6. Representability of recursive functions

In this chapter we prove Theorem A from chapter 5: all recursive functions and relations are representable. In order to do this, we need some lemmas about statements derivable from **P**. We will prove these statements model-theoretically, showing that they hold in any model \overline{M} of **P**; hence by the completeness theorem they are derivable from **P**. For brevity we denote $+^{\overline{M}}$ by +', $\mathbf{0}^{\overline{M}}$ by $\mathbf{0}'$, $\mathbf{S}^{\overline{M}}$ by \mathbf{S}' , $\mathbf{\bullet}^{\overline{M}}$ by $\mathbf{\bullet}'$, and $\overline{m}^{\overline{M}}$ by \overline{m}' .

Lemma 6.1. $\mathbf{P} \vdash v_1 + (v_2 + v_0) = (v_1 + v_2) + v_0.$

Proof. We prove this by induction on v_0 , applying the following instance of (P7):

 $v_1 + (v_2 + \mathbf{0}) = (v_1 + v_2) + \mathbf{0}$ $\land \forall v_0 [v_1 + (v_2 + v_0) = (v_1 + v_2) + v_0 \rightarrow v_1 + (v_2 + \mathbf{S}v_0) = (v_1 + v_2) + \mathbf{S}v_0]$ $\rightarrow \forall v_0 [v_1 + (v_2 + v_0) = (v_1 + v_2) + v_0].$

So, assume $a, b \in M$. Then

$$a + (b + \mathbf{0}') = a + b$$
 by (P3)
= $(a + b) + \mathbf{0}'$ by (P3)

Now assume that also $c \in M$ and a + (b + c) = (a + b) + c. Then

$$a + '(b + '\mathbf{S}'(c)) = a + '\mathbf{S}'(b + 'c) \quad \text{by (P4)} \\ = \mathbf{S}'(a + '(b + 'c)) \quad \text{by (P4)} \\ = \mathbf{S}'((a + 'b) + 'c) \quad \text{by assumption} \\ = (a + 'b) + '\mathbf{S}'(c) \quad \text{by (P4)}$$

It follows that for all c, a + '(b + 'c) = (a + 'b) + 'c.

Lemma 6.2. $\mathbf{P} \vdash v_2 \bullet (v_1 + v_0) = v_2 \bullet v_1 + v_2 \bullet v_0.$

Proof. Induction on v_0 , the instance of (P7) being

$$v_2 \bullet (v_1 + \mathbf{0}) = v_2 \bullet v_1 + v_2 \bullet \mathbf{0}$$

$$\land \forall v_0 [v_2 \bullet (v_1 + v_0) = v_2 \bullet v_1 + v_2 \bullet v_0 \to v_2 \bullet (v_1 + \mathbf{S}v_0) = v_2 \bullet v_1 + v_2 \bullet \mathbf{S}v_0]$$

$$\to \forall v_0 [v_2 \bullet (v_1 + v_0) = v_2 \bullet v_1 + v_2 \bullet v_0].$$

So, let $a, b \in M$. Then

$$a \bullet' (b +' \mathbf{0}') = a \bullet' b \quad \text{by (P3)}$$
$$= a \bullet' b +' \mathbf{0}' \quad \text{by (P3)}$$
$$= a \bullet' b + a \bullet \mathbf{0}'. \quad \text{by (P5)}$$

Now suppose that also $c \in M$, and $a \bullet' (b +' c) = a \bullet' b +' a \bullet' c$. Then

$$a \bullet' (b + \mathbf{S}'(c) = a \bullet' \mathbf{S}'(b + \mathbf{c}) \quad \text{by (P4)}$$
$$= a \bullet' (b + \mathbf{c}) + a \quad \text{by (P6)}$$
$$= (a \bullet' b + \mathbf{c}) + \mathbf{c} a$$
$$= a \bullet' b + \mathbf{c} ((a \bullet' c) + \mathbf{c}) a$$
$$= a \bullet' b + \mathbf{c} ((a \bullet' c) + \mathbf{c}) a) \quad \text{by Lemma 6.1}$$
$$= a \bullet' b + \mathbf{c} a \bullet' \mathbf{S}'(c). \quad \text{by (P6)}$$

This finishes the inductive proof.

Lemma 6.3. $\mathbf{P} \vdash \mathbf{0} + v_0 = v_0$.

Proof. We prove this by induction on v_0 . That is, we use the following instance of (P7), with φ the formula $\mathbf{0} + v_0 = v_0$:

$$\mathbf{0} + \mathbf{0} = \mathbf{0} \land \forall v_0 (\mathbf{0} + v_0 = v_0 \to \mathbf{0} + \mathbf{S}v_0 = \mathbf{S}v_0) \to \forall v_0 (\mathbf{0} + v_0 = v_0).$$

Now $\mathbf{0}' + \mathbf{0}' = \mathbf{0}'$ by (P3). Now suppose that $\mathbf{0}' + \mathbf{0}' = a$. Then

$$\mathbf{0}' + \mathbf{S}'(a) = \mathbf{S}'(\mathbf{0}' + a) \text{ by (P4)}$$
$$= \mathbf{S}'(a). \text{ by supposition}$$

It now follows that for all $a \in M$, 0' + a = a.

Lemma 6.4. $\mathbf{P} \vdash v_1 + v_0 = \mathbf{0} \rightarrow v_1 = \mathbf{0}$.

Proof. We prove this by induction on v_0 . That is, we apply the following version of (P7), where φ is the formula $v_1 + v_0 = \mathbf{0} \rightarrow v_1 = \mathbf{0}$:

$$(v_1 + \mathbf{0} = \mathbf{0} \rightarrow v_1 = \mathbf{0}) \land \forall v_0 [(v_1 + v_0 = \mathbf{0} \rightarrow v_1 = \mathbf{0}) \rightarrow (v_1 + \mathbf{S}v_0 = \mathbf{0} \rightarrow v_1 = \mathbf{0})]$$

$$\rightarrow \forall v_0 (v_1 + v_0 = \mathbf{0} \rightarrow v_1 = \mathbf{0}).$$

First suppose that a + 0' = 0'. By (P3), a + 0' = a. so a = 0'.

Second, suppose that $b \in M$ and (a + b' = 0') implies that a = 0'. Also suppose that $a + \mathbf{S}'(b) = \mathbf{0}'$. By (P4) we have $a + \mathbf{S}'(b) = \mathbf{S}'(a + b)$; so $\mathbf{S}'(a + b) = \mathbf{0}'$. This contradicts (P2). Hence the supposition $a + \mathbf{S}(b) = \mathbf{0}'$ is false, and so the implication $(a + \mathbf{S}(b) = \mathbf{0}')$ implies that a = 0' is true.

Hence the result of the lemma follows.

Lemma 6.5. $\mathbf{P} \vdash \forall v_0 [\neg (v_0 = \mathbf{0}) \rightarrow \exists v_1 (\mathbf{S}v_1 = v_0)].$

Proof. Induction on v_0 . In (P7) we take φ to be the formula $\neg(v_0 = \mathbf{0}) \rightarrow \exists v_1(\mathbf{S}v_1 = v_0)$, giving the following instance of (P7):

$$(\neg (\mathbf{0} = \mathbf{0}) \to \exists v_1 (\mathbf{S}v_1 = \mathbf{0})) \land \forall v_0 [(\neg (v_0 = \mathbf{0}) \to \exists v_1 (\mathbf{S}v_1 = v_0)) \\ \to (\neg (\mathbf{S}v_0 = \mathbf{0}) \to \exists v_1 (\mathbf{S}v_1 = \mathbf{S}v_0))] \to \forall v_0 (\neg (v_0 = \mathbf{0}) \to \exists v_1 (\mathbf{S}v_1 = v_0)).$$

The implication " $\neg (\mathbf{0}' = \mathbf{0}')$ implies that there is an *a* such that $\mathbf{S}(a) = \mathbf{0}'$ " is true since the hypothesis is false. Now assume that $a \neq \mathbf{0}'$ implies that there is a *b* such that $\mathbf{S}'(b) = a$, and assume that $\mathbf{S}'(a) \neq \mathbf{0}'$. Then there is a *b* such that $\mathbf{S}'(b) = \mathbf{S}'(a)$, namely *a* itself.

Hence the desired conclusion follows.

