Solutions to exercises in Chapter 4

E4.1 Suppose that $\Gamma \vdash \varphi \rightarrow \psi$, $\Gamma \vdash \varphi \rightarrow \neg \psi$, and $\Gamma \vdash \neg \varphi \rightarrow \varphi$. Prove that Γ is inconsistent.

The formula $(\neg \varphi \to \varphi) \to \varphi$ is a tautology. Hence by Lemma 3.3, $\Gamma \vdash (\neg \varphi \to \varphi) \to \varphi$. Since also $\Gamma \vdash \neg \varphi \to \varphi$, it follows that $\Gamma \vdash \varphi$. Hence $\Gamma \vdash \psi$ and $\Gamma \vdash \neg \psi$. Hence by Lemma 4.1, Γ is inconsistent.

E4.2 Let \mathscr{L} be a language with just one non-logical constant, a binary relation symbol **R**. Let Γ consist of all sentences of the form $\exists v_1 \forall v_0 [\mathbf{R}v_0v_1 \leftrightarrow \varphi]$ with φ a formula with only v_0 free. Show that Γ is inconsistent. Hint: take φ to be $\neg \mathbf{R}v_0v_0$.

By Theorem 3.27 we have

(1)
$$\Gamma \vdash \forall v_0 [\mathbf{R} v_0 v_1 \leftrightarrow \neg \mathbf{R} v_0 v_0] \to [\mathbf{R} v_1 v_1 \leftrightarrow \neg \mathbf{R} v_1 v_1].$$

Now $[\mathbf{R}v_1v_1 \leftrightarrow \neg \mathbf{R}v_1v_1] \rightarrow \neg(v_0 = v_0)$ is a tautology, so from (1) we obtain

$$\Gamma \vdash \forall v_0 [\mathbf{R} v_0 v_1 \leftrightarrow \neg \mathbf{R} v_0 v_0] \to \neg (v_0 = v_0);$$

then generalization gives

$$\Gamma \vdash \forall v_1 [\forall v_0 [\mathbf{R} v_0 v_1 \leftrightarrow \neg \mathbf{R} v_0 v_0] \to \neg (v_0 = v_0)].$$

Then by Proposition 3.39 we get

$$\Gamma \vdash \exists v_1 \forall v_0 [\mathbf{R} v_0 v_1 \leftrightarrow \neg \mathbf{R} v_0 v_0] \to \neg (v_0 = v_0).$$

But the hypothesis here is a member of Γ , so we get $\Gamma \vdash \neg(v_0 = v_0)$. Hence by Lemma 4.1, Γ is inconsistent.

Alternate proof (due to a couple of students). Suppose that Γ is consistent. By the completeness theorem let \overline{A} be a model of Γ . Taking φ to be $\neg \mathbf{R}v_0v_0$, we get $\overline{A} \models \exists v_1 \forall v_0 [\mathbf{R}v_0v_1 \leftrightarrow \neg \mathbf{R}v_0v_0]$. Let $a : \omega \to A$ be any assignment. Then by Proposition 2.8(iv) there is a $b \in A$ such that $\overline{A} \models \forall v_0 [\mathbf{R}v_0v_1 \leftrightarrow \neg \mathbf{R}v_0v_0] [a_b^1]$. By the definition of satisfaction of \forall , it follows that for any $c \in A$ we have $\overline{A} \models [\mathbf{R}v_0v_1 \leftrightarrow \neg \mathbf{R}v_0v_0] [a_c^0 \ b]$. Hence $(c, b) \in \mathbf{R}^{\overline{A}}$ iff $(c, b) \notin \mathbf{R}^{\overline{A}}$, contradiction.

E4.3 Show that the first-order deduction theorem fails if the condition that φ is a sentence is omitted. Hint: take $\Gamma = \emptyset$, let φ be the formula $v_0 = v_1$, and let ψ be the formula $v_0 = v_2$.

$$\{v_0 = v_1\} \vdash v_0 = v_1$$

$$\{v_0 = v_1\} \vdash \forall v_1(v_0 = v_1)$$

$$\{v_0 = v_1\} \vdash \forall v_1(v_0 = v_1) \to v_0 = v_2 \text{ by Theorem 3.27}$$

$$\{v_0 = v_1\} \vdash v_0 = v_2.$$

On the other hand, let \overline{A} be the structure with universe ω and define $a = \langle 0, 0, 1, 1, \ldots \rangle$. Clearly $\overline{A} \not\models [v_0 = v_1 \rightarrow v_0 = v_2][a]$. Hence $\not\models v_0 = v_1 \rightarrow v_0 = v_2$ by Theorem 3.2.

