
Solutions to exercises in Chapter 3

E3.1 Do the case Rσ0 . . . σm−1 for some m-ary relation symbol and terms σ0, . . . , σm−1

in the proof of Theorem 3.1, (L3).

We are assuming that vi does not occur in Rσ0 . . . σm−1; hence it does not occur in any
term σi.

A |= (Rσ0 . . . σm−1)[a] iff 〈σA
0 (a), . . . , σR

m−1(a)〉 ∈ RA

iff 〈σA
0 (b), . . . , σR

m−1(b)〉 ∈ RA

(by Proposition 2.4)

iff A |= (Rσ0 . . . σm−1)[b].

E3.2 Prove that (L6) is universally valid, in the proof of Theorem 3.1.

Assume that A |= (σ = τ)[a] and A |= (ρ = σ)[a]. Then σA(a) = τA(a) and ρA(a) = σA(a),

so ρA(a) = τA(a), hence A |= (ρ = τ)[a].

E3.3 Prove that (L8) is universally valid, in the proof of Theorem 3.1.

Assume that A |= (σ = τ)[a]. Then σA(a) = τA(a). Assume that

A |= (Rξ0 . . . ξi−1σξi+1 . . . ξm−1)[a]; hence

〈ξA
0 (a), . . . , ξA

i−1(a), σ
A(a), ξA

i+1(a), . . . , ξ
A
m−1(a)〉 ∈ RA; hence

〈ξA
0 (a), . . . , ξA

i−1(a), τ
A(a), ξA

i+1(a), . . . , ξ
A
m−1(a)〉 ∈ RA; hence

A |= (Rξ0 . . . ξi−1τξi+1 . . . ξm−1)[a];

hence (L8) is universally valid.

E3.4 Finish the proof of Proposition 3.11.

We are assuming inductively that ϕ is ∀vsψ with ψ a formula and s ∈ ω. Thus ϕ is
〈4, 5(s + 1)〉⌢ψ. If i = 0, then ϕ itself is the desired segment, unique by Proposition
2.6(iii). Suppose that i > 0. Then by the hypothesis of the proposition, actually i > 1,
since ϕ1 is 5(s+ 1). So ϕi is an entry in ψ and hence by the inductive assumption, there
is a segment 〈ϕi, ϕi+1, . . . ϕm〉 which is a formula; this is also a segment of ϕ, and it is
unique by Proposition 2.6(iii).

E3.5 Indicate which occurrences of the variables are bound and which ones free for the
following formulas.

∃v0(v0 < v1) ∧ ∀v1(v0 = v1).
v4 + v2 = v0 ∧ ∀v3(v0 = v1).
∃v2(v4 + v2 = v0).

First formula: the first and second occurrences of v0 are bound, and the third one is free.
The first occurrence of v1 is free, and the other two are bound.
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Second formula: the occurrence of v3 is bound. All other occurrences of variables are free.

Third formula: the two occurrences of v2 are bound. The other occurrences of variables
are free.

E3.6 Finish the proof of Proposition 3.13.

Suppose that ϕ is an atomic non-equality formula; so there is a relation symbol R and
terms σ0, . . . σn−1 such that ϕ is 〈R〉⌢σ⌢

0 · · ·⌢ σn−1. Hence i > 0, and it is inside some
term σj . By Proposition 3.12 there is a term which is a segment of σj beginning at i; it is
also a segment of ϕ, and it is unique by Proposition 2.2(iii).

Suppose inductively that ϕ is ¬ψ, i.e., it is 〈0〉⌢ψ. Then i > 0, so that it is inside ψ.
Hence the inductive hypothesis gives the desired result.

Suppose inductively that ϕ is ψ → χ, i.e., it is 〈1〉⌢ψ⌢χ. Then i > 0 and i is inside
ψ or χ; the inductive hypothesis gives the desired result.

Suppose inductively that ϕ is ∀vkψ, i.e., it is 〈4, 5(k+ 1)〉⌢ψ. So i > 0. If i = 1, then
ϕi is 5(k+ 1), so that 〈5(k+ 1)〉 is a term which is a segment of ϕ, unique by Proposition
2.2(iii). If i > 1, then it is inside ψ, and the inductive hypothesis gives the desired result.

