The Halpern-Lauchli Theorem

We expand the origonal proof. We deal with trees of height w, finitely branching, with a
unique root, and with no maximal nodes. A set S of nodes is (h, k)-dense iff there is a
node x of height h such that S dominates the nodes of height h + k£ which are above =x.
k-dense means (0, k)-dense, and co-dense means k-dense for all k.

Proposition 1. S is k-dense iff S dominates the nodes of height k. ]

Proposition 2. S is co-dense iff S dominates all nodes of T. ]

We define T' 1t ={s:t < s}. Foreachn € w, n(T)={T 1z :|z] =n}. For BCT,
n(T,B) ={(T 1t)ynB : |t| = n}. If T = (T1,...,T,) is a system of trees, then an
(h, k)-matriz for T is a product H?zl A; with each A; (h, k)-dense in T;. A k-matriz is a
(0, k)-matrix.

Theorem 3. (Halpern-Lauchli) Let T = (T1,...,Ty) be a system of trees, each finitely
branching, with a single root, and of height w. Suppose that () C H?zl T;. Then one of
the following conditions holds:

(i) For all k € w there is a k-matriz contained in Q.

(ii) There is an h € w such that for each k there is an (h,k)-matriz contained in

([T TH\Q-

Proof. We first introduce a certain algebra of symbols. Atomic symbols are
dA;,Vx;,Va,;,dx; for each positive integer 1.

For each positive integer d we define

L4 = {0 : 0 is a function with domain {1,...,2d}, and for each i € {1,...,d} exactly one
of the following holds:

(i) Each of 3A; and Vx; occurs exactly once in o, with 3A4; before Vz;.

(ii) Each of Va; and 3z; occurs exactly once in o, with Va; before Jx;.

Examples:

Ll = {<E|A1,v3}'1>, <VG13$1>}.
LQ = {<3A1,Vx1, E|A2,V.I‘2>, <E|A1, 3A2,V$1,VI‘Q>, . }

Now we define a relation -4 on Lg. «,( stand for A;,a;,z; and U and V are strings of
atomic symbols each of length d — 1.

Rules 1.
U3da3dpV +, U363V, if UdadpV,U363aV € Ly.
UVaVEV 4 UVBYQV, if UVaVBV,UVBYaV € Lg.
U3daVBV 4 UVBAQV, if UaVBV,UVEIaV € Ly,
Rules 2.
UVa;3x;V 43 U3A; N2,V for all i = 1,...,d such that UVa;3z;V,U3dANz;V € L,.
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UJANz;V v+ UVa;3x;V for all i = 1,...,d such that UVa;3z;V,U3dANz;V € L.

To state rules 3, we first define, if (V; : r < i < k) is a sequence of strings of atomis
symbols, then (V;)* is the concatenation V. - - - V4.

Rules 3.
If o is a permutation of {1,...,d}, then
(Vag(i))’{(EIAU(i))fHV |_d (HAU(i))g_‘_l(VCLU(i)){V forr=1...d—1.

Example

1 2 3 4
d=4, r=2, V =dx3VarVrydrs, 02(2 3 4>

o VasVasdA;dA4 T3V Ve das Fg JA1 ANV AV asTesVe Ve, Jxg.

=4 is the transitive closure of .

(1) Yaq(3A) T (V)1 324 =g 3A4(Va;) 7 (3a) 4 Vg,

Proof of (1): Let o(1) =d, o(i +1) =i for i =2,...,d — 1, r = 1. Then an instance of

rules 3 is

(Vae )1 (FA5)5(V2:) ' 32a a (FAag))3 (Vao )1 (V) 3aq,

or

(1a) Vag(3A) 4 (V) g =g (3A:) 8 Wag (V) g
By Rules 1,

(1b) (3A4,) ¢ WVag(Va;) T 3z =g 3A)TH (V)4 WVagIny

Again using rules 1,

(3A4;) 71 (V) I Wag3ny =g 3AVE1 (3A:) 8 (V)3 Wag3zg

=F (EIAin)fAVadEIa:d (le)
By rules 2,
(1d) (3A;Vz;) I Wag3zg =g (Va;32;) 134V
By Rules 1,

(Va;32;) P 3ANz g =g (Va32) 2 Vag_ 1 Fwg 13AVEg

=g (Va;32:) 9 3Vag_o3z4_oVag_13wq_13AqVzg
=g (Yai3z:) 4 3Vag o324 oVay 134434 Vg
=a (Yai3z:) 9 3Vag_oVag 134 23A4324 Vg
=a (Ya;32,) 4 3Vay_oVag_ 1344324 9324 1Y24

=g (Va9 1344324 Vg (le)
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Now with o the identity and r» = d — 1, rules 3 give
(1f) (Va;) 41 3A4(32:) Vg =g JA(Va;) 4 (3a:) T Vay

Now (la)—(1f) give (1).

