Solutions to exercises in Chapter 3

Do the case Rog...0pm_1 for some m-ary relation symbol and terms og,...,0m_1
in the proof of Theorem 3.1, (L3).

We are assuming that v; does not occur in Royg...0,,_1; hence it does not occur in any
term o;.

AE (Rog...om 1)a iff (08(a),...,08_,(a)) e RA

iff (o2 (b),...,08_ (b)) e RA

m—1
(by Proposition 2.4)
iff Z ): (RO'()...O'mfl)[b].

Prove that (L6) is universally valid, in the proof of Theorem 3.1.

Assume thatg E (o= T)ia] and 4 |= (p = 0)[a]. Then 6 (a) = 72(a) and p?(a) = 64 (a),
so pA(a) = 74(a), hence A = (p = 7)][a).

Prove that (L8) is universally valid, in the proof of Theorem 3.1.

Assume that 4 = (0 = 7)[a]. Then 64 (a) = 74(a). Assume that

AE (R &-10811 - &n-1)]a]; hence
(&), ..., &" 1(a),0%(a), 84 (a), ... €1 1 (a)) € R hence
(€ (@), -, &1 (a), 74 (), €41 (a), - €m 1 (a)) € R hence
AERE ... &-17& 41 - - Em—1)]al;

A
0
A
0

hence (L8) is universally valid.

Finish the proof of Proposition 3.11.

We are assuming inductively that ¢ is Vvgsy) with ¢ a formula and s € w. Thus ¢ is
(4,5(s + 1))"4. If i = 0, then ¢ itself is the desired segment, unique by Proposition
2.6(iii). Suppose that ¢ > 0. Then by the hypothesis of the proposition, actually i > 1,
since ¢1 is 5(s 4+ 1). So ¢; is an entry in ¢ and hence by the inductive assumption, there
is a segment (@;, Yit1,...¢m) which is a formula; this is also a segment of ¢, and it is
unique by Proposition 2.6(iii).

Indicate which occurrences of the variables are bound and which ones free for the
following formulas.

Fvg(vg < v1) A Vi (vg = v1).
v + vy = vy A Vus(vg = v1).
31)2(1)4 + vy = Uo).

First formula: the first and second occurrences of vy are bound, and the third one is free.
The first occurrence of vy is free, and the other two are bound.
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Second formula: the occurrence of vz is bound. All other occurrences of variables are free.

Third formula: the two occurrences of vy are bound. The other occurrences of variables
are free.

Finish the proof of Proposition 3.13.

Suppose that ¢ is an atomic non-equality formula; so there is a relation symbol R and
terms oy, ...0,—1 such that ¢ is (R)"o; -+ 0,-1. Hence i > 0, and it is inside some
term o;. By Proposition 3.12 there is a term which is a segment of o; beginning at 7; it is
also a segment of o, and it is unique by Proposition 2.2(iii).

Suppose inductively that ¢ is =), i.e., it is (0)"t. Then ¢ > 0, so that it is inside .
Hence the inductive hypothesis gives the desired result.

Suppose inductively that ¢ is ¢ — x, i.e., it is (1) "¢ " x. Then i > 0 and ¢ is inside
¥ or x; the inductive hypothesis gives the desired result.

Suppose inductively that ¢ is Yog), i.e., it is (4,5(k+ 1)) "1. So i > 0. If i = 1, then
w; is 5(k + 1), so that (5(k+ 1)) is a term which is a segment of ¢, unique by Proposition
2.2(iii). If ¢ > 1, then it is inside 1, and the inductive hypothesis gives the desired result.

Indicate all free and bound occurrences of terms in the formula vo = vy + vi —
va(vo + vy = Ul).

vp is free in both of its occcurrences.
vy is free in all three of its occurrences.
V9 1S bound in both of its occurrences.
v1 + v1 1is free in its occurrence.

vg + vo 18 bound in its occurrence.

Prove Proposition 3.16

Induction on ¢. Suppose that ¢ is p = £&. Then by Proposition 3.13, o occurs in p or
&. Suppose that it occurs in p. Let p’ be obtained from p by replacing that occurrence
of o by 7. Then p’ is a term by Proposition 3.14. Since v is p’ = &, @ is a formula.
The case in which o occurs in £ is similar. Now suppose that ¢ is Rng...n,—1 with
R an me-ary relation symbol and 7g,...,n,_1 are terms. Then the occurrence of o is
within some 7;. Let 1 be obtained from 7; by replacing that occurrence by 7. Now ) is
Rno...ni—1m, ... Mm—1, so ¢ is a formula.

