8. Recursiveness of syntactic notions
August 18, 2014

In this chapter we finish the proof of Godel’s incompleteness theorem by proving the
recursiveness of syntactic notions, proving Theorems B-D.

We start with terms. We repeat the general definition in Chapter 2 in the special case
of our number-theoretic language. The non-logical symbols are 4, the integer 7, e, the
integer 9, S, the integer 6, and 0, the integer 8. We also have variables, with v; the integer
5(i+1). A term construction sequence is a finite sequence (7o, ..., T;,m—1) such that each 7;

is a sequence of some of these integers, and for each 7 < m one of the following conditions

holds:

7; is (v;) for some j € w.

There are j, k < i such that 7; is +>A7'j“7k.
~

(
<.>A7-j
There is a j < i such that 7; is (S) 7 7;.
7; is (0).

There are j, k < ¢ such that 7; is

Let TRMCON be the set of all Godel numbers of term construction sequences:
TRMCON = {gni(®) : ¢ is a term construction sequence}.

Now for any m,n € w we define

CAT(m,n) =m - H pl(:n)(im)ﬂ.

i<len(n)
Thus if m = gn(y) and n = gn(v), then CAT(m,n) = gn(p™v).
Lemma 8.1. CAT is recursive.
Proof. We define

F(m,n, i) = (n);; recursive, since f = C3(( ), I, );

l(m,n,i) = pl(:n)(im)ﬂ; recursive, since [ = C32(exp, k, f);
t(m,n,z) = H pl(:n)(im)ﬂ; recursive, by Proposition 7.13

1<z
u(m,n) = len(n); recursive, since u = C4(len, I?);

w(m,n) = H pl(:rf(im)ﬂ; recursive, since w = C3(t,13, 13, w);

i<len(n)
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hence CAT is recursive, since it is C3(-, I3, w). ]

Now we define

PLUS(m,n) = CAT(CAT(27,m),n);
TIMES(m, n) = CAT(CAT(2°,m), n);
SU(m) = CAT(2°,m);
ZERO = 28.

Thus if o and 7 are terms, then PLUS(gn (o), gn(7)

) = gn(+4o1), TIMES(gn(o), gn(1)) =
gn(eot), SU(gn(o)) = gn(Sc), and ZERO = GN(0).

Lemma 8.2. PLUS, TIMES, and SU are recursive.
Proof.

Let fo(m,n) = CAT(27,m); recursive since fo = C3(CAT, k3-,13);

PLUS is recursive, since PLUS = C3(CAT, f,,13);

Let f1(m,n) = CAT(2°, m); recursive since f; = C35(CAT, k3o, 13);

TIMES is recursive, since TIMES = C2(CAT, f1,13);

SU is recursive, since SU = C3(CAT, kj, Ij). O

Lemma 8.3. TRMCON is recursive.

Proof. An outline of the proof is as follows. m € TRMCON iff for every i < len(m)
one of the following holds:

(1) (m)i = gn((0));

(2) There is a j such that (m); = gn((v;)), where to insure recursiveness we need to bound
J, and m itself is a suitable bound;

(3) There is a j < ¢ such that (m); = gn((S)"0), with gn(c) = (m);,;

(4) There are j, k < i such that (m); is gn((+) "o 7), with (m); = gn(o) and (m); =
gn(7);

(5) There are j,k < i such that (m); is gn((e) "o 7), with (m); = gn(o) and (m), =
gn(r).

The details:

Let Ry = {(m,1) : (m); = 2%}; recursive since xr, = C3(x=, ( ), Kk3s);

(Ro corresponds to (1))
Let fo(m,i,7) = 5(j + 1); recursive since fo = Ca(-, ki, C3(s,I3));
Let fi(m,i,7) = 2°U+D); recursive since f; = C3(exp, fo);
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Let So = {(m,4,7) : (m); = 22U+ D} recursive since x5, = Ca(x=, (), f1);
Let Ry = {(m,4) : 3j < m[(m); = 2°U+D]}: recursive by Proposition 7.20;
(R; corresponds to (2))
Let fa(i,m,j) = (m);; recursive since fo = C3((),I3,I3);
Let f3(i,m,j) = SU((m);); recursive since f3 = C3(SU, f3);
Let f4(i,m,7) = (m);; recursive since fy = C3(( ), 13, 13);
Let Sy = {(i,m, ) : (m); = SU((m);)}; recursive since xs, = C3(X=, f1, f3);
Let Sy = {(i,m) : 3j < i[(m); = SU((m),)]}; recursive by Proposition 7.20
Let Ry = {(m, i) : 35 < i[(m); = SU((m);)]}; recursive since xr, = C3(Xs,,15,15);
(Ry corresponds to (3))
Let f5(i,m, 7, k) = (m)y; recursive since f5 = C3(( ), 11.13);
Let fo(i,m, j, k) = (m);; recursive since fg = C3((),I1.15);
Let f7(i,m, j, k) = PLUS((m);, (m)y); recursive since f; = C3(PLUS, fs,vs);
Let fg(i,m, 7, k) = (m);; recursive since fs = C3(( ), I{.I3);
Let S3 = {(i,m, j, k) : (m); = PLUS((m);, (m))};
recursive since xs, = C3(x=, fs, fr);
Let Sy = {(i,m, j) : Ik < i[(m); = PLUS((m);, (m)x)]};
recursive by Proposition 7.20;
Let S5 = {(i,m) : 3j < i3k < i[(m), = PLUS((m);, (m)x)]};
recursive by Proposition 7.20;
Let Ry = {(m,1) : 3j < i3k < i[(m); = PLUS((m);, (m)r)]};
recursive since xr, = C3(xs,, 15, 13);
(R3 corresponds to (4))
Let fo(i,m, j, k) = TIMES((m);, (m)s); recursive since fo = C5(TIMES, f7, vg);
Let S¢ = {(i,m, j, k) : (m); = TIMES((m);,(m)x)};
recursive since xg, = C2(x=, fs, fo);
Let S7 = {(i,m, ) : 3k < i[(m); = TIMES((m);, (m)r)]};
recursive by Proposition 7.20;
Let Sg = {(¢,m) : 3j < i3Ik < i[(m); = TIMES((m),, (m)r)]};
recursive by Proposition 7.20;
Let Ry = {(m, 1) : 35 < i3k < i[(m); = TIMES((m);, (m)x)]};
recursive since xr, = C3(xs., I3, 12);