E3.7 Indicate all free and bound occurrences of terms in the formula v0 = v1 + v1 →
∃v2(v0 + v2 = v1).

v0 is free in both of its occcurrences.
v1 is free in all three of its occurrences.
v2 is bound in both of its occurrences.
v1 + v1 is free in its occurrence.
v0 + v2 is bound in its occurrence.

E3.8 Prove Proposition 3.16

Induction on ϕ. Suppose that ϕ is ρ = ξ. Then by Proposition 3.13, σ occurs in ρ or
ξ. Suppose that it occurs in ρ. Let ρ′ be obtained from ρ by replacing that occurrence
of σ by τ . Then ρ′ is a term by Proposition 3.14. Since ψ is ρ′ = ξ, ψ is a formula.
The case in which σ occurs in ξ is similar. Now suppose that ϕ is Rη0 . . . ηm−1 with
R an m-ary relation symbol and η0, . . . , ηm−1 are terms. Then the occurrence of σ is
within some ηi. Let η′i be obtained from ηi by replacing that occurrence by τ . Now ψ is
Rη0 . . . ηi−1η

′

i . . . ηm−1, so ψ is a formula.
Now suppose that the result holds for ϕ′, and ϕ is ¬ϕ′. Then σ occurs in ϕ′, so if

ψ′ is obtained from ϕ′ by replacing the occurrence of σ by τ , then ψ′ is a formula by the
inductive assumption. Since ψ is ¬ψ′ also ψ is a formula.

Next, suppose that the result holds for ϕ′ and ϕ′′, and ϕ is ϕ′ → ϕ′′. Then the
occurrence of σ is within ϕ′ or is within ϕ′′. If it is within ϕ′, let ψ′ be obtained from ϕ′

by replacing that occurrence of σ by τ . Then ψ′ is a formula by the inductive hypothesis.
Since ψ is ψ′ → ϕ′′, also ψ is a formula. If the occurrence is within ϕ′′, let ψ′′ be obtained
from ϕ′′ by replacing that occurrence of σ by τ . Then ψ′′ is a formula by the inductive
hypothesis. Since ψ is ϕ′ → ψ′′, also ψ is a formula.

Finally, suppose that the result holds for ϕ′, and ϕ is ∀vkϕ
′. If i = 1, then σ is vk,

and by hypothesis τ is some variable vl. Then ψ is ∀vlϕ
′, which is a formula. If i > 1, then
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σ occurs in ϕ′, so if ψ′ is obtained from ϕ′ by replacing the occurrence of σ by τ , then ψ′

is a formula by the inductive assumption. Since ψ is ∀vkψ
′ also ψ is a formula.

E3.9 Show that the condition in Proposition 3.17 that the resulting occurrence of τ is free
is necessary. Hint: use Theorem 3.2; describe a specific formula of the type in Proposition
3.17, but with τ not free, such that the formula is not universally valid.

Consider the language for (ω, S), and the formula

v0 = v1 → (∃v1(Sv0 = v1) ↔ ∃v1(Sv1 = v1)).

Taking an assignment a : ω → ω with a0 = a1 makes this sentence false; hence it is not
provable, by Theorem 3.2.

E3.10 Prove Proposition 3.19

Induction on ϕ. If ϕ is atomic, then ψ is equal to ϕ, and θ is equal to χ and hence is
a formula. Suppose the result is true for ϕ′ and ϕ is ¬ϕ′. If ψ = ϕ, again the desired
conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′. If θ′ is
obtained from ϕ′ by replacing that occurrence by χ, then θ′ is a formula by the inductive
hypothesis. Since θ is ¬θ′, also θ is a formula.

Now suppose the result is true for ϕ′ and ϕ′′, and ϕ is ϕ′ → ϕ′′. If ψ = ϕ, again the
desired conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′ or
is within the subformula ϕ′′. If it is within ϕ′ and θ′ is obtained from ϕ′ by replacing that
occurrence by χ, then θ′ is a formula by the inductive hypothesis. Since θ is θ′ → ϕ′′, also
θ is a formula. If it is within ϕ′′ and θ′′ is obtained from ϕ′′ by replacing that occurrence
by χ, then θ′′ is a formula by the inductive hypothesis. Since θ is ϕ′ → θ′′, also θ is a
formula.

