear
from the context which sense is intended.

These rules of formation assume a very simple form if we assume that for
each z € PR we have u” (¢) = v; for all ¢ < r (7r). We shall discuss this normal-
szed case later.

Now we want to explicitly prove that, working in ordinary logic, every
formula is equivalent to a standard formula. The main burden of the proof
is just to construct the equivalent standard formula.

There is a unique function g € ¥¥F M satisfying the following conditions:
(1) gla=p) =a=pifa,peVE;

(2) ifzePR,r(x) =n,pe™VR, D(n,¢) = m, ke ™D (r, ¢) with ks <
k¢ + y whenever + < m-1, y € "VR with y¢ < y¢ . ; whenever { < m~1, and
rng y consists of the first m members of VR- (rng ¢ U rngu™) in the well-
ordering <, then

g (o @) = 8 (p (kop)/po)... 8 (p (km-1)/ym—1) 8 (Ym—a/u” (km-1))...

8 (yo/u™ (ko)) (m © u™);

() ifp,ye FMandae VR, theng(—¢) = - g(9),9(p >y) =g(9)
— ¢ (y) and g (Aa @) = Aa g (9)-

In condition (2), if m = 0 we mean of course to let g (n 0 ¢) = n 0 w*. The
following theorem is now easily established :

THEOREM 1. () ge P¥FMS;

(%) g (p) = @ whenever p e FMS;
(48) FV (p) = FV (9 (¢)) forall p e FM;
(3v) @ « g (p) ¥8 universally valid.
Condition (#v) can be established, e. g., by making use of Lemmas 16 and 17
of [14], or by a direct semantical argument. The essential import of Theorem
1is that the substitutionless predicate calculus has the same power of expression
as ordinary predicate calculus (Henkin-Tarski).

Turning to proof-theoretical matters we have

THEOREM 2. Let X, be the set of axioms of the system S, of [14]. Let A =
{9 (@) : pe Z;}: Then A is complete, 5. e., A = UF n FMS.
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Proor. By Theorem 1 and Theorem 5 of [14],4 C UF.If o € UF n FMS,
then X, — @; it is easily seen that, therefore, 4 +— g (¢). Since g () = @, we
get A — . The proof is complete.

Thus the new version of predicate logic does not differ from the old version in
power of proof (this statement is also due to Henkin and Tarski).

Clearly Theorem 2 could be modified by taking various other axiom systems
in place of S,. With all the usual axiom systems, however, the resulting set
A of axioms would have a complicated nature, stemming primarily from the
substitution law for identity (schema (B8) of S,). The problem rises, then,
to give a simple and natural axiomatization for UF n FMS.

To this end we describe the system £ of predicate logic. Let A consist of all
formulas of the following kinds, where ¢, ¢, ¥, FMS and a, §, y € VR are
arbitrary, unless otherwise stated :

C1) (p—=>y) >y >2) > (@—>2);

C2) (mg—>9g)—>g;

C3) ¢=>(m9—>y)

C4) Aalp—y)>(Aag—>Aay);

(C5) o> ANag,ifag¢ FV (p);

C6) ~Aa—a=p8ifa+f;

C7) a=f—>@=y—>pf=y);

C8) a=f->(@—>ANal@=p—>9¢)ifa*}p.

Note that (C1)—(C6) correspond to schemata of S, or S,, (C7) consists of cer-
tain instances of (B8) while (C8) is a version of (B8) translated by means of
the substitution notation (and applying now to arbitrary formulas and
not just to atomic formulas).

The system £ has A as its set of axioms and detachment and generaliz-
ation as its rules of inference. Our proof of the completeness of £ can be carried
out purely syntactically, but to emphasize the algebraic nature of our argu-
ments and to shorten the proof we shall apply the elementary theory of cy-
lindric algebras.

A (locally finite) cylindric algebra (of dimension w) is a system % = (4, +,
= €, d4g) ; je o Such that (4, +, -, -) is a Boolean algebra, ¢; € 44 for
each 1 e w, dyy € A for 1, j € w, and the following conditions hold, for all z, y
€Adands,j, kew:

Pl z2< g2

P2 a@.qy)=az.ay;

P3 cegz=cjeiz;

P4 dy=1;

PS5 dy =cpx(dix . dig)if b+ 1, §;

P6 ¢ (dy.x) = —¢ (dy. =) if i + 5;

P7 there is a finite subset F of w such that ¢y x = x whenever { € » —F.
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We sometimes write c(¢) and d(s, j) instead of ¢; and dy;. The elementary
properties of cylindric algebras are easily derived ; cf. [3] and [8]. We list here
a few of these properties.

THEOREM 3. Let ¥ = (4, +, -, -, ¢, dy) ; je o, be a cylindric algebra Suppose
z,yce Aand 1,jew. Then

()  dy = dy;

(#) cidy =1;

(¢52) ¢ 0 = 0;

() cer=ciz;

(v) fe<y thenciz<cy;

() ¢ (-cix) = i x;

(vit) cr(x +y) =crx + cy;

(Wit z ey = 0ifandonly if ez . y = 0;

(5z) if i+ 7, k, then ¢ djx = dyx.

On any cylindric algebra U as above we define operators S(3/§) by the stipul-
ation that S(i/j)x = x if ¢+ = j e w, while if 4, j e w and 1 + j, S(i/j)z =
¢; (dy - ), for all x € A. The following theorem is then easily proved; cf [2]
and [4].

