
4. The completeness theorem

The completeness theorem, in its simplest form, says that for any sentence ϕ, ⊢ ϕ iff |= ϕ.
We already know the direction ⇒, in Theorem 3.2.

A more general form of the completeness theorem is that Γ ⊢ ϕ iff Γ |= ϕ, for any set
Γ ∪ {ϕ} of formulas. Again the direction ⇒ is given in Theorem 3.2.

Basic for the proof of the completeness theorem is the notion of consistency. A set Γ
of formulas is consistent iff there is a formula ϕ such that Γ 6⊢ ϕ.

Lemma 4.1. For any set Γ of formulas the following conditions are equivalent:

(i) Γ is inconsistent.

(ii) There is a formula ϕ such that Γ ⊢ ϕ and Γ ⊢ ¬ϕ.

(iii) Γ ⊢ ¬(v0 = v0).

Proof. (i)⇒(ii): Assume (i). Since Γ ⊢ ψ for every formula ψ, (ii) is clear.

(ii)⇒(iii): Assume (ii). Then the following is a Γ-proof:

A Γ-proof of ϕ.

A Γ-proof of ¬ϕ.

A ∅-proof of ϕ→ (¬ϕ→ ¬(v0 = v0). (This is a tautology; see Lemma 3.3.)

¬ϕ→ ¬(v0 = v0).

¬(v0 = v0).

(iii)⇒(i): By (iii) we have Γ ⊢ ¬(v0 = v0), while by Proposition 3.4 we have Γ ⊢ v0 = v0.

A sentence is a formula which has no variable occurring free in it. A set Γ of sentences
has a model iff there is a structure A for the language in question such that A |= ϕ[a] for
every ϕ ∈ Γ and every a : ω → A.

The following first-order version of the deduction theorem, Theorem 1.12, will be
useful.

Theorem 4.2. (First-order deduction theorem) If Γ ∪ {ψ} is a set of formulas, ϕ is a
sentence, and Γ ∪ {ϕ} ⊢ ψ, then Γ ⊢ ϕ→ ψ.

Proof. Let 〈χ0, . . . , χm−1〉 be a (Γ ∪ {ϕ})-proof with χi = ψ for some i < m. We
modify this proof, replacing each χj by one or more formulas, converting the proof to a
Γ-proof, in such a way that ϕ → χj is in the new proof for every j < m. If χj is a logical
axiom or a member of Γ, we replace it by the three formulas

χj → (ϕ→ χj)

χj

ϕ→ χj .
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If χj is ϕ, we replace it by the five formulas giving a little proof of ϕ → ϕ; see Lemma
1.11. If there exist k, l < j such that χk is χl → χj , we replace χj by the formulas

(ϕ→ χk) → [(ϕ→ χl) → (ϕ→ χj)]

(ϕ→ χl) → (ϕ→ χj)

ϕ→ χj .

If there exist k < j and l ∈ ω such that χj is ∀vlχk, we replace χj by the formulas

∀vl(ϕ→ χk)

a proof of ∀vl(ϕ→ χk) → (ϕ→ ∀vlχk) see Proposition 3.38

ϕ→ χj .

Theorem 4.3. Suppose that every consistent set of sentences has a model. Then Γ ⊢ ϕ

iff Γ |= ϕ, for every set Γ ∪ {ϕ} of formulas.

Proof. Assume that every consistent set of sentences has a model. Note again
that Γ ⊢ ϕ implies that Γ |= ϕ, by Theorem 3.2. We prove the converse by proving its
contrapositive. Thus suppose that Γ ∪ {ϕ} is a set of formulas such that Γ 6⊢ ϕ. We want
to show that Γ 6|= ϕ, i.e., there is a model of Γ which is not a model of ϕ. For any formula
ψ, let [[ψ]] be the closure of ψ, i.e., the sentence

∀vi(0) . . .∀vi(m−1)ψ,

where i(0) < · · · < i(m − 1) lists all the integers j such that vj occurs free in ψ. Let
Γ′ = {[[ψ]] : ψ ∈ Γ}. We claim that Γ′ ∪ {¬[[ϕ]]} is consistent. Suppose not. Then
Γ′ ∪ {¬[[ϕ]]} ⊢ ¬(v0 = v0). Hence by the deduction theorem, Γ′ ⊢ ¬[[ϕ]] → ¬(v0 = v0), so
Γ′ ⊢ v0 = v0 → [[ϕ]]. Hence, using Proposition 3.4, Γ′ ⊢ [[ϕ]]. Now in a Γ′-proof that has
[[ϕ]] as a member, replace each formula

∀vi(0) . . .∀vi(m−1)ψ,

with ψ ∈ Γ, by the sequence

ψ

∀vi(m−1)ψ

· · · · · · · · ·

∀vi(0) . . .∀vi(m−1)ψ.

This converts the proof into a Γ-proof one of whose members is [[ϕ]]. Thus Γ ⊢ [[ϕ]]. Using
Corollary 3.28, it follows that Γ ⊢ ϕ, contradiction.

Hence Γ′ ∪ {¬[[ϕ]]} is consistent. Since this is a set of sentences, by supposition it has
a model M . Clearly M is a model of Γ. Since M is a model of ¬[[ϕ]], clearly there is an
a ∈ ωM such that M |= ¬ϕ[a]. Thus M is not a model of ϕ. This shows that Γ 6|= ϕ.
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To prove that every consistent set of sentences has a model, we need several lemmas,
starting with some additional facts about structures and satisfaction.

Lemma 4.4. Suppose that A is a structure, a and b map ω into A, ϕ is a formula, and
ai = bi for every i such that vi occurs free in ϕ. Then A |= ϕ[a] iff A |= ϕ[b].

Proof. Induction on ϕ. For ϕ an atomic equality formula σ = τ , the hypothesis
means that ai = bi for all i such that vi occurs in σ or τ . Hence, using Proposition 2.4,

A |= ϕ[a] iff σA(a) = τA(a) iff σA(b) = τA(b) iff A |= ϕ[b].

For ϕ an atomic non-equality formula Rη0 . . . ηm−1, the hypothesis means that ai = bi for
all i such that vi occurs in one of the terms ηj . Hence, again using Proposition 2.4,

A |= ϕ[a] iff 〈ηA
0 (a), . . . , ηA

m−1(a)〉 ∈ RA

iff 〈ηA
0 (b), . . . , ηA

m−1(b)〉 ∈ RA

iff A |= ϕ[b].

Assume inductively that ϕ is ¬ψ. The hypothesis implies that ai = bi for all i such that
vi occurs free in ψ. Hence

A |= ϕ[a] iff not(A |= ψ[a])

iff not(A |= ψ[b]) (induction hypothesis)

iff A |= ϕ[b].

Assume inductively that ϕ is ψ → χ. The hypothesis implies that ai = bi for all i such
that vi occurs free in ψ or in χ. Hence

A |= ϕ[a] iff not(A |= ψ[a]) or A |= χ[a]

iff not(A |= ψ[b]) or A |= χ[b] (induction hypothesis)

iff A |= ϕ[b].

Now assume inductively that ϕ is ∀vkψ. By symmetry it suffices to show that A |= ϕ[a]
implies that A |= ϕ[b]. So, assume that A |= ϕ[a]. Take any u ∈ A. Then A |= ψ[ak

u].
We claim that (ak

u)i = (bku)i for every i such that vi occurs free in ψ. If i 6= k this is true
since vi also occurs free in ϕ, so that ai = bi; and (ak

u)i = ai = bi = (bku)i. If i = k, then
(ak

u)i = u = (bku)i. It follows now by the inductive hypothesis that A |= ψ[bku]. Since u is
arbitrary, A |= ϕ[b].

As in the case of terms (see Proposition 2.4 and the comments after it), Lemma 4.4 enables
us to simplify the notation A |= ϕ[a]. Instead of a full assignment a : ω → A, it suffices to
take a function a : {0, . . . , m} → A such that every variable vi occurring free in ϕ is such
that i ≤ m. Then A |= ϕ[a] means that A |= ϕ[b] for any b (or some b) such that b extends
a. If ϕ is a sentence, thus with no free variables, then A |= ϕ means that A |= ϕ[b] for any,
or some, b : ω → A.
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Lemma 4.5. Suppose that τ , ρ, and ν are terms, and ρ is obtained from τ by replacing
all occurrences of vi in τ by ν. Then for any structure A and any assignment a : ω → A,

ρA(a) = τA
(

ai

νA(a)

)

.

Proof. By induction on τ . If τ is vk with k 6= i, then ρ is the same as τ , and both

sides of the above equation are equal to ak. If τ is vi, then ρ is ν, and ρA(a) = νA(a) =

vA
i

(

ai

νA(a)

)

= τA
(

ai

νA(a)

)

. If τ is an individual constant k, then ρ is equal to τ , and both

sides of the equation in the lemma are equal to kA.
Now suppose inductively that τ is Fη0 . . . ηm−1. Let µi be obtained from ηi by re-

placing all occurrences of vi by ν. Then

ρA(a) = (Fµ0 . . . µm−1)
A(a)

= FA(µA
0 (a), . . . , µA

m−1(a))

= FA
(

η0

(

ai

νA(a)

)

, . . . , ηm−1

(

ai

νA(a)

))

= (Fη0 . . . ηm−1)
[

ai

νA(a)

]

= τA
(

ai

νA(a)

)

.

