
2. Fundamentals of first-order logic

We now introduce the main object of study in these notes: first-order logic. This is the
most important and most widely studied of mathematical treatments of logic. The basic
idea is to have a formal way of studying common mathematical structures. The structures
we will consider are those implicit in most mathematical subjects. They consist of a
universe, which is a set within which all action takes place, and various operations and
relations on that universe. The universes we consider are ω, the set of all natural numbers
0, 1, . . ., the set Q of rational numbers, the set R of real numbers, and an arbitrary set.
One can imagine other structures, and first-order logic is frequently applied to structures
such as groups, rings, fields, etc., with which we do not assume familiarity. For us, typical
structures are the following:

(ω, S), where S(n) = n+ 1 for all n ∈ ω.
(ω,+).
(ω, S, 0,+, ·). This is a basic structure for number theory, and will play an important role
in our discussion of Gödel’s incompleteness theorem.
(ω,<).
(Q,+, ·).
(R,+, ·, 0, 1, <). This structure is implicit in calculus.
(A, f), where A is any nonempty set and f maps A into A.
A, a nonempty set.

Different first-order languages are needed for each of these structures. All first-order lan-
guages have the following symbols in common. Again, as for sentential logic, we take these
to be certain natural numbers.

1 (negation)
2 (implication)
3 (the equality symbol)
4 (the universal quantifier)
5m for each positive integer m (variables ranging over elements, but not subsets, of a given
structure) We denote 5m by vm−1. Thus v0 is 5, v1 is 10, and in general vi is 5(i+ 1).

Special first-order languages have additional symbols for the functions and relations and
special elements involved. These will always be taken to be some positive integers not
among the above; thus they are positive integers greater than 4 but not divisible by 5. So
we have in addition to the above logical symbols some non-logical symbols:

Relation symbols, each of a certain positive rank.
Function symbols, also each having a specified positive rank.
Individual constants.

For example, for the structures given above we need the following non-logical symbols:

For (ω, S): a one-place function symbol S, taken to be 6.

For (ω,+): a two-place function symbol +, taken to be 7.
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For (ω, S, 0,+, ·): the symbols 6 and 7 above, and also an individual constant 0, taken to
be 8, and a two-place function symbol •, taken to be 9.

For (ω,<): a two-place relation symbol R, taken to be 11.

For (Q,+, ·): symbols 7 and 9 as above

For (R,+, ·, 0, 1, <): symbols 7, 9, 8, 11 as above, and also an individual constant 1, taken
to be 12.

For (A, f): a one-place function symbol f , taken to be 13.

For A alone, there are no individual constants, function symbols, or relation symbols.

In summary, we have the following non-logical symbols:

Symbol taken to be type

S 6 one-place function symbol

+ 7 two-place function symbol

0 8 individual constant

• 9 two-place function symbol

< 11 two-place relation symbol

1 12 individual constant

f 13 one-place function symbol

Thus altogether the symbols are 1, 2, . . . , 13, 15, 20, 25, . . .. Additional symbols, taken from
14, 16, 17, . . . , will be needed in the proof of the completeness theorem. Of course the
non-logical symbols which we have chosen are rather arbitrary. We could have chosen
different ones with no essential differences in what follows, and we could consider many
other structures. For brevity let M = {m ∈ ω+ : m ≥ 4 and m is not divisible by 5}.
Formally, a first-order language is a quadruple (Rel, Fcn, Cn, rnk) such that Rel, Fcn, Cn
are pairwise disjoint subsets of M (the sets of relation symbols, function symbols, and
individual constants), and rnk is a function mapping Rel ∪ Fcnindexfunction symbols
into the positive integers; rnk(S) gives the rank of the symbol S. For example, the first-
order language for the structure (R,+, ·, 0, 1, <) is the quadruple ({11}, {7, 9}, {8, 12}, rnk),
where rnk is the function with domain {7, 9, 11} such that rnk(7) = rnk(9) = rnk(11) = 2.

Since the symbols of a first-order language are just certain natural numbers, the
language is countable. It is also possible to consider uncountable languages, but we do not
want to assume a knowledge of infinite sets.

Now we will define the notions of terms and formulas, which give a precise formu-
lation of meaningful expressions. Terms are certain finite sequences of symbols. A term
construction sequence is a sequence 〈τ0, . . . , τm−1〉, m > 0, with the following properties:
for each i < m one of the following holds:
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τi is 〈vj〉 for some natural number j.

τi is 〈c〉 for some individual constant c.

τi is 〈F〉⌢σ⌢
0 σ⌢

1 · · ·⌢ σn−1 for some n-place function symbol F, with each σj equal to τk
for some k < i, depending upon j.