E4.4 In the language for $\overline{A} \stackrel{\text{def}}{=} (\omega, S, 0, +, \cdot)$, let τ be the term $v_0 + v_1 \cdot v_2$ and ν the term $v_0 + v_2$. Let a be the sequence $(0, 1, 2, \ldots)$. Let ρ be obtained from τ by replacing the occurrence of v_1 by ν .

- (a) Describe ρ as a sequence of integers.
- (b) What is $\rho^{\overline{A}}(a)$?
- (c) What is $\nu^{\overline{A}}(a)$?
- (d) Describe the sequence $a_{\nu^{\overline{A}}(a)}^1$ as a sequence of integers.
- (e) Verify that $\rho^{\overline{A}}(a) = \tau^{\overline{A}}(a_{\nu^{\overline{A}}(a)}^{1})$ (cf. Lemma 4.4.)
- (a) ρ is $v_0 + (v_0 + v_2) \cdot v_2$; as a sequence of integers it is (7, 5, 9, 7, 5, 15, 15).
 - (b) $\rho^{\overline{A}}(a) = 0 + (0+2) \cdot 2 = 4.$ (c) $\nu^{\overline{A}}(a) = 0 + 2 = 2.$ (d) $a^{1}_{\nu^{\overline{A}}(a)} = \langle 0, 2, 2, 3, \ldots \rangle.$ (e) $\rho^{\overline{A}}(a) = 4$, as above; $\tau^{\overline{A}}(a^{1}_{\nu^{\overline{A}}(a)}) = 0 + 2 \cdot 2 = 4.$

E4.5 In the language for $\overline{A} \stackrel{\text{def}}{=} (\omega, S, 0, +, \cdot)$, let φ be the formula $\forall v_0(v_0 \cdot v_1 = v_1)$, let ν be the formula $v_1 + v_1$, and let $a = \langle 1, 0, 1, 0, \ldots \rangle$.

- (a) Describe $\operatorname{Subf}_{\nu}^{v_1}\varphi$ as a sequence of integers
- (b) What is $\nu^A(a)$?
- (c) Describe $a_{\nu^{\overline{A}}(a)}^{1}$ as a sequence of integers.
- (d) Determine whether $\overline{A} \models \text{Subf}_{\nu}^{v_1} \varphi[a]$ or not.
- (e) Determine whether $\overline{A} \models \varphi[a_{\nu^{\overline{A}}(a)}^{1}]$ or not.

(a) $\operatorname{Subf}_{\nu}^{v_1}\varphi$ is $\forall v_0(v_0 \cdot (v_1 + v_1) = v_1 + v_1)$; as a sequence of integers it is

$$\langle 4, 5, 3, 9, 5, 7, 10, 10, 7, 10, 10 \rangle$$
.

(b) $\nu^{\overline{A}}(a) = (v_1 + v_1)^{\overline{A}}(\langle 1, 0, 1, 0, \ldots \rangle) = 0 + 0 = 0.$ (c) $a^1_{\nu^{\overline{A}}(a)} = \langle 1, 0, 1, 0, \ldots \rangle.$

(d) $\overline{A} \models \operatorname{Subf}_{\nu}^{v_1} \varphi[a]$ iff $\overline{A} \models [\forall v_0(v_0 \cdot (v_1 + v_1) = v_1 + v_1)](\langle 1, 0, 1, 0, \ldots \rangle]$ iff for all $a \in \omega$, $a \cdot (0+0) = 0 + 0$; this is true.

(e) $\overline{A} \models \varphi[a_{\nu^{\overline{A}}(a)}^{1}]$ iff $\overline{A} \models [\forall v_0(v_0 \cdot v_1 = v_1)][\langle 1, 0, 1, 0, \ldots \rangle]$ iff for all $a \in \omega, a \cdot 0 = 0$; this is true.

E4.6 Show that the condition in Lemma 4.6 that

no free occurrence of v_i in φ is within a subformula of the form $\forall v_k \mu$ with v_k a variable occurring in ν

is necessary for the conclusion of the lemma.

In the language for $\overline{A} = (\omega, S, 0, +, \cdot)$, let φ be the formula $\exists v_1[Sv_1 = v_0], \nu = v_1$, and $a = \langle 1, 1, \ldots \rangle$. Note that the condition on v_0 fails. Now $\operatorname{Sub}_{v_1}^{v_0}\varphi$ is the formula $\exists v_1[Sv_1 = v_1]$, and there is no $a \in \omega$ such that Sa = a, and hence $\overline{A} \not\models \operatorname{Sub}_{v_1}^{v_0}\varphi[a]$. Also, $\nu^{\overline{A}}(a) = v_1^{\overline{A}}(a) = a_1 = 1$, and hence $a_{\nu^{\overline{A}}(a)}^0 = \langle 1, 1, \ldots \rangle$. Since S0 = 1, it follows that $\overline{A} \models \varphi[a_{\nu^{\overline{A}}(a)}^0]$.