THEOREM 4. Let U = (4, +,*, -, ¢, dyy) ; je o, De a cylindric algebra. Then
forallze Aandi,j,k, lew,

(¢)  S(¢/j) is an endormophism of the Boolean algebra (4, +, -, -);

(#) if k =+ 1, §, then S(49)ck x = ciS(¢ff)x;

(3#8) of ¢+ j, then ¢;8(i/5)x = S(i/jx);

() cllifi)e = ¢;SGfi)e;

(@) dy - S(fj)x = dy - z;

() SG/HSyH = 8(ifj);

(vie) of k + j, then S(s/j)S(k/j)x = S(k/j)x;

(visa) S()SEk)x = 8(j/)S(j/k)x;

(x) S8@/)SE/k)x = S@/k)S(/j)x;

(x) f ¢, 4, k, U are distinct, except possibly © = k, then S(3/7)S(k/l)x =
S(k/D)S(i/j)x;

(@) 8@/)SGk)esr = S(ik)esz;

(@) S(i/jS(j[k)eserx = S(i[1)8(L/k)csorw;

(zitd) if k + 1, 4, then dy - SG/k)x = dy; - S(j/k)z.

We now turn to a lemma needed for our completeness proof.
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Lemma 12 Let U = (4, +, -, -, ¢, dig) 5, je o be a cylindric algebra. Sup-
pose m € w, and a, b, e, f € Mw. Assume that e and f are biunique and (rnga U
rngb) N (rnge U rngf) = 0. Also assume that x € A, and that c(e;) x = c(f;) x =
z for all + < m. Then

(*) S(ao/eq) - - S(@m-1/em-1)S(em-1/bm-1). .. S(eo/bo)x =

S(ao/fo).-- S(am—1/fm-1)8(fm-1/bm-1)... 8(fo/b).

PrOOF. Assume first that

(1} rnge N rngf= 0.
Then we prove (*) by induction on m. Since (*) is trivial for m = 0, assume
inductively that m > 0. Then

S(ay/e) ... S(am-1/em—1)S(em—1/bm-1)... S(eo/bo)z =

S(ao/e,) ... 8(@m—1/em—1)8(em-1/bm-1)c(em-1)c(fm-1)S(em—2/bm—2) - . . S(eq/bo)x

by Theorem 4 (ii);

= S(ag/eg) - .- S@m—1/fm-1)8(fm-1/bm-1)c(fm-1)c(€m—1)S(€m—2/bm—2) ... S(ee/bo)x
by Theorem 4 (xii);

= S(am—l/fm—l)s(ao/eo)--- S(am—z/em~2)S(em—z/bm—2) cee S(eo/bo)s(fm—l/bm—l)x
by Theorem 4 (i), (z);

= S(am-1/fm-1)8(@olfo) - - - 8(@m—2/fm-2)8(fm-2/bm—2). .. S(fo/bo)S(fm-1/bm-1)%
by induction hypothesis; £

= S(ap/fo) - - S(@m-1/fm-1)S(fm-1/bm—1) - . . 8(fo/bo) by Theorem 4 (x)

This completes the induction.

To treat the general case, where (1) does not necessarily hold, using the po-
stulate P7 of cylindric algebras choose g e ™w such that g is biunique,
(rnga U rngb U rage U rngf) N rng g = 0, and ¢(gg)x = z for all 4 << m. Then,
using the first part of this proof twice,

S(ag/eg) ... 8(am-1/em—1)S(em—1/bm-1) ... S(eo/bo)x =
8(ao/go) - - - S(@m-1/gm—1)8(gm—1/bm-1). .. 8(go/bo)x =
S(ao/fo) .- - S(am-1/fm-1)8(fm-1/bm-1) - .. S(fo/bo).
This completes the proof.

Now we shall establish a connection between our axiom system and the
theory of cylindric algebras?. The idea is to form the cylindric algebra
associated with our axioms; to see that a cylindric algebra is obtained we
need a few simple lemmas.

From axioms (C1)-(C3) and the sentential completeness theorem we
obtain

? This lemma occurs in a more general form in the unpublished work [12] where
it forms a part of a general theory of substitution operators on cylindric algebras.
! We are applying here to our axiom system the procedure described in [9].
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Lemma 2. If ¢ 18 a standard tautologous formula, then A — .

As a consequence we have

LemMa 3. If @, 9, @', ' e FUS, A — @ - ypand A — ¢’ <y, then
() A— — @ < Y,

(i) A— (@ Vv @) —(pVvy);

@) A — (@ A @) = (y Ay).

Making use of (C4), we can prove

Levma 4. If o, e FMS and A — @ -y, thenA — Aag — A ay.

Nowlet X = {(py):p,pe FMS and A — @ «> y}. Then using Lemmas 3
and 4 it is easy to see that ;X is a congruence relation (cf. [1]) on the al-

gebra § = (FMS, v, A, =, A v, v = v1); je,- We denote by §/ X the
quotient algebra of § under X ; the congruence class of p € FMS under X

is denoted by [¢].
The following three lemmas are established analogously to Lemmas 5, 6
and 7 of [14].

LeMMA 5. If pe FMS and a ¢ FV (p), then A — A a (p > ) —> (¢ —> A ay).
LEMMA 6.4 — a= a.

