
5. Peano arithmetic
and Gödel’s incompleteness theorem

In this chapter we give the proof of Gödel’s incompleteness theorem, modulo technical de-
tails treated in subsequent chapters. The incompleteness theorem is formulated and proved
for decidable extensions of Peano arithmetic. Peano arithmetic is a natural collection of
sentences concerning natural numbers.

We deal throughout with the language described in Chapter 2 appropriate for the
structure (ω, S, 0,+, ·). Recall that this language has the following non-logical symbols:

+, a binary function symbol, taken to be 7.

•, a binary function symbol, taken to be 9.

S, a unary function symbol, taken to be 6.

0, an individual constant, taken to be 8.

Also recall from Chapter 2 that the logical symbols are negation, implication, equality, and
universal quantifier, taken to be the integers 1,2,3,4 respectively, and variables v0, v1, . . . ,
taken to be the integers 5, 10, 15, . . .. Thus a symbol in our language is one of the integers
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, . . ..

If ϕ is a formula and σ0, . . . , σm−1 are terms, then by ϕ(σ0, . . . , σm−1) we mean the
formula

Subfv0

σ0
· · ·Subfvm−1

σm−1
ϕ.

Peano arithmetic consists of the following formulas in this language:

(P1) ∀v0∀v1[Sv0 = Sv1 → v0 = v1].
(P2) ∀v0(¬(Sv0 = 0)).
(P3) ∀v0[v0 + 0 = v0].
(P4) ∀v0∀v1[v0 + Sv1 = S(v0 + v1)].
(P5) ∀v0[v0 • 0 = 0].
(P6) ∀v0∀v1[v0 • Sv1 = (v0 • v1) + v0].
(P7) ϕ(0) ∧ ∀v0(ϕ→ ϕ(Sv0)) → ∀v0ϕ for any formula ϕ.

Let P consist of all of these formulas.
The simplest form of the incompleteness theorem is that P is incomplete. The theorem

actually applies much more generally, and our formulation gives a fairly general version.
The steps in the proof of the theorem are as follows:

(1) Assign numbers to formulas and proofs. This is straightforward, and we carry it out
fully in this chapter.

(2) Show that certain relations connected with the notion of proof can be represented in a
certain sense within P. In this chapter we formulate this precisely, but proofs are left to
a later chapter.

(3) The actual proof of incompleteness. We do this in the present chapter, based on results
about representation.
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The symbols of our language are certain positive integers. A formula is a finite sequence of
symbols, and a proof is a finite sequence of formulas. Thus to assign numbers to formulas
and proofs we just need to assign numbers to finite sequences of positive integers. To
do this we make use of the unique decomposition of a positive integer into a product of
primes. Recall that a prime is a natural number greater than 1 which cannot be written as
a product of smaller positive integers. Thus the primes are 2, 3, 5, 7, . . .. We let p0, p1, . . .
enumerate all the primes. So p0 = 2, p1 = 3, p2 = 5, etc. There are infinitely many primes,
and so this list is infinite. The unique decomposition theorem is that every positive integer
can be written as a product of primes, and this decomposition is unique except for the
order of the primes. We can formulate this theorem as follows:

For every integer m > 1 there is a positive integer k and nonnegative integers i(0), . . . , i(k)
such that

m = p
i(0)
0 · p

i(1)
1 · . . . · p

i(k)
k ,

with i(k) 6= 0, and if we also have

m = p
j(0)
0 · p

j(1)
1 · . . . · p

j(l)
l ,

with j(l) 6= 0, then k = l and i(0) = j(0), i(1) = j(1), . . . , i(k) = j(k).

Now if ϕ
def
= 〈ϕ0, . . . , ϕk〉 is a sequence of positive integers, we define its Gödel number to

be

gn(ϕ) = pϕ0

0 · pϕ1

1 · . . . · pϕk

k .

If 〈ϕ0, . . . , ϕm〉 is a sequence of sequences of positive integers (for example, a proof), we
define its Gödel number to be

gn1(〈ϕ0, . . . , ϕm〉) = p
gn(ϕ0)
0 · . . . pgn(ϕm)

m .

