Solutions to exercises in Chapter 3

E3.1 Do the case $\mathbf{R}\sigma_0 \ldots \sigma_{m-1}$ for some m-ary relation symbol and terms $\sigma_0, \ldots, \sigma_{m-1}$ in the proof of Theorem 3.1, (L3).

We are assuming that v_i does not occur in $\mathbf{R}\sigma_0\ldots\sigma_{m-1}$; hence it does not occur in any term σ_i .

$$\overline{A} \models (\mathbf{R}\sigma_0 \dots \sigma_{m-1})[a] \quad \text{iff} \quad \langle \sigma_0^{\overline{A}}(a), \dots, \sigma_{m-1}^{\overline{R}}(a) \rangle \in \mathbf{R}^{\overline{A}}$$
$$\text{iff} \quad \langle \sigma_0^{\overline{A}}(b), \dots, \sigma_{m-1}^{\overline{R}}(b) \rangle \in \mathbf{R}^{\overline{A}}$$
$$(\text{by Proposition 2.4})$$
$$\text{iff} \quad \overline{A} \models (\mathbf{R}\sigma_0 \dots \sigma_{m-1})[b].$$

E3.2 Prove that (L6) is universally valid, in the proof of Theorem 3.1.

Assume that $\overline{A} \models (\sigma = \tau)[a]$ and $\overline{A} \models (\rho = \sigma)[a]$. Then $\sigma^{\overline{A}}(a) = \tau^{\overline{A}}(a)$ and $\rho^{\overline{A}}(a) = \sigma^{\overline{A}}(a)$, so $\rho^{\overline{A}}(a) = \tau^{\overline{A}}(a)$, hence $\overline{A} \models (\rho = \tau)[a]$.

E3.3 Prove that (L8) is universally valid, in the proof of Theorem 3.1.

Assume that $\overline{A} \models (\sigma = \tau)[a]$. Then $\sigma^{\overline{A}}(a) = \tau^{\overline{A}}(a)$. Assume that

$$A \models (\mathbf{R}\xi_0 \dots \xi_{i-1}\sigma\xi_{i+1} \dots \xi_{m-1})[a]; \text{ hence}$$

$$\langle \xi_0^{\overline{A}}(a), \dots, \xi_{i-1}^{\overline{A}}(a), \sigma^{\overline{A}}(a), \xi_{i+1}^{\overline{A}}(a), \dots, \xi_{m-1}^{\overline{A}}(a) \rangle \in \mathbf{R}^{\overline{A}}; \text{ hence}$$

$$\langle \xi_0^{\overline{A}}(a), \dots, \xi_{i-1}^{\overline{A}}(a), \tau^{\overline{A}}(a), \xi_{i+1}^{\overline{A}}(a), \dots, \xi_{m-1}^{\overline{A}}(a) \rangle \in \mathbf{R}^{\overline{A}}; \text{ hence}$$

$$\overline{A} \models (\mathbf{R}\xi_0 \dots \xi_{i-1}\tau\xi_{i+1} \dots \xi_{m-1})[a];$$

hence (L8) is universally valid.

E3.4 Finish the proof of Proposition 3.11.

We are assuming inductively that φ is $\forall v_s \psi$ with ψ a formula and $s \in \omega$. Thus φ is $\langle 4, 5(s+1) \rangle \widehat{\psi}$. If i = 0, then φ itself is the desired segment, unique by Proposition 2.6(iii). Suppose that i > 0. Then by the hypothesis of the proposition, actually i > 1, since φ_1 is 5(s+1). So φ_i is an entry in ψ and hence by the inductive assumption, there is a segment $\langle \varphi_i, \varphi_{i+1}, \ldots, \varphi_m \rangle$ which is a formula; this is also a segment of φ , and it is unique by Proposition 2.6(iii).

E3.5 Indicate which occurrences of the variables are bound and which ones free for the following formulas.

 $\exists v_0(v_0 < v_1) \land \forall v_1(v_0 = v_1). \\ v_4 + v_2 = v_0 \land \forall v_3(v_0 = v_1). \\ \exists v_2(v_4 + v_2 = v_0).$

First formula: the first and second occurrences of v_0 are bound, and the third one is free. The first occurrence of v_1 is free, and the other two are bound. Second formula: the occurrence of v_3 is bound. All other occurrences of variables are free.

