6. Representability of recursive functions

In this chapter we prove Theorem A from chapter 5: all recursive functions and relations
are representable. In order to do this, we need some lemmas about statements derivable
from P. We will prove these statements model-theoretically, showing that they hold in
any model M of P; hence by the completeness theorem they are derivable from P. For

brevity we denote + by +', OM by 0, SM by S’, M by o', and mM by .
Lemma 6.1. P F vy + (v 4+ vg) = (v1 + v2) 4+ vp.

Proof. We prove this by induction on vg, applying the following instance of (P7):

vy + (v24+0) = (v +v2) +0
AVvg[vr 4 (v2 + vo) = (v1 + v2) +v9 — v1 + (v2 4+ Swvg) = (v1 + v2) + Svg]
— Yug[v1 4 (v2 4+ vo) = (v1 + v2) + Vo).

So, assume a,b € M. Then

a+' (b+'0)=a+"b by (P3)
=(a+'b)+'0" by (P3)
Now assume that also ¢ € M and a +' (b+'¢) = (a +'b) +' ¢. Then
a+' (b+'S'(c))=a+'S'(b+'¢c) by (P4)
—S'(a+ (b4 ) by (P4)
=S'((a+'b)+'¢) by assumption
= (a+'b)+'S'(c) by (P4)

It follows that for all ¢, a +' (b+'¢) = (a 4+’ b) +' c. O

Lemma 6.2. PF vy e (v + vg) = vy @ v1 + vg @ 1.
Proof. Induction on vy, the instance of (P7) being
vae (v +0)=vo0v; +1v200

AVvglvs @ (V1 + vp) = vo @ V1 + V2 @ Vg — V2 @ (V1 + Svg) = v @ V1 + Vo @ Sy

— Yuglv @ (v1 + vp) = vo @ U1 + v @ 1g].
So, let a,b € M. Then

ae (b+'0")=ae b by (P3)
=ae b+'0" by (P3)
=ae' b+ael. by (P5)
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Now suppose that also ¢ € M, and a e (b+'¢) =a e’ b+’ a e’ c. Then

ae (b+'S'(c)=ae S'(b+'c) by (P4)
=ae (b+'c)+a by (P6)
=(adb4+adc)+ a
=aeb+'((aec)+"a) by Lemma 6.1
=ae' b+ ae S'(c). by (P6)
This finishes the inductive proof. ]

Lemma 6.3. P+ 0+ vy = vg.
Proof. We prove this by induction on vy. That is, we use the following instance of
(P7), with ¢ the formula 0 + vy = vg:
0+ 0=0AVYvy(0+ vg =v9g — 0+ Svg = Svg) — Yuo(0 + vg = vg).
Now 0" 4+’ 0’ = 0" by (P3). Now suppose that 0’ +’ @ = a. Then

0'+'S'(a) =S'(0'+"a) by (P4)
= S’(a). by supposition

It now follows that for all a € M, 0’ +' a = a. O

Lemma 6.4. P+v; +v9=0— v; =0.

Proof. We prove this by induction on vg. That is, we apply the following version of
(P7), where ¢ is the formula v;1 +v9 =0 — v; = 0:

(U1+0=0—>U1IO)AVUQ[(U1+U0=0—>U1:0)—>
(v1 + Svp =0 — v = 0)]
— Yoo(vy +v9 =0 — v; = 0).

First suppose that a +' 0’ = 0’. By (P3), a4+'0" =a. so a = 0'.

Second, suppose that b € M and (a +' b = 0’ implies that a = 0"). Also suppose
that a 4+’ S’(b) = 0’. By (P4) we have a +' S’(b) = S’(a 4+’ b); so S’(a +' b) = 0’. This
contradicts (P2). Hence the supposition a +’ S(b) = 0’ is false, and so the implication
(a +' S(b) = 0’ implies that a = 0) is true.

Hence the result of the lemma follows. O

Lemma 6.5. P I Vug[—(vg = 0) — vy (Svy = vp)].

Proof. Induction on vy. In (P7) we take ¢ to be the formula =(vg = 0) — Jv;(Sv, =
Vo), giving the following instance of (P7):

(=(0=0) — Fv1(Svy = 0)) A Voo[(—(vo = 0) — Fv1(Sv1 = vy))
— (=(Svg = 0) — Fv1(Sv1 = Swy))] — Yoo (=(vo = 0) — Fv1(Svy = vp)).
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The implication “=(0" = 0’) implies that there is an a such that S(a) = 0" is true since the

hypothesis is false. Now assume that a # 0’ implies that there is a b such that S’(b) = a,

and assume that S’(a) # 0’. Then there is a b such that S’(b) = S’(a), namely a itself.
Hence the desired conclusion follows. O

Lemma 6.6. P VUOVvl [SUl + Vo = U1 + SU()].
Proof. We prove this by induction on vy, applying (P7) with the formula ¢ being
Sv1 4+ vp = v1 + Swp; thus the instance of (P7) is

SUl —|— 0= U1 -|— SO A (Vvo[Svl -|— Vg = U1 -|— SU()]
— Swv1 + Svg = v1 + SSwvg|) — Yuo[Sv1 4+ vg = v1 + Swvg).

Take any a € M. Then
S'(a) + 0" =S'(a) by (P3)
=S'(a+'0") by (P3)
=a+ S (0"). by (P4)

Now assume that S’'(a) +' b = a +’ S'(b). Hence

S'(a) +' S'(b) = S'(S'(a) +'b) by (P4)
= S'(a+'S'(b)) by assumption
=a+'S'(S'(b)). by (P4) ]

Lemma 6.7. P+ vy + v1 = vg + va — v1 = vs.