(R4 corresponds to (5))

Now let T'= RoU...U Ry; so T is recursive by Proposition 7.16. By Corollary 7.22 the
set U & {(m,n) : for all i < n (m,i) € T} is recursive. Now TRMCON = {m :m > 1
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and (m,len(m)) € U}; it is recursive by the following steps:
Let Sg = {m : m > 1}; recursive by Corollary 7.17;

Let S19 = {m : (m,len(m)) € U}; recursive since
Xs1 = Ct(xv, Iy, Ci(len, Ig));
TRMCON = Sg N Syp; recursive by Proposition 7.16 ]

Lemma 8.4. For any term o there is a term construction sequence ® = (To,...,Tm—1)
with the following properties:

(i) Tm—1 = 0.

(i) Each 1; is a subterm of o.

(iii) m is the length of o.

Proof. We prove this by induction on o, thus using Proposition 2.1. If ¢ is 0 or
a variable, we can take ® = (o), which clearly satisfies the conditions (i)—(iii). If ® is
a term construction sequence with properties (i)—(iii) for o, then ®~(Sco) has properties
(i)—(iii) for So. If ® is a term construction sequence with properties (i)—(iii) for o and
U is a term construction sequence with properties (i)—(iii) for 7, then ®~W¥ ™ (4o07) is a
term construction sequence with properties (i)—(iii) for 407, and ¥~ (eoT) is a term
construction sequence with properties (i)—(iii) for eor. O

Note that an upper bound on gn;(®) for ® a term construction sequence satisfying the
conditions of the lemma is
H pgn(o)
K3

i<len(gn(o))

This explains some steps in the proof of the following lemma.
Let TRM be the set of all Gédel numbers of terms.

Lemma 8.5. TRM 1is recursive.

Proof.
Let fo(m,n) = p"; recursive since fy = C3(exp, C3(p,17),13);
let f1(m,n) = H p;"; recursive by Proposition 7.13
i<n
let fo(m) = H p™; recursive since fo = C3(f1,15, C(len, Ij));
i<len(m)
let f3(m,n) = len(n); recursive since f3 = C(len, I?);
let fi(m,n) =P(len(n)); recursive since f; = CL(P, f3);
let f5(m,n) = (n)p(ien(n)); recursive since fs = C5(( ), 13, fa);
let So = {(m, 1) : (W)p(1enny) = m}; recursive since xs, = C3(xe, s, 12);
let S; = {(m, n) :n € TRMCONY}; recursive since xs, = Cs(xTrRMCON, I2);
let So = Sy N Sy; recursive by Proposition 7.16
let S3 = {(m,n): there is an i < n such that (m,i) € Sa}. recursive by Prop. 7.21
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Now TRM is recursive, since xrrm = C3(xss, I3, f2); in fact,

C%(Xss ) I(1)7 fQ)(m) = XSs (m7 fQ(m))

= Xss; | M, H p;n
i1<len(m)

— { 1 it <m7 Hi<1en(m) pr) € 537
0 otherwise,
1 if there is a j < [, cjen(m) Pi"

= such that (m,j) € Sa,

otherwise,

if there is a j < JT; cjen(m) PI"

= such that (j)ien(;)-1 = m and j € TRMCON
0 otherwise,

= XTRM(m)- [l

— O

Now we define EQ(m,n) = CAT(23, CAT(m,n)). Thus if ¢ and 7 are terms, then
EQ(gn(o),gn(1)) = gn(= o7). AT is the set of all Gédel numbers of atomic formulas.
Recall that = is the integer 3.

Lemma 8.6. EQ is recursive.

Proof. EQ = C3(CAT, k3,, CAT). O

Lemma 8.7. AT 1is recursive.

Proof.

