
Solutions to exercises in Chapter 4

E4.1 Suppose that Γ ⊢ ϕ → ψ, Γ ⊢ ϕ → ¬ψ, and Γ ⊢ ¬ϕ → ϕ. Prove that Γ is
inconsistent.

The formula (¬ϕ → ϕ) → ϕ is a tautology. Hence by Lemma 3.3, Γ ⊢ (¬ϕ → ϕ) → ϕ.
Since also Γ ⊢ ¬ϕ→ ϕ, it follows that Γ ⊢ ϕ. Hence Γ ⊢ ψ and Γ ⊢ ¬ψ. Hence by Lemma
4.1, Γ is inconsistent.

E4.2 Let L be a language with just one non-logical constant, a binary relation symbol R.
Let Γ consist of all sentences of the form ∃v1∀v0[Rv0v1 ↔ ϕ] with ϕ a formula with only
v0 free. Show that Γ is inconsistent. Hint: take ϕ to be ¬Rv0v0.

By Theorem 3.27 we have

(1) Γ ⊢ ∀v0[Rv0v1 ↔ ¬Rv0v0] → [Rv1v1 ↔ ¬Rv1v1].

Now [Rv1v1 ↔ ¬Rv1v1] → ¬(v0 = v0) is a tautology, so from (1) we obtain

Γ ⊢ ∀v0[Rv0v1 ↔ ¬Rv0v0] → ¬(v0 = v0);

then generalization gives

Γ ⊢ ∀v1[∀v0[Rv0v1 ↔ ¬Rv0v0] → ¬(v0 = v0)].

Then by Proposition 3.39 we get

Γ ⊢ ∃v1∀v0[Rv0v1 ↔ ¬Rv0v0] → ¬(v0 = v0).

But the hypothesis here is a member of Γ, so we get Γ ⊢ ¬(v0 = v0). Hence by Lemma
4.1, Γ is inconsistent.

Alternate proof (due to a couple of students). Suppose that Γ is consistent. By
the completeness theorem let A be a model of Γ. Taking ϕ to be ¬Rv0v0, we get A |=
∃v1∀v0[Rv0v1 ↔ ¬Rv0v0]. Let a : ω → A be any assignment. Then by Proposition 2.8(iv)
there is a b ∈ A such that A |= ∀v0[Rv0v1 ↔ ¬Rv0v0][a

1
b]. By the definition of satisfaction

of ∀, it follows that for any c ∈ A we have A |= [Rv0v1 ↔ ¬Rv0v0][a
0 1
c b ]. Hence (c, b) ∈ RA

iff (c, b) /∈ RA, contradiction.

E4.3 Show that the first-order deduction theorem fails if the condition that ϕ is a sentence
is omitted. Hint: take Γ = ∅, let ϕ be the formula v0 = v1, and let ψ be the formula v0 = v2.

{v0 = v1} ⊢ v0 = v1

{v0 = v1} ⊢ ∀v1(v0 = v1)

{v0 = v1} ⊢ ∀v1(v0 = v1) → v0 = v2 by Theorem 3.27

{v0 = v1} ⊢ v0 = v2.
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On the other hand, let A be the structure with universe ω and define a = 〈0, 0, 1, 1, . . .〉.
Clearly A 6|= [v0 = v1 → v0 = v2][a]. Hence 6⊢ v0 = v1 → v0 = v2 by Theorem 3.2.

E4.4 In the language for A
def
= (ω, S, 0,+, ·), let τ be the term v0 + v1 · v2 and ν the

term v0 + v2. Let a be the sequence 〈0, 1, 2, . . .〉. Let ρ be obtained from τ by replacing the
occurrence of v1 by ν.

(a) Describe ρ as a sequence of integers.

(b) What is ρA(a)?

(c) What is νA(a)?
(d) Describe the sequence a1

νA(a)
as a sequence of integers.

(e) Verify that ρA(a) = τA(a1

νA(a)
) (cf. Lemma 4.4.)

(a) ρ is v0 + (v0 + v2) · v2; as a sequence of integers it is 〈7, 5, 9, 7, 5, 15, 15〉.

(b) ρA(a) = 0 + (0 + 2) · 2 = 4.

(c) νA(a) = 0 + 2 = 2.
(d) a1

νA(a)
= 〈0, 2, 2, 3, . . .〉.

