
8. Recursiveness of syntactic notions
August 18, 2014

In this chapter we finish the proof of Gödel’s incompleteness theorem by proving the
recursiveness of syntactic notions, proving Theorems B–D.

We start with terms. We repeat the general definition in Chapter 2 in the special case
of our number-theoretic language. The non-logical symbols are +, the integer 7, •, the
integer 9, S, the integer 6, and 0, the integer 8. We also have variables, with vi the integer
5(i+1). A term construction sequence is a finite sequence 〈τ0, . . . , τm−1〉 such that each τi
is a sequence of some of these integers, and for each i < m one of the following conditions
holds:

τi is 〈vj〉 for some j ∈ ω.

There are j, k < i such that τi is 〈+〉⌢τ⌢
j τk.

There are j, k < i such that τi is 〈•〉⌢τ⌢
j τk.

There is a j < i such that τi is 〈S〉⌢τj.

τi is 〈0〉.

Let TRMCON be the set of all Gödel numbers of term construction sequences:

TRMCON = {gn1(Φ) : Φ is a term construction sequence}.

Now for any m,n ∈ ω we define

CAT(m,n) = m ·
∏

i<len(n)

p
(n)i

len(m)+i
.

Thus if m = gn(ϕ) and n = gn(v), then CAT(m,n) = gn(ϕ⌢ψ).

Lemma 8.1. CAT is recursive.

Proof. We define

f(m,n, i) = (n)i; recursive, since f = C2
3(( ), I31, I

3
2);

g(m,n, i) = len(m); recursive, since g = C1
3(len, I

3
0);

h(m,n, i) = len(m) + i; recursive, since h = C2
3(+, g, I

3
2);

k(m,n, i) = plen(m)+i; recursive, since k = C1
3(p, h);

l(m,n, i) = p
(n)i

len(m)+i
; recursive, since l = C2

3(exp, k, f);

t(m,n, z) =
∏

i<z

p
(n)i

len(m)+i
; recursive, by Proposition 7.13

u(m,n) = len(n); recursive, since u = C1
2(len, I

2
1);

w(m,n) =
∏

i<len(n)

p
(n)i

len(m)+i
; recursive, since w = C3

2(t, I
2
0, I

2
1, w);
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hence CAT is recursive, since it is C2
2(·, I

2
0, w).

Now we define

PLUS(m,n) = CAT(CAT(27, m), n);

TIMES(m,n) = CAT(CAT(29, m), n);

SU(m) = CAT(26, m);

ZERO = 28.

Thus if σ and τ are terms, then PLUS(gn(σ), gn(τ)) = gn(+στ), TIMES(gn(σ), gn(τ)) =
gn(•στ), SU(gn(σ)) = gn(Sσ), and ZERO = GN(0).

Lemma 8.2. PLUS, TIMES, and SU are recursive.

Proof.

Let f0(m,n) = CAT(27, m); recursive since f0 = C2
2(CAT,k2

27 , I
2
0);

PLUS is recursive, since PLUS = C2
2(CAT, f0, I

2
1);

Let f1(m,n) = CAT(29, m); recursive since f1 = C2
2(CAT,k2

29 , I
2
0);

TIMES is recursive, since TIMES = C2
2(CAT, f1, I

2
1);

SU is recursive, since SU = C2
1(CAT,k1

26 , I
1
0).

Lemma 8.3. TRMCON is recursive.

Proof. An outline of the proof is as follows. m ∈ TRMCON iff for every i < len(m)
one of the following holds:

(1) (m)i = gn(〈0〉);

(2) There is a j such that (m)i = gn(〈vj〉), where to insure recursiveness we need to bound
j, and m itself is a suitable bound;

(3) There is a j < i such that (m)i = gn(〈S〉⌢σ), with gn(σ) = (m)j ;

(4) There are j, k < i such that (m)i is gn(〈+〉⌢σ⌢τ), with (m)j = gn(σ) and (m)k =
gn(τ);

(5) There are j, k < i such that (m)i is gn(〈•〉⌢σ⌢τ), with (m)j = gn(σ) and (m)k =
gn(τ).

The details:

Let R0 = {(m, i) : (m)i = 28}; recursive since χR0
= C2

2(χ=, ( ),k2
28);

(R0 corresponds to (1))

Let f0(m, i, j) = 5(j + 1); recursive since f0 = C2
3(·,k

3
5,C

1
3(s, I

3
2));

Let f1(m, i, j) = 25(j+1); recursive since f1 = C2
3(exp, f0);

129



Let S0 = {(m, i, j) : (m)i = 25(j+1)}; recursive since χS0
= C2

3(χ=, ( ), f1);

Let R1 = {(m, i) : ∃j < m[(m)i = 25(j+1)]}; recursive by Proposition 7.20;

(R1 corresponds to (2))

Let f2(i,m, j) = (m)j ; recursive since f2 = C2
3(( ), I31, I

3
2);

Let f3(i,m, j) = SU((m)j); recursive since f3 = C3
1(SU, f3);

Let f4(i,m, j) = (m)i; recursive since f4 = C2
3(( ), I31, I

3
0);

Let S1 = {(i,m, j) : (m)i = SU((m)j)}; recursive since χS1
= C2

3(χ=, f4, f3);

Let S2 = {(i,m) : ∃j < i[(m)i = SU((m)j)]}; recursive by Proposition 7.20

Let R2 = {(m, i) : ∃j < i[(m)i = SU((m)j)]}; recursive since χR2
= C2

2(χS2
, I21, I

2
0);

(R2 corresponds to (3))

Let f5(i,m, j, k) = (m)k; recursive since f5 = C2
4(( ), I41.I

4
3);