LeMMA T.A —a=f —> f= a.

Hence by (C7) we obtain

LEMMA 8. A —a=f0 > (y=a >y=f).

LemMA 9. If pe FMS, thenA — A\ o ¢ — ¢.

Proor. Let § be a variable not occurring in A & ¢. Then
A—f=a—>(wp—>Aa(a=pg—> - ¢)) by (C8) and Lemma 7;
A—B=a—>(~¢—>(Aap—>Aa—a=p)by(C4);
A—f=a—> (9> = Aag) by (C6);
A—AB(=~ (ANap >¢) > — f= a) by Lemma 2;
A— 2 (Aag >¢) > A — = aby Lemma 5;
A— A agp — ¢ by (C6).

From this lemma we infer

Lemma 10. If g€ FMS, then A — ¢ — \/ a ¢.
Lemma 11. If o,y e FMS, then A — \ a(p A Vay) o Vapar Aay.

Proor. Wehave Va(pA Vay)= 2 Aa = —(p—>—= = Aa - yp)and
VagaVay= (- Aa—-¢—>— - Aa - ). Hence

A'—‘Aa"l "1((}7"**1 ~Aa —:W)-')Aa(—'n/\a —11p—->—1<p)
by Lemma 2 and (C4);
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Al—/\a—a—-x(tp->—u—u/\a—1ip)—>(—1/\a—|1p—>/\a~1¢)
by Lemma 5;

A—VapaVay—>Valpa\ ay)by Lemma 2.

For the other implication, we have
A—(Vag—>—-Vay)—> = = (9> -V ay) by Lemma 10;
A—Napg—>-Vay)>Aa - = (p—> =V ay) by Lemma 5;
A—Va@rVay)—>Vapar\ ayby Lemma 2.

This completes the proof.

The following lemma can be proved exactly like Lemma 32 of [14].

Lemma 12. If o e FMS, thenA— Aa Ao > AB Aaeg.
From this lemma we obtain immediately

Lemma 13. If o e FMS, then A — \ a \/ fo -V BV ag.

Now it is possible to prove the following lemma in a way analogous to the
proof of Lemma 14 of [14].

Lemma 14. Ify+ o, B, thenA— Ay - m o=y > y=f)—> - ~w(a=a
]

LEemMA 15. Ifp %+ a, B, thenA —a=f o Vy (a=y A y=f).
ProoF. Wehave \/ y (a=p Ay=8)= = Ay = = (a=y > —y=p).
Hence

A— Ay 2 q@=y—> ay=p§—-> 1 ala=a—> - a=f) by
Lemma 14;

A—a=p8->\7y(@=y ary=p) by Lemma 6.
The other implication is obtained as follows:
A—a=y—>(y=f—>a=f) by (C7) and Lemma 7;
A— wa=f-—> — = (a=y > — y=f) by Lemma 2;
A— qa=f-> Ay o =~ (a=y > - y=f) by Lemma 5;
A—Vy(a=y Ary=p) > a=f by Lemma 2.
The proof is complete.
Lemma 16. If a + Band p e FMS,then A — \fa (a=f A@) «+ ~Va(a=p
A — @)

Proor. By definition \/ a a=fAg) =~ Aa - - (@a=p - — ¢)and

ﬁva(aEﬂA —1q))= - —1Aa—\ ﬁ(aEﬁ—>’1 "I‘p)-Hence,ﬁrSt,
A—a=pf—>(m wg—>Aala=p—> - —¢) by (C8);
A—a=B—>(m ~pg=>Aa— - (a=p—> - —9¢))by(C4),;
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A= Aa—~l@a=f—> - —¢) > = ~@a=§—> ¢ by
Lemma 2;

A"——I/\G—\—x(aEﬂ—)—! —1(P)—>/\a—l —I(aEﬂ_)—llp)
by Lemma 5;
A—Va(@=pfrgp)—> = Vala=pr — ¢) by Lemma 2.
Second,
A"—/\aﬁ hl (aEﬂ—)—a —MP)—>'—1 - (a—=—ﬁ9—| - Q) by
Lemma 9;
A—Aa o q@=p—> —¢)—>— —(a=8—> —¢) by Lemma 9;
A——Va@=Ar—¢)>Aa- @@= —¢)>—a=p)
by Lemma 2;
A= Va@=pr—@)>(Aa—-—(a=—> —9)>Aa-a=p)
by Lemma 5;
A— = Va@=§r ) —>Vala=p) ag)by(C6).
Q.E.D.
The following lemmas are easily established.

LemMA 17. If o e FMS, thenA — A a (o= —>¢) < V a (a= A ¢).

Levma 18. Ifpe FMS and a € VR — FV (p), then A — ¢ « \/ a .

Tt is clear from the ordinary theory of Boolean algebras that (FMS, A, A, — )/
X is a Boolean algebra; hence there is a unit element 1 and a natural order-
ing <. With regard to them we have:

Lemma 19. If ¢, w € FMS, then

(5) A+ @ if and only if [p] = 1;

(#4) A — @ — vy if and only if [¢] < [y];

(##i) if & + B, then [S(a/B) p] = (v a/v~1 B) [g].

From the lemmas now demonstrated the following theorem, which shows
a connection between the system £ and the theory of cylindric algebras, fol-
lows.