Thus if Γ is a set of formulas containing P, then gn[Γ], which by definition is {gn(ϕ) : ϕ ∈

Γ}, is a set of natural numbers. If Φ
def
= 〈ϕ0, . . . , ϕk〉 is a Γ-proof, then gn1(Φ) is a natural

number. In general, we can use the functions gn and gn1 to translate syntactic notions
about our language into numbers or sets of numbers or relations between numbers.

Gödel numbers are large, even for simple syntactic notions, although this is not really
significant for the incompleteness proof. Here are some examples. The simple formula
v0 = v0 is actually the sequence 〈3, 5, 5〉, and its Gödel number is

p3
0 · p

5
1 · p

5
2 = 23 · 35 · 55 = 6, 075, 000.

The Peano postulate (P2), which is the formula ∀v0(¬(Sv0 = 0)), is actually the sequence
〈4, 5, 1, 3, 6, 5, 8〉, and its Gödel number is

p4
0 · p

5
1 · p

1
2 · p

3
3 · p

6
4 · p

5
5 · p

8
6 = 24 · 35 · 5 · 73 · 116 · 135 · 178 ≈ 3 · 1028.
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The one-termed sequence 〈∃v0(v0 = v1)〉 is a very short proof, involving one instance of
logical axiom (L4). The formula ∃v0(v0 = v1) is actually ¬∀v0¬(v0 = v1), or as a sequence,
〈1, 4, 5, 1, 3, 5, 10〉. Hence

gn1(〈∃v0(v0 = v1)〉) = 2gn(〈1,4,5,1,3,5,10〉)

= 2p1

0
·p4

1
·p5

2
·p1

3
·p3

4
·p5

5
·p10

6

= 22·34·55·7·113·135·1710

≈ 23.5·1027

.

Proposition 5.1. gn is a one-one function.

Proof. Note that (implicitly) the domain of gn is the set of all nonempty sequences
of positive integers. Suppose that two such sequences 〈m0, . . . , mk〉 and 〈n0, . . . , nl〉 are
given, and gn〈m0, . . . , mk〉) = gn(〈n0, . . . , nl〉. Thus

pm0+1
0 · pm1+1

1 · . . . · pmk+1
k = pn0+1

0 · pn1+1
1 · . . . · pnl+1

l .

By the uniqueness of prime decompositions, k = l and mi = ni for all i ≤ k.

We can use Gödel numbers to introduce a notation which will be technically convenient.
If ϕ is a formula, then vgn(ϕ) is a variable which does not occur in ϕ. In fact, with
ϕ = 〈ϕ0, . . . , ϕm〉, for each i ≤ m we have ϕi < gn(ϕ), and so we cannot have ϕi =
5(gn(ϕ) + 1) = vgn(ϕ). Also note that gn(ϕ) 6= 0. Now we define for any term σ involving
at most the variable v0 and any formula ϕ,

Subffv0

σ ϕ = ∀vgn(ϕ)[vgn(ϕ) = σ → ∀v0[v0 = vgn(ϕ) → ϕ]].

Proposition 5.2. If σ is a term involving at most the variable v0, then ⊢ Subffv0

σ ϕ ↔
Subfv0

σ ϕ.

Proof. Again we argue model-theoretically, showing that |= Subffv0

σ ϕ ↔ Subfv0

σ ϕ, so
that the proposition follows by the completeness theorem.

Suppose that A is a structure for our language, and suppose that a : ω → A.

First suppose that A |= Subffv0

σ ϕ[a]. Let x = σA(a). Since gn(ϕ) > 0 it follows

that vgn(ϕ) does not occur in σ. Hence σA(a) = σA(a
gn(ϕ)
x ) by Proposition 2.4. Thus

A |= (vgn(ϕ) = σ)[a
gn(ϕ)
x ]. Now A |= (v0 = vgn(ϕ))[a

0 gn(ϕ)
x x ] so, since A |= Subffv0

σ ϕ[a],

we get A |= ϕ[a
0 gn(ϕ)
x x ]. Since vgn(ϕ) does not occur in ϕ, it follows from Lemma 4.4

that A |= ϕ[a0
x]. Now no free occurrence of v0 in ϕ is within a subformula ∀vkµ with

vk occurring in σ, since only v0 possibly occurs in σ. So by Lemma 4.6 it follows that
A |= Subfv0

σ ϕ[a].

