The Halpern-Läuchli Theorem

We expand the origonal proof. We deal with trees of height ω , finitely branching, with a unique root, and with no maximal nodes. A set S of nodes is (h, k)-dense iff there is a node x of height h such that S dominates the nodes of height h + k which are above x. k-dense means (0, k)-dense, and ∞ -dense means k-dense for all k.

Proposition 1. S is k-dense iff S dominates the nodes of height k.

Proposition 2. S is ∞ -dense iff S dominates all nodes of T.

We define $T \uparrow t = \{s : t \leq s\}$. For each $n \in \omega$, $n(T) = \{T \uparrow x : |x| = n\}$. For $B \subseteq T$, $n(T,B) = \{(T \uparrow t) \cap B : |t| = n\}$. If $\mathbf{T} = (T_1, \ldots, T_d)$ is a system of trees, then an (h,k)-matrix for **T** is a product $\prod_{i=1}^{d} A_i$ with each A_i (h,k)-dense in T_i . A k-matrix is a (0, k)-matrix.

Theorem 3. (Halpern-Läuchli) Let $\mathbf{T} = (T_1, \ldots, T_d)$ be a system of trees, each finitely branching, with a single root, and of height ω . Suppose that $Q \subseteq \prod_{i=1}^{d} T_i$. Then one of the following conditions holds:

(ii) There is an $h \in \omega$ such that for each k there is an (h,k)-matrix contained in $(\prod_{i=1}^{d} T_i) \setminus Q$.

Proof. We first introduce a certain algebra of symbols. *Atomic symbols* are

 $\exists A_i, \forall x_i, \forall a_i, \exists x_i \text{ for each positive integer } i.$

For each positive integer d we define

 $L_d = \{\sigma : \sigma \text{ is a function with domain } \{1, \ldots, 2d\}, \text{ and for each } i \in \{1, \ldots, d\} \text{ exactly one}$ of the following holds:

(i) Each of $\exists A_i$ and $\forall x_i$ occurs exactly once in σ , with $\exists A_i$ before $\forall x_i$.

(ii) Each of $\forall a_i$ and $\exists x_i$ occurs exactly once in σ , with $\forall a_i$ before $\exists x_i$.

Examples:

 $L_1 = \{ \langle \exists A_1, \forall x_1 \rangle, \langle \forall a_1 \exists x_1 \rangle \}.$ $L_2 = \{ \langle \exists A_1, \forall x_1, \exists A_2, \forall x_2 \rangle, \langle \exists A_1, \exists A_2, \forall x_1, \forall x_2 \rangle, \ldots \}.$

Now we define a relation \vdash_d on L_d . α, β stand for A_i, a_i, x_i and U and V are strings of atomic symbols each of length d-1.

Rules 1. $U \exists \alpha \exists \beta V \vdash_d U \exists \beta \exists \alpha V$, if $U \exists \alpha \exists \beta V, U \exists \beta \exists \alpha V \in L_d$. $U \forall \alpha \forall \beta V \vdash_d U \forall \beta \forall \alpha V$, if $U \forall \alpha \forall \beta V, U \forall \beta \forall \alpha V \in L_d$. $U \exists \alpha \forall \beta V \vdash_d U \forall \beta \exists \alpha V$, if $U \exists \alpha \forall \beta V, U \forall \beta \exists \alpha V \in L_d$, Rules 2.

 $U \forall a_i \exists x_i V \vdash_d U \exists A_i \forall x_i V$ for all $i = 1, \ldots, d$ such that $U \forall a_i \exists x_i V, U \exists A_i \forall x_i V \in L_d$.

 $U \exists A_i \forall x_i V \vdash U \forall a_i \exists x_i V \text{ for all } i = 1, \dots, d \text{ such that } U \forall a_i \exists x_i V, U \exists A_i \forall x_i V \in L_d.$

To state rules 3, we first define, if $\langle V_i : r \leq i \leq k \rangle$ is a sequence of strings of atomis symbols, then $(V_i)_r^k$ is the concatenation $V_r \cdots V_k$.

Rules 3.

If σ is a permutation of $\{1, \ldots, d\}$, then $(\forall a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^d V \vdash_d (\exists A_{\sigma(i)})_{r+1}^d (\forall a_{\sigma(i)})_1^r V \text{ for } r = 1 \ldots d - 1.$

Example

$$d = 4, \quad r = 2, \quad V = \exists x_3 \forall x_1 \forall x_4 \exists x_2, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$

gives

$$\forall a_2 \forall a_3 \exists A_1 \exists A_4 \exists x_3 \forall x_1 \forall x_4 \exists x_2 \vdash_d \exists A_1 \exists A_4 \forall a_2 \forall a_3 \exists x_3 \forall x_1 \forall x_4 \exists x_9$$

 \models_d is the transitive closure of \vdash_d .