TueoreM 5. §/ X is a cylindric algebra.

Making use of this theorem we can now prove the basic lemma for the
completeness proof.

Lrmwma 20. If g, @, € FM and P(@,, p;, &, B), then A — g(a=F — (9o = @,))-

Proor We have g(a = f — (9, = ¢,)) = & = f — (9(p,) /> 9(¢,)). Since
P(p,, ¢, &, f) holds, there exist = € PR, expressions ¢g, ¢;, and an n €
such that, with r (z) = m, (i) @, | € "VR; (i%) p, = 7m0 pjand ¢, =7 O ¢};
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(¢¢t) n < m; and (iv) g (n) = & and @1 (n) = B, while @4 (k) = ¢ (k) for
k<m,k+ n. Let B = D (n, p) v {n}. Thus also E = D (n, pj) U {n}. Let
E = p, and choose k €?E such that ks < & + ; whenever ¢ < p —1; say
kj = n.
1Let D (7, pg) = q. Choose y € 2V R such that y; < ¢, whenever ¢ < g —1
and rng y consists of the first ¢ members of VR-(rng p§ U rng w) in the well-
ordering <. If ¢ = p, then
g (@o) = g (o ¢5) = S(po (ko)/po) ... S(@h (kp—1)/tpp-1)
S(yp-1/u™ (kp-1)).- .. Slyo/u” (ky)) (m 0 u™);

moreover, (rng g5V rng ) N rngy = 0. If on the other hand ¢+ p, then
¢ = p-1. In this case, let y be any member of VR-(rng ¢y U rngu™ v ragy).
Then
[9 (po)] = [g (7o 7))

= [S(go (ko)/po)--. Sy (kj—1)/ws-1) S(@o (kse1)fs).- .
S(@o (kp-1)/wg-1) S(wg-1/u™ (kp-1))... S(ys/u™(Ks+1)) SOps—1/uT(ks-1))-..
S(yo/ u™ (k) (mo u™)]

= 8(v g5 (k) vyg) - .. S~ g (Ky—1) v 1) (v g (k1) v pg) ..
S @g (kp—1)/v7! o) S o/t uT (kp-y))...
S(v wifvt u® (kjaq)) S~ wia/vt w (ky-a))...
S(vrypolv~t u™ (ko)) S(v= go (ky)/v=t ) (v y/v w® (ky)) ¢ (v y) [wO u 7]
by Lemma 19 (s47) and Theorem 4 (x1);

= 8(v=! @ (ko)/v ).
S(v=t @ (kj—1/v™" py-1) S @5 (k) /vt ) S @ (kysa)/v™ ).
S(v72 @ (kp—1)/v™" yg-1) S /v u” (kpy))...
St yslo™ u® (kye1)) S plo=> u® (ky)) 8 (v yya/vr w® (k1)) ...
S(v= yo/vt u” (ky)) [r0 u”™] by Theorem 4 ().

Thus no matter whether ¢ = p or ¢ = p-1 we have, for ¢ = 0,

(1) There exists ¢; €? w such that e¢; is biunique. rng e; N (rng v u® U rng
v1lg) = 0, c (e (j)) [70 7] = [nO ';c“] for each j < p, and [g(g:)] =
St i (ko)les (0)... S(v™ @i (kp_i)es(p-1))S(es(p-1)Jv" u™ (kp-1))...
S(es (0)/v~* u™ (ko)) [0 w™].

In exactly the same way, (1) can be established for ¢ = 1. Henee

dlv=Y(a), o)) - [9(gy)] = d(v? @ (ky), v @i (ky)) - S(v™" @ (ky)/eq (7))
8(v* g5 (ko)lep (0))- . S(v= @b (ks—1)/eq (7-1)) 8 (v @g (ks+1)/e0 (45 + 1)) ...
S(v1 @y (kp-1)le, (p-1)) Sle, (p-1)) v w” (kp-1))... Sleo (0)v" u™ (ko))
[wo u™] by Theorem 4 (x)

=d (v ¢§ (ky), v 91 (kj)) - [g (p,)] by Theorem 4 (iis), () and Lemma 1.
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It follows that [g(a = B — (¢, = ¢,))] = 1. Hence by Lemma 19 (i),
A—gla= g — (9, > ¢)),Q E.D.

The main result of this section is as follows.
THEOREM 6. A is complete, 1. e., A = UF ~ FMS4.

Proor. Clearly A C UF n FMS. Now suppose ¢ € UF nFMS. Then by
Theorem 5 of [14], 2',+—@. Now if y is an instance of one of the schemas (B1)
to (B8), thenA — g (y) in accordance with (C1)~(C4), Lemma 9, (C5)—(C86),
and Lemma 20, respectively. Hence we infer that A — g (y), i.e., A — ¢. This
completes the proof.

