7. Recursive functions
August 18, 2014

In this chapter we show that many functions are recursive. This chapter does not require
any knowledge of the formal languages and logic developed in earlier in the notes; it
depends only on the definition of recursive functions given in chapter 5.

Proposition 7.1. + is recursive.

Proof. Let g(ap,a1,a2) = ag + 1 for all ag,a1,a3 € w. Then g is recursive, since
g = Ci(s,I3). We claim that + is Q,(Ij,g), and this will establish the proposition We
show that a + b = Q, (I3, g)(a, b) for all a,b € w by induction on b, for fixed a. We have

Q. (Ip, 9)(a, 0) = Ip(a) = a = a +0;
Ql(I(1)7 g)(a, b + 1) = g(a, b7 Ql(I(l)a g)(aa b))
=g(a,b,a+b) =s(a+b)=a+b+1,
as desired. ]
For each a € w, let k, : w — w be the constant function with value a, i.e., k,(b) = a for
all b € w.
Proposition 7.2. k, is recursive for every a € w.

Proof. We claim that k, = Qq(a,I?), and we prove Qy(a,I7)(m) = a for all m by
induction on m. Qg(a,I7)(0) = a by definition. Assume that Qg(a,13)(m) = a. Then

Qo(a, I})(m + 1) = T{(m, Qy(a, 1) (m)) = I}(m,a) = a. O
For each positive integer n and each a € w let k|, be defined by k! (zg,...,Tp—1) = a.
Thus k, = k.

Proposition 7.3. For each positive integer n and each a € w, the function K is recursive.

Proof. k7 = Cl(k,,I7). O

Proposition 7.4. - is recursive.

Proof. Let g(a,b,c) = a + ¢ for any a,b,c € w. Then g is recursive, since g =
C3(+,I3,I3). We claim that - is Q,(ko,g), and we prove that Q,(ko,g)(m,n) = m-n
by induction on n, with m fixed. Q;(ko,g)(m,0) = ko(m) = 0 = m - 0. Assume that
Ql(k07g)(m7n) = m-n. Then Ql(k07g)(man+1) = g(mana Ql(k07g)(m7n)) = g(m7n7m'
n)=m+m-n=m-(n+1). ]

The exponent is defined like this:

a =
b+1 _ b
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Note that then 0° = 1. This differs from elementary calculus, where 0° is undefined. We
also write exp for this two-place exponential function.

Proposition 7.5. exp is recursive.

Proof. Let f(x,y,z) = x-z. Then f is recursive, since f = C2(-,I3,13). Now the
exponent is Cy(k;.f); we prove that Cy(k;.f)(a,b) = a® by induction on b, with a fixed.
Ci(k;.f)(a,0) = ky(a) = 1. Assume that C;(k;.f)(a,b) = a®. Then C;(k;.f)(a,b+ 1) =
f(a,b,Ci(ky.f)(a,b)) = f(a,b,a’) = a-a® = a®t. O

Let P be the predecessor function:

m—1 ifm >0,
P(m)_{o if m =0,

for any m € w.

Proposition 7.6. P is recursive.

Proof. P = Q,(0,I2). We prove by induction on a that P(a) = Q,(0,13)(a) for
all a € w. We have Q,(0,13)(0) = 0 = P(0). Assume that Q,(0,13)(a) = P(a). Then
Qo (0,I5)(a + 1) = I5(a, Qy(0,15)(a)) = a = P(a + 1). O
Next we define _

m@n:{m_n it m > n,
0 otherwise.
Proposition 7.7. © is recursive.

Proof. First let f(x,y,z) = P(2) for all x,y,z € w. Then f is recursive, since
f = CyP,I5). And © is Q,(I5, f). In fact, we prove that Q,(I}, f)(m,n) = m ©n
by induction on n, with m fixed. Q,(I5, f)(m,0) = I}(m) = m = m © 0. Now assume

fmyn,moen)=Pmoen)=mae (n+1). ]

| — | is the two-place function such that for any m,n € w, |[m — n| is the absolute value
of the difference of m and n.

Proposition 7.8. | — | is recursive.

Proof. [z —y|=(z©y) + (y©x) for all 7,y € w. Thus
sg and sg are the one-place functions defined as follows, for any m € w:

wmy= [0 Em=0. o [1 ifm=0,
SV =1 itm=£0; BT 0 ifm£o.