Lemma 4.6. Suppose that ϕ is a formula, ν is a term, no free occurrence of vi in ϕ

is within a subformula of the form ∀vkµ with vk a variable occurring in ν, and A is a

structure. Then A |= Subfvi

ν ϕ[a] iff A |= ϕ
[

ai

νA(a)

]

.

Proof. By induction on ϕ. For ϕ a formula σ = τ , let ρ and η be obtained from σ

and τ by replacing all occurrences of vi by ν. Then by Lemma 4.5,

A |= Subfvi

ν ϕ[a] iff A |= (ρ = η)[a]

iff ρA(a) = ηA(a)

iff σA
(

ai

νA(a)

)

= τA
(

ai

νA(a)

)

iff A |= (σ = τ)
(

ai

νA(a)

)

iff A |= ϕ
(

ai

νA(a)

)

.

For ϕ a formula Rσ0 . . . σm−1, let ηi be obtained from σi by replacing all occurrences of
vi by ν. Then

A |= Subfvi

ν ϕ[a] iff A |= (Rη0 . . . ηm−1)[a]

iff 〈ηA
0 (a), . . . , ηA

m−1(a) ∈ RA

iff
〈

σA
0

(

ai

νA(a)

)

, . . . σA
m−1

(

ai

νA(a)

)〉

∈ RA

iff A |= (Rσ0 . . . σm−1)
[

ai

νA(a)

]

iff A |= ϕ
[

ai

νA(a)

]

.
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Now suppose inductively that ϕ is ¬ψ. Then

A |= Subfv1
ν ϕ[a] iff A |= (¬Subfv1

ν ψ) [a]

iff not
(

A |= (Subfv1
ν ψ)

)

[a]

iff not
(

A |= ψ
[

ai

νA(a)

])

iff A |= ϕ
[

ai

νA(a)

]

.

Suppose inductively that ϕ is ψ → χ. Then

A |= Subfv1
ν ϕ[a] iff not

(

A |= Subfv1
ν ψ[a]

)

or A |= Subfv1
ν χ[a]

iff not
(

A |= ψ
[

ai

νA(a)

])

or A |= χ
[

ai

νA(a)

]

iff A |= ϕ
[

ai

νA(a)

]

.

Finally, suppose inductively that ϕ is ∀vkψ. Now if vi does not occur free in ϕ, then
Subfvi

ν ϕ is just ϕ itself, and A |= ϕ[a] iff A |= ϕ[ai

νA(a)
] by Lemma 4.4. Hence we may

assume that vi occurs free in ϕ.

If k = i, then Subfvi

ν ϕ is ϕ, and by Lemma 4.4, A |= ϕ
[

ai

νA(a)

]

iff A |= ϕ[a]; so the

theorem holds in this case. Now suppose that k 6= i. Then Subfvi

ν ϕ is ∀vkSubfvi

ν ψ. Suppose
that A |= Subfvi

ν ϕ[a]. Take any u ∈ A. Then A |= Subfvi

ν ψ[ak
u]. Now no free occurrence

of vi in ψ is within a subformula of the form ∀vsµ with vs occurring in ν. Hence by the

inductive hypothesis A |= ψ
[

(ak
u)i

νA(ak
u)

]

. Now since ϕ is ∀vkψ and vi occurs free in ϕ,

the assumption of the lemma says that vk does not occur in ν. Hence νA(a) = νA(ak
u) by

Proposition 2.4. Hence A |= ψ
[

(ak
u)i

νA(a)

]

. Since
(

ak
u

)i

νA(a)
=

(

ai

νA(a)

)k

u
, it follows that

A |= ϕ
[

ai

νA(a)

]

.

Conversely, suppose that A |= ϕ
[

ai

νA(a)

]

. Take any u ∈ A. Then A |= ψ

[

(

ai

νA(a)

)k

u

]

.

Since
(

ai

νA(a)

)k

u
=

(

ak
u

)i

νA(a)
, and νA(a) = νA(ak

u) (see above), by the inductive hypothesis

we get A |= Subfvi

ν ψ[ak
u]. It follows that A |= Subfvi

ν ϕ[a].

A set Γ of sentences is complete iff for every sentence ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Γ is rich iff for
every sentence of the form ∃viϕ there is an individual constant c such that Γ ⊢ ∃viϕ →
Subfvi

c (ϕ).
The main lemma for the completeness proof is as follows.

Lemma 4.7. If Γ is a complete, rich, consistent set of sentences, then Γ has a model.

Proof. Let B = {σ : σ is a term in which no variable occurs}. We define ≡ to be the
set

{(σ, τ) : σ, τ ∈ B and Γ ⊢ σ = τ}.
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By Propositions 3.4–3.6, ≡ is an equivalence relation on B. Let π be the function which
assigns to each σ ∈ B the equivalence class [σ]≡, and let A be the set of all equivalence
classes.

We recall some basic facts about equivalence relations. An equivalence relation on a set
M is a set R of ordered pairs (a, b) with a, b ∈M satisfying the following conditions:

(reflexivity) (a, a) ∈ R for all a ∈M .
(symmetry) For all (a, b) ∈ R we have (b, a) ∈ R.
(transitivity) For all a, b, c, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Given an equivalence relation R on a set M , for each a ∈M we let [a]R = {b ∈M : (a, b) ∈
R}; this is the equivalence class of a. Some basic facts:

(a) For any a, b ∈M , (a, b) ∈ R iff [a]R = [b]R.

Proof. ⇒: suppose that (a, b) ∈ R. Suppose also that x ∈ [a]R. Thus (a, x) ∈ R. Since R
is symmetric, (b, a) ∈ R. Since R is transitive, (b, x) ∈ R. Hence x ∈ [b]R. This proves that
[a]R ⊆ [b]R. Suppose that x ∈ [b]R. Thus (b, x) ∈ R. Since also (a, b) ∈ R, by transitivity
we get (a, x) ∈ R. So x ∈ [a]R. This proves that [b]R ⊆ [a]R, and completes the proof that
[a]R = [b]R.

⇐: Assume that [a]R = [b]R. Since R is reflexive on M , we have (b, b) ∈ R, and hence
b ∈ [b]R. Now [a]R = [b]R, so b ∈ [a]R. Hence (a, b) ∈ R.

(b) For any a, b ∈M , [a]R = [b]R or [a]R ∩ [b]R = ∅.

Proof. Suppose that [a]R ∩ [b]R 6= ∅; say x ∈ [a]R ∩ [b]R. Thus (a, x) ∈ R and (b, x) ∈ R.
By symmetry, (x, b) ∈ R. By transitivity, (a, b) ∈ R. By (a), [a]R = [b]R.

We are now going to define a structure with universe A. If k is an individual constant, let

kA = [k]≡.

(1) If F is an m-ary function symbol and σ0, . . . , σm−1, τ0, . . . , τm−1 are members of B
such that σi ≡ τi for all i < m, then Fσ0 . . . σm−1 ≡ Fτ0 . . . τm−1.

In fact, the hypothesis implies that Γ ⊢ σi = τi for all i < m. By Proposition 3.7,

⊢
∧

i<m

(σi = τi) → Fσ0 . . . σm−1 = Fτ0 . . . τm−1;

it follows that Γ ⊢ Fσ0 . . . σm−1 = Fτ0 . . . τm−1, so that Fσ0 . . . σm−1 ≡ Fτ0 . . . τm−1.

(2) If F is an m-ary function symbol, then there is a function FA mapping m-tuples of

members of A into A, such that for any σ0, . . . , σm−1 ∈ B, FA([σ0]≡, . . . , [σm−1]≡) =
[Fσ0 . . . σm−1]≡.

In fact, we can define FA as a set of ordered pairs:

FA = {(x, y) :there are σ0, . . . , σm−1 ∈ B such that

x = 〈[σ0]≡, . . . , [σm−1]≡〉 and y = [Fσ0 . . . σm−1]≡}
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Then FA is a function. For, suppose that (x, y), (x, z) ∈ FA. Accordingly choose el-
ements σ0, . . . σm−1 ∈ B and τ0, . . . τm−1 ∈ B such that x = 〈[σ0]≡, . . . , [σm−1]≡〉 =
〈[τ0]≡, . . . , [τm−1]≡, y = [Fσ0 . . . σm−1]≡, and z = [Fτ0 . . . ϕm−1]≡. Thus for any i < m

we have [σi]≡ = [τi]≡, hence σi ≡ τi. From (1) it then follows that Fσ0 . . . σm−1 ≡

Fτ0 . . . ϕm−1, hence y = z. So FA is a function. Clearly then (2) holds.
For R and m-ary relation symbol we define

RA = {x : ∃σ0, . . . σm−1 ∈ B[x = 〈[σ0]≡, . . . , [σm−1]≡〉 and Γ ⊢ Rσ0 . . . σm−1]}.

