
6. Representability of recursive functions

In this chapter we prove Theorem A from chapter 5: all recursive functions and relations
are representable. In order to do this, we need some lemmas about statements derivable
from P. We will prove these statements model-theoretically, showing that they hold in
any model M of P; hence by the completeness theorem they are derivable from P. For

brevity we denote +M by +′, 0M by 0′, SM by S′, •M by •′, and mM by m′.

Lemma 6.1. P ⊢ v1 + (v2 + v0) = (v1 + v2) + v0.

Proof. We prove this by induction on v0, applying the following instance of (P7):

v1 + (v2 + 0) = (v1 + v2) + 0

∧ ∀v0[v1 + (v2 + v0) = (v1 + v2) + v0 → v1 + (v2 + Sv0) = (v1 + v2) + Sv0]

→ ∀v0[v1 + (v2 + v0) = (v1 + v2) + v0].

So, assume a, b ∈M . Then

a+′ (b+′ 0′) = a+′ b by (P3)

= (a+′ b) +′ 0′ by (P3)

Now assume that also c ∈M and a+′ (b+′ c) = (a+′ b) +′ c. Then

a+′ (b+′ S′(c)) = a+′ S′(b+′ c) by (P4)

= S′(a+′ (b+′ c)) by (P4)

= S′((a+′ b) +′ c) by assumption

= (a+′ b) +′ S′(c) by (P4)

It follows that for all c, a+′ (b+′ c) = (a+′ b) +′ c.

Lemma 6.2. P ⊢ v2 • (v1 + v0) = v2 • v1 + v2 • v0.

Proof. Induction on v0, the instance of (P7) being

v2 • (v1 + 0) = v2 • v1 + v2 • 0

∧ ∀v0[v2 • (v1 + v0) = v2 • v1 + v2 • v0 → v2 • (v1 + Sv0) = v2 • v1 + v2 • Sv0]

→ ∀v0[v2 • (v1 + v0) = v2 • v1 + v2 • v0].

So, let a, b ∈M . Then

a •′ (b+′ 0′) = a •′ b by (P3)

= a •′ b+′ 0′ by (P3)

= a •′ b+ a • 0′. by (P5)
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Now suppose that also c ∈M , and a •′ (b+′ c) = a •′ b+′ a •′ c. Then

a •′ (b+′ S′(c) = a •′ S′(b+′ c) by (P4)

= a •′ (b+′ c) + a by (P6)

= (a •′ b+′ a •′ c) +′ a

= a •′ b+′ ((a •′ c) +′ a) by Lemma 6.1

= a •′ b+′ a •′ S′(c). by (P6)

This finishes the inductive proof.

Lemma 6.3. P ⊢ 0 + v0 = v0.

Proof. We prove this by induction on v0. That is, we use the following instance of
(P7), with ϕ the formula 0 + v0 = v0:

0 + 0 = 0 ∧ ∀v0(0 + v0 = v0 → 0 + Sv0 = Sv0) → ∀v0(0 + v0 = v0).

Now 0′ +′ 0′ = 0′ by (P3). Now suppose that 0′ +′ a = a. Then

0′ +′ S′(a) = S′(0′ +′ a) by (P4)

= S′(a). by supposition

It now follows that for all a ∈M , 0′ +′ a = a.

Lemma 6.4. P ⊢ v1 + v0 = 0 → v1 = 0.

Proof. We prove this by induction on v0. That is, we apply the following version of
(P7), where ϕ is the formula v1 + v0 = 0 → v1 = 0:

(v1 + 0 = 0 → v1 = 0) ∧ ∀v0[(v1 + v0 = 0 → v1 = 0) →

(v1 + Sv0 = 0 → v1 = 0)]

→ ∀v0(v1 + v0 = 0 → v1 = 0).

First suppose that a+′ 0′ = 0′. By (P3), a+′ 0′ = a. so a = 0′.
Second, suppose that b ∈ M and (a +′ b = 0′ implies that a = 0′). Also suppose

that a+′ S′(b) = 0′. By (P4) we have a+′ S′(b) = S′(a+′ b); so S′(a+′ b) = 0′. This
contradicts (P2). Hence the supposition a +′ S(b) = 0′ is false, and so the implication
(a+′ S(b) = 0′ implies that a = 0′) is true.

Hence the result of the lemma follows.

Lemma 6.5. P ⊢ ∀v0[¬(v0 = 0) → ∃v1(Sv1 = v0)].

Proof. Induction on v0. In (P7) we take ϕ to be the formula ¬(v0 = 0) → ∃v1(Sv1 =
v0), giving the following instance of (P7):

(¬(0 = 0) → ∃v1(Sv1 = 0)) ∧ ∀v0[(¬(v0 = 0) → ∃v1(Sv1 = v0))

→ (¬(Sv0 = 0) → ∃v1(Sv1 = Sv0))] → ∀v0(¬(v0 = 0) → ∃v1(Sv1 = v0)).
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The implication “¬(0′ = 0′) implies that there is an a such that S(a) = 0′” is true since the
hypothesis is false. Now assume that a 6= 0′ implies that there is a b such that S′(b) = a,
and assume that S′(a) 6= 0′. Then there is a b such that S′(b) = S′(a), namely a itself.

Hence the desired conclusion follows.

Lemma 6.6. P ⊢ ∀v0∀v1[Sv1 + v0 = v1 + Sv0].

Proof. We prove this by induction on v0, applying (P7) with the formula ϕ being
Sv1 + v0 = v1 + Sv0; thus the instance of (P7) is

Sv1 + 0 = v1 + S0 ∧ (∀v0[Sv1 + v0 = v1 + Sv0]

→ Sv1 + Sv0 = v1 + SSv0]) → ∀v0[Sv1 + v0 = v1 + Sv0].

Take any a ∈M . Then

S′(a) + 0′ = S′(a) by (P3)

= S′(a+′ 0′) by (P3)

= a+ S′(0′). by (P4)

Now assume that S′(a) +′ b = a+′ S′(b). Hence

S′(a) +′ S′(b) = S′(S′(a) +′ b) by (P4)

= S′(a+′ S′(b)) by assumption

= a+′ S′(S′(b)). by (P4)

Lemma 6.7. P ⊢ v0 + v1 = v0 + v2 → v1 = v2.

Proof. We prove this by induction on v0, the instance of (P7) being

∀v1∀v2(0 + v1 = 0 + v2 → v1 = v2)

∧ ∀v0[∀v1∀v2(v0 + v1 = v0 + v2 → v1 = v2) → ∀v1∀v2(Sv0 + v1 = Sv0 + v2 → v1 = v2)]

→ ∀v0∀v1∀v2(v0 + v1 = v0 + v2 → v1 = v2).