E4.7 Let \overline{A} be an \mathscr{L} -structure, with \mathscr{L} arbitrary. Define $\Gamma = \{\varphi : \varphi \text{ is a sentence and } \overline{A} \models \varphi[a] \text{ for some } a : \omega \to A\}$. Prove that Γ is complete and consistent.

Note by Lemma 4.4 that $\overline{A} \models \varphi[a]$ for some $a : \omega \to A$ iff $\overline{A} \models \varphi[a]$ for every $a : \omega \to A$. Let φ be any sentence. Take any $a : \omega \to A$. If $\overline{A} \models \varphi[a]$, then $\varphi \in \Gamma$ and hence $\Gamma \vdash \varphi$. Suppose that $\overline{A} \not\models \varphi[a]$. Then $\overline{A} \models \neg \varphi[a]$, hence $\neg \varphi \in \Gamma$, hence $\Gamma \vdash \neg \varphi$.

This shows that Γ is complete. Suppose that Γ is not consistent. Then $\Gamma \vdash \neg (v_0 = v_0)$ by Lemma 4.1. Then $\Gamma \models \neg (v_0 = v_0)$ by Theorem 3.2. Since \overline{A} is a model of Γ , it is also a model of $\neg (v_0 = v_0)$, contradiction.

E4.8 Call a set Γ strongly complete iff for every formula φ , $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$. Prove that if Γ is strongly complete, then $\Gamma \vdash \forall v_0 \forall v_1(v_0 = v_1)$.

Assume that Γ is strongly complete. Then $\Gamma \vdash v_0 = v_1$ or $\Gamma \vdash \neg (v_0 = v_1)$. If $\Gamma \vdash v_0 = v_1$, then by generalization, $\Gamma \vdash \forall v_0 \forall v_1(v_0 = v_1)$. Suppose that $\Gamma \vdash \neg (v_0 = v_1)$. Then by generalization, $\Gamma \vdash \forall v_0 \neg (v_0 = v_1)$. By Theorem 3.27, $\Gamma \vdash \forall v_0 \neg (v_0 = v_1) \rightarrow \neg (v_1 = v_1)$. Hence $\Gamma \vdash \neg (v_1 = v_1)$. But also $\Gamma \vdash v_1 = v_1$ by Proposition 3.4, so Γ is inconsistent by Lemma 4.1, and hence again $\Gamma \vdash \forall v_0 \forall v_1(v_0 = v_1)$.

E4.9 Prove that if Γ is rich, then for every term σ with no variables occurring in σ there is an individual constant \mathbf{c} such that $\Gamma \vdash \sigma = \mathbf{c}$.

By richness we have $\Gamma \vdash \exists v_0(v_0 = \sigma) \rightarrow \mathbf{c} = \sigma$ for some individual constant \mathbf{c} . Then using (L4) it follows that $\Gamma \vdash \mathbf{c} = \sigma$.

E4.10 Prove that if Γ is rich, then for every sentence φ there is a sentence ψ with no quantifiers in it such that $\Gamma \vdash \varphi \leftrightarrow \psi$.

We proceed by induction on the number m of symbols $\neg, \rightarrow, \forall$ in φ . (More exactly, by the number of the integers 1,2,4 that occur in the sequence φ .) If m = 0, then φ is atomic and we can take $\psi = \varphi$. Assume the result for m and suppose that φ has m + 1 integers 1,2,4 in it. Then there are three possibilities. First, $\varphi = \neg \varphi'$. Let ψ' be a quantifier-free sentence such that $\Gamma \vdash \varphi' \leftrightarrow \psi'$. Then $\Gamma \vdash \varphi \leftrightarrow \neg \psi'$. Second, $\varphi = (\varphi' \rightarrow \varphi'')$. Choose quantifier-free sentences ψ' and ψ'' such that $\Gamma \vdash \varphi' \leftrightarrow \psi'$ and $\Gamma \vdash \varphi'' \leftrightarrow \psi''$. Then $\Gamma \vdash \varphi \leftrightarrow (\psi' \rightarrow \psi'')$. Third, $\varphi = \forall v_i \varphi'$. By richness, let c be an individual constant such that $\Gamma \vdash \exists v_i \neg \varphi' \rightarrow \text{Subf}_c^{v_i} \neg \varphi'$. Then by Theorem 3.33 we get