Proof. We prove this by induction on vy, the instance of (P7) being

Yu1Vua (0 +v1 = 0 + v9 — v1 = v9)
A Yo [VorYug (vo 4+ v1 = vg 4 v2 — v1 = va) — Y1 Ve (Svg + v1 = Svg + v2 — v1 = v9)]

— VUOVvag (U() —|— V1 = Vo —|— Vo — V1 = UQ).

So assume that a,b € M. If 0 +" a = 0’ +’ b, then by Lemma 6.3 twice, a = 0' 4+’ a =
0 4+"b =0b. Now assume that ¢ € M and for all a,b € M, ¢+’ a = ¢+’ b implies
that @ = b. Suppose that a,b € M and S'(¢) +' a = S'(¢) 4+’ b. By Lemma 6.6 twice,
c+'S(a) = ¢+’ S’(b). Hence by assumption S’(a) = S’(b). Hence by (P1), a = b.

The desired conclusion follows. ]

The next legnmas involve th(? terms . In a model M of P we then have elements 77,
defined by 0 =0’ and m +1 = S'm’.

Lemma 6.8. P-m +n=m+n for any m,n € w.
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Proof. Let M be any model of P; we want to show that m +n = m’ —i—,’ 7 for any
m,n € w. We use (ordinary) induction on n, with m fixed. Note that m +0 = m’ and

0 =0 Hence m +0 =m +'0 reduces to m' = m’ 4+’ 0’, which is true by (P3). Now
for the induction step,

m+n+1 =8(m+n)
=S'(m +'m’) inductive hypothesis
— m/ +/ S/(ﬁ/) (P4)
=m +' n+1. m

Lemma 6.9. PFm-n=memn for any m,n € w.

Proof. Again we work in a model M of P; we want to show that m-n’ =m' o 7/ f01/"
any m,n € w. We go by induction on n, with m fixed. Note that m -0 = 0, and so m -0
is 0’. Hence the case n = 0 reduces to 0’ = m’ ¢ 0’, which holds by (P5). The inductive
step:

m-(n+1)=m-n+m
=m-n +'m by Lemma 6.8
=m o7 +'m’ inductive hypothesis
=m o S'(n') (P6)
"m+1. L]

=m e

Lemma 6.10. If m,n € w and m # n, then P - =(m =n).

Proof. We use ordinary induction on n, proving that for all m # n, m’ # n’. For
n = 0 this follows from Lemma 6.5 and (P2). Now suppose that for all m # n we have

m#mn, andm#n+1. Ifm =0, thenm #n+1 by (P2). Suppose that m # 0. Say
m =p+1. Then p # n, sop’ ;é/ 7’ by the inductive hypothesis. If ' = n+ 1, then
P =7 by (P1); hence m #n+1. O

Corollary 6.11. If m,n € w, M is a model of P, and m' =7', then m = n.

Proof. If m # n, then P - —(m = n) by Lemma 6.10, and hence m’ # n’. O

Next, let <1 be the formula Jvs|vg + Sve = v1]. Intuitively this says that vy < vi. We use
the symbol < to distinguish the formula from ordinary <. If ¢ and 7 are terms, then o < 7
is the formula Jvs[o 4+ Svy = 7]. So we need to avoid using terms which have occurrences
of vo in them. We need several common properties of <.

Lemma 6.12. Ifa,b € w and a < b, then P =@ < b.

Proof. Assume that a,b € w and a < b. Choose m € w such that a + m = b. Then
m # 0. By Lemma 6.8, a4+’ S'(m—1)=a +'m =b. Hence M =a < b. O
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Lemma 6.13. P —(vg < vg).

Proof. Suppose that a € M and a <’ a. Choose b € M such that a +" S'(b) = a.
Then by (P3), a 4+’ S'(b) = a +’ 0’, and hence by Lemma 6.7, S’(b) = 0’, contradicting
(P2). O
Lemma 6.14. P+ vy < vy Avp < vy — vy < vs.

Proof. Suppose that a,b,c € M and a <’ b <’ ¢. Choose d,e € M such that
a+'S'(d)=band b+’ S'(e) = c. Then

a+'S'(S'(d+"¢e)) =a+" (d+'S'(S'(e))) by (P4) twice
=a+'(S'(d)+'S'(e)) by Lemma 6.6
= (a+'S'(d)) +' S’(e) by Lemma 6.1
=b+'S'(e)
=c.

Hence a <’ c. ]

Lemma 6.15. P+ YooV [vg < v Vg =1 Vop <.
Proof. We prove this by induction on vy, using a version of (P7) in which ¢ is the

formula vy < v; Vvg = v1 V v1 < vg. Thus the version of (P7) is

(0<vyVO=v; Vo <0)
A Yvglvg < w1 Vg =01 Vg <oy — Svg < gV Svg = w1 Vg < Sug

— Yug[vg < w1 Vvg =01 Vg <.

Let a € M. We want to show, first, that
(1) <" aor 0 =aora<0.

If a = 0/, then (1) holds. Suppose that a # 0. By Lemma 6.5 choose b € M such that
S’(b) = a. Then 0’ +' S’(b) = S’(b) = a by Lemma 6.3, so 0’ <’ a, and again (1) holds.
Now suppose that b€ M and a <’ bor a =b or b </ a. We want to show that

(2) S/(a) <" bor S'(a) =bor b < S(a).

We consider three cases.
Case 1. a <" b. Choose ¢ such that a +' S'(¢) = b. If ¢ = 0, then

S'(a) =S'(a) + 0" by (P3)
=a+ S'(0') by Lemma 6.6
= b,

and (2) holds.
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If ¢ # 0’, by Lemma 6.5 choose d such that S’(d) = ¢. Then

S'(a) +' S'(d) =a+'S'(S'(d)) by Lemma 6.6
=a+'S(c)

hence S’(a) <’ b and (2) holds.
Case 2. a =b. Then

b+'S'(0) =S'(b+'0") by (P4)
S'(b) by (P3)
S/

(a).