(2) Suppose that UV € Ly, U has length d, no atoms of the forms Vz;,3z; occur in U,
and U is any rearrangement of U. Then UV =, UV.

In fact, assume the hypotheses. So only 9A; and Va; occur in U. If no Va; occurs, or no
JA; occurs, the conclusion is clear by rules 1. So suppose some Va; occurs and some JA;
occurs. By rules 1 there is a permutation o of {1,...,d} such that

UV a (Vao@)T (34w ia V
By rules 3,
(Vao (1)1 (BAr) 241V Ea (FA) it (Vae@) iV

Then by rules 1, )
(Vao(i)) (3An(i)) bV Ea UV.

Thus (2) holds.
(3) Itw ):d—l W, then VagW 3z, ):d VadWHQZd.
For, assume that W =4_; W. Say

W =5yFq-1 5 Fag-1 5 Fq_1 .5, =W.
We claim that
VadWEla:d = vadS()Ell'd |_d, VCLdSl E|$d cee |_d VadSnEla:d = VCLdV_VHQZd.

Consider the step from S; to S;y1. If rules (1) or rules (2) are used in going from S; to
Sit1, clearly the same rules go from VayS;3z4 to VagS;113x4. Suppose that rules (3) are
used. Say S; is (aa(i))g(ﬂAa(i))ﬁ;}V and S;;1 is (EIAU(Z»))f;%(VaU(Z»)){V. Then VayS;3x4
is Vad(ag(i)){(EIAU(i))f;%Vde and VadSiHEIacd is Vad(ﬂAg(i))fﬁ(Vag(i))ﬂ"Vde. Hence
VaqS;3zq F=q VaqgSiy13xq by (2). Hence (3) holds.

(4) (Vag){(Fx){ a (3A:)T (Vay)f.

In fact, we prove this by induction on d. For d = 1 the assertion is that Va;3x; =4 AV,
which is an instance of rules 2. Now assume (4) for d — 1 > 1. Then rules 1 give

(4a) (Va:){ (3,1 Fa Yaa(Va;){ " (3w){ 3w
By the inductive hypothesis and (3) we have
(4b) Vaq(Va;)) " Gz:) T ' 3na g Yaa(3A4:) T V) 3ag
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By (1) we have

(4c) Vag(3A) 4 (V) g =g FAG(Vay) (3§ Vg
By the inductive hypothesis and (3) we have

(4d) FAG(Va;) T (3a) Vg g 3AG(FA) S (V)4 Vay
Now by rules (1) we get

(4e) 3A4(3A) T (Vai) Vg =g (3A:)T (V)]

Now (4a)—(4e) give (4).

Now suppose that T = (T; : 1 < ¢ < d) is a vector tree and @ C H?Zl T;. We define a
(d+1)-sorted language .Z. The sorts are Sy, ..., S4+1. Additional constants are as follows.
A d-ary function symbol Seq acting on d-tuples from Sy X - - - x Sg with values in Sg4.

For each 2 = 1,...,d, a binary relation symbol <; acting on .5;.
x1,...,xq are variables ranging over Sy, ..., S, respectively.

B, ..., By are constants for subsets of S1,..., Sy respectively.

Aq,..., Ay are variables ranging over subsets of Sy, ...,.S, respectively.
vir for i =1,...,d and k € w are variables ranging over S;,

ai,...,aq are variables ranging over subsets of Sy, ..., respectively.

Q, a constant for a subset of Sy

A structure for this language assigns T; to S; for i = 1,...,d, the product H?zl T; to Sa41,
and subsets B; of T} for i = 1,...,d, with Q) assigned to Q.