Let So = {(2,2,9) : z = EQ(z,y)}; recursive since xs, = Ca(x=, I3, C3(EQ,I3,13));
let S1 = {(z,7,y) : y € TRM}; recursive since xs, = C3(xTrRM, I5);

let Sy = {(z,z,y) : € TRM}; recursive since xs, = Ci(xtrM, I3);

let S3 = Sy N .S; NSy; recursive by Prop. 7.16

let Sy = {(z,z) : thereis a y < z such that (z,x,y) € S3}; recursive by Prop. 7.20.

Now AT is recursive, since AT = {z : there exist z < z such that (z,z) € S3}, and Prop.
7.20 applies. O

Now we define

NEG(m) = CAT(2", m);
IMP(m,n) = CAT(2?, CAT(m, n));
ALL(m, n) = CAT(2%, CAT(2°(m+D) p)).

132



Thus for any formulas ¢, 1 and any m € w, NEG(gn(p)) = gn(—p), IMP(gn(¢), gn(v)) =
gn(p — ¢), and ALL(m, gn(p)) = gn(Vome).

Lemma 8.8. NEG, IMP and ALL are recursive.
Proof.

NEG = C3(CAT, k{,1}));

IMP = C3(CAT, k3., C3(13,17));

Let fo(m,n) = m + 1; recursive since fo = C(s,I?);

Let fi(m,n) = 5(m + 1); recursive since f; = C2(-, k2, fo);

Let fo(m,n) = 25+ recursive since fy = C3(exp, k3, f2);

Let fs(m,n) = CAT(2°(m*Y n); recursive since f3 = C3(CAT, fo,T3;

ALL is recursive, since ALL = C3(k3., f3). O
We recall now the definition of a formula construction sequence; a sequence (@q, . .., ©m—1)

of sequences of natural numbers such that for each ¢ < m one of the following conditions
holds:

(1) ¢; is an atomic formula.
(2) There is a j < ¢ such that ¢; is (1) ¢;.
(3) There exist j, k < i such that ¢; is (2)7 @] @k
(4) There exist j <4 and k such that ¢; is (4,5(k+ 1)) " ¢;.
Recall here that — corresponds to 1, — to 2 and V to 4. Let FMLACON be the set of all
Godel numbers of formula construction sequences.
Lemma 8.9. FMLACON is recursive.
Proof.

Let Ry = {(m,i) : (m); € AT}; recursive, since xr, = C3(xar, C3(( ),I3,13));
(Rp corresponds to (1))
let fo(i,m,j) = (m);; recursive since fo = C3(( ),I3,13);
let f1(i,m,j) = (m);; recursive since fo = C3(( ),I3,13);
let fa(i,m,j) = NEG((m),); recursive since fo = C3(C3(NEG, fo);
let So = {(i,m,7) : (m); = NEG((m);)}; recursive since xg, = C2(x=, f1, f2);
let S1 = {(i,m) : there is a j < i such that (m); = NEG((m),)};
recursive by Prop. 7.20
let Ry = {(m,%) : there is a j < ¢ such that (m); = NEG((m);)};
recursive since xr, = C3(xs,,I5,13);
(Ry corresponds to (2))
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let f3(i,m,j, k) = (m)y; recursive since fy = C2(( ),I],13);
let fa(i,m, j, k) = (m);; recursive since f5 = C2((),11,13);
let f5(i,m, j, k) = IMP((m);, (m)); recursive since f5 = C3(IMP, f4, f3);
let fs(i,m,j, k) = (m);; recursive sincefs = C3(( ), I1,13);

let So = {(i,m,j,k) : (m); = IMP((m);), (m)x)}; recursive since
5, = Ci(&=, fo, f5);
let S3 = {(i,m, j) : there is a k < i such that
(m); = IMP((m);), (m)x)}; recursive by Prop. 7.20;
let Sy = {(i,m) : there exist j, k < i such that
(m); = IMP((m);), (m)x)}; recursive by Prop. 7.20;
let Ry = {(m, 1) : there exist j, k < i such that (m); = IMP((m);), (m)k)};
recursive since xr, = C3(xs,,I%,12) :
(Ry corresponds to (3))
let fr(i,m, j, k) = ALL(j, (m)y); recursive since f; = C3(ALL, I3, f3);
let S5 = {(i,m, j, k) : (m); = ALL(j, (m)x)}; recursive since
55 = Cilx=, fe, f7);
let Sg = {(i,m,j) : there is a k < i such that (m); = ALL(j, (m)x)};
recursive by Prop. 7.20
let S7 = {(m,1,7) : there is a k < i such that (m); = ALL(j, (m)x)};
recursive since xg, = Ci(xs,, I3, 13, 13);
let Rg = {(m,1) : there exist j < m and k < i such that
(m); = ALL(j, (m)g)}; recursive by Prop. 7.20;
(R3 corresponds to (4))

Now let T'= RyU. ..U R3; by Proposition 7.16, T is recursive. Hence by Corollary 8.22 the

set U & {(m,n) : for all i < n (m,7) € T} is recursive. Now FMLACON = {m :m > 1
and (m,len(m)) € U}; it is recursive by the following steps:

let Sg = {m : m > 1}; recursive by Cor. 7.17
let Sg = {m : (m,len(m)) € U}; recursive since
s, = Ci(xv, 1p, Ci(len, I));
FMLACON = Sg N Sy; recursive by Prop. 7.16 ]

The following lemma is similar to Lemma 8.4.

