Errata 2

This material is supposed to replace Lemmas 4.21 and 4.22 in the notes.

Lemma 4.21. Suppose that **R** is an m-ary relation symbol and $\langle i(0), \ldots, i(m-1) \rangle$ is a sequence of distinct natural numbers such that $m \leq i(j)$ for all j < m. Then

$$\vdash \mathbf{R}v_{i(0)} \dots v_{i(m-1)} \leftrightarrow \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \land \mathbf{R}v_0 \dots, v_{m-1} \right].$$

Proof. Again we argue model-theoretically. Suppose that \overline{A} is a structure and $a : \omega \to A$. First suppose that $\overline{A} \models \mathbf{R}v_{i(0)} \dots v_{i(m-1)}[a]$. Thus $\langle a_{i(0)}, \dots, a_{i(m-1)} \rangle \in \mathbf{R}^{\overline{A}}$. Let

$$b = a_{a_{i(0)}}^{0} \stackrel{1}{\underset{a_{i(1)}}{\dots}} \stackrel{\dots}{\underset{a_{i(m-1)}}{\dots}} \stackrel{m-1}{\underset{a_{i(m-1)}}{\dots}}.$$

Then for any j < m we have $v_j^{\overline{A}}(b) = b_j = a_{i(j)} = b_{i(j)} = v_{i(j)}^{\overline{A}}(b)$. It follows that $\overline{A} \models \bigwedge_{j < m} (v_j = v_{i(j)})[b]$. Also, $\langle b_0, \ldots, b_{m-1} \rangle = \langle a_{i(0)}, \ldots, a_{i(m-1)} \rangle \in \mathbf{R}^{\overline{A}}$. Hence $\overline{A} \models \mathbf{R} v_0 \ldots v_{m-1}[b]$. Thus

$$\overline{A} \models \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \land \mathbf{R} v_0 \dots, v_{m-1} \right] [b]$$

and hence

(1)
$$\overline{A} \models \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \wedge \mathbf{R} v_0 \dots, v_{m-1} \right] [a]$$

Hence we have shown that $\overline{A} \models \mathbf{R}v_{i(0)} \dots v_{i(m-1)}[a]$ implies (1).

Now suppose conversely that (1) holds. Choose $x(0), \ldots, x(m-1) \in A$ such that

$$\overline{A} \models \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \land \mathbf{R} v_0 \dots, v_{m-1} \right] [b],$$

where $b = a_{x(0)}^{0} \stackrel{1}{\underset{x(1)}{\dots}} \stackrel{\dots}{\underset{x(m-1)}{\dots}} rightarrow for any <math>j < m$ we have $b_j = x(j) = v_j^{\overline{A}}(b) = v_{i(j)}^{\overline{A}}(b) = v_{i(j)}^{\overline{A}}(b) = u_{i(j)}^{\overline{A}}(a) = a_{i(j)}$. We also have $\langle b_0, \ldots, b_{m-1} \rangle \in \mathbf{R}^{\overline{A}}$. Hence $\langle a_{i(0)}, \ldots, a_{i(m-1)} \rangle \in \mathbf{R}^{\overline{A}}$, and it follows that $\overline{A} \models \mathbf{R}v_{i(0)} \ldots v_{i(m-1)}[a]$.

So we have shown that $\overline{A} \models \mathbf{R}v_{i(0)} \dots v_{i(m-1)}[a]$ iff (1). Therefore

$$\models \mathbf{R}v_{i(0)} \dots v_{i(m-1)} \leftrightarrow \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \land \mathbf{R}v_0 \dots, v_{m-1} \right].$$

and it follows by the completeness theorem that

$$\vdash \mathbf{R}v_{i(0)} \dots v_{i(m-1)} \leftrightarrow \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j < m} (v_j = v_{i(j)}) \land \mathbf{R}v_0 \dots, v_{m-1} \right]. \qquad \Box$$

The proof of the following lemma is very similar to the proof of Lemma 4.21.

