New proof for Proposition 5.2

Again we argue model-theoretically, showing that $\models \operatorname{Subf}_{\sigma}^{v_0} \varphi \leftrightarrow \operatorname{Subf}_{\sigma}^{v_0} \varphi$, so that the proposition follows by the completeness theorem.

Suppose that \overline{A} is a model for our language and $a: \omega \to A$.

First we note, by Proposition 4.6, that

(1)
$$\overline{A} \models \operatorname{Subf}_{\sigma}^{v_0} \varphi[a] \text{ iff } \overline{A} \models \varphi[a_{\sigma^{\overline{A}}(a)}^0]$$

In fact, in 4.6 replace ν by σ and v_i by v_0 . Note that no free occurrence of v_0 in φ is within a subformula of the form $\forall v_k \mu$ with v_k occurring in σ , since only possibly v_0 occurs in σ . So (1) follows.

Now suppose that $\overline{A} \models \operatorname{Subff}_{\sigma}^{v_0} \varphi[a]$. Let $x = \sigma^{\overline{A}}(a)$. Since $gn(\varphi) > 0$ it follows that $v_{gn(\varphi)}$ does not occur in σ . Hence $\sigma^{\overline{A}}(a) = \sigma^{\overline{A}}(a_x^{gn(\varphi)})$ by Proposition 2.4. Thus $\overline{A} \models (v_{gn(\varphi)} = \sigma)[a_x^{gn(\varphi)}]$. Now $\overline{A} \models (v_0 = v_{gn(\varphi)})[a_x^0 g^{gn(\varphi)}]$ so, since $\overline{A} \models \operatorname{Subff}_{\sigma}^{v_0} \varphi[a]$, we get $\overline{A} \models \varphi[a_x^0 g^{gn(\varphi)}]$. Since $v_{gn(\varphi)}$ does not occur in φ , it follows from Lemma 4.4 that $\overline{A} \models \varphi[a_x^0]$. Now by (1) it follows that $\overline{A} \models \operatorname{Subf}_{\sigma}^{v_0} \varphi[a]$.

Conversely, suppose that $\overline{A} \models \operatorname{Subf}_{\sigma}^{v_0} \varphi[a]$. Thus by (1) we have

(2)
$$A \models \varphi[a^0_{\sigma^{\overline{A}(a)}}].$$

Now suppose that $y \in A$; we want to show that $\overline{A} \models (v_{gn(\varphi)} = \sigma \to \forall v_0 [v_0 = v_{gn(\varphi)} \to \varphi])[a_y^{gn(\varphi)}]$. To this end, suppose that $\overline{A} \models (v_{gn(\varphi)} = \sigma)[a_y^{gn(\varphi)}]$; we want to show that $\overline{A} \models \forall v_0 [v_0 = v_{gn(\varphi)} \to \varphi][a_y^{gn(\varphi)}]$, and to do this we take any $x \in A$, assume that $\overline{A} \models (v_0 = v_{gn(\varphi)})[a_x^{0 gn(\varphi)}]$, and prove that $\overline{A} \models \varphi[a_x^{0 gn(\varphi)}]$. Since $\overline{A} \models ((v_{gn(\varphi)} = \sigma)[a_y^{gn(\varphi)}])$, we have $y = \sigma^{\overline{A}}(a_y^{gn(\varphi)})$, and so by Proposition 2.4 $y = \sigma^{\overline{A}}(a)$ since $v_{gn(\varphi)}$ does not occur in σ . Also, since $\overline{A} \models (v_0 = v_{gn(\varphi)})[a_x^{0 gn(\varphi)}]$, we have $x = y = \sigma^{\overline{A}}(a)$. By (2) we have $\overline{A} \models \varphi[a_x^{0 gn(\varphi)}]$, since $v_{gn(\varphi)}$ does not occur in φ .