The proof of Theorem 6 uses in an essential way Theorem 5 of [14]. Thus
the proof of the completeness of the system which we have given would be
quite long if written out in all detail: first there would be the reduction to
the system &, we have made, then the reduction to a familiar system of logic
made in [14], and finally a completeness proof for this last system (see, e. g.,
[6]). We want to sketch here a more direct proof of the completeness of £,
patterned after Henkin’s completeness proof, as modified by Hasenjiger
(see [5])%. o

First we adjoin a new set W of variables, with W = FMS. The fund-
amental notions such as FM, 8T, etc., then change; we denote the notions
associated with VR U W, by VR+, FM+, ST+, etc. Thus in particular VR+ =
VRyU W.Forl' C FMS+and g € FMS+ we writeI” = ¢ if there is an m € w
and ay e ™ such that A+ >y A ...A ym—y —> @. The set ] is consistent if it is
not the case thatl’ > ¢ A — p for some p € FMS+. As is usual one can prove
that A — ¢ if A+ +* @, whenever ¢ € FMS. Consequently to prove 2
complete it suffices to show that any consistent subset I' of FMS is satis-
fiable.

Let § = {¢p € FMS+: the bound variables of ¢ are in VR}. Thus I' C §.
Now using a transfinite recursion, one can obtain a subset A4 of § satisfying
the following two conditions:

(1) 4 is maximal consistent in §, andI"' C 4;
(2)foranyy e §and a e VR thereisa § € W such that S(f/a)y — A ayped.

Nowlet=={(B,y):8,y € Wand4 ~ = p}. Then = is an equivalence rel-
ation with field W. We let A = W/=, the set of all = -equivalence classes.
(4 is to be the underlying set of the model ofI'). For the expanded formalism

¢ Using this theorem one may establish Theorem 1. 12 of [9] much more easily
than with ordinary axiom systems. Thus the proof just outlined (in Lemmas 1-20)
may be used in an integrated introduction to logic and cylindric algebra.

5 The problem of supplying such a shorter proof was posed to the author by Pro-
fessor Richard Montague. In this sketch we use various familiar notions which
have not been formally defined here or in [14].
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based on ¥V R+ we can obtain the analogue of Theorem 5 (referring now to an a-
dimensional locally finite cylindric algebra, where a is an ordinal with a =
VR+). Hence using the analogue of Theorem 4 (x), (##ii) the following lemma
can be easily established :

Lemma A. If r(n) = m, fe ™W,i < m,and y € W, then A+ & fy=1y —
(S(ﬁo/'u“(O))... S(B m-1/u(m-1)) (mo u ) — S(ﬂo/u”(O))...
8(Bi—1/u™(1-1)) S(y/u (3)) 8(Bs+1/uT(® + 1))... S(Bm—1/uT(m-1) (mo u¥).
Let p be the natural mapping of W onto 4: p = {(w, w/=): we W}. From
Lemma A we obtain at once

Lemma B. If r() = m; §,y e W, and p f = py, thend £ 3(B,/u” (0))...
S(Bmsfum-1)) (@0 u™)  Slyyu (0))... Slymrfum-1)) (w0 w?).
From Lemma B we see that if 7(n) = m, then there is a relation B, C ™4
such that for all € "W, p 8 € R® if and only ifA;i;S’(ﬁO/u” 0))... 8(Bm—1/
u™(m~1)) (7o u”). The system Y = (4, R,,) ,.pris, we claim, the desired
model of I.

To prove this, a little auxiliary notation is needed. With each fe VEW
we associate a function f* e PMS+ FM S+, as follows. If p € FM S+, let M =
VR A FV (p). Choose m € w and a € ™M such that rng « = M and oy < az4y
for + < m-1. Let

@) = S(f(ag)a)... S(f (&m-1)/0m-1) P-
If x € VB+4, we assume ask nown what is meant in saying that z satisfies a

formula @ in U, a phrase abbreviated by writing z sat ¢ U%. The following
lemma leads directly to the conclusion that U is a model of I

Lemma C. Suppose x € VE+A4 and x(w) = w /= for all w € W. Then for all f
e VEW and for all p € § we have that x sat f*(p) U if and only if A ¥~ f*(p).
The proof, by induction on ¢, may be omitted.

Now suppose g I, and let y be a closure of ¢ (using variables in VR). Then
y e §, and f*(y) = y. Clearly 4 +* y, so by Lemma C, z sat yp %. Thus ¥ is a
model of I, and this completes the sketch of the second proof of Theorem 6.
This proof, carried out in all detail, does not have any steps of the com-
plexity of Lemmas 1 and 20.

Of the schemata (C1)-(C8), all but (C5) have a quite elementary charac-
ter. It is possible to replace (C5) by the following three more elementary
schemata.®
CoYp > Aag,ifag¢OC (p);

(C52) ~ Aagpg—>Aa— Aag;
©) AaABy—~ABAap.

¢ I am indebted to Richard Montague for the simplified form of (C5%) which
follows. The schema originally used was (Aag - Aay) >Aa(Aap > Aay).

8 Mathematische Logik 7/3-4
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Indeed, let A,, consist of all instances of (C1)~(C4), (C5)—(C53), and (C6)
to (C8). By the proof of Lemma 9 we have

Lemma 21, If o € FMS, then A, — A a ¢ — @.

Lemma 22. If pe FMS, thenA, — Nagp > Aa A ag.

Proor. We have
Ay— Aa - Aap > — A ap by Lemma 21;
Ay—ANapg—> Ao~ Aag;

Ai—Aapg>Aa Ao = Aaep.
Also,
A— < ANag—>Aa - Aagby(C5Y);
Ai— = Aa - Aag—>Aag;
Ai—Aa - AaAag>AaAagp.
The desired result now easily follows.
Lemma 23. If o,y € FMS, then A, — (Aagp > Aay) > Aa(Aagp —
Aay).