(1) $\Gamma \vdash \exists v_i \neg \varphi' \leftrightarrow \operatorname{Subf}_c^{v_i} \neg \varphi'.$

Now $\operatorname{Subf}_c^{v_i} \varphi'$ has only *m* integers 1,2,4 in it, so by the inductive hypothesis there is a sentence ψ with no quantifiers in it such that $\Gamma \vdash \operatorname{Subf}_c^{v_i} \varphi' \leftrightarrow \psi$ and hence

(2) $\Gamma \vdash \operatorname{Subf}_{c}^{v_{i}} \neg \varphi' \leftrightarrow \neg \psi.$

From (1) and (2) and a tautology we get $\Gamma \vdash \neg \exists v_i \neg \varphi' \leftrightarrow \psi$. Then by Proposition 3.31, $\Gamma \vdash \forall v_i \varphi' \leftrightarrow \psi$, finishing the inductive proof.

E4.11 Describe sentences in a language for ordering which say that \langle is a linear ordering and there are infinitely many elements. Prove that the resulting set Γ of sentences is not complete.

Let Γ consist of the following sentences:

$$\begin{split} \neg \exists v_0(v_0 < v_0); \\ \forall v_0 \forall v_1 \forall v_2 [v_0 < v_1 \land v_1 < v_2 \rightarrow v_0 < v_2]; \\ \forall v_0 \forall v_1 [v_0 < v_1 \lor v_0 = v_1 \lor v_1 < v_0]; \\ \bigwedge_{i < j < n} \neg (v_i = v_j) \quad \text{for every positive integer } n \end{split}$$

The following sentence φ holds in $(\mathbb{Q}, <)$ but not in $(\omega, <)$:

$$\forall v_0 \forall v_1 [v_0 < v_1 \rightarrow \exists v_2 (v_0 < v_2 \land v_2 < v_1)].$$

Since φ does not hold in $(\omega, <)$, we have $\Gamma \not\vDash \varphi$, by Theorem 4.2. But since φ holds in $(\mathbb{Q}, <)$, we also have $\Gamma \not\vDash \neg \varphi$ by Theorem 4.2. So Γ is not complete.

E4.12 Prove that if a sentence φ holds in every infinite model of a set Γ of sentences, then there is an $m \in \omega$ such that it holds in every model of Γ with at least m elements.

Suppose that φ holds in every infinite model of a set Γ of sentences, but for every $m \in \omega$ there is a model \overline{M} of Γ with at least m elements such that φ does not hold in \overline{M} . Let Δ be the following set:

$$\Gamma \cup \left\{ \bigwedge_{i < j < n} \neg (v_i = v_j) : n \text{ a positive integer} \right\} \cup \{\neg \varphi\}.$$

Our hypothesis implies that every finite subset Δ' of Δ has a model; for if m is the maximum of all n such that the above big conjunction is in Δ' , then the hypothesis yields a model of Δ' . By the compactness theorem we get a model \overline{N} of Δ . Thus \overline{N} is an infinite model of Γ in which φ does not hold, contradiction.

E4.13 Let \mathscr{L} be the language of ordering. Prove that there is no set Γ of sentences whose models are exactly the well-ordering structures.

Suppose there is such a set. Let us expand the language \mathscr{L} to a new one \mathscr{L}' by adding an infinite sequence $\mathbf{c}_m, m \in \omega$, of individual constants. Then consider the following set Θ of sentences: all members of Γ , plus all sentences $\mathbf{c}_{m+1} < \mathbf{c}_m$ for $m \in \omega$. Clearly every finite subset of Θ has a model, so let $\overline{A} = (A, <, a_i)_{i < \omega}$ be a model of Θ itself. (Here a_i is the 0-ary function, i.e., element of A, corresponding to \mathbf{c}_i .) Then $a_0 > a_1 > \cdots$; so $\{a_i : i \in \omega\}$ is a nonempty subset of A with no least element, contradiction.

E4.14 Suppose that Γ is a set of sentences, and φ is a sentence. Prove that if $\Gamma \models \varphi$, then $\Delta \models \varphi$ for some finite $\Delta \subseteq \Gamma$.

We prove the contrapositive: Suppose that for every finite subset Δ of Γ , $\Delta \not\models \varphi$. Thus every finite subset of $\Gamma \cup \{\neg \varphi\}$ has a model, so $\Gamma \cup \{\neg \varphi\}$ has a model, proving that $\Gamma \not\models \varphi$.