Finally, suppose the result is true for ϕ′ and ϕ is ∀viϕ
′. If ψ = ϕ, again the desired

conclusion is clear. Otherwise the occurrence of ψ is within the subformula ϕ′. If θ′ is
obtained from ϕ′ by replacing that occurrence by χ, then θ′ is a formula by the inductive
hypothesis. Since θ is ∀viθ

′, also θ is a formula.

E3.11 Prove that the hypothesis of Theorem 3.27 is necessary.

Consider the formula
∀v0∃v1(v0 < v1) → ∃v1(v1 < v1).

This formula is not universally valid; it fails to hold in (ω,<), for example. In the notation
of Theorem 3.27 we have i = 0, ϕ is the formula ∃v1(v0 < v1), σ is v1, and Subfvi

σ is
∃v1(v1 < v1). Note that the free occurrence of v0 in ∃v1(v0 < v1) is within a subformula
of ∃v1(v0 < v1) of the form ∀v1ψ with v1 occurring in σ. Namely, ∃v1(v0 < v1) is by
definition ¬∀v1¬(v0 < v1), and the subformula is ∀v1¬(v0 < v1).

E3.12 Prove Proposition 3.31.

Proof. By definition, ∃vi¬ϕ is ¬∀vi¬¬ϕ. Now ⊢ ϕ ↔ ¬¬ϕ by a tautology. Hence
using generalization and (L2) we get ⊢ ∀viϕ ↔ ∀vi¬¬ϕ. Hence another tautology yields
⊢ ¬∀viϕ↔ ¬∀vi¬¬ϕ, i.e., ⊢ ¬∀viϕ↔ ∃vi¬ϕ.
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E3.13 Prove Proposition 3.32.

Proof. ¬∃viϕ is the formula ¬¬∀vi¬ϕ, so a simple tautology gives the result.

E3.14 Prove Proposition 3.33.

Proof. By Theorem 3.27 we have ⊢ ∀vi¬ϕ → Subfvi

σ (¬ϕ). Since clearly Subfvi

σ (¬ϕ)
is the same as ¬Subfvi

σ ϕ, a tautology gives ⊢ Subfvi

σ ϕ→ ∃viϕ.

E3.15 Prove Proposition 3.35.

Proof. By Corollary 3.28, Corollary 3.34, and a tautology.

E3.16 Prove Proposition 3.36.

Proof. ⊢ ϕ → ∃viϕ by Corollary 3.34. ⊢ ¬ϕ → ∀vi¬ϕ by Proposition 3.29. Hence
the result follows by a tautology.

E3.17 Prove Proposition 3.43.

Proof. Assume that ⊢ ϕ ↔ ψ. By a tautology, ⊢ ϕ → ψ. Generalization and
(L2) then give ⊢ ∀viϕ → ∀viψ. Similarly, ⊢ ∀viψ → ∀viϕ. Now a tautology finishes the
proof.

E3.18 Prove Proposition 3.44.

Proof. Assume that ⊢ ϕ ↔ ψ. By a tautology, ⊢ ¬ϕ ↔ ¬ψ. Then by Proposition
3.43, ⊢ ∀vi¬ϕ ↔ ∀vi¬ψ. Now a tautology finishes the proof.

E3.19 Find a formula in prenex normal form equivalent to the following formula:

∀v0∃v1(v0 < v1) ∧ ∃v1∀v0(v0 < v1).

First solution. By Theorem 3.37 we have

(1) ⊢ ∃v1∀v0(v0 < v1) → ∀v0∃v1(v0 < v1).

Now (1) → [∀v0∃v1(v0 < v1) ∧ ∃v1∀v0(v0 < v1) ↔ ∃v1∀v0(v0 < v1)] is a tautology. It
follows that ∃v1∀v0(v0 < v1) is a formula in prenex normal form equivalent to the given
formula.

Second solution. (This solution indicates a pattern which can be followed in many
other cases.)