A term is a sequence appearing in some term construction sequence. Note the similarity
of this definition with that of sentential formula given in Chapter 1.

Frequently we will slightly simplify the notation for terms. Thus we might write
simply vj , or c, or Fσ0 . . . σn−1 for the above.

For the languages associated with the structures above, terms look like this:

For (ω, S): vi, SSv3, Sv109. As sequences these are 〈5(i+ 1)〉, 〈6, 6, 20〉, 〈6, 550〉. Here are
term construction sequences showing that these are terms:

(1) 〈〈vi〉〉
(2) 〈〈v3〉, 〈Sv3〉, 〈SSv3〉〉.
(3) 〈〈v109〉, 〈Sv109〉〉.
For (ω,+): officially we should write things like ++v0v1v0. But it is easier to understand
and read if we adhere to common mathematical usage, and write, for this term, (v0+v1)+
v0. Note that this is different from the term v0 + (v1 + v0), although the two “mean” the
same. (We will see shortly what “mean” means). These two terms are 〈7, 7, 5, 10, 5〉 and
〈7, 5, 7, 10, 5〉 respectively. Here are term construction sequences for these two terms:

(1) 〈〈v0〉, 〈v1〉, 〈+v0v1〉, 〈+ + v0v1v0〉〉.
(2) 〈〈v0〉, 〈v1〉, 〈+v1v0〉, 〈+v0 + v1v0〉〉.
(ω, S, 0,+, ·). A typical term is +v2 • v0S0. Using normal mathematical notation, this is
v2 + (v0 • S0). As a sequence it is 〈7, 15, 9, 5, 6, 8〉.
(ω,<): the only terms are the variables vi.

(Q,+, ·): again we use a more conventional notation. For example, we could write v0 •
(v1 + v2), which formally should be •v0 + v1v2 or, as a sequence, 〈9, 5, 7, 10, 15〉.
(R,+, ·, 0, 1, <): here the terms are polynomials with non-negative integer coefficents, in
the usual sense. Thus the polynomial x2 +1 can be considered to be the term (v0 • v0)+1
or, formally, + • v0v01; as a sequence, 〈7, 9, 5, 5, 12〉.
(A, f): here the terms are just like those for (ω, S), except for using f rather than S.

A: the only terms are the variables.

The following two propositons are very similar, in statement and proof, to Propositions
1.1 and 1.2. The first one is the principle of induction on terms.

Proposition 2.1. Let T be a collection of terms satisfying the following conditions:
(i) Each variable is in T .

21



(ii) Each individual constant is in T .
(iii) If F is a function symbol of rank m and τ0, . . . , τm−1 ∈ T , then also Fτ0 . . . τm−1 ∈

T .

Then T consists of all terms.

Proof. Let τ be a term. Say that 〈σ0, . . . , σm−1〉 is a term construction sequence
and σi = τ . We prove by complete induction on j that σj ∈ T for all j < m; hence
τ ∈ T . Suppose that j < m and σk ∈ T for all k < j. If σj = 〈vs〉 for some s, then
σj ∈ T . If σj = 〈c〉 for some individual constant c, then sj ∈ T . Finally, suppose that
σj is Fσk0

. . . σkn−1
with each kt < j. Then σkt

∈ T for each t < n by the inductive
hypothesis, and it follows that σj ∈ T . This completes the inductive proof.

Proposition 2.2. (i) Every term is a nonempty sequence.
(ii) If τ is a term, then exactly one of the following conditions holds:

(a) τ is an individual constant.
(b) τ is a variable.
(c) There exist a function symbol F, say of rank m, and terms σ0, . . . , σm−1 such

that τ is Fσ0 . . . σm−1.
(iii) No proper initial segment of a term is a term.
(iv) If F and G are function symbols, say of ranks m and n respectively, and if

σ0, . . . , σm−1, τ0, . . . , τn−1 are terms, and if Fσ0 . . . σm−1 is equal to Gτ0, . . . τn−1, then
F = G, m = n, and σi = τi for all i < m.

Proof. (i): This is clear since any entry in a term construction sequence is nonempty.
(ii): Also clear.
(iii): We prove this by complete induction on the length of a term. So suppose that

τ is a term, and for any term σ shorter than τ , no proper initial segment of σ is a term.
We consider cases according to (ii).

Case 1. τ is an individual constant. Then τ has length 1, and any proper initial
segment of τ is empty; by (i) the empty sequence is not a term.