So assume that a, b ∈ M . If 0′ +′ a = 0′ +′ b, then by Lemma 6.3 twice, a = 0′ +′ a =
0′ +′ b = b. Now assume that c ∈ M and for all a, b ∈ M , c +′ a = c +′ b implies
that a = b. Suppose that a, b ∈ M and S′(c) +′ a = S′(c) +′ b. By Lemma 6.6 twice,
c+′ S′(a) = c+′ S′(b). Hence by assumption S′(a) = S′(b). Hence by (P1), a = b.

The desired conclusion follows.

The next lemmas involve the terms m. In a model M of P we then have elements m′,
defined by 0

′

= 0′ and m+ 1
′

= S′m′.

Lemma 6.8. P ⊢ m+ n = m+ n for any m,n ∈ ω.
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Proof. Let M be any model of P; we want to show that m+ n
′

= m′ +′ n′ for any
m,n ∈ ω. We use (ordinary) induction on n, with m fixed. Note that m+ 0

′

= m′ and

0
′

= 0′. Hence m+ 0
′

= m′ +′ 0
′

reduces to m′ = m′ +′ 0′, which is true by (P3). Now
for the induction step,

m+ n+ 1
′

= S′(m+ n
′

)

= S′(m′ +′ n′) inductive hypothesis

= m′ +′ S′(n′) (P4)

= m′ +′ n+ 1
′

.

Lemma 6.9. P ⊢ m · n = m • n for any m,n ∈ ω.

Proof. Again we work in a model M of P; we want to show that m · n′ = m′ •′ n′ for
any m,n ∈ ω. We go by induction on n, with m fixed. Note that m · 0 = 0, and so m · 0

′

is 0′. Hence the case n = 0 reduces to 0′ = m′ •′ 0′, which holds by (P5). The inductive
step:

m · (n+ 1) = m · n+m
′

= m · n′ +′ m′ by Lemma 6.8

= m′ •′ n′ +′ m′ inductive hypothesis

= m′ •′ S′(n′) (P6)

= m′ •′ n+ 1
′

.

Lemma 6.10. If m,n ∈ ω and m 6= n, then P ⊢ ¬(m = n).

Proof. We use ordinary induction on n, proving that for all m 6= n, m′ 6= n′. For
n = 0 this follows from Lemma 6.5 and (P2). Now suppose that for all m 6= n we have

m 6= n, and m 6= n + 1. If m = 0, then m′ 6= n+ 1
′

by (P2). Suppose that m 6= 0. Say

m = p + 1. Then p 6= n, so p′ 6= n′ by the inductive hypothesis. If m′ = n+ 1
′

, then
p′ = n′ by (P1); hence m′ 6= n+ 1

′

.

Corollary 6.11. If m,n ∈ ω, M is a model of P, and m′ = n′, then m = n.

Proof. If m 6= n, then P ⊢ ¬(m = n) by Lemma 6.10, and hence m′ 6= n′.

Next, let ⊳ be the formula ∃v2[v0 + Sv2 = v1]. Intuitively this says that v0 < v1. We use
the symbol ⊳ to distinguish the formula from ordinary <. If σ and τ are terms, then σ ⊳ τ
is the formula ∃v2[σ+ Sv2 = τ ]. So we need to avoid using terms which have occurrences
of v2 in them. We need several common properties of <.

Lemma 6.12. If a, b ∈ ω and a < b, then P |= a ⊳ b.

Proof. Assume that a, b ∈ ω and a < b. Choose m ∈ ω such that a +m = b. Then

m 6= 0. By Lemma 6.8, a+′ S′(m− 1
′

) = a′ +′ m′ = b
′

. Hence M |= a ⊳ b.
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Lemma 6.13. P ⊢ ¬(v0 ⊳ v0).

Proof. Suppose that a ∈ M and a ⊳
′ a. Choose b ∈ M such that a+′ S′(b) = a.

Then by (P3), a +′ S′(b) = a+′ 0′, and hence by Lemma 6.7, S′(b) = 0′, contradicting
(P2).

Lemma 6.14. P ⊢ v0 ⊳ v1 ∧ v1 ⊳ v3 → v0 ⊳ v3.

Proof. Suppose that a, b, c ∈ M and a ⊳
′ b ⊳

′ c. Choose d, e ∈ M such that
a+′ S′(d) = b and b+′ S′(e) = c. Then

a+′ S′(S′(d+′ e)) = a+′ (d+′ S′(S′(e))) by (P4) twice

= a+′ (S′(d) +′ S′(e)) by Lemma 6.6

= (a+′ S′(d)) +′ S′(e) by Lemma 6.1

= b+′ S′(e)

= c.

Hence a ⊳
′ c.

Lemma 6.15. P ⊢ ∀v0∀v1[v0 ⊳ v1 ∨ v0 = v1 ∨ v1 ⊳ v0].

Proof. We prove this by induction on v0, using a version of (P7) in which ϕ is the
formula v0 ⊳ v1 ∨ v0 = v1 ∨ v1 ⊳ v0. Thus the version of (P7) is

(0 ⊳ v1 ∨ 0 = v1 ∨ v1 ⊳ 0)

∧ ∀v0[v0 ⊳ v1 ∨ v0 = v1 ∨ v1 ⊳ v0 → Sv0 ⊳ v1 ∨ Sv0 = v1 ∨ v1 ⊳ Sv0]

→ ∀v0[v0 ⊳ v1 ∨ v0 = v1 ∨ v1 ⊳ v0].

Let a ∈M . We want to show, first, that

(1) 0′
⊳

′ a or 0′ = a or a ⊳
′ 0′.

If a = 0′, then (1) holds. Suppose that a 6= 0′. By Lemma 6.5 choose b ∈ M such that
S′(b) = a. Then 0′ +′ S′(b) = S′(b) = a by Lemma 6.3, so 0′

⊳
′ a, and again (1) holds.

Now suppose that b ∈M and a ⊳
′ b or a = b or b ⊳

′ a. We want to show that

(2) S′(a) ⊳
′ b or S′(a) = b or b ⊳

′ S(a).

We consider three cases.
Case 1. a ⊳

′ b. Choose c such that a+′ S′(c) = b. If c = 0′, then

S′(a) = S′(a) + 0′ by (P3)

= a+ S′(0′) by Lemma 6.6

= b,

and (2) holds.
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If c 6= 0′, by Lemma 6.5 choose d such that S′(d) = c. Then

S′(a) +′ S′(d) = a+′ S′(S′(d)) by Lemma 6.6

= a+′ S′(c)

= b;

hence S′(a) ⊳
′ b and (2) holds.

