Solutions to exercises in Chapter 5

E5.1 Give an estimate for the size of $gn(\varphi)$, where φ is the Peano Postulate (P1). (P1) is the formula $\forall v_0 \forall v_1 [\mathbf{S}v_0 = \mathbf{S}v_1 \rightarrow v_0 = v_1]$, or as a sequence

$$\langle 4, 5, 4, 10, 2, 3, 6, 5, 6, 10, 3, 5, 10 \rangle$$
.

Hence

$$gn(\varphi) = p_0^4 \cdot p_1^5 \cdot p_2^4 \cdot p_3^{10} \cdot p_4^2 \cdot p_5^3 \cdot p_6^6 \cdot p_7^5 \cdot p_8^6 \cdot p_9^{10} \cdot p_{10}^3 \cdot p_{11}^5 \cdot p_{12}^{10}$$

= $2^4 \cdot 3^5 \cdot 5^4 \cdot 7^{10} \cdot 11^2 \cdot 13^3 \cdot 17^6 \cdot 19^5 \cdot 23^6 \cdot 29^{10} \cdot 31^3 \cdot 37^5 \cdot 41^{10}$
 $\approx 1.9 \cdot 10^{85}.$

E5.2 Describe $G(gn(v_0 = v_0))$ and express it as a product of primes.

For brevity let $m = gn(v_0 = v_0)$; recall from the notes that m = 6,075,000. Now by definition, $G(gn(v_0 = v_0)) = gn(\text{Subff}_{\overline{m}}^{v_0}(v_0 = v_0))$; thus $G(gn(v_0 = v_0))$ is the Gödel number of the formula

$$\forall v_m [v_m = \overline{m} \to \forall v_0 [v_0 = v_m \to v_0 = v_0]].$$

As an actual sequence of integers, this formula is

$$\langle 4, 5(m+1), 2, 3, 5(m+1), 6(m \text{ times}), 8, 4, 5, 2, 3, 5, 5(m+1), 3, 5, 5 \rangle$$
.

Hence $G(gn(v_0 = v_0))$ is the number

$$p_{0}^{4} \cdot p_{1}^{5(m+1)} \cdot p_{2}^{2} \cdot p_{3}^{3} \cdot p_{4}^{5(m+1)} \cdot \prod_{i < m} p_{5+i}^{6} \cdot p_{5+m}^{8} \cdot p_{5+m+1}^{4}$$
$$\cdot p_{5+m+2}^{5} \cdot p_{5+m+3}^{2} \cdot p_{5+m+4}^{3} \cdot p_{5+m+5}^{5} \cdot p_{5+m+6}^{5(m+1)} \cdot p_{5+m+7}^{3} \cdot p_{5+m+8}^{5} \cdot p_{5+m+9}^{5}$$

Suppose that Γ is a set of sentences containing \mathbf{P}' . A formula ρ with at most v_0 free is a Γ -provability condition iff for any sentence φ , $\Gamma \vdash \varphi$ iff $\Gamma \vdash \rho(\overline{gn(\varphi)})$.

E5.3 Suppose that Γ is a set of sentences containing \mathbf{P}' , and $\overline{M} \stackrel{\text{def}}{=} (\omega, S, 0, +, \cdot)$ is a model of Γ . Let χ be as in the proof of Gödel's incompleteness theorem, and let π be the formula $\exists v_1 \chi$. Prove that π is a Γ -provability condition.

Let φ be a sentence. First suppose that $\Gamma \vdash \varphi$. Let Φ be a Γ -proof with last entry φ . Thus $(gn(\varphi), gn_1(\Phi)) \in \Prf_{\Gamma}$, so $\mathbf{P} \vdash \chi(\overline{g(\varphi)}, \overline{g_2(\Phi)})$. Hence $\mathbf{P} \vdash \exists v_1\chi(\overline{gn(\varphi)})$, so also $\Gamma \vdash \exists v_1\chi(\overline{gn(\varphi)})$.

Second suppose that $\Gamma \vdash \exists v_1 \chi(\overline{gn(\varphi)})$. Then $\overline{M} \models \exists v_1 \chi(\overline{gn(\varphi)})$, so we can choose $m \in \omega$ such that $\overline{M} \models \chi(\overline{gn(\varphi)})[m,m]$. We claim that $(gn(\varphi),m) \in \operatorname{Prf}_{\Gamma}$. Otherwise we get $\mathbf{P} \models \neg \chi(\overline{gn(\varphi)},\overline{m})$, hence $\overline{M} \models \neg \chi(\overline{gn(\varphi)})[m,m]$, contradiction. This proves the claim. Let Φ be a Γ -proof with last entry φ such that $m = gn_1(\Phi)$. Hence $\Gamma \vdash \varphi$.