Let f6(i,m, j, k) = (m)j ; recursive since f6 = C2
4(( ), I41.I

4
2);

Let f7(i,m, j, k) = PLUS((m)j, (m)k); recursive since f7 = C2
4(PLUS, f6, v5);

Let f8(i,m, j, k) = (m)i; recursive since f8 = C2
4(( ), I41.I

4
0);

Let S3 = {(i,m, j, k) : (m)i = PLUS((m)j , (m)k)};

recursive since χS3
= C2

4(χ=, f8, f7);

Let S4 = {(i,m, j) : ∃k < i[(m)i = PLUS((m)j , (m)k)]};

recursive by Proposition 7.20;

Let S5 = {(i,m) : ∃j < i∃k < i[(m)i = PLUS((m)j, (m)k)]};

recursive by Proposition 7.20;

Let R3 = {(m, i) : ∃j < i∃k < i[(m)i = PLUS((m)j , (m)k)]};

recursive since χR3
= C2

2(χS5
, I21, I

2
0);

(R3 corresponds to (4))

Let f9(i,m, j, k) = TIMES((m)j, (m)k); recursive since f9 = C2
4(TIMES, f7, v6);

Let S6 = {(i,m, j, k) : (m)i = TIMES((m)j, (m)k)};

recursive since χS6
= C2

4(χ=, f8, f9);

Let S7 = {(i,m, j) : ∃k < i[(m)i = TIMES((m)j , (m)k)]};

recursive by Proposition 7.20;

Let S8 = {(i,m) : ∃j < i∃k < i[(m)i = TIMES((m)j , (m)k)]};

recursive by Proposition 7.20;

Let R4 = {(m, i) : ∃j < i∃k < i[(m)i = TIMES((m)j , (m)k)]};

recursive since χR4
= C2

2(χS8
, I21, I

2
0);

(R4 corresponds to (5))

Now let T = R0 ∪ . . . ∪ R4; so T is recursive by Proposition 7.16. By Corollary 7.22 the

set U
def
= {(m,n) : for all i < n (m, i) ∈ T} is recursive. Now TRMCON = {m : m > 1
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and (m, len(m)) ∈ U}; it is recursive by the following steps:

Let S9 = {m : m > 1}; recursive by Corollary 7.17;

Let S10 = {m : (m, len(m)) ∈ U}; recursive since

χS10
= C2

1(χU , I
1
0,C

1
1(len, I

1
0));

TRMCON = S9 ∩ S10; recursive by Proposition 7.16

Lemma 8.4. For any term σ there is a term construction sequence Φ = 〈τ0, . . . , τm−1〉
with the following properties:

(i) τm−1 = σ.
(ii) Each τi is a subterm of σ.
(iii) m is the length of σ.

Proof. We prove this by induction on σ, thus using Proposition 2.1. If σ is 0 or
a variable, we can take Φ = 〈σ〉, which clearly satisfies the conditions (i)–(iii). If Φ is
a term construction sequence with properties (i)–(iii) for σ, then Φ⌢〈Sσ〉 has properties
(i)–(iii) for Sσ. If Φ is a term construction sequence with properties (i)–(iii) for σ and
Ψ is a term construction sequence with properties (i)–(iii) for τ , then Φ⌢Ψ⌢〈+στ〉 is a
term construction sequence with properties (i)–(iii) for +στ , and Φ⌢Ψ⌢〈•στ〉 is a term
construction sequence with properties (i)–(iii) for •στ .

Note that an upper bound on gn1(Φ) for Φ a term construction sequence satisfying the
conditions of the lemma is

∏

i<len(gn(σ))

p
gn(σ)
i .

This explains some steps in the proof of the following lemma.
Let TRM be the set of all Gödel numbers of terms.

Lemma 8.5. TRM is recursive.

Proof.

Let f0(m,n) = pm
n ; recursive since f0 = C2

2(exp,C1
2(p, I

2
1), I

2
0);

let f1(m,n) =
∏

i<n

pm
i ; recursive by Proposition 7.13

let f2(m) =
∏

i<len(m)

pm
i ; recursive since f2 = C2

1(f1, I
1
0,C

1
1(len, I

1
0));

let f3(m,n) = len(n); recursive since f3 = C1
2(len, I

2
1);

let f4(m,n) = P(len(n)); recursive since f4 = C1
2(P, f3);

let f5(m,n) = (n)P(len(n)); recursive since f5 = C2
2(( ), I21, f4);

let S0 = {(m,n) : (n)P(len(n)) = m}; recursive since χS0
= C2

2(χ=, f5, I
2
0);

let S1 = {(m,n) : n ∈ TRMCON}; recursive since χS1
= C1

2(χTRMCON, I
2
1);

let S2 = S0 ∩ S1; recursive by Proposition 7.16

let S3 = {(m,n) : there is an i ≤ n such that (m, i) ∈ S2}. recursive by Prop. 7.21
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Now TRM is recursive, since χTRM = C2
1(χS3

, I10, f2); in fact,

C2
1(χS3

, I10, f2)(m) = χS3
(m, f2(m))

= χS3



m,
∏

i<len(m)

pm
i





=

{

1 if
(

m,
∏

i<len(m) p
m
i

)

∈ S3,

0 otherwise,

=







1 if there is a j ≤
∏

i<len(m) p
m
i

such that (m, j) ∈ S2,
0 otherwise,

=







1 if there is a j ≤
∏

i<len(m) p
m
i

such that (j)len(j)−1 = m and j ∈ TRMCON
0 otherwise,

= χTRM(m).