Case 2. a = b. Then

b+′ S′(0′) = S′(b+′ 0′) by (P4)

= S′(b) by (P3)

= S′(a).

Hence b ⊳
′ S′(a), and (2) holds.

Case 3. b ⊳
′ a. Choose c so that b+′ S′(c) = a. Then

b+′ S′(S′(c)) = S′(b+′ S′(c)) by (P4)

= S′(a).

Hence b ⊳
′ S′(a), and (2) holds.

The lemma now follows.

Lemma 6.16. P ⊢ v0 ⊳ v1 → Sv0 = v1 ∨ Sv0 ⊳ v1.

Proof. Suppose that a, b ∈ M and a ⊳
′ b. Choose c ∈ M such that a +′ S′(c) = b.

Then S′(a) + c = b by Lemma 6.6.
Case 1. c = 0. Then S′(a) = b by (P3).
Case 2. c 6= 0. By Lemma 6.5 choose d so that S′(d) = c. Thus S′(a) + S′(d) = b, so

S′(a) ⊳
′ b.

Lemma 6.17. P ⊢ v0 ⊳ v1 → v3 + v0 ⊳ v3 + v1.

Proof. Suppose that a, b, c ∈M and a ⊳
′ b. Choose d so that a+′ S′(d) = b. Then

(c+′ a) +′ S′(d) = c+′ (a+′ S′(d)) by Lemma 6.1

= c+′ b.

Hence c+′ a ⊳
′ c+′ b.

Lemma 6.18. P ⊢ v0 ⊳ v1 → Sv3 • v0 ⊳ Sv3 • v1.

Proof. Suppose that a, b, c ∈M and a ⊳
′ b. Choose d so that a+′ S′(d) = b. Then

S′(S′(c) •′ d+′ c) = S′(c) •′ d+′ S′(c) by (P4)

= S′(c) •′ S′(d). by (P6)
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Hence

S′(c) •′ a+′ S′(S′(c) •′ d+′ c) = S′(c) •′ a+ S′(c) • S′(d)

= S′(c) •′ (a+′ S′(d)) by Lemma 6.2

= S′(c) •′ b;

it follows that S′(c) •′ a ⊳
′ S′(c) •′ b.

Lemma 6.19. For any positive integer m we have

P ⊢ ∀v0

[

v0 ⊳ m) ↔
∨

i<m

v0 = i

]

.

Proof. We prove this by (ordinary) induction on m. First suppose that m = 1.

Suppose that a ∈M . First suppose that a ⊳
′ 1

′

. Choose b ∈M such that a+′ S′(b) = 1
′

.
Then by (P4), S′(a+′ b) = a+′ S′(b) = S′(0′). Hence by (P1), a+′ b = 0′. Then a = 0′

by Lemma 6.4, so M |=
∨

i<1 v0 = i[a].

Second suppose that M |=
∨

i<1(v0 = i)[a]. Thus M |= (v0 = 0)[a], so a = 0
′

. Hence

a+′ S′(0′) = 0′ +′ S′(0′) = S′(0′) by Lemma 6.3. Hence a ⊳
′ 1

′

. This finishes the case
m = 1.

Now assume the statement for m. Let a ∈ M be given. Suppose that a ⊳
′ m+ 1

′

.
Choose b ∈ M such that a+′ S′(b) = m+ 1

′

. By (P4) we have S′(a+′ b) = a+′ S′(b) =

m+ 1
′

, and then by (P1) we get a+′ b = m′. If b = 0′, then a = a+′ b = m by (P3), and
hence M |=

∨

i<m+1 v0 = i[a]. If b 6= 0′, by Lemma 6.5 choose c ∈M such that S′(c) = b.

Then a+′ S′(c) = m′, hence a ⊳
′ m′, so by the inductive hypothesis M |=

∨

i<m v0 = i[a],

so M |=
∨

i<m+1 v0 = i[a].

Conversely, suppose that M |=
∨

i<m+1 v0 = i[a]. Choose i < m + 1 such that

a = i
′

. If i < m, then M |=
∨

j<m v0 = j[a], so by the inductive hypothesis a ⊳
′ m. Say

a+′ S′(b) = m. Then a+′ S′(S′(b)) = S′(a+′ S′(b)) = m+ 1
′

by (P4), so a ⊳
′ m+ 1. If

i = m, then

a+′ S′(0′) = S′(a+ 0′) by (P4)

= S′(a) by (P3)

= m+ 1
′

.

Hence a ⊳
′ m+ 1

′

.
This finishes the proof.

Lemma 6.20. For any positive integer m,

P ⊢ ∀v0(v0 ⊳ m→ ϕ) ↔
∧

i<m

ϕ(i).
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Proof. Suppose that a : ω →M is an assignment. First assume that

(1) M |= ∀v0[v0 ⊳ m) → ϕ][a] and i < m;

we want to show that M |= ϕ(i)[a]. Now by definition (see the beginning of Chapter 5),

ϕ(i) is Subfv0

i
ϕ. Hence by Lemma 4.6 it suffices to prove that M |= ϕ

[

a0

i
M

(a)

]

. Since

i
M

(a) is simply i
′

, it suffices to show that M |= ϕ
[

a0
i
′

]

. By Lemma 6.19, i
′

⊳
′ m′. Hence

by (1), M |= ϕ[0
i
′ ].

Second, assume that

(2) M |=
(
∧

i<m ϕ(i)
)

[a];

we want to show that M |= ∀v0[v0 ⊳ m → ϕ][a]. To this end, suppose that u ∈ M and

u ⊳
′ m′; we want to show that M |= ϕ[a0

u]. By Lemma 6.19 choose i < m such that u = i
′

.

Now by (2), M |= ϕ(i)[a]. By Lemma 4.6 we then have M |= ϕ
[

a0
i
′

]

. Since u = i
′

, it

follows that M |= ϕ[a0
u].

We also need a simpler way of representing finite sequences of natural numbers by a single
number, or actually by two numbers. The representation via prime decompositions is too
complicated at this stage. The new representation depends on the division algorithm: for
any positive integers a, b there are unique nonnegative integers q, r such that a = b · q + r
with r < b. We denote this unique integer r by rm(a, b). We also define rm(a, 0) = 0 for
any a ∈ ω.