(3) If R is anm-ary relation symbol and σ0, . . . , σm−1 ∈ B, then 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA

iff Γ ⊢ Rσ0 . . . σm−1.

In fact, ⇐ follows from the definition. Now suppose that 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA. Then
by definition there exist τ0, . . . , τm−1 ∈ B such that

〈[σ0]≡, . . . , [σm−1]≡〉 = 〈[τ0]≡, . . . , [τm−1]≡〉 and Γ ⊢ Rτ0 . . . τm−1.

Thus [σi]≡ = [τi]≡, hence σi ≡ τi, hence Γ ⊢ σi = τi, for each i < m. Now by Proposition
3.8, ⊢

∧

i<m(σi = τi) → (Rσ0 . . . σm−1 ↔ Rτ0 . . . τm−1). It follows that Γ ⊢ Rσ0 . . . σm−1,
as desired; so (3) holds.

(4) For any σ ∈ B we have σA = [σ]≡.

We prove (4) by induction on σ. If σ is an individual constant k, then by definition

kA = [k]≡. Now suppose that (4) is true for τ0, . . . , τm−1 ∈ B and σ is Fτ0 . . . τm−1. Then

σA = FA([τ0]≡, . . . , [τm−1]≡) = [Fτ0 . . . τm−1]≡ = [σ]≡,

proving (4).
The following claim is the heart of the proof.

(5) For any sentence ϕ, Γ ⊢ ϕ iff A |= ϕ.

We prove (5) by induction on the number m of the symbols =, relation symbols, ¬, →,
and ∀ in ϕ. For m = 1, ϕ is atomic, and we have

Γ ⊢ σ = τ iff σ ≡ τ

iff [σ]≡ = [τ ]≡

iff σA = τA by (4)

iff A |= σ = τ ;

Γ ⊢ Rσ0 . . . σm−1 iff 〈[σ0]≡, . . . , [σm−1]≡〉 ∈ RA by (3)

iff 〈σA
0 , . . . , σ

A
m−1〉 ∈ RA by (4)

iff A |= Rσ0 . . . σm−1.
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Now we take the inductive steps.

Γ ⊢ ¬ψ iff not(Γ ⊢ ψ)

iff not(A |= ψ)

iff A |= ¬ψ;

Γ ⊢ ψ → χ iff not(Γ ⊢ ψ) or Γ ⊢ χ

iff not(A |= ψ) or A |= χ

iff A |= ψ → χ.

Finally, suppose that ϕ is ∀viψ. First suppose that Γ ⊢ ϕ. We want to show that A |= ϕ,
so take any σ ∈ B and let u = [σ]≡; we want to show that A |= ψ[ai

u], where a : ω → A.
Let χ be the sentence Subfvi

σ ψ. Then by Theorem 3.27 we have Γ ⊢ χ, and hence by the

inductive assumption A |= χ. By (4) we have σA = [σ]≡. Hence by Lemma 4.6 we get
A |= ψ[ai

u].
Second suppose that Γ 6⊢ ϕ. Then by completeness Γ ⊢ ¬ϕ, and hence Γ ⊢ ∃vi¬ψ.

Hence by richness there is an individual constant c such that Γ ⊢ ∃vi¬ψ → Subfvi

c
(¬ψ),

hence Γ ⊢ ¬Subfvi

c
ψ, and so Γ 6⊢ Subfvi

c
ψ. By the inductive assumption, A 6|= Subfvi

c
ψ, and

so by (4) and Lemma 4.6, A 6|= ψ[ai
u], where a : ω → A and u = [c]≡. So A 6|= ϕ.

This finishes the proof of (5). Applying (5) to members ϕ of Γ we see that A is a model
of Γ.

The following rather technical lemma will be used in a few places below.

Lemma 4.8. Suppose that Γ is a set of formulas in L , and 〈ψ0, . . . , ψm−1〉 is a Γ-proof
in L . Suppose that C is a set of individual constants such that no member of C occurs in
any member of Γ. Let vj be a variable not occurring in any formula ψk, and for each k let
ψ′

k be obtained from ψk by replacing each member of C by vj. Similarly, for each term σ

let σ′ be obtained from σ by replacing each member of C by vj . Then 〈ψ′
0, ψ

′
1, . . . , ψ

′
m−1〉

is a Γ-proof in L .

Proof. Assume the hypotheses. We need to show that if ψk is a logical axiom, then
so is ψ′

k. We consider the possibilities one by one:

(ϕ→ (ψ → ϕ))′ is ϕ′ → (ψ′ → ϕ′);

((ϕ→ (ψ → χ) → ((ϕ→ ψ) → (ϕ→ χ)))′ is

(ϕ′ → (ψ′ → χ′) → ((ϕ′ → ψ′) → (ϕ′ → χ′));

((¬ϕ→ ¬ψ) → (ψ → ϕ))′ is (¬ϕ′ → ¬ψ′) → (ψ′ → ϕ′);

(∀vk(ϕ→ ψ) → (∀vkϕ→ ∀vkψ))′ is ∀vk(ϕ′ → ψ′) → (∀vkϕ
′ → ∀vkψ

′);

(ϕ→ ∀vkϕ)′ is ϕ′ → ∀vkϕ
′ if vk does not occur in ϕ;

(∃vk(vk = σ))′ is ∃vk(vk = σ′) if vk does not occur in σ;

(σ = τ → (σ = ρ→ τ = ρ))′ is (σ′ = τ ′ → (σ′ = ρ′ → τ ′ = ρ′);

(σ = τ → (ρ = σ → ρ = τ))′ is (σ′ = τ ′ → (ρ′ = σ′ → ρ′ = τ ′);
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(σ = τ → Fξ0 . . . ξi−1σξi+1 . . . ξm−1 = Fξ0 . . . ξi−1τξi+1 . . . ξm−1)
′ is

σ′ = τ ′ → Fξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 = Fξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1;

(σ = τ → (Rξ0 . . . ξi−1σξi+1 . . . ξm−1 → Rξ0 . . . ξi−1τξi+1 . . . ξm−1))
′ is

σ′ = τ ′ → (Rξ′0 . . . ξ
′
i−1σ

′ξ′i+1 . . . ξ
′
m−1 → Rξ′0 . . . ξ

′
i−1τ

′ξ′i+1 . . . ξ
′
m−1).

Now back to our claim that 〈ψ′
0, . . . , ψ

′
m−1〉 is a Γ-proof. If ψk is a logical axiom, then by

the above, ψ′
k is a logical axiom. If ψk ∈ Γ, then no member of C occurs in ψk, and hence

ψ′
k = ψk. Suppose that s, t < k and ψs is ψt → ψk. Then ψ′

s is ψ′
t → ψ′

k. If s < k and
t ∈ ω, and ψk is ∀vtψs, then ψ′

k is ∀vtψ
′
s. Thus our claim holds.

Lemma 4.9. Suppose that c is an individual constant not occurring in any formula in
Γ ∪ {ϕ}. Suppose that Γ ⊢ Subfvi

c ϕ. Then Γ ⊢ ϕ.

Proof. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof with ψj = Subfvi

c
ϕ. Let vj and the sequence

〈ψ′
0, . . . , ψ

′
m−1〉 be as in Lemma 4.8, with C = {c}. Then by Lemma 4.8, 〈ψ′

0, . . . , ψ
′
m−1〉

is a Γ-proof. Note that ψ′
j is Subfvi

vj
ϕ. Thus Γ ⊢ Subfvi

vj
ϕ. Hence Γ ⊢ ∀vjSubfvi

vj
ϕ, and so

by Theorem 3.27, Γ ⊢ ϕ.

A first-order language L is finite iff L has only finitely many non-logical symbols. Note
that in a finite language there are infinitely many integers which are not symbols of the
language. We prove the main completeness theorem only for finite languages. This is not
an essential restriction. With an expanded notion of first-order language the present proof
still goes through.

Lemma 4.10. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . .. Suppose that Γ is a consistent set of formulas in L . Then it
is also consistent as a set of formulas in L ′.

Suppose not. Let 〈ψ0, . . . , ψm−1〉 be a Γ-proof in the L ′ sense with ψi the formula ¬(v0 =
v0). Let C be the set of all constants ci which appear in some formula ψk. Let vj and
〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 be as in Lemma 4.8. Then by Lemma 4.8, 〈ψ′

0, ψ
′
1, . . . , ψ

′
m−1〉 is a

Γ-proof. Clearly each ψ′
k is a L formula. Note that ψ′

i = ψi = ¬(v0 = v0). So Γ is
inconsistent in L , contradiction.

Lemma 4.11. Let L be a finite first-order language. Let L
′ extend L by adding indi-

vidual constants c0, c1, . . ..
Then there is an enumeration 〈ϕ0, ϕ1, . . .〉 of all of the sentences of L ′, and also an

enumeration 〈ψ0, ψ1, . . .〉 of all the sentences of L ′ of the form ∃viχ.