Third formula: the two occurrences of v_2 are bound. The other occurrences of variables are free.

E3.6 Finish the proof of Proposition 3.13.

Suppose that φ is an atomic non-equality formula; so there is a relation symbol **R** and terms $\sigma_0, \ldots, \sigma_{n-1}$ such that φ is $\langle \mathbf{R} \rangle \widehat{\sigma_0} \cdots \widehat{\sigma_{n-1}}$. Hence i > 0, and it is inside some term σ_j . By Proposition 3.12 there is a term which is a segment of σ_j beginning at i; it is also a segment of φ , and it is unique by Proposition 2.2(iii).

Suppose inductively that φ is $\neg \psi$, i.e., it is $\langle 0 \rangle \frown \psi$. Then i > 0, so that it is inside ψ . Hence the inductive hypothesis gives the desired result.

Suppose inductively that φ is $\psi \to \chi$, i.e., it is $\langle 1 \rangle \widehat{\psi} \chi$. Then i > 0 and i is inside ψ or χ ; the inductive hypothesis gives the desired result.

Suppose inductively that φ is $\forall v_k \psi$, i.e., it is $\langle 4, 5(k+1) \rangle \widehat{\psi}$. So i > 0. If i = 1, then φ_i is 5(k+1), so that $\langle 5(k+1) \rangle$ is a term which is a segment of φ , unique by Proposition 2.2(iii). If i > 1, then it is inside ψ , and the inductive hypothesis gives the desired result.

E3.7 Indicate all free and bound occurrences of terms in the formula $v_0 = v_1 + v_1 \rightarrow \exists v_2(v_0 + v_2 = v_1).$

 v_0 is free in both of its occcurrences.

 v_1 is free in all three of its occurrences.

 v_2 is bound in both of its occurrences.

 $v_1 + v_1$ is free in its occurrence.

 $v_0 + v_2$ is bound in its occurrence.

E3.8 Prove Proposition 3.16

Induction on φ . Suppose that φ is $\rho = \xi$. Then by Proposition 3.13, σ occurs in ρ or ξ . Suppose that it occurs in ρ . Let ρ' be obtained from ρ by replacing that occurrence of σ by τ . Then ρ' is a term by Proposition 3.14. Since ψ is $\rho' = \xi$, ψ is a formula. The case in which σ occurs in ξ is similar. Now suppose that φ is $\mathbf{R}\eta_0 \dots \eta_{m-1}$ with \mathbf{R} an *m*-ary relation symbol and $\eta_0, \dots, \eta_{m-1}$ are terms. Then the occurrence of σ is within some η_i . Let η'_i be obtained from η_i by replacing that occurrence by τ . Now ψ is $\mathbf{R}\eta_0 \dots \eta_{i-1}\eta'_i \dots \eta_{m-1}$, so ψ is a formula.

Now suppose that the result holds for φ' , and φ is $\neg \varphi'$. Then σ occurs in φ' , so if ψ' is obtained from φ' by replacing the occurrence of σ by τ , then ψ' is a formula by the inductive assumption. Since ψ is $\neg \psi'$ also ψ is a formula.

Next, suppose that the result holds for φ' and φ'' , and φ is $\varphi' \to \varphi''$. Then the occurrence of σ is within φ' or is within φ'' . If it is within φ' , let ψ' be obtained from φ' by replacing that occurrence of σ by τ . Then ψ' is a formula by the inductive hypothesis. Since ψ is $\psi' \to \varphi''$, also ψ is a formula. If the occurrence is within φ'' , let ψ'' be obtained from φ'' by replacing that occurrence of σ by τ . Then ψ'' is a formula by the inductive hypothesis. Since ψ is $\varphi' \to \varphi''$, also ψ is a formula. If the occurrence is within φ'' , let ψ'' be obtained from φ'' by replacing that occurrence of σ by τ . Then ψ'' is a formula by the inductive hypothesis. Since ψ is $\varphi' \to \psi''$, also ψ is a formula.