We also need a little elementary number theory. If a, b > 1, we say that they are
relatively prime iff they have no common positive divisors except 1.

Lemma 6.21. If a, b > 1, then they are relatively prime iff there are integers s, t (positive,
negative, or zero) such that 1 = a · s+ b · t.

Proof. ⇐: Suppose that s and t are integers such that 1 = a · s+ b · t. Suppose that
c is a positive divisor of both a and b. Say a = c · a′ and b = c · b′. Then

1 = a · s+ b · t = c · a′ · s+ c · b′ · t = c · (a′ · s+ b′ · t).

It follows that c = 1. Thus a and b are relatively prime.
⇒. There are integers s, t such that a · s + b · t > 0; for example, s = 1 and t = 0,

giving a · s + b · t = a > 0. Let m be the smallest positive integer such that there are
integers s, t such that m = a · s+ b · t. Now write a = m · q + r with 0 ≤ r < m. Then

r = a−m · q = a− (a · s+ b · t) · q = a · (1 − s) + b · (−t).

By the choice of m we must have r = 0. Thus m divides a. Similarly, it divides b. So
m = 1.
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Lemma 6.22. (Chinese Remainder Theorem) Let m0, . . . , mr be natural numbers > 1,
r > 0, with the mi pairwise relatively prime, and let a0, . . . , ar be any natural numbers.
Then there is a natural number x such that mi divides x− ai for all i ≤ r.

Proof. We prove this by induction on r. For r = 1, since m0 and m1 are relatively
prime, by Lemma 6.21 there are integers s, t such that 1 = m0 · s+m1 · t. Then

a0 − a1 = (m0 · s+m1 · t)(a0 − a1) = m0 · s · (a0 − a1) +m1 · t · (a0 − a1).

Now since m0 ·m1 > 0, there is a natural number u such that x
def
= a0 −m0 · s · (a0 − a1) +

u ·m0 ·m1 > 0. Then x− a0 is divisible by m0, and

x− a1 = a0 − a1 −m0 · s · (a0 − a1) + u ·m0 ·m1

= m0 · s · (a0 − a1) +m1 · t · (a0 − a1) −m0 · s · (a0 − a1) + u ·m0 ·m1

= m1 · t · (a0 − a1) + u ·m0 ·m1,

so that x− a1 is divisible by m1. This takes care of the case r = 1.
Now assume the result for r ≥ 1. Suppose now that m0, . . . , mr+1 are natural numbers

> 1, they are relatively prime, and a0, . . . , ar+1 are natural numbers. By Lemma 6.21
choose integers s, t such that 1 = mr · s + mr+1 · t, and let u be a natural number such

that y
def
= ar −mr · s · (ar −ar+1)+u ·mr ·mr+1 > 0. Now mi and mr ·mr+1 are relatively

prime when i < m. In fact, we have 1 = mi · s
′ + mr · t′ for some integers s′, t′, and

1 = mi · s
′′ +mr+1 · t

′′ for some integers s′′, t′′. Hence

1 = (mi · s
′ +mr · t

′) · (mi · s
′′ +mr+1 · t

′′)

= mi · (mr · s
′′ · t′ +mi · s

′ · s′′ + s′ ·mr+1 · t
′′) +mr ·mr+1 · t

′ · t′′,

and so mi and mr ·mr+1 are relatively prime by Lemma 6.21.
We now apply the inductive hypothesis to m0, . . . , mr−1, mr ·mr+1 and a0, . . . , ar−1, y

and obtain a natural number x such that x− ai is divisible by mi for all i < r, and x− y
is divisible by mr ·mr+1. Say x− y = mr ·mr+1 · c. Thus

(1) x = y +mr ·mr+1 · c = ar −mr · s · (ar − ar+1) + u ·mr ·mr+1 +mr ·mr+1 · c.

From this it is clear that x− ar is divisible by mr. Also, in view of 1 = mr · s +mr+1 · t
we have

ar −mr · s · (ar − ar+1) = ar − (1 −mr+1 · t)(ar − ar+1)

= ar − ar + ar+1 +mr+1 · t · ar −mr+1 · t · ar+1

= ar+1 +mr+1 · t · ar −mr+1 · t · ar+1;

hence from (1) we get

x = ar+1 +mr+1 · t · ar −mr+1 · t · ar+1 + u ·mr ·mr+1 +mr ·mr+1 · c,
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and hence x− ar+1 is divisible by mr+1. This finishes the inductive proof.

We now define Gödel’s β function; it is a function of three variables. For any c, d, i ∈ ω we
define

β(c, d, i) = rm(c, 1 + (i+ 1) · d).

The basic property of this function is as follows.

Lemma 6.23. For any finite sequence 〈a0, . . . , am〉 of natural numbers there are natural
numbers c, d such that β(c, d, i) = ai for all i = 1, . . . , m.

Proof. Let s be the maximum of m, a0, . . . , am, and let d = s!. For each i ≤ m let
di = 1+(i+1) · d. We claim that di and dj are relatively prime for i, j ≤ m with i < j. In
fact, suppose to the contrary that p is a prime dividing both di and dj . Say di = p · s and
dj = p · t. Then dj −di = p(t−s). Now dj −di = 1+(j+1) ·s!−(1+(i+1) ·s! = (j− i) ·s!.
Hence p divides (j− i) · s!. Since j− i ≤ m ≤ s, it follows that p divides some k ≤ s, hence
it divides (i+ 1) · s!. But p also divides di = 1 + (i+ 1) · s!, so p divides 1, contradiction.

Since di and dj are relatively prime for i 6= j, by the Chinese Remainder Theorem 6.22
choose c such that di divides c− ai for each i ≤ m. Say c− ai = di · qi, so c = di · qi + ai.
Now ai ≤ s < di, so ai = rm(c, di) = rm(c, 1 + (i+ 1) · d) = β(c, d, i) for each i ≤ m.

Lemma 6.24. β is representable. In fact, it is representable by a formula ϕ in which
v0, v1, v2, v3 occur free, with only v4, v5 bound, such that ϕ has the additional property that

P ⊢ ∀v0∀v1∀v2∀v3∀v6[ϕ(v0, v1, v2, v3) ∧ ϕ(v0, v1, v2, v6) → v3 = v6].

Proof. Let ϕ be the following formula:

∃v4[v0 = S((Sv2) • v1) • v4 + v3 ∧ ∃v5[v3 + Sv5 = S((Sv2) • v1)]].

Note that M |= ϕ[c, d, i, a, a, . . .] iff there is a b ∈ ω such that c = (1 + (i + 1) · d) · b + a
with a < 1 + (i+ 1) · d. This agrees with the definition of β. We claim that ϕ shows that
β is representable.