Case 2. τ is a variable. Similarly.
Case 3. There exist an m-ary function symbol F and terms σ0, . . . , σm−1 such that

τ is Fσ0 . . . σm−1. Suppose that ρ is a term which is a proper initial segment of τ . By
(i), ρ is nonempty, and the first entry of ρ is F. By (ii), ρ has the form Fξ0 . . . ξm−1 for
certain terms ξ0, . . . , ξm−1. Since both σ0 and ξ0 are shorter terms than τ , and one of
them is an initial segment of the other, the induction hypothesis gives σ0 = ξ0. Let i < m

be maximum such that σi = ξi. Since ρ is a proper initial segment of τ , we must have
i < m− 1. But σi+1 and ξi+1 are shorter terms than τ and one is a segment of the other,
so by the inductive hypthesis σi+1 = ξi+1, contradicting the choice of i.

(iv): F is the first entry of Fσ0 . . . σm−1 and G is the first entry of Gτ0, . . . τn−1, so
F = G. Then by (ii) we get m = n. By induction using (iii), each σi = τi.

We introduced at the beginning of this chapter some typical structures for first-order logic.
Now we want to give the general notion of a structure. For a given first-order language
L = (Rel, Fcn, Cn, rnk), an L -structure is a quadruple A = (A,Rel′, F cn′, Cn′) such
that A is a nonempty set (the universe of the structure), Rel′ is a function assigning
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to each relation symbol R a rnk(R)-ary relation on A, i.e., a collection of rnk(R)-tuples
of elements of A, Fcn′ is a function assigning to each function symbol F a rnk(F)-ary
opeation on A, i.e., a function assigning a value in A to each rnk(F)-tuple of elements of
A, and Cn′ is a function assigning to each individual constant c an element of A. Usually

instead of Rel′(R), Fcn′(F) and Cn′(c) we write RA, FA, and cA.
The typical structures introduced at the beginning of this chapter can easily be put

into this general framework. For example, the structure (Q,+, ·) can be considered to be
the structure (Q, Rel′, F cn′, Cn′) with Rel′ = Cn′ = ∅ and Fcn′ the function with domain
{7, 9} such that Fcn′(7) is + and Fcn′(9) is ·.

Now we define the “meaning” of terms. This is a recursive definition, similar to the
definition of the values of sentential formulas under assignments.

Proposition 2.3. Let A be a structure, and a a function mapping ω into A. (A is the
universe of A.) Then there is a function F mapping the set of terms into A with the
following properties:

(i) F (vi) = ai for each i ∈ ω.

(ii) F (c) = cA for each individual constant c.

(iii) F (Fσ0 . . . σm−1) = FA(F (σ0), . . . , F (σm−1)) for every m-ary function symbol F

and all terms σ0, . . . , σm−1

With F as in Proposition 2.3, we denote F (σ) by σA(a). Thus

vA
i (a) = ai;

cA(a) = cA;

(Fτ0 . . . τm−1)
A(a) = FA(τA

0 (a), . . . , τA
m−1(a)).

Here vi is any variable, c any individual constant, and F any function symbol (of some
rank, say m).

What σA(a) means intuitively is: replace the individual constants and function sym-
bols by the actual members of A and functions on A given by the structure A, and replace
the variables vi by coresponding elements ai of A; calculate the result, giving an element
of A. We illustrate this with the structures given at the beginning of this chapter.

A = (ω, S). Let a = 〈7, 2, 0, 0, 0, . . .〉. Then

(SSSv1)
A(a) = SSS2 = 5;

(SSSSSSSv0)
A(a) = 14.

A = (ω,+). Let a = 〈3, 4, 5, . . .〉. Then ((v3 + v0) + v9)
A(a) = 6 + 3 + 12 = 21.

A = (ω, S, 0,+, ·). Let a = 〈0, 1, 2, . . .〉. Then

((S0 + v2) · v3)(a) = (S0 + 2) · 3 = 9.

A = (ω,<). Here the terms are only the variables. For example, with a = 〈2m : m ∈ ω〉
we have vA

3 (a) = 8.
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A = (Q,+, ·). Here the terms are essentially polynomials with positive integer coefficients
and with 0 constant term. For example, the polynomial 2x2 + x corresponds to the term
(v0 · v0 + v0 · v0) + v0, whose value at 〈3, 4, 5, . . .〉 is 21.

A = (R,+, ·, 0, 1, <). Now the terms are all polynomials with positive integer coefficients.
For example, x2+3 corresponds to the term v0 ·v0+(1+(1+1)), whose value at 〈

√
2,
√

2, . . .〉
is 5.

A = (A, f), with A any set and f : A → A. For example, take A = {0, 3, 4} and
f : A → A with f(0) = 3, f(3) = 4, f(4) = 0. Consider the term f f f f fv2 and the
sequence a = 〈0, 3, 4, 4, 4, . . .〉. Then the value of this term at a is

f(f(f(f(f(4))))) = f(f(f(f(0)))) = f(f(f(3))) = f(f(4)) = f(0) = 3.