Hence b </ S/(a), and (2) holds.
Case 3. b <’ a. Choose ¢ so that b+’ S’(¢) = a. Then
b+'8'(S'(c)) =S'(b+'S'(c)) by (P4)
= S'(a).
Hence b </ S/(a), and (2) holds.
The lemma now follows. ]
Lemma 6.16. P - vy < v; — Svg = v1 V Svg < v7.

Proof. Suppose that a,b € M and a <’ b. Choose ¢ € M such that a +' S/(¢) = b.
Then S’(a) + ¢ = b by Lemma 6.6.

Case 1. ¢ =0. Then S'(a) = b by (P3).

Case 2. ¢ # 0. By Lemma 6.5 choose d so that S’(d) = ¢. Thus S’(a) 4+ S’(d) = b, so
S'(a) <" b. O
Lemma 6.17. P+ vy < v; — v3 + vy < v3 + v1.

Proof. Suppose that a,b,c € M and a <’ b. Choose d so that a +' S’(d) = b. Then

(c+"a)+'S'(d)=c+' (a+'S'(d)) by Lemma 6.1
=c+'b.

Hence c+"a <’ ¢+’ b. ]

Lemma 6.18. P vy < v; — Svz e vy < Sug e vq.

Proof. Suppose that a,b,c € M and a <’ b. Choose d so that a +' S’(d) = b. Then

S'(S'(c)e’ d+"¢c) =S'(c)e’ d+'S'(c) by (P4)
= S'(c) o’ S'(d). by (P6)

99



Hence

S'(c) e’ a+"S'(S'(c) e’ d+'c) =S'(c) o' a+ S'(c) e S'(d)
S'(c) e’ (a+'S'(d)) by Lemma 6.2
S/

(c) o b;

it follows that S’(c) ¢’ a <’ S’(c) @ b. O

Lemma 6.19. For any positive integer m we have

P F Yoy |vg <h) < \/UOZE )

<m

Proof. We prove this by (ordinary) induction on m. First suppose that m = 1.
Suppose that a € M. First suppose that a <’ T. Choose b € M such that a +’ S'(b) = 7.
Then by (P4), S’(a +' b) = a +" S'(b) = S’(0’). Hence by (P1), a+'b=0". Then a =0’
by Lemma 6.4, so M = \/,_, vo = i[a].

Second suppose that M = \/,_;(vo = i)[a]. Thus M k= (vg = 0)[a], so a = 0'. Hence
a+'S'(0) =0 4+’ S'(0)) = S'(0') by Lemma 6.3. Hence a <’ 1. This finishes the case
m = 1.

Now assume the statement for m. Let a € M be given. Suppose that a <’ mE1.
Choose b € M such that a +' S'(b) = m+ 1. By (P4) we have S'(a 4+’ b) = a +' S'(b) =
m+1, and then by (P1) we get a+'b=m'. If b= 0, then a = a4+’ b =m by (P3), and
hence M =\/, ..., v0 = i[a]. If b# 0’, by Lemma 6.5 choose ¢ € M such that S'(c) = b.
Then a +'S'(¢) =™/, hence a </ ™', so by the inductive hypothesis M E\/
50 M = Vi1 0o = ilal.

Conversely, suppose that M = \/,_,. .,
a=7.Ifi<m, then M = V<m Vo = jlal, so by the inductive hypothesis a <’ m. Say

a+'S'(b) =m. Then a+'S'(S'(b)) =S'(a+'S' (b)) =m+1 by (P4),soa < m+1. If
1 = m, then

iem V0 = ilal,

vo = i[a]. Choose i < m + 1 such that

a+'S'(0)=S(a+0") by (P4)
=8S'(a) by (P3)

Hence a </ m+ 1.
This finishes the proof. ]

Lemma 6.20. For any positive integer m,

P FYug(vg < — ) < /\ ©(1).

<m
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Proof. Suppose that a : w — M is an assignment. First assume that
(1) M = Vuglvg <m) — ¢l[a] and i < m;
we want to show that M = ¢(i)[a]. Now by definition (see the beginning of Chapter 5),

7

©(i) is Subf?p. Hence by Lemma 4.6 it suffices to prove that M = ¢ [a?ﬁ } Since
) (a)

i (a) is simply 7 , it suffices to show that M = ¢ [ag,]. By Lemma 6.19, 7 <’ 7. Hence

by (1), 7 k= o[2].
Second, assume that

(2) M = (Nicm (i) lal;

we want to show that M = Vuglvg << M — ¢][a]. To this end, suppose that u € M and
u <’ m'; we want to show that M = ¢[a’]. By Lemma 6.19 choose i < m such that u = i

Now by (2), M = ¢(i)[a]. By Lemma 4.6 we then have M = ¢ [a?,] Since u = 1, it
follows that M = p[al]. O

We also need a simpler way of representing finite sequences of natural numbers by a single
number, or actually by two numbers. The representation via prime decompositions is too
complicated at this stage. The new representation depends on the division algorithm: for
any positive integers a, b there are unique nonnegative integers ¢, r such that a =b-q+r
with » < b. We denote this unique integer r by rm(a,b). We also define rm(a,0) = 0 for
any a € w.

We also need a little elementary number theory. If a,b > 1, we say that they are
relatively prime iff they have no common positive divisors except 1.

Lemma 6.21. Ifa,b > 1, then they are relatively prime iff there are integers s, t (positive,
negative, or zero) such that 1 =a-s—+0b-t.