Lemma 8.10. For any formula ¢ there is a formula construction sequence ® = (1, ..., Ym-1)}}
with the following properties:

(Z) Ym-1=¢
(ii) Each ; is a subformula of ¢.
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(iii) m is the less or equal the length of ¢.

Proof. We prove this by induction on ¢, thus using Proposition 2.5. If ¢ is an atomic
formula we can take ® = (p), and clearly (i)—(iii) hold. If ® is a formula construction
sequence with the properties (i)—(iii) for ¢, then ®~(—¢) has properties (i)—(iii) for —.
If ® is a formula construction sequence with properties (i)—(iii) for ¢ and ¥ is a formula
construction sequence with properties (i)—(iii) for ¢, then @~V ™ (p — 1) is a formuls
construction sequence with properties (i)—(iii) for ¢ — 1. If ® is a formula construction
sequence with properties (i)—(iii) for ¢ and i € w, then &~ (Vv;¢) is a formula construction
sequence with properties (i)—(iii) for Yuv;¢. O

Now let FMLA be the set of all Godel numbers of formulas.

Lemma 8.11. FMLA s recursive.

Proof. See the proof of Lemma 8.5; replace TRMCON by FMLACON and TRM by
FMLA. O

Now let NUM be defined by NUM(m) = gn(m).

Lemma 8.12. NUM is recursive.

Proof. Define f(m,n) = SU(n) for all m,n € w. Then f is recursive, since f =
CL(SU,I2). Tt follows that Qo(2%, f) is recursive, and we claim that Qg (2%, f) = NUM.
We prove that Qo(2%, f)(m) = NUM(m) by induction on m. First, Qq(28, £)(0) = 2% =
gn((0)) = NUM(0). Now suppose that Qq(28, f)(m) = NUM(m). Then

Qo (2%, f)(m +1) = f(m, Qo(2%, f)(m))
= f(m,NUM(m))
= SU(NUM(m))
= NUM(m + 1)

Theorem 8.13. (Theorem C) G is recursive, hence representable.

Proof. Recall that G : w — w is defined as follows:

G(m) = {gn(Subﬁ%gp) if m = gn(p) for some formula ¢,
0 otherwise.

By the definition of Subff, this means that if m = gn(y) then G(m) is the Gédel number
of the formula

YVgn(p) [Vgn(p) =T — Voo[vo = Vgn(y) — ©]]-

Thus the definition of G can be given as follows:

ALL(0, IMP(EQ(2°,2°(m+1) 'm))) if m € FMLA,

ALL(m, IMP(EQ(2°(™+1) NUM(m)),
G(m) =
0 otherwise.
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We see that (G is recursive in the following steps.

Let fo(m) = 5(m + 1); recursive since fo = C3(-, k3, s);

Let fi(m) = 25(m+1). recursive since f; = C3(ki, fo);

Let fo(m) = EQ(2°,2°(™*+Y)); recursive since fo = C2(EQ, kis, f1);

Let fs(m) = IMP(EQ(2°,2°(™* 1)) m); recursive since f3 = CZ(IMP, fo,I});

Let f4(m) = ALL(0, IMP(EQ(2°,2°(™*+Y) m)); recursive since f; = C2(ALL, k3, f3);
Let fs(m) =E Q(2°(™+) NUM(m )); recursive since fs = C2(EQ, f1, NUM);

Let fg(m) = IMP(EQ(2°(™+D NUM(m)), ALL(0, IMP(EQ(2°, 2°(™*1)) 'm)));

recursive since fg = C1(IMP, fs, f41);
Let fr(m) = ALL(m, IMP(EQ(2>™*Y NUM(m)),
ALL(0, IMP(EQ(2°,2°(™*+1) 'm))); recursive since f; = C?(ALL, I}, f¢).

Now we have

[ fz(m) if m € FMLA,
G(m) = {k(l)(m) otherwise.

Hence G is recursive, by Proposition 7.23. ]

Theorem D involves the notion of proof. Basic to the notion of proof are the logical axioms.
Let LOGAX be the set of all Godel numbers of logical axioms.

Lemma 8.14. LOGAX is recursive.

Proof. Axiom (Lla) has the form ¢ — (¢p — ).

Let fo(m,n,p) = IMP(n,p); recursive since fo = C3(IMP, I3, I3);
Let fi1(m,n,p) = Imp(p, IMP(n, p)); recursive since f; = C2(IMP, I3, fo);
Let So = {(m,n,p) : m = Imp(p,IMP(n, p))}; recursive since xs, = C2(x=, I3, f1);
Let S; = {(m,n,p) : p € FMLA}; recursive since xs, = C3(xrmLa, I3);
Let Sy = {(m,n,p) : n € FMLA}; recursive since xs, = C3(xrmra, I3);
Let S5 = Sp N S1 N Sy; recursive by Proposition 7.16;
Let Sy = {(m,n) : Ip < m[p,n € FMLA and m = Imp(p, IMP(n, p))|};
recursive by Proposition 7.20
Let Ry = {m : 3n,p < m[n,p € FMLA and m = Imp(p, IMP(n,p))]};
recursive by Proposition 7.20

(Ro corresponds to axiom (L1la)).