(e) ρA(a) = 4, as above; τA(a1

νA(a)
) = 0 + 2 · 2 = 4.

E4.5 In the language for A
def
= (ω, S, 0,+, ·), let ϕ be the formula ∀v0(v0 · v1 = v1), let ν

be the formula v1 + v1, and let a = 〈1, 0, 1, 0, . . .〉.
(a) Describe Subfv1

ν ϕ as a sequence of integers

(b) What is νA(a)?
(c) Describe a1

νA(a)
as a sequence of integers.

(d) Determine whether A |= Subfv1

ν ϕ[a] or not.
(e) Determine whether A |= ϕ[a1

νA(a)
] or not.

(a) Subfv1

ν ϕ is ∀v0(v0 · (v1 + v1) = v1 + v1; as a sequence of integers it is

〈4, 5, 3, 9, 5, 7, 10, 10, 7, 10, 10〉.

(b) νA(a) = (v1 + v1)
A(〈1, 0, 1, 0, . . .〉) = 0 + 0 = 0.

(c) a1

νA(a)
= 〈1, 0, 1, 0, . . .〉.

(d) A |= Subfv1

ν ϕ[a] iff A |= [∀v0(v0 · (v1 +v1) = v1 +v1][〈1, 0, 1, 0, . . .〉] iff for all a ∈ ω,
a · (0 + 0) = 0 + 0; this is true.

(e) A |= ϕ[a1

νA(a)
] iff A |= [∀v0(v0 · v1 = v1][〈1, 0, 1, 0, . . .〉] iff for all a ∈ ω, a · 0 = 0;

this is true.

E4.6 Show that the condition in Lemma 4.6 that

no free occurrence of vi in ϕ is within a subformula of the form ∀vkµ with vk a variable
occurring in ν

is necessary for the conclusion of the lemma.
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In the language for A = (ω, S, 0,+, ·), let ϕ be the formula ∃v1[Sv1 = v0], ν = v1,
and a = 〈1, 1, . . .〉. Note that the condition on v0 fails. Now Subfv0

v1
ϕ is the formula

∃v1[Sv1 = v1], and there is no a ∈ ω such that Sa = a, and hence A 6|= Subfv0

v1
ϕ[a]. Also,

νA(a) = vA
1 (a) = a1 = 1, and hence a0

νA(a)
= 〈1, 1, . . .〉. Since S0 = 1, it follows that

A |= ϕ[a0

νA(a)
].

E4.7 Let A be an L -structure, with L arbitrary. Define Γ = {ϕ : ϕ is a sentence and

A |= ϕ[a] for some a : ω → A}. Prove that Γ is complete and consistent.

Note by Lemma 4.4 that A |= ϕ[a] for some a : ω → A iff A |= ϕ[a] for every a : ω → A.
Let ϕ be any sentence. Take any a : ω → A. If A |= ϕ[a], then ϕ ∈ Γ and hence Γ ⊢ ϕ.
Suppose that A 6|= ϕ[a]. Then A |= ¬ϕ[a], hence ¬ϕ ∈ Γ, hence Γ ⊢ ¬ϕ.

This shows that Γ is complete. Suppose that Γ is not consistent. Then Γ ⊢ ¬(v0 = v0)
by Lemma 4.1. Then Γ |= ¬(v0 = v0) by Theorem 3.2. Since A is a model of Γ, it is also
a model of ¬(v0 = v0), contradiction.

E4.8 Call a set Γ strongly complete iff for every formula ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Prove that
if Γ is strongly complete, then Γ ⊢ ∀v0∀v1(v0 = v1).

Assume that Γ is strongly complete. Then Γ ⊢ v0 = v1 or Γ ⊢ ¬(v0 = v1). If Γ ⊢ v0 = v1,
then by generalization, Γ ⊢ ∀v0∀v1(v0 = v1). Suppose that Γ ⊢ ¬(v0 = v1). Then by
generalization, Γ ⊢ ∀v0¬(v0 = v1). By Theorem 3.27, Γ ⊢ ∀v0¬(v0 = v1) → ¬(v1 = v1).
Hence Γ ⊢ ¬(v1 = v1). But also Γ ⊢ v1 = v1 by Proposition 3.4, so Γ is inconsistent by
Lemma 4.1, and hence again Γ ⊢ ∀v0∀v1(v0 = v1).