Now we define EQ(m,n) = CAT(23,CAT(m,n)). Thus if σ and τ are terms, then
EQ(gn(σ), gn(τ)) = gn(= στ). AT is the set of all Gödel numbers of atomic formulas.
Recall that = is the integer 3.

Lemma 8.6. EQ is recursive.

Proof. EQ = C2
2(CAT,k2

23 ,CAT).

Lemma 8.7. AT is recursive.

Proof.

Let S0 = {(z, x, y) : z = EQ(x, y)}; recursive since χS0
= C2

3(χ=, I
3
0,C

2
3(EQ, I31, I

3
2));

let S1 = {(z, x, y) : y ∈ TRM}; recursive since χS1
= C1

3(χTRM, I
3
2);

let S2 = {(z, x, y) : x ∈ TRM}; recursive since χS2
= C1

3(χTRM, I
3
1);

let S3 = S0 ∩ S1 ∩ S2; recursive by Prop. 7.16

let S4 = {〈z, x〉 : there is a y < z such that 〈z, x, y〉 ∈ S3}; recursive by Prop. 7.20.

Now AT is recursive, since AT = {z : there exist x < z such that (z, x) ∈ S3}, and Prop.
7.20 applies.

Now we define

NEG(m) = CAT(21, m);

IMP(m,n) = CAT(22,CAT(m,n));

ALL(m,n) = CAT(24,CAT(25(m+1), n)).
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Thus for any formulas ϕ, ψ and any m ∈ ω, NEG(gn(ϕ)) = gn(¬ϕ), IMP(gn(ϕ), gn(ψ)) =
gn(ϕ→ ψ), and ALL(m, gn(ϕ)) = gn(∀vmϕ).

Lemma 8.8. NEG, IMP and ALL are recursive.

Proof.

NEG = C2
1(CAT,k1

1, I
1
0));

IMP = C2
2(CAT,k2

22 ,C
2
2(I

2
0, I

2
1));

Let f0(m,n) = m+ 1; recursive since f0 = C1
2(s, I

2
0);

Let f1(m,n) = 5(m+ 1); recursive since f1 = C2
2(·,k

2
5, f0);

Let f2(m,n) = 25(m+1); recursive since f2 = C2
2(exp,k

2
2, f2);

Let f3(m,n) = CAT(25(m+1), n); recursive since f3 = C2
2(CAT, f2, I

2
1;

ALL is recursive, since ALL = C2
2(k

2
24 , f3).

We recall now the definition of a formula construction sequence; a sequence 〈ϕ0, . . . , ϕm−1〉
of sequences of natural numbers such that for each i < m one of the following conditions
holds:

(1) ϕi is an atomic formula.

(2) There is a j < i such that ϕi is 〈1〉⌢ϕj .

(3) There exist j, k < i such that ϕi is 〈2〉⌢ϕ⌢
j ϕk.

(4) There exist j < i and k such that ϕi is 〈4, 5(k+ 1)〉⌢ϕj .

Recall here that ¬ corresponds to 1, → to 2 and ∀ to 4. Let FMLACON be the set of all
Gödel numbers of formula construction sequences.

Lemma 8.9. FMLACON is recursive.

Proof.

Let R0 = {(m, i) : (m)i ∈ AT}; recursive, since χR0
= C1

2(χAT,C
2
2(( ), I20, I

2
1));

(R0 corresponds to (1))

let f0(i,m, j) = (m)j ; recursive since f0 = C2
3(( ), I31, I

3
2);

let f1(i,m, j) = (m)i; recursive since f0 = C2
3(( ), I31, I

3
0);

let f2(i,m, j) = NEG((m)j); recursive since f2 = C1
3(C

1
3(NEG, f0);

let S0 = {(i,m, j) : (m)i = NEG((m)j)}; recursive since χS0
= C2

3(χ=, f1, f2);

let S1 = {(i,m) : there is a j < i such that (m)i = NEG((m)j)};

recursive by Prop. 7.20

let R1 = {(m, i) : there is a j < i such that (m)i = NEG((m)j)};

recursive since χR1
= C2

2(χS1
, I21, I

2
0);

(R1 corresponds to (2))

133



let f3(i,m, j, k) = (m)k; recursive since f4 = C2
4(( ), I41, I

4
3);

let f4(i,m, j, k) = (m)j ; recursive since f5 = C2
4(( ), I41, I

4
2);

let f5(i,m, j, k) = IMP((m)j , (m)k); recursive since f5 = C2
4(IMP, f4, f3);

let f6(i,m, j, k) = (m)i; recursive sincef6 = C2
4(( ), I41, I

4
0);

let S2 = {〈i,m, j, k〉 : (m)i = IMP((m)j), (m)k)}; recursive since

χS2
= C2

4(ξ=, f6, f5);

let S3 = {〈i,m, j〉 : there is a k < i such that

(m)i = IMP((m)j), (m)k)}; recursive by Prop. 7.20;

let S4 = {〈i,m〉 : there exist j, k < i such that

(m)i = IMP((m)j), (m)k)}; recursive by Prop. 7.20;

let R2 = {(m, i) : there exist j, k < i such that (m)i = IMP((m)j), (m)k)};

recursive since χR2
= C2

2(χS4
, I21, I

2
0) :

(R2 corresponds to (3))

let f7(i,m, j, k) = ALL(j, (m)k); recursive since f7 = C3
4(ALL, I42, f3);

let S5 = {(i,m, j, k) : (m)i = ALL(j, (m)k)}; recursive since

χS5
= C2

4(χ=, f6, f7);

let S6 = {(i,m, j) : there is a k < i such that (m)i = ALL(j, (m)k)};

recursive by Prop. 7.20

let S7 = {(m, i, j) : there is a k < i such that (m)i = ALL(j, (m)k)};

recursive since χS7
= C3

3(χS6
, I31, I

3
0, I

3
2);

let R3 = {(m, i) : there exist j < m and k < i such that

(m)i = ALL(j, (m)k)}; recursive by Prop. 7.20;