Proposition 7.9. sg and 5g are recursive.
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Proof. We claim that 5g = Q,(0,k3); and we prove that Q,(1,k3)(a) = 5g(a) for all
a € w by induction. Q,(1,k2)(0) = 1 = 5g(0). Assume that Q,(1,k3)(a) = sg(a). Then
Q(1,K8)(a+ 1) = K3 (a, Qy(1, kZ)(a)) = 0 = 5g(a + 1).

Next, sg is recursive, since sg(z) = 5g(sg(x)) for any x € w; thus sg = C1(5g, 5g). ]

For any m,n € w, rm(m,n) is the remainder upon dividing m by n if n # 0, and is 0 if
n = 0. Thus for n # 0 we write m = ng + r with r < n, and rm(m,n) = r.

Proposition 7.10. rm is recursive.

Proof. Let f be the binary operation on w defined as follows, by recursion: for any
x,Y € w,
f(z,0) =0,

We check that rm(y,z) = f(x,y) for all z,y € w. If x = 0, then rm(y, ) = 0 by definition,
and sg(0) = 0, so f(0,y) = 0 for all y. Now suppose that = # 0. Then we prove that
rm(y,z) = f(x,y) for all y by induction on y. For y = 0, note that 0 = =z -0+ 0, so
rm(0,z) = 0; and also f(z,0) = 0. Now assume that rm(y,z) = f(z,y). Thus there is a
natural number ¢ such that y =z - g+ f(z,y), with f(z,y) < x.

Case 1. f(z,y)+1 < z. Then |z — f(x,y) — 1| > 0, hence sg(|z — f(z,y) —1]) =1
and also sg(z) =1 since z # 0, s0 f(z,y+1) = f(z,y) + 1 =rm(y + 1, ).

Case 2. f(z,y)+1=x. Then |z — f(x,y) — 1| = 0, hence sg(|z — f(z,y) —1]) =0
and so f(z,y+1)=0=rm(y+ 1, z).

So we have shown that rm(y, ) = f(z,y) for all z,y. Hence rm = C3(f,13,13). So we will
be finished with rm once we show that f is recursive. That is done in these steps:

let to(x,y,2) = 2z + 1 for all x,y, z; recursive since to = Cj(s,I3);

let t1(z,y, 2) = |z — 2 — 1| for all &, y, z; recursive since t; = C3(| — |,12,t0);
let to(z,y, 2) = sg(|x — z — 1|) for all ,y, z; recursive since to = C3(sg, t1);
let t3(z,y,2) = (z+ 1) -sg(lx — z — 1]) for all z,y, z;

recursive since t3 = C3(-, o, t2);
let t4(x,y, z) = sg(z) for all z; recursive since t4 = C3(sg, I3);
let t5(x,y,2) =sg(x) - (z+ 1) -sg(lx — 2z —1]|) for all z,y, z;
recursive since t5 = C3(-, 4, t3).
Now we claim that f = Qi(ko,t5). We prove that f(z,y) = Qi(ko,t5)(z,y) for all z,y

by induction on y, with x fixed. First, f(z,0) = 0 and Q1 (ko,?5)(x,0) = ko(z) = 0. Now
suppose that f(z,y) = Qi(ko,t5)(z,y). Then

Qi(ko, t5)(z,y + 1) = t5(x,y, Qi(ko, t5)(z, y))
= t5(v,y, f(2,9))
=sg(z) - (f(z,y) +1) sg(lz — f(z,y) — 1)
= f(x,y+1). O
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The two-place function | / | is defined like this: for any m,n € w,

largest natural number < m/n if n # 0,
|m/n| = { g <m/ 7 X
0 otherwise.

Proposition 7.11. The function | / | is recursive.

Proof. In fact, define

g(a:,()) = 07
g(x,y+1) = g(z,y) +5g(Jx — rm(y, z) — 1|).

Then |y/z| = g(z,y) for all z,y € w. In fact, if z = 0, then |y/0] = 0 by definition; and we
show that g(0,y) = 0 for all y by induction: g(0,0) = 0. Assume that ¢g(0,y) = 0. Note that
Thus |y/0] = ¢g(0,y) for all y.

Now assume that x # 0. We prove that |y/z| = g(x,y) for all y by induction on
y, with x fixed. First, g(x,0) = 0 = [0/z]. Now assume that |y/z] = g(z,y). By the
division algorithm write y = x - ¢ +r with 7 < 2. Then £ = ¢+ Z, hence ¢ = [y/z].