E4.9 Prove that if Γ is rich, then for every term σ with no variables occurring in σ there
is an individual constant c such that Γ ⊢ σ = c.

By richness we have Γ ⊢ ∃v0(v0 = σ) → c = σ for some individual constant c. Then using
(L4) it follows that Γ ⊢ c = σ.

E4.10 Prove that if Γ is rich, then for every sentence ϕ there is a sentence ψ with no
quantifiers in it such that Γ ⊢ ϕ↔ ψ.

We proceed by induction on the number m of symbols ¬, →, ∀ in ϕ. (More exactly, by
the number of the integers 1,2,4 that occur in the sequence ϕ.) If m = 0, then ϕ is atomic
and we can take ψ = ϕ. Assume the result for m and suppose that ϕ has m + 1 integers
1,2,4 in it. Then there are three possibilities. First, ϕ = ¬ϕ′. Let ψ′ be a quantifier-free
sentence such that Γ ⊢ ϕ′ ↔ ψ′. Then Γ ⊢ ϕ ↔ ¬ψ′. Second, ϕ = (ϕ′ → ϕ′′). Choose
quantifier-free sentences ψ′ and ψ′′ such that Γ ⊢ ϕ′ ↔ ψ′ and Γ ⊢ ϕ′′ ↔ ψ′′. Then
Γ ⊢ ϕ ↔ (ψ′ → ψ′′). Third, ϕ = ∀viϕ

′. By richness, let c be an individual constant such
that Γ ⊢ ∃vi¬ϕ

′ → Subfvi

c ¬ϕ′. Then by Theorem 3.33 we get

(1) Γ ⊢ ∃vi¬ϕ
′ ↔ Subfvi

c ¬ϕ′.

Now Subfvi

c ϕ
′ has only m integers 1,2,4 in it, so by the inductive hypothesis there is a

sentence ψ with no quantifiers in it such that Γ ⊢ Subfvi

c ϕ
′ ↔ ψ and hence

(2) Γ ⊢ Subfvi

c ¬ϕ′ ↔ ¬ψ.
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From (1) and (2) and a tautology we get Γ ⊢ ¬∃vi¬ϕ
′ ↔ ψ. Then by Proposition 3.31,

Γ ⊢ ∀viϕ
′ ↔ ψ, finishing the inductive proof.

E4.11 Describe sentences in a language for ordering which say that < is a linear ordering
and there are infinitely many elements. Prove that the resulting set Γ of sentences is not
complete.

Let Γ consist of the following sentences:

¬∃v0(v0 < v0);

∀v0∀v1∀v2[v0 < v1 ∧ v1 < v2 → v0 < v2];

∀v0∀v1[v0 < v1 ∨ v0 = v1 ∨ v1 < v0];
∧

i<j<n

¬(vi = vj) for every positive integer n.

The following sentence ϕ holds in (Q, <) but not in (ω,<):

∀v0∀v1[v0 < v1 → ∃v2(v0 < v2 ∧ v2 < v1)].

Since ϕ does not hold in (ω,<), we have Γ 6⊢ ϕ, by Theorem 4.2. But since ϕ holds in
(Q, <), we also have Γ 6⊢ ¬ϕ by Theorem 4.2. So Γ is not complete.

E4.12 Prove that if a sentence ϕ holds in every infinite model of a set Γ of sentences,
then there is an m ∈ ω such that it holds in every model of Γ with at least m elements.

Suppose that ϕ holds in every infinite model of a set Γ of sentences, but for every m ∈ ω
there is a model M of Γ with at least m elements such that ϕ does not hold in M . Let ∆
be the following set:

Γ ∪







∧

i<j<n

¬(vi = vj) : n a positive integer







∪ {¬ϕ}.

Our hypothesis implies that every finite subset ∆′ of ∆ has a model; for if m is the
maximum of all n such that the above big conjunction is in ∆′, then the hypothesis yields
a model of ∆′. By the compactness theorem we get a model N of ∆. Thus N is an infinite
model of Γ in which ϕ does not hold, contradiction.

E4.13 Let L be the language of ordering. Prove that there is no set Γ of sentences whose
models are exactly the well-ordering structures.