Lemma 6.6. $\mathbf{P} \vdash \forall v_0 \forall v_1 [\mathbf{S}v_1 + v_0 = v_1 + \mathbf{S}v_0].$

Proof. We prove this by induction on v_0 , applying (P7) with the formula φ being $\mathbf{S}v_1 + v_0 = v_1 + \mathbf{S}v_0$; thus the instance of (P7) is

$$\mathbf{S}v_1 + \mathbf{0} = v_1 + \mathbf{S}\mathbf{0} \land (\forall v_0 [\mathbf{S}v_1 + v_0 = v_1 + \mathbf{S}v_0] \\ \rightarrow \mathbf{S}v_1 + \mathbf{S}v_0 = v_1 + \mathbf{S}\mathbf{S}v_0]) \rightarrow \forall v_0 [\mathbf{S}v_1 + v_0 = v_1 + \mathbf{S}v_0]$$

Take any $a \in M$. Then

$$\mathbf{S}'(a) + \mathbf{0}' = \mathbf{S}'(a) \quad \text{by (P3)}$$
$$= \mathbf{S}'(a + \mathbf{0}') \quad \text{by (P3)}$$
$$= a + \mathbf{S}'(\mathbf{0}'). \quad \text{by (P4)}$$

Now assume that $\mathbf{S}'(a) + b = a + \mathbf{S}'(b)$. Hence

$$\mathbf{S}'(a) + \mathbf{S}'(b) = \mathbf{S}'(\mathbf{S}'(a) + b) \quad \text{by (P4)}$$

= $\mathbf{S}'(a + \mathbf{S}'(b)) \quad \text{by assumption}$
= $a + \mathbf{S}'(\mathbf{S}'(b)). \quad \text{by (P4)}$

Lemma 6.7. $\mathbf{P} \vdash v_0 + v_1 = v_0 + v_2 \rightarrow v_1 = v_2$.

Proof. We prove this by induction on v_0 , the instance of (P7) being

 $\begin{aligned} \forall v_1 \forall v_2 (\mathbf{0} + v_1 = \mathbf{0} + v_2 \to v_1 = v_2) \\ \wedge \forall v_0 [\forall v_1 \forall v_2 (v_0 + v_1 = v_0 + v_2 \to v_1 = v_2) \to \forall v_1 \forall v_2 (\mathbf{S}v_0 + v_1 = \mathbf{S}v_0 + v_2 \to v_1 = v_2)] \\ \to \forall v_0 \forall v_1 \forall v_2 (v_0 + v_1 = v_0 + v_2 \to v_1 = v_2). \end{aligned}$

So assume that $a, b \in M$. If $\mathbf{0}' + a = \mathbf{0}' + b$, then by Lemma 6.3 twice, $a = \mathbf{0}' + a = \mathbf{0}' + b = b$. Now assume that $c \in M$ and for all $a, b \in M$, c + a = c + b implies that a = b. Suppose that $a, b \in M$ and $\mathbf{S}'(c) + a = \mathbf{S}'(c) + b$. By Lemma 6.6 twice, $c + \mathbf{S}'(a) = c + \mathbf{S}'(b)$. Hence by assumption $\mathbf{S}'(a) = \mathbf{S}'(b)$. Hence by (P1), a = b. The desired conclusion follows.

The next lemmas involve the terms \overline{m} . In a model \overline{M} of **P** we then have elements \overline{m}' , defined by $\overline{0}' = \mathbf{0}'$ and $\overline{m+1}' = \mathbf{S}'\overline{m}'$.

Lemma 6.8. $\mathbf{P} \vdash \overline{m+n} = \overline{m} + \overline{n}$ for any $m, n \in \omega$.

Proof. Let \overline{M} be any model of **P**; we want to show that $\overline{m+n'} = \overline{m'} + \overline{n'}$ for any $m, n \in \omega$. We use (ordinary) induction on n, with m fixed. Note that $\overline{m+0'} = \overline{m'}$ and $\overline{0'} = \mathbf{0'}$. Hence $\overline{m+0'} = \overline{m'} + \overline{0'}$ reduces to $\overline{m'} = \overline{m'} + \mathbf{0'}$, which is true by (P3). Now for the induction step,

$$\overline{m+n+1}' = \mathbf{S}'(\overline{m+n}')$$

$$= \mathbf{S}'(\overline{m}' + \overline{n}') \quad \text{inductive hypothesis}$$

$$= \overline{m}' + \mathbf{S}'(\overline{n}') \quad (P4)$$

$$= \overline{m}' + \overline{n+1}'.$$

Lemma 6.9. $\mathbf{P} \vdash \overline{m \cdot n} = \overline{m} \bullet \overline{n}$ for any $m, n \in \omega$.

Proof. Again we work in a model \overline{M} of **P**; we want to show that $\overline{m \cdot n}' = \overline{m}' \bullet' \overline{n}'$ for any $m, n \in \omega$. We go by induction on n, with m fixed. Note that $m \cdot 0 = 0$, and so $\overline{m \cdot 0}'$ is **0**'. Hence the case n = 0 reduces to $\mathbf{0}' = \overline{m}' \bullet' \mathbf{0}'$, which holds by (P5). The inductive step:

$$\overline{m \cdot (n+1)} = \overline{m \cdot n + m'}$$

$$= \overline{m \cdot n'} + \overline{m'} \quad \text{by Lemma 6.8}$$

$$= \overline{m'} \bullet' \overline{n'} + \overline{m'} \quad \text{inductive hypothesis}$$

$$= \overline{m'} \bullet' \mathbf{S'}(\overline{n'}) \quad (P6)$$

$$= \overline{m'} \bullet' \overline{n+1'}.$$

Lemma 6.10. If $m, n \in \omega$ and $m \neq n$, then $\mathbf{P} \vdash \neg(\overline{m} = \overline{n})$.

Proof. We use ordinary induction on n, proving that for all $m \neq n$, $\overline{m}' \neq \overline{n}'$. For n = 0 this follows from Lemma 6.5 and (P2). Now suppose that for all $m \neq n$ we have $\overline{m} \neq \overline{n}$, and $m \neq n + 1$. If m = 0, then $\overline{m}' \neq \overline{n+1}'$ by (P2). Suppose that $m \neq 0$. Say m = p + 1. Then $p \neq n$, so $\overline{p}' \neq \overline{n}'$ by the inductive hypothesis. If $\overline{m}' = \overline{n+1}'$, then $\overline{p}' = \overline{n}'$ by (P1); hence $\overline{m}' \neq \overline{n+1}'$.

Corollary 6.11. If $m, n \in \omega$, \overline{M} is a model of **P**, and $\overline{m}' = \overline{n}'$, then m = n.

Proof. If $m \neq n$, then $\mathbf{P} \vdash \neg(\overline{m} = \overline{n})$ by Lemma 6.10, and hence $\overline{m}' \neq \overline{n}'$.

Next, let \triangleleft be the formula $\exists v_2[v_0 + \mathbf{S}v_2 = v_1]$. Intuitively this says that $v_0 < v_1$. We use the symbol \triangleleft to distinguish the formula from ordinary <. If σ and τ are terms, then $\sigma \triangleleft \tau$ is the formula $\exists v_2[\sigma + \mathbf{S}v_2 = \tau]$. So we need to avoid using terms which have occurrences of v_2 in them. We need several common properties of <.

Lemma 6.12. If $a, b \in \omega$ and a < b, then $\mathbf{P} \models \overline{a} \triangleleft \overline{b}$.

Proof. Assume that $a, b \in \omega$ and a < b. Choose $m \in \omega$ such that a + m = b. Then $m \neq 0$. By Lemma 6.8, $\overline{a} + \mathbf{S}'(\overline{m-1}') = \overline{a}' + \mathbf{\overline{m}}' = \overline{b}'$. Hence $\overline{M} \models \overline{a} \triangleleft \overline{b}$.

Lemma 6.13. $\mathbf{P} \vdash \neg (v_0 \triangleleft v_0)$.

Proof. Suppose that $a \in M$ and $a \triangleleft' a$. Choose $b \in M$ such that $a + \mathbf{S}'(b) = a$. Then by (P3), $a + \mathbf{S}'(b) = a + \mathbf{0}'$, and hence by Lemma 6.7, $\mathbf{S}'(b) = \mathbf{0}'$, contradicting (P2).

Lemma 6.14. $\mathbf{P} \vdash v_0 \lhd v_1 \land v_1 \lhd v_3 \rightarrow v_0 \lhd v_3$.

Proof. Suppose that $a, b, c \in M$ and $a \triangleleft' b \triangleleft' c$. Choose $d, e \in M$ such that $a + \mathbf{S}'(d) = b$ and $b + \mathbf{S}'(e) = c$. Then

$$a + \mathbf{S}'(\mathbf{S}'(d + e)) = a + (d + \mathbf{S}'(\mathbf{S}'(e))) \quad \text{by (P4) twice}$$
$$= a + (\mathbf{S}'(d) + \mathbf{S}'(e)) \quad \text{by Lemma 6.6}$$
$$= (a + \mathbf{S}'(d)) + \mathbf{S}'(e) \quad \text{by Lemma 6.1}$$
$$= b + \mathbf{S}'(e)$$
$$= c.$$

Hence $a \triangleleft' c$.