A = A. The terms are just the variables. For example, v0(a) = x when a = 〈x, x, . . .〉 with
x a particular element of A.

Proposition 2.4. Suppose that τ is a term, A is a structure, a, b assignments, and

a(i) = b(i) for all i such that vi occurs in τ . Then τA(a) = τA(b).

Proof. By induction on τ :

cA(a) = cA = cA(b);

vA
i (a) = a(i) = b(i) = vA

i (b);

(Fσ0 . . . σm−1)
A(a) = FA(σA

0 (a), . . . , σA
m−1(a))

= FA(σA
0 (b), . . . , σA

m−1(b))

= (Fσ0 . . . σm−1)
A(b).

The last step here is the induction step (many of them, one for each function symbol and
associated terms). The inductive assumption is that a(i) = b(i) for all i for which vi occurs
in Fσ0 . . . σm−1; hence also for each j < m, a(i) = b(i) for all i for which vi occurs in σj ,
so that the inductive hypothesis can be applied.

This proposition enables us to simplify our notation a little bit. If n is such that each

variable occurring in τ has index less than n, then in the notation ϕA(a) we can just use
the first n entries of a rather than the entire infinite sequence. For example, for the above
illustrations we can simplify things like this:

A = (ω, S):

(SSSv1)
A(7, 2) = SSS2 = 5;

(SSSSSSSv0)
A(7) = 14.

A = (ω,+): ((v3 + v0) + v9)
A(3, 4, 5, 6, 7, 8, 9, 10, 11, 12) = 6 + 3 + 12 = 21.

A = (ω, S, 0,+, ·): ((S0 + v2) · v3)(0, 1, 2, 3) = 9.

A = (ω,<): vA
3 (1, 2, 4, 8) = 8.
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A = (Q,+, ·): ((v0 · v0 + v0 · v0) + v0)
A(3) = 21.

A = (R,+, ·, 0, 1, <): (v0 · v0 + (1 + (1 + 1)))A(
√

2) = 5.

A = (A, f), with A any set and f : A→ A. For example, take A = {0, 3, 4} and f : A→ A

with f(0) = 3, f(3) = 4, f(4) = 0. Then (f f f f fv2)
A(0, 3, 4) = 3.

A = A: v0(x) = x for any x ∈ A.

We turn to the definition of formulas. For any terms σ, τ we define σ = τ to be the sequence
〈3〉⌢σ⌢τ . Such a sequence is called an atomic equality formula. An atomic non-equality
formula is a sequence of the form 〈R〉⌢σ⌢

0 · · ·⌢ σm−1 where R is an m-ary relation symbol
and σ0, . . . σm−1 are terms. An atomic formula is either an atomic equality formula or an
atomic non-equality formula.

Examples in the language for (R,+, ·, 0, 1, <) are: x+ y = 0, x2 = 1 (atomic equality
formulas) and x • y < 2 (an atomic non-equality formula). More formally, these are
v0 + v1 = 0, v0 • v0 = 1, and v0 • v1 < 1 + 1 or, as sequences, 〈3, 7, 5, 10, 8〉, 〈3, 9, 5, 5, 12〉,
〈11, 9, 5, 10, 7, 12, 12〉. We define ¬, a function assigning to each sequence ϕ of symbols

of a first-order language the sequence ¬ϕ def
= 〈1〉⌢ϕ. → is the function assigning to

each pair (ϕ, ψ) of sequences of symbols the sequence ϕ → ψ
def
= 〈2〉⌢ϕ⌢ψ. ∀ is the

function assigning to each pair (i, ϕ) with i ∈ ω and ϕ a sequence of symbols the sequence

∀viϕ
def
= 〈4, 5i + 5〉⌢ϕ. A formula construction sequence is a sequence 〈ϕ0, . . . , ϕm−1〉

such that for each i < m one of the following holds:

(1) ϕi is an atomic formula.

(2) There is a j < i such that ϕi is ¬ϕj

(3) There are j, k < i such that ϕi is ϕj → ϕk.

(4) There exist j < i and k ∈ ω such that ϕi is ∀vkϕj .

A formula is an expression which appears as an entry in some formula construction se-
quence.

The following is the principle of induction on formulas.

Proposition 2.5. Suppose that Γ is a set of formulas satisfying the following conditions:
(i) Every atomic formula is in Γ.
(ii) If ϕ ∈ Γ, then ¬ϕ ∈ Γ.
(iii) If ϕ, ψ ∈ Γ, then (ϕ→ ψ) ∈ Γ.
(iv) If ϕ ∈ Γ and i ∈ ω, then ∀viϕ ∈ Γ.