Finally, suppose that the result holds for φ' , and φ is $\forall v_k \varphi'$. If i = 1, then σ is v_k , and by hypothesis τ is some variable v_l . Then ψ is $\forall v_l \varphi'$, which is a formula. If i > 1, then

 σ occurs in φ' , so if ψ' is obtained from φ' by replacing the occurrence of σ by τ , then ψ' is a formula by the inductive assumption. Since ψ is $\forall v_k \psi'$ also ψ is a formula.

E3.9 Show that the condition in Proposition 3.17 that the resulting occurrence of τ is free is necessary. Hint: use Theorem 3.2; describe a specific formula of the type in Proposition 3.17, but with τ not free, such that the formula is not universally valid.

Consider the language for (ω, S) , and the formula

$$v_0 = v_1 \to (\exists v_1(\mathbf{S}v_0 = v_1) \leftrightarrow \exists v_1(\mathbf{S}v_1 = v_1)).$$

Taking an assignment $a: \omega \to \omega$ with $a_0 = a_1$ makes this sentence false; hence it is not provable, by Theorem 3.2.

E3.10 Prove Proposition 3.19

Induction on φ . If φ is atomic, then ψ is equal to φ , and θ is equal to χ and hence is a formula. Suppose the result is true for φ' and φ is $\neg \varphi'$. If $\psi = \varphi$, again the desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula φ' . If θ' is obtained from φ' by replacing that occurrence by χ , then θ' is a formula by the inductive hypothesis. Since θ is $\neg \theta'$, also θ is a formula.

Now suppose the result is true for φ' and φ'' , and φ is $\varphi' \to \varphi''$. If $\psi = \varphi$, again the desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula φ' or is within the subformula φ'' . If it is within φ' and θ' is obtained from φ' by replacing that occurrence by χ , then θ' is a formula by the inductive hypothesis. Since θ is $\theta' \to \varphi''$, also θ is a formula. If it is within φ'' and θ'' is obtained from φ'' by replacing that occurrence by χ , then θ'' is a formula by the inductive hypothesis. Since θ is $\varphi' \to \varphi''$, also θ is a formula. If it is within φ'' and θ'' is obtained from φ'' by replacing that occurrence by χ , then θ'' is a formula by the inductive hypothesis. Since θ is $\varphi' \to \theta''$, also θ is a formula.

Finally, suppose the result is true for φ' and φ is $\forall v_i \varphi'$. If $\psi = \varphi$, again the desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula φ' . If θ' is obtained from φ' by replacing that occurrence by χ , then θ' is a formula by the inductive hypothesis. Since θ is $\forall v_i \theta'$, also θ is a formula.

E3.11 Prove that the hypothesis of Theorem 3.27 is necessary.

Consider the formula

$$\forall v_0 \exists v_1 (v_0 < v_1) \to \exists v_1 (v_1 < v_1).$$

This formula is not universally valid; it fails to hold in $(\omega, <)$, for example. In the notation of Theorem 3.27 we have i = 0, φ is the formula $\exists v_1(v_0 < v_1)$, σ is v_1 , and $\operatorname{Subf}_{\sigma}^{v_i}$ is $\exists v_1(v_1 < v_1)$. Note that the free occurrence of v_0 in $\exists v_1(v_0 < v_1)$ is within a subformula of $\exists v_1(v_0 < v_1)$ of the form $\forall v_1 \psi$ with v_1 occurring in σ . Namely, $\exists v_1(v_0 < v_1)$ is by definition $\neg \forall v_1 \neg (v_0 < v_1)$, and the subformula is $\forall v_1 \neg (v_0 < v_1)$.

E3.12 Prove Proposition 3.31.

Proof. By definition, $\exists v_i \neg \varphi$ is $\neg \forall v_i \neg \neg \varphi$. Now $\vdash \varphi \leftrightarrow \neg \neg \varphi$ by a tautology. Hence using generalization and (L2) we get $\vdash \forall v_i \varphi \leftrightarrow \forall v_i \neg \neg \varphi$. Hence another tautology yields $\vdash \neg \forall v_i \varphi \leftrightarrow \neg \forall v_i \neg \neg \varphi$, i.e., $\vdash \neg \forall v_i \varphi \leftrightarrow \exists v_i \neg \varphi$. E3.13 Prove Proposition 3.32.

Proof. $\neg \exists v_i \varphi$ is the formula $\neg \neg \forall v_i \neg \varphi$, so a simple tautology gives the result. E3.14 Prove Proposition 3.33.