(R3 corresponds to (4))

Now let T = R0∪ . . .∪R3; by Proposition 7.16, T is recursive. Hence by Corollary 8.22 the

set U
def
= {(m,n) : for all i < n (m, i) ∈ T} is recursive. Now FMLACON = {m : m > 1

and (m, len(m)) ∈ U}; it is recursive by the following steps:

let S8 = {m : m > 1}; recursive by Cor. 7.17

let S9 = {m : (m, len(m)) ∈ U}; recursive since

χS9
= C2

1(χU , I
1
0,C

1
1(len, I

1
0));

FMLACON = S8 ∩ S9; recursive by Prop. 7.16

The following lemma is similar to Lemma 8.4.

Lemma 8.10. For any formula ϕ there is a formula construction sequence Φ = 〈ψ0, . . . , ψm−1〉
with the following properties:

(i) ψm−1 = ϕ.
(ii) Each ψi is a subformula of ϕ.
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(iii) m is the less or equal the length of ϕ.

Proof. We prove this by induction on ϕ, thus using Proposition 2.5. If ϕ is an atomic
formula we can take Φ = 〈ϕ〉, and clearly (i)–(iii) hold. If Φ is a formula construction
sequence with the properties (i)–(iii) for ϕ, then Φ⌢〈¬ϕ〉 has properties (i)–(iii) for ¬ϕ.
If Φ is a formula construction sequence with properties (i)–(iii) for ϕ and Ψ is a formula
construction sequence with properties (i)–(iii) for ψ, then Φ⌢Ψ⌢〈ϕ → ψ〉 is a formuls
construction sequence with properties (i)–(iii) for ϕ → ψ. If Φ is a formula construction
sequence with properties (i)–(iii) for ϕ and i ∈ ω, then Φ⌢〈∀viϕ〉 is a formula construction
sequence with properties (i)–(iii) for ∀viϕ.

Now let FMLA be the set of all Gödel numbers of formulas.

Lemma 8.11. FMLA is recursive.

Proof. See the proof of Lemma 8.5; replace TRMCON by FMLACON and TRM by
FMLA.

Now let NUM be defined by NUM(m) = gn(m).

Lemma 8.12. NUM is recursive.

Proof. Define f(m,n) = SU(n) for all m,n ∈ ω. Then f is recursive, since f =
C1

2(SU, I21). It follows that Q0(2
8, f) is recursive, and we claim that Q0(2

8, f) = NUM.
We prove that Q0(2

8, f)(m) = NUM(m) by induction on m. First, Q0(2
8, f)(0) = 28 =

gn(〈0〉) = NUM(0). Now suppose that Q0(2
8, f)(m) = NUM(m). Then

Q0(2
8, f)(m+ 1) = f(m,Q0(2

8, f)(m))

= f(m,NUM(m))

= SU(NUM(m))

= NUM(m+ 1)

Theorem 8.13. (Theorem C) G is recursive, hence representable.

Proof. Recall that G : ω → ω is defined as follows:

G(m) =
{

gn(Subffv0

mϕ) if m = gn(ϕ) for some formula ϕ,
0 otherwise.

By the definition of Subff, this means that if m = gn(ϕ) then G(m) is the Gödel number
of the formula

∀vgn(ϕ)[vgn(ϕ) = m→ ∀v0[v0 = vgn(ϕ) → ϕ]].

Thus the definition of G can be given as follows:

G(m) =

{

ALL(m, IMP(EQ(25(m+1),NUM(m)),
ALL(0, IMP(EQ(25, 25(m+1)), m))) if m ∈ FMLA,
0 otherwise.
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We see that G is recursive in the following steps.

Let f0(m) = 5(m+ 1); recursive since f0 = C2
1(·,k

1
5, s);

Let f1(m) = 25(m+1); recursive since f1 = C2
1(k

1
2, f0);

Let f2(m) = EQ(25, 25(m+1)); recursive since f2 = C2
1(EQ,k1

25 , f1);

Let f3(m) = IMP(EQ(25, 25(m+1)), m); recursive since f3 = C2
1(IMP, f2, I

1
0);

Let f4(m) = ALL(0, IMP(EQ(25, 25(m+1)), m)); recursive since f4 = C2
1(ALL,k1

0, f3);

Let f5(m) = EQ(25(m+1),NUM(m)); recursive since f5 = C2
1(EQ, f1,NUM);

Let f6(m) = IMP(EQ(25(m+1),NUM(m)),ALL(0, IMP(EQ(25, 25(m+1)), m)));

recursive since f6 = C2
1(IMP, f5, f4);

Let f7(m) = ALL(m, IMP(EQ(25(m+1),NUM(m)),

ALL(0, IMP(EQ(25, 25(m+1)), m))); recursive since f7 = C2
1(ALL, I10, f6).

Now we have

G(m) =

{

f7(m) if m ∈ FMLA,
k1

0(m) otherwise.

Hence G is recursive, by Proposition 7.23.

Theorem D involves the notion of proof. Basic to the notion of proof are the logical axioms.
Let LOGAX be the set of all Gödel numbers of logical axioms.

Lemma 8.14. LOGAX is recursive.

Proof. Axiom (L1a) has the form ϕ→ (ψ → ϕ).