Now with each sequence n = (ny,...,ng) of positive integers and each sequence W of
atomic symbols we associate a formula ¢ = @yy,. This is done by induction on the length
of W

If W is empty, we let oy be the formula Seq(z1,...,24) € Q.

If W = 3A,W’, then we let ¢wy be the formula JA;[A; C B; A A; is n;-dense in
Si A\ owrn]. Here “A; is n;-dense in S;” is the formula

We use the variables v;; to express this.

If W =V, W', then we let oy be the formula Vz;[z; € A; — ©wrm].

If W = Va;W’', then we let pyy be the formula Va;[a; € n;(S;, B;) — ¢wm] Here
a; € n;(S;, B;) is the formula

dt € Sil|t| =ni AVs[s € a; — [t < sAs e B

If W = dx;W’, then we let pwn be the formula 3x;[z; € a; A ewim]-

Now we let ¢)(W, n, p) be the statement “vB; C Sy ---VBy C Sy[[Vi =1,...,d[B; is p-dense
in S;] — pwnl]”



(5) Suppose that W, W’ p are sequences of atomic symbols. Suppose that under
every assignment of values to the variables, ¢w, implies pw,. Then ¢,w, under any
assignment implies @, under that assignment.

We prove this by induction on p. If p is empty, it is obvious. The induction step is clear
upon looking at what ¢, is:

Case 1. p =3A;p". Then pyws, is

JA;[A; € B; A A; is nj-dense in S; A @pwn)
Case 2. p =Vxz;p’. Then p,w, is
Vailx; € Ai — ©pwnl-
Case 3. p=Va;p’. Then ¢, w, is
Va;la; € ni(Si, Bi) = ©pwn)
Case 4. p = 3x;p’. Then p,w, is
Jxi[x; € a; A @prwn)

This proves (5).

(6) If under some assignment of values to the variables, ¢y, implies that @y, then under
that assignment, ©34,34,wn implies that v34,34,wn-

In fact, PIA3A;Wn 18
JA;[A; € Bs A Ay is ni-dense in S; A o4, wnl;
expanding we get
JA;[A; € B; A A, is n;-dense in S; A JA;[A; € B; A A; is nj-dense in S; A pwnll.
This is logically equivalent to
JA;3A,[A; C B; N A; is ni-dense in S; A A; C Bj A Aj is nj-dense in Sj A @yl

Hence (6) holds.

(7) If under some assignment of values to the variables, @y, implies that @y, then under
that assignment, ©34,3:,wn implies that ¢3,.34,wn.

In fact, p34,30;wn 18
EIAZ [Az - Bz A Az is ni—dense in Sz A gOijn];
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expanding we get

JA;[A; € B; A A; is ny-dense in S; A Jxj(x; € aj A @wnl]-
This is logically equivalent to

JA;3z;[A; C B; N A; is ni-dense in S; A xj € aj A @wnl.

Hence (7) holds.

(8) If under some assignment of values to the variables, @y, implies that @y, then under
that assignment, 3,34, wn implies that 34,3, wn-

This is proved as for (7).

(9) If under some assignment of values to the variables, ¢y, implies that @y, then under
that assignment, ¢3;,3,,wn implies that ©3; 3:,wn-

In faCta PIz;Fz;Wn is
Jzix; € ai A\ Yo, wal;

expanding we get
Jzix; € a; A Jxjx; € aj A ownl]-

This is logically equivalent to
dx;3zj[r; € a; ANxj € aj A pwnl.

Hence (9) holds.

(10) If under some assignment of values to the variables, @y, implies that ¢/, then
under that assignment, vy, ve,; wn implies that ove ve,wn-

In faCt7 @VwZVwJWn iS
Vai[z; € Ai — ©ve,wal;

expanding we get
Vai[x; € Ai — Vajlx; € Aj — owal

This is logically equivalent to
Vo, Va;[z; € Ai — [x; € Aj — pwn]

Hence (10) follows.

(11) If under some assignment of values to the variables, @y, implies that ¢w/p,, then
under that assignment, Qvq, vz, wn implies that ©ve va,wn-

In fa‘Ct7 QOVaiVa:jWn iS
Vaila; € ni(Si, Bi) — ©va,wal;
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expanding we get
Vai[ai c TLZ(SZ, Bz) — ij[a:j c Aj — SOWn”

This is logically equivalent to
Vanj[xi - TLZ(SZ,BZ) — [xj & Aj — SOWn”

Hence (11) follows.