To prove the claim, for the first condition in representablity, let c, d, i ∈ ω, and set
β(c, d, i) = a. We want to show that M |= ϕ(c, d, i, a). By the definition of β, write
a = rm(c, 1 + (i+ 1) · d), and by the definition of rm, let q be a natural number such that
c = (1+(i+1) ·d) ·q+a with a < 1+(i+1) ·d; and choose e so that e+1+a = 1+(i+1) ·d.
By Lemmas 6.8 and 6.9 we have

a′ +′ S′(e′) = S′(S′(i
′

) •′ d
′

)

and hence

(1) M |= ∃v5[a+ Sv5 = S((Si) • d)].
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Further, Lemmas 6.8 and 6.9 also give

c′ = S′((S′i
′

) •′ d
′

) •′ e′ +′ a′.

Together with (1) this gives M |= ϕ(c, d, i, a).
The second property for representability is

(2) P ⊢ ∀v3[ϕ(c, d, i, v3) → v3 = a].

We claim that this follows from the additional condition of the lemma. In fact, assume
that additional condition. Applications of Theorem 3.27 then give P ⊢ ϕ(c, d, i, a) ∧
ϕ(c, d, i, v3) → a = v3. Then P ⊢ ϕ(c, d, i, v3) → a = v3 by the first condition on
representability, and (2) follows easily.

It remains to check the additional property in the lemma. So, suppose that a, b, c, d, e ∈
M and M |= (ϕ(v0, v1, v2, v3) ∧ ϕ(v0, v1, v2, v6))[a, b, c, d, d, d, e]. We want to show that
d = e. We can choose additional elements f, g ∈M so that the following conditions hold:

(3) a = S′(S′(c) •′ b) •′ f +′ d.

(4) d ⊳
′ S′(S′(c) •′ b).

(5) a = S′(S′(c) •′ b) •′ g +′ e.

(6) e ⊳
′ S′(S′(c) •′ b).

For brevity, let h = S′(S′(c) •′ b). Then (3)–(6) become

(7) a = h •′ f +′ d.

(8) d ⊳
′ h.

(9) a = h •′ g +′ e.

(10) e ⊳
′ g.

We claim that f = g. If not, then by Lemma 6.15 we have f ⊳
′ g or g ⊳

′ f . Say by
symmetry f ⊳

′ g. Hence

a = h •′ f +′ d

⊳
′ h •′ f + h by (8) and Lemma 6.17

= h •′ S′(f). by (P6)

By Lemma 6.16 we have the following cases.
Case 1. S′(f) = g and e = 0′. Then by (8) and Lemma 6.17,

a = h •′ f +′ d ⊳
′ h •′ f + h = h •′ S′(f) = h •′ g = h •′ f +′ e = a,

contradicting Lemma 6.13.
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Case 2. S′(f) = g and e 6= 0′. By Lemma 6.5 there is a k such that S′(k) = e. Thus
0′ + S′(k) = e by Lemma 6.3, so 0′

⊳ e. Hence

a ⊳
′ h •′ S′(f)

= h •′ S′(f) +′ 0′ by (P3)

⊳
′ h •′ S′(f) +′ e by Lemma 6.17

= a,

contradicting Lemmas 6.13 and 6.14.
Case 3. S′(f) ⊳

′ g. Note that h = S′(k) for some k. Hence

a ⊳
′ h •′ S′(f) (see before Case 1)

⊳
′ h •′ g. by Lemma 6.18

If e = 0′, then a = h •′ g + e by (P3), contradicting Lemmas 6.13 and 6.14. If e 6= 0′,
by Lemma 6.5 choose s ∈ M such that S′(s) = e. Then 0′ +′ S′(s) = e by Lemma 6.3,
and so 0′

⊳
′ e. So h •′ g = h •′ g + 0′

⊳ h •′ g +′ e using (P3) and Lemma 6.17. Since
a = h •′ g+′ e by (8), this again contradicts Lemmas 6.13 and 6.14.

Theorem 6.25. Every recursive function is representable.

Proof. Let 〈f0, . . . , fm〉 be a recursive function construction sequence. We prove by
complete induction that for every i ≤ m, fi is representable. So, assume that i ≤ m and
we know that every fj with j < i is representable. By the definition of recursive function
construction sequence we have the following cases.

Case 1. fi = s. We claim that the formula Sv0 = v1 represents s. To prove this,
suppose that a ∈ ω. Then Sa is the same term as a+ 1, and so M |= Sa = a+ 1.
Also, clearly for any u ∈ M we have M |= (Sa = v1 → v1 = a+ 1)[u, u], and hence
M |= ∀v1(Sa = v1 → v1 = a+ 1).

Case 2. There exist j,m with j < m such that fi = Im
j . We claim that the formula

vm = vj represents Im
j . Suppose that a0, . . . , am−1 ∈ ω. Then Im

j (a0, . . . , am−1) = aj.

Obviously M |= aj = aj. Also, for any u ∈ M , M |= (vm = aj → vm = aj)[u . . . u], and
hence M |= ∀vm(vm = aj → vm = aj).

Case 3. There exist positive integers m,n and j, k0, . . . , km−1 < i such that each fks
is

an n-ary operation on ω, fj is an m-ary operation on ω, and fi = Cm
n (fj , fk0

, . . . , fkm−1
).

For each s < m let ϕs be a formula with free variables among v0, . . . vn which represents
fks

, and let ψ be a formula with free variables among v0, . . . , vm which represents fj . Let u
be an integer such that vu does not occur in ψ, and let ψ′ be obtained from ψ by replacing
all bound occurrences of vn in ψ by vu. Let t be an integer greater than m,n and all l
such that vl occurs in some ϕu or in ψ. We claim that the following formula represents fi:

∃vt . . .∃vt+m−1

[(

∧

s<m

ϕs(v0, . . . , vn−1, vt+s)

)

∧ ψ′(vt, . . . , vt+m−1, vn)

]

.
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To prove this, let a0, . . . , an−1 ∈ ω, let bs = fks
(a0, . . . , an−1) for each s < m, and let

fj(b0, . . . , bm−1) = c. Then because ϕs represents fks
we have

(1) P ⊢ ϕs(a0, . . . , an−1, bs) for each s < m

And because ψ represents fj we have

(2) P ⊢ ψ′(b0, . . . , bm−1, c).

Putting (1) and (2) together with a tautology we then get

(3) P ⊢

(

∧

s<m

ϕs(a0, . . . , an−1, bs)

)

∧ ψ′(b0, . . . , bm−1, c).

