Countable models

A structure \overline{M} is atomic iff $\text{tp}(\overline{M}(\bar{a}))$ is isolated, for all positive integers m and all $\bar{a} \in {}^m M$.

Theorem 10.1. Let \mathcal{L} be a countable language, and T a complete theory in \mathcal{L} with infinite models. Let \overline{M} be a model of T. Then \overline{M} is prime iff it is countable and atomic.

Proof. \Rightarrow: Assume that \overline{M} is prime. If t is a type of T which is not isolated, then by the omitting types theorem 6.26, T has a model \overline{N} which omits t. Since \overline{M} can be elementarily embedded in \overline{N}, it follows that \overline{M} also omits t. Thus for any type t of T, t isolated $\Rightarrow T$ omits t. Hence any type which \overline{M} realizes is isolated; this means that \overline{M} is atomic. Since T has countable models by the downward Löwenheim-Skolem theorem, and \overline{M} can be elementarily embedded in any model of T, \overline{M} is countable.

\Leftarrow: Suppose that \overline{M} is countable and atomic, and \overline{N} is any model of T; we want to construct an elementary embedding of \overline{M} into \overline{N}. Let $(a_i : i \in \omega)$ enumerate the elements of M, and for each $i \in \omega$ let $\theta_i(\bar{v})$ isolate $\text{tp}(a_0, \ldots, a_i)$. We will now construct elementary maps $f_0 \subseteq f_1 \subseteq \ldots$ from subsets of M into N, where the domain of f_i is $\{a_0, \ldots, a_i\}$. Let $f_0 = \emptyset$. It is elementary since $\overline{M} \equiv \overline{N}$ (because T is complete). Suppose that f_i has been constructed, an elementary map. Then $\overline{M} \models \theta_i(a_0, \ldots, a_i)$, hence $\overline{M} \models \exists v \theta_i(a_0, \ldots, a_i, v)$. Since f_i is an elementary map, it follows that $\overline{N} \models \exists v \theta_i(f_i(a_0), \ldots, f_i(a_i), v)$. Choose $b \in N$ such that $\overline{N} \models \theta_i(f_i(a_0), \ldots, f_i(a_i), b)$, and let $f_{i+1} = f_i \cup \{(i, b)\}$. To see that f_{i+1} is elementary, suppose that $\overline{M} \models \psi(a_0, \ldots, a_i)$. Thus $\psi(\bar{v}) \in \text{tp}(a_0, \ldots, a_i)$, so $T \models \theta_i \rightarrow \psi$. Since $\overline{N} \models \theta_i(f_i(a_0), \ldots, f_i(a_i), b)$, it follows that $\overline{N} \models \psi(f_i(a_0), \ldots, f_i(a_i), b)$. Thus f_{i+1} is elementary.

Now $\bigcup_{i \in \omega} f_i$ is an elementary, as desired. \Box

Corollary 10.2. If \mathcal{L} is a countable language and T is a complete theory with infinite models, then T has a prime model iff T has an atomic model.

Proof. \Rightarrow: by Theorem 10.1.

\Leftarrow: Suppose that \overline{M} is an atomic model of T. Let \overline{N} be a countable elementary substructure of \overline{M}. Then for any $n \in \omega$ and any $\bar{a} \in {}^n N$ we have $\text{tp}(\overline{N}(\bar{a})) = \text{tp}(\overline{M}(\bar{a}))$, and hence $\text{tp}(\overline{N}(\bar{a}))$ is isolated. So \overline{N} is prime by Theorem 10.1. \Box

Proposition 10.3. If \overline{M} is an atomic model of T, then it is ω-homogeneous.

Proof. See just before Lemma 7.28 for the definition of ω-homogeneous. Suppose that \mathcal{A} is a finite subset of M and $f : \mathcal{A} \rightarrow \overline{M}$ is a partial elementary map. Let \bar{a} enumerate \mathcal{A}. Let $b \in M$. Let $\varphi(\bar{v}, w)$ isolate the type $\text{tp}(\overline{M}(\bar{a}, b))$. Then $\overline{M} \models \exists w \varphi(\bar{a}, w)$. So, since f is partial elementary, we get $\overline{M} \models \exists w \varphi(f \circ \bar{a}, w)$. Choose $d \in M$ such that $\overline{M} \models \varphi(f \circ \bar{a}, d)$. Let $g = f \cup \{(b, d)\}$. To see that g is partial elementary, suppose that $\overline{M} \models \psi(\bar{a}, b)$. Then $T \models \varphi \rightarrow \psi$ and $\overline{M} \models \varphi(f \circ \bar{a}, d)$, so $\overline{M} \models \psi(f \circ \bar{a}, d)$, as desired. \Box

Corollary 10.4. If T is a complete theory in a countable language, then any two prime models of T are isomorphic.