Proor. We have

Ay— 2 Asp—>(Aap—>Aay);

Ai—Aa - Asg—>Aa(Aap—>Aay);

Ay— - Aag—>Aa(Aap—> Aay)by(C52);
Ay—ANay > (Aag—> Aay);
Ai—AaAay>Aa(Aap > Aay);
Ai— Aoy —>Aa(Aag—>Aay);
Ay—ANagp—>Aapy)>Aa(Aag > Aay).

Lemma 24 A, — ABAag—>AaABAag.

Proor. A, — AB ANag - Aa ApBoby(C53
Ay—ABANag—>AaAaApgby Lemma 22;
Ay—AaAaABe—> AaAB A agby(C5%and (C4);
A—ABANapg—>AaABAag.

Hence by an easy induction we have

LemMa 25. Ifpe FMS and a ¢ FV (¢), then A, — @ — A o @.

From Theorem 6 we obtain at once

THEOREM 7. A, 18 complete.

The system of predicate logie L, based uponA, is, to the author’s knowledge,
the simplest known formulation of ordinary logic.
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Other axiomatizations of logic can be obtained easily from L and L,. Thus
let A" = {A &y... A am—1 ¢: ¢ €A}, and similarly form A;, from A,. The
corresponding systems of predicate logic L’ and L] have detachment as their
only rule of inference. We have:

THEOREM 8. The sets A} and A’ are complete.

Again, let A" (resp. A}’) be the set of all closures of sentences of A (resp. A,).
Then clearly the subsets A” U {A o ¢ — ¢p:p e STS}and A V{Aagp —
@: @ € STS} of 8TS are complete. Moreover, Montague has observed that
A’ has the following properties, and that this can be shown by essentially
the same methods which were used in [11] to show that X has analogous pro-
perties: (1)if - A ape US n FMS, thenA” U { - A o ¢} is complete, i.e.,

A"V {~ ANap}=U8nFMS; (2) A" = APS n FMS.

A particular logic is obtained by fixing upon a set PR of predicates and
the associated rank function 7. Clearly the choice of the standard variable se-
quence 4™ for each zz € PR is irrelevant. The simplest choice is to assume
that u” (i) = v; for each ¢ < r(n) and each 7 € PR; this gives the normalized
substitutionless predicate logic. It is then not at all necessary to write down
the variables after a predicate; one could explicitly modify the formation
rules in this way. The definition of OC(p) would then be rather artificial,
however. For example, the following sentence ¢ of ordinary logic:

A v A v3 (0 vy v3 > 7 v50,)

would have the following translation ¢’:

ANve Avg(Avy A vy (v,=12 A v =03 >7) >
A vy A vy (=15 A v, = v, >m)).
The variables v,, v, must be considered to occur in 7.

We would like to make some remarks about the use of the system £ or £
in conjunction with individual constants and operation symbols. We assume
given a set C of constants and a set OP of operation symbols in addition to
PR. There is a function #* which associates with each o € OP a positive inte-
ger 7 (o). The set T'M of terms is the smallest set I' of expressions such that
CuU VR CT and (o)~fel wheneveroe OP and fe®I', withn = #' (0).

To express these notions in our system, expand PR to PR’ by including
new predicates 7, for each ¢ e C' and 7, for each 0 € OP; let r(n,) = 1 for
each ¢ € C, and r(z,) = r’ (0) + 1 for each o0 € OP. With each term ¢ we
associate a function B, € YEFMS as follows (assuming that we are working
in the normalized case, for simplicity); for each § € VR,

R, () =f=aifac VR;

Re(B) = 8(B[v,) e v,

R(o)“f B =A Vge-- A v (Rfo (”o) Al A Rf,,_l (vn-1)
— 8(B/vn) 7, v, .. ¥n), if ' (0) = n and fe®TM.

8*
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We define eq € "TM) FMS as follows: for 0,7 € TM,
gegt = N\ vy, A vy (Bg (v) A Ry (v) > vy=vy).

For each n € PR with r(z) = n we define S, € "TM)PMS as follows: for
cenTM,

8y (Ggs--r On-1) = A v5... A vn-1 (B (9) A ... A Rop_y (vn—1)
> Yy ... Vp-1)-
The following axioms should be added toA orA’:
(D,) V v, 7, v,, for each c e C; )
(Dy) A vy A vy (7 vy A A v, (vy=v; -7, v;) - v,=v,), for each c € C;
(O) Avy ... A vny A vn7,v,... s for each 0 € OP;
(0 A Vo--- A Vne1 (7 Yy« Un A A vn (on= vy —
7o ¥y... Up) —> Un= Un1), for each o € OP.
These definitions make the systems £ and £ as managable as the ordinary
systems for most purposes. These remarks also apply to ordinary predicate
logic without individual constants or operations symbols.
In all of the preceding discussion identity plays an essential role. For predic-
ate logic without identity Theorem 1 fails: there are sentences of ordinary
logic which are not equivalent to standard formulas. Thus the power of
expression is not as great in substitutionless logic without identity as in
ordinary logic. An interesting open problem is to give a simple set of axioms
for the universally valid formulas or sentences of this weaker logic. A related
but different problem has been treated in the literature; see [7],[10] and [15].