Proof. By Theorem 3.27 we have $\vdash \forall v_i \neg \varphi \rightarrow \text{Subf}_{\sigma}^{v_i}(\neg \varphi)$. Since clearly $\text{Subf}_{\sigma}^{v_i}(\neg \varphi)$ is the same as $\neg \text{Subf}_{\sigma}^{v_i}\varphi$, a tautology gives $\vdash \text{Subf}_{\sigma}^{v_i}\varphi \rightarrow \exists v_i\varphi$.

E3.15 Prove Proposition 3.35.

Proof. By Corollary 3.28, Corollary 3.34, and a tautology.

E3.16 Prove Proposition 3.36.

Proof. $\vdash \varphi \to \exists v_i \varphi$ by Corollary 3.34. $\vdash \neg \varphi \to \forall v_i \neg \varphi$ by Proposition 3.29. Hence the result follows by a tautology.

E3.17 Prove Proposition 3.43.

Proof. Assume that $\vdash \varphi \leftrightarrow \psi$. By a tautology, $\vdash \varphi \rightarrow \psi$. Generalization and (L2) then give $\vdash \forall v_i \varphi \rightarrow \forall v_i \psi$. Similarly, $\vdash \forall v_i \psi \rightarrow \forall v_i \varphi$. Now a tautology finishes the proof.

E3.18 Prove Proposition 3.44.

Proof. Assume that $\vdash \varphi \leftrightarrow \psi$. By a tautology, $\vdash \neg \varphi \leftrightarrow \neg \psi$. Then by Proposition 3.43, $\vdash \forall v_i \neg \varphi \leftrightarrow \forall v_i \neg \psi$. Now a tautology finishes the proof.

E3.19 Find a formula in prenex normal form equivalent to the following formula:

$$\forall v_0 \exists v_1 (v_0 < v_1) \land \exists v_1 \forall v_0 (v_0 < v_1).$$

First solution. By Theorem 3.37 we have

(1)
$$\vdash \exists v_1 \forall v_0 (v_0 < v_1) \rightarrow \forall v_0 \exists v_1 (v_0 < v_1).$$

Now $(1) \rightarrow [\forall v_0 \exists v_1 (v_0 < v_1) \land \exists v_1 \forall v_0 (v_0 < v_1) \leftrightarrow \exists v_1 \forall v_0 (v_0 < v_1)]$ is a tautology. It follows that $\exists v_1 \forall v_0 (v_0 < v_1)$ is a formula in prenex normal form equivalent to the given formula.

Second solution. (This solution indicates a pattern which can be followed in many other cases.)

By the change of bound variable theorem 3.25,

(1)
$$\vdash \exists v_1 \forall v_0 (v_0 < v_1) \leftrightarrow \exists v_2 \forall v_0 (v_0 < v_2)$$

Again by 3.25,

(2)
$$\vdash \exists v_2 \forall v_0 (v_0 < v_2) \leftrightarrow \exists v_2 \forall v_3 (v_3 < v_2)$$

By (1), (2), and a tautology,

$$\vdash \exists v_1 \forall v_0 (v_0 < v_1) \leftrightarrow \exists v_2 \forall v_3 (v_3 < v_2);$$

then another tautology gives

$$(3) \qquad \vdash \forall v_0 \exists v_1 (v_0 < v_1) \land \exists v_1 \forall v_0 (v_0 < v_1) \leftrightarrow \forall v_0 \exists v_1 (v_0 < v_1) \land \exists v_2 \forall v_3 (v_3 < v_2).$$

Now by Theorem 3.48 we have

$$\vdash v_0 < v_1 \land \exists v_2 \forall v_3 (v_3 < v_2) \leftrightarrow \exists v_2 \forall v_3 (v_0 < v_1 \land v_3 < v_2)$$

Applying Propositions 3.43 and 3.44 to this we get

$$(4) \qquad \vdash \forall v_0 \exists v_1 (v_0 < v_1 \land \exists v_2 \forall v_3 (v_3 < v_2) \leftrightarrow \forall v_0 \exists v_1 \exists v_2 \forall v_3 (v_0 < v_1 \land v_3 < v_2)$$

Now by Theorem 3.47 we have

(5)
$$\vdash \forall v_0 \exists v_1 (v_0 < v_1) \land \exists v_2 \forall v_3 (v_3 < v_2) \leftrightarrow \forall v_0 \exists v_1 (v_0 < v_1 \land \exists v_2 \forall v_3 (v_3 < v_2))$$

Now (3), (4), (5) and a tautology give the result of the exercise.