Case 1. r+1 < z. Then

y+1 y 1 r 1 r+1

=—+—-—=q¢q+ -+ —-=q+ )
xr x x x x €T

so that |[(y+1)/z] = q. Also, rm(y+1,z) =r+1, hence z —rm(y+1,2) —1 =2 —r # 0,
s0 58}z — 1m(y + 1,) — 1) = 0 and g(z, 5+ 1) = g(z,y) = g.
Case 2. r+1 = z. Then z—rm(y+1,2)—1 = 0,s0 g(z,y+1) = g(x,y)+1 =
This finishes the proof that |y/z| = g(z,y) forallz,y € w. Hence | / | =
So It remains to prove that g is recursive. We do this in steps:

|[(y+1)/z].
C3(g,13,13).

let to(z,y, z) = rm(y, x); recursive since ty = C2(rm, I3, I3);

let t1(z,y, 2) = rm(y, x) + 1; recursive since t; = C3(s, to);

let to(x,y, 2) = |z — rm(y, z) — 1|; recursive since to = C3(| — |,I3,t1);

let t3(x,y, z) = 5g(|]z — rm(y, x) — 1|); recursive since t3 = C3(3g, t2);

let t4(x,y, 2) = z +58(|]x — rm(y, ) — 1|); recursive since ty = C2(+,13, t3).

Now g = Qi(ko,ts). We prove that g(z,y) = Qi(ko,ts)(z,y) by induction on y, with
r fixed. Qi(ko,ts)(7,0) = ko(r) = 0 = g(z,0). Assume that Qi (ko,t4)(z,y) = g(z,9).
Then

Qi(ko, ta)(z,y + 1) = ta(x,y, Qi(ko, t4)(z,y))
= Qi (ko ta)(z,y) +58(|z — rm(y, ) — 1)
= g(z,y) +58(|lz — rm(y, z) — 1)
=g(z,y+1). O
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Proposition 7.12. Suppose that f is an m-ary recursive function, m a positive integer.

Define another m-ary function g, like this. For any ag,...,0m_1 € W,
g(ag,...,am—1) Z flag,...,am—2,).
T<Qm—1

Then also g is recursive. (A sum over the empty set, i.e., with a,,—1 = 0, is taken to be
0.)

Proof. We just reformulate the definition of g so that it is pretty obvious that g is
recursive:
g(ag,...,am—2,0)=0;

glao,...,am—2,y+1) = Z flagy...,am—2,)
r<y+1

=Y flao,. .. am—2,2) + f(a0, - ., am—2,7)

<y
= g(a()? ) am—27y> + f(aoa .- '7a?n—27y>'

To really show that g is recursive, let h(ag,...,am) = am + f(ao,...,am,m—1) for all
ag, . ..,am—1 € w. Then h is recursive, since

h = C72n+1(+7 I;nnJrla C%‘Fl(-f’ IgnJrl’ ] Iﬁﬂ)))

Now we take two cases.
Case 1. m = 1. Then g = Qu(0,h). We prove that g(b) = Qo(0,h)(b) for all
b € w by induction. Qqu(0,h)(0) = 0 = ¢g(0). Assume that Qu(0,h)(b) = g(b). Then

Qo(0,R)(b+ 1) = h(b, Qo(0, h)(b)) = h(b, g(b)) = g(b) + f(b) = g(b+1).
Case 2. m > 1. We claim that g = Qm,l(kglfl, h). We prove that

glao, .., am_2,b) = Qu_1(ki* ', h)(ag, . .., am_2,b)
for all ag,...,am_2,b € w by induction on b, with ay, ..., a,_o fixed.
Qm,l(kgn_l, h)(ag, - .., am—2,0) =k '(ag,...,am_2) =0=g(ag,...,am_2,0).
Assume that Qm,l(kg%l, h)(ag, ..., am—2,b) = g(ag,...,am—2,b). Then

Qo 1kt R (ag, . .., am_2,b+1) = h(ag, ..., am_2,b, Qm_1(ki* ', h)(ag, . .., am_2,b))
= h(ag,...,am-2,b,9(ag,...,am—2,b))
=g(ag,...,am-2,0) + f(ag,...,am—2,b)
=g(ag,...,Qm_2,b+1). O

Proposition 7.13. Suppose that f is an m-ary recursive function, m a positive integer.