Proof. <: Suppose that s and ¢ are integers such that 1 =a-s+b-t. Suppose that
¢ is a positive divisor of both @ and b. Say a =c¢-a’ and b = ¢-b'. Then

l=a-s+b-t=c-d-s+c-b-t=c-(a-s+0-1).

It follows that ¢ = 1. Thus a and b are relatively prime.

=. There are integers s,t such that a-s+b-t > 0; for example, s = 1 and ¢t = 0,
giving a-s+0b-t = a > 0. Let m be the smallest positive integer such that there are
integers s, t such that m =a-s+b-t. Now write a = m - ¢+ r with 0 <r < m. Then

r=a-m-q=a—(a-s+b-t)-gq=a-(1—s)+b-(—1).

By the choice of m we must have r = 0. Thus m divides a. Similarly, it divides b. So
m=1. ]
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Lemma 6.22. (Chinese Remainder Theorem) Let my,...,m, be natural numbers > 1,
r > 0, with the m; pairwise relatively prime, and let ag,...,a, be any natural numbers.
Then there is a natural number x such that m; divides x — a; for all i < r.

Proof. We prove this by induction on r. For » = 1, since my and m; are relatively
prime, by Lemma 6.21 there are integers s, ¢ such that 1 =mg - s+ my -t. Then

ag—ay =(mg-s+mq-t)(ag—a1) =mg-s-(ap—a1)+mq-t-(ag—ay).

. . def
Now since mg - mq > 0, there is a natural number u such that © = ag—mg - s - (ag—aq) +
u-mg-mq > 0. Then x — ag is divisible by mg, and

r—a;=ag—a; —mg-s-(ag—ay)+u-mg-m
=mg-s-(ag—ay)+my-t-(ag—a1)—mg-s-(ag—ay)+u-mg-m

=my-t-(ap—ay)+u-mg-my,

so that x — aq is divisible by m;. This takes care of the case r = 1.

Now assume the result for » > 1. Suppose now that my, ..., m,; are natural numbers
> 1, they are relatively prime, and ao,...,a,4+; are natural numbers. By Lemma 6.21
choose integers s,t such that 1 = m, - s + m,4; - ¢, and let u be a natural number such
that y G —my s (ar — apq1) +u-my-mppq > 0. Now m; and m,. - m,1 are relatively
prime when 7 < m. In fact, we have 1 = m; - s’ + m,. - t’ for some integers s’,t’, and
1=m;-s" +mpyq-t"” for some integers s”,t”. Hence

1=(m;-s+m-t') (m;-s" +mpyq-t")

12 / / 12 / 12 / 12
=m;-(my-s" - t'+m;-s 5"+ -mpy ")+ mpompyq -t

and so m; and m, - m,41 are relatively prime by Lemma 6.21.

We now apply the inductive hypothesis to mq, ..., m,_1,m,-m,1 and ag, ..., a,-1,y
and obtain a natural number x such that x — a; is divisible by m; for all : < r, and x — y
is divisible by m,. - m,41. Say x —y = m, - my41 - c. Thus

(1) xz=y+mp -Mmpg1-c=ar —Mp -5 (Ap — Qpy1) F UMy - My + My - Myyq - C.

From this it is clear that x — a, is divisible by m,.. Also, in view of 1 =m, - s +m,41 -t
we have

ar —my - S (ar —app1) = ar — (L —=mypgq - t)(ar — aryq)

ar_ar+ar+1 +mr+1't'ar_mr+1't'ar+1

=Qpg1 +Mypg1 - Qp —Mypyq - T Qryq;
hence from (1) we get
T=CQpp1+Mpyp1 -t Qr —Mpy1 -t Qrpr UMy - My + My - My - Gy
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and hence x — a1 is divisible by m, 1. This finishes the inductive proof. OJ

We now define Godel’s 3 function; it is a function of three variables. For any ¢, d,i € w we
define

Blc,d,i) =rm(c, 14 (i+1)-d).

The basic property of this function is as follows.

Lemma 6.23. For any finite sequence {aq, . ..,an) of natural numbers there are natural
numbers ¢,d such that B(c,d,i) = a; for alli=1,...,m.

Proof. Let s be the maximum of m,ag,...,a,,, and let d = s!. For each ¢ < m let
d; =1+ (i+1)-d. We claim that d; and d; are relatively prime for 4, j < m with i < j. In
fact, suppose to the contrary that p is a prime dividing both d; and d;. Say d; = p- s and
dj =p-t. Thend; —d; =p(t—s). Nowd; —d; =1+ (+1)-s!—(14+(i+1)-sl = (j—1i)-sh
Hence p divides (j —i) - s!. Since j —i < m < s, it follows that p divides some k < s, hence
it divides (i + 1) - s!. But p also divides d; =14 (i + 1) - s!, so p divides 1, contradiction.

Since d; and d; are relatively prime for 7 # j, by the Chinese Remainder Theorem 6.22
choose ¢ such that d; divides ¢ — a; for each : < m. Say ¢ —a; =d; - q;, so c =d; - ¢; + a;.
Now a; < s < d;, so a; =rm(c,d;) =rm(c,14 (i +1)-d) = (e, d, i) for each i < m. O

Lemma 6.24. ([ is representable. In fact, it is representable by a formula ¢ in which
Vg, V1, V2, V3 occur free, with only vy, vs bound, such that ¢ has the additional property that

P F Yoo Yuy Yoo Vs Yug[e(ve, v1, v2, v3) A @(vo, v1, V2, v6) — v3 = vg).

Proof. Let ¢ be the following formula:
Jug[vg = S((Sve) @ v1) @ vy + v3 A Jus[vs + Svs = S((Sva) @ v1)]].

