
Solutions for exercises in chapter 1

E1.1 Verify that
S0 → ¬S1 = 〈2, 3, 1, 4〉

and
(S0 → S1) → (¬S1 → ¬S0) = 〈2, 2, 3, 4, 2, 1, 4, 1, 3〉.

S0 → ¬S1 = 〈2〉⌢S⌢
0 ¬S1

= 〈2〉⌢〈3〉⌢〈1〉⌢S1

= 〈2, 3, 1, 4〉;

(S0 → S1) → (¬S1 → ¬S0) = 〈2〉⌢(S0 → S1)
⌢(¬S1 → ¬S0)

= 〈2〉⌢〈2〉⌢S⌢
0 S⌢

1 〈2〉⌢¬S⌢
1 ¬S0

= 〈2, 2, 3, 4, 2〉⌢〈1〉⌢S⌢
1 〈1〉⌢S0

= 〈2, 2, 3, 4, 2, 1, 4, 1, 3〉.

E1.2 Show that the function h defined after the definition of sentential formula construc-
tion satisfies the conditions for a sentential formula construction.

h(0) = S4; h(1) = ¬h(0); h(2) = ¬h(1); and h(3) = ¬h(2).

E1.3 Prove that there is a sentential formula of each positive integer length.

If m is a positive integer, then

〈

m−1 times
︷ ︸︸ ︷

1, 1, . . . , 1, S0〉

is a formula of length m, it is
m−1 times
︷ ︸︸ ︷

¬¬ · · · ¬ S0.

E1.4 Prove that m is the length of a sentential formula not involving ¬ iff m is odd.

Proof. ⇒: We prove by induction on ϕ that if ϕ is a sentential formula not involving
¬, then the length of ϕ is odd. This is true of sentential variables, which have length 1.
Suppose that it is true of ϕ and ψ, which have length 2m+1 and 2n+1 respectively. Then
ϕ → ψ, which is 〈1〉⌢ϕ⌢ψ, has length 1 + 2m+ 1 + 2n+ 1 = 2(m+ n+ 1) + 1, which is
again odd. This finishes the inductive proof.

⇐. We construct formulas without ¬ with length any odd integer by induction. 〈S0〉
is a formula of length 1. If ϕ has been constructed of length 2m+ 1, then S0 → ϕ, which
is 〈1, S0〉

⌢ϕ, has length 2m+ 3. This finishes the inductive construction.

E1.5 Prove Proposition 1.3 as follows. Let f be a sentential assignment. For each
positive integer m, let Am be the set of all sentential formulas of length at most m. An
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m-approximation is a function G assigning to each member of Am a value 0 or 1 so that
the following conditions hold:

(1) If Si ∈ Am, then G(Si) = f(i).
(2) If ¬ϕ ∈ Am, then G(¬ϕ) = 1 −G(ϕ).
(3) If ϕ→ ψ is in Am, then G(ϕ→ ψ) = 0 iff G(ϕ) = 1 and G(ψ) = 0.

Prove:

(4) If G and G′ are m-approximations, then G = G′.

(5) For each positive integer m there is an m-approximation.

Then one can define the desired function F by setting F (ϕ) = G(ϕ) where G is an m-
approximation with ϕ of length m.

Following the outline, to prove (4), suppose that G and G′ are m-approximations. We
prove by induction on i ≤ m that if ϕ is a formula of length i, then G(ϕ) = G′(ϕ).
Suppose that we know the result for formulas ϕ of length less than i, and ψ has length i,
where 1 ≤ i ≤ m. By Proposition 1.2(ii) we have three cases.

Case 1. ψ is Sj for some j. Then G(ψ) = G(Sj) = f(j) = G′(Sj) = G′(ψ).
Case 2. ψ is 〈0〉⌢χ for some formula χ. Thus the length of χ is i − 1 < i, so

G(χ) = G′(χ) by the inductive assumption. Hence G(ψ) = 1−G(χ) = 1−G′(χ) = G′(ψ).
Case 3. ψ is 〈1〉⌢χ⌢θ for some formulas χ, θ. Then the lengths of χ and θ are less

than i, and so G(χ) = G′(χ) and G(θ) = G′(θ) by the inductive assumption. Hence

G(ψ) = 0 iff G(χ→ θ) = 0

iff G(χ) = 1 and G(θ) = 0

iff G′(χ) = 1 and G′(θ) = 0

iff G′(χ→ θ) = 0

iff G′(ψ) = 0.