Define another m-ary function g, like this. For any ag,...,0m_1 € W,
g(ag,...,am—1) H flag,...,am—2,).
T<Qm—1
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Then also g is recursive. (A product over the empty set, i.e., with a,,—; = 0, is taken to
be 1.)

Proof. We just reformulate the definition of g so that it is pretty obvious that g is
recursive:

g(a07 e '7am7270) = 17
g(a07"'7am—27y+1) = H f(GJOa"'?am—an)

rz<y+1

= H f(ao, .. .,CLm_Q,x) : f(a()) .- -aam—27y)

<y
= g(CLOa .- '7am727y) : f(CLo,. . '7am727y)'

To show that g is recursive, let h(ag, ..., am) = am - f(ao,-..,am—1) for all ag, ..., am,_1 €
w. Then h is recursive, since

yTm—1

h=Ch (5 I Co (F I8 TE).

Now we take two cases.
Case 1. m = 1. Then g = Qu(1,h). We prove that g(b) = Qo(1,h)(b) for all
b € w by induction. Qu(1,h)(0) = 1 = ¢(0). Assume that Qu(1,h)(b) = g(b). Then

Qo(1,h)(b+1) = h(b, Qo(1, h)(b)) = h(b, g(b)) = g(b) - f(b) = g(b+1).
Case 2. m > 1. We claim that g = Q,,_1(k}*~', h). We prove that

glao, ., am—2,0) = Qu_1(K" ', h)(ag, . .., am_2,b)
for all ag,...,am_2,b € w by induction on b, with ao, ..., a,_o fixed.
Qm_l(kgn_l, h)(ag, ..., am—2,0) = kT_l(ao, ceyam—2) =1=g(ag,...,am—2,0).

Assume that Q,,—1 (K", h)(ag, ..., @m—2,b) = g(ag, ..., am_2,b). Then

Q-1 (K1 R)(ag, ..., am—2,b+1) = h(ag, ..., am—2,b, Qm_1(K" "', h)(ag, ..., am_2,b))
= h(ag,-..,am—2,b,9(ag, ..., am_2,b))
=g(ag,...,am-2,0)- flag,...,am—2,b)
=g(ag,...,Qm—-2,b+1). O

Proposition 7.14. The factorial function is recursive.

Proof. z! = Hy<x s(y). Thus ! is recursive by Propositon 7.13 applied to s. O

Proposition 7.15. () and w are recursive, and {x} is recursive for every x € w.

Proof. xy = ko and x, = ki. Now suppose that x € w. Then for any y € w we
have x 1,1 (y) = 5g(|z — y|). Let h(y) = |z — y| for any y € w. Then h is recursive, since
h=Ci(| — |, ks, I§). Now x(zy = Ci(5g, h), s0 Xz} is recursive. ]
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For any positive integer m we denote by ™w the set of all functions mapping m’ into w;
this is the set of all m-termed sequences of natural numbers. Here m’ = {0,...,m —1} for
any natural number m. For any sets A, B, we denote by A\B the set of all elements of A
which are not in B.

Proposition 7.16. Let m be a positive integer, and let A and B be m-ary recursive
relations on w. Then AU B, AN B, and mw\ A are recursive.

Proof. For any ay,...,a,,_1 € w we have

Xang(ao, - -+, am-1) = Xa(a0; - - -, @m-1) - XB(@0; - - -+ Am—1),
me\A(a07 ) amfl) = @(XA(CLOa sy amfl)) )
so AN B and ™w\A are recursive: xanp = C2,(+, x4, x5) and ™w\A = C} (g, x4). Now
AU B is recursive by elementary set theory: AU B = "w\("w\A N "w\B). O
A subset X of a set A is cofinite iff A\X is finite.

Corollary 7.17. All finite and cofinite subsets of w are recursive.

Proof. () is recursive by Proposition 7.15. If F' is finite and nonempty, write F' =
{ag,...,am}. Then F = {ap}U...U{an}, and so F is recursive by Propositions 7.15 and
7.16. If F is cofinite, then w\F is finite, hence recursive by what was just shown. Then

F = w\(w\F) is recursive by Proposition 7.16. O
Proposition 7.18. The following binary relations on w are recursive: =, #, <, <, >,
and >.

Proof. For any z,y € w we have x=(z,y) = 5g(|]z — y|), hence y— = Cl(sg, C3(| —
,13,12)), so x= is recursive, hence = is recursive.