Note that M = ¢[c,d,i,a,a,.. ] iff there is a b € w such that c = (1 + (i +1)-d)-b+a
with a < 14 (i 4+ 1) - d. This agrees with the definition of 5. We claim that ¢ shows that
[ is representable.

To prove the claim, for the first condition in representablity, let ¢, d,7 € w, and set
B(c,d,i) = a. We want to show that M = ¢(¢,d,i,a@). By the definition of 3, write
a=rm(c,1+ (i+1)-d), and by the definition of rm, let ¢ be a natural number such that
c=(14(i+1)-d)-q+awitha < 14 (i+1)-d; and choose e so that e+14+a =1+ (i+1)-d.
By Lemmas 6.8 and 6.9 we have

=/ —/

a+'S'(e)=S'(S'(i)ed)
and hence
(1) M |= Jus[a + Svs = S((S7) » )]
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Further, Lemmas 6.8 and 6.9 also give
7 = S/((S/E/) o E’) o e +'a.

Together with (1) this gives M = (¢, d, 1, a).
The second property for representability is

(2> P~ V’Ug [90(57 E? Ea U3) — U3 = a]

We claim that this follows from the additional condition of the lemma. In fact, assume
that additional condition. Applications of Theorem 3.27 then give P (¢, d,i,a) A
o(e,d,i,v3) — @ = v3. Then P F ¢(¢,d,i,v3) — @ = wv3 by the first condition on
representability, and (2) follows easily.

It remains to check the additional property in the lemma. So, suppose that a, b, ¢, d, e €
M and M = (p(vg,v1,v9,v3) A ©(vg,v1,v2,v6))[a, b, c,d,d,d,e]. We want to show that
d = e. We can choose additional elements f,g € M so that the following conditions hold:

(3) a=S'(S'(c) o' b) e f+'d.

(4) d <’ S'(S'(c) o' b).

(5) a=S/(S'(c) o' b) o' g+ c.

(6) e <’ S'(S'(c) o' b).

For brevity, let h = S’'(S’(c) ' b). Then (3)—(6) become
(TYa=nhe f+'d.

(8) d <’ h.

(9)a=nhe' g+'e.

(10) e < g.

We claim that f = g. If not, then by Lemma 6.15 we have f <’ g or ¢ </ f. Say by
symmetry f <’ g. Hence

a=he f+'d
<"he f+h by (8) and Lemma 6.17
—ho' (). by (P6)

By Lemma 6.16 we have the following cases.
Case 1. S'(f) = g and e = 0’. Then by (8) and Lemma 6.17,

a=he f+'d<'he f+h=heS'(f)=heg=he f+'e=a,
contradicting Lemma 6.13.
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Case 2. S'(f) = g and e # 0'. By Lemma 6.5 there is a k such that S’(k) = e. Thus
0’ + S/(k) = e by Lemma 6.3, so 0’ <t e. Hence

a< heS'(f)
=he S'(f)+' 0" by (P3)
<"he S (f)+'e by Lemma 6.17

:a/,

contradicting Lemmas 6.13 and 6.14.
Case 3. S'(f) <’ g. Note that h = S’(k) for some k. Hence

a < heS'(f) (seebefore Case 1)
<" he'g. by Lemma 6.18

If e =0, then a = h o g+ e by (P3), contradicting Lemmas 6.13 and 6.14. If e # 0’,
by Lemma 6.5 choose s € M such that S’(s) = e. Then 0’ +' S’(s) = e by Lemma 6.3,
and so 0’ <" e. Sohe g=he g+ 0" < he g+'e using (P3) and Lemma 6.17. Since
a=he g+'e by (8), this again contradicts Lemmas 6.13 and 6.14. O

Theorem 6.25. Every recursive function is representable.

Proof. Let (fo,..., fm) be a recursive function construction sequence. We prove by
complete induction that for every i < m, f; is representable. So, assume that i < m and
we know that every f; with j < ¢ is representable. By the definition of recursive function
construction sequence we have the following cases.

Case 1. f; = s. We claim that the formula Svy = v; represents s. To prove this,
suppose that a € w. Then Sa is the same term as a + 1, and so M = Sa = a + 1.
Also, clearly for any w € M we have M | (Sa = v; — v; = a+ 1)[u,u], and hence
M EYv (Sa=v; — vy =a+1).

Case 2. There exist j,m with j < m such that f; = I’". We claim that the formula
Um = v; represents I7". Suppose that ao,...,am—1 € w. Then Iy‘(ao,...,amfl) = aj.
Obviously M |= a; = a;. Also, for any u € M, M = (v = a; — Uy = Gj)|u...u], and
hence M |= Yy, (v, = a; — Uy = a@y).

Case 3. There exist positive integers m,n and j, ko, . . ., k;—1 < @ such that each fj_ is
an n-ary operation on w, f; is an m-ary operation on w, and f; = C}'(f;, fre> -+ fom_1)-
For each s < m let ¢4 be a formula with free variables among vy, . . . v,, which represents
fx., and let ¥ be a formula with free variables among vy, . . ., v, which represents f;. Let u
be an integer such that v, does not occur in 1, and let ¢’ be obtained from v by replacing
all bound occurrences of v,, in ¥ by v,. Let t be an integer greater than m,n and all [
such that v; occurs in some ¢, or in ¢. We claim that the following formula represents f;:

EIvt s EIthmel [( /\ SOS(UOa <oy Un—1, Ut+s)> A 77Z}/(Uta <oy Ut4m—1, Un)

s<m
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To prove this, let ag,...,ap—1 € w, let by = fr_(ag,...,a,—1) for each s < m, and let
fj(bos...,bm—1) = c. Then because p; represents fi, we have

(1) P F o, (ag,...,0,-1,bs) for each s <m
And because ) represents f; we have
(2) P (bg,...,bym_1,0).