Lemma 6.15. $\mathbf{P} \vdash \forall v_0 \forall v_1 [v_0 \lhd v_1 \lor v_0 = v_1 \lor v_1 \lhd v_0].$

Proof. We prove this by induction on v_0 , using a version of (P7) in which φ is the formula $v_0 \triangleleft v_1 \lor v_0 = v_1 \lor v_1 \triangleleft v_0$. Thus the version of (P7) is

$$(\mathbf{0} \triangleleft v_1 \lor \mathbf{0} = v_1 \lor v_1 \triangleleft \mathbf{0})$$

$$\land \forall v_0 [v_0 \triangleleft v_1 \lor v_0 = v_1 \lor v_1 \triangleleft v_0 \to \mathbf{S}v_0 \triangleleft v_1 \lor \mathbf{S}v_0 = v_1 \lor v_1 \triangleleft \mathbf{S}v_0]$$

$$\to \forall v_0 [v_0 \triangleleft v_1 \lor v_0 = v_1 \lor v_1 \triangleleft v_0].$$

Let $a \in M$. We want to show, first, that

(1) $\mathbf{0}' \triangleleft' a \text{ or } \mathbf{0}' = a \text{ or } a \triangleleft' \mathbf{0}'.$

If $a = \mathbf{0}'$, then (1) holds. Suppose that $a \neq \mathbf{0}'$. By Lemma 6.5 choose $b \in M$ such that $\mathbf{S}'(b) = a$. Then $\mathbf{0}' + \mathbf{S}'(b) = \mathbf{S}'(b) = a$ by Lemma 6.3, so $\mathbf{0}' \triangleleft' a$, and again (1) holds. Now suppose that $b \in M$ and $a \triangleleft' b$ or a = b or $b \triangleleft' a$. We want to show that

(2) $\mathbf{S}'(a) \triangleleft' b \text{ or } \mathbf{S}'(a) = b \text{ or } b \triangleleft' \mathbf{S}(a).$

We consider three cases.

Case 1. $a \triangleleft' b$. Choose c such that $a + \mathbf{S}'(c) = b$. If $c = \mathbf{0}'$, then

$$\begin{aligned} \mathbf{S}'(a) &= \mathbf{S}'(a) + \mathbf{0}' & \text{by (P3)} \\ &= a + \mathbf{S}'(\mathbf{0}') & \text{by Lemma 6.6} \\ &= b, \end{aligned}$$

and (2) holds.

If $c \neq 0'$, by Lemma 6.5 choose d such that $\mathbf{S}'(d) = c$. Then

$$\mathbf{S}'(a) + \mathbf{S}'(d) = a + \mathbf{S}'(\mathbf{S}'(d)) \text{ by Lemma 6.6}$$
$$= a + \mathbf{S}'(c)$$
$$= b;$$

hence $\mathbf{S}'(a) \triangleleft' b$ and (2) holds.

Case 2. a = b. Then

$$b + \mathbf{S}'(\mathbf{0}') = \mathbf{S}'(b + \mathbf{0}') \quad \text{by (P4)}$$
$$= \mathbf{S}'(b) \quad \text{by (P3)}$$
$$= \mathbf{S}'(a).$$

Hence $b \triangleleft' \mathbf{S}'(a)$, and (2) holds.

Case 3. $b \triangleleft' a$. Choose c so that $b + \mathbf{S}'(c) = a$. Then

$$b + \mathbf{S}'(\mathbf{S}'(c)) = \mathbf{S}'(b + \mathbf{S}'(c)) \quad \text{by (P4)}$$
$$= \mathbf{S}'(a).$$

Hence $b \triangleleft' \mathbf{S}'(a)$, and (2) holds.

The lemma now follows.

Lemma 6.16. $\mathbf{P} \vdash v_0 \triangleleft v_1 \rightarrow \mathbf{S}v_0 = v_1 \lor \mathbf{S}v_0 \triangleleft v_1$.

Proof. Suppose that $a, b \in M$ and $a \triangleleft' b$. Choose $c \in M$ such that $a + \mathbf{S}'(c) = b$. Then $\mathbf{S}'(a) + c = b$ by Lemma 6.6.

Case 1. c = 0. Then S'(a) = b by (P3).

Case 2. $c \neq 0$. By Lemma 6.5 choose d so that $\mathbf{S}'(d) = c$. Thus $\mathbf{S}'(a) + \mathbf{S}'(d) = b$, so $\mathbf{S}'(a) \triangleleft' b$.

Lemma 6.17. $\mathbf{P} \vdash v_0 \triangleleft v_1 \rightarrow v_3 + v_0 \triangleleft v_3 + v_1$.

Proof. Suppose that $a, b, c \in M$ and $a \triangleleft' b$. Choose d so that $a + \mathbf{S}'(d) = b$. Then

$$(c + a) + \mathbf{S}'(d) = c + (a + \mathbf{S}'(d))$$
 by Lemma 6.1
= $c + b$.

Hence $c + a \triangleleft c + b$.

Lemma 6.18. $\mathbf{P} \vdash v_0 \lhd v_1 \rightarrow \mathbf{S}v_3 \bullet v_0 \lhd \mathbf{S}v_3 \bullet v_1$.

Proof. Suppose that $a, b, c \in M$ and $a \triangleleft' b$. Choose d so that $a + \mathbf{S}'(d) = b$. Then

$$\mathbf{S}'(\mathbf{S}'(c) \bullet' d +' c) = \mathbf{S}'(c) \bullet' d +' \mathbf{S}'(c) \quad \text{by (P4)}$$
$$= \mathbf{S}'(c) \bullet' \mathbf{S}'(d). \quad \text{by (P6)}$$

Hence

$$\mathbf{S}'(c) \bullet' a + \mathbf{S}'(\mathbf{S}'(c) \bullet' d + c) = \mathbf{S}'(c) \bullet' a + \mathbf{S}'(c) \bullet \mathbf{S}'(d)$$
$$= \mathbf{S}'(c) \bullet' (a + \mathbf{S}'(d)) \quad \text{by Lemma 6.2}$$
$$= \mathbf{S}'(c) \bullet' b;$$

it follows that $\mathbf{S}'(c) \bullet' a \triangleleft' \mathbf{S}'(c) \bullet' b$.

Lemma 6.19. For any positive integer m we have

$$\mathbf{P} \vdash \forall v_0 \left[v_0 \lhd \overline{m}) \leftrightarrow \bigvee_{i < m} v_0 = \overline{i} \right].$$

Proof. We prove this by (ordinary) induction on m. First suppose that m = 1. Suppose that $a \in M$. First suppose that $a \triangleleft' \overline{1}'$. Choose $b \in M$ such that $a + \mathbf{S}'(b) = \overline{1}'$. Then by (P4), $\mathbf{S}'(a + b) = a + \mathbf{S}'(b) = \mathbf{S}'(\mathbf{0}')$. Hence by (P1), $a + b = \mathbf{0}'$. Then $a = \mathbf{0}'$ by Lemma 6.4, so $\overline{M} \models \bigvee_{i < 1} v_0 = \overline{i}[a]$.

Second suppose that $\overline{M} \models \bigvee_{i < 1} (v_0 = \overline{i})[a]$. Thus $\overline{M} \models (v_0 = \overline{0})[a]$, so $a = \overline{0}'$. Hence $a + \mathbf{S}'(\mathbf{0}') = \mathbf{0}' + \mathbf{S}'(\mathbf{0}') = \mathbf{S}'(\mathbf{0}')$ by Lemma 6.3. Hence $a \triangleleft' \overline{1}'$. This finishes the case m = 1.

Now assume the statement for m. Let $a \in M$ be given. Suppose that $a \triangleleft' \overline{m+1}'$. Choose $b \in M$ such that $a + \mathbf{S}'(b) = \overline{m+1}'$. By (P4) we have $\mathbf{S}'(a + b) = a + \mathbf{S}'(b) = \overline{m+1}'$, and then by (P1) we get $a + b = \overline{m}$. If $b = \mathbf{0}'$, then $a = a + b = \overline{m}$ by (P3), and hence $\overline{M} \models \bigvee_{i < m+1} v_0 = \overline{i}[a]$. If $b \neq \mathbf{0}'$, by Lemma 6.5 choose $c \in M$ such that $\mathbf{S}'(c) = b$. Then $a + \mathbf{S}'(c) = \overline{m}'$, hence $a \triangleleft' \overline{m}'$, so by the inductive hypothesis $\overline{M} \models \bigvee_{i < m} v_0 = \overline{i}[a]$, so $\overline{M} \models \bigvee_{i < m+1} v_0 = \overline{i}[a]$.

Conversely, suppose that $\overline{M} \models \bigvee_{i < m+1} v_0 = \overline{i}[a]$. Choose i < m+1 such that $a = \overline{i}'$. If i < m, then $\overline{M} \models \bigvee_{j < m} v_0 = \overline{j}[a]$, so by the inductive hypothesis $a \triangleleft' \overline{m}$. Say $a + \mathbf{S}'(b) = \overline{m}$. Then $a + \mathbf{S}'(\mathbf{S}'(b)) = \mathbf{S}'(a + \mathbf{S}'(b)) = \overline{m+1}'$ by (P4), so $a \triangleleft' \overline{m+1}$. If i = m, then

$$a + \mathbf{S}'(\mathbf{0}') = \mathbf{S}'(a + \mathbf{0}') \quad \text{by (P4)}$$
$$= \mathbf{S}'(a) \quad \text{by (P3)}$$
$$= \overline{m + 1}'.$$

Hence $a \triangleleft' \overline{m+1}'$.

This finishes the proof.