E3.21 Prove that

$$\vdash \forall v_0 \forall v_1 (v_0 = v_1) \rightarrow \forall v_0 (v_0 = v_1 \lor v_0 = v_2).$$

$$\vdash \forall v_0 \forall v_1 (v_0 = v_1) \to v_0 = v_1; \quad \text{Cor. 3.28 twice, taut.}$$
(1)

$$\vdash \forall v_1(v_0 = v_1) \to v_0 = v_2; \text{ Thm. } 3.27$$
 (2)

$$-\forall v_0 \forall v_1 (v_0 = v_1) \to v_0 = v_2;$$
 (2), Cor. 3.28, taut. (3)

$$\vdash \forall v_0 \forall v_1 (v_0 = v_1) \to v_0 = v_1 \lor v_0 = v_2; \quad (1), (3), \text{ taut.}$$
(4)

$$\vdash \forall v_0 \forall v_0 \forall v_1 (v_0 = v_1) \to \forall v_0 (v_0 = v_1 \lor v_0 = v_2); \quad (4), \, (L2), \, taut.$$
(5)

$$\vdash \forall v_0 \forall v_1 (v_0 = v_1) \rightarrow \forall v_0 (v_0 = v_1 \lor v_0 = v_2).$$
 (5), Prop. 3.29, taut.

E3.22 Prove that

$$\vdash \exists v_0(\neg v_0 = v_1 \land \neg v_0 = v_2) \to \exists v_0 \exists v_1(\neg v_0 = v_1).$$

$$\vdash \neg \forall v_0 (v_0 = v_1 \lor v_0 = v_2) \to \neg \forall v_0 \forall v_1 (v_0 = v_1); \quad \text{E3.21, taut.}$$
(1)

$$\vdash \neg \forall v_0 (v_0 = v_1 \lor v_0 = v_2) \leftrightarrow \exists v_0 \neg (v_0 = v_1 \lor v_0 = v_2); \quad \text{Prop. 3.31}$$

$$(2)$$

$$\vdash \neg (v_0 = v_1 \lor v_0 = v_2) \leftrightarrow (\neg (v_0 = v_1) \land \neg (v_0 = v_2)); \quad \text{taut.}$$
(3)

$$\vdash \exists v_0 \neg (v_0 = v_1 \lor v_0 = v_2) \leftrightarrow \exists v_0 (\neg (v_0 = v_1) \land \neg (v_0 = v_2)); \quad (3), \text{ Prop. 3.44} \quad (4)$$

$$\vdash \neg \forall v_0(v_0 = v_1 \lor v_0 = v_2) \leftrightarrow \exists v_0(\neg (v_0 = v_1) \land \neg (v_0 = v_2)); \quad (2), (4), \text{ taut.}$$
(5)

$$\vdash \neg \forall v_1(v_0 = v_1) \leftrightarrow \exists v_1 \neg (v_0 = v_1); \quad \text{Prop. 3.31}$$
(6)

$$\vdash \exists v_0 \neg \forall v_1 (v_0 = v_1) \leftrightarrow \exists v_0 \exists v_1 \neg (v_0 = v_1); \quad (6), \text{ Prop. } 3.44 \tag{7}$$

$$\vdash \neg \forall v_0 \forall v_1 (v_0 = v_1) \leftrightarrow \exists v_0 \neg \forall v_1 (v_0 = v_1); \quad \text{Prop. 3.31}$$
(8)

$$\vdash \neg \forall v_0 \forall v_1 (v_0 = v_1) \leftrightarrow \exists v_0 \exists v_1 \neg (v_0 = v_1) \quad (7), (8), \text{ taut.}$$

$$(9)$$

$$\vdash \exists v_0(\neg v_0 = v_1 \land \neg v_0 = v_2) \to \exists v_0 \exists v_1(\neg v_0 = v_1). \quad (1), (5), (9), \text{ taut.} \qquad \Box$$