§ 2.Independence of the Schemata and Rules of the System £7.

In this section we establish the independence of the schemas and rules of
the system £ of § 1, and discuss independence questions for variants of £.

THEOREM 9. In general, the schemata and rules of £ are independent. In more
detail :

(¢) none of the schemata (C1)—(C7), or detachment or generalization can be omat-
ted;

(8¢) if r(m) = O for each m € PR (in particular if PR = 0) then (C8) can be
omitted ;

(#4%) ¢f r(nt) > O for some 7 € PR, then (C8) cannot be omstted.

ProoF. The proof naturally breaks into ten parts. In most parts a function
V with domain FMS is defined. Unless otherwise stated, ¥V (¢) = 1 for form-
ulas @ derivable without the schema of the given part. Also unless otherwise
stated V(— @) and V(p — y) will be given by the usual table:

7 In constructing the independence proofs of this and the next section the author
has used in some instances methods found in the unpublished work [13].
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| 1] -

1 1

1 0
Part1(C1).For ¢ € ATSlet V(p) = 2. The values V (— ¢) and V (¢ — y) for
@, w e FMS are given by the following table:

0
1
0

| 2 |

WO ‘l’
— O O
bt ot d et | et
DO D
- O W
n-twOr—J

Finally, for x € VR and ¢ € FMS8 we let V(A a ¢) = V(p) Then V(p) = 0 for

the following instance ¢ of (C1):

(no=a—> 7 na=a)>((0n 7 na=a—>a=a) >
(na=a—>a=a))

Part 2 (C2). Forpe ATSlet V(p) = 1. If p € FMS and the implication sym-
bol does not occur in @, let V(— ¢) = 0if V(p) = 1,and V(- ¢) = 1 if
V(p) = 0. If the implication symbol occurs in g, let V(p) = 0. Let V(A a p) =
V(p) forallpe FMS and a € VR. Thenfory = (=& - — a= a) we have
Vi(my »>y) —>y) =0.

Part 3 (C3). Let V(p) = 0 for ¢ € ATS. For all p € FMS and a € VR let
V(- ¢) =1and V(A ap) = V(p).

Then V(ma=a—> (- ma=a >a=a)) = 0.

Part4 (C4).Let V(p) =1forpe ATS.Let V(A o (p —>y)) = Land V(A ay) =
V() if g is not of the form ¢ — y. Then

VNaja=a—> —a=a) >(Aaa=a—->Aa ma=a))=0.

Part 5 (C5). Define g e 5 FMS as follows. Set g(¢) = ¢ for o ATS. For
p,pye FMS,mewandm + 0,and a € "VR,let g(— @) = = g(p),9(p —>y) =
9(@) > g(), 9(A ag... A dm-19) = A vy for p e ATS,

gA ag... Admy = @) = = g(A a-.. A\ Om-1 @) and g(A a... A am—
@ > v) = 9(A &... A dm-1 @) = g(A %... A\ om-1y). Define k(g) = 0
for p € ATS, k(— ¢) and k(p — ) by the usual table, and k(A a ¢) = 1
for all a. Finally, let V() = 1 if and only if kg(p) = 1 and kg(A v, ) = 1.
Then

Vimv=v->Av, nv=19)=0.

Part 6 (C6). Let V(p) = 0 for p € ATS, and V(A a ¢) = 1 for p € FMS
and x € VR. Then V(- Aa —a=p)=0fora,fe VR, a+ B.

8
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Part 7 (C7). Let V(o= f) = 1for a + 8, and V(p) = 0 for ¢ € AT'S other-
wise. Let V(A a ¢) = V(). Then V(vy= v; - (vo=v; = v, = v,)) = 0.

Part 8 (C8). Under the hypothesis of (i) (C8) can be omitted by Theorem of
[11]. Now assume 7 € PR and r (n) > 0. Let = and = be interpreted by £
and P respectively, such that E is an equivalence relation and P does not
have the substitution property relative to E. Then clearly (C8) fails.

Part 9 (Detachment). Without detachment, formulas shorter than the axioms
cannot be derived. In particular, v,= v, cannot be derived.

Part 10 (Generalization). Let V(p) = O forpe AT, V(A ap) = 0if a € FV(¢),
and V(A a @) = 1 otherwise. Then V(A v, — A v; — v;=1,) = 0.
Q.E.D.

By the same proof we have:

THEOREM 10. In general, the schemata and rules of ¥ are independent.

The more detailed statement of Theorem 10 reads exactly like Theorem 9.
‘We have not determined whether or not the schemata and rules of £, are
independent. The preceding proofs do, however, give the following theorem.

THEOREM 11. In the system £, or £;:

(%) none of the schemata (C1)-(C4), (C5’), (C8), (C7), or detachment or (for £,)
generalization, can be omitted ;

(%) if r (=) = O for each = € PR (in particular if PR = 0), then (C52), (C53)
and (C8) can be omitted ;

(#3%) ¢f r () > O for some w € PR, then (C8) cannot be omitted.

§3. Independence of an axiom system of Tarski.

In this section we prove that the system &,, and certain variants, of [14] are
independent.

THEOREM 12. The schemata and rules of the system S, are independent.
ProoF. Schemata (A1), (A2) and (A3), and the rule of detachment can be
proved independent as in Parts 1, 2, 3 and 9 respectively of the proof of
Theorem 9. The remainder of the proof splits into six parts. We use the same
conventions about the function ¥ as in the proof of Theorem 9.