Then Γ is the set of all formulas.

Proof. It suffices to take any formula construction sequence 〈ϕ0, . . . , ϕm−1〉 and show
by complete induction on i that ϕi ∈ Γ for all i ∈ ω. We leave this as an exercise.

Proposition 2.6. (i) Every formula is a nonempty sequence.
(ii) If ϕ is a formula, then exactly one of the following conditions holds:
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(a) ϕ is an atomic equality formula, and there are terms σ, τ such that ϕ is σ = τ .
(b) ϕ is an atomic non-equality formula, and there exist a positive integer m, a

relation symbol R of rank m, and terms σ0, . . . , σm−1, such that ϕ is Rσ0 . . . σm−1.
(c) There is a formula ψ such that ϕ is ¬ψ.
(d) There are formulas ψ, χ such that ϕ is ψ → χ.
(e) There exist a formula ψ and a natural number i such that ϕ is ∀viψ.

(iii) No proper initial segment of a formula is a formula.
(iv) (a) If ϕ is an atomic equality formula, then there are unique terms σ, τ such that

ϕ is σ = τ .
(b) If ϕ is an atomic non-equality formula, then there exist a unique positive integer

m, a unique relation symbol R of rank m, and unique terms σ0, . . . , σm−1, such that ϕ is
Rσ0 . . . σm−1.

(c) If ϕ is a formula and the first symbol of ϕ is 1, then there is a unique formula
ψ such that ϕ is ¬ψ.

(d) If ϕ is a formula and the first symbol of ϕ is 2, then there are unique formulas
ψ, χ such that ϕ is ψ → χ.

(e) If ϕ is a formula and the first symbol of ϕ is 4, then there exist a unique natural
number i and a unique formula ψ such that ϕ is ∀viψ.

Proof. (i): First note that this is true of atomic formulas, since an atomic formula
must have at least a first symbol 3 or some relation symbol. Knowing this about atomic
formulas, any entry in a formula construction sequence is nonempty, since the entry is
either an atomic formula or else begins with 1,2, or 4.

(ii): This is true on looking at any entry in a formula construction sequence: either
the entry begins with 3 or a relation symbol and hence (a) or (b) holds, or it begins with
1, 2, or 4, giving (c), (d) or (e). Only one of (a)–(e) holds because of the first symbol in
the entry.

(iii): We prove this by complete induction on the length of the formula. Thus suppose
that ϕ is a formula of length m, and for any formula ψ of length less than m, no proper
initial segment of ψ is a formula. Suppose that χ is a proper initial segment of ϕ and χ is
a formula; we want to get a contradiction. By (ii) we have several cases.

Case 1. ϕ is an atomic equality formula σ = τ for certain terms σ, τ . Thus ϕ is
〈3〉⌢σ⌢τ . Since χ is a formula which begins with 3 (since χ is an initial segment of ϕ and
is nonempty by (i)), (ii) yields that χ is 〈3〉⌢ρ⌢ξ for some terms ρ, ξ. Hence σ⌢ψ = ρ⌢ξ.
Thus σ is an initial segment of ρ or ρ is an initial segment of σ. By Proposition 2.2(iii) it
follows that σ = ρ. Then also τ = ξ, so ϕ = χ, contradiction.

Case 2. ϕ is an atomic non-equality formula Rσ0 . . . σm−1 for some m-ary relation
symbol R and some terms σ0, . . . , σm−1. Then χ is a formula which begins with R, and so
there exist terms τ0, . . . , τm−1 such that χ is Rτ0 . . . τm−1. By induction using Proposition
2.2(iii), σi = τi for all i < m, so ϕ = χ, contradiction.

Case 3. ϕ is ¬ψ for some formula ψ. Then 1 is the first entry of χ, so by (ii) χ has
the form ¬ρ for some formula ρ. Thus ρ is a proper initial segment of ψ, contradicting the
inductive hypothesis, since ψ is shorter than ϕ.

Case 4. ϕ is ψ → θ for some formulas ψ, θ, i.e., it is 〈2〉⌢ψ⌢θ. Then χ starts with 2,
so by (ii) χ has the form 〈2〉⌢σ⌢τ for some formulas σ, τ . Now both ψ and σ are shorter
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than ϕ, and one is an initial segment of the other. So ψ = σ by the inductive assumption.
Then τ is a proper initial segment of θ, contradicting the inductive assumption.