Putting (1) and (2) together with a tautology we then get

(3) P (/\ gps(a—o,...,m,@> A (bo, - bm—1,0).

s<m
Now with M any model of P and d : w — M, by Theorem 3.2 we get

M ESubf*_  ...Subf"ttm_!
= bo' (d) b1 (d)

[( /\ %(G_o,---,m,vs)> /\wl(vtw"vvt-i-m—lvz)] [d]

s<m

It follows that

M = Jvg .. Fvggpm [( /\ @s(@o, ..., n-1, Ut+s)> AN (v, .-, UterlaE)] [d].

s<m

This gives the first condition for representability.
For the second condition, suppose that e € M and

M E 3. .. Jvgpm1 [( /\ vs(ag, ..., ap_1, Ut+5)> AP (g, Vi1, Un)] [dZ].

s<m

We want to show that e = ¢. Choose fy,..., f;n—1 so that

(4> M }Z [( /\ SOS(CL_Oa te 7M7 Ut—l—s)) A W(Ut, ey Ut—l—m—].a Un)] [dz ‘;‘Ot}L‘TT_Zl]

s<m

By the second condition for representability of fir. by ¢s we get fs = as for each s < m.
Hence from (4) we get M = ¢'(@g,...,@mn_1,vs)[d?]. Then the second condition for
representability of f; by 1 gives e = ¢, as desired.

Case 4. There exist j < ¢ and a € w such that f; is Qo(a, f;). Let ¢ represent
(B with the additional property given in Lemma 6.24; the free variables of ¢ are among
Vo, U1, V2, V3. Let 1) represent f;; the free variables of ¢ are among vg, v1,v2. Choose t > 3

106



and greater than u for each variable v, occurring in ¢ or ¥. Then we claim that the
following formula y represents f;:

FueFve 1 [p(ve, Vg1, 0,@) A (v, Uy, V0, V1) A VUr2[Vir2 < vg — FVpp3T0i4a
[ (Veg2, Vi3, Viga) A (Ut Vpp1, Vg2, Vegs) A @(Vr, Vg1, SUs42, Veta)]]-

The idea of this formula is to code, using the S-function, the whole finite sequence of values
of f; starting with the argument 0 and ending with vg. To prove the claim, suppose that
m € w. Choose ¢,d so that B(c,d,s) = fi(s) for all s < m. In particular, (¢, d,0) =
fi(0) = a, so

PF (¢, d,0,a).

Hence for our model, for any e : w — M we have
(5) M = ¢(c,d, 0,a)[e].

AISO, ﬁ(@ d7 m) = fl(m)a S0

Pr 90(07 dama fz(m))

Hence

(6) M ): @(Evavm7 fz(m)>[e]

Now suppose that s < m. Then f;(s, fi(s)) = fi(s+1), B(c,d, s) = fi(s), and (¢, d, s+1) =
fi(s+1),s0

P (s, fi(s), fis1(s) Ap(E,d,5, fi(s)) A (@, d, s + 1, fi(s + 1))

and hence

M ): [w(E’ WS% fi-l—l(s)) N 90(67 87 ER fz(S)) A 90(67 87 m? f2(8 + 1))][6]

It follows that

M = Fu43F0 140 (5, Vg3, Viga) A 0(C,d, S, vip3) A (e, d, s + 1, vppa)][e].

This being true for all s < m, it follows that

M ):[ \/ (ver2 =3) = FopsTvalto(viga, vigs, vera)

s<m

A @(C,d, vig2,vi43) A @(C,d, Svppa, veya)] | [e].

Hence by Lemma 6.19 we get

M EVvigalvire <M — JugsFoea[th(vig2, vigs, viga)
N (€, d, vey2,vi43) N O(C,d, Sviia,viya)]][e].
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Now together with (5) and (6) this gives M |= x(m, fi(m)), giving the first condition for
representability for f;.

For the other condition, assume that m € w, b € M, and M E x[e?4]; we want to
show that b = f;(m). Now choose ¢,d € M so that

(7) M = [(ve, ve41,0,@) A p(vt, Vg1, 00, 01) A Vopga[vipe < vo — Fop43Tv4a

[ (Ver2, Vigs, Viga) A @V, Vpg1, Ver2, Vers) A @(Vr, Veg1, Svi4a, Ut+4)]”[€211btct$1

Now we claim

(8) For all k <m, M = ¢(vi, viq1, k, fi(k))[el 5.
We prove this by (ordinary) induction on k. For k = 0 it is given by (7), since f;(0) = a.
Now assume that £ < m and

(9) M = (v, vep, k, fi(k))[el 5.

Now & <’ 7’ by Lemma 6.12, so by (7) we have

M ): Fvp 430444 W(E, Vt43, Ut+4) A SO(Ut, Ut+1,E, Ut+3) A SO(Ut, Vt41, SE, Ut+4)]]][€i f;rl]-

Hence we can choose h,g € M such that

(10) M = (k, virs, vira) A @(Ve, Vi1, Ky vess) A @(vr, Vg1, S(E), vepa)[el G4 ZH]-

Now by (9) and (10) using the additional property of ¢, we get h = f;(k). By (10) we

have M = 1 (k, viy3, viya)lent? ;+4], so by the second condition for 1 representing f; we

have g = f;(k, Fi(R)) = fi(k +1) . Hence M = @(vr, vri1, S(R), filk + D)lel 5] by (10).
This gives £+ 1 in (8).