Lemma 6.20. For any positive integer m,

$$\mathbf{P} \vdash \forall v_0(v_0 \lhd \overline{m} \to \varphi) \leftrightarrow \bigwedge_{i < m} \varphi(\overline{i}).$$

Proof. Suppose that $a: \omega \to M$ is an assignment. First assume that

(1) $\overline{M} \models \forall v_0[v_0 \lhd \overline{m}) \rightarrow \varphi][a] \text{ and } i < m;$

we want to show that $\overline{M} \models \varphi(\overline{i})[a]$. Now by definition (see the beginning of Chapter 5), $\varphi(\overline{i})$ is $\operatorname{Subf}_{\overline{i}}^{v_0}\varphi$. Hence by Lemma 4.6 it suffices to prove that $\overline{M} \models \varphi\left[a_{\overline{i}}^0\right]$. Since $\overline{i}^{\overline{M}}(a)$ is simply \overline{i}' , it suffices to show that $\overline{M} \models \varphi\left[a_{\overline{i}'}^0\right]$. By Lemma 6.19, $\overline{i}' \triangleleft' \overline{m}'$. Hence by (1), $\overline{M} \models \varphi[_{\overline{i}'}^0]$.

Second, assume that

(2)
$$\overline{M} \models \left(\bigwedge_{i < m} \varphi(\overline{i}) \right) [a];$$

we want to show that $\overline{M} \models \forall v_0[v_0 \lhd \overline{m} \rightarrow \varphi][a]$. To this end, suppose that $u \in M$ and $u \lhd' \overline{m}'$; we want to show that $\overline{M} \models \varphi[a_u^0]$. By Lemma 6.19 choose i < m such that $u = \overline{i}'$. Now by (2), $\overline{M} \models \varphi(\overline{i})[a]$. By Lemma 4.6 we then have $\overline{M} \models \varphi\left[a_{\overline{i}'}^0\right]$. Since $u = \overline{i}'$, it follows that $\overline{M} \models \varphi[a_u^0]$.

We also need a simpler way of representing finite sequences of natural numbers by a single number, or actually by two numbers. The representation via prime decompositions is too complicated at this stage. The new representation depends on the division algorithm: for any positive integers a, b there are unique nonnegative integers q, r such that $a = b \cdot q + r$ with r < b. We denote this unique integer r by rm(a, b). We also define rm(a, 0) = 0 for any $a \in \omega$.

We also need a little elementary number theory. If a, b > 1, we say that they are relatively prime iff they have no common positive divisors except 1.

Lemma 6.21. If a, b > 1, then they are relatively prime iff there are integers s, t (positive, negative, or zero) such that $1 = a \cdot s + b \cdot t$.

Proof. \Leftarrow : Suppose that s and t are integers such that $1 = a \cdot s + b \cdot t$. Suppose that c is a positive divisor of both a and b. Say $a = c \cdot a'$ and $b = c \cdot b'$. Then

$$1 = a \cdot s + b \cdot t = c \cdot a' \cdot s + c \cdot b' \cdot t = c \cdot (a' \cdot s + b' \cdot t).$$

It follows that c = 1. Thus a and b are relatively prime.

 \Rightarrow . There are integers s, t such that $a \cdot s + b \cdot t > 0$; for example, s = 1 and t = 0, giving $a \cdot s + b \cdot t = a > 0$. Let m be the smallest positive integer such that there are integers s, t such that $m = a \cdot s + b \cdot t$. Now write $a = m \cdot q + r$ with $0 \le r < m$. Then

$$r = a - m \cdot q = a - (a \cdot s + b \cdot t) \cdot q = a \cdot (1 - s) + b \cdot (-t).$$

By the choice of m we must have r = 0. Thus m divides a. Similarly, it divides b. So m = 1.

Lemma 6.22. (Chinese Remainder Theorem) Let m_0, \ldots, m_r be natural numbers > 1, r > 0, with the m_i pairwise relatively prime, and let a_0, \ldots, a_r be any natural numbers. Then there is a natural number x such that m_i divides $x - a_i$ for all $i \le r$.

Proof. We prove this by induction on r. For r = 1, since m_0 and m_1 are relatively prime, by Lemma 6.21 there are integers s, t such that $1 = m_0 \cdot s + m_1 \cdot t$. Then

$$a_0 - a_1 = (m_0 \cdot s + m_1 \cdot t)(a_0 - a_1) = m_0 \cdot s \cdot (a_0 - a_1) + m_1 \cdot t \cdot (a_0 - a_1)$$

Now since $m_0 \cdot m_1 > 0$, there is a natural number u such that $x \stackrel{\text{def}}{=} a_0 - m_0 \cdot s \cdot (a_0 - a_1) + u \cdot m_0 \cdot m_1 > 0$. Then $x - a_0$ is divisible by m_0 , and

$$\begin{aligned} x - a_1 &= a_0 - a_1 - m_0 \cdot s \cdot (a_0 - a_1) + u \cdot m_0 \cdot m_1 \\ &= m_0 \cdot s \cdot (a_0 - a_1) + m_1 \cdot t \cdot (a_0 - a_1) - m_0 \cdot s \cdot (a_0 - a_1) + u \cdot m_0 \cdot m_1 \\ &= m_1 \cdot t \cdot (a_0 - a_1) + u \cdot m_0 \cdot m_1, \end{aligned}$$

so that $x - a_1$ is divisible by m_1 . This takes care of the case r = 1.

Now assume the result for $r \ge 1$. Suppose now that m_0, \ldots, m_{r+1} are natural numbers > 1, they are relatively prime, and a_0, \ldots, a_{r+1} are natural numbers. By Lemma 6.21 choose integers s, t such that $1 = m_r \cdot s + m_{r+1} \cdot t$, and let u be a natural number such that $y \stackrel{\text{def}}{=} a_r - m_r \cdot s \cdot (a_r - a_{r+1}) + u \cdot m_r \cdot m_{r+1} > 0$. Now m_i and $m_r \cdot m_{r+1}$ are relatively prime when i < m. In fact, we have $1 = m_i \cdot s' + m_r \cdot t'$ for some integers s', t', and $1 = m_i \cdot s'' + m_{r+1} \cdot t''$ for some integers s'', t''. Hence

$$1 = (m_i \cdot s' + m_r \cdot t') \cdot (m_i \cdot s'' + m_{r+1} \cdot t'') = m_i \cdot (m_r \cdot s'' \cdot t' + m_i \cdot s' \cdot s'' + s' \cdot m_{r+1} \cdot t'') + m_r \cdot m_{r+1} \cdot t' \cdot t''$$

and so m_i and $m_r \cdot m_{r+1}$ are relatively prime by Lemma 6.21.

We now apply the inductive hypothesis to $m_0, \ldots, m_{r-1}, m_r \cdot m_{r+1}$ and a_0, \ldots, a_{r-1}, y and obtain a natural number x such that $x - a_i$ is divisible by m_i for all i < r, and x - yis divisible by $m_r \cdot m_{r+1}$. Say $x - y = m_r \cdot m_{r+1} \cdot c$. Thus

(1)
$$x = y + m_r \cdot m_{r+1} \cdot c = a_r - m_r \cdot s \cdot (a_r - a_{r+1}) + u \cdot m_r \cdot m_{r+1} + m_r \cdot m_{r+1} \cdot c.$$

From this it is clear that $x - a_r$ is divisible by m_r . Also, in view of $1 = m_r \cdot s + m_{r+1} \cdot t$ we have

$$a_r - m_r \cdot s \cdot (a_r - a_{r+1}) = a_r - (1 - m_{r+1} \cdot t)(a_r - a_{r+1})$$

= $a_r - a_r + a_{r+1} + m_{r+1} \cdot t \cdot a_r - m_{r+1} \cdot t \cdot a_{r+1}$
= $a_{r+1} + m_{r+1} \cdot t \cdot a_r - m_{r+1} \cdot t \cdot a_{r+1}$;

hence from (1) we get

$$x = a_{r+1} + m_{r+1} \cdot t \cdot a_r - m_{r+1} \cdot t \cdot a_{r+1} + u \cdot m_r \cdot m_{r+1} + m_r \cdot m_{r+1} \cdot c,$$

and hence $x - a_{r+1}$ is divisible by m_{r+1} . This finishes the inductive proof.

We now define Gödel's β function; it is a function of three variables. For any $c,d,i\in\omega$ we define

$$\beta(c, d, i) = \operatorname{rm}(c, 1 + (i+1) \cdot d).$$

The basic property of this function is as follows.

Lemma 6.23. For any finite sequence $\langle a_0, \ldots, a_m \rangle$ of natural numbers there are natural numbers c, d such that $\beta(c, d, i) = a_i$ for all $i = 1, \ldots, m$.

Proof. Let s be the maximum of m, a_0, \ldots, a_m , and let d = s!. For each $i \leq m$ let $d_i = 1 + (i+1) \cdot d$. We claim that d_i and d_j are relatively prime for $i, j \leq m$ with i < j. In fact, suppose to the contrary that p is a prime dividing both d_i and d_j . Say $d_i = p \cdot s$ and $d_j = p \cdot t$. Then $d_j - d_i = p(t-s)$. Now $d_j - d_i = 1 + (j+1) \cdot s! - (1 + (i+1) \cdot s! = (j-i) \cdot s!$. Hence p divides $(j-i) \cdot s!$. Since $j-i \leq m \leq s$, it follows that p divides some $k \leq s$, hence it divides $(i+1) \cdot s!$. But p also divides $d_i = 1 + (i+1) \cdot s!$, so p divides 1, contradiction.