# = (w\ =) so # is recursive by what was just shown and Proposition 7.16.

X<(z,y) =5g([(x+1)/(y+1)]), so < is recursive, as follows:

let ¢y (2,y) = = + 1; recursive since t; = Ci(s, I2);

let to(x,y) = y + 1; recursive since ty = Ci(s, I?);

let t3(x,y) = [(z +1)/(y + 1)]; recursive since t3 = C3(| / |,t1,t2);
X< = C5(58, t3).

(= U <), so < is recursive by the above and Proposition 7.16.
(2w\ <), so > is recursive by the above and Proposition 7.16.
(2w\ <), so > is recursive by the above and Proposition 7.16. O

IV V IA
I

Proposition 7.19. Let m be a positive integer, and let R be an m-ary recursive relation.
Define

S ={(ag,...,am—-1): thereis an v < amy—_1 such that (ag,...,am—2,x) € R}.
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Then S is recursive.

Proof. Let ag,...,0,_1 € w.

Xs(aoy ..., Qm_1) =sg Z Xr(@o, ..., Qm—2,1)

T<Am—1
Thus if we let t(ao,...,am—1) = Y .o XRr(Q0,--;am—2,7), then t is recursive by
Proposition 7.12, and xys = C! (sg, ), so xs is recursive. O

Proposition 7.20. Let m > 1 and let R be an m-ary recursive relation. Define
T ={(ag,...,am—2): thereis an x < ag such that (ag,...,am—2,2) € R}.

Then T s recursive.

Proof. Let S be as in Proposition 7.19. Then xr = C}?_;(xs, 16”_1, I L Igl_l).

m—2)
O
Proposition 7.21. Let m be a positive integer, and let R be an m-ary recursive relation.
Define
S ={(ag,-..,am—1): thereis an x < ay,_1 such that (ag,...,am_2,2) € R}.

Then S is recursive.

Proof. Let S’ be as in Proposition 7.19:
S"={(ag,...,am_1): thereis an x < a,,_1 such that (ag,...,am_2,7) € R}.
So by Proposition 7.19, S’ is recursive. Now

S ={{ag,...,am_1):{ag,...,am_2,8(am_1)) € S'};
hence S = C™(S", 17,..., 1" ,,C! (s, I"_,)),

showing that S is recursive. L

Corollary 7.22. Let m be a positive integer, and let R be an m-ary recursive relation.
Define

S ={(ag,...,am-1): forall x < ap_1 we have (ag,...,an_2,) € R}.

Then S is recursive.

Proof. By Proposition 7.16, "w\R is recursive. Define
T = {(ag,-..,am-1) : there is an = < a,,—1 such that (ag,...,am—2,2) € ("wW\R)}.
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Then T is recursive by Proposition 7.19. We claim that S = ("w\T'), so that S is recursive
by Proposition 7.16. In fact,

(g, .-y am—1) € (Mw\T) iff (ag,...,am—1) ¢ T
iff  there does not exist an =z < a,,—1 such that
(agy---yam—1,z) € "w\R
iff  there does not exist an =z < a,,—1 such that
(agy.--yam-1,2) ¢ R
iff  for all z < a,,—1 we have (ag,...,am—2,2) € R
iff  (ag,...,am—1) € S. ]

Proposition 7.23. Let m,n € w with m,n > 0. Suppose that gg,...,gm—1 are n-ary

recursive functions, and Ry, ..., R,,_1 are pairwise disjoint n-ary recursive relations with
union "w. Let f be the n-ary function defined as follows. For any aq,...,0n_1 € W,
go(ao,...,an_l) if(ao,...,an_1> ERQ,
QAQy - ey Oy if (ag, ..., Qnp_ R
f(an-wanfl) — gl( 0> y Un 1) f< 0 s Un 1> € I,
gm-1(ao, -, an—1) if {ao,...,an-1) € Rp—1

Then f is recursive.