Now with M any model of P and d : ω →M , by Theorem 3.2 we get

M |=Subfvt

b0
M

(d)
· · ·Subf

vt+m−1

bm−1

M

(d)
[(

∧

s<m

ϕs(a0, . . . , an−1, vs)

)

∧ ψ′(vt, . . . , vt+m−1, c)

]

[d]

It follows that

M |= ∃vt . . .∃vt+m−1

[(

∧

s<m

ϕs(a0, . . . , an−1, vt+s)

)

∧ ψ′(vt, . . . , vt+m−1, c)

]

[d].

This gives the first condition for representability.
For the second condition, suppose that e ∈M and

M |= ∃vt . . .∃vt+m−1

[(

∧

s<m

ϕs(a0, . . . , an−1, vt+s)

)

∧ ψ′(vt, . . . , vt+m−1, vn)

]

[dn
e ].

We want to show that e = c. Choose f0, . . . , fm−1 so that

(4) M |=

[(

∧

s<m

ϕs(a0, . . . , an−1, vt+s)

)

∧ ψ′(vt, . . . , vt+m−1, vn)

]

[dn t ... t+m−1
e f0 ... fm−1

].

By the second condition for representability of fks
by ϕs we get fs = as for each s < m.

Hence from (4) we get M |= ψ′(a0, . . . , am−1, vn)[dn
e ]. Then the second condition for

representability of fj by ψ gives e = c, as desired.
Case 4. There exist j < i and a ∈ ω such that fi is Q0(a, fj). Let ϕ represent

β with the additional property given in Lemma 6.24; the free variables of ϕ are among
v0, v1, v2, v3. Let ψ represent fj ; the free variables of ψ are among v0, v1, v2. Choose t > 3
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and greater than u for each variable vu occurring in ϕ or ψ. Then we claim that the
following formula χ represents fi:

∃vt∃vt+1[ϕ(vt, vt+1, 0, a) ∧ ϕ(vt, vt+1, v0, v1) ∧ ∀vt+2[vt+2 ⊳ v0 → ∃vt+3∃vt+4

[ψ(vt+2, vt+3, vt+4) ∧ ϕ(vt, vt+1, vt+2, vt+3) ∧ ϕ(vt, vt+1,Svt+2, vt+4)]].

The idea of this formula is to code, using the β-function, the whole finite sequence of values
of fi starting with the argument 0 and ending with v0. To prove the claim, suppose that
m ∈ ω. Choose c, d so that β(c, d, s) = fi(s) for all s ≤ m. In particular, β(c, d, 0) =
fi(0) = a, so

P ⊢ ϕ(c, d, 0, a).

Hence for our model, for any e : ω →M we have

(5) M |= ϕ(c, d, 0, a)[e].

Also, β(c, d,m) = fi(m), so
P ⊢ ϕ(c, d,m, fi(m)).

Hence

(6) M |= ϕ(c, d,m, fi(m))[e].

Now suppose that s < m. Then fj(s, fi(s)) = fi(s+1), β(c, d, s) = fi(s), and β(c, d, s+1) =
fi(s+ 1), so

P ⊢ ψ(s, fi(s), fi+1(s)) ∧ ϕ(c, d, s, fi(s)) ∧ ϕ(c, d, s+ 1, fi(s+ 1))

and hence

M |= [ψ(s, fi(s), fi+1(s)) ∧ ϕ(c, d, s, fi(s)) ∧ ϕ(c, d, s+ 1, fi(s+ 1))][e].

It follows that

M |= ∃vt+3∃vt+4[ψ(s, vt+3, vt+4) ∧ ϕ(c, d, s, vt+3) ∧ ϕ(c, d, s+ 1, vt+4)][e].

This being true for all s < m, it follows that

M |=

[

∨

s<m

(vt+2 = s) → ∃vt+3∃vt+4[ψ(vt+2, vt+3, vt+4)

∧ ϕ(c, d, vt+2, vt+3) ∧ ϕ(c, d,Svt+2, vt+4)]

]

[e].

Hence by Lemma 6.19 we get

M |=∀vt+2[vt+2 ⊳ m→ ∃vt+3∃vt+4[ψ(vt+2, vt+3, vt+4)

∧ ϕ(c, d, vt+2, vt+3) ∧ ϕ(c, d,Svt+2, vt+4)]][e].
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Now together with (5) and (6) this gives M |= χ(m, fi(m)), giving the first condition for
representability for fi.

For the other condition, assume that m ∈ ω, b ∈ M , and M |= χ[e0 1
m b]; we want to

show that b = fi(m). Now choose c, d ∈M so that

M |= [ϕ(vt, vt+1, 0, a) ∧ ϕ(vt, vt+1, v0, v1) ∧ ∀vt+2[vt+2 ⊳ v0 → ∃vt+3∃vt+4(7)

[ψ(vt+2, vt+3, vt+4) ∧ ϕ(vt, vt+1, vt+2, vt+3) ∧ ϕ(vt, vt+1,Svt+2, vt+4)]]][e
0 1 t t+1
m b c d ].

Now we claim

(8) For all k ≤ m, M |= ϕ(vt, vt+1, k, fi(k))[e
t t+1
c d ].

We prove this by (ordinary) induction on k. For k = 0 it is given by (7), since fi(0) = a.
Now assume that k < m and

(9) M |= ϕ(vt, vt+1, k, fi(k))[e
t t+1
c d ].

Now k
′

⊳
′ m′ by Lemma 6.12, so by (7) we have

M |= ∃vt+3∃vt+4[ψ(k, vt+3, vt+4) ∧ ϕ(vt, vt+1, k, vt+3) ∧ ϕ(vt, vt+1,Sk, vt+4)]]][e
t t+1
c d ].

Hence we can choose h, g ∈M such that

(10) M |= ψ(k, vt+3, vt+4) ∧ ϕ(vt, vt+1, k, vt+3) ∧ ϕ(vt, vt+1,S(k), vt+4)[e
t t+1 t+3 t+4
c d h g ].

Now by (9) and (10) using the additional property of ϕ, we get h = fi(k). By (10) we
have M |= ψ(k, vt+3, vt+4)[e

t+3 t+4
h g ], so by the second condition for ψ representing fj we

have g = fj(k, fi(k))
′

= fi(k + 1)
′

. Hence M |= ϕ(vt, vt+1,S(k), fi(k + 1))[et t+1
c d ] by (10).