Since d_i and d_j are relatively prime for $i \neq j$, by the Chinese Remainder Theorem 6.22 choose c such that d_i divides $c - a_i$ for each $i \leq m$. Say $c - a_i = d_i \cdot q_i$, so $c = d_i \cdot q_i + a_i$. Now $a_i \leq s < d_i$, so $a_i = \operatorname{rm}(c, d_i) = \operatorname{rm}(c, 1 + (i+1) \cdot d) = \beta(c, d, i)$ for each $i \leq m$.

Lemma 6.24. β is representable. In fact, it is representable by a formula φ in which v_0, v_1, v_2, v_3 occur free, with only v_4, v_5 bound, such that φ has the additional property that

$$\mathbf{P} \vdash \forall v_0 \forall v_1 \forall v_2 \forall v_3 \forall v_6 [\varphi(v_0, v_1, v_2, v_3) \land \varphi(v_0, v_1, v_2, v_6) \to v_3 = v_6].$$

Proof. Let φ be the following formula:

$$\exists v_4[v_0 = \mathbf{S}((\mathbf{S}v_2) \bullet v_1) \bullet v_4 + v_3 \land \exists v_5[v_3 + \mathbf{S}v_5 = \mathbf{S}((\mathbf{S}v_2) \bullet v_1)]].$$

Note that $\overline{M} \models \varphi[c, d, i, a, a, \ldots]$ iff there is a $b \in \omega$ such that $c = (1 + (i + 1) \cdot d) \cdot b + a$ with $a < 1 + (i + 1) \cdot d$. This agrees with the definition of β . We claim that φ shows that β is representable.

To prove the claim, for the first condition in representablity, let $c, d, i \in \omega$, and set $\beta(c, d, i) = a$. We want to show that $\overline{M} \models \varphi(\overline{c}, \overline{d}, \overline{i}, \overline{a})$. By the definition of β , write $a = \operatorname{rm}(c, 1 + (i+1) \cdot d)$, and by the definition of rm, let q be a natural number such that $c = (1 + (i+1) \cdot d) \cdot q + a$ with $a < 1 + (i+1) \cdot d$; and choose e so that $e + 1 + a = 1 + (i+1) \cdot d$. By Lemmas 6.8 and 6.9 we have

$$\overline{a}' + \mathbf{S}'(\overline{e}') = \mathbf{S}'(\mathbf{S}'(\overline{i}') \bullet' \overline{d}')$$

and hence

(1)
$$\overline{M} \models \exists v_5[\overline{a} + \mathbf{S}v_5 = \mathbf{S}((\mathbf{S}\overline{i}) \bullet \overline{d})].$$

Further, Lemmas 6.8 and 6.9 also give

$$\overline{c}' = \mathbf{S}'((\mathbf{S}'\overline{i}') \bullet' \overline{d}') \bullet' \overline{e}' +' \overline{a}'.$$

Together with (1) this gives $\overline{M} \models \varphi(\overline{c}, \overline{d}, \overline{i}, \overline{a})$.

The second property for representability is

(2)
$$\mathbf{P} \vdash \forall v_3[\varphi(\overline{c}, \overline{d}, \overline{i}, v_3) \to v_3 = \overline{a}].$$

We claim that this follows from the additional condition of the lemma. In fact, assume that additional condition. Applications of Theorem 3.27 then give $\mathbf{P} \vdash \varphi(\overline{c}, \overline{d}, \overline{i}, \overline{a}) \land \varphi(\overline{c}, \overline{d}, \overline{i}, v_3) \rightarrow \overline{a} = v_3$. Then $\mathbf{P} \vdash \varphi(\overline{c}, \overline{d}, \overline{i}, v_3) \rightarrow \overline{a} = v_3$ by the first condition on representability, and (2) follows easily.

It remains to check the additional property in the lemma. So, suppose that $a, b, c, d, e \in M$ and $\overline{M} \models (\varphi(v_0, v_1, v_2, v_3) \land \varphi(v_0, v_1, v_2, v_6))[a, b, c, d, d, e]$. We want to show that d = e. We can choose additional elements $f, g \in M$ so that the following conditions hold:

- (3) $a = \mathbf{S}'(\mathbf{S}'(c) \bullet' b) \bullet' f +' d.$
- (4) $d \triangleleft' \mathbf{S}'(\mathbf{S}'(c) \bullet' b).$
- (5) $a = \mathbf{S}'(\mathbf{S}'(c) \bullet' b) \bullet' g +' e.$

(6)
$$e \triangleleft' \mathbf{S}'(\mathbf{S}'(c) \bullet' b)$$
.

For brevity, let $h = \mathbf{S}'(\mathbf{S}'(c) \bullet' b)$. Then (3)–(6) become

- (7) $a = h \bullet' f +' d$.
- (8) $d \triangleleft' h$.
- (9) $a = h \bullet' g +' e$.

(10)
$$e \triangleleft' g$$
.

We claim that f = g. If not, then by Lemma 6.15 we have $f \triangleleft' g$ or $g \triangleleft' f$. Say by symmetry $f \triangleleft' g$. Hence

$$a = h \bullet' f +' d$$

$$\lhd' h \bullet' f + h \quad \text{by (8) and Lemma 6.17}$$

$$= h \bullet' \mathbf{S}'(f). \quad \text{by (P6)}$$

By Lemma 6.16 we have the following cases.

Case 1. $\mathbf{S}'(f) = g$ and $e = \mathbf{0}'$. Then by (8) and Lemma 6.17,

$$a = h \bullet' f + d \triangleleft' h \bullet' f + h = h \bullet' \mathbf{S}'(f) = h \bullet' g = h \bullet' f + e = a,$$

contradicting Lemma 6.13.

Case 2. $\mathbf{S}'(f) = g$ and $e \neq \mathbf{0}'$. By Lemma 6.5 there is a k such that $\mathbf{S}'(k) = e$. Thus $\mathbf{0}' + \mathbf{S}'(k) = e$ by Lemma 6.3, so $\mathbf{0}' \triangleleft e$. Hence

$$\begin{aligned} a \triangleleft' h \bullet' \mathbf{S}'(f) \\ &= h \bullet' \mathbf{S}'(f) +' \mathbf{0}' \quad \text{by (P3)} \\ &\triangleleft' h \bullet' \mathbf{S}'(f) +' e \quad \text{by Lemma 6.17} \\ &= a, \end{aligned}$$

contradicting Lemmas 6.13 and 6.14.

Case 3. $\mathbf{S}'(f) \triangleleft' g$. Note that $h = \mathbf{S}'(k)$ for some k. Hence

$$a \triangleleft' h \bullet' \mathbf{S}'(f)$$
 (see before Case 1)
 $\triangleleft' h \bullet' g$. by Lemma 6.18

If $e = \mathbf{0}'$, then $a = h \bullet' g + e$ by (P3), contradicting Lemmas 6.13 and 6.14. If $e \neq \mathbf{0}'$, by Lemma 6.5 choose $s \in M$ such that $\mathbf{S}'(s) = e$. Then $\mathbf{0}' + \mathbf{S}'(s) = e$ by Lemma 6.3, and so $\mathbf{0}' \triangleleft' e$. So $h \bullet' g = h \bullet' g + \mathbf{0}' \triangleleft h \bullet' g + ' e$ using (P3) and Lemma 6.17. Since $a = h \bullet' g + ' e$ by (8), this again contradicts Lemmas 6.13 and 6.14.

Theorem 6.25. Every recursive function is representable.

Proof. Let $\langle f_0, \ldots, f_m \rangle$ be a recursive function construction sequence. We prove by complete induction that for every $i \leq m$, f_i is representable. So, assume that $i \leq m$ and we know that every f_j with j < i is representable. By the definition of recursive function construction sequence we have the following cases.

Case 1. $f_i = \mathbf{s}$. We claim that the formula $\mathbf{S}v_0 = v_1$ represents \mathbf{s} . To prove this, suppose that $a \in \omega$. Then $\mathbf{S}\overline{a}$ is the same term as $\overline{a+1}$, and so $\overline{M} \models \mathbf{S}\overline{a} = \overline{a+1}$. Also, clearly for any $u \in M$ we have $\overline{M} \models (\mathbf{S}\overline{a} = v_1 \rightarrow v_1 = \overline{a+1})[u, u]$, and hence $\overline{M} \models \forall v_1(\mathbf{S}\overline{a} = v_1 \rightarrow v_1 = \overline{a+1})$.