Case 5. ϕ is 〈4, 5(i+ 1)〉⌢ψ for some i ∈ ω and some formula ψ. Then by (ii), χ is
〈4, 5(i+ 1)〉⌢θ for some formula θ. So θ is a proper initial segment of ψ, contradiction.

(iv): These conditions follow from Proposition 2.2(iii) and (iii).

Now we come to a fundamental definition connecting language with structures. Again this
is a definition by recursion; it is given in the following proposition. First a bit of notation.
If a : ω → A, i ∈ ω, and s ∈ A, then by ai

s we mean the sequence which is just like a
except that ai

s(i) = s.

Proposition 2.7. Suppose that A is an L -structure. Then there is a function G assigning
to each formula ϕ and each sequence a : ω → A a value G(ϕ, a) ∈ {0, 1}, such that

(i) For any terms σ, τ , G(σ = τ, a) = 1 iff σA(a) = τA(a).
(ii) For each m-ary relation symbol R and terms σ0, . . . , σm−1, G(Rσ0 . . . σm−1, a) =

1 iff 〈σA
0 (a), . . . , σA

m−1(a)〉 ∈ RA.
(iii) For every formula ϕ, G(¬ϕ, a) = 1 −G(ϕ, a).
(iv) For all formulas ϕ, ψ, G(ϕ→ ψ, a) = 0 iff G(ϕ, a) = 1 and G(ψ, a) = 0.
(v) For all formulas ϕ and any i ∈ ω, G(∀viϕ, a) = 1 iff for every s ∈ A, G(ϕ, ai

s) = 1.

With G as in Proposition 2.7, we write A |= ϕ[a] iff G(ϕ, a) = 1. A |= ϕ[a] is read: “A is
a model of ϕ under a” or “A models ϕ under a” or “ϕ is satisfied by a in A” or “ϕ holds
in A under the assignment a”. In summary:

A |= (σ = τ)[a] iff σA(a) = τA(b). Here σ and τ are terms.

A |= (Rσ0 . . . σm−1)[a] iff the m-tuple 〈σA
0 , . . . , σ

A
m−1〉 is in the relation RA. Here R is an

m-ary relation symbol, and σ0, . . . , σm−1 are terms.

A |= (¬ϕ)[a] iff it is not the case that A |= ϕ[a].

A |= (ϕ → ψ)[a] iff either it is not true that A |= ϕ[a], or it is true that A |= ψ[a].
(Equivalently, iff (A |= ϕ[a] implies that A |= ψ[a]).

A |= (∀viϕ)[a] iff A |= ϕ[ai
s] for every s ∈ A.

Before giving examples of this notion, we define some additional logical notions:

ϕ ∨ ψ is the formula ¬ϕ→ ψ; ϕ ∨ ψ is called the disjunction of ϕ and ψ.

ϕ ∧ ψ is the formula ¬(ϕ→ ¬ψ); ϕ ∧ ψ is called the conjunction of ϕ and ψ.

ϕ↔ ψ is the formula (ϕ→ ψ) ∧ (ψ → ϕ); ϕ↔ ψ is called the equivalence between ϕ and
ψ.

∃viϕ is the formula ¬∀vi¬ϕ; ∃ is the existential quantifier.

These notions mean the following.

Proposition 2.8. Let A be a structure and a : ω → A.
(i) A |= (ϕ ∨ ψ)[a] iff A |= ϕ[a] or A |= ψ[a] (or both).
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(ii) A |= (ϕ ∧ ψ)[a] iff A |= ϕ[a] and A |= ψ[a].
(iii) A |= (ϕ↔ ψ)[a] iff (A |= ϕ[a] iff A |= ψ[a]).
(iv) A |= ∃viϕ[a] iff there is a b ∈ A such that A |= ϕ[ai

b].

Proof. The proof consists in reducing the statements to ordinary mathematical usage.
(i):

A |= (ϕ ∨ ψ)[a] iff A |= (¬ϕ→ ψ)[a]

iff either it is not true that A |= (¬ϕ)[a] or it is true that A |= ψ[a]

iff not(not(A |= ϕ[a])) or A |= ψ[a]

iff A |= ϕ[a] or A |= ψ[a].

(ii):

A |= (ϕ ∧ ψ)[a] iff not(A |= (ϕ→ ¬ψ)[a])

iff not(not(A |= ϕ[a]) or A |= ¬ψ[a])

iff not(not(A |= ϕ[a]) or not(A |= ψ[a]))

iff A |= ϕ[a] and A |= ψ[a].

(iii):

A |= (ϕ↔ ψ)[a] iff A |= ((ϕ→ ψ) ∧ (ψ → ψ))[a]

iff A |= ((ϕ→ ψ)[a] and A |= (ψ → ψ))[a]

iff (A |= ϕ[a] implies that A |= ψ[a]) and

(A |= ψ[a] implies that A |= ϕ[a])

iff (A |= ϕ[a] iff A |= ψ[a]).