Let Ry and Rs be the sets of all Gédel numbers of formulas in axioms (L1b) and (Llc)
respectively. We leave to an exercise the fact that these sets are recursive.
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We turn to axioms (L2).They have the form Vv;(¢ — ¢) — (Vv — Yo;1).

Let fo(m,n,p,j) = ALL(j,p); recursive since fo = C3(ALL,I3,13);

Let f3(m,n,p,j) = ALL(j,n); recursive since f, = C3(ALL, I3, 17);

Let fi(m,n,p,j) = IMP(ALL(j,n), ALL(j,p)); recursive since f4 = C3(IMP, f3, f2);
Let f5(m,n,p,7) = IMP(n, p); recursive since f5 = C;(IMP,I},15);

Let fg(m,n,p,j) = ALL(j,IMP(n, p)); recursive since fs = C3(ALL, I3, f5);

Let fz(m,n,p,j)=IMP(ALL(j,IMP(n,p)), IMP(ALL(j,n), ALL(j, p));

recursive since f; = C3(IMP, fs, f1);
Let S5 = {(m,n,p,7): m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j,n), ALL(j, p))};
recursive since yg, = C3(x=,I3, f7);
Let Sg = {(m,n,p) : 3j < m[m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j, n), ALL(4, p))] }1
recursive by Proposition 7.20;
Let S7 = {(m,n,p) : n € FMLA}; recursive since xs, = C3(xrmra, I3;
Let Sg = {(m,n,p) : p € FMLA}; recursive since xs, = Ci(xrmrLa, I3;
Let Sg = Sg N .S1 NSy N .S7 N Sg; recursive by Prop. 7.16;
Let S10 = {(m,n) : Ip,j < m[n,p € FMLAand
m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j,n), ALL(j,p))]};
recursive by Proposition 7.20;
Let Rs = {m:3n,p,j < m[n,p € FMLA and
m = IMP(ALL(j, IMP(n, p)), IMP(ALL(j,n), ALL(j,p))]};
recursive by Proposition 7.20;

(R3 corresponds to axiom (L2)).
Instances of (L3) have the form ¢ — Yv,p, where v; does not occur in ¢.

Let fg(m,n,j,i) = (n);; recursive since fg = C3(( ),1I},13);
Let fo(m,n, j,i) = 5(j + 1); recursive since fo = C3(-, k3, C;(SU,I3));
Let Sg = {(m,n,j,1) : (n); # 5(j + 1)}; recursive since xs, = C3(Xx%, fs, fo);
Let S19 = {(m,n,j,s): Vi < s[(n); # 5(j + 1)]}; recursive by Prop. 7.22;
Let S11 = {(m,n,j) : Vi <len(n)[(n); # 5(j + 1)]}; recursive since

XS = Cg(xsmv Ig? I%? I%, Cil’)(lenv Izl))»;
Let fio(m,n,j) = ALL(j,n); recursive since fio = C2(ALL,TI3,I3);
Let fi11(m,n,j) = IMP(n, ALL(j,n)); recursive since fi; = C2(IMP, I3, fio);
Let Sio = {(m,n,j) : m = IMP(n, ALL(j,n))}; recursive since xs,, = C3(x=, I3, fi1);
Let Si3 = {(m,n,j) : n € FMLA}; recursive since xs,, = Ci(xrmpa, I3;
Let S14 = 511 N S12 N S3; recursive by Prop. 7.16;
Let S5 = {(m,n) : 3j < m[n € FMLA and Vi < len(n)[(n); # 5(j + 1)]
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and m = IMP(n, ALL(j,n))|}; recursive by Prop. 7.20
Let Ry = {m:3n,j < mln € FMLA and Vi < len(n)[(n); # 5(j + 1)]
and m = IMP(n, ALL(j,n))|}; recursive by Prop. 7.20

(R4 corresponds to axiom (L3)).

Axioms in (L4) have the form Jv;(v; = o) with v; not in the term o; using the definition
of 3, this is =Vv;—(v; = o).

= 5(j + 1); recursive since fio = C3(-, k3, C5(SU, I3));
= 250FY): recursive since fi3 = C2(exp, k3, f12);
= EQ(25(j+1), n); recursive since fio = C3(EQ, fi3,13);
Let fi5(m,n,j) = NEG(EQ(2°U+Y) n)); recursive since f15 = C3(NEG, f14);
Let fi6(m,n,j) = ALL(j, NEG(EQ(2°Y*Y n))); recursive since
fie = C3(ALL, I3, fi5);
Let fi7(m,n,j) = NEG(ALL(j, NEG(EQ(2°U "V n))));
recursive since fi7 = C3(NEG, fi6);
Let Sig = {(m,n,j) : m = NEG(ALL(j, NEG(EQ(2°Y*Y n)))};

recursive since xs,, = Ca(x=, I3, fi7);