and it follows that G(ψ) = G′(ψ).
This finishes the inductive proof.
We prove (5) by induction. For m = 1, define G(Si) = f(i) for all i ∈ ω. Clearly G is

a 1-approximation. Now assume that we know that there is an n-approximation for every
n < m, where m > 1. For each n < m let Gn be an n-approximation. Let ϕ ∈ Am. If ϕ
has length n < m, let H(ϕ) = Gn(ϕ). Now suppose that ϕ has length m. By Proposition
1.2(ii) we have the following cases:

Case 1. ϕ = Si for some i. But Si has length 1 and m > 1, contradiction.
Case 2. ϕ = ¬ψ for some formula ψ. Then ψ has length m − 1. We define H(ϕ) =

1 −Gm−1(ψ).
Case 3. ϕ = ψ → χ for some formulas ψ, χ. Say ψ has length n < m and χ has length

p < m. We define H(ϕ) = 0 iff Gn(ψ) = 1 and Gp(χ) = 0.

Clearly H is an m-approximation.

E1.6 Prove that a truth table for a sentential formula involving n basic formulas has 2n

rows.
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We prove this by induction on n. For n = 1, there are two rows. Assume that for n basic
formulas there are 2n rows. Given n + 1 basic formulas, let ϕ be one of them. For the
others, by the inductive hypothesis there are 2n rows. For each such row there are two
possibilities, 0 or 1, for ϕ. So for the n+ 1 basic formulas there are 2n · 2 = 2n+1 rows.

E1.7 Use the truth table method to show that the formula

(ϕ→ ψ) ↔ (¬ϕ ∨ ψ)

is a tautology.

ϕ ψ ϕ→ ψ ¬ϕ ¬ϕ ∨ ψ (ϕ→ ψ) ↔ (¬ϕ ∨ ψ)

1 1 1 0 1 1

1 0 0 0 0 1

0 1 1 1 1 1

0 0 1 1 1 1

E1.8 Use the truth table method to show that the formula

[ϕ ∨ (ψ ∧ χ)] ↔ [(ϕ ∨ ψ) ∧ (ϕ ∨ χ)]

is a tautology.

Let θ be the indicated formula.

ϕ ψ χ ϕ ∨ ψ ϕ ∨ χ (ϕ ∨ ψ) ∧ (ϕ ∨ χ) ψ ∧ χ ϕ ∨ (ψ ∧ χ) θ

1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1 1

1 0 1 1 1 1 0 1 1

1 0 0 1 1 1 0 1 1

0 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1
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E1.9 Use the truth table method to show that the formula

(ϕ→ ψ) → (ϕ→ ¬ψ)

is not a tautology. It is not necessary to work out the full truth table.

ϕ ψ ϕ→ ψ ¬ψ ϕ→ ¬ψ (ϕ→ ψ) → (ϕ→ ¬ψ)

1 1 1 0 0 0

E1.10 Use the informal method described in the notes to determine whether or not the
following is a tautology:

S0 → (S1 → (S2 → (S3 → S1))).

2 1 3 2 4 3 5 4 5

S0 → (S1 → (S2 → (S3 → S0)))

1 0 1 0 1 0 1 0 0

Values 0 and 1 have been tentatively assigned to S0, a contradiction, so the formula is a
tautology.

E1.11 Use the informal method described in the notes to determine whether or not the
following is a tautology:

({[(ϕ→ ψ) → (¬χ→ ¬θ)] → χ} → τ) → [(τ → ϕ) → (θ → ϕ)].

5 6 11 13 14 12 6 5 9 10 2 8 1 7 3 5 2 4 3 4

({[(ϕ → ψ) → (¬ χ → ¬ θ)] → χ} → τ) → [(τ → ϕ) → (θ → ϕ)]

0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0

Both 0 and 1 have tentatively been assigned to χ, so the formula is a tautology.

E1.12 Determine whether the following statements are logically consistent. If the contract
is valid, then Horatio is liable. If Horation is liable, he will go bankrupt. Either Horatio
will go bankrupt or the bank will lend him money. However, the bank will definitely not
lend him money.