Conversely, suppose that A |= Subfv0

σ ϕ[a]. Let x = σA(a). Again by Lemma 4.6 we
get

(∗) A |= ϕ[a0
x].
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Now suppose that y ∈ A; we want to show that (vgn(ϕ) = σ → ∀v0[v0 = vgn(ϕ) →

ϕ])[a
gn(ϕ)
y ]. To this end, suppose that A |= (vgn(ϕ) = σ)[a

gn(ϕ)
y ]; we want to show that

A |= ∀v0[v0 = vgn(ϕ) → ϕ][a
gn(ϕ)
y ], and to do this we take any x ∈ A, assume that A |=

(v0 = vgn(ϕ))[a
0 gn(ϕ)
x y ], and prove that A |= ϕ[a

0 gn(ϕ)
x y ]. Since A |= ((vgn(ϕ) = σ)[a

gn(ϕ)
y ],

we have y = σA(a
gn(ϕ)
y ), and so by Proposition 2.4 y = σA(a) since vgn(ϕ) does not occur

in σ. Also, since A |= (v0 = vgn(ϕ))[a
0 gn(ϕ)
x y ], we have x = y. Now by (∗), since vgn(ϕ) does

not occur in ϕ we have A |= ϕ[a
0 gn(ϕ)
x y ], as desired.

A particular use of this notation is the following replacement of the Peano Postulate (P7):

(P7′) Subffv0

0
ϕ ∧ ∀v0(ϕ→ Subffv0

Sv0
ϕ) → ∀v0ϕ for any formula ϕ.

Let P′ be P with (P7) replaced by (P7′).

We turn to the second step in the proof of the incompleteness theorem: representation
of number-theoretic relations in P. To do this we need an auxiliary important notion:
recursive functions. Recursive functions are functions which are computable in a general
sense. In fact, there are many equivalent definitions of the set of recursive functions; for
example, Turing-computable functions, functions computable by an abstract computer, or
functions representable in P.

Essentially the set of recursive functions is defined as the closure of a simple set of
functions under some operations on functions. The starting set of functions is as follows.
First we have the successor function s, which assigns to each natural number m its successor
m+1. Second, if i,m ∈ ω and i < m, we have the projection function Im

i : mω → ω defined
by setting

Im
i (a0, . . . , am−1) = ai

for any a0, . . . , am−1 ∈ ω. Those are all of the starting functions.
There are three kinds of operations on functions. First we have composition operations.

If m,n are positive integers, then Cm
n acts upon an (m+1)-tuple 〈f, g0, . . . , gm−1〉 such that

f is an m-ary operation on ω and each gi is an n-ary operation on ω; Cm
n (f, g0, . . . , gm−1)

itself is an n-ary operation on ω defined like this: let a0, . . . , an−1 ∈ ω; then

Cm
n (f, g0, . . . , gm−1)(a0, . . . , an−1) =

f(g0(a0, . . . , an−1), . . . , gm−1(a0, . . . , an−1)).

Second, we have operations of primitive recursion. There are two kinds of primitive recur-
sion, without and with parameters. The operation Q0 acts on a pair (a, f) consisting of a
natural number a and a binary operation f on ω to produce a function from ω into ω; it
is defined, by recursion, as follows: for any m ∈ ω,

Q0(a, f)(0) = a;

Q0(a, f)(m+ 1) = f(m,Q0(a, f)(m)).

With parameters, for each positive integer n we have an operation Qn acting on a pair (f, g)
consisting of an n-ary operation f on ω and an (n+ 2)-ary operation on ω to produce an
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(n+ 1)-ary operation on ω, defined, by recursion, as follows. For any a0, . . . , an−1, m ∈ ω,

Qn(f, g)(a0, . . . , an−1, 0) = f(a0, . . . , an−1);

Qn(f, g)(a0, . . . , an−1, m+ 1) = g(a0, . . . , an−1, m,Qn(f, g)(a0, . . . , an−1, m)).

The third kind of operations on functions is minimalization. For each positive integer m
we have such an operation, Mm, which acts only on certain special (m+1)-ary functions f
on ω. Namely, an (m+ 1)-ary function f is special provided that for all a0, . . . , am−1 ∈ ω
there is a b ∈ ω such that f(a0, . . . , am−1, b) = 0. Then Mm(f) is defined like this: for any
a0, . . . , am−1 ∈ ω, Mm(f)(a0, . . . , am−1) is the least b ∈ ω such that f(a0, . . . , am−1, b) = 0.