Let f12 manaj
Let f13 ma”?j

~— — —

(
(
Let fi4(m,n,j
(
(

Let Si7 = {(m,n,7) : n € TRM}; recursive since xs,, = C3(xTrM, I});
Let S18 = S11 N S16 N Si7; recursive by Prop. 7.16;
Let S19 = {(m,n) : 3j[Vi < len(n)[(n); # 5(7 + 1)] and
n € TRM and m = NEG(ALL(j, NEG(EQ(2°U+V n)))]};
recursive by Prop. 7.20;
Let Rs = {m:3n,j < m[Vi <len(n)[(n); # 5(j + 1)] and
n € TRM and m = NEG(ALL(j, NEG(EQ(2°U+Y n)))]};
recursive by Prop. 7.20;

R corresponds to axiom (L4).

An instance of (L5) has the form 0 =7 — (0 = p — 7 = p) for some terms o, 7, p.

Let fis(m,n,p,q) = EQ(p, q); recursive since fis = C3(EQ,I3,13);
Let f19(m7 n,p, Q) = EQ(”? Q)7 recursive since f19 - Ci(EQ7 IZIL7 I%)?
Let f20(m7 n,p, Q) = EQ(n,p), recursive since f18 - Ci(EQ7 Izll7 I%)?
Let fo1(m,n,p,q) = IMP(EQ(n,q), EQ(p, q)); recursive since

f21 = C3(IMP, fig, f1s);

Let faz(m,n,p,q) = IMP(EQ(n, p), IMP(EQ(n, q), EQ(p, 9));
recursive since fay = C3(IMP, fog, f21);

Let Sa0 = {(m7 n,p, Q) sm = IMP(EQ(H,])), IMP(EQ(TL, Q)v EQ(p, Q))};
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recursive since ys,, = C3(x=, I, fo2);
Let Sy = {(m,n,p,q) : n € TRM}; recursive since xs,, = Ci(xtrM, I7);
Let Sao = {(m,n,p,q) : p € TRM}; recursive since xs,, = Ci(xTrM, I3);
Let Sas = {(m,n,p,q) : ¢ € TRM}; recursive since xs,, = Ci(xTrM, I3);
Let So4 = Sog N So1 N Sos N So3; recursive by Prop. 7.16;
Let Sos5 = {(m,n,p) : 3¢ < m[n,p,q € TRM and

m = IMP(EQ(n, p), IMP(EQ(n, q), EQ(p, ¢))] };

recursive by Prop. 7.20
Let Sog = {(m,n) : Ip,q < m[n,p,q € TRM and

m = IMP(EQ(n, p), IMP(EQ(n, ¢), EQ(p, 9))] };

recursive by Prop. 7.20
Let Rg = {m : 3In,p,q < m[n,p,q € TRM and

m = IMP(EQ(n, p), IMP(EQ(n, ¢), EQ(p, 9))]};
(Rg corresponds to (L5)).

We leave (L6) to an exercise; Ry is the set of all Godel numbers of instances of (L6).
(L7) consists of formulas of the following forms:

(L7a) o=1— So =Sr;

(LTb) o=17—(c+&=T174¢);
(L70) o=7—(E+0=E+7)
(LTd) o=7— (0ot =Te);
(L7e) o=7— (Eeoc=C¢erT).

Here o, 7, & are terms. We treat only (L7a) and (L7b), and leave the others for an exercise.

Let f23
Let foq

m,n,p) = SU(n); recursive since fo3 = C3(SU,I3);
= SU(p); recursive since foy = C3(SU,I3);
Let fo5 = EQ(SU(n), SU(p)); recursive since fo5 = C2(EQ, fo4, f23);
Let foq = EQ(n, p); recursive since fo3 = C3(EQ, I3, I3);
Let far(m,n,p) = IMP(EQ(n, p), EQ(SU(n), SU(p)));

recursive since for = C2(IMP, fos, f25);
Let Sur = {(m,n, p) : m = IMP(EQ(n, p), EQ(SU(n), SU(p))}:

recursive since xs,, = C3(x=, I3, for);

m? nﬂp

m? n7p

N Y~
~— — — ~—

m? nﬂp

Let Sog = {(m,n,p) : n € TRM}; recursive since xs,, = C3(xTrM, I});
1
3

C
Let Syg = {(m,n,p) : p € TRM}; recursive since xs,, = Ca(xTrRM, I3);
Let S30 = So7 N Sog N Sag; recursive by Prop. 7.16;

Let S31 = {(m,n) : Ip < m[n,p € TRM and
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m = IMP(EQ(n, p), EQ(SU(n),SU(p)))]}; recursive by Prop. 7.20;
Let Rg = {m : 3In,p < m[n,p € TRM and

m = IMP(EQ(n, p), EQ(SU(n), SU(p)))]};
recursive by Prop. 7.20;
(Rg corresponds to axiom (L7a));
Let fos(m,n,p,q) = PLUS(p, q); recursive since fogs = C3(PLUS,13,13);
Let fag(m,n,p,q) = PLUS(n, q); recursive since