By the change of bound variable theorem 3.25,

(1) ⊢ ∃v1∀v0(v0 < v1) ↔ ∃v2∀v0(v0 < v2)

Again by 3.25,

(2) ⊢ ∃v2∀v0(v0 < v2) ↔ ∃v2∀v3(v3 < v2)

By (1), (2), and a tautology,

⊢ ∃v1∀v0(v0 < v1) ↔ ∃v2∀v3(v3 < v2);
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then another tautology gives

(3) ⊢ ∀v0∃v1(v0 < v1) ∧ ∃v1∀v0(v0 < v1) ↔ ∀v0∃v1(v0 < v1) ∧ ∃v2∀v3(v3 < v2).

Now by Theorem 3.48 we have

⊢ v0 < v1 ∧ ∃v2∀v3(v3 < v2) ↔ ∃v2∀v3(v0 < v1 ∧ v3 < v2)

Applying Propositions 3.43 and 3.44 to this we get

(4) ⊢ ∀v0∃v1(v0 < v1 ∧ ∃v2∀v3(v3 < v2) ↔ ∀v0∃v1∃v2∀v3(v0 < v1 ∧ v3 < v2)

Now by Theorem 3.47 we have

(5) ⊢ ∀v0∃v1(v0 < v1) ∧ ∃v2∀v3(v3 < v2) ↔ ∀v0∃v1(v0 < v1 ∧ ∃v2∀v3(v3 < v2)

Now (3), (4), (5) and a tautology give the result of the exercise.

E3.21 Prove that

⊢ ∀v0∀v1(v0 = v1) → ∀v0(v0 = v1 ∨ v0 = v2).

⊢ ∀v0∀v1(v0 = v1) → v0 = v1; Cor. 3.28 twice, taut. (1)

⊢ ∀v1(v0 = v1) → v0 = v2; Thm. 3.27 (2)

⊢ ∀v0∀v1(v0 = v1) → v0 = v2; (2), Cor. 3.28, taut. (3)

⊢ ∀v0∀v1(v0 = v1) → v0 = v1 ∨ v0 = v2; (1), (3), taut. (4)

⊢ ∀v0∀v0∀v1(v0 = v1) → ∀v0(v0 = v1 ∨ v0 = v2); (4), (L2), taut. (5)

⊢ ∀v0∀v1(v0 = v1) → ∀v0(v0 = v1 ∨ v0 = v2). (5), Prop. 3.29, taut.

E3.22 Prove that

⊢ ∃v0(¬v0 = v1 ∧ ¬v0 = v2) → ∃v0∃v1(¬v0 = v1).

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2) → ¬∀v0∀v1(v0 = v1); E3.21, taut. (1)

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2) ↔ ∃v0¬(v0 = v1 ∨ v0 = v2); Prop. 3.31 (2)

⊢ ¬(v0 = v1 ∨ v0 = v2) ↔ (¬(v0 = v1) ∧ ¬(v0 = v2)); taut. (3)

⊢ ∃v0¬(v0 = v1 ∨ v0 = v2) ↔ ∃v0(¬(v0 = v1) ∧ ¬(v0 = v2)); (3), Prop. 3.44 (4)

⊢ ¬∀v0(v0 = v1 ∨ v0 = v2) ↔ ∃v0(¬(v0 = v1) ∧ ¬(v0 = v2)); (2), (4), taut. (5)

⊢ ¬∀v1(v0 = v1) ↔ ∃v1¬(v0 = v1); Prop. 3.31 (6)

⊢ ∃v0¬∀v1(v0 = v1) ↔ ∃v0∃v1¬(v0 = v1); (6), Prop. 3.44 (7)

⊢ ¬∀v0∀v1(v0 = v1) ↔ ∃v0¬∀v1(v0 = v1); Prop. 3.31 (8)

⊢ ¬∀v0∀v1(v0 = v1) ↔ ∃v0∃v1¬(v0 = v1) (7), (8), taut. (9)

⊢ ∃v0(¬v0 = v1 ∧ ¬v0 = v2) → ∃v0∃v1(¬v0 = v1). (1), (5), (9), taut.
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