Now a recursive function construction sequence is a sequence 〈f0, . . . , fm〉 of functions
such that for each i ≤ m one of the following conditions holds:

(1) fi = s;

(2) There exist i,m ∈ ω with i < m such that f = Im
i .

(3) There exist positive integers m,n and j, k0, . . . , km−1 < i such that each fks
is an n-ary

operation on ω, fj is an m-ary operation on ω, and fi = Cm
n (fj , fk0

, . . . , fkm−1
).

(4) There exist a ∈ ω and j < i such that fj is a binary operation on ω and f = Q0(a, fj).

(5) There exist a positive integer n and j, k < i such that fj is an n-ary operation on ω,
fk is an (n+ 2)-ary operation on ω, and fi = Qn(fj, fk).

(6) There exist a positive integer m and a j < i such that fj is a special (m + 1)-ary
operation on ω and fi = Mm(fj).

Now a recursive function is a function that appears in some recursive function construction
sequence.

Furthermore, for any positive integer m we say that a set B of m-termed sequences
of members of ω is recursive if its characteristic function χB is recursive. Recall that
χB(a0, . . . , am−1) = 1 if 〈a0, . . . , am−1〉 ∈ B, and χB(a0, . . . , am−1) = 0 if 〈a0, . . . , am−1〉 /∈
B.

We need the following notation. With each natural number m we associate a term m
of our language, by recursion:

0 = 0; m+ 1 = Sm.

Thus

m =

m times
︷ ︸︸ ︷

SS · · ·S0.

An m-ary function f is representable provided that there is a formula ϕ with free variables
among v0, . . . , vm such that for all a0, . . . , am−1 ∈ ω the following conditions hold:

P ⊢ ϕ(a0, . . . , am−1, f(a0, . . . , am−1));

P ⊢ ∀vm[ϕ(a0, . . . , am−1, vm) → vm = f(a0, . . . , am−1)].
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An m-ary relation is a set of m-tuples of natural numbers. Let R be an m-ary relation.
It is representable if there is a formula ϕ with free variables among v0, . . . , vm−1 such that
for all a0, . . . , am−1 ∈ ω the following conditions hold:

〈a0, . . . , am−1〉 ∈ R implies that P ⊢ ϕ(a0, . . . , am−1);

〈a0, . . . , am−1〉 /∈ R implies that P ⊢ ¬ϕ(a0, . . . , am−1).

The first technical result we need is:

Theorem A. All recursive functions and all recursive relations are representable.

This will be proved in a later chapter Also, later we prove:

Theorem B. The set gn[P′] is recursive. Moreover, if ∆ is a finite set of formulas, then

gn[P′ ∪ ∆] is recursive.

The proof of the incompleteness theorem depends upon the following function G : ω → ω
which involves a crucial trick. For any m ∈ ω,

G(m) =
{
gn(Subffv0

mϕ) if m = gn(ϕ) for some formula ϕ,
0 otherwise.

Thus G is defined like this. Given any natural number m, if m is not the Gödel number of
a formula, then G(m) = 0. If m is the Gödel number of a formula ϕ, then that formula ϕ
is uniquely determined by Theorem 5.1, and we let G(m) be the formula Subffv0

mϕ, which
by Theorem 5.2 is provably equivalent to ϕ(m). This is a kind of diagonal procedure. Now
in a later chapter we prove:

Theorem C. G is recursive.

Now we can prove the following fundamental theorem, based on Theorems A and C.

Theorem 5.3. (Fixed point theorem) For any formula ϕ there is a formula ψ such that

P ⊢ ψ ↔ ϕ(gn(ψ)).

Proof. Let χ be a formula with at most v0 and v1 free which represents G; χ exists
by Theorems A and C. Let vi be a variable not occurring in ϕ or χ. Let θ be the formula
∃vi[ϕ(vi) ∧ χ(v0, vi)], and for brevity let m = gn(θ). Let ψ = Subffv0

mθ. Thus

(1) G(m) = gn(ψ).