Lemma 4.22. Suppose that **F** is an m-ary function symbol and $\langle i(0), \ldots, i(m) \rangle$ is a sequence of distinct natural numbers such that $m + 1 \leq i(j)$ for all $j \leq m$. Then

$$\vdash \mathbf{F}v_{i(0)} \dots v_{i(m-1)} = v_{i(m)} \leftrightarrow \exists v_0 \dots \exists v_m \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F}v_0 \dots, v_{m-1} = v_m \right].$$

Proof. Again we argue model-theoretically. Suppose that \overline{A} is a structure and $a: \omega \to A$. First suppose that $\overline{A} \models \mathbf{F}v_{i(0)} \dots v_{i(m-1)} = v_{i(m)}[a]$. Thus $\mathbf{F}^{\overline{A}}(a_{i(0)}, \dots, a_{i(m-1)}) = a_{i(m)}$. Let

$$b = a_{a_{i(0)}}^{0} \, {}^{1}_{a_{i(1)}} \dots \, {}^{m}_{a_{i(m)}}.$$

Then for any $j \leq m$ we have $v_j^{\overline{A}}(b) = b_j = a_{i(j)} = b_{i(j)} = v_{i(j)}^{\overline{A}}(b)$. It follows that $\overline{A} \models \bigwedge_{j \leq m} (v_j = v_{i(j)})[b]$. Also,

$$\mathbf{F}(b_0, \dots, b_{m-1}) = \mathbf{F}(a_{i(0)}, \dots, a_{i(m-1)})$$
$$= a_{i(m)}$$
$$= b_m.$$

Hence $\overline{A} \models (\mathbf{F}v_0 \dots v_{m-1} = v_m)[b]$. Thus

$$\overline{A} \models \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F} v_0 \dots, v_{m-1} = v_m \right] [b]$$

and hence

(1)
$$\overline{A} \models \exists v_0 \dots \exists v_m \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F} v_0 \dots, v_{m-1} = v_m \right] [a]$$

Hence we have shown that $\overline{A} \models \mathbf{R}v_{i(0)} \dots v_{i(m-1)}[a]$ implies (1).

Now suppose conversely that (1) holds. Choose $x(0), \ldots, x(m) \in A$ such that

$$\overline{A} \models \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F} v_0 \dots, v_{m-1} = v_m \right] [b],$$

where $b = a_{x(0)}^{0} \stackrel{1}{\underset{x(1)}{\dots}} \stackrel{\dots}{\underset{x(m)}{\dots}} n_{x(m)}$. For any $j \leq m$ we have $b_j = x(j) = v_j^{\overline{A}}(b) = v_{i(j)}^{\overline{A}}(b) = v_{i(j)}^{\overline{A}}(b) = v_{i(j)}^{\overline{A}}(a) = a_{i(j)}$. We also have $\langle \mathbf{F}^{\overline{A}}(b_0, \dots, b_{m-1}) = b_m$. Hence $\mathbf{F}^{\overline{A}}(a_{i(0)}, \dots, a_{i(m-1)}) = a_{i(m)}$, and it follows that $\overline{A} \models (\mathbf{F}v_{i(0)} \dots v_{i(m-1)}) = v_{i(m)})[a]$.

So we have shown that $\overline{A} \models (\mathbf{F}v_{i(0)} \dots v_{i(m-1)}) = v_{i(m)})[a]$ iff (1). Therefore

$$\models \mathbf{F}v_{i(0)} \dots v_{i(m-1)} = v_{i(m)} \leftrightarrow \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F}v_0 \dots, v_{m-1} = v_m \right].$$

and it follows by the completeness theorem that

$$\vdash \mathbf{F}v_{i(0)}\dots v_{i(m-1)} = v_{i(m)} \leftrightarrow \exists v_0 \dots \exists v_{m-1} \left[\bigwedge_{j \le m} (v_j = v_{i(j)}) \land \mathbf{F}v_0 \dots, v_{m-1} = v_m \right]. \quad \Box$$