Proof. Let \overline{M} and \overline{N} be prime models of T. Then by Theorem 10.1 they are both countable and atomic. By Proposition 10.3 they are also both ω-homogeneous. Now every
type realized in \mathcal{M} is isolated. Also, if t is an isolated type, say isolated by $\varphi(\overline{v})$, then $T \models \exists \overline{v} \varphi(\overline{v})$, hence \mathcal{M} realizes t. So a type is isolated iff it is realized in \mathcal{M}. The same is true of \mathcal{N}, so \mathcal{M} and \mathcal{N} realize the same types. Hence they are isomorphic by Theorem 7.31. \qed

Theorem 10.5. If \mathcal{M} is κ-saturated, then \mathcal{M} is κ-homogeneous.

Proof. Suppose that $A \subseteq [M]^{<\kappa}$, $f : A \rightarrow M$ is partial elementary, and $b \in M \setminus A$. Let

$$\Gamma = \{ \varphi(v, f \circ \overline{a}) : \exists m \in \omega[\overline{a} \in {}^m A \text{ and } \mathcal{M} \models \varphi(b, \overline{a})] \}.$$

Let Δ be a finite subset of Γ. For each member χ of Δ, choose $m_\chi \in \omega$, φ_χ, and $\overline{a}_\chi \in {}^m A$ such that $\mathcal{M} \models \varphi_\chi(b, \overline{a}_\chi)$ and $\chi = \varphi_\chi(v, f \circ \overline{a}_\chi)$. Then there is an $n \in \omega$, $\overline{a}' \in {}^n A$, and a formula ψ such that the following conditions hold:

1. $\mathcal{M} \models \psi(b, \overline{a}')$.
2. $\models \bigwedge \Delta \leftrightarrow \psi(v, f \circ \overline{a}')$.

Now from (1) we get $\mathcal{M} \models \exists v \psi(v, \overline{a}')$. Hence, since f is elementary, $\mathcal{M} \models \exists v \psi(v, f \circ \overline{a}')$. Hence by (2), $\mathcal{M} \models \exists v \bigwedge \Delta$. Thus Γ is finitely satisfiable. So since \mathcal{M} is ω-saturated we get $c \in M$ such that $\mathcal{M} \models \varphi(c, f \circ \overline{a}_\chi)$ for each $\varphi(v, f \circ \overline{a}_\chi) \in \Gamma$. So $f \cup \{(b, c)\}$ is elementary. \qed

Theorem 10.6. Suppose that \mathcal{M} is a model of T. Then \mathcal{M} is ω-saturated iff \mathcal{M} is ω-homogeneous and for every $m \in \omega$, \mathcal{M} realizes all types in $S_m(T)$.

Proof. \Rightarrow: by Theorem 10.5.

\Leftarrow: Let $m, n \in \omega$, $\overline{a} \in {}^m M$, and $p \in S_n^M(\overline{a})$. Let $q \in S_{m+n}(T)$ be the type $\{ \varphi(\overline{v}, \overline{w}) : \varphi(\overline{v}, \overline{w}) \in p \}$. Since \mathcal{M} realizes all types in $S_{m+n}(T)$, choose $(\overline{b}, \overline{c})$ realizing q. Now

(*) $\text{tp}^\mathcal{M}(\overline{a}) = \text{tp}^\mathcal{M}(\overline{c})$.