Suppose there is such a set. Let us expand the language L to a new one L ′ by adding an
infinite sequence cm, m ∈ ω, of individual constants. Then consider the following set Θ of
sentences: all members of Γ, plus all sentences cm+1 < cm for m ∈ ω. Clearly every finite
subset of Θ has a model, so let A = (A,<, ai)i<ω be a model of Θ itself. (Here ai is the
0-ary function, i.e., element of A, corresponding to ci.) Then a0 > a1 > · · ·; so {ai : i ∈ ω}
is a nonempty subset of A with no least element, contradiction.
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E4.14 Suppose that Γ is a set of sentences, and ϕ is a sentence. Prove that if Γ |= ϕ,
then ∆ |= ϕ for some finite ∆ ⊆ Γ.

We prove the contrapositive: Suppose that for every finite subset ∆ of Γ, ∆ 6|= ϕ. Thus
every finite subset of Γ∪{¬ϕ} has a model, so Γ∪{¬ϕ} has a model, proving that Γ 6|= ϕ.

E4.15 Suppose that f is a function mapping a set M into a set N . Let R = {(a, b) :
a, b ∈M and f(a) = f(b)}. Prove that R is an equivalence relation on M .

If a ∈ M , then f(a) = f(a), so (a, a) ∈ R. Thus R is reflexive on M . Suppose that
(a, b) ∈ R. Then f(a) = f(b), so f(b) = f(a) and hence (b, a) ∈ R. Thus R is symmetric.
Suppose that (a, b) ∈ R and (b, c) ∈ R. Then f(a) = f(b) and f(b) = f(c), so f(a) = f(c)
and hence (a, c) ∈ R.

E4.16 Suppose that R is an equivalence relation on a set M . Prove that there is a function
f mapping M into some set N such that R = {(a, b) : a, b ∈M and f(a) = f(b)}.

Let N be the collection of all equivalence classes under R. For each a ∈M let f(a) = [a]R.
Then (a, b) ∈ R iff a, b ∈M and [a]R = [b]R iff a, b ∈M and f(a) = f(b).

E4.17 Let Γ be a set of sentences in a first-order language, and let ∆ be the collection of
all sentences holding in every model of Γ. Prove that ∆ = {ϕ : ϕ is a sentence and Γ ⊢ ϕ}.

For ⊆, suppose that ϕ ∈ ∆. To prove that Γ ⊢ ϕ we use the compactness theorem, proving
that Γ |= ϕ. Let A be any model of Γ. Since ϕ ∈ ∆, it follows that A is a model of Γ, as
desired.

For ⊇, suppose that ϕ is a sentence and Γ ⊢ ϕ. Then by the easy direction of the
completeness theorem, Γ |= ϕ. That is, every model of Γ is a model of ϕ. Hence ϕ ∈ ∆.

E4.18 Prove (2) in the proof of Theorem 4.24.

By the competeness theorem it suffices to show that

|= ϕ↔ ∃vn . . .∃vn+m−1





∧

j<m

(σj = vn+j) ∧ Rvn . . . vn+m−1



 .

So, let A be any structure, and suppose that a : ω → A. First suppose that A |= ϕ[a].

Then 〈σA
0 (a), . . . , σA

m−1(a)〉 ∈ RA. Let

b = (· · · (an

σA

0
(a)

)n+1

σA

1
(a)

) · · ·)n+m−1

σA

m−1
(a)
.

Let j < m. Since n is greater than eack k such that vk occurs in σj , we have σA
j (a) =

σA(b) = bn+j . Hence A |= (σj = vn+j)[b], and A |= Rvn . . . vn+m−1[b]. It follows that

(∗) A |= ∃vn . . .∃vn+m−1





∧

j<m

(σj = vn+j) ∧Rvn . . . vn+m−1



 [a].
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Thus we have shown that A |= ϕ[a] implies (∗). Conversely, assume (∗). Then there

exist x(0), . . . , x(m − 1) ∈ A such that
[

∧

j<m(σj = vn+j) ∧Rvn . . . vn+m−1

]

[b], where

b = (· · · (an
x(0))

n+1
x(1)) · · ·)

n−m+1
x(m−1). Let j < m. Then σA

j (a) = σA
j (b) = bn+j . Also, we have

〈bn, . . . ; bn+m−1〉 ∈ RA. So 〈σA
0 (a), . . . , σA

m−1(a)〉 ∈ RA. Hence A |= ϕ[a].
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