Proof. Induction on m. For m = 1, by hypothesis Ry = "w and f = gg; so [ is
recursive. Now assume the result for m — 1 with m > 1, and assume the hypotheses of
the proposition. Let R, = R; for all i < m — 2, and R}, 5 = Ry,—2 U Ry;,—1. Then by
Proposition 7.16, R, _, is recursive. So all of Ry, ..., R}, _, are recursive. For i,j < m —2
with i # j we have R N R, = R; N R; = (), and for i < m — 2 we have

RN R! RiN(Ry2URy_1)=(RiNRy_2)U(R;NRy_1)=0U0=0.

m—2 —

So the R are pairwise disjoint for i < m — 2. Furthermore,

RyU...UR], 5 =RoU...URp 3UR;, 2UR,_1="w.
Now define
/ gm—2(ao, ..., an—1) if (ag,...,an—1 € Ry_2,
gm_2(a0,...,an_1) = gmfl(ao,...,anfl) if <a0,...,an,1 € Rp_1,
0 otherwise.

Then g,,,_o is recursive, since

gfn,Q(aO, ceey an—l) = XRm,g(ao, .- -,&n—l) 'gm—2(a07 .- -,an—1)+

XRp_1 (CLO? CI) anfl) : gmfl(a()a CI) anfl)a
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and so g;n—2 = C721(+7 C?%(‘?XRm—Q?Q?TL*Q)? C?%(‘?XRm—l’.gm*l))’ ShOWiIlg that g;n—2 Is re-
cursive. For i < m — 2 let g, = g;. Define

gé(ao,...,an,l) if (ag,...,an_1) € Ré),
_ if _
e
Im—2(ao, ,an—1) if (ao, yan-1) € R4

Then f’ is recursive by the induction hypothesis. We claim that actually f' = f. For, take
any ag,...,0p_1 € w.

If (ag,...,an—1) € R; with i < m — 2, then

fl(ao, ... an-1) = gi(ao, ..., an—1) = gi(ao, . . ., an_1);
if (ag,...,an_1) € Ry_2, then
fag, .. an_1) =g _o(ag, - an-1) = gm—2(ag, -, an_1);
if (ag,...,an-1) € Ry—1, then
fag,...;an—1) =g, _o(ag,..,an—1) = gm-1(ag, .., an_1). O

Proposition 7.24. Let m be a positive integer, and let R be an m-ary recursive relation

on w. We define an m-ary operation f on w as follows. For any aq,...,0mnm—1 € w,
the least x < a,,—1 such that
flag, ..., am-1) = { (agy...,am—2,z) € R if there is such an x,
Ayp—1 otherwise.
Then f is recursive.
Proof. For any ag,...,am_1,¢ € w let

g(aog, -, am—1,7) = {Sg (xr(ao,.. - am—2,2)) {2 < am—y

0 otherwise.
Now g is special, since g(ag, ..., a@m—1,0m-1) = 0 for all ag,...,a,-1 € w. To see that g
is recursive, we use these steps:

let t1(ag, ..., am—-1,7) = X< (T, am_1); recursive, since t; = C2m+1(x<, | K I”mlf%),

let to(ag, ..., am—1,2) =Sg(xr(ao,...,am-1,7)); recursive, since ty = C}nH(@, XR);
so g is recursive, since g = C2, (-, t1,t2). For any ag,...,am—1, let h(ag,...,am—1) be
the least x such that g(ag,...,am—1,2) = 0. Thus h is recursive, since h = M,,(g). Note
that for any ag,...,am_2,7 € w, {(ag,...,am_2,2) € R iff sg(xr(ao,...,am_2,2)) = 0.
Hence for any ag, ..., am,m_1 € w, if there is an z < a,,—1 such that {(ag,...,a,_2,2) € R,
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then the least such z is also the least z < a,,—1 such that sg(xr(ag,...,am_2,2)) =0. So

for any ag, ..., a,_1 € w, if there is an x < a,,—1 such that (ag,...,am—2,x) € R, then
h(ag,...,am—1) = the least z < a,,_1 such that g(ag,...,am_2,2) =0
= the least © < a,,—1 such that sg(xr(ao,...,am-2,2)) =0
= the least © < a,,—1 such that (ag,...,am—2,2) € R
= f(ao, ey am,l).
On the other hand, if ag,...,a,—1 € w and {(ag,...,am—1,z) ¢ R for all z < a,,_1, then
W0, - 1) = Gy = f(a0, - . am_1) 0

Now we introduce some more elementary functions. If m € w and m > 1, then min,, and

max,, are the following m-ary functions. For any ag,...,am_1 € w,
min,, (ag, - .., ay,—1) = minimum of ag, ..., apm_1;
max, (ag, .. .,am—1) = maximum of ag, ..., amy_1.

For m = 2 we drop the subscript, writing only min and max.