E4.15 Suppose that f is a function mapping a set M into a set N. Let $R = \{(a, b) : a, b \in M \text{ and } f(a) = f(b)\}$. Prove that R is an equivalence relation on M.

If $a \in M$, then f(a) = f(a), so $(a, a) \in R$. Thus R is reflexive on M. Suppose that $(a, b) \in R$. Then f(a) = f(b), so f(b) = f(a) and hence $(b, a) \in R$. Thus R is symmetric. Suppose that $(a, b) \in R$ and $(b, c) \in R$. Then f(a) = f(b) and f(b) = f(c), so f(a) = f(c) and hence $(a, c) \in R$.

E4.16 Suppose that R is an equivalence relation on a set M. Prove that there is a function f mapping M into some set N such that $R = \{(a,b) : a, b \in M \text{ and } f(a) = f(b)\}.$

Let N be the collection of all equivalence classes under R. For each $a \in M$ let $f(a) = [a]_R$. Then $(a, b) \in R$ iff $a, b \in M$ and $[a]_R = [b]_R$ iff $a, b \in M$ and f(a) = f(b).

E4.17 Let Γ be a set of sentences in a first-order language, and let Δ be the collection of all sentences holding in every model of Γ . Prove that $\Delta = \{\varphi : \varphi \text{ is a sentence and } \Gamma \vdash \varphi\}.$

For \subseteq , suppose that $\varphi \in \Delta$. To prove that $\Gamma \vdash \varphi$ we use the compactness theorem, proving that $\Gamma \models \varphi$. Let \overline{A} be any model of Γ . Since $\varphi \in \Delta$, it follows that \overline{A} is a model of Γ , as desired.

For \supseteq , suppose that φ is a sentence and $\Gamma \vdash \varphi$. Then by the easy direction of the completeness theorem, $\Gamma \models \varphi$. That is, every model of Γ is a model of φ . Hence $\varphi \in \Delta$.

E4.18 Prove (2) in the proof of Theorem 4.24.

By the competeness theorem it suffices to show that

$$\models \varphi \leftrightarrow \exists v_n \dots \exists v_{n+m-1} \left[\bigwedge_{j < m} (\sigma_j = v_{n+j}) \wedge \mathbf{R} v_n \dots v_{n+m-1} \right].$$

So, let \overline{A} be any structure, and suppose that $a : \omega \to A$. First suppose that $\overline{A} \models \varphi[a]$. Then $\langle \sigma_0^{\overline{A}}(a), \ldots, \sigma_{m-1}^{\overline{A}}(a) \rangle \in \mathbf{R}^{\overline{A}}$. Let

$$b = (\cdots (a_{\sigma_0^{\overline{A}}(a)}^n)_{\sigma_1^{\overline{A}}(a)}^{n+1}) \cdots)_{\sigma_{\overline{M}-1}(a)}^{n+m-1}.$$

Let j < m. Since *n* is greater than eack *k* such that v_k occurs in σ_j , we have $\sigma_j^{\overline{A}}(a) = \sigma^{\overline{A}}(b) = b_{n+j}$. Hence $\overline{A} \models (\sigma_j = v_{n+j})[b]$, and $\overline{A} \models \mathbf{R}v_n \dots v_{n+m-1}[b]$. It follows that

(*)
$$\overline{A} \models \exists v_n \dots \exists v_{n+m-1} \left[\bigwedge_{j < m} (\sigma_j = v_{n+j}) \wedge \mathbf{R} v_n \dots v_{n+m-1} \right] [a].$$

Thus we have shown that $\overline{A} \models \varphi[a]$ implies (*). Conversely, assume (*). Then there exist $x(0), \ldots, x(m-1) \in A$ such that $\left[\bigwedge_{j < m} (\sigma_j = v_{n+j}) \land \mathbf{R} v_n \ldots v_{n+m-1} \right] [b]$, where $b = (\cdots (a_{x(0)}^n)_{x(1)}^{n+1}) \cdots)_{x(m-1)}^{n-m+1}$. Let j < m. Then $\sigma_j^{\overline{A}}(a) = \sigma_j^{\overline{A}}(b) = b_{n+j}$. Also, we have $\langle b_n, \ldots; b_{n+m-1} \rangle \in \mathbf{R}^{\overline{A}}$. So $\langle \sigma_0^{\overline{A}}(a), \ldots, \sigma_{m-1}^{\overline{A}}(a) \rangle \in \mathbf{R}^{\overline{A}}$. Hence $\overline{A} \models \varphi[a]$.