This gives k + 1 in (8).
So (8) holds by induction. The case k = m is M |= ϕ(vt, vt+1, m, fi(m))[et t+1

c d ]. Also
from (7) we have M |= ϕ(vt, vt+1, m, v1)[e

1 t t+1
b c d ]. Hence by the extra condition on ϕ it

follows that b = fi(m), as desired.
This finishes the argument for Q0.
Case 5. There exist a positive integer n and j, k < i such that fj is an n-ary operation

on ω, fk is an (n + 2)-ary operation on ω, and fi = Qn(fj , fk). The proof that fi is
representable is very similar to the above Case 4, but is somewhat more complicated.

Let ϕ represent β with the additional property in Lemma 6.24, ψ represent fj, and χ
represent fk. Thus ϕ has variables among v0, v1, v2, v3, ψ has variables among v0, . . . , vn,
and χ has variables among v0, . . . , vn+2. Choose t > n + 2 and greater than u for each
variable vu occurring in ϕ, ψ, or χ. Then we claim that the following formula θ represents
fi:

∃vt∃vt+1∃vt+5[ϕ(vt, vt+1, 0, vt+5) ∧ ψ(v0, . . . , vn−1, vt+5)

∧ ϕ(vt, vt+1, vn, vn+1) ∧ ∀vt+2[vt+2 ⊳ vn → ∃vt+3∃vt+4

[χ(v0, . . . , vn−1, vt+2, vt+3, vt+4) ∧ ϕ(vt, vt+1, vt+2, vt+3)

∧ ϕ(vt, vt+1,Svt+2, vt+4)]]].
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To prove the claim, suppose that a0, . . . , an−1, m ∈ ω. Choose c, d so that β(c, d, s) =
fi(a0, . . . , an−1, s) for all s ≤ m. Then β(c, d, 0) = fi(a0, . . . , an−1, 0) = fj(a0, . . . , an−1),
so

(11) P ⊢ ϕ(c, d, 0, fj(a0, . . . , an−1)) ∧ ψ(a0, . . . , an−1, fj(a0, . . . , an−1)).

Also, β(c, d,m) = fi(a0, . . . , an−1, m), so

(12) P ⊢ ϕ(c, d,m, fi(a0, . . . , an−1, m)).

Now suppose that s < m. Then

fj(a0, . . . , an−1, s, fi(a0, . . . , an−1, s)) = fi(a0, . . . , an−1, s+ 1)

and also β(c, d, s) = fi(a0, . . . , an−1, s) and β(c, d, s+ 1) = fi(a0, . . . , an−1, s+ 1). Hence

P ⊢χ(a0, . . . , an−1, s, fi(a0, . . . , an−1, s), fi+1(a0, . . . , an−1, s+ 1))

∧ ϕ(c, d, s, fi(a0, . . . , an−1, s))

∧ ϕ(c, d, s+ 1, fi(a0, . . . , an−1, s+ 1)).

Thus in our model M , with e : ω →M , we have

M |=[χ(a0, . . . , an−1, s, fi(a0, . . . , an−1, s), fi+1(a0, . . . , an−1, s+ 1))

∧ ϕ(c, d, s, fi(a0, . . . , an−1, s))

∧ ϕ(c, d, s+ 1, fi(a0, . . . , an−1, s+ 1))][e].

From Lemma 4.6 we then get

M |=[χ(a0, . . . , an−1, s, vt+3, vt+4)

∧ ϕ(c, d, s, vt+3) ∧ ϕ(c, d, s+ 1, vt+4)][e
t+3 t+4
w u ]

where w = fi(a0, . . . , an−1, s) and u = fi(a0, . . . , an−1, s+ 1). Hence

M |=∃vt+3∃vt+4[χ(a0, . . . , an−1, s, vt+3, vt+4)(13)

∧ ϕ(c, d, s, vt+3) ∧ ϕ(c, d, s+ 1, vt+4)][e].

Note that (13) is true for all s < m. Now we claim

M |=∀vt+2[vt+2 ⊳ m→ ∃vt+3∃vt+4[χ(a0, . . . , an−1, vt+2, vt+3, vt+4)(14)

∧ ϕ(c, d, vt+2, vt+3) ∧ ϕ(c, d,Svt+2, vt+4)]][e].

In fact, take any w ∈ M , and assume that M |= (vt+2 ⊳ m)[et+2
w ]. Then by Lemma 6.19

there is an s < m such that w = s. Hence by (13) and Lemma 4.6 we get

M |=∃vt+3∃vt+4[χ(a0, . . . , an−1, vt+2, vt+3, vt+4)

∧ ϕ(c, d, vt+2, vt+3) ∧ ϕ(c, d, vt+2, vt+4)][e
t+2
w ],
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as desired, proving (14). Putting this together with (11) and (12) we have

M |=[ϕ(c, d, 0, fj(a0, . . . , an−1)) ∧ ψ(a0, . . . , an−1, fj(a0, . . . , an−1))

∧ ϕ(c, d,m, fi(a0, . . . , an−1, m)) ∧ ∀vt+2[vt+2 ⊳ m→

∃vt+3∃vt+4[χ(a0, . . . , an−1, vt+2, vt+3, vt+4)

∧ ϕ(c, d, vt+2, vt+3) ∧ ϕ(c, d,Svt+2, vt+4)]]][e].

Hence an easy argument using Lemma 4.6 gives

M |=[∃vt∃vt+1∃vt+5[ϕ(vt, vt+1, 0, vt+5) ∧ ψ(a0, . . . , an−1, vt+5)

∧ ϕ(vt, vt+1, m, fi(a0, . . . , an−1, m) ∧ ∀vt+2[ρ(vt+2, m) → ∃vt+3∃vt+4

[χ(a0, . . . , an−1, vt+2, vt+3, vt+4) ∧ ϕ(vt, vt+1, vt+2, vt+3)

∧ ϕ(vt, vt+1,Svt+2, vt+4)]]]]][e].

That is, M |= θ(a0, . . . , an−1, m, fi(a0, . . . , an−1, m))[e]. This gives the first condition for
representability for fi.

For the second condition, suppose that a0, . . . , an−1, m ∈ ω, b ∈ M , and M |=
θ(a0, . . . , an−1, m, vn+1)[e

n+1
b ]. We want to show that b = fi(a0, . . . , an−1, m). Choose

c, d, g ∈M such that

M |=[ϕ(vt, vt+1, 0, vt+5) ∧ ψ(a0, . . . , an−1, vt+5)(15)

∧ ϕ(vt, vt+1, m, vn+1) ∧ ∀vt+2[vt+2 ⊳ m→ ∃vt+3∃vt+4

[χ(a0, . . . , an−1, vt+2, vt+3, vt+4) ∧ ϕ(vt, vt+1, vt+2, vt+3)

∧ ϕ(vt, vt+1,Svt+2, vt+4)]]][e
n+1 t t+1 t+5
b c d g ].