Proof. Recall that a formula is a certain finite sequence of positive integers. First we
describe how to list all finite sequences of positive integers. Given positive integers m and
n, we can list all sequences of members of m of length n by just listing them in dictionary
order. For example, with m = 3 and n = 2 our list is

〈1, 1〉

〈1, 2〉
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〈1, 3〉

〈2, 1〉

〈2, 2〉

〈2, 3〉

〈3, 1〉

〈3, 2〉

〈3, 3〉

To list all finite sequences, we then do the following:

(1) List all sequences of members of 1 of length 1. (There is only one such, namely 〈1〉.)

(2) List all sequences of members of 2 of length 1 or 2. Here they are:

〈1〉

〈2〉

〈1, 1〉

〈1, 2〉

〈2, 1〉

〈2, 2〉

(3) List all sequences of members of 3 of length 1,2, or 3.

(4) General step: list all members of m of length 1, 2, . . .m.

Let 〈ψ0, ψ1, . . .〉 be the listing described. Now we go through this list and select the
ones which are sentences of L ′, giving the desired list 〈ϕ0, ϕ1, . . .〉. Similarly for the list
〈ψ0, ψ1, . . .〉 of all sentences of the form ∃viχ.

Lemma 4.12. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a rich consistent
set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ψ0, ψ1, . . .〉 enumerate all the sentences of L ′ of the
form ∃viχ; say that ψk is ∃vt(k)ψ

′
k for all k ∈ ω. Now we define an increasing sequence

〈j(k) : k ∈ ω〉 by recursion. Suppose that j(k) has been defined for all k < l. Let j(l) be
the smallest natural number not in the set

{j(k) : k < l} ∪ {s : cs occurs in some formula ψk with k ≤ l}.

For each l ∈ ω let
Θl = Γ ∪ {∃vt(k)ψ

′
k → Subf

vt(k)
cj(k)

ψ′
k : k < l}.

We claim that each set Θl is consistent. We prove this by induction on l. Note that Θ0 = Γ,
which is given as consistent. Now suppose that we have shown that Θl is consistent.
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Now Θl+1 = Θl ∪ {∃vt(l)ψ
′
l → Subf

vt(l)
cj(l)

ψ′
l}. Assume that Θl+1 is inconsistent. Then

Θl+1 ⊢ ¬(v0 = v0). By the deduction theorem 4.2, it follows that

Θl ⊢ (∃vt(l)ψ
′
l → Subf

vt(l)
cj(l)

ψ′
l) → ¬(v0 = v0),

hence easily
Θl ⊢ ¬(∃vt(l)ψ

′
l → Subf

vt(l)
cj(l)

ψ′
l),

so that using tautologies

Θl ⊢ ∃vt(l)ψ
′
l and

Θl ⊢ ¬Subf
vt(l)
cj(l)

ψ′
l.

Now by the definition of the sequence 〈j(k) : k ∈ ω〉, it follows that cj(l) does not occur in
any formula in Θl ∪ {ψ′

l}. Hence by Lemma 4.9 we get Θl ⊢ ¬ψ′
l, and so Θl ⊢ ∀vt(l)¬ψ

′
l.

But we also have Θl ⊢ ∃vt(l)ψ
′
l, so that Θl is inconsistent, contradiction.

Now let ∆ =
⋃

l∈ω Θl. We claim that ∆ is consistent. Suppose not. Then ∆ ⊢ ¬(v0 =
v0). Let 〈ϕ0, . . . ϕm−1〉 be a ∆-proof with ϕi = ¬(v0 = v0). For each k < m such that
ϕk ∈ ∆, choose s(k) ∈ ω such that ϕk ∈ Θs(k). Let l be such that s(l) is largest among
all k < m such that ϕk ∈ Θs(k). Then 〈ϕ0, . . . ϕm−1〉 is a Θs(l)-proof, and hence Θs(l) is
inconsistent, contradiction.

Now clearly Γ ⊆ ∆, since Θ0 = Γ. We claim that ∆ is rich. For, let ∃vlχ be a sentence.
Say ∃vlχ is ψm. Then ∃vlχ is ∃vt(m)ψ

′
m, so that l = t(m) and c = ψ′

m. Now the formula

∃vt(m)ψ
′
m → Subf

vt(m)
cj(m)

ψ′
m

is a member of Θm+1, and hence is a member of ∆. This formula is ∃vlχ → Subfvl

cj(m)
χ.

Hence ∆ is rich.

Lemma 4.13. Let L be a finite first-order language. Let L ′ extend L by adding indi-
vidual constants c0, c1, . . ..

Suppose that Γ is a consistent set of sentences of L ′. Then there is a consistent
complete set ∆ of sentences with Γ ⊆ ∆.

Proof. By Lemma 4.11, let 〈ϕ0, ϕ1, . . .〉 be an enumeration of all the sentences of L ′.
We now define by recursion sets Θi of sentences. Let Θ0 = Γ. Suppose that Θi has been
defined so that it is consistent. If Θi ∪{ϕi} is consistent, let Θi+1 = Θi ∪ {ϕi}. Otherwise
let Θi+1 = Θi ∪ {¬ϕi}. We claim that in this otherwise case, still Θi+1 is consistent.
Suppose not. Then Θi+1 ⊢ ¬(v0 = v0), i.e., Θi ∪ {¬ϕi} ⊢ ¬(v0 = v0). By the deduction
theorem, Θi ⊢ ¬ϕi → ¬(v0 = v0), and then by Proposition 3.4 and a tautology Θi ⊢ ϕi.
It follows that Θi ∪ {ϕi} is consistent; otherwise Θi ∪ {ϕi} ⊢ ¬(v0 = v0), hence by the
deduction theorem Θi ⊢ ϕi → ¬(v0 = v0), so by Proposition 4.3 and a tautology Θi ⊢ ¬ϕi.
Together with Θi ⊢ ϕi, this shows that Θi is inconsistent, contradiction. So, Θi ∪ {ϕi} is
consistent. But this contradicts our “otherwise” condition. So, Θi+1 is consistent.

This finishes the construction. Let ∆ =
⋃

i∈ω Θi. Then ∆ is consistent. In fact,
suppose not. Then ∆ ⊢ ¬(v0 = v0). Let 〈ψ0, . . . , ψm−1〉 be a ∆-proof with ψi = ¬(v0 =
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v0). Let 〈χ0, . . . , χn−1〉 enumerate all of the members of ∆ which are in the proof. Say
χj ∈ Θs(j) for each j < n. Let t be maximum among all the s(j) for j < n. Then
each χk is in Θt, so that 〈ψ0, . . . , ψm−1〉 is a Θt-proof. It follows that Θt is inconsistent,
contradiction.

So ∆ is consistent. Since Θ0 = Γ, we have Γ ⊆ ∆. Finally, ∆ is complete, since every
sentence is equal to some ϕi, and our construction assures that ϕi ∈ ∆ or ¬ϕi ∈ ∆.

Lemma 4.14. Let L be a first-order language. Let L ′ extend L by adding new non-
logical symbols Suppose that M is an L ′-structure, and N is the L -structure obtained
from M by removing the denotations of the new non-logical symbols. Suppose that ϕ is a
formula of L , and a : ω →M . Then M |= ϕ[a] iff N |= ϕ[a].

Proof. First we prove the following similar statement for terms:

(1) If σ is a term of L , then σM (a) = σN (a).

We prove this by induction on σ:

vM
i (a) = ai = vN

i (a);

kM (a) = kM = kN = kN (a) for k an individual constant of L

(Fσ0 . . . σm−1)
M (a) = FM (σM

0 (a), . . . σM
m−1(a))

= FN (σN
0 (a), . . . σN

m−1(a))

= (Fσ0 . . . σm−1)
N (a).

Here F is a function symbol of L . Thus (1) holds.
Now we prove the lemma itself by induction on ϕ:

M |= (σ = τ)[a] iff σM (a) = τM (a)

iff σN (a) = τN (a)

iff N |= (σ = τ)[a];

M |= (Rσ0 . . . σm−1)[a] iff 〈σM
0 (a), . . . , σM

m−1(a)〉 ∈ RM

iff 〈σN
0 (a), . . . , σN

m−1(a)〉 ∈ RN

iff N |= (Rσ0 . . . σm−1)[a];

M |= (¬ϕ)[a] iff not(M |= ϕ[a])

iff not(N |= ϕ[a])

iff N |= (¬ϕ)[a];

M |= (ϕ→ ψ)[a] iff not(M |= ϕ[a]) or M |= ψ[a]

iff not(N |= ϕ[a]) or N |= ψ[a]

iff N |= (ϕ→ ψ)[a];

M |= (∀viϕ)[a] iff for all u ∈M(M |= ϕ[ai
u])

iff for all u ∈ N(N |= ϕ[ai
u])

iff N |= (∀viϕ)[a].
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Theorem 4.15. (Completeness Theorem 1) Every consistent set of sentences in a finite
language has a model.