(12) If under some assignment of values to the variables, @y, implies that ¢, then
under that assignment, vy, va, wn implies that ©va,ve,wn-

This is similar to (11).

(13) If under some assignment of values to the variables, @y, implies that ¢w/p,, then
under that assignment, ©vq,va;wn implies that ©va;va,wn-

This is similar to (11).

(14) If under some assignment of values to the variables, @y, implies that ¢, then
under that assignment, ¢34,ve;wn implies that oy, 34, wn-

In fact, ¥34,va;wn 18
JA;[A; € B; A A; is ng-dense in S; A Oya,;wn]

Expanding, we get

JA;[A; € B; A A, is n;-dense in S; AVajla; € n;(S;, Bj) — ownl]-
This is logically equivalent to

JA;Va;[A; € B; A A; is n;-dense in S; A [a; € n;(S;, Bj) — vwnl]-
This implies

Va;3A;[A; C B; AN A; is ni-dense in S; A [a; € nj(S;, Bj) — ownl]-

Hence (14) holds.
One similarly treats other sequences of the form JaV(.

(15) Az Q BZ is ni—dense in T'z iff Az Q Bz and VCLZ € n,(TZ, BZ)[CLZ N Az ;é @]

In fact, for =, suppose that A; C B; is n;-dense in T; and a; € n;(T;, B;. Say a; = (T; T
t) N B; with |t| = n;. There is an s € A; such that ¢ < s. Thus s € a; N 4;.

For <, suppose that A; C B; and Va; € n;(T;, B;)[a; N A; # 0] and |t| = n;. Set
a; = (T; 7 t) N B;. Choose u € a; N A;. Then t < u, as desired.

(16) If under some assignment of values to the variables, @y, implies that ¢, then
under that assignment, v, 3, wn implies that ©34,ve, wn-
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In fact, YVa;3z; Wn is
Va;la; € n;(Si, Bi) = @3z, wnl;
expanding, we get
VCLZ'[CLZ' c ni(Si, Bz) — 3331‘[331' €a; N\ QOWR]]'

Now assume @y, 3., wn. For each a; € n;(T;, B;) choose z;(a;) € a; such that ¢w,. Let
A; = {xi(a;) : a; € ny(T;,B;)}. Note that Va; € n;(T;, B;)[a; C B;]. Hence A; C B;.
Hence by (15), A; is n;-dense in T;. Now Vz; € A;own. So (16) holds.

(17) If W = W’ using rules 1 or 2, then Yn3piyy(W.n.p) implies that VnIpy(W'.n.p).
In fact, Vndpy(W.n.p) is

VndpVB; C Sy ---VByg C Sy[[Vi=1,...,d[B; is p-dense in S;] — @wnl],

and similarly for Yn3py(W’'.n.p). Hence (17) follows from (5)—(16).

Now suppose that o is a permutation of {1,...,d}. Let W = (Va,(;))](3450:))1V
and W = (34,(:)) %41 (Yay())TV with r € {1...d —1}. Now for simplicity we assume that
o is the identity. Note that V is a string of length d whose entries are Vz; for r+1 <1i < d
and Jz; for 1 < j < r; moreover, only A; fori =r+1,...,dand a; for¢ =1...,r are free.
If V is such a string, a is an assignment of values to the a;’s, A,11,..., Ag an assignment
of values to the A;’s, then the assertion ¢y ,la, A,41,..., A4] has the natural meaning.

(18) If V is such a string, a assigns values to the a; for i = 1,...,r, A,41,...,44 an
assignment of values to the A;’s, A). ; C A,11,... A, C Ay, and py,la, Ay, .., Ad,
then pvpla, Al ..., Al

We prove (18) by induction on the length of V. It is trivial for the empty string. Now
suppose that the string is Va;V’'. Then oy, vinla, Ay, ..., Ag] is

vxl[xl €A — @V’n[ay AT‘+17 .. '7Ad”7

SO
Va:,[xz S A; - @V’n[a7 A;«—l—lv SR A:i”7

If the string is Jz; V', then 3, vinla, Ari1, ..., Agl 18
dzi[z; € a; N pynla, Arga, ..., Ad],
and the conclusion is obvious. So (18) holds.
To prove the implication in (17) for rules 3, suppose that YnIpy(W,n,p). Let F be
such that Yny(W,n, F\(n)). Thus
(19)  Vn|VBy CTy---VBg CTyVi=1,...,d[B; is F(n)-dense in T;] — ownl]]-

Since p’-density implies p-density for p < p’/, we may assume that for all n and all i =
1,...,d, F(n) > Ny



_ Now fix a sequence n = (ny,...,ng) of positive integers. We want to find p such that
(W, n,p). Define G by induction, as follows.