Joo = Ci(PLUS, Iila Ig)?
Let fso(m,n,p,q) = EQ(PLUS(n, q), PLUS(p, q));

recursive since f3o = C3(EQ, fag, v28);
Let f31(m,n,p,q) = EQ(n, p); recursive since f3; = C2(EQ,I{,1I3);
Let fsa(m,n,p,q) = IMP(EQ(n,p), EQ(PLUS(n, ¢), PLUS(p, q)));

recursive since fzy = C3(IMP, f31, f30);
Let S32 = {(m,n,p,q) : m = IMP(EQ(n, p), EQ(PLUS(n, q),

PLUS(p. 0)))}: recursive since xs,, = C3(x=, I, fr2):
Let S33 = {(m,n,p,q) : n € TRM}; recursive since xs,, = Ci(xTrM, I7);
Let S34 = {(m,n,p,q) : p € TRM}; recursive since xs,, = Ci(xTrM, I3);
Let S35 = {(m,n,p,q) : ¢ € TRM}; recursive since xs,, = Ci(xTrM, I3);
Let S36 = S32 M S33 N S34 N Ss5; recursive by Prop. 7.16;
Let Ss7 = {(m,n,p) : 3¢ < m[n,p,q € TRM and

m = IMP(EQ(n, p), EQ(PLUS(n, ¢)))]}; recursive by Prop. 7.20
Let S3s = {(m,n) : Ip,q < m[n,p,q € TRM and

m = IMP(EQ(n, p), EQ(PLUS(n, q)))]}; recursive by Prop. 7.20
Let Rg = {m : 3n,p,q < m[n,p,q € TRM and

m = IMP(EQ(n, p), EQ(PLUS(n, ¢)))]}; recursive by Prop. 7.20
(Ry corresponds to axiom (L7b)).

Let R1o, R11, R12 be the sets of Gédel numbers of formulas in axioms (L7c), (L7d), (L7e)
respectively. Then LOGAX = Ry U...U Ri2, and hence LOGAX is recursive. O

Theorem 8.15. (Theorem D) If T' is a set of formulas and gn[l'] is recursive, then the
following binary relation is also recursive:

Prfr d:ef{(n,m) : there is a T'-proof ® with last entry ¢
such that m = gny(®) and n = gn(yp)}
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Proof.
Let Ro = {(m,i) : (m); € gn[[']}; recursive since Xg, = C3(Xgn[ry, ( ));
; € LOGAX}; recursive since xr, = C3(xrocax, ());

= (m);; recursive since fo = C3((),I5,13);

)= (
Let fl(z m, j, k) = (m)g; recursive since f; = C3((),I3,13);
Let fo(i,m, 7, k) = (m);; recursive since fo = C3(( ),Ig,I5;
Let f3(i,m, j,k) = IMP((m);, (m);); recursive since f3 = C3(IMP, fo, fa);

Let So = {(i,m, j, k) : (m)r = IMP((m);, (m);)};
recursive since xs, = C3(x=, f1, f3);
Let S1 = {(i,m,j,k) : (m); € FMLA};
recursive since yg, = Ci(XFML As f2);
Let Sy = {(i,m, j, k) : (m); € FMLA};
recursive since yg, = C}L(XFMLAa fo);
Let S3 = {(i,m,j,k) : (m)x € FMLA};
recursive since yg, = C}L(XFMLAa f1);
Let S5 = SpN.S1 NSy N .S3; recursive by Prop. 7.16;
Let Sg = {(i,m, j) : 3k < i[(m);, (m);, (m)r € FMLA and
(m)r = IMP((m);, (m);)]}; recursive by Prop. 7.20;
Let S7 = {(i,m) : 34,k < i[(m);, (m);, (m)r € FMLA and
(m)r = IMP((m);, (m);)]}; recursive by Prop. 7.20;
Let Ry = {(m, 1) : 35,k < i[(m);, (m);, (m), € FMLA and
(m)x = IMP((m);, (m);)]}; recursive since xr, = C3(xs,, 13, I3);
(Ry corresponds to modus ponens);
Let f4(i,m,k,j) = (m);; recursive since fy = C3((),I3,13);
Let f5(i,m,k,j) = (m);; recursive since fy = C3((),11,13);
Let fo(i,m, k,j) = ALL(k, (m);); recursive since fs = C3(ALL, I3, f1);
Let Sg = {(i,m, k, j) : (m); = ALL(k, (m);)}; recursive since
= Ci(x=, f5: f6);
Let Sg = {(i,m, k, j) : (m); € FMLA}; recursive since
Xso = Ci(xpMLA, f4);
Let S19 = Sg N So; recursive by Prop. 7.16;
Let S11 ={(i,m, k) : 3j <i[(m); € FMLA and (m); = ALL(k, (m),)]};
recursive by Prop. 7.20;
Let Si2 = {(m,4,k) : 3j <i[(m); € FMLA and (m); = ALL(k, (m);)]};
recursive since xs,, = Ci(Xs.,, 11, I, I3);
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Let R3 = {(m, )34,k < i[(m); € FMLA and (m); = ALL(k, (m);)]};
recursive by Prop. 7.20;