Part1 (A4). For g € AT welet V(p) = 1. Fora e VB and ¢ € FM let

V(p),ifa ¢ FV (9);
_ }J 1if V (p) = 1 and a is the last
Vihag) = free variable of ¢ in the ordering < ;
0 otherwise.

Then VINvo Avyvo=v, > Av, Avgvo=1v,) =0.
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Part 2 (A5). Let g(g) = ¢ for p € AT, g(— ¢) = — g(9), and g(p - y) =
g(@p) — g(y) for ¢, w € FM. Let

9(A a @) = g(g) for a + vy, and g(A v, ¢) = A v, g(g).

Let k(p) = 1 for ¢ € AT, let k(— @) and k(p —> ) be given by the usual
table, let k(A « a = a) = 0 and let k(A &« p) = k(@) otherwise. Finally, let
Vip) = 1if and only if kg(p) = 1. Then V(A v, (A vy = vy — v, = vp) —
(A v o= v, > A v 9= 2,))) = 0.

Part 3 (A6). Forpe AT let V(p) = 1. If ac VR and p € FM let V(A a ¢)
=1.Then V(ANa -~ Aaa=a—> s Aaa=a)=0.

Part 4 (AT7). Let V(p) = 1if p e AT. For a € VR - {v,} and ¢ € FM, let
V(A a ¢) = V(gp). Finally, for p € FM let

V(A v ) = {
Then V([v,= v, > A\ vy v,=19,]) = 0.

Part 5 (A8). Let V(p) = 0 for p e AT, and for a € VR and ¢ € FM let
V(A a ) = V(@). Then V[~ Aa —=f]=0.

Part 6 (A9). Let ¥ = ({0, 1}, {<0,1), <0,0)}> = (4, R). Interpreting the
equality symbol by the relation R we see that (A1)-(A8) and detachment
hold but (A9) fails.

With regard to variants of &,, we note first that upon replacing (A 6) by
a special case of (A 6’) redundances may develop. The following theorem illus-
trates this possibility.

V () if @ is universally valid,
0 otherwise.

TaEOREM 13. In the system &, replace (A6) by the following schema :

) 2 Aa=[ABAye—> Ay ABgl
The resulting system is complete, but (A4) is then redundant.

The easy proof, using (A1)-(A3) and (A7), may be omitted. Because of this
theorem it is appropriate when discussing independence questions for (A 61)
to consider only special cases of that condition. We consider the following
three cases, which are mentioned in [14]:

(A6) - ANa—~a=a;

(A6'y) ~ Aa AP —a=p,fora=+ f;

(A65) - A a — (p — @), where ¢ € ST.

We have:

THEOREM 14. The schemata and rules of the system &, remain independent after
applying independently any number of the following three modifications :

(6) replace (A6) by (AG¥), (A7), (A8') or (A%);

(%) tn the description of S, let [p] be the Berry closure of ¢ for each p € FM ;
(¥32) replace (A1)-(A3) by the stipulaiion that [p] be an axiom whenever ¢ i3 o
tautologus formula.
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Proor. The preceding proofs apply except in the foillowing two cases.

Case 1. (A6) is replaced by (A6’,) and we wish to show that (A8) is not
redundant. Let V(s =) = 0 for a,fe VR, a+ f, and V(p) = 1 forp e
AT otherwise. For a € VR and ¢ € FM let V(A ap) = V (¢). Then

Vi-Aa na=p] =0fora=+g.

Case 2 (A 6)is replaced by (A 6’,) and we wish to show that (A 8)is not redund-
ant. Let & = ({0,1}, {(00)}) = (4, R). Interpreting the equality sym-
bol by R gives the desired result.

It is natural to consider the possibility of replacing the schema A7 by the
following weaker schema:

(A7) [¢ > A a @l for a ¢ OC (¢).

In the original system &, it is open whether or not, upon replacing (A7) by
(A7), completeness is preserved. With regard to the systems weakened by
the condition (A 6’), however, the following result holds.

THEOREM 15. The system obtained from &, by repacing (A7) by (A7), and
(A 6) by (A6]), (A6y) or (A6;) is incomplete ; the same applies if moreover (A1)
to (A 3) are replaced by the stipulation that [p] be an axziom for each tautological
formula @, or if Berry closure is used instead of Quine closure.

Proor. Let g(p) = ¢ for p € AT; let g(— @) = — glp) and gl — y) =
9(p) — g(y). Let g(A a @) = g(@) if a + v,. Let g(A v,9) = A vop forpe AT,
g(A v = @) = = g(A v @) and g(A v, (9 = v)) = g(A vo9) = g(A vo v).
Finally, let g(A v, A @ ¢) = g(A v, @) for & + vy, and g(A v, A v, ) =
A vo 9(A v, ). Let k(p) = 1 for ¢ € AT, let k(— @) and k(¢ — ) be given
by the usual table, and let k(A v, A vy vy = v) = 0, k(A v, ) = k(p)
otherwise. Let V(p) = kg(p). Then V(A v vy = vy > A vy A vy vp= v,) = 0.

The following theorem has the same proof as Theorem 12.

THEOREM 16. The schemata and rules of the system ©; are independent.
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