Case 2. There exist j, m with j < m such that $f_i = \mathbf{I}_j^m$. We claim that the formula $v_m = v_j$ represents \mathbf{I}_j^m . Suppose that $a_0, \ldots, a_{m-1} \in \omega$. Then $\mathbf{I}_j^m(a_0, \ldots, a_{m-1}) = a_j$. Obviously $\overline{M} \models \overline{a_j} = \overline{a_j}$. Also, for any $u \in M$, $\overline{M} \models (v_m = \overline{a_j} \rightarrow v_m = \overline{a_j})[u \ldots u]$, and hence $\overline{M} \models \forall v_m(v_m = \overline{a_j} \rightarrow v_m = \overline{a_j})$.

Case 3. There exist positive integers m, n and $j, k_0, \ldots, k_{m-1} < i$ such that each f_{k_s} is an *n*-ary operation on ω , f_j is an *m*-ary operation on ω , and $f_i = \mathbf{C}_n^m(f_j, f_{k_0}, \ldots, f_{k_{m-1}})$. For each s < m let φ_s be a formula with free variables among v_0, \ldots, v_n which represents f_{k_s} , and let ψ be a formula with free variables among v_0, \ldots, v_m which represents f_j . Let ube an integer such that v_u does not occur in ψ , and let ψ' be obtained from ψ by replacing all bound occurrences of v_n in ψ by v_u . Let t be an integer greater than m, n and all lsuch that v_l occurs in some φ_u or in ψ . We claim that the following formula represents f_i :

$$\exists v_t \dots \exists v_{t+m-1} \left[\left(\bigwedge_{s < m} \varphi_s(v_0, \dots, v_{n-1}, v_{t+s}) \right) \land \psi'(v_t, \dots, v_{t+m-1}, v_n) \right].$$

To prove this, let $a_0, \ldots, a_{n-1} \in \omega$, let $b_s = f_{k_s}(a_0, \ldots, a_{n-1})$ for each s < m, and let $f_j(b_0, \ldots, b_{m-1}) = c$. Then because φ_s represents f_{k_s} we have

(1)
$$\mathbf{P} \vdash \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{b_s}) \quad \text{for each } s < m$$

And because ψ represents f_j we have

(2)
$$\mathbf{P} \vdash \psi'(\overline{b_0}, \dots, \overline{b_{m-1}}, \overline{c}).$$

Putting (1) and (2) together with a tautology we then get

(3)
$$\mathbf{P} \vdash \left(\bigwedge_{s < m} \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{b_s}) \right) \land \psi'(\overline{b_0}, \dots, \overline{b_{m-1}}, \overline{c}).$$

Now with \overline{M} any model of **P** and $d: \omega \to M$, by Theorem 3.2 we get

$$\overline{M} \models \operatorname{Subf}_{\overline{b_0}^{M}(d)}^{v_t} \cdots \operatorname{Subf}_{\overline{b_{m-1}}^{M}(d)}^{v_{t+m-1}} \left[\left(\bigwedge_{s < m} \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, v_s) \right) \land \psi'(v_t, \dots, v_{t+m-1}, \overline{c}) \right] [d]$$

It follows that

$$\overline{M} \models \exists v_t \dots \exists v_{t+m-1} \left[\left(\bigwedge_{s < m} \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+s}) \right) \land \psi'(v_t, \dots, v_{t+m-1}, \overline{c}) \right] [d].$$

This gives the first condition for representability.

For the second condition, suppose that $e \in M$ and

$$\overline{M} \models \exists v_t \dots \exists v_{t+m-1} \left[\left(\bigwedge_{s < m} \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+s}) \right) \land \psi'(v_t, \dots, v_{t+m-1}, v_n) \right] [d_e^n].$$

We want to show that e = c. Choose f_0, \ldots, f_{m-1} so that

(4)
$$\overline{M} \models \left[\left(\bigwedge_{s < m} \varphi_s(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+s}) \right) \land \psi'(v_t, \dots, v_{t+m-1}, v_n) \right] [d_e^{n \ t \ \dots \ t+m-1}].$$

By the second condition for representability of f_{k_s} by φ_s we get $f_s = a_s$ for each s < m. Hence from (4) we get $\overline{M} \models \psi'(\overline{a_0}, \ldots, \overline{a_{m-1}}, v_n)[d_e^n]$. Then the second condition for representability of f_j by ψ gives e = c, as desired.

Case 4. There exist j < i and $a \in \omega$ such that f_i is $\mathbf{Q}_0(a, f_j)$. Let φ represent β with the additional property given in Lemma 6.24; the free variables of φ are among v_0, v_1, v_2, v_3 . Let ψ represent f_j ; the free variables of ψ are among v_0, v_1, v_2 . Choose t > 3

and greater than u for each variable v_u occurring in φ or ψ . Then we claim that the following formula χ represents f_i :

$$\exists v_t \exists v_{t+1} [\varphi(v_t, v_{t+1}, \mathbf{0}, \overline{a}) \land \varphi(v_t, v_{t+1}, v_0, v_1) \land \forall v_{t+2} [v_{t+2} \lhd v_0 \to \exists v_{t+3} \exists v_{t+4} \\ [\psi(v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, v_{t+2}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}v_{t+2}, v_{t+4})]].$$

The idea of this formula is to code, using the β -function, the whole finite sequence of values of f_i starting with the argument 0 and ending with v_0 . To prove the claim, suppose that $m \in \omega$. Choose c, d so that $\beta(c, d, s) = f_i(s)$ for all $s \leq m$. In particular, $\beta(c, d, 0) = f_i(0) = a$, so

$$\mathbf{P}\vdash\varphi(\overline{c},\overline{d},\mathbf{0},\overline{a}).$$

Hence for our model, for any $e:\omega\to M$ we have

(5)
$$\overline{M} \models \varphi(\overline{c}, \overline{d}, \mathbf{0}, \overline{a})[e].$$

Also, $\beta(c, d, m) = f_i(m)$, so

$$\mathbf{P}\vdash\varphi(\overline{c},\overline{d},\overline{m},\overline{f_i(m)}).$$

Hence

(6)
$$\overline{M} \models \varphi(\overline{c}, \overline{d}, \overline{m}, \overline{f_i(m)})[e].$$

Now suppose that s < m. Then $f_j(s, f_i(s)) = f_i(s+1)$, $\beta(c, d, s) = f_i(s)$, and $\beta(c, d, s+1) = f_i(s+1)$, so

$$\mathbf{P} \vdash \psi(\overline{s}, \overline{f_i(s)}, \overline{f_{i+1}(s)}) \land \varphi(\overline{c}, \overline{d}, \overline{s}, \overline{f_i(s)}) \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, \overline{f_i(s+1)})$$

and hence

$$\overline{M} \models [\psi(\overline{s}, \overline{f_i(s)}, \overline{f_{i+1}(s)}) \land \varphi(\overline{c}, \overline{d}, \overline{s}, \overline{f_i(s)}) \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, \overline{f_i(s+1)})][e].$$

It follows that

$$\overline{M} \models \exists v_{t+3} \exists v_{t+4} [\psi(\overline{s}, v_{t+3}, v_{t+4}) \land \varphi(\overline{c}, \overline{d}, \overline{s}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, v_{t+4})][e].$$

This being true for all s < m, it follows that

$$\overline{M} \models \left[\bigvee_{s < m} (v_{t+2} = \overline{s}) \to \exists v_{t+3} \exists v_{t+4} [\psi(v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \mathbf{S}v_{t+2}, v_{t+4})]\right] [e].$$

Hence by Lemma 6.19 we get

$$\overline{M} \models \forall v_{t+2}[v_{t+2} \lhd \overline{m} \rightarrow \exists v_{t+3} \exists v_{t+4}[\psi(v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \mathbf{S}v_{t+2}, v_{t+4})]][e].$$

Now together with (5) and (6) this gives $\overline{M} \models \chi(\overline{m}, \overline{f_i(m)})$, giving the first condition for representability for f_i .

For the other condition, assume that $m \in \omega$, $b \in M$, and $\overline{M} \models \chi[e_{m\ b}^{0\ 1}]$; we want to show that $b = f_i(m)$. Now choose $c, d \in M$ so that

(7)
$$\overline{M} \models [\varphi(v_t, v_{t+1}, \mathbf{0}, \overline{a}) \land \varphi(v_t, v_{t+1}, v_0, v_1) \land \forall v_{t+2} [v_{t+2} \lhd v_0 \to \exists v_{t+3} \exists v_{t+4} [\psi(v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, v_{t+2}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}v_{t+2}, v_{t+4})]]][e_{m\ b\ c\ d}^{0\ 1\ t\ t+1}].$$

Now we claim

(8) For all $k \leq m$, $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{k}, \overline{f_i(k)})[e_c^{t} \frac{t+1}{d}].$

We prove this by (ordinary) induction on k. For k = 0 it is given by (7), since $f_i(0) = a$. Now assume that k < m and

(9)
$$\overline{M} \models \varphi(v_t, v_{t+1}, \overline{k}, \overline{f_i(k)})[e_c^t]^{t+1}_{c d}]$$

Now $\overline{k}' \lhd \overline{m}'$ by Lemma 6.12, so by (7) we have

$$\overline{M} \models \exists v_{t+3} \exists v_{t+4} [\psi(\overline{k}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, \overline{k}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}\overline{k}, v_{t+4})]] [e_c^{t t+1}].$$

Hence we can choose $h, g \in M$ such that

(10)
$$\overline{M} \models \psi(\overline{k}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, \overline{k}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}(\overline{k}), v_{t+4})[e_c^t \overset{t+1}{d} \overset{t+3}{d} \overset{t+4}{g}].$$

Now by (9) and (10) using the additional property of φ , we get $h = f_i(k)$. By (10) we have $\overline{M} \models \psi(\overline{k}, v_{t+3}, v_{t+4})[e_h^{t+3}]$, so by the second condition for ψ representing f_j we have $g = \overline{f_j(k, f_i(k))}' = \overline{f_i(k+1)}'$. Hence $\overline{M} \models \varphi(v_t, v_{t+1}, \mathbf{S}(\overline{k}), \overline{f_i(k+1)})[e_c^{t-t+1}]$ by (10). This gives k + 1 in (8).