Now by definition of “representable”, P ⊢ χ(m,G(m)). Hence a tautology gives

(2) P ⊢ ϕ(G(m)) → [ϕ(G(m)) ∧ χ(m,G(m))].

By Theorem 3.33 we have P ⊢ [ϕ(G(m)) ∧ χ(m,G(m))] → ∃vi[ϕ(vi) ∧ χ(m, vi)]; hence by
(2), P ⊢ ϕ(G(m)) → ∃vi[ϕ(vi) ∧ χ(m, vi)]. Since θ(m) is ∃vi[ϕ(vi) ∧ χ(m, vi)], it follows
from the definition of ψ and Theorem 5.2 that P ⊢ ϕ(G(m)) → ψ. Hence by (1) we have

(3) P ⊢ ϕ(gn(ψ)) → ψ.
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Now by the second condition on representability we have P ⊢ ∀v1[χ(m, v1) → v1 = G(m)].
Hence by Theorem 3.27, since vi does not occur in χ, we get

(4) P ⊢ χ(m, vi) → vi = G(m).

By Theorem 3.18, P ⊢ vi = G(m) → [ϕ(vi) ↔ ϕ(G(m))]. Hence by (4) and a tautology,
P ⊢ ϕ(vi) ∧ χ(m, vi) → ϕ(G(m)). Hence by generalization and Proposition 3.39, since vi

does not occur in ϕ or χ we get P ⊢ ∃vi[ϕ(vi) ∧ χ(m, vi)] → ϕ(G(m)). By Theorem 5.2
and the definition of ψ, P ⊢ ψ → ϕ(G(m)). Together with (1) and (3) this finishes the
proof.

Note from the proof of Theorem 5.3 that if the free variables of ϕ are among v0, then the
formula ψ which is defined is a sentence.

The following result will be used several times.

Theorem 5.4. Let M be the structure (ω, S, 0,+, ·). Then M |= P.

Proof. (P1)–(P6) are straightforward: (P1): If a, b ∈ ω and S(a) = S(b), then
a + 1 = b + 1, and hence a = b. (P2): For any a ∈ ω, S(a) = a + 1 6= 0. (P3): For any
a ∈ ω, a + 0 = a. (P4): For any a, b ∈ ω, a+ S(b) = a+ b+ 1 = S(a+ b). (P5): For any
a ∈ ω, a · 0 = 0. (P6): For any a, b ∈ ω, a · S(b) = a · (b+ 1) = a · b+ a.

(P7) requires more work. Let ϕ be any formula, and let a : ω → ω be any assignment.
Assume that

M |= [ϕ(0) ∧ ∀v0(ϕ→ ϕ(Sv0))][a].

We prove by induction that for every u ∈ ω, M |= ϕ[a0
u]. For u = 0 we have A |= ϕ(0)[a].

That is, A |= Subfv0

0
[a]. By Lemma 4.6 it follows that A |= ϕ[a0

0(a)]. Now 0(a) = 0,

so A |= ϕ[a0
0]. So our statement holds for u = 0. Now assume that M |= ϕ[a0

u]. Since
M |= ∀v0(ϕ → ϕ(Sv0))][a], it follows that M |= (ϕ → ϕ(Sv0))][a

0
u]. Since A |= ϕ[a0

u],
we then have A |= ϕ(Sv0))][a

0
u]. That is, M |= (Subfv0

Sv0
ϕ)[a0

u]. By Lemma 4.6 we then

get A |= ϕ[(a0
u)0x], where x = (Sv0)

A(a0
u) = u + 1. Since (a0

u)0x = a0
x, this completes the

inductive proof.
Now it follows that A |= ∀v0ϕ[a].

Our first important theorem concerning incompleteness is as follows.

Theorem 5.5. (Tarski’s undefinability of truth theorem) There is no formula ϕ with only

v0 free such that for every sentence ψ, M |= ψ ↔ ϕ(gn(ψ)), where M = (ω, S, 0,+, ·).

Proof. Suppose there is such a formula ϕ. By the comment following the proof of
Theorem 5.3 let ψ be a sentence such that P ⊢ ψ ↔ ¬ϕ(gn(ψ)). By Theorem 5.4 and
Theorem 3.2 we then get M |= ψ ↔ ¬ϕ(gn(ψ)). But by hypothesis, M |= ψ ↔ ϕ(gn(ψ)).
However, a structure cannot model both a sentence and its negation.