Proof. Let Γ be a consistent set of sentences in the finite language L . Let L ′ be
obtained from L by adjoining individual constants ci for each i ∈ ω. By Lemmas 4.12
and 4.13 let ∆ be a consistent rich complete set of sentences in L ′ such that Γ ⊆ ∆.
By Lemma 4.7, let M be a model of ∆. Let N be the L -structure obtained from M by
removing the denotations of the constants ci for i ∈ ω. By Lemma 4.14, N is a model of
Γ.

Theorem 4.16. (Completeness Theorem 2) Let Γ ∪ {ϕ} be a set of formulas in a finite
language. Then Γ ⊢ ϕ iff Γ |= ϕ.

Proof. By Theorems 4.3 and 4.15.

Theorem 4.17. (Completeness Theorem 3) For any formula ϕ, ⊢ ϕ iff |= ϕ.

Proof. Note that the implicit language L here is arbitrary, not necessarily finite. ⇒
holds by Theorem 4.3. Now suppose that |= ϕ in the sense of L : for every L -structure
M and every a : ω → M we have M |= ϕ[a]. Let L ′ be the language whose non-logical
symbols are those occurring in ϕ. There are finitely many such symbols, so L ′ is a finite
language. By Lemma 4.14 we have |= ϕ in the sense of L ′. Hence by Theorem 4.16, ⊢ ϕ
in the sense of L ′. But every L ′-proof is also an L -proof; so ⊢ ϕ in the sense of L .

One of the most important consequences of Completeness Theorem 1 is the following result,
which is at the beginning of real model theory.

Theorem 4.18. (The Compactness Theorem) If Γ is a set of sentences in a finite language
and every finite subset of Γ has a model, then Γ itself has a model.

Proof. Suppose to the contrary that Γ does not have a model. Then by Theorem
4.15, Γ is inconsistent. So Γ ⊢ ¬(v0 = v0). In a Γ-proof with ¬(v0 = v0) as a member, let
∆ be the set of all ϕ ∈ Γ that appear as entries in the proof. So ∆ is a finite subset of Γ,
and so has a model M . But the proof shows that ∆ ⊢ ¬(v0 = v0). So by Theorem 4.2,
∆ |= ¬(v0 = v0). Since M is a model of ∆, it follows that M is a model of ¬(v0 = v0),
contradiction.

We give one consequence of the compactness theorem, and formulate more in the exercises.

Theorem 4.19. If L is a finite language, then there is no set Γ of sentences of L such
that an L -structure is finite iff it is a model of Γ.

Proof. Suppose there is such a set Γ. Adjoin to Γ all of the sentences

∃v0 . . .∃vn

∧

i<j≤n

¬(vi = vj)

for n a positive integer. Note that such a sentence holds in a model iff the model has at
least n + 1 elements. Let Γ′ be the result of adjoining all of these sentences. Now every
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finite subset ∆ of Γ′ has a model. In fact, if n is largest such that the above sentence is in
∆, take an L -structure M with n+ 1 elements. By hypothesis, M is a model of Γ, and it
is also a model of all of the new sentences which are in ∆, so it is a model of ∆. By the
compactness theorem it follows that Γ′ has a model N . But since all of the new sentences
are in Γ′, N must be infinite. It is a model of Γ, contradiction.

As the final topic of this chapter we consider the role of definitions. By a theory we mean a
pair (L ,Γ) such that L is a first-order language and Γ is a set of formulas in L . A theory
(L ′,Γ′) is a simple definitional expansion of a theory (L ,Γ) provided that the following
conditions hold:

(1) L ′ is obtained from L by adding one new non-logical symbol.

(2) If the new symbol of L ′ is an m-ary relation symbol R, then there is a formula ϕ of
L with free variables among v0, . . . , vm−1 such that

Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ ϕ}.

(3) If the new symbol of L ′ is an individual constant c, then there is a formula ϕ of L

with free variables among v0 such that Γ ⊢ ∃!v0ϕ and

Γ′ = Γ ∪ {c = v0 ↔ ϕ}.

Here ∃!v0ϕ is the formula ∃v0[ϕ ∧ ∀vi[Subfv0
vi
ϕ → v0 = vi], where i is minimum such that

vi does not occur in ϕ.

(4) If the new symbol of L ′ is an m-ary function symbol F, then there is a formula ϕ of
L with free variables among v0, . . . , vm such that Γ ⊢ ∀v0 . . .∀vm−1∃!vmϕ and

Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ ϕ}.

The basic facts about definitions are that the defined terms can always be eliminated, and
adding a definition does not change what is is provable in the original language. In order
to prove these two facts, we first show that any formula can be put in a certain normal
form, which is interesting in its own right. This normal form will be defined shortly.

Lemma 4.20. If c is an individual constant and i 6= 0, then ⊢ c = vi ↔ ∃v0(v0 = vi ∧c =
v0).

Proof. We argue model-theoretically. Suppose that A is a structure and a : ω → A.

If A |= (c = vi)[a], then cA = ai. Then vA
0 (a0

ai
) = ai and vA

i (a0
ai

) = ai. Hence A |= (v0 =

vi ∧ c = v0)[a
0
ai

], and so A |= ∃v0(v0 = vi ∧ c = v0)[a]. Thus A |= (⊢ c = vi)[a] implies

that A |= ∃v0(v0 = vi ∧ c = v0)[a].
Conversely, suppose that A |= ∃v0(v0 = vi ∧ c = v0)[a]. Choose x ∈ A such that A |=

(v0 = vi ∧ c = v0)[a
0
x]. Then x = vA

0 (a0
x) = vA

i (a0
x) = ai and cA = vA

0 (a0
x) = ai = vA

i (a).
Hence A |= (⊢ c = vi)[a].
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So we have shown that A |= (⊢ c = vi)[a] iff A |= ∃v0(v0 = vi ∧ c = v0)[a]. It
follows that |= c = vi ↔ ∃v0(v0 = vi ∧ c = v0). Hence by the completeness theorem,
⊢ c = vi ↔ ∃v0(v0 = vi ∧ c = v0).

Lemma 4.21. Suppose that R is an m-ary relation symbol and 〈i(0), . . . , i(m − 1)〉 is a
sequence of natural numbers such that m ≤ i(j) for all j < m. Then

⊢ Rvi(0) . . . vi(m−1) ↔ ∃v0 . . .∃vm−1





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 .

Proof. Again we argue model-theoretically. Suppose that A is a structure and a :

ω → A. First suppose that A |= Rvi(0) . . . vi(m−1)[a]. Thus 〈ai(0), . . . , ai(m−1)〉 ∈ RA. Let

b = (· · · (a0
i(0))

1
i(1) · · ·)

m−1
i(m−1).

Then for any j < m we have vA
j (b) = bj = ai(j) = bi(j) = vA

i(j)(b). It follows that

A |=
∧

j<m(vj = vi(j))[b]. Also, 〈b0, . . . , bm−1〉 = 〈ai(0), . . . , ai(m−1)〉 ∈ RA. Hence A |=
Rv0 . . . vm−1[b]. Thus

A |=





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 [b]

and hence

(1) A |= ∃v0 . . .∃vm−1





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 [a]

Hence we have shown that A |= Rvi(0) . . . vi(m−1)[a] implies (1).
Now suppose conversely that (1) holds. Choose x(0), . . . , x(m− 1) ∈ A such that

A |=





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 [b],

where b = (· · · (a0
x(0))

1
x(1)) · · ·)

m−1
x(m−1). For any j < m we have bj = x(j) = vA

j (b) =

vA
i(j)(b) = vA

i(j)(a) = ai(j). We also have 〈b0, . . . , bm−1〉 ∈ RA. Hence 〈ai(0), . . . , ai(m−1)〉 ∈

RA, and it follows that A |= Rvi(0) . . . vi(m−1)[a].

So we have shown that A |= Rvi(0) . . . vi(m−1)[a] iff (1). Therefore

|= Rvi(0) . . . vi(m−1) ↔ ∃v0 . . .∃vm−1





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 .
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and it follows by the completeness theorem that

⊢ Rvi(0) . . . vi(m−1) ↔ ∃v0 . . .∃vm−1





∧

j<m

(vj = vi(j)) ∧ Rv0 . . . , vm−1



 .

The proof of the following lemma is very similar to the proof of Lemma 4.21.

Lemma 4.22. Suppose that F is an m-ary function symbol and 〈i(0), . . . , i(m)〉 is a
sequence of natural numbers such that m+ 1 ≤ i(j) for all j ≤ m. Then

⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ∃v0 . . .∃vm





∧

j≤m

(vj = vi(j)) ∧ Fv0 . . . , vm−1 = vm



 .

Proof. Again we argue model-theoretically. Suppose that A is a structure and a : ω →

A. First suppose that A |= Fvi(0) . . . vi(m−1) = vi(m)[a]. Thus FA(ai(0), . . . , ai(m−1)) =
ai(m). Let

b = (· · · (a0
i(0))

1
i(1) · · ·)

m
i(m).