Now suppose that the result holds for ¢’, and ¢ is =¢’. Then o occurs in ¢, so if
1’ is obtained from ¢’ by replacing the occurrence of o by 7, then v’ is a formula by the
inductive assumption. Since 1) is =)’ also 1) is a formula.

Next, suppose that the result holds for ¢’ and ¢”, and ¢ is ¢’ — ¢”. Then the
occurrence of o is within ¢’ or is within ¢”. If it is within ¢/, let 9" be obtained from ¢’
by replacing that occurrence of o by 7. Then 1’ is a formula by the inductive hypothesis.
Since v is Y" — ¢’ also 1 is a formula. If the occurrence is within ¢”, let ¢” be obtained
from ¢” by replacing that occurrence of o by 7. Then %" is a formula by the inductive
hypothesis. Since 1 is ¢’ — )", also 1) is a formula.

Finally, suppose that the result holds for ¢’, and ¢ is Vury'. If i = 1, then o is vy,
and by hypothesis 7 is some variable v;. Then v is V', which is a formula. If ¢ > 1, then
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o occurs in ', so if ¢’ is obtained from ¢’ by replacing the occurrence of o by 7, then 1’
is a formula by the inductive assumption. Since v is Vog)' also 1) is a formula.

Show that the condition in Proposition 3.17 that the resulting occurrence of T is free
is necessary. Hint: use Theorem 3.2; describe a specific formula of the type in Proposition
3.17, but with T not free, such that the formula is not universally valid.

Consider the language for (w, S), and the formula
vg = v1 — (Fv1(Svg = v1) < Fv1(Svy = v1)).

Taking an assignment a : w — w with ag = a; makes this sentence false; hence it is not
provable, by Theorem 3.2.

E3.10| Prove Proposition 3.19

Induction on ¢. If ¢ is atomic, then v is equal to ¢, and 0 is equal to x and hence is
a formula. Suppose the result is true for ¢’ and ¢ is =¢’. If ¢ = ¢, again the desired
conclusion is clear. Otherwise the occurrence of ¢ is within the subformula ¢'. If 8 is
obtained from ¢’ by replacing that occurrence by x, then 6 is a formula by the inductive
hypothesis. Since 6 is =6’ also 6 is a formula.

Now suppose the result is true for ¢’ and ¢”, and ¢ is ¢’ — ¢”. If ¥ = ¢, again the
desired conclusion is clear. Otherwise the occurrence of 1 is within the subformula ¢’ or
is within the subformula ¢”. If it is within ¢’ and €’ is obtained from ¢’ by replacing that
occurrence by x, then 6’ is a formula by the inductive hypothesis. Since 6 is ' — ¢, also
6 is a formula. If it is within ¢ and 0" is obtained from ¢” by replacing that occurrence
by x, then #” is a formula by the inductive hypothesis. Since 6 is ¢’ — 6", also 6 is a
formula.

Finally, suppose the result is true for ¢’ and ¢ is Vu;¢'. If ¢ = ¢, again the desired
conclusion is clear. Otherwise the occurrence of ¢ is within the subformula ¢’. If 6’ is
obtained from ¢’ by replacing that occurrence by Y, then 6’ is a formula by the inductive
hypothesis. Since 6 is Vv;0’, also 6 is a formula.

E3.11| Prove that the hypothesis of Theorem 3.27 is necessary.

Consider the formula
Vog3vy (vg < v1) — Fog(vg < v1).

This formula is not universally valid; it fails to hold in (w, <), for example. In the notation
of Theorem 3.27 we have i = 0, ¢ is the formula Jv;(vg < v1), o is vy, and Subf.’ is
Juy(v; < v1). Note that the free occurrence of vy in vy (vg < vp) is within a subformula
of Jvi(vyg < wy1) of the form Vui¢) with vy occurring in o. Namely, Jvi(vy < vp) is by
definition —Vv;—(vg < v1), and the subformula is Yv; (v < v1).

E3.12| Prove Proposition 3.31.

Proof. By definition, dv;—y is =Vv;——¢p. Now F ¢ < —=p by a tautology. Hence
using generalization and (L2) we get - Vv, < Vv;——p. Hence another tautology yields
F =V« Vo, ie., Vv « Ju;—p. 0
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E3.13| Prove Proposition 3.32.

Proof. —3Jv;p is the formula =—Vv;—p, so a simple tautology gives the result. L

E3.14| Prove Proposition 3.33.