A formula ϕ as described in Theorem 5.5 would have provided a truth definition for M :
to check whether a sentence ψ held in M one could look at its Gödel number m and see
whether M |= ϕ(m) or M |= ¬ϕ(m), giving M |= ψ or M |= ¬ψ respectively.
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For the proof of the incompleteness theorem we need another result proved in a later
chapter.

Theorem D. If Γ is a set of formulas and gn[Γ] is recursive, then the following binary

relation is also recursive:

PrfΓ
def
= {(n,m) : there is a Γ-proof Φ with last entry ϕ

such that m = gn1(Φ) and n = gn(ϕ)}

Theorem 5.6. (Gödel’s incompleteness theorem) If Γ is a set of sentences containing P′,

(ω, S, 0,+, ·) is a model of Γ, and gn[Γ] is recursive, then Γ is incomplete.

The hypotheses say intuitively that Γ is a set of true sentences, and there is an effective
procedure for deciding whether a given sentence is in Γ or not.

Proof. By Theorems A and D, the relation PrfΓ is representable, say by a formula χ
that has at most v0 and v1 free. Thus

(1) For all m,n ∈ ω, if (m,n) ∈ PrfΓ then P ⊢ χ(m,n).

(2) For all m,n ∈ ω, if (m,n) /∈ PrfΓ then P ⊢ ¬χ(m,n).

Let ϕ be the formula ∀v1(¬χ). Thus ϕ has at most v0 free. For any sentence σ, ϕ(gn(σ))
intuitively says that σ is not provable. Now we apply the comment after the fixed point
theorem 5.3 to get a sentence ψ such that

(3) P ⊢ ψ ↔ ϕ(gn(ψ)).

Note that

(4) ϕ(gn(ψ)) is the formula ∀v1¬χ(gn(ψ)).

So ψ says intuitively that it itself is not provable. This is the essential trick of the proof.
It is derived from the liar paradox, concerning a man who says “I am lying”: it true, it
false, and if false, it is true.

We claim that ψ shows that Γ is incomplete: Γ 6⊢ ψ and Γ 6⊢ ¬ψ.
Suppose that Γ ⊢ ψ. Let Φ be a Γ-proof with last entry ψ. Then by (1), P ⊢

χ(gn(ψ), gn1(Φ)). Hence by Theorem 3.33, P ⊢ ∃v1χ(gn(ψ)). Thus P ⊢ ¬∀v1¬χ(gn(ψ))
by the definition of ∃. By (4) this says that P ⊢ ¬ϕ(gn(ψ)). Hence by (3) we get P ⊢ ¬ψ.
But (ω, S, 0,+, ·) is a model of both Γ and P, and Γ ⊢ ψ by hypothesis. This contradicts
Theorem 3.2.

It follows that not(Γ ⊢ ψ). Hence for every natural number n we have (gn(ψ), n) /∈
PrfΓ, and hence by (2), P ⊢ ¬χ(gn(ψ), n). It follows that

(5) not(Γ ⊢ ∃v1χ(gn(ψ))).

In fact, otherwise by Theorem 3.2, since (ω, S, 0,+, ·) is a model of Γ, we would get
(ω, S, 0,+, ·) |= ∃v1χ(g(ψ)), and hence there is some n ∈ ω such that (ω, S, 0,+, ·) |=
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χ(g(ψ), n). This contradicts P ⊢ ¬χ(g(ψ), n) in view of Theorems 5.4 and 3.2. Thus (5)
holds.

Since ∃v1χ(g(ψ)) is ¬∀v1¬χ(gn(ψ)), i.e. by (4) it is ¬ϕ(gn(ψ)), it follows from (3)
and (5) that not(Γ ⊢ ¬ψ).

It is important from an intuitive point of view that the sentence produced in this proof is
actually true. This is expressed in the following corollary.

Corollary 5.7. If Γ is a set of sentences containing P′, (ω, S, 0,+, ·) is a model of Γ,

and g[Γ] is recursive, then the sentence ψ defined in the proof of Theorem 5.6 holds in the

structure (ω, S, 0,+, ·).