Let S0 correspond to “the contract is valid”, S1 to “Horatio is liable”, S2 to “Horatio will
go bankrupt”, and S3 to “the bank will lend him money”. Then we want to see if there is
an assignment of values which makes the following sentence true:

(S0 → S1) ∧ (S1 → S2) ∧ (S2 ∨ S3) ∧ ¬S3.

We can let f(0) = f(1) = f(2) = 1 and f(3) = 0, and this gives the sentence the value 1.
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E1.13 Prove Proposition 1.5. Hint: For m a positive integer, let Gm be the set of all
functions f with the following properties.

(1) The domain of f is m′.
(2) For each i < m, fi is itself a function whose domain is the set of all (i+1)-tuples

of sentential formulas.
(3) f0(ϕ) = ϕ for every sentential formula ϕ.
(4) If 0 < i < m and 〈ψ0, . . . , ψi〉 is a sequence of sentential formulas, then

fi(ψ0, . . . , ψi) = fi−1(ψ0, . . . , ψi−1) ∨ ψi.

Prove:

(5) If 0 < n < m and f ∈ Gm, then f restricted to n′ is in Gn.

(6) If m is a positive integer and f, g ∈ Gm, then f = g.

(7) For each positive integer m the set Gm is nonempty

Then one can define, for each positive integer m, Fm = fm for f the unique member of
Gm.

Condition (5) is clear.
We prove (6) by induction. For m = 1, suppose that f, g ∈ G1. Thus both f and

g have domain 1′ = {0}, and both f0 and g0 are functions with domain the set of all
sentential formulas. Moreover, for any sentential formula ϕ we have f0(ϕ) = ϕ = g0(ϕ).
So f = g.

Now suppose that (6) holds for all positive integers ≤ m and f, g ∈ Gm+1. Thus both
f and g have domain (m+ 1)′. Let f ′ and g′ be the restrictions of f and g respectively to
m′. Then f ′, g′ ∈ Gm by (5), and so f ′ = g′ by the induction hypothesis.

For any formula ϕ we have f0(ϕ) = ϕ = g0(ϕ). Now suppose that 0 < i < m+ 1 and
〈ψ0, . . . , ψi〉 is a sequence of sentential formulas. If i < m, then

fi(ψ0, . . . , ψi) = f ′

i(ψ0, . . . , ψi)

= g′i(ψ0, . . . , ψi)

= gi(ψ0, . . . , ψi).

If i = m, then

fm(ψ0, . . . , ψm) = fm−1(ψ0, . . . , ψm−1) ∨ ψm

= f ′

m−1(ψ0, . . . , ψm−1) ∨ ψm

= g′m−1(ψ0, . . . , ψm−1) ∨ ψm

= g(ψ0, . . . , ψm).

Thus f = g, finishing the inductive proof of (6).
We also prove (7) by induction on m. For m = 1, let f be the function with domain

{0} such that f0(ϕ) = ϕ for every formula ϕ. Clearly f ∈ G1.
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Suppose we have shown that Gi is nonempty for all positive i < m, where m ≥ 2. By
(6), for each i < m there is a unique member gi of Gi. We now define f with domain m′

by setting fi = gi+1(i) for all i with i+ 1 < m, and

fm−1(ϕ0, . . . , ϕm) = (gm−1(m− 2))(ϕ0, . . . , ϕm−1) ∨ ϕm

for any formulas ϕ0, . . . , ϕm.
To show that f ∈ Gm, first note that f0(ϕ) = (g1(0))(ϕ) = ϕ. Now suppose that

0 < i < m and 〈ψ0, . . . , ψi〉 is a sequence of sentential formulas. Then if i+1 < m we have

fi(ψ0, . . . , ψi) = (gi+1(i))(ψ0, . . . , ψi)

= (gi+1(i− 1))(ψ0, . . . , ψi−1) ∨ ψi

= (gi(i− 1))((ψ0, . . . , ψi−1) ∨ ψi

= fi−1(ψ0, . . . , ψi−1) ∨ ψi

For i+ 1 = m,

fm−1(ϕ0, . . . , ϕm) = (gm−1(m− 2))(ϕ0, . . . , ϕm−1) ∨ ϕm

= fm−2(ϕ0, . . . , ϕm−1) ∨ ϕm.

E1.14 Let ϕ | ψ be defined by the following truth table:

ϕ ψ ϕ | ψ

1 1 0

1 0 0

0 1 0

0 0 1

Prove that for any k, any function mapping k-tuples of members of {0, 1} into {0, 1} can
be obtained from |.