In fact, let $\psi(\overline{w}) \in \text{tp}^\mathcal{M}(\overline{a})$. Let ψ' be $\overline{v} = \overline{v} \land \psi$. Then $\psi'(\overline{v}, \overline{a}) \in p$, since otherwise $\neg \psi'(\overline{v}, \overline{a}) \in p$ and hence, since every finite subset of p is satisfiable in \mathcal{M}, we get \overline{v} such that $\mathcal{M} \models \neg \psi'(\overline{v}, \overline{a})$, i.e., $\mathcal{M} \models \neg \psi(\overline{a})$, contradiction. So $\psi'(\overline{v}, \overline{a}) \in p$, hence $\psi'(\overline{v}, \overline{w}) \in q$, hence $\mathcal{M} \models \psi'(\overline{c}, \overline{a})$, so $\mathcal{M} \models \psi(\overline{v})$. This proves (*).

Now by ω-homogeneity we get \overline{d} such that $\text{tp}^\mathcal{M}(\overline{b}, \overline{c}) = \text{tp}^\mathcal{M}(\overline{d}, \overline{c})$. Thus for any $\varphi(\overline{v}, \overline{a}) \in p$ we have $\varphi(\overline{v}, \overline{w}) \in q$, hence $\mathcal{M} \models \psi(\overline{c}, \overline{a})$, so $\varphi(\overline{v}, \overline{w}) \in \text{tp}^\mathcal{M}(\overline{b}, \overline{c})$, hence $\varphi(\overline{v}, \overline{w}) \in \text{tp}^\mathcal{M}(\overline{d}, \overline{c})$, so $\mathcal{M} \models \varphi(\overline{v}, \overline{w})$. This shows that \mathcal{M} realizes p. \qed

Corollary 10.7. If \mathcal{M} and \mathcal{N} are countable saturated models of T, then $\mathcal{M} \cong \mathcal{N}$.

Proof. By Theorem 10.6, both \mathcal{M} and \mathcal{N} are ω-homogeneous and realize all types in any $S_m(T)$. By Theorem 7.31 they are isomorphic. \qed

Now we need some variants of 7.38–7.39.

Lemma 10.8. Suppose that \mathcal{M} is a model of T and $\overline{b}, c \in M$, $\text{tp}^\mathcal{M}(\overline{a}) = \text{tp}^\mathcal{M}(\overline{b})$. Then there exist an elementary extension \mathcal{N} of \mathcal{M} such that $|M| = |N|$ and an element $d \in N$ such that $\text{tp}^\mathcal{N}(\overline{c}, c) = \text{tp}^\mathcal{N}(\overline{b}, d)$.

113
Proof. Apply the compactness theorem to the set
\[\text{Eldiag}(\mathcal{M}) \cup \{ \varphi(\overline{b}, u) : \mathcal{M} \models \varphi(\overline{a}, c) \} \quad (u \text{ a new constant}) \]

Theorem 10.9. Suppose that \(\mathcal{M} \) is a model of \(T \). Then there exists an elementary extension \(\mathcal{N} \) of \(\mathcal{M} \) such that \(|\mathcal{M}| = |\mathcal{N}| \) and for all \(\overline{a}, \overline{b}, c \in M \) there is a \(d \in N \) such that \(\text{tp}^\mathcal{N}(\overline{a}, c) = \text{tp}^\mathcal{N}(\overline{b}, d) \).

Proof. Iterate Lemma 10.8.

Theorem 10.11. \(T \) has a countable saturated model iff \(|S_n(T)| \leq \aleph_0 \) for all \(n \).

Proof. \(\Rightarrow \): If \(\mathcal{M} \) is a countable saturated model, then it realizes only countably many types; but it realizes all types, so \(|S_n(T)| \leq \aleph_0 \) for all \(n \).

\(\Leftarrow \): Let \(t_0, t_1, \ldots \) list all members of \(\bigcup_{n \in \omega} S_n(T) \). By the compactness theorem, for any countable model \(\mathcal{N} \) of \(T \) and any \(i \in \omega \) there is a countable elementary extension \(\mathcal{P} \) of \(\mathcal{N} \) with an element which realizes \(t_i \). So if we start with \(\mathcal{M} \) and iterate this process \(\omega \) times we obtain an elementary chain \(\mathcal{M} = \mathcal{N}_0 \leq \mathcal{N}_1 \leq \cdots \) such that each \(\mathcal{N}_i \) is countable and \(\mathcal{N}_{i+1} \) has an element realizing \(t_i \). Let \(\mathcal{P} = \bigcup_{i \in \omega} \mathcal{N}_i \). Then \(\mathcal{P} \) is an elementary extension of \(\mathcal{M} \) which realizes every type over \(T \). By Theorem 10.10 let \(\mathcal{Q} \) be a countable elementary extension of \(\mathcal{P} \) which is \(\omega \)-homogeneous. By Theorem 10.6, \(\mathcal{Q} \) is \(\omega \)-saturated.