So (8) holds by induction. The case k = m is $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{m}, \overline{f_i(m)})[e_c^t d^{t+1}]$. Also from (7) we have $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{m}, v_1)[e_b^{1} d^{t+1}]$. Hence by the extra condition on φ it follows that $b = f_i(m)$, as desired.

This finishes the argument for \mathbf{Q}_0 .

Case 5. There exist a positive integer n and j, k < i such that f_j is an n-ary operation on ω , f_k is an (n + 2)-ary operation on ω , and $f_i = \mathbf{Q}_n(f_j, f_k)$. The proof that f_i is representable is very similar to the above Case 4, but is somewhat more complicated.

Let φ represent β with the additional property in Lemma 6.24, ψ represent f_j , and χ represent f_k . Thus φ has variables among v_0, v_1, v_2, v_3, ψ has variables among v_0, \ldots, v_n , and χ has variables among v_0, \ldots, v_{n+2} . Choose t > n+2 and greater than u for each variable v_u occurring in φ, ψ , or χ . Then we claim that the following formula θ represents f_i :

$$\exists v_t \exists v_{t+1} \exists v_{t+5} [\varphi(v_t, v_{t+1}, \mathbf{0}, v_{t+5}) \land \psi(v_0, \dots, v_{n-1}, v_{t+5}) \\ \land \varphi(v_t, v_{t+1}, v_n, v_{n+1}) \land \forall v_{t+2} [v_{t+2} \lhd v_n \to \exists v_{t+3} \exists v_{t+4} \\ [\chi(v_0, \dots, v_{n-1}, v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, v_{t+2}, v_{t+3}) \\ \land \varphi(v_t, v_{t+1}, \mathbf{S}v_{t+2}, v_{t+4})]]].$$

To prove the claim, suppose that $a_0, \ldots, a_{n-1}, m \in \omega$. Choose c, d so that $\beta(c, d, s) = f_i(a_0, \ldots, a_{n-1}, s)$ for all $s \leq m$. Then $\beta(c, d, 0) = f_i(a_0, \ldots, a_{n-1}, 0) = f_j(a_0, \ldots, a_{n-1})$, so

(11)
$$\mathbf{P} \vdash \varphi(\overline{c}, \overline{d}, \mathbf{0}, \overline{f_j(a_0, \dots, a_{n-1})}) \land \psi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{f_j(a_0, \dots, a_{n-1})}).$$

Also, $\beta(c, d, m) = f_i(a_0, \dots, a_{n-1}, m)$, so

(12)
$$\mathbf{P} \vdash \varphi(\overline{c}, \overline{d}, \overline{m}, \overline{f_i(a_0, \dots, a_{n-1}, m)}).$$

Now suppose that s < m. Then

$$f_j(a_0, \dots, a_{n-1}, s, f_i(a_0, \dots, a_{n-1}, s)) = f_i(a_0, \dots, a_{n-1}, s+1)$$

and also $\beta(c, d, s) = f_i(a_0, \dots, a_{n-1}, s)$ and $\beta(c, d, s+1) = f_i(a_0, \dots, a_{n-1}, s+1)$. Hence

$$\mathbf{P} \vdash \chi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)}, \overline{f_{i+1}(a_0, \dots, a_{n-1}, s+1)}) \\ \land \varphi(\overline{c}, \overline{d}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)}) \\ \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, \overline{f_i(a_0, \dots, a_{n-1}, s+1)}).$$

Thus in our model \overline{M} , with $e: \omega \to M$, we have

$$\overline{M} \models [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)}, \overline{f_{i+1}(a_0, \dots, a_{n-1}, s+1)}) \\ \land \varphi(\overline{c}, \overline{d}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)}) \\ \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, \overline{f_i(a_0, \dots, a_{n-1}, s+1)})][e].$$

From Lemma 4.6 we then get

$$\overline{M} \models [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{s}, v_{t+3}, v_{t+4})] \land \varphi(\overline{c}, \overline{d}, \overline{s}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, v_{t+4})] [e_w^{t+3} \ u^{t+4}]$$

where $w = f_i(a_0, ..., a_{n-1}, s)$ and $u = f_i(a_0, ..., a_{n-1}, s+1)$. Hence

(13)
$$\overline{M} \models \exists v_{t+3} \exists v_{t+4} [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{s}, v_{t+3}, v_{t+4}) \\ \land \varphi(\overline{c}, \overline{d}, \overline{s}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \overline{s+1}, v_{t+4})][e].$$

Note that (13) is true for all s < m. Now we claim

(14)
$$\overline{M} \models \forall v_{t+2} [v_{t+2} \lhd \overline{m} \rightarrow \exists v_{t+3} \exists v_{t+4} [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \mathbf{S}v_{t+2}, v_{t+4})]][e].$$

In fact, take any $w \in M$, and assume that $\overline{M} \models (v_{t+2} \triangleleft \overline{m})[e_w^{t+2}]$. Then by Lemma 6.19 there is an s < m such that w = s. Hence by (13) and Lemma 4.6 we get

$$\overline{M} \models \exists v_{t+3} \exists v_{t+4} [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+2}, v_{t+3}, v_{t+4}) \\ \wedge \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+3}) \wedge \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+4})][e_w^{t+2}],$$

as desired, proving (14). Putting this together with (11) and (12) we have

$$\overline{M} \models [\varphi(\overline{c}, \overline{d}, \mathbf{0}, \overline{f_j(a_0, \dots, a_{n-1})}) \land \psi(\overline{a_0}, \dots, \overline{a_{n-1}}, \overline{f_j(a_0, \dots, a_{n-1})}) \land \varphi(\overline{c}, \overline{d}, \overline{m}, \overline{f_i(a_0, \dots, a_{n-1}, m)}) \land \forall v_{t+2}[v_{t+2} \lhd \overline{m} \rightarrow \exists v_{t+3} \exists v_{t+4} [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(\overline{c}, \overline{d}, v_{t+2}, v_{t+3}) \land \varphi(\overline{c}, \overline{d}, \mathbf{S}v_{t+2}, v_{t+4})]]][e].$$

Hence an easy argument using Lemma 4.6 gives

$$\overline{M} \models [\exists v_t \exists v_{t+1} \exists v_{t+5} [\varphi(v_t, v_{t+1}, \mathbf{0}, v_{t+5}) \land \psi(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+5}) \\ \land \varphi(v_t, v_{t+1}, \overline{m}, \overline{f_i(a_0, \dots, a_{n-1}, m)} \land \forall v_{t+2} [\rho(v_{t+2}, \overline{m}) \rightarrow \exists v_{t+3} \exists v_{t+4} \\ [\chi(\overline{a_0}, \dots, \overline{a_{n-1}}, v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, v_{t+2}, v_{t+3}) \\ \land \varphi(v_t, v_{t+1}, \mathbf{S}v_{t+2}, v_{t+4})]]]][e].$$

That is, $\overline{M} \models \theta(\overline{a_0}, \ldots, \overline{a_{n-1}}, \overline{m}, \overline{f_i(a_0, \ldots, a_{n-1}, m)})[e]$. This gives the first condition for representability for f_i .

For the second condition, suppose that $a_0, \ldots, a_{n-1}, m \in \omega, b \in M$, and $\overline{M} \models \theta(\overline{a}_0, \ldots, \overline{a}_{n-1}, \overline{m}, v_{n+1})[e_b^{n+1}]$. We want to show that $b = f_i(a_0, \ldots, a_{n-1}, m)$. Choose $c, d, g \in M$ such that

(15)
$$\overline{M} \models [\varphi(v_t, v_{t+1}, \mathbf{0}, v_{t+5}) \land \psi(\overline{a}_0, \dots, \overline{a}_{n-1}, v_{t+5}) \land \varphi(v_t, v_{t+1}, \overline{m}, v_{n+1}) \land \forall v_{t+2} [v_{t+2} \lhd \overline{m} \rightarrow \exists v_{t+3} \exists v_{t+4} [\chi(\overline{a}_0, \dots, \overline{a}_{n-1}, v_{t+2}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, v_{t+2}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}v_{t+2}, v_{t+4})]]][e_b^{n+1} \stackrel{t}{\underset{c}{d}} \stackrel{t+1}{\underset{g}{d}} \stackrel{t+1}{\underset{g}{d}}].$$

Now we claim

(16) For all
$$s \leq m$$
, $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)})[e_{c \ d}^{t \ t+1}].$

We prove (16) by induction on s. From (15), $\overline{M} \models \psi(\overline{a}_0, \ldots, \overline{a}_{n-1}, v_{t+5})[e_g^{t+5}]$, so by the second condition for ψ representing f_j , $g = f_j(a_0, \ldots, a_{n-1})$. Now by (15) again, $\overline{M} \models \varphi(v_t, v_{t+1}, \mathbf{0}, v_{t+5})[e_c^{t} \frac{t+1}{g}]$. Since $f_j(a_0, \ldots, a_{n-1}) = f_i(a_0, \ldots, a_{n-1}, 0)$, this proves (16) for s = 0, using Lemma 4.6.