Then for any j ≤ m we have vA
j (b) = bj = ai(j) = bi(j) = vA

i(j)(b). It follows that

A |=
∧

j≤m(vj = vi(j))[b]. Also,

F(b0, . . . , bm−1) = F(ai(0), . . . , ai(m−1))

= ai(m)

= bm.

Hence A |= (Fv0 . . . vm−1 = vm)[b]. Thus

A |=





∧

j≤m

(vj = vi(j)) ∧Fv0 . . . , vm−1 = vm



 [b]

and hence

(1) A |= ∃v0 . . .∃vm





∧

j≤m

(vj = vi(j)) ∧Fv0 . . . , vm−1 = vm



 [a]

Hence we have shown that A |= Rvi(0) . . . vi(m−1)[a] implies (1).
Now suppose conversely that (1) holds. Choose x(0), . . . , x(m) ∈ A such that

A |=





∧

j≤m

(vj = vi(j)) ∧Fv0 . . . , vm−1 = vm



 [b],
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where b = (· · · (a0
x(0))

1
x(1)) · · ·)

m
x(m). For any j ≤ m we have bj = x(j) = vA

j (b) = vA
i(j)(b) =

vA
i(j)(a) = ai(j). We also have 〈FA(b0, . . . , bm−1) = bm. Hence FA(ai(0), . . . , ai(m−1)) =

ai(m), and it follows that A |= (Fvi(0) . . . vi(m−1)) = vi(m))[a].

So we have shown that A |= (Fvi(0) . . . vi(m−1)) = vi(m))[a] iff (1). Therefore

|= Fvi(0) . . . vi(m−1) = vi(m) ↔ ∃v0 . . .∃vm−1





∧

j≤m

(vj = vi(j)) ∧ Fv0 . . . , vm−1 = vm



 .

and it follows by the completeness theorem that

⊢ Fvi(0) . . . vi(m−1) = vi(m) ↔ ∃v0 . . .∃vm−1





∧

j≤m

(vj = vi(j)) ∧Fv0 . . . , vm−1 = vm



 .

A formula ϕ is standard provided that every atomic subformula of ϕ has one of the following
forms:

vi = vj for some i, j ∈ ω.
c = v0 for some individual constant c.
Rv0 . . . vm−1 for some m-ary relation symbol R.
Fv0 . . . vm−1 = vm for some m-ary function symbol F.

Lemma 4.23. If σ is a term and i ∈ ω, then there is a standard formula with the same
free variables as σ = vi such that ⊢ σ = vi ↔ ϕ.

Proof. We proceed by induction on σ. If σ is a variable vj , then σ = vi is vj = vi,
which is already standard. If σ is an individual constant c, then the desired conclusion
follows from Lemma 4.20. Now suppose that σ is Fτ0 . . . ϕm−1 for some m-ary function
symbol F and some terms τ0, . . . , τm−1, where we know the result for each τi. Let n ∈ ω

be greater than each j such that j occurs in σ, and also greater than i and m. Then we
claim

(*) ⊢ σ = vi ↔ ∃vn . . .∃vn+m

[

∧

j<m(τj = vn+j) ∧ vi = vn+m ∧Fvn . . . vn+m−1 = vn+m

]

.

To prove this claim, suppose that A is a structure and a : ω → A. First suppose that

A |= (σ = vi)[a]. Thus FA(τA
0 (a), . . . τA

m−1(a)) = ai. Let

b = (· · · (an

τA
0 (a)

)n+1

τA
1 (a)

) · · ·)n+m−1

τA
m−1

(a)
)n+m
ai

.

Then for each j < m we have τA
j (a) = τA

j (b) since n is greater than each k such that vk

occurs in τj , using Proposition 2.4. Also, bn+j = τA
j (a) = τA

j (b). So

(1) A |=
∧

j<m

(τj = vn+j)[b].
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Moreover, bn+m = ai = bi, so

(2) A |= (vn+m = vi)[b].

Next, for each j < m we have τA
j (a) = bn+j , bn+m = ai, and FA(τA

0 (a), . . . τA
m−1(a)) = ai,

so

(3) A |= (Fvn . . . vn+m−1 = vn+m)[b].

Putting (1)–(3) together, we get

A |=





∧

j<m

(τj = vn+j) ∧ vi = vn+m ∧Fvn . . . vn+m−1 = vn+m



 [b]

and hence

(4) A |= ∃vn . . .∃vn+m





∧

j<m

(τj = vn+j) ∧ vi = vn+m ∧ Fvn . . . vn+m−1 = vn+m



 [a]

Thus we have shown that A |= [σ = vi][a] implies (4).
Conversely, suppose that (4) holds. Choose x(0), . . . x(m) ∈ A such that

A |=





∧

j<m

(τj = vn+j) ∧ vi = vn+m ∧ Fvn . . . vn+m−1 = vn+m



 [b],

where b = (· · · (an
x(0))

n=1
x(1)) · · ·)

n+m
x(m). Then for any j < m we have bn+j = τA

j (b) = τA
j (a)

since n is greater than each k such that vk occurs in τj . Also, bn+m = bi = ai and

FA(bn, . . . , bn+m−1) = bn+m. It follows that FA(τA
0 (a), . . . , τA

m−1(a)) = ai. Thus A |=

[σ = vi][a]. So we have shown that A |= [σ = vi][a] iff (4). By the completeness theorem,
this proves the claim (∗).

Now by the inductive hypothesis, for each j < m let ψj be a standard formula such
that ⊢ τj = vn+j ↔ ψj . By Lemma 4.22 let χ be a standard formula such that ⊢
Fvn . . . vn+m−1 = vn+m ↔ χ. Then by (∗) and Lemma 3.20 there is a standard formula ϕ
such that ⊢ σ = vi ↔ ϕ. The condition on free variables is clear.

Theorem 4.24. For any formula ϕ there is a standard formula ψ with the same free
variables as ϕ such that ⊢ ϕ↔ ψ.

Proof. We proceed by induction on ϕ. First suppose that ϕ is an atomic equality
formula σ = τ . Let i ∈ ω be such that vi does not occur in ϕ. Then

(1) ⊢ ϕ↔ ∃vi(σ = vi ∧ τ = vi).
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In fact, let A be a structure and a : ω → A. First suppose that A |= σ = τ [a]. Say

σA(a) = τA(a) = x. Then A |= [σ = vi∧τ = vi][a
i
x], and hence A |= ∃vi(σ = vi∧τ = vi)[a].

Conversely, suppose that A |= ∃vi(σ = vi ∧ τ = vi)[a]. Choose x ∈ A such that
A |= [σ = vi ∧ τ = vi][a

i
x]. Now vi does not occur in ϕ, so using Proposition 2.4 we get

σA(a) = σA[ai
x] = τA[ai

x] = τA[a].
Now (1) follows by the completeness theorem.
By (1), Lemma 4.23, and Theorem 3.20 it follows that there is a standard formula ψ

with the same free variables as ϕ such that ⊢ ϕ↔ ψ.
Second, suppose that ϕ is Rσ0 . . . σm−1 for some m-ary relation symbol and some

terms σ0, . . . σm−1. Let n be greater than m and all k such that vk occurs in ϕ. Then

(2) ⊢ ϕ↔ ∃vn . . .∃vn+m−1

[

∧

j<m(σj = vn+j) ∧Rvn . . . vn+m−1

]

.

We leave the proof of (2) to an exercise.
Now (2), Lemma 4.23, and Theorem 3.20 again give the desired formula ψ.
The inductive steps involving ¬, →, and ∀ follow using Theorem 3.20.

The following theorem expresses that defined notions can be eliminated.

Theorem 4.25. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ), and let ϕ be a
formula of L ′. Then there is a formula ψ of L with the same free variables as ϕ such
that Γ′ ⊢ ϕ↔ ψ.

(Note here that ⊢ is in the sense of L ′.)

Proof. Let χ be a standard formula (of L ′) such that ⊢ ϕ↔ χ, such that χ has the
same free variables as ϕ. Now we consider cases depending on what the new symbol s of
L ′ is. Let θ be as in the definition of simple definitional expansion.

Case 1. s is an individual constant c. Then we let ψ be obtained from χ by replacing
every subformula c = v0 of χ by θ.

Case 2. s is an m-ary relation symbol R. Then we let ψ be obtained from χ by
replacing every subformula Rv0 . . . vm−1 of χ by θ.

Case 3. s is an m-ary function symbol F. Then we let ψ be obtained from χ by
replacing every subformula Fv0 . . . vm−1 = vm of χ by θ.

The following theorem expresses that a simple definitional expansion does not increase the
set of old formulas which are provable.

Theorem 4.26. Let (L ′,Γ′) be a simple definitional expansion of (L ,Γ) with L finite,
and let ϕ be a formula of L . Suppose that Γ′ ⊢ ϕ. Then Γ ⊢ ϕ.