So (8) holds by induction. The case k = m is M = ¢(ve, veq1, T, fi(m))el LR Also
from (7) we have M = o(vy, veq1,m,v1)[e) L T]. Hence by the extra condition on ¢ it
follows that b = f;(m), as desired.

This finishes the argument for Q.

Case 5. There exist a positive integer n and j, & < ¢ such that f; is an n-ary operation
on w, fi is an (n + 2)-ary operation on w, and f; = Q,(fj, fx). The proof that f; is
representable is very similar to the above Case 4, but is somewhat more complicated.

Let ¢ represent 3 with the additional property in Lemma 6.24, ¢ represent f;, and x
represent fr. Thus ¢ has variables among vy, v1, v2, v3, ¥ has variables among v, ..., Uy,
and x has variables among vy, ...,v,12. Choose t > n 4 2 and greater than u for each
variable v,, occurring in ¢, ¥, or x. Then we claim that the following formula 6 represents

fi:

v v 13045 [0 (Ve Veg1, 0, v45) AP(vo, - -, Vno1, Viys)
A QO(’Ut, ’l)t+1, Un, Un+1) AN V’Ut+2[’0t+2 < VUp — ElUt+3E|Ut+4
IX(Vos -« o, Un—1, Vg2, Ve43, Vega) A @(Vt, Vi1, Vig2, Ve43)

A o(Vg, Veg1, SUpy2, Via)]]]-

108



To prove the claim, suppose that ag,...,a,—1,m € w. Choose ¢, d so that ((c,d,s) =
filao,...,an—1,s) for all s < m. Then B(c,d,0) = fi(ao,...,an-1,0) = f;(ao,...,an—1),
SO

(11) Pr QO(E,E,O, fj(CL(), ey an,l)) A @ZJ(CL_(), e ,m, fj(ao, .. .,(lnfl)).

Also, B(c,d,m) = fi(ag,...,an_1,m), SO

(12> P F@(E,E,m, fi(a07"'7an—17m)>'
Now suppose that s < m. Then
fj(a()? ceeyQn—1,S, fi(a(b ceey n—1, 8)) = fi(a07 <oy Qn—1,S + 1)

and also (¢, d, s) = fi(ag,...,an—1,8) and B(c,d,s+ 1) = fi(ag,...,an_1,s+ 1). Hence

P l_X(Cl_(), .. '7an—17§7 fi(a07 .. '7an—175)7fi+1(a07 <oy Qp—1,S + 1))
A 90(57 da §7 fi(a“()? <y Qp—1, S))
ANo(e,d,s+1, fi(ag, ..., an_1,5+1)).

Thus in our model M, with e : w — M, we have

M }:[X(a_m .. '7an—17§7 fi(a07 .. '7an—175)7fi+1(a07 vy Qp—1,S + 1))
A 90(67 d7 E, fi(a(b - An—1, S))
A 90(67378 + 17f7§(a“07 <y Qp—1,S + 1))][6]

From Lemma 4.6 we then get

M ):[X(CL_O? ) anflaga Vt+3, Ut+4)
A 90(57 E? s, Ut+3) A 90(57 E? s+ 17 Ut+4)] [efv—i—g tq—i—4]
where w = f;(ag,...,an_1,8) and u = f;(ag,...,an_1,s+ 1). Hence
(13) M EJvi330i4[x(@0, -« -, @1, 5, V43, Vita)

A 90(57 37 s, Ut+3) A 90(57 E? s+ 1, Ut+4)] [6] :
Note that (13) is true for all s < m. Now we claim

(14) M EYviia[vire M — v 3Ieia[X (@0, - - - 15 Vet2, Vet3, Vega)
N o(C,d, viy2,vi43) N @(C,d, Sviia, veya)]][e].

In fact, take any w € M, and assume that M = (v < m)[el?]. Then by Lemma 6.19
there is an s < m such that w = s. Hence by (13) and Lemma 4.6 we get

M E3vi3Fviga[X (@0, - - -, Gnot, Vet2, Vg3, Vetra)

A\ 90(57 Ea V42, Ut+3) A 90(57 E? Vt+2, Ut+4)] [erJrQ]?
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as desired, proving (14). Putting this together with (11) and (12) we have

M ):[90(57 E? 07 fj(a“(b ce a“nfl)) A I/J(CL_(), ey An—1, fj(a07 CIRI a/nfl))
A 90(67 87 ma fi(a07 v, Ap—1, m)) A vvt+2[vt+2 <4m —

Fup43F0e44[X (@0, - - - T—1, Vg2, Vet3, Veya)
N @(C,d,viy2,ve43) A @(C, d, Sviyo,viqa)]]][e].

Hence an easy argument using Lemma 4.6 gives

M E[FveFvg11Fvegs[e(vr, vig1, 0,v45) A (@0, - - -, 1, Vets)
AN o(v, Vi1, M, fiao, ..y an_1,m) AV a[p(Vey2, M) — 0i43T04 14
[(X(@0, - -, Gn_1, Vit2, Vpy3, Veta) N @(Vg, Vps1, Vpya, Vet3)

A (v, Vg1, Svpyo, veya)]]]][e]-

That is, M = 0(ag, . .., @,—1,m, fi(ao,...,an_1,m))[e]. This gives the first condition for
representability for f;.
For the second condition, suppose that ag,...,a,—1,m € w, b € M, and M |

O(ag,...,an_1,mM, vn+1)[e£+1]. We want to show that b = f;(ag,...,an—1,m). Choose
c,d,g € M such that
(15) M Elo(ve, vi41,0,ve45) Ap(@o, - -, Tn—1, Vit5)

A (U, Vig1, M, Vpg1) A V02V AT — F0p433044
(X (@0, - -, Gp—1, Veg2, Vg3, Vega) A @(Vg, V1, Veg2, Vet 3)

A @(Uta Vt4-1, S/Ut+27 Ut+4)”][e’lr)l+1 Ct C§+1 t9+5].