G(0) = max{n; : r < i < d};

G(j+ 1) = F(k), where ki:{G(j) ifroi<d

Now for each ¢+ = 1,...,r let z; be the number of elements of 7T; of height n;, and let
m = [],_, zi. For each j < m let p; = G(m — j).

(20) If j < m, then pj41 < p;.

For,

n; if1<e<r,
Gm—j—1) ifr<i<d

I if1<e<r,
o Pj+1 ifr<i<d

pj=G(m—j)=G(m—j—1+1)= F(k’), where kf:{

Since p;41 is an entry of k7, (20) holds.
It follows that

(21) If a set is p;-dense in Tj, then it is also p;41-dense in T;.

We claim that (W, n, pg). Now (W, n,pg) is
VB, CTy---VBq C Ty[Vi=1,...,d[B; is po-dense in T; — oy, ]].

So, assume that By C Ty ---VBy C Ty and Vi = 1,...,d[B; is po-dense in T;].

(22) If a1 € nl(Tl,Bl) N...Na, € nr(Tr,Br), 0 < j < m, ArJrl - Br+17~-~;Ad -
Bg, and A,4q,...,Aq are pj-dense in Ty, .., Ty respectively, then there exist A;. ; C
Apqr,.. Ay C© Ay which are pjii-dense such that @y [d, A, ..., A}l

N

By (19), owwi[Ars1, - -, Ad), and hence by.the form of W, there are A}, ; € A,41,.. .,A&
Agsuch that A ..., A, are k] -,..., k)-dense and @y, (@, A, ..., Al]. Now /.,

cee = k‘; = pj+17 as desired-
Now clearly | H:Zl ni(T;, B;)| < | H::l zi| = m.

(23) For any J C []i_, n;(T}, B;) with |J| = j < m, there are A, 41 C B11, ..., Ag C By
such that each A; is pj-dense in T}, and for every a € J, pynala, Ari1, ..., Adl.

We prove this by induction on j. It is obvious for j = 0. Now assume that b ¢ J
and J U {b} C [[_, n;(T;, B;) and the assertion is true for J. So j < m and there are

A1 € Bryy, ..., Ag € By such that each A; is pj-dense in T;, and for every a € J,
ovnla, App1,..., Agl. Now by (22) there exist A}, C A,.41, ..., A} C Ay such that
Al 1,..., Al are pjii-dense in Ty 1, ..., Ty respectively, and pyyi[b, A ,,..., A)]. By

(18), pvnlc, Al ,..., A} for all c € JU {b}. This proves (23).
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This completes the proof of (17) for rules 3.

Now the proof of the theorem goes as follows. Let Wy = (Va;)¢(3z;)¢, W1 = (3A4;)4(Vx,)$.
By (4), Wy =g Wh. By (17) as extended, Yn3py(Wy, n, p) implies Yn3pyp (W1, n, p).

Case 1. YnIpip(Wy, n, p). Hence VnIpy(Wy,n,p). For any k € w let n be constantly k.
Then choose p so that (W7, n,p). Then there exist A; for i =1,...,d such that A; C B;
foralli =1,...,d, A;isn;-dense in T} foralli = 1,...,d,and for all: = 1,...,d, Vz; € A;,
ovnlAil, ..., Ag,x1,...,xq]. Then Vi = 1,...,d[A; is k-dense in T; and (z1,...,24) € Q.
Thus (i) in the theorem holds.

Case 2. There is an n such that for all p, =)(Wy, n,p). Thus for every p there are

Bi, ..., By which are p-dense in their respective trees, and a; € n;(1;, B;) fori =1,...d
such that H?zl a; C H?Zl T:\Q. Let h = max{n; : 1 <1i <d}. For any k, take p = h + k.
Then aq,...,aq is an (m, k)-matrix contained in H?:1 T:\Q. O
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