Proof. By the completeness theorem we have Γ′ |= ϕ, and it suffices to show that
Γ |= ϕ. So, suppose that A |= ψ for each ψ ∈ Γ. In order to show that A |= ϕ, suppose

that a : ω → A; we want to show that A |= ϕ[a]. We define an L ′-structure A
′
by defining

the denotation of the new symbol s of L ′. The three cases are treated similarly, but we
give full details for each of them.

Case 1. s is c, an individual constant. By the definition of simple definitional expan-
sion, there is a formula χ of L with free variables among v0 such that Γ ⊢ ∃!v0χ, and
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Γ′ = Γ ∪ {c = v0 ↔ χ}. Then Γ |= ∃!v0χ. Since A |= Γ, it follows that A |= χ[a0
x] for a

unique x ∈ A. Let cA
′

= x. We claim that A
′
|= (c = v0 ↔ χ). In fact, suppose that

b : ω → A. If A
′
|= (c = v0)[b], then b0 = cA

′

= x. Then a0
x and b agree at 0, so by

Lemma 4.4, since the free variables of χ are among v0, we have A |= χ[b]. By Lemma

4.14, A
′
|= χ[b]. Conversely, suppose that A

′
|= χ[b]. Then b and a0

b(0) agree on 0, so

A
′
|= χ[a0

b(0)]. Hence A |= χ[a0
b(0)] by Lemma 4.14. Since also A |= χ[a0

x] and A |= ∃!v0χ,

it follows that b(0) = x. Hence A
′
|= (c = v0)[b]. This proves the claim.

By the claim, A
′
is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a

model of ϕ, as desired.
Case 2. s is F, an m-ary function symbol. By the definition of simple defini-

tional expansion, there is a formula χ of L with free variables among v0, . . . , vm such
that Γ ⊢ ∀v0 . . .∀vm−1∃!vmχ, and Γ′ = Γ ∪ {Fv0 . . . vm−1 = vm ↔ χ}. Then Γ |=
∀v0 . . .∀vm−1∃!vmχ. Let x(0), . . . , x(m − 1) ∈ A. Since A |= Γ, it follows that A |=

χ[(· · · (a0
x(0))

1
x(1)) · · ·)

m−1
x(m−1))

m
y ] for a unique y ∈ A. Let FA

′

(x(0), . . . , x((m − 1)) = y.

We claim that A
′
|= (Fv0 . . . vm−1 = vm ↔ χ). In fact, suppose that b : ω → A. If

A
′
|= (Fv0 . . . vm−1 = vm)[b], then FA

′

(b0, . . . , bm−1) = bm. Now b and (· · · (a0
b0

)1b1) · · ·)
m
bm

and b agree on {0, . . . , m}, so by the definition of FA
′

we get A |= χ[(· · · (a0
b0

)1b1) · · ·)
m
bm

],

and hence also A |= χ[b], and by Lemma 4.14 A
′
|= χ[b].

Conversely, suppose that A
′
|= χ[b]. Then A |= [(· · · (a0

b0
)1b1) · · ·)

m
bm

], and therefore

FA
′

(b0, . . . , bm−1) = bm. This proves the claim.

By the claim, A
′
is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a

model of ϕ, as desired.
Case 3. s is R, an m-ary relation symbol. By the definition of simple definitional

expansion, there is a formula χ of L with free variables among v0, . . . , vm−1 such that
Γ′ = Γ ∪ {Rv0 . . . vm−1 ↔ χ}. Let

RA
′

= {〈a0, . . . , am−1〉 : A |= χ[a]

for some a : ω → A which extends 〈a0, . . . , am−1〉}.

We claim that A
′
|= (Rv0 . . . vm−1 ↔ χ). In fact, suppose that b : ω → A. If A

′
|=

(Rv0 . . . vm−1[b], then 〈b0, . . . , bm−1〉 ∈ RA
′

, and so there is an extension a : ω → A of
〈b0, . . . , bm−1〉 such that A |= χ[a]. Since a and b agree on all k such that vk occurs in χ,

it follows that A |= χ[b], and hence A
′
|= χ[b].

Conversely, suppose that A
′
|= χ[b]. Then A |= χ[b] by Lemma 4.14, and it follows

that 〈b0, . . . , bm−1〉 ∈ RA
′

. This proves the claim.

By the claim, A
′
is a model of Γ′. Hence it is a model of ϕ. By Lemma 4.14, A is a

model of ϕ, as desired.

Theorem 4.27. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Suppose that ϕ is an Lm formula. Then
there is an L0 formula ψ with the same free variables as ϕ such that Γm ⊢ ϕ↔ ψ.
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Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.25. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Let ϕ be a formula of Lm+1. Then by Theorem 4.25 there
is a formula ψ of L with the same free variables as ϕ such that Γm+1 ⊢ ϕ ↔ ψ. By
the inductive hypothesis, there is a formula χ with the same free variables as ψ such that
Γm ⊢ ψ ↔ χ. Then Γm+1 ⊢ ϕ↔ χ.

Theorem 4.28. Let m be an integer ≥ 2, and suppose that (Li+1,Γi+1) is a simple
definitional expansion of (Li,Γi) for each i < m. Also assume that L0 is finite. Suppose
that ϕ is an L0 formula and Γm ⊢ ϕ. Then Γ0 ⊢ ϕ.

Proof. By induction on m. If m = 2, the conclusion follows from Theorem 4.26. now
assume the result for m and suppose that (Li+1,Γi+1) is a simple definitional expansion
of (Li,Γi) for each i ≤ m. Suppose that ϕ is an L0 formula and Γm+1 ⊢ ϕ. Then by
Theorem 4.26, Γm ⊢ ϕ, and so by the inductive assumption, Γ0 ⊢ ϕ.

The above facts about definitions help to clarify the foundations of mathematics. As
already mentioned, almost any mathematical theorem can be put in the form ZFC ⊢ ϕ

for some formula ϕ. The language L here has only one non-logical symbol, the binary
relation symbol ∈ for membership. Many other symbols occur in a development of set
theory, including those in various fields of mathematics. These can all be considered as
being introduced by definitions, as above. To make these comments more definite, we
consider the symbols ⊆, ∅, and ∩. Let L0 be the language of set theory, so that it has
only one non-logical constant, the binary relation symbol ∈ for membership. Then we have
claimed that the foundations of mathematics is embodied in the theory (L0,ZFC).

Let (L1,ZFC1) be the simple definitional expansion of (L0,ZFC) obtained by adjoin-
ing to L0 a new binary relation symbol ⊆ and adjoining to ZFC the formula

v0 ⊆ v1 ↔ ∀v2(v2 ∈ v0 → v2 ∈ v1).

Here we write v0 ⊆ v1 instead of ⊆ v0v1.

Proposition 4.29. ZFC ⊢ ∃!v0∀v1[¬(v1 ∈ v0)].

Proof. The formula ⊢ v0 = v0 → ([v0 ∈ v1 ↔ v0 ∈ v2 ∧ ¬(v0 = v0)] → ¬(v0 ∈ v1)) is
a tautology, and hence by Proposition 3.4 we get

⊢ [v0 ∈ v1 ↔ v0 ∈ v2 ∧ ¬(v0 = v0)] → ¬(v0 ∈ v1).

Hence by generalization and (L2) we get

⊢ ∀v0([v0 ∈ v1 ↔ v0 ∈ v2 ∧ ¬(v0 = v0)]) → ∀v0(¬(v0 ∈ v1)).

Now using generalization, (L2), and a tautology we obtain

⊢ ∃v1∀v0([v0 ∈ v1 ↔ v0 ∈ v2 ∧ ¬(v0 = v0)]) → ∃v1∀v0(¬(v0 ∈ v1)).
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The hypothesis of the implication here is an instance of the comprehension axiom. Hence

ZFC ⊢ ∃v1∀v0(¬(v0 ∈ v1)).

Using the change of bound variable theorem 3.25 we get in succession

ZFC ⊢ ∃v2∀v0(¬(v0 ∈ v2))

ZFC ⊢ ∃v2∀v1(¬(v1 ∈ v2))

ZFC ⊢ ∃v0∀v1(¬(v1 ∈ v0))(1)

By the extensionality axiom and change of bound variable theorem 3.25 we get in succession

ZFC ⊢ ∀v0∀v1[∀v2(v2 ∈ v0 ↔ v2 ∈ v1) → v0 = v1];

ZFC ⊢ ∀v0∀v1[∀v3(v3 ∈ v0 ↔ v3 ∈ v1) → v0 = v1];

ZFC ⊢ ∀v0∀v2[∀v3(v3 ∈ v0 ↔ v3 ∈ v2) → v0 = v2];

ZFC ⊢ ∀v0∀v2[∀v1(v1 ∈ v0 ↔ v1 ∈ v2) → v0 = v2].(2)

Now the following formula is a tautology: ¬(v1 ∈ v0) → [¬(v1 ∈ v2) → (v1 ∈ v0 ↔ v1 ∈
v2)]. Hence using generalization and (L2) we get

⊢ ∀v1(¬(v1 ∈ v0)) → [∀v1(¬(v1 ∈ v2)) → ∀v1(v1 ∈ v0 ↔ v1 ∈ v2)].