(iv):

A |= ∃viϕ[a] iff A |= ¬∀vi¬ϕ[a]

iff not(for all b ∈ A(A |= ¬ϕ[ai
b]))

iff not(for all b ∈ A(not(A |= ϕ[ai
b]))

iff there is a b ∈ A such that A |= ϕ[ai
b].

Now we want to give several examples of translating ordinary mathematical statements
about structures into first-order logic.

(1) One of the Peano postulates for the natural numbers says that if m and n are natural
numbers and m+ 1 = n+ 1, then m = n. A translation into our language for (ω, S) is

∀v0∀v1[Sv0 = Sv1 → v0 = v1].

If ϕ is this formula, then (ω, S) |= ϕ[a] for any a : ω → ω.
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(2) The commutative law for addition of natural numbers is expressed by the formula

∀v0∀v1[v0 + v1 = v1 + v0]

in the language for (ω,+); and (ω,+) |= ϕ[a] for this formula ϕ, for any a : ω → ω.

(3) In the language for (ω,<), to say that a0 + 1 < a2 one can use the formula

∃v2[Rv0v2 ∧ Rv2v1];

if we call this formula ψ, then (ω,<) |= ψ[a] iff a0 + 1 < a1.

(4) In the language for (Q,+, ·), the formula

∀v1[v0 + v1 = v1]

defines 0, in the sense that (Q,+, ·) |= ∀v1[v0 + v1 = v1][a] iff a0 = 0.

(5) In the language for (R,+, ·, 0, 1, <), the formula

∀v0[0 < v0 → ∃v1[v1 • v1 = v0]]

expresses that every positive real number has a square root.

(6) In the language for (A, f), the following formula expresses that f is a one-one function:

∀v0∀v1[fv0 = fv1 → v0 = v1].

(7) The following formula holds in (R,+, ·, 0, 1, <) under the assignment a iff |a0−a1| < 1:

v0 < v1 + 1 ∧ v1 < v0 + 1.

(8) For the structure (R,+, ·, 0, 1, <, f), where f is a function mapping R into R, the
following formula expresses that f is continuous at the argument a0, given an assignment
a. Here we use f as the symbol corresponding to f .

∀v1[0 < v1 → ∃v2[0 < v2 ∧ ∀v3[v3 < v0 + v2 ∧ v0 < v3 + v2

→ f(v0) < f(v3) + v1 ∧ f(v3) < f(v0) + v1]]].

Explanation: this would normally be written like this:

∀ε > 0∃δ > 0∀x[|x− a0| < δ → |f(x) − f(a0)| < ε].

We are using v1 in place of ε, v2 in place of δ, v3 in place of x, and the absolute value is
expressed as in (7).

(9) The formula ∀v0∀v1(v0 = v1) holds in a structure iff the structure has only one element.
The formula ∃v0∃v1(¬(v0 = v1) ∧ ∀v2(v0 = v2 ∨ v1 = v2)) holds in a structure iff the
structure has exactly two elements.

29



We say that A is a model of ϕ iff A |= ϕ[a] for every a : ω → A. If Γ is a set of formulas,
we write Γ |= ϕ iff every structure which models each member of Γ also models ϕ. |= ϕ

means that every structure models ϕ. ϕ is then called universally valid.

A different meaning for Γ ⊢ ϕ is sometimes found in books or articles. Define Γ ⊢′ ϕ iff
for every structure A in the implicit language and every a : ω → A, if A |= ψ[a] for each
ψ ∈ Γ, then A |= ϕ[a]. The two notions Γ ⊢ ϕ and Γ ⊢′ ϕ are different. For example,
{v0 = v1} ⊢ v0 = v2, since a model of {v0 = v1} has only one element, and hence is a model
of v0 = v2. However, if A has two distinct elements a, b, then A |= (v0 = v1)[〈a, a, b, b, . . .〉]
but A 6|= (v0 = v2)[〈a, a, b, b, . . .〉]; hence {v0 = v1} 6|=′ v0 = v2.

In the important special case in which Γ ∪ {ϕ} is a set of sentences, the two notions
coincide. (The notion of a sentence is defined in the next chapter.)

Some examples of universally valid formulas are:

v0 = v0.
v0 = v1 → (Rv0v2 → Rv1v2), where R is a binary relation symbol.
∀v0ϕ→ ϕ.
ϕ→ ∃v0ϕ.
v0 = v1 → ∀v2(v0 = v1).