Proof. By Theorem 3.27 we have F Yv;—¢ — Subf)’(—p). Since clearly Subf)(—y)

is the same as =Subf}’ p, a tautology gives - Subf) 'y — Jv;p. O
E3.15| Prove Proposition 3.35.
Proof. By Corollary 3.28, Corollary 3.34, and a tautology. ]

E3.16| Prove Proposition 3.36.

Proof. - ¢ — Jv;p by Corollary 3.34. = —¢ — Vv;—¢ by Proposition 3.29. Hence
the result follows by a tautology. L

E3.17| Prove Proposition 3.43.

Proof. Assume that - ¢ < . By a tautology, - ¢ — 1. Generalization and
(L2) then give - Yv;p — V. Similarly, F V90 — Vu;0. Now a tautology finishes the
proof. O

E3.18| Prove Proposition 3.44.

Proof. Assume that - ¢ < 1. By a tautology, - —¢ <> —1. Then by Proposition
3.43, - Yv;—¢ < Yv;—). Now a tautology finishes the proof. ]

Find a formula in prenex normal form equivalent to the following formula:
Vug3vy (vg < v1) A Fu1Vog(vg < v1).

First solution. By Theorem 3.37 we have

(1) F Jv1 Vg (v < v1) — YopIv (vg < v1).

Now (1) — [Vwg3vi(vg < v1) A FuiVug(vg < v1) <> Fu1Vup(ve < v1)] is a tautology. It
follows that Jv1Vug(vo < v1) is a formula in prenex normal form equivalent to the given
formula.

Second solution. (This solution indicates a pattern which can be followed in many
other cases.)

By the change of bound variable theorem 3.25,

(1) F Ju1 Vv (v < v1) < FvaVug(vg < v2)
Again by 3.25,
(2) F JuaVug (v < v2) < FvaVus(vs < v2)
By (1), (2), and a tautology,

F Ju Vg (v < v1) <> FuaVos(vs < v9);
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then another tautology gives
(3) F VogJvi (v < v1) A v Vg (vg < v1) <> YogTur (v < v1) A FveVuz(vs < vs).
Now by Theorem 3.48 we have

g < vy A FuaVus(vs < vg) < FJvaVus (v < v1 A v < vg)
Applying Propositions 3.43 and 3.44 to this we get
(4) F YopJui (v < v1 A FuaVuz(vs < v2) <> YugIvg FuaVus(vg < v1 A vg < v9)
Now by Theorem 3.47 we have
(5) F YTy (v < v1) A FuaVus(vs < va) <« YupIv (v < v1 A JvaVus(vs < v2)

Now (3), (4), (5) and a tautology give the result of the exercise.

E3.21| Prove that

F YooV (vg = v1) — Yug(vg = v1 V vg = v2).

F YugVvi(vg = v1) — vg = v1;  Cor. 3.28 twice, taut.

F Yoy (vg =v1) — vg = ve; Thm. 3.27

F YugVui(vg = v1) — vg = va;  (2), Cor. 3.28, taut.

F YugVur(vo = v1) — vog =v1 Vg =v2; (1), (3), taut.

F YooVugVur (vg = v1) — Yoo (vg = v1 Vvg = v2);  (4), (L2), taut.

F YooVur (vg = v1) — Yug(vg = v1 V vg = v2).  (5), Prop. 3.29, taut.

E3.22| Prove that

F Jug(—vg = v1 A =g = v2) — JugTv (—wg = v1).

= Voo (vg = v1 V vg = v2) — —VugVur(vg = v1);  E3.21, taut.

= =Vug(vg = v1 V vg = v2) <> Jug—(vg = v1 Vvg = v2); Prop. 3.31

F=(vg = v1 Vg =v2) < (=(vg =v1) A=(vg =v2)); taut.

F Jvg—(vg = v1 V vg = v2) <> Fug(—(vo = v1) A =(vg = v2));  (3), Prop. 3.44
= =Vug(vg = v1 V vg = v2) <> Fug(—(vo = v1) A =(vg = v2));  (2), (4), taut.
F =Yy (vg = v1) <> Ju—(vg = v1); Prop. 3.31

F Jug—Vu1 (v = v1) <> JugFvr—(vg = v1);  (6), Prop. 3.44

F —=VooVui (v = v1) <> Jug—Vu1(vg = v1); Prop. 3.31

F =VooVui(vg = v1) <> FugIvr—(vg = v1)  (7), (8), taut.

F Jug(—vp = v1 A =g = v2) — JveTvi(—ve =v1). (1), (5), (9), taut.
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