From (2) we then easily get

ZFC ⊢ ∀v1(¬(v1 ∈ v0)) → [∀v1(¬(v1 ∈ v2)) → v0 = v2],

and hence by generalization and Proposition 3.38 we have

ZFC ⊢ ∀v1(¬(v1 ∈ v0)) → ∀v2[∀v1(¬(v1 ∈ v2)) → v0 = v2],

Then by a tautology,

ZFC ⊢ ∀v1(¬(v1 ∈ v0)) → [∀v1(¬(v1 ∈ v0)) ∧ ∀v2[∀v1(¬(v1 ∈ v2)) → v0 = v2]],

Now using generalization and (L2) we get

ZFC ⊢ ∃v0∀v1(¬(v1 ∈ v0)) → ∃v0[∀v1(¬(v1 ∈ v0)) ∧ ∀v2[∀v1(¬(v1 ∈ v2)) → v0 = v2]],

From (1) it then follows that

ZFC ⊢ ∃v0[∀v1(¬(v1 ∈ v0)) ∧ ∀v2[∀v1(¬(v1 ∈ v2)) → v0 = v2]],

which is the desired conclusion.
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We now let L2 be the extension of L1 by adding an individual constant ∅, and ZFC2 =
ZFC1 ∪ {∅ = v0 ↔ ∀v1(¬(v1 ∈ v0))}. Thus (L2,ZFC2) is a simple definitional expansion
of (L1,ZFC1).

Proposition 4.30. ZFC ⊢ ∀v0∀v1∃!v2∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1).

Proof. An instance of the comprehension axioms gives

ZFC ⊢ ∃v1∀v0(v0 ∈ v1 ↔ v0 ∈ v2 ∧ v0 ∈ v3).

Hence by generalization we get

ZFC ⊢ ∀v2∀v3∃v1∀v0(v0 ∈ v1 ↔ v0 ∈ v2 ∧ v0 ∈ v3).

Now the change of bound variables theorem 3.25 gives successively

ZFC ⊢ ∀v4∀v3∃v1∀v0(v0 ∈ v1 ↔ v0 ∈ v4 ∧ v0 ∈ v3);

ZFC ⊢ ∀v4∀v5∃v1∀v0(v0 ∈ v1 ↔ v0 ∈ v4 ∧ v0 ∈ v5);

ZFC ⊢ ∀v4∀v5∃v2∀v0(v0 ∈ v2 ↔ v0 ∈ v4 ∧ v0 ∈ v5);

ZFC ⊢ ∀v4∀v5∃v2∀v3(v3 ∈ v2 ↔ v3 ∈ v4 ∧ v3 ∈ v5);

ZFC ⊢ ∀v0∀v5∃v2∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v5);

ZFC ⊢ ∀v0∀v1∃v2∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1).

Now two applications of Corollary 3.28 gives

(1) ZFC ⊢ ∃v2∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1).

By the extensionality axiom and successive applications of the change of bound variables
theorem 3.25 we have

ZFC ⊢ ∀v0∀v1[∀v2(v2 ∈ v0 ↔ v2 ∈ v1) → v0 = v1];

ZFC ⊢ ∀v0∀v4[∀v2(v2 ∈ v0 ↔ v2 ∈ v4) → v0 = v4];

ZFC ⊢ ∀v0∀v4[∀v3(v3 ∈ v0 ↔ v3 ∈ v4) → v0 = v4].

Then by Corollary 3.28 twice we get

(2) ZFC ⊢ ∀v3(v3 ∈ v0 ↔ v3 ∈ v4) → v0 = v4].

Now the following formula is a tautology:

(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → [(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → (v3 ∈ v0 ↔ v3 ∈ v4)].

Hence by generalization and (L2) we get

⊢∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) →

[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → ∀v3(v3 ∈ v0 ↔ v3 ∈ v4)].
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Using (2) it follows that

ZFC ⊢∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) →

[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → v0 = v4].

By generalization and Proposition 3.38 we then obtain

ZFC ⊢∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) →

∀v4[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → v0 = v4].

By a tautology we then have

ZFC ⊢∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → ∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1)∧

∀v4[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → v0 = v4].

Generalization and (L2) yield

ZFC ⊢∃v2∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → ∃v2[∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1)∧

∀v4[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → v0 = v4]].

Hence by (1) we have

ZFC ⊢∃v2[∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1)∧

∀v4[∀v3(v3 ∈ v4 ↔ v3 ∈ v0 ∧ v3 ∈ v1) → v0 = v4]].

This is the desired result.

Now we let L3 be the extension of L2 by adding a binary function symbol ∩, and

ZFC3 = ZFC2 ∪ {v0 ∩ v1 = v2 ↔ ∀v3(v3 ∈ v2 ↔ v3 ∈ v0 ∧ v3 ∈ v1)}.

Then (L3,ZFC3) is a simple definitional expansion of (L2,ZFC2).

EXERCISES

E4.1. Suppose that Γ ⊢ ϕ → ψ, Γ ⊢ ϕ → ¬ψ, and Γ ⊢ ¬ϕ → ϕ. Prove that Γ is
inconsistent.

E4.2. Let L be a language with just one non-logical constant, a binary relation symbol
R. Let Γ consist of all sentences of the form ∃v1∀v0[Rv0v1 ↔ ϕ] with ϕ a formula with
only v0 free. Show that Γ is inconsistent. Hint: take ϕ to be ¬Rv0v0.

E4.3. Show that the first-order deduction theorem fails if the condition that ϕ is a sentence
is omitted. Hint: take Γ = ∅, let ϕ be the formula v0 = v1, and let ψ be the formula v0 = v2.

E4.4. In the language for A
def
= (ω, S, 0,+, ·), let τ be the term v0 + v1 · v2 and ν the term

v0 + v2. Let a be the sequence 〈0, 1, 2, . . .〉. Let ρ be obtained from τ by replacing the
occurrence of v1 by ν.
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(a) Describe ρ as a sequence of integers.

(b) What is ρA(a)?

(c) What is νA(a)?
(d) Describe the sequence a1

νA(a)
as a sequence of integers.

(e) Verify that ρA(a) = τA(a1

νA(a)
) (cf. Lemma 4.4.)

E4.5. In the language for A
def
= (ω, S, 0,+, ·), let ϕ be the formula ∀v0(v0 · v1 = v1), let ν

be the formula v1 + v1, and let a = 〈1, 0, 1, 0, . . .〉.
(a) Describe Subfv1

ν ϕ as a sequence of integers

(b) What is νA(a)?
(c) Describe a1

νA(a)
as a sequence of integers.

(d) Determine whether A |= Subfv1
ν ϕ[a] or not.

(e) Determine whether A |= ϕ[a1

νA(a)
] or not.

E4.6. Show that the condition in Lemma 4.6 that

no free occurrence of vi in ϕ is within a subformula of the form ∀vkµ with vk a variable
occurring in ν

is necessary for the conclusion of the lemma.

E4.7. Let A be an L -structure, with L arbitrary. Define Γ = {ϕ : ϕ is a sentence and
A |= ϕ[a] for any a : ω → A}. Prove that Γ is complete and consistent.

E4.8. Call a set Γ strongly complete iff for every formula ϕ, Γ ⊢ ϕ or Γ ⊢ ¬ϕ. Prove that
if Γ is strongly complete, then Γ ⊢ ∀v0∀v1(v0 = v1).

E4.9. Prove that if Γ is rich, then for every term σ with no variables occurring in σ there
is an individual constant c such that Γ ⊢ σ = c.

E4.10. Prove that if Γ is rich, then for every sentence ϕ there is a sentence ψ with no
quantifiers in it such that Γ ⊢ ϕ↔ ψ.

E4.11. Describe sentences in a language for ordering which say that < is a linear ordering
and there are infinitely many elements. Prove that the resulting set Γ of sentences is not
complete.

E4.12. Prove that if a sentence ϕ holds in every infinite model of a set Γ of sentences, then
there is an m ∈ ω such that it holds in every model of Γ with at least m elements.

E4.13. Let L be the language of ordering. Prove that there is no set Γ of sentences whose
models are exactly the well-ordering structures.

E4.14. Suppose that Γ is a set of sentences, and ϕ is a sentence. Prove that if Γ |= ϕ, then
∆ |= ϕ for some finite ∆ ⊆ Γ.

E4.15. Suppose that f is a function mapping a set M into a set N . Let R = {(a, b) : a, b ∈
M and f(a) = f(b)}. Prove that R is an equivalence relation on M .
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E4.16. Suppose that R is an equivalence relation on a set M . Prove that there is a function
f mapping M into some set N such that R = {(a, b) : a, b ∈M and f(a) = f(b)}.

E4.17. Let Γ be a set of sentences in a first-order language, and let ∆ be the collection of
all sentences holding in every model of Γ. Prove that ∆ = {ϕ : ϕ is a sentence and Γ ⊢ ϕ}.

E4.18. Prove (2) in the proof of Theorem 4.24.
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