Let f0(m,n, p) = IMP(n, p); recursive since f0 = C2
3(IMP, I31, I

3
2);

Let f1(m,n, p) = Imp(p, IMP(n, p)); recursive since f1 = C2
3(IMP, I32, f0);

Let S0 = {(m,n, p) : m = Imp(p, IMP(n, p))}; recursive since χS0
= C2

3(χ=, I
3
0, f1);

Let S1 = {(m,n, p) : p ∈ FMLA}; recursive since χS1
= C1

3(χFMLA, I
3
2);

Let S2 = {(m,n, p) : n ∈ FMLA}; recursive since χS2
= C1

3(χFMLA, I
3
1);

Let S3 = S0 ∩ S1 ∩ S2; recursive by Proposition 7.16;

Let S4 = {(m,n) : ∃p < m[p, n ∈ FMLA and m = Imp(p, IMP(n, p))]};

recursive by Proposition 7.20

Let R0 = {m : ∃n, p < m[n, p ∈ FMLA and m = Imp(p, IMP(n, p))]};

recursive by Proposition 7.20

(R0 corresponds to axiom (L1a)).

Let R1 and R2 be the sets of all Gödel numbers of formulas in axioms (L1b) and (L1c)
respectively. We leave to an exercise the fact that these sets are recursive.
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We turn to axioms (L2).They have the form ∀vj(ϕ→ ψ) → (∀vjϕ→ ∀vjψ).

Let f2(m,n, p, j) = ALL(j, p); recursive since f2 = C2
4(ALL, I43, I

4
2);

Let f3(m,n, p, j) = ALL(j, n); recursive since f2 = C2
4(ALL, I43, I

4
1);

Let f4(m,n, p, j) = IMP(ALL(j, n),ALL(j, p)); recursive since f4 = C2
4(IMP, f3, f2);

Let f5(m,n, p, j) = IMP(n, p); recursive since f5 = C2
4(IMP, I51, I

5
2);

Let f6(m,n, p, j) = ALL(j, IMP(n, p)); recursive since f6 = C2
4(ALL, I43, f5);

Let f7(m,n, p, j) = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n),ALL(j, p));

recursive since f7 = C2
4(IMP, f6, f4);

Let S5 = {(m,n, p, j) : m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n),ALL(j, p))};

recursive since χS5
= C2

4(χ=, I
4
0, f7);

Let S6 = {(m,n, p) : ∃j < m[m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n),ALL(j, p))]};

recursive by Proposition 7.20;

Let S7 = {(m,n, p) : n ∈ FMLA}; recursive since χS7
= C1

3(χFMLA, I
3
1;

Let S8 = {(m,n, p) : p ∈ FMLA}; recursive since χS8
= C1

3(χFMLA, I
3
2;

Let S9 = S6 ∩ S1 ∩ S2 ∩ S7 ∩ S8; recursive by Prop. 7.16;

Let S10 = {(m,n) : ∃p, j < m[n, p ∈ FMLAand

m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n),ALL(j, p))]};

recursive by Proposition 7.20;

Let R3 = {m : ∃n, p, j < m[n, p ∈ FMLA and

m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n),ALL(j, p))]};

recursive by Proposition 7.20;

(R3 corresponds to axiom (L2)).

Instances of (L3) have the form ϕ→ ∀vjϕ, where vj does not occur in ϕ.

Let f8(m,n, j, i) = (n)i; recursive since f8 = C2
4(( ), I41, I

4
3);

Let f9(m,n, j, i) = 5(j + 1); recursive since f9 = C2
4(·,k

4
5,C

1
4(SU, I42));

Let S9 = {(m,n, j, i) : (n)i 6= 5(j + 1)}; recursive since χS9
= C2

4(χ6=, f8, f9);

Let S10 = {(m,n, j, s) : ∀i < s[(n)i 6= 5(j + 1)]}; recursive by Prop. 7.22;

Let S11 = {(m,n, j) : ∀i < len(n)[(n)i 6= 5(j + 1)]}; recursive since

χS11
= C4

3(χS10
, I30, I

3
1, I

3
2,C

1
3(len, I

3
1));

Let f10(m,n, j) = ALL(j, n); recursive since f10 = C2
3(ALL, I32, I

3
1);

Let f11(m,n, j) = IMP(n,ALL(j, n)); recursive since f11 = C2
3(IMP, I31, f10);

Let S12 = {(m,n, j) : m = IMP(n,ALL(j, n))}; recursive since χS12
= C2

3(χ=, I
3
0, f11);

Let S13 = {(m,n, j) : n ∈ FMLA}; recursive since χS13
= C1

3(χFMLA, I
3
1;

Let S14 = S11 ∩ S12 ∩ S13; recursive by Prop. 7.16;

Let S15 = {(m,n) : ∃j < m[n ∈ FMLA and ∀i < len(n)[(n)i 6= 5(j + 1)]
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and m = IMP(n,ALL(j, n))]}; recursive by Prop. 7.20

Let R4 = {m : ∃n, j < m[n ∈ FMLA and ∀i < len(n)[(n)i 6= 5(j + 1)]

and m = IMP(n,ALL(j, n))]}; recursive by Prop. 7.20

(R4 corresponds to axiom (L3)).

Axioms in (L4) have the form ∃vi(vi = σ) with vi not in the term σ; using the definition
of ∃, this is ¬∀vi¬(vi = σ).