Now we claim
(16) For all s <m, M = ¢(vs, vi11,5, fi(ao, - - -, an_1,5))[e’ 5.

We prove (16) by induction on s. From (15), M = ¢ (ao, . .., @n—1, ve45)[e5"?], so by the

second condition for v representing f;, g = fi(ao,...,an—1). Now by (15) again, M
©(ve, V11,0, v15)[el gt+5]. Since f;(ag,...,an—1) = fi(ao,...,an—1,0), this proves (16)
for s = 0, using Lemma 4.6.

Now assume that s < m and

(17> M ): SO(Ut.Ut+1,§, fi(a07 ceeyGn—1, 8))[62 2+1]'

Now 5" </ m’ by Lemma 6.12, so by (15) we can choose h,g € M such that

M Ex(ao, ..., Gn-1,35, V143, Vetra) A (Vg Vis1, 5, Vit
(18) M E=x( ) A p( )
A QO(’Ut, Vt+1, SE, /l}t+4)[€i td+1 t];i—3 Z+4].

By (17), (18), and the additional property of ¢ we have h = f;(ag,...,an—1,5), using

Lemma 4.6. Now by (18), M [ x(ao,...,@n_1,5, vt+3.vt+4)[e’;l+3gt+4], so by the second

property of y representing fi we get
g = fk?(a07 --,0an-1, S, fi(a07 S 7047171)) = fi(a07 cesQp—1,8+ 1)
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Now by (18) again, M = ¢(v¢, viy1, S(3), vera)[el 5T gt+4]. This gives (16) for s+ 1. So by
induction, (16) holds.

The case s = m in (16) is M = ¢(vy, vi1, M, fiao, . ., an—1,m))[e’. 5], From (15)
we have M = ¢(vg, vip1, M, vpy1)]el 571 T, Hence by the additional property of ¢ it
follows that b = f;(ag,...,an—1,m).

This finishes the treatment of Q,, for n > 0.

Case 6. There exist a positive integer m and a j < ¢ such that f; is a special (m+1)-
ary operation on w and f; = M,,(f;). Let ¢ represent f;. Choose s such that s > 2 and

vs does not occur in . Then we claim that the following formula ) represents f;:

OV, -+« y U, 0) AVUg[vg < v — —0(v0, -« oy U—1, Vs, 0)].
To prove this, suppose that ag,...,am—1 € w, and let b = fi(ag,...,am—1). Thus
fj(CL(), . .,am,l,b) = 0, and so
(19) M = p(ag, ..., 8m_1,b,0)[e].

Assume that ¢ € M and ¢ <’ b By Lemma 6.19 there is an s < b such that ¢ = 3. By
the second condition for ¢ representing f; we have

(20) M )Z (QO(E(), . ,am_l,E, 0) — fj(ao, ey Am—1, C) = 0)[6]

Now fj(ao,...,am-1,¢) # 0, and so by Lemma 6.10, f;(ao, . "’am—1,c))' £ 0. Hence
from (20) we get
M = —p(ao, ..., aGm-1,¢ 0)[e].

It now follows from Lemma 6.19 that

M ): VUS[US < b— _‘90(607 ooy Am—1, Vs, 0)][6]

Together with (21) this gives M = 9 (o, - - ., @m_1, b)[e].

Now for the second representability condition, suppose M = (o, - - -, Gm—_1, Vm )[e™]
with ¢ € M; we want to show that ¢ = b. Assume not. By Lemma 6.15 this gives two
possibilities.

Case 1. ¢ <b. Since M = (@y, - .., 0m_1,b)[e], we get

M )Z _\go(ao, . ,am_l,vm,O)[eZ”],

contradicting M = 9 (do, - - -, Gm—1, Vm)[e™].
Case 2. b < c. Since M E¥(ag, ..., Gm-1,m)[el], we get

M )Z ﬁ@(ao, e ,am_l,l_), 0)[6],

contradicting M = ¥(@g, ..., 0m_1,b)[e].
This finishes Case 6, and so the proof of Theorem 6.25. ]
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Theorem 6.26. Every recursive relation is representable.

Proof. Let R be any recursive relation. Say R is m-ary. Thus x g is recursive. By
Theorem 6.25, let 1) represent yr. Thus ¢ has free variables among vg,...,v,,. Let ¢
be the formula ¢ (vg,...,vm_1,S0). Let ag,...,am-1 € w. If {ag,...,am—1) € R, then
Xr(ao,...,am_1) = 1, and hence P + 9(ag,...,amn_1,1); hence P F ¢(ag, ..., @m_1). If
(ag,...,am—1) ¢ R, then xg(ag,...,am—_1) =0, and hence P - ¢ (ag, ..., @m_1,1) — 1 =

0 by the second condition in the definition of xr being representable. Since P - —(1 = 0)
by (P2), it follows that P+ —¢(ag, ..., am_1,1), i.e., P+ =p(ag, ..., @m_1)- d
EXERCISES

E6.1. The exponential function is defined as follows. a® = 1 and a*® = a® - a. Show that
the exponential function is representable.

E6.2. Prove that P F YoV [vg 4+ v1 = v1 + vo].
E6.3. Prove that P F Vo, Yug[v, @ vg + vg = Svy e vp].
E6.4. Prove that P F Vo, [0 e vy = 0].

E6.5. Prove that P F YoV [vg @ v1 = vy @ vg].

E6.6. Let ¢ be the formula defined in the proof of Lemma 6.24. Show that P
YooV Yog Jugp.
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