Now we claim

(16) For all s ≤ m, M |= ϕ(vt, vt+1, s, fi(a0, . . . , an−1, s))[e
t t+1
c d ].

We prove (16) by induction on s. From (15), M |= ψ(a0, . . . , an−1, vt+5)[e
t+5
g ], so by the

second condition for ψ representing fj , g = fj(a0, . . . , an−1). Now by (15) again, M |=
ϕ(vt, vt+1, 0, vt+5)[e

t t+1 t+5
c d g ]. Since fj(a0, . . . , an−1) = fi(a0, . . . , an−1, 0), this proves (16)

for s = 0, using Lemma 4.6.
Now assume that s < m and

(17) M |= ϕ(vt.vt+1, s, fi(a0, . . . , an−1, s))[e
t t+1
c d ].

Now s′ ⊳
′ m′ by Lemma 6.12, so by (15) we can choose h, g ∈M such that

M |=χ(a0, . . . , an−1, s, vt+3, vt+4) ∧ ϕ(vt, vt+1, s, vt+3)(18)

∧ ϕ(vt, vt+1,Ss, vt+4)[e
t t+1 t+3 t+4
c d h g ].

By (17), (18), and the additional property of ϕ we have h = fi(a0, . . . , an−1, s), using
Lemma 4.6. Now by (18), M |= χ(a0, . . . , an−1, s, vt+3.vt+4)[e

t+3 t+4
h g ], so by the second

property of χ representing fk we get

g = fk(a0, . . . , an−1, s, fi(a0, . . . , an−1)) = fi(a0, . . . , an−1, s+ 1).

110



Now by (18) again, M |= ϕ(vt, vt+1,S(s), vt+4)[e
t t+1 t+4
c d g ]. This gives (16) for s+1. So by

induction, (16) holds.
The case s = m in (16) is M |= ϕ(vt, vt+1, m, fi(a0, . . . , an−1, m))[et t+1

c d ]. From (15)
we have M |= ϕ(vt, vt+1, m, vn+1)[e

t t+1 n+1
c d b ]. Hence by the additional property of ϕ it

follows that b = fi(a0, . . . , an−1, m).
This finishes the treatment of Qn for n > 0.
Case 6. There exist a positive integer m and a j < i such that fj is a special (m+1)-

ary operation on ω and fi = Mm(fj). Let ϕ represent fj . Choose s such that s > 2 and
vs does not occur in ϕ. Then we claim that the following formula ψ represents fi:

ϕ(v0, . . . , vm, 0) ∧ ∀vs[vs ⊳ vm → ¬ϕ(v0, . . . , vm−1, vs, 0)].

To prove this, suppose that a0, . . . , am−1 ∈ ω, and let b = fi(a0, . . . , am−1). Thus
fj(a0, . . . , am−1, b) = 0, and so

(19) M |= ϕ(a0, . . . , am−1, b, 0)[e].

Assume that c ∈ M and c ⊳
′ b

′

. By Lemma 6.19 there is an s < b such that c = s′. By
the second condition for ϕ representing fj we have

(20) M |= (ϕ(a0, . . . , am−1, s, 0) → fj(a0, . . . , am−1, c) = 0)[e].

Now fj(a0, . . . , am−1, c) 6= 0, and so by Lemma 6.10, fj(a0, . . . , am−1, c))
′

6= 0′. Hence
from (20) we get

M |= ¬ϕ(a0, . . . , am−1, c, 0)[e].

It now follows from Lemma 6.19 that

M |= ∀vs[vs ⊳ b→ ¬ϕ(a0, . . . , am−1, vs, 0)][e].

Together with (21) this gives M |= ψ(a0, . . . , am−1, b)[e].
Now for the second representability condition, suppose M |= ψ(a0, . . . , am−1, vm)[em

c ]
with c ∈ M ; we want to show that c = b. Assume not. By Lemma 6.15 this gives two
possibilities.

Case 1. c ⊳ b. Since M |= ψ(a0, . . . , am−1, b)[e], we get

M |= ¬ϕ(a0, . . . , am−1, vm, 0)[em
c ],

contradicting M |= ψ(a0, . . . , am−1, vm)[em
c ].

Case 2. b
′

⊳ c. Since M |= ψ(a0, . . . , am−1, vm)[em
c ], we get

M |= ¬ϕ(a0, . . . , am−1, b, 0)[e],

contradicting M |= ψ(a0, . . . , am−1, b)[e].
This finishes Case 6, and so the proof of Theorem 6.25.
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Theorem 6.26. Every recursive relation is representable.

Proof. Let R be any recursive relation. Say R is m-ary. Thus χR is recursive. By
Theorem 6.25, let ψ represent χR. Thus ψ has free variables among v0, . . . , vm. Let ϕ
be the formula ψ(v0, . . . , vm−1,S0). Let a0, . . . , am−1 ∈ ω. If 〈a0, . . . , am−1〉 ∈ R, then
χR(a0, . . . , am−1) = 1, and hence P ⊢ ψ(a0, . . . , am−1, 1); hence P ⊢ ϕ(a0, . . . , am−1). If
〈a0, . . . , am−1〉 /∈ R, then χR(a0, . . . , am−1) = 0, and hence P ⊢ ψ(a0, . . . , am−1, 1) → 1 =
0 by the second condition in the definition of χR being representable. Since P ⊢ ¬(1 = 0)
by (P2), it follows that P ⊢ ¬ψ(a0, . . . , am−1, 1), i.e., P ⊢ ¬ϕ(a0, . . . , am−1).

EXERCISES

E6.1. The exponential function is defined as follows. a0 = 1 and as(b) = ab · a. Show that
the exponential function is representable.

E6.2. Prove that P ⊢ ∀v0∀v1[v0 + v1 = v1 + v0].

E6.3. Prove that P ⊢ ∀v1∀v0[v1 • v0 + v0 = Sv1 • v0].

E6.4. Prove that P ⊢ ∀v0[0 • v0 = 0].

E6.5. Prove that P ⊢ ∀v0∀v1[v0 • v1 = v1 • v0].

E6.6. Let ϕ be the formula defined in the proof of Lemma 6.24. Show that P ⊢
∀v0∀v1∀v2∃v3ϕ.
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