Let f12(m,n, j) = 5(j + 1); recursive since f12 = C2
3(·,k

3
5,C

1
3(SU, I32));

Let f13(m,n, j) = 25(j+1); recursive since f13 = C2
3(exp,k3

2, f12);

Let f14(m,n, j) = EQ(25(j+1), n); recursive since f12 = C2
3(EQ, f13, I

3
1);

Let f15(m,n, j) = NEG(EQ(25(j+1), n)); recursive since f15 = C1
3(NEG, f14);

Let f16(m,n, j) = ALL(j,NEG(EQ(25(j+1), n))); recursive since

f16 = C2
3(ALL, I32, f15);

Let f17(m,n, j) = NEG(ALL(j,NEG(EQ(25(j+1), n))));

recursive since f17 = C1
3(NEG, f16);

Let S16 = {(m,n, j) : m = NEG(ALL(j,NEG(EQ(25(j+1), n))))};

recursive since χS16
= C2

3(χ=, I
3
0, f17);

Let S17 = {(m,n, j) : n ∈ TRM}; recursive since χS17
= C1

3(χTRM, I
3
1);

Let S18 = S11 ∩ S16 ∩ S17; recursive by Prop. 7.16;

Let S19 = {(m,n) : ∃j[∀i < len(n)[(n)i 6= 5(j + 1)] and

n ∈ TRM and m = NEG(ALL(j,NEG(EQ(25(j+1), n))))]};

recursive by Prop. 7.20;

Let R5 = {m : ∃n, j < m[∀i < len(n)[(n)i 6= 5(j + 1)] and

n ∈ TRM and m = NEG(ALL(j,NEG(EQ(25(j+1), n))))]};

recursive by Prop. 7.20;

R5 corresponds to axiom (L4).

An instance of (L5) has the form σ = τ → (σ = ρ→ τ = ρ) for some terms σ, τ, ρ.

Let f18(m,n, p, q) = EQ(p, q); recursive since f18 = C2
4(EQ, I42, I

4
3);

Let f19(m,n, p, q) = EQ(n, q); recursive since f19 = C2
4(EQ, I41, I

4
3);

Let f20(m,n, p, q) = EQ(n, p); recursive since f18 = C2
4(EQ, I41, I

4
2);

Let f21(m,n, p, q) = IMP(EQ(n, q),EQ(p, q)); recursive since

f21 = C2
4(IMP, f19, f18);

Let f22(m,n, p, q) = IMP(EQ(n, p), IMP(EQ(n, q),EQ(p, q));

recursive since f22 = C2
4(IMP, f20, f21);

Let S20 = {(m,n, p, q) : m = IMP(EQ(n, p), IMP(EQ(n, q),EQ(p, q))};
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recursive since χS20
= C2

4(χ=, I
4
0, f22);

Let S21 = {(m,n, p, q) : n ∈ TRM}; recursive since χS21
= C1

4(χTRM, I
4
1);

Let S22 = {(m,n, p, q) : p ∈ TRM}; recursive since χS22
= C1

4(χTRM, I
4
2);

Let S23 = {(m,n, p, q) : q ∈ TRM}; recursive since χS23
= C1

4(χTRM, I
4
3);

Let S24 = S20 ∩ S21 ∩ S22 ∩ S23; recursive by Prop. 7.16;

Let S25 = {(m,n, p) : ∃q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p), IMP(EQ(n, q),EQ(p, q))]};

recursive by Prop. 7.20

Let S26 = {(m,n) : ∃p, q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p), IMP(EQ(n, q),EQ(p, q))]};

recursive by Prop. 7.20

Let R6 = {m : ∃n, p, q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p), IMP(EQ(n, q),EQ(p, q))]};

(R6 corresponds to (L5)).

We leave (L6) to an exercise; R7 is the set of all Gödel numbers of instances of (L6).
(L7) consists of formulas of the following forms:

(L7a) σ = τ → Sσ = Sτ ;

(L7b) σ = τ → (σ+ ξ = τ + ξ);

(L7c) σ = τ → (ξ + σ = ξ + τ);

(L7d) σ = τ → (σ • ξ = τ • ξ);

(L7e) σ = τ → (ξ • σ = ξ • τ).

Here σ, τ, ξ are terms. We treat only (L7a) and (L7b), and leave the others for an exercise.

Let f23(m,n, p) = SU(n); recursive since f23 = C1
3(SU, I31);

Let f24(m,n, p) = SU(p); recursive since f24 = C1
3(SU, I32);

Let f25(m,n, p) = EQ(SU(n), SU(p)); recursive since f25 = C2
3(EQ, f24, f23);

Let f26(m,n, p) = EQ(n, p); recursive since f23 = C2
3(EQ, I31, I

3
2);

Let f27(m,n, p) = IMP(EQ(n, p),EQ(SU(n), SU(p)));

recursive since f27 = C2
3(IMP, f26, f25);

Let S27 = {(m,n, p) : m = IMP(EQ(n, p),EQ(SU(n), SU(p)))};

recursive since χS27
= C2

3(χ=, I
3
0, f27);

Let S28 = {(m,n, p) : n ∈ TRM}; recursive since χS28
= C1

3(χTRM, I
3
1);

Let S29 = {(m,n, p) : p ∈ TRM}; recursive since χS29
= C1

3(χTRM, I
3
2);

Let S30 = S27 ∩ S28 ∩ S29; recursive by Prop. 7.16;

Let S31 = {(m,n) : ∃p < m[n, p ∈ TRM and
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m = IMP(EQ(n, p),EQ(SU(n), SU(p)))]}; recursive by Prop. 7.20;

Let R8 = {m : ∃n, p < m[n, p ∈ TRM and

m = IMP(EQ(n, p),EQ(SU(n), SU(p)))]};

recursive by Prop. 7.20;

(R8 corresponds to axiom (L7a));

Let f28(m,n, p, q) = PLUS(p, q); recursive since f28 = C2
4(PLUS, I42, I

4
3);

Let f29(m,n, p, q) = PLUS(n, q); recursive since

f29 = C2
4(PLUS, I41, I

4
3);