Now assume that s < m and

(17)
$$\overline{M} \models \varphi(v_t . v_{t+1}, \overline{s}, \overline{f_i(a_0, \dots, a_{n-1}, s)})[e_c^{t \ t+1}].$$

Now $\overline{s}' \lhd' \overline{m}'$ by Lemma 6.12, so by (15) we can choose $h, g \in M$ such that

(18)
$$M \models \chi(\overline{a}_0, \dots, \overline{a}_{n-1}, \overline{s}, v_{t+3}, v_{t+4}) \land \varphi(v_t, v_{t+1}, \overline{s}, v_{t+3}) \land \varphi(v_t, v_{t+1}, \mathbf{S}\overline{s}, v_{t+4}) [e_c^t \stackrel{t+1}{d} \stackrel{t+3}{h} \stackrel{t+4}{d}].$$

By (17), (18), and the additional property of φ we have $h = f_i(a_0, \ldots, a_{n-1}, s)$, using Lemma 4.6. Now by (18), $\overline{M} \models \chi(\overline{a}_0, \ldots, \overline{a}_{n-1}, \overline{s}, v_{t+3}.v_{t+4})[e_{h-g}^{t+3}]$, so by the second property of χ representing f_k we get

$$g = f_k(a_0, \dots, a_{n-1}, s, f_i(a_0, \dots, a_{n-1})) = f_i(a_0, \dots, a_{n-1}, s+1).$$

Now by (18) again, $\overline{M} \models \varphi(v_t, v_{t+1}, \mathbf{S}(\overline{s}), v_{t+4})[e_c^{t} \frac{t+1}{g} \frac{t+4}{g}]$. This gives (16) for s+1. So by induction, (16) holds.

The case s = m in (16) is $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{m}, \overline{f_i(a_0, \ldots, a_{n-1}, m)})[e_c^{t t+1}]$. From (15) we have $\overline{M} \models \varphi(v_t, v_{t+1}, \overline{m}, v_{n+1})[e_c^{t t+1} \frac{n+1}{b}]$. Hence by the additional property of φ it follows that $b = f_i(a_0, \ldots, a_{n-1}, m)$.

This finishes the treatment of \mathbf{Q}_n for n > 0.

Case 6. There exist a positive integer m and a j < i such that f_j is a special (m+1)ary operation on ω and $f_i = \mathbf{M}_m(f_j)$. Let φ represent f_j . Choose s such that s > 2 and v_s does not occur in φ . Then we claim that the following formula ψ represents f_i :

 $\varphi(v_0,\ldots,v_m,\mathbf{0})\wedge\forall v_s[v_s\triangleleft v_m\rightarrow\neg\varphi(v_0,\ldots,v_{m-1},v_s,\mathbf{0})].$

To prove this, suppose that $a_0, \ldots, a_{m-1} \in \omega$, and let $b = f_i(a_0, \ldots, a_{m-1})$. Thus $f_j(a_0, \ldots, a_{m-1}, b) = 0$, and so

(19)
$$\overline{M} \models \varphi(\overline{a_0}, \dots, \overline{a_{m-1}}, \overline{b}, \mathbf{0})[e]$$

Assume that $c \in M$ and $c \triangleleft' \overline{b}'$. By Lemma 6.19 there is an s < b such that $c = \overline{s}'$. By the second condition for φ representing f_j we have

(20)
$$\overline{M} \models (\varphi(\overline{a}_0, \dots, \overline{a}_{m-1}, \overline{s}, \mathbf{0}) \to \overline{f_j(a_0, \dots, a_{m-1}, c)} = \mathbf{0})[e].$$

Now $f_j(a_0,\ldots,a_{m-1},c) \neq 0$, and so by Lemma 6.10, $\overline{f_j(a_0,\ldots,a_{m-1},c)}' \neq \mathbf{0}'$. Hence from (20) we get

$$\overline{M} \models \neg \varphi(\overline{a}_0, \dots, \overline{a}_{m-1}, \overline{c}, \mathbf{0})[e].$$

It now follows from Lemma 6.19 that

$$\overline{M} \models \forall v_s[v_s \lhd \overline{b} \to \neg \varphi(\overline{a}_0, \dots, \overline{a}_{m-1}, v_s, \mathbf{0})][e].$$

Together with (21) this gives $\overline{M} \models \psi(\overline{a}_0, \ldots, \overline{a}_{m-1}, \overline{b})[e]$.

Now for the second representability condition, suppose $\overline{M} \models \psi(\overline{a}_0, \ldots, \overline{a}_{m-1}, v_m)[e_c^m]$ with $c \in M$; we want to show that c = b. Assume not. By Lemma 6.15 this gives two possibilities.

Case 1. $c \triangleleft \overline{b}$. Since $\overline{M} \models \psi(\overline{a}_0, \dots, \overline{a}_{m-1}, \overline{b})[e]$, we get

$$\overline{M} \models \neg \varphi(\overline{a}_0, \dots, \overline{a}_{m-1}, v_m, \mathbf{0})[e_c^m],$$

contradicting $\overline{M} \models \psi(\overline{a}_0, \dots, \overline{a}_{m-1}, v_m)[e_c^m].$

Case 2. $\overline{b}' \triangleleft c$. Since $\overline{M} \models \psi(\overline{a}_0, \dots, \overline{a}_{m-1}, v_m)[e_c^m]$, we get

$$\overline{M} \models \neg \varphi(\overline{a}_0, \dots, \overline{a}_{m-1}, \overline{b}, \mathbf{0})[e]$$

contradicting $\overline{M} \models \psi(\overline{a}_0, \ldots, \overline{a}_{m-1}, \overline{b})[e].$

This finishes Case 6, and so the proof of Theorem 6.25.

Theorem 6.26. Every recursive relation is representable.

Proof. Let R be any recursive relation. Say R is m-ary. Thus χ_R is recursive. By Theorem 6.25, let ψ represent χ_R . Thus ψ has free variables among v_0, \ldots, v_m . Let φ be the formula $\psi(v_0, \ldots, v_{m-1}, \mathbf{S0})$. Let $a_0, \ldots, a_{m-1} \in \omega$. If $\langle a_0, \ldots, a_{m-1} \rangle \in R$, then $\chi_R(a_0, \ldots, a_{m-1}) = 1$, and hence $\mathbf{P} \vdash \psi(\overline{a_0}, \ldots, \overline{a_{m-1}}, \overline{1})$; hence $\mathbf{P} \vdash \varphi(\overline{a_0}, \ldots, \overline{a_{m-1}})$. If $\langle a_0, \ldots, a_{m-1} \rangle \notin R$, then $\chi_R(a_0, \ldots, a_{m-1}) = 0$, and hence $\mathbf{P} \vdash \psi(\overline{a_0}, \ldots, \overline{a_{m-1}}, \overline{1}) \to \overline{1} =$ **0** by the second condition in the definition of χ_R being representable. Since $\mathbf{P} \vdash \neg(\overline{1} = \mathbf{0})$ by (P2), it follows that $\mathbf{P} \vdash \neg \psi(\overline{a_0}, \ldots, \overline{a_{m-1}}, \overline{1})$, i.e., $\mathbf{P} \vdash \neg \varphi(\overline{a_0}, \ldots, \overline{a_{m-1}})$.

EXERCISES

E6.1. The exponential function is defined as follows. $a^0 = 1$ and $a^{s(b)} = a^b \cdot a$. Show that the exponential function is representable.

E6.2. Prove that $\mathbf{P} \vdash \forall v_0 \forall v_1 [v_0 + v_1 = v_1 + v_0]$.

E6.3. Prove that $\mathbf{P} \vdash \forall v_1 \forall v_0 [v_1 \bullet v_0 + v_0 = \mathbf{S}v_1 \bullet v_0].$

E6.4. Prove that $\mathbf{P} \vdash \forall v_0 [\mathbf{0} \bullet v_0 = \mathbf{0}].$

E6.5. Prove that $\mathbf{P} \vdash \forall v_0 \forall v_1 [v_0 \bullet v_1 = v_1 \bullet v_0].$

E6.6. Let φ be the formula defined in the proof of Lemma 6.24. Show that $\mathbf{P} \vdash \forall v_0 \forall v_1 \forall v_2 \exists v_3 \varphi$.