E5.4 Suppose that Γ is a set of sentences containing \mathbf{P}' , and $\overline{M} \stackrel{\text{def}}{=} (\omega, S, 0, +, \cdot)$ is a model of Γ . Suppose that ρ is a Γ -provability condition. Apply the fixed point theorem to get a sentence ψ such that $\mathbf{P} \vdash \psi \leftrightarrow \neg \rho(\overline{gn}(\psi))$, as in the proof of Gödel's incompleteness theorem. Prove that $\operatorname{not}(\Gamma \vdash \psi)$ and $\operatorname{not}(\Gamma \vdash \neg \psi)$.

Suppose that $\Gamma \vdash \psi$. Then $\Gamma \vdash \rho(gn(\psi))$ since ρ is a provability condition, but also $\Gamma \vdash \neg \rho(\overline{gn(\psi)})$ by the choice of ψ . So Γ is inconsistent. This contradicts the assumption that \overline{M} is a model of Γ . Hence $\operatorname{not}(\Gamma \vdash \psi)$. Suppose that $\Gamma \vdash \neg \psi$. Then by the choice of ψ , $\Gamma \vdash \rho(\overline{gn(\psi)})$. It follows that $\Gamma \vdash \psi$ since ρ is a provability condition, contradiction.

E5.5 Let χ be as in the proof of Gödel's incompleteness theorem, and let π be the formula $\exists v_1 \chi$. The following can be shown for χ .

(i) For any sentences φ and ψ ,

$$\Gamma \vdash \pi(\overline{gn(\varphi \to \psi)}) \to (\pi(\overline{gn(\varphi)}) \to \pi(\overline{gn(\psi)})).$$

(" Γ proves that if $\varphi \to \psi$ is provable, then from the provability of φ it follows that ψ is provable")

(ii) For any sentence φ ,

$$\Gamma \vdash \pi(\overline{gn(\varphi)}) \to \pi(\overline{gn(\pi(\overline{g_s(\varphi)}))}).$$

(" Γ proves that if φ is provable, then it is provable that φ is provable."

By the fixed point theorem, let ψ be a sentence such that $\Gamma \vdash \psi \leftrightarrow \pi(gn(\psi))$. Note that ψ says "I am provable". By the fixed point theorem again, let θ be a sentence such that $\Gamma \vdash \theta \leftrightarrow (\pi(\overline{gn(\theta)}) \rightarrow \psi)$. Thus θ says "If I am provable, then ψ holds." Show that if $\Gamma \vdash \theta$, then $\Gamma \vdash \psi$.

Let Φ be a Γ -proof with last entry θ . Thus $(gn(\theta), gn_1(\Phi)) \in Prf_{\Gamma}$, and it follows that $\mathbf{P} \vdash \chi(\overline{gn(\theta)}, \overline{gn_1(\Phi)})$, hence $\Gamma \vdash \pi(\overline{gn(\theta)})$. Since also $\Gamma \vdash \theta$, it follows that $\Gamma \vdash \psi$.

E5.6 (Continuing E5.5.) Show that $\Gamma \vdash \pi(\overline{gn(\theta)}) \to \pi(\overline{gn(\psi)})$.

By the choice of θ we have $\Gamma \vdash \theta \to (\pi(\overline{gn(\theta)}) \to \psi)$, and then by a tautology we have $\Gamma \vdash \pi(\overline{gn(\theta)}) \to (\theta \to \psi)$. By exercise E5.3 we then get

$$\Gamma \vdash \pi(\overline{gn(\pi(\overline{gn(\theta)}) \to (\theta \to \psi))}),$$

and E5.5(i) gives

(1)
$$\Gamma \vdash \pi(\overline{gn(\pi(\overline{gn(\theta)}))})) \to \pi(\overline{gn(\theta \to \psi)}).$$

Another instance of E5.5(i) is

(2)
$$\Gamma \vdash \pi(\overline{gn(\theta \to \psi)}) \to (\pi(\overline{gn(\theta)}) \to \pi(\overline{gn(\psi)}).$$

Two instances of (ii) are

(3)
$$\Gamma \vdash \pi(\overline{gn(\theta)}) \to \pi(\overline{gn(\pi(\overline{gn(\theta)}))})$$
 and

(4)
$$\Gamma \vdash \pi(\overline{gn(\pi(\overline{gn(\theta)}))}) \to \pi(\overline{gn(\pi(\overline{gn(\pi(\overline{gn(\theta)}))}))}))$$

Now a simple tautology gives $\Gamma \vdash \varphi(\overline{gn(\theta)}) \to \pi(\overline{gn(\theta \to \psi)})$, using (3), (4), (1). The more complicated tautology

$$[S_0 \to (S_1 \to S_2)] \to [(S_1 \to S_0) \to (S_1 \to S_2)]$$

gives the desired conclusion. [Substitute $\pi(\overline{g(\theta \to \psi)})$ for $S_0, \pi(\overline{gn(\theta)})$ for S_1 , and $\pi(\overline{gn(\psi)})$ for S_2 .]