Let f30(m,n, p, q) = EQ(PLUS(n, q),PLUS(p, q));

recursive since f30 = C2
4(EQ, f29, v28);

Let f31(m,n, p, q) = EQ(n, p); recursive since f31 = C2
4(EQ, I41, I

4
2);

Let f32(m,n, p, q) = IMP(EQ(n, p),EQ(PLUS(n, q),PLUS(p, q)));

recursive since f32 = C2
4(IMP, f31, f30);

Let S32 = {(m,n, p, q) : m = IMP(EQ(n, p),EQ(PLUS(n, q),

PLUS(p, q)))}; recursive since χS32
= C2

4(χ=, I
4
0, f32);

Let S33 = {(m,n, p, q) : n ∈ TRM}; recursive since χS33
= C1

4(χTRM, I
4
1);

Let S34 = {(m,n, p, q) : p ∈ TRM}; recursive since χS34
= C1

4(χTRM, I
4
2);

Let S35 = {(m,n, p, q) : q ∈ TRM}; recursive since χS35
= C1

4(χTRM, I
4
3);

Let S36 = S32 ∩ S33 ∩ S34 ∩ S35; recursive by Prop. 7.16;

Let S37 = {(m,n, p) : ∃q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p),EQ(PLUS(n, q)))]}; recursive by Prop. 7.20

Let S38 = {(m,n) : ∃p, q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p),EQ(PLUS(n, q)))]}; recursive by Prop. 7.20

Let R9 = {m : ∃n, p, q < m[n, p, q ∈ TRM and

m = IMP(EQ(n, p),EQ(PLUS(n, q)))]}; recursive by Prop. 7.20

(R9 corresponds to axiom (L7b)).

Let R10, R11, R12 be the sets of Gödel numbers of formulas in axioms (L7c), (L7d), (L7e)
respectively. Then LOGAX = R0 ∪ . . . ∪R12, and hence LOGAX is recursive.

Theorem 8.15. (Theorem D) If Γ is a set of formulas and gn[Γ] is recursive, then the
following binary relation is also recursive:

PrfΓ
def
= {(n,m) : there is a Γ-proof Φ with last entry ϕ

such that m = gn1(Φ) and n = gn(ϕ)}
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Proof.

Let R0 = {(m, i) : (m)i ∈ gn[Γ]}; recursive since χR0
= C1

2(χgn[Γ], ( ));

Let R1 = {(m, i) : (m)i ∈ LOGAX}; recursive since χR0
= C1

2(χLOGAX, ( ));

Let f0(i,m, j, k) = (m)j ; recursive since f0 = C2
4(( ), I40, I

4
2);

Let f1(i,m, j, k) = (m)k; recursive since f1 = C2
4(( ), I40, I

4
3);

Let f2(i,m, j, k) = (m)i; recursive since f2 = C2
4(( ), I40, I

4
0;

Let f3(i,m, j, k) = IMP((m)j , (m)i); recursive since f3 = C2
4(IMP, f0, f2);

Let S0 = {(i,m, j, k) : (m)k = IMP((m)j , (m)i)};

recursive since χS0
= C2

4(χ=, f1, f3);

Let S1 = {(i,m, j, k) : (m)i ∈ FMLA};

recursive since χS1
= C1

4(χFMLA, f2);

Let S2 = {(i,m, j, k) : (m)j ∈ FMLA};

recursive since χS2
= C1

4(χFMLA, f0);

Let S3 = {(i,m, j, k) : (m)k ∈ FMLA};

recursive since χS3
= C1

4(χFMLA, f1);

Let S5 = S0 ∩ S1 ∩ S2 ∩ S3; recursive by Prop. 7.16;

Let S6 = {(i,m, j) : ∃k < i[(m)i, (m)j, (m)k ∈ FMLA and

(m)k = IMP((m)j , (m)i)]}; recursive by Prop. 7.20;

Let S7 = {(i,m) : ∃j, k < i[(m)i, (m)j, (m)k ∈ FMLA and

(m)k = IMP((m)j , (m)i)]}; recursive by Prop. 7.20;

Let R2 = {(m, i) : ∃j, k < i[(m)i, (m)j, (m)k ∈ FMLA and

(m)k = IMP((m)j , (m)i)]}; recursive since χR2
= C2

2(χS7
, I21, I

2
0);

(R2 corresponds to modus ponens);

Let f4(i,m, k, j) = (m)j ; recursive since f4 = C2
4(( ), I41, I

4
3);

Let f5(i,m, k, j) = (m)i; recursive since f4 = C2
4(( ), I41, I

4
0);

Let f6(i,m, k, j) = ALL(k, (m)j); recursive since f6 = C2
4(ALL, I42, f4);

Let S8 = {(i,m, k, j) : (m)i = ALL(k, (m)j)}; recursive since

χS8
= C2

4(χ=, f5, f6);

Let S9 = {(i,m, k, j) : (m)j ∈ FMLA}; recursive since

χS9
= C1

4(χFMLA, f4);

Let S10 = S8 ∩ S9; recursive by Prop. 7.16;

Let S11 = {(i,m, k) : ∃j < i[(m)j ∈ FMLA and (m)i = ALL(k, (m)j)]};

recursive by Prop. 7.20;

Let S12 = {(m, i, k) : ∃j < i[(m)j ∈ FMLA and (m)i = ALL(k, (m)j)]};

recursive since χS12
= C3

3(χS11
, I31, I

3
0, I

3
2);
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Let R3 = {(m, i)∃j, k < i[(m)j ∈ FMLA and (m)i = ALL(k, (m)j)]};

recursive by Prop. 7.20;

Let S13 = R0 ∪ . . . ∪R3; recursive by Prop. 7.16;

Let S14 = {(m, s) : ∀i < s[(m, i) ∈ S13]}; recursive by Prop. 7.22;

Let S15 = {m : (m, len(m)) ∈ S14}; recursive since

χS15
= C2

1(χS14
, I10,C

1
1(len, I

1
0));

Let S16 = {m : m > 1}; recursive by Cor. 7.17;

Let S17 = S15 ∩ S16; recursive by Prop. 7.16;

Let S18 = {(n,m) : m ∈ S17}; recursive since χS18
= C1

2(χS17
, I21);

Let S19 = {(n,m) : n = len(m)}; recursive since χS19
= C2

2(χ=, I
2
0,C

1
2(len, I

2
1)).