Proposition 7.25. The following functions and relations are recursive: min, max, min,,
and max,, for each integer m > 1.

Proof. For any a,b € w we have

min(a, b) = a ifasbh
" 1 b otherwise,

We can reformulate this as follows:
. I2(a,b
min(a, b) = {I%(a )

Moreover, (<) N (>) =0 and (<) U (<) = 2w. Hence min is recursive by Theorem 7.23.
Similarly,

_ [B(a,b) if (a,b) € (<)
max(a, b) = {Ig(a,b) if (a,b) € (>).

Moreover, (<) N (>) =0 and (<) U (<) = 2w. Hence max is recursive by Theorem 7.23.
We show that min,, is recursive for all m > 1 by induction on m. Since min, = min,
the case m = 2 holds. Assume that min,, is recursive. Now

ming, +1(ag, - - ., @yn) = min(ming, (ag, - - -, Gm—1), Gm);

hence
: _ 2 : m : m—+1 m—+1 m—+1
min,, 1 = C;, i (min, C7_; (min,,,, L7, ..., I077), I,
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proving that min,, 1 is recursive. So by induction, min,, is recursive for all m > 2.
The case of max,, is very similar. ]

We write alb iff a divides b, i.e., there is a natural number ¢ such that b = a - ¢. Note that
by this definition, every natural number divides 0: take ¢ = 0.
Proposition 7.26. | is recursive.

Proof. Note that for any a,b € w,

a | b iff there is a ¢ < b such that b = ac.
To see that this implies that | is recursive we do the following steps:

let ¢1(b, a,c) = a - ¢; recursive since t; = C3(-, I}, I3);

let to(b, a,c) = |b — a - c|; recursive since to = C3(| — |,I3,t1);

let R = {(b,a,c):b=a-c}; recursive since Y = C3(5g, t2);

let S = {(b,a,s) there is a ¢ < s such that b = a - ¢; recursive by Prop. 7.21;

x| = {{a,b) : (b,a,b) € S}; recursive since x| = C3(xs, I3, I3, I7). O

Pr is the set of all prime numbers.

Proposition 7.27. Pr is recursive.

Proof. For any a € w we have: a is a prime iff a > 1 and for every b < a, bla implies
that b = 1. Pr is recursive, by these steps:

let S = {(b,a) : not(b|a)}; recursive by Props. 7.16 and 7.26;

let t(b,a) = |b— 1|; recusive since t = C3(| — |, I2, C3(ky,13));

let T = {(b,a) : b= 1}; recursive since xr = C3(5g,1);

let U = S UT; recursive by the above and Prop. 7.16

let U’ = {(a,b) : (b,a) € U}; recursive since xp» = C2(xv, I3, 13);

let V ={(c,a): for all b < a[(c,b) € U']}; recursive by Cor. 7.22

xer = Ci(xv, I, Ip)- [

Recall that p enumerates all the prime numbers: pg = 2, p1 = 3, p2 = 5, etc.

Proposition 7.28. p is recursive.

Proof. Note that

Py =2;
Pyy1 = least x(p, < x and x € Pr).
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To see that this works, we do these steps:

let S = {{m,n,z):n < x}; recursive since ys = C3(x<,I3,I3);
let T = {(m,n,z): 2z € Pr}; recursive since x7 = C(xpr, I3);
S NT is recursive by Proposition 7.16

0 if (m,n,z)eSNT
1 if (m,n,z) € 30\(SNT)
recursive by Proposition 7.23

let f(m,n) = the least z such that h(m,n,x) = 0; recursive since f = My(h);

P = Qo(2, f).

let h(m,n,x) = {

The last equality works like this; we prove by induction on m that Qo (2, f)(m) = py, for
all m € w. First, Qo(2, f)(0) = 2 = pg. Now assume that Qo (2, f)(m) = p,. Then

Qo(2, f)(m+1) = f(m, Qo(2, f)(m))
= f(ma pm)
= the least = such that h(m,p.,,x) =0
= the least = such that (m,py,,z) € SNT
= the least x such that p,, < x and x € Pr

= Pm+1- [l

Now for any natural numbers a,i we define (a); to be 0 if a = 0, and otherwise (a); is the
exponent of p; in the prime decomposition of a. Thus (12)p = (22 -3') = 2, (12); = 1,
(12); = 0 for all ¢ > 1.