Now we want to apply the material of Chapter 1 concerning sentential logic. By definition,
a tautology in a first-order language is a formula ψ such that there exist formulas ϕ0, ϕ1, . . .

and a sentential tautology χ such that ψ is obtained from χ by replacing each symbol Si

occurring in χ by ϕi, for each i < ω.

Theorem 2.9. If ψ is a tautology in a first-order language, then ψ holds in every structure
for that language.

Proof. Let A be any structure, and b : ω → A any assignment. We want to show
that A |= ψ[b]. Let formulas ϕ0, ϕ1, . . . , χ be given as in the above definition. For each
sentential formula θ, let θ′ be the first-order formula obtained from θ by replacing each
sentential variable Si by ϕi. Thus χ′ is ψ. We define a sentential assignment f by setting,
for each i ∈ ω,

f(i) =

{

1 if A |= ϕi[b],
0 otherwise.

Then we claim:

(*) For any sentential formula θ, A |= θ′[b] iff θ[f ] = 1.

We prove this by induction on θ:

If θ is Si, then θ′ is ϕi, and our condition holds by definition. If inductively θ is ¬τ , then
θ′ is ¬τ ′, and

A |= θ′[b] iff not(A |= τ ′[b])

iff not(τ [f ] = 1)

iff τ [f ] = 0

iff θ[f ] = 1.
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Finally if inductively θ is τ → ξ, then θ′ is τ ′ → ξ′, and

A |= θ′[b] iff (A |= τ ′[b] implies that A |= ξ′[b]

iff τ [f ] = 1 implies that ξ[f ] = 1

iff θ[f ] = 1.

This finishes the proof of (*).
Applying (*) to χ, we get A |= χ′[b], i.e., A |= ψ[b].

Theorem 2.10. (Disjunctive normal form) Suppose that ϕ0, ϕ1, . . . is a sequence of first-
order formulas, ψ is a first-order formula which has a model, and ψ is obtained from a
sentential formula χ by replacing each symbol Si in χ by ϕi, for all i < ω. Suppose that
every Si occurring in χ has i < m. Then there is a nonempty set M of m-termed sequences
of 0’s and 1’s such that

∅ |= ψ ↔
∨

ε∈M

∧

i<m

ϕ
ε(i)
i ,

where ρ1 is ρ and ρ0 is ¬ρ, for any formula ρ.

Recall here the definitions of
∨

and
∧

given in Chapter 1 for sentential logic; we take the
same definitions for first-order logic.

Proof. By the proof of Theorem 2.9, χ is true under some sentential assignment.
Hence our theorem follows from Theorem 1.8 and Theorem 2.9.

EXERCISES

E2.1. Give the exact definition of the language for the structure (ω,<).

E2.2. Give the exact definition of the language for the set A (no individual constants,
function symbols, or relation symbols).

E2.3. Describe a term construction sequence which shows that + • v0v0v1 is a term in the
language for (R,+, ·, 0, 1, <).

E2.4. In any first-order language, show that the sequence 〈v0, v0〉 is not a term. Hint: use
Proposition 2.2.

E2.5. In the language for (ω, S, 0,+, ·), show that the sequence 〈+, v0, v1, v2〉 is not a term.
Hint: use Proposition 2.2.

E2.6. Show how the structure (A, f) introduced at the beginning of the chapter can be
put in the general framework of structures.

E2.7. Show how the structure (ω, S, 0,+, ·) introduced at the beginning ot the chapter can
be put in the general framework of structures.

E2.8. Prove that in the language for the structure (ω,+), a term has length m iff m is
odd.

E2.9. Complete the proof of Proposition 2.5.
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E2.10. Give a formula ϕ in the language for (Q,+, ·) such that for any a : ω → Q,
(Q,+, ·) |= ϕ[a] iff a0 = 1.

E2.11. Give a formula ϕ which holds in a structure, under any assignment, iff the structure
has at least 3 elements.

E2.12. Give a formula ϕ which holds in a structure, under any assignment, iff the structure
has exactly 4 elements.

E2.13. Write the formula given in (1) at the end of this chapter as a sequence of integers.

E2.14. Write a formula ϕ in the language for (ω,<) such that for any assignment a,
(ω,<) |= ϕ[a] iff a0 < a1 and there are exactly two integers between a0 and a1.

E2.15. Prove that the formula

v0 = v1 → (Rv0v2 → Rv1v2)

is universally valid, where R is a binary relation symbol.

E2.16. Give an example showing that the formula

v0 = v1 → ∀v0(v0 = v1)

is not universally valid.

E2.17. Prove that ∃v0∀v1ϕ→ ∀v1∃v0ϕ is universally valid.

32