Clearly S19 = PrfΓ.

To complete the proofs connected with Gödel’s incompleteness theorem, it remains only
to treat Theorem B:

Theorem 8.16. (Theorem B) The set gn[P′] is recursive. Moreover, if ∆ is a finite set
of formulas, then gn[P′ ∪ ∆] is recursive.

Proof. The assertion concerning ∆ follows from the first statement using Proposition
7.16 and Corollary 7.17. Moreover, for P′ itself, each of axioms (P1)–(P6) are single
formulas, so by the same reasons, we only need to treat (P7′). We recall the form of (P7′):

Subffv0

0
ϕ ∧ ∀v0(ϕ→ Subffv0

Sv0
ϕ) → ∀v0ϕ

for any formula ϕ. By the definition of Subff, this is

∀vgn(ϕ)[vgn(ϕ) = 0 → ∀v0(v0 = vgn(ϕ) → ϕ)]∧

∀v0[ϕ→ ∀vgn(ϕ)[vgn(ϕ) = Sv0 → ∀v0(v0 = vgn(ϕ) → ϕ)]]

→ ∀v0ϕ.

Using the definition of ∧, this is

¬[∀vgn(ϕ)[vgn(ϕ) = 0 → ∀v0(v0 = vgn(ϕ) → ϕ)] →

¬∀v0[ϕ→ ∀vgn(ϕ)[vgn(ϕ) = Sv0 → ∀v0(v0 = vgn(ϕ) → ϕ)]]]

→ ∀v0ϕ.

Thus we want to show that the set T of all Gödel numbers of formulas of this form is
recursive.

Let f0(m,n) = ALL(0, n); recursive since f0 = C2
2(ALL,k2

0, I
2
1);

Let f1(m,n) = 5(n+ 1); recursive since f1 = C2
2(·,k

2
5,C

1
2(s, I

2
1));

Let f2(m,n) = 25(n+1); recursive since f2 = C2
2(exp,k2

2, f1);
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Let f3(m,n) = EQ(25, 25(n+1)); recursive since f3 = C2
2(EQ,k2

25 , f2);

Let f4(m,n) = IMP(EQ(25, 25(n+1)), n);

recursive since f4 = C2
2(IMP, f3, I

2
1);

Let f5(m,n) = ALL(IMP(0,EQ(25, 25(n+1)), n));

recursive since f5 = C2
2(ALL, f4, I

2
1);

Let f6(m,n) = k2
2635 ; clearly recursive;

Let f7(m,n) = EQ(25(n+1), 2635); recursive since f7 = C222(EQ, f1, f6);

Let f8(m,n) = IMP(EQ(25(n+1), 2635),ALL(IMP(0,EQ(25, 25(n+1)), n)));

recursive since f8 = C2
2(IMP, f7, f5);

Let f9(m,n) = ALL(n, IMP(EQ(25(n+1), 2635),ALL(IMP(0,EQ(25, 25(n+1)), n)));

recursive since f9 = C2
2(ALL, I21, f8);

Let f10(m,n) = IMP(n, f9(m,n)); recursive since f10 = C2
2(IMP, I21, f9);

Let f11(m,n) = ALL(0, f10(m,n)); recursive since f11 = C2
2(ALL,k2

0, f10);

Let f12(m,n) = NEG(f11(m,n)); recursive since f12 = C1
2(NEG, f11);

Let f13(m,n) = EQ(25(n+1),ZERO); recursive since f13 = C2
2(EQ, f2,k

2
28);

Let f14(m,n) = IMP(f13(m,n), f5(m,n)); recursive since f14 = C2
2(IMP, f13, f5);

Let f15(m,n) = ALL(n, f14(m,n)); recursive since f15 = C2
2(ALL, I21, f14);

Let f16(m,n) = IMP(f15(m,n), f11(m,n)); recursive since f16 = C2
2(IMP, f15, f11);

Let f17(m,n) = NEG(f16(m,n)); recursive since f17 = C1
2(NEG, f16);

Let f18(m,n) = IMP(f17(m,n), f0(m,n)); recursive since f18 = C2
2(IMP, f17, f0);

Let S = {(m,n) : m = f18(m,n)}; recursive since χS = C2
2(χ=, I

2
0, f18);

T = {m : ∃n < m[(m,n) ∈ S]}; recursive by Prop. 7.20.

EXERCISES

E8.1. Show that the set of all Gödel numbers of formulas in logical axiom (L1b) is recursive.

E8.2. Show that the set of all Gödel numbers of formulas in logical axiom (L1c) is recursive.

E8.3. Show that the set of all Gödel numbers of formulas in logical axiom (L7c) is recursive.

E8.4. Show that the set of all Gödel numbers of formulas in logical axiom (L7d) is recursive.

E8.5. Show that the set of all Gödel numbers of formulas in logical axiom (L7e) is recursive.
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