Proposition 7.29. () is recursive.

Proof. We make the following steps

let to(i, b, z) = p¥; recursive since to = C3(exp, C3(p,I3),I3);
let R = {(i,b,x) : p7|b}; recursive since xgr = Ca(|,t0,13);
let S = {(i,b,x) : not(p?|b)}; recursive since S = 3w\R;

let tl(i, b, CL) = {
recursive by Proposition 7.24
let to(a,i) = t1(i,a,a + 1); recursive since ty = C3(t1,12, Ci(s,I3));

let t3(a, i) = P(to(a,i); recursive since tz = C3(P,t5).

the least x < a such that (i,b,x) € S if there is such an x
a otherwise;
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Then p%’“ does not divide a, so (i,a,y + 1) € S, while (i,a,z) ¢ S for all z < y. So
t1(i,a,a+ 1) =y + 1, and t2(a,i) = y + 1 and t3(a,i) = y. O

For any positive integer m we let len(m) be the least ¢ such that p; does not divide m. len
stands for “length”, and the motivation is that if m is the Gédel number of a sequence of
length n, then i is equal to n. We also let len(0) = 0.

Proposition 7.30. len s recursive.

Proof. We use these steps:

let S = {(a,z) : ps|a}; recursive since xs = C3(|, C3(p,I3).I3);
let R = {(a,z) : not(py|a)}; recursive by Proposition 7.16

let f(a,b) = least x < b such that not(p;|a) if there is such an =z,
R otherwise;

recursive by Proposition 7.24
let g(a) = f(a,a); recursive since g = C3(f,I3,13).

We claim now that g = len. First take 0. We have ¢g(0) = f(0,0) = 0. Now suppose that
m # 0. Then g(m) = f(m,m) = least < m such that not(p,|m), as desired. O

EXERCISES

The definition of recursive functions includes the rather complicated minimalization op-
erator. The class of primitive recursive functions is defined just like the set of recursive
functions, but without using the minimalization operator. Most of the functions that one
encounters are primitive recursive. So the question arises, are they the same as the re-
cursive functions? The purpose of the following exercises is to show that the two classes
are different. In fact, the well-known Ackermann function is recursive but not primitive
recursive.

The Ackermann function is the function f : w X w — w such that for any m,n € w we

have
f(O,n)=n+1,

f(m+1,0) = f(m,1),
fm+1,n+1)= f(m, f(m+1,n)).

To show that this function exists, and is recursive, we define the following set M.
M = {z €Ew:z>1AVi<len(z)[len((2);) < 3A

[((2)i)o =0 A ((2)i)2 = ((2)i)1 + 1)V

A((2)i)1 =0A T <i[((2)5)0 =P((2)i)o)

)1 =1/ ((2))2 = ((2)i)2])V

A ((z)z)l #0Adj <idk <i]

z)i)o A ((2)5)1 =P((2)i)1) A ((2)k)o = P(((2)i)0) A



E7.1. Prove that

VaVbVz € MVi < len(z)VeVw € MVj < len(w)Vd

E7.2. Prove that
VavbIcIz € M3i < len(2)[(2); = 2% - 3° - 5.
Now we define f(a,b) to be the ¢ given by exercise E7.2; it is unique by exercise E7.1.
E7.3. Show that f satisfies the conditions of the Ackermann function.
E7.4 Show that M is recursive.
E7.5. Prove that the Ackermann function is recursive.

E7.6. Show that n < f(m,n) for all m,n € w. Hint: prove VmVn[n < f(m,n)] by
induction on m; in the inductive step, use induction on n.

E7.7. Show that f(m,n) < f(m,n+ 1) for all m,n € w.

E7.8. Show that f(m,n) < f(m,p) for all m,n,p € w such that n < p.
E7.9. Show that f(m,n+ 1) < f(m + 1,n) for all m,n € w.

E7.10. Show that f(m,n) < f(m+ 1,n) for all m,n € w.

E7.11. Show that f(m,n) < f(p,n) for all m,n,p € w such that m < p.
E7.12. Show that f(1,y) =y + 2 for all y € w.

E7.13. Show that f(2,y) =2y + 3 for all y € w.

E7.14. Show that for every primitive recursive function g, say that g is n-ary, there is a
¢ € w such that for all zq,..., 2, € w we have g(z1,...,2,) < f(c, max(zy,...,x,).

E7.15. Show that f is not primitive recursive.
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