Let S13 = RoU...U Rg; recursive by Prop. 7.16;

Let S14 = {(m, s) : Vi < s[(m, i) € S13]}; recursive by Prop. 7.22;

Let S15 = {m : (m,len(m)) € S14}; recursive since

Xs1s = C1(xsu.: I, Cl(len, I));

Let S16 = {m : m > 1}; recursive by Cor. 7.17;

Let S17 = S15 N S16; recursive by Prop. 7.16;

Let Sig = {(n,m) : m € Sy7}; recursive since xs,, = Ca(xs,.,13);

Let Sig = {(n,m) : n = len(m)}; recursive since xg,, = C3(x=, I3, C(len,I7)).
Clearly S19 = Prfr. O
To complete the proofs connected with Godel’s incompleteness theorem, it remains only
to treat Theorem B:

Theorem 8.16. (Theorem B) The set gn[P’] is recursive. Moreover, if A is a finite set
of formulas, then gn[P’ U Al is recursive.

Proof. The assertion concerning A follows from the first statement using Proposition
7.16 and Corollary 7.17. Moreover, for P’ itself, each of axioms (P1)—(P6) are single
formulas, so by the same reasons, we only need to treat (P7’). We recall the form of (P7'):

Subffy’ v A Vug(¢ — Subffy), ¢) — Vuep
for any formula ¢. By the definition of Subff, this is

V0gn () [Vgn(p) = 0 = Yuo(vo = vgn(p) — @)]A
Vg [90 - vUgn(c,o)[vgn(go) = Svy — vUO(UO = Ugn(p) — 90)]]

— Y.
Using the definition of A, this is

~[Yogn(e) [Vgn(e) = 0 = Yoo (vo = vgn(p) — @) =
Vo[ = YUgn(e) [Vgn(p) = Svo — Yoo (vo = Vgn(p) — ©)]]
— Yupe.

Thus we want to show that the set T of all Godel numbers of formulas of this form is
recursive.

Let fo(m,n) = ALL(0,n); recursive since fo = C3(ALL,k3,12);
Let fi(m,n) = 5(n + 1); recursive since f; = C3(-, k2, C5(s,I3));

Let fo(m,n) = 2°"FY: recursive since fo = C2(exp, k2, f1);
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Let f3(m,n) = EQ(2°, 25(”+1)); recursive since f3 = C3(EQ, k35, f2);

Let f4(m,n) = IMP(EQ(2°,2°"*1) n);
recursive since fy = C2(IMP, f3,13);

Let f5(m,n) = ALL(IMP(0, EQ(2%,2°("+1) n));
recursive since f5 = C2(ALL, f4,1%);

Let fg(m,n) = K3oss; clearly recursive;

Let fz(m,n) = EQ(25(”+1), 263%); recursive since f; = C?2,(EQ, f1, fs);

Let fs(m,n) = IMP(EQ(2°("+1), 263%) ALL(IMP(0, EQ(2°, 2°"*1)) n)));
recursive since fg = C3(IMP, fr, f5);

Let fo(m,n) = ALL(n, IMP(EQ(2°("*Y), 263%) ALL(IMP(0, EQ(2°, 2°("+1) n)));
recursive since fo = C2(ALL, 12, fs);

Let fio(m,n) = IMP(n, fo(m,n)); recursive since fio = C3(IMP, 12, fo);

Let fi11(m,n) = ALL(0, fio(m,n)); recursive since f1; = C2(ALL, k2, fi0);

Let fia(m,n) = NEG(f11(m,n)); recursive since fio = C3(NEG, f11);

Let fi3(m,n) = EQ(2°("*V ZERO); recursive since f13 = C2(EQ, fa, k3s);

Let fia(m,n) = IMP(fi3(m,n), fs(m,n)); recursive since f14 = C3(IMP, fi3, f5);
Let fi5(m,n) = ALL(n, fi4(m,n)); recursive since fi5 = Ca(ALL, I3, f14);

Let fig(m,n) = IMP(fi5(m,n), fi1(m,n)); recursive since fig = C3(IMP, fi5, f11);
Let fi7(m,n) = NEG(fis(m,n)); recursive since f17 = C3(NEG, fi6);

Let fis(m,n) = IMP(fi7(m,n), fo(m,n)); recursive since fig = C3(IMP, fi7, fo);
Let S = {(m,n) : m = fig(m,n)}; recursive since xs = C3(x=, I3, f18);
T = {m: 3In < m[(m,n) € S]}; recursive by Prop. 7.20. ]

EXERCISES
E8.1. Show that the set of all Gédel numbers of formulas in logical axiom (L1b) is recursive.

E8.2. Show that the set of all Godel numbers of formulas in logical axiom (L1c) is recursive.

)

(L1c)

E8.3. Show that the set of all Godel numbers of formulas in logical axiom (L7c¢) is recursive.

E8.4. Show that the set of all Gédel numbers of formulas in logical axiom (L.7d) is recursive.
)

E8.5. Show that the set of all Gédel numbers of formulas in logical axiom (L7e) is recursive.
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