E5.7 (Continuing E5.5.) Show that $\Gamma \vdash \psi$.

By the choice of θ we have $\Gamma \vdash (\pi(\overline{g(\theta)}) \to \psi) \to \theta$. Using the definition of ψ and a tautology, we get $\Gamma \vdash (\pi(\overline{gn(\theta)}) \to \pi(\overline{gn(\psi)})) \to \theta$. Then by exercise 5.6 it follows that $\Gamma \vdash \theta$. Hence by exercise 5.5, $\Gamma \vdash \psi$.

E5.8 Assume that $\Gamma \vdash \neg(\overline{m} = \overline{n})$ for all distinct $m, n \in \omega$. Let χ be as in the proof of Göde's incompleteness theorem, and let θ be the sentence $\forall v_0(v_0 = v_0)$. Prove that the following formula $\rho(v_0)$ is a provability condition:

$$v_0 = \overline{gn(\theta)} \lor \exists v_1 \chi(v_0, v_1)$$

Let φ be any sentence. If $\Gamma \vdash \varphi$, then $\Gamma \vdash \exists v_1 \chi(gn(\varphi), v_1)$ by exercise E5.3, and so clearly $\Gamma \vdash \rho(\overline{gn(\varphi)})$. Suppose that $\Gamma \vdash \rho(\overline{gn(\varphi)})$. If $\varphi = \theta$, obviously $\Gamma \vdash \varphi$. If $\varphi \neq \theta$, then $gn(\varphi) \neq \underline{gn(\theta)}$ and hence by assumption $\Gamma \vdash \neg(\overline{gn(\varphi)} = \overline{gn(\theta)})$, and a tautology gives $\Gamma \vdash \exists v_1 \chi(\overline{gn(\varphi)}, v_1)$. Hence by exercise E5.3, $\Gamma \vdash \varphi$.

E5.9 (Continuing E5.8) Prove that $\Gamma \vdash \theta \leftrightarrow \rho(\overline{gn(\theta)})$ (so that θ asserts its own provability with respect to this condition).

In fact, clearly $\Gamma \vdash \theta$, and also $\Gamma \vdash \rho(g(\theta))$, so the conclusion follows.

E5.10 (Continuing E5.8) Prove that $\Gamma \vdash \theta$.

This is clear.

E5.11] Assume that $\Gamma \vdash \neg(\overline{m} = \overline{n})$ for all distinct $m, n \in \omega$. Let χ be an in the proof of Gödel's incompleteness theorem, and let θ be the sentence $\neg \forall v_0(v_0 = v_0)$. Prove that the following formula $\rho(v_0)$ is a provability condition:

$$\neg(v_0 = \overline{gn(\theta)}) \land \exists v_1 \chi(v_0, v_1)$$

Let φ be a sentence. Suppose that $\Gamma \vdash \varphi$. Then by exercise E5.3, $\Gamma \vdash \exists v_1 \chi(g(\varphi), v_1)$. Now $\varphi \neq \theta$, since $\Gamma \vdash \neg \theta$, and Γ is consistent since \overline{M} is a model of it. Hence $gn(\varphi) \neq gn(\theta)$. So by assumption $\Gamma \vdash \neg(\overline{gn(\varphi)} = \overline{gn(\theta)})$. Hence $\Gamma \vdash \rho(\overline{gn(\varphi)})$. Suppose that $\Gamma \vdash \rho(\overline{gn(\varphi)})$. Then also $\Gamma \vdash \exists v_i \chi(\overline{gn(\varphi)}, v_1)$, so by exercise E5.3, $\Gamma \vdash \varphi$. $\boxed{\text{E5.12}}$ (Continuing E5.11) Show that $\Gamma \vdash \theta \leftrightarrow \rho(\overline{g(\theta)})$, so that θ asserts its own provability.

In fact, clearly $\Gamma \vdash \neg \theta$ and also $\Gamma \vdash \neg \rho(\overline{g(\theta)})$, so the exercise follows.

E5.13 (Continuing E5.11) Show that $\Gamma \vdash \neg \theta$.

This is clear.