Proof. Since ψ is not provable from Γ, it follows that for every n ∈ ω, (gn(ψ), n) /∈
PrfΓ, and hence P ⊢ ¬χ(gn(ψ), n). Hence by Theorems 3.2 and 5.4, (ω, S, 0,+, ·) |=
¬χ(gn(ψ), n). Since this is true for every n ∈ ω, it follows that

(ω, S, 0,+, ·) |= ∀v1¬χ(gn(ψ), v1).

By (3) and (4) in the proof of Theorem 5.6 it follows that (ω, S, 0,+, ·) |= ψ.

EXERCISES

E5.1. Give an estimate for the size of gn(ϕ), where ϕ is the Peano Postulate (P1).

E5.2. Describe G(gn(v0 = v0)) and express it as a product of primes.

Suppose that Γ is a set of sentences containing P′. A formula ρ with at most v0 free is a
Γ-provability condition iff for any sentence ϕ, Γ ⊢ ϕ iff Γ ⊢ ρ(gn(ϕ)).

E5.3. Suppose that Γ is a set of sentences containing P′, and M
def
= (ω, S, 0,+, ·) is a model

of Γ. Let χ be as in the proof of Gödel’s incompleteness theorem, and let π be the formula
∃v1χ. Prove that π is a Γ-provability condition.

E5.4. Suppose that Γ is a set of sentences containing P′, and M
def
= (ω, S, 0,+, ·) is a

model of Γ. Assume that ρ is a Γ-provability condition. Apply the fixed point theorem to
get a sentence ψ such that P ⊢ ψ ↔ ¬ρ(gn(ψ)), as in the proof of Gödel’s incompleteness
theorem. Prove that not(Γ ⊢ ψ) and not(Γ ⊢ ¬ψ).

E5.5. Let χ be as in the proof of Gödel’s incompleteness theorem, and let π be the formula
∃v1χ. The following can be shown for χ.

(i) For any sentences ϕ and ψ,

Γ ⊢ π(gn(ϕ→ ψ)) → (π(gn(ϕ)) → π(gn(ψ))).

(“Γ proves that if ϕ → ψ is provable, then from the provability of ϕ it follows that ψ is
provable”)

(ii) For any sentence ϕ,

Γ ⊢ π(gn(ϕ)) → π(gn(π(gn(ϕ)))).
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(“Γ proves that if ϕ is provable, then it is provable that ϕ is provable.”

By the fixed point theorem, let ψ be a sentence such that Γ ⊢ ψ ↔ π(gn(ψ)). Note that
ψ says “I am provable”. By the fixed point theorem again, let θ be a sentence such that
Γ ⊢ θ ↔ (π(gn(θ)) → ψ). Thus θ says “If I am provable, then ψ holds.”

Show that if Γ ⊢ θ, then Γ ⊢ ψ.

E5.6. (Continuing E5.5.) Show that Γ ⊢ π(gn(θ)) → π(gn(ψ)).

E5.7. (Continuing E5.5.) Show that Γ ⊢ ψ.

E5.8. Assume that Γ ⊢ ¬(m = n) for all distinct m,n ∈ ω. Let χ be as in the proof of
Gödel’s incompleteness theorem, and let θ be the sentence ∀v0(v0 = v0). Prove that the
following formula ρ(v0) is a provabilty condition:

v0 = gn(θ) ∨ ∃v1χ(v0, v1)

E5.9. (Continuing E5.8) Prove that Γ ⊢ θ ↔ ρ(gn(θ)) (so that θ asserts its own provability
with respect to this condition).

E5.10. (Continuing E5.8) Prove that Γ ⊢ θ.

E5.11. Assume that Γ ⊢ ¬(m = n) for all distinct m,n ∈ ω. Let χ be an in the proof of
Gödel’s incompleteness theorem, and let θ be the sentence ¬∀v0(v0 = v0). Prove that the
following formula ρ(v0) is a provabilty condition:

¬(v0 = gn(θ)) ∧ ∃v1χ(v0, v1)

E5.12. (Continuing E5.11) Show that Γ ⊢ θ ↔ ρ(gn(θ)), so that θ asserts its own prov-
ability.

E5.13. (Continuing E5.11) Show that Γ ⊢ ¬θ.
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