By theorem 1.7, it suffices to show that ¬ and → can be obtained from |:

ϕ ϕ | ϕ

1 0

0 1

ϕ ψ ¬ϕ ¬ϕ | ψ ¬(¬ϕ | ψ)

1 1 0 0 1

1 0 0 1 0

0 1 1 0 1

0 0 1 0 1

6



E1.15 Give a formula in disjunctive normal form equivalent to the following formula:

(S0 → (S1 → S2)) → (S1 → S0).

In order to follow the proof of Theorem 1.8, we first write out a truth table for this
formula:

S0 S1 S2 S1 → S2 S0 → (S1 → S2) S1 → S0 (S0 → (S1 → S2)) → (S1 → S0)

1 1 1 1 1 1 1

1 1 0 0 0 1 1

1 0 1 1 1 1 1

1 0 0 1 1 1 1

0 1 1 1 1 0 0

0 1 0 0 1 0 0

0 0 1 1 1 1 1

0 0 0 1 1 1 1

So by the proof of Theorem 1.8 the following is a formula in disjunctive normal form
equivalent to the given formula:

(S0 ∧ S1 ∧ S2) ∨ (S0 ∧ S1 ∧ ¬S2) ∨ (S0 ∧ ¬S1 ∧ S2)

∨ (S0 ∧ ¬S1 ∧ ¬S2) ∨ (¬S0 ∧ ¬S1 ∧ S2) ∨ (¬S0 ∧ ¬S1 ∧ ¬S2).

E1.16 Write out an actual proof for {ψ} ⊢ ¬ψ → ϕ. This can be done by following the
proof of Lemma 1.13, expanding it using the proof of the deduction theorem.

Following the proof of Lemma 1.13, the following is a {ψ,¬ψ}-proof:

(a) ¬ψ
(b) ¬ψ → (¬ϕ→ ¬ψ) (1)
(c) ¬ϕ→ ¬ψ (a), (b), MP
(d) (¬ϕ→ ¬ψ) → (ψ → ϕ) (3)
(e) ψ → ϕ (c), (d), MP
(f) ψ

(g) ϕ (e), (f), MP

Now applying the proof of the deduction theorem, the following is a {ψ}-proof:

(a) [¬ψ → [(¬ψ → ¬ψ) → ¬ψ]] → [[¬ψ → (¬ψ → ¬ψ)]
→ (¬ψ → ¬ψ)] (2)

(b) ¬ψ → [(¬ψ → ¬ψ) → ¬ψ] (1)
(c) [¬ψ → (¬ψ → ¬ψ)] → (¬ψ → ¬ψ) (a), (b), MP
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(d) ¬ψ → (¬ψ → ¬ψ) (1)
(e) ¬ψ → ¬ψ (c), (d), MP
(f) [¬ψ → (¬ϕ→ ¬ψ)] → [¬ψ → [¬ψ → (¬ϕ→ ¬ψ)]] (1)
(g) ¬ψ → (¬ϕ→ ¬ψ) (1)
(h) ¬ψ → [¬ψ → (¬ϕ→ ¬ψ)]] (f), (g), MP
(i) [(¬ϕ→ ¬ψ) → (ψ → ϕ)] → [¬ψ → [(¬ϕ→ ¬ψ) → (ψ → ϕ)]] (1)
(j) (¬ϕ→ ¬ψ) → (ψ → ϕ) (3)
(k) ¬ψ → [(¬ϕ→ ¬ψ) → (ψ → ϕ)] (i), (j), MP
(l) [¬ψ → [(¬ϕ→ ¬ψ) → (ψ → ϕ)]] → [[¬ψ → (¬ϕ→ ¬ψ)]

→ [¬ψ → (ψ → ϕ)]] (2)
(m) [¬ψ → (¬ϕ→ ¬ψ)] → [¬ψ → (ψ → ϕ)] (k), (l), MP
(n) ¬ψ → (ψ → ϕ) (g), (m), MP
(o) ψ → (¬ψ → ψ) (1)
(p) ψ

(q) ¬ψ → ψ (o), (p), MP
(r) [¬ψ → (ψ → ϕ)] → [(¬ψ → ψ) → (¬ψ → ϕ)] (2)
(s) (¬ψ → ψ) → (¬ψ → ϕ) (n), (r), MP
(t) ¬ψ → ϕ (q), (s), MP
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