Corollary 10.13. If \(\mathcal{L} \) is countable and \(T \) is a theory in \(\mathcal{L} \) which has an \(\omega \)-saturated model, then \(T \) has a countable atomic model.

Proof. By Theorems 10.11 and 10.12.

Theorem 10.14. For \(T \) a theory in a countable language the following are equivalent:

(i) \(T \) is \(\aleph_0 \)-categorical.

(ii) For every \(n < \omega \), every type in \(S_n(T) \) is isolated.

(iii) \(|S_n(T)| < \aleph_0 \) for every \(n \in \omega \).

(iv) For every \(n \in \omega \) there is a finite set \(\Gamma \) of formulas with free variables among \(v_0, \ldots, v_{n-1} \) such that for every formula \(\varphi \) with free variables among \(v_0, \ldots, v_{n-1} \) there is a \(\psi \in \Gamma \) such that \(T \models \varphi \iff \psi \).

Proof. (i) \(\Rightarrow \) (ii): Suppose that (ii) fails: there exist \(n < \omega \) and a type \(p \in S_n(T) \) which is not isolated. By the omitting types theorem 6.26, there is a countable model \(\mathcal{M} \) of \(T \) which omits \(p \). But clearly there is also a countable model \(\mathcal{N} \) which admits \(p \). Thus \(\mathcal{M} \not\equiv \mathcal{N} \), so (i) fails.
(ii)⇒(iii): Assume (ii), but suppose that (iii) fails: there is an $n \in \omega$ such that $S_n(T)$ is infinite. For each $p \in S_n(T)$ let φ_p isolate p. Let \bar{c} be a sequence of new constants of length n, and consider the set

$$T' \overset{\text{def}}{=} T \cup \{\neg \varphi_p(\bar{c}) : p \in S_n(T)\}.$$

We claim that T' has a model. For, take any finite subset T'' of T. Let P be the set of all types p such that $\neg \varphi_p(\bar{c})$ is in T''. Let $q \in S_n(T)$ be different from each member of P. Now $T \models \varphi_q \rightarrow \neg \varphi_p$ for each $p \in P$; otherwise $T \models \varphi_q \rightarrow \varphi_p$ for some $p \in P$ and then $T \models \varphi_q \rightarrow \psi$ for each $\psi \in p$, so that $p \subseteq q$, hence $p = q$, contradiction. Now take a model \bar{M} of T which realizes q, say $\bar{M} \models \varphi_q(\bar{a})$. Interpreting \bar{c} by \bar{a} in this model gives a model of T'', as desired.

Thus T' has a model, which gives a model \bar{N} of T with a sequence \bar{b} satisfying in \bar{N} each formula $\neg \varphi_p$. Thus $\text{tp}^\bar{N}(\bar{b})$ cannot be in $S_n(T)$, contradiction.

(iii)⇒(iv): Assume (iii), and suppose that $n \in \omega$. For distinct $p, q \in S_n(T)$ choose $\varphi_{pq} \in p \setminus q$. For each $p \in S_n(T)$ let $\psi_p = \bigwedge \{\varphi_{pq} : q \neq p\}$. Thus $\psi_p \in p$ while $\psi_p \notin q$ for all $q \neq p$. Now given χ with variables among v_0, \ldots, v_{n-1} we have $T \models \chi \iff \bigvee \{\psi_p : \chi \in p\}$.

(iv)⇒(i): Assume (iv). Let \bar{M} be a countable model of T; we show that \bar{M} is atomic; so T is \aleph_0-categorical by Theorems 10.1 and 10.4. If $\bar{\pi} \in \text{tn} \bar{M}$, then $\text{tp}^\bar{M}(\bar{\pi})$ is isolated by

$$\bigwedge \{\varphi_i(\bar{\pi}) : \bar{M} \models \varphi_i(\bar{\pi})\} \land \bigwedge \{\neg \varphi_i(\bar{\pi}) : \bar{M} \models \neg \varphi_i(\bar{\pi})\} \quad \Box$$

115