(1) $\forall a_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \exists x_d \models_d \exists A_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \forall x_d.$ Proof of (1): Let $\sigma(1) = d$, $\sigma(i+1) = i$ for $i = 2, \ldots, d-1, r = 1$. Then an instance of rules 3 is

$$(\forall a_{\sigma(i)})_1^1 (\exists A_{\sigma(i)})_2^d (\forall x_i)_1^{d-1} \exists x_d \models_d (\exists A_{\alpha(i)})_2^d (\forall a_{\sigma(i)})_1^1 (\forall x_i)_1^{d-1} \exists x_d,$$

or

(1a)
$$\forall a_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \exists x_d \models_d (\exists A_i)_1^{d-1} \forall a_d (\forall x_i)_1^{d-1} \exists x_d$$

By Rules 1,

(1b)
$$(\exists A_i)_1^{d-1} \forall a_d (\forall x_i)_1^{d-1} \exists x_d \models_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \forall a_d \exists x_d$$

Again using rules 1,

$$(\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \forall a_d \exists x_d \models_d \exists A_1 \forall x_1 (\exists A_i)_2^{d-1} (\forall x_i)_2^{d-1} \forall a_d \exists x_d$$

...
$$\models_d (\exists A_i \forall x_i)_1^{d-1} \forall a_d \exists x_d$$
(1c)

By rules 2,

(1d)
$$(\exists A_i \forall x_i)_1^{d-1} \forall a_d \exists x_d \models_d (\forall a_i \exists x_i)_1^{d-1} \exists A_d \forall x_d$$

By Rules 1,

$$(\forall a_i \exists x_i)_1^{d-1} \exists A_d \forall x_d \models_d (\forall a_i \exists x_i)_1^{d-2} \forall a_{d-1} \exists x_{d-1} \exists A_d \forall x_d \\ \models_d (\forall a_i \exists x_i)_1^{d-3} \forall a_{d-2} \exists x_{d-2} \forall a_{d-1} \exists x_{d-1} \exists A_d \forall x_d \\ \models_d (\forall a_i \exists x_i)_1^{d-3} \forall a_{d-2} \exists x_{d-2} \forall a_{d-1} \exists A_d \exists x_{d-1} \forall x_d \\ \models_d (\forall a_i \exists x_i)_1^{d-3} \forall a_{d-2} \forall a_{d-1} \exists x_{d-2} \exists A_d \exists x_{d-1} \forall x_d \\ \models_d (\forall a_i \exists x_i)_1^{d-3} \forall a_{d-2} \forall a_{d-1} \exists A_d \exists x_{d-2} \exists x_{d-1} \forall x_d \\ \vdots d_i (\forall a_i \exists x_i)_1^{d-3} \forall a_{d-2} \forall a_{d-1} \exists A_d \exists x_{d-2} \exists x_{d-1} \forall x_d \\ \vdots d_i (\forall a_i)_1^{d-1} \exists A_d (\exists x_i)_1^{d-1} \forall x_d$$

$$(1e)$$

Now with σ the identity and r = d - 1, rules 3 give

(1f)
$$(\forall a_i)_1^{d-1} \exists A_d (\exists x_i)_1^{d-1} \forall x_d \models_d \exists A_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \forall x_d$$

Now (1a)-(1f) give (1).

(2) Suppose that $UV \in L_d$, U has length d, no atoms of the forms $\forall x_i, \exists x_i \text{ occur in } U$, and \overline{U} is any rearrangement of U. Then $UV \models_d \overline{U}V$.

In fact, assume the hypotheses. So only $\exists A_i$ and $\forall a_i$ occur in U. If no $\forall a_i$ occurs, or no $\exists A_i$ occurs, the conclusion is clear by rules 1. So suppose some $\forall a_i$ occurs and some $\exists A_i$ occurs. By rules 1 there is a permutation σ of $\{1, \ldots, d\}$ such that

$$UV \models_d (\forall a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^d V$$

By rules 3,

$$(\forall a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^d V \models_d (\exists A_{\sigma(i)})_{r+1}^d (\forall a_{\sigma(i)})_1^r V$$

Then by rules 1,

$$(\forall a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^d V \models_d \bar{U}V.$$

Thus (2) holds.

(3) If
$$W \models_{d-1} \bar{W}$$
, then $\forall a_d W \exists x_d \models_d \forall a_d \bar{W} \exists x_d$

For, assume that $W \models_{d-1} \overline{W}$. Say

$$W = S_0 \vdash_{d-1} S_1 \vdash_{d-1} S_2 \cdots \vdash_{d-1} S_n = \bar{W}.$$

We claim that

$$\forall a_d W \exists x_d = \forall a_d S_0 \exists x_d \vdash_d \forall a_d S_1 \exists x_d \cdots \vdash_d \forall a_d S_n \exists x_d = \forall a_d \bar{W} \exists x_d.$$

Consider the step from S_i to S_{i+1} . If rules (1) or rules (2) are used in going from S_i to S_{i+1} , clearly the same rules go from $\forall a_d S_i \exists x_d$ to $\forall a_d S_{i+1} \exists x_d$. Suppose that rules (3) are used. Say S_i is $(a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^{d-1} V$ and S_{i+1} is $(\exists A_{\sigma(i)})_{r+1}^r (\forall a_{\sigma(i)})_1^r V$. Then $\forall a_d S_i \exists x_d$ is $\forall a_d (a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^{d-1} V \exists x_d$ and $\forall a_d S_{i+1} \exists x_d$ is $\forall a_d (\exists A_{\sigma(i)})_{r+1}^{d-1} (\forall a_{\sigma(i)})_1^r V \exists x_d$. Hence $\forall a_d S_i \exists x_d \models_d \forall a_d S_{i+1} \exists x_d$ by (2). Hence (3) holds.

(4)
$$(\forall a_i)_1^d (\exists x_i)_1^d \models_d (\exists A_i)_1^d (\forall x_i)_1^d.$$

In fact, we prove this by induction on d. For d = 1 the assertion is that $\forall a_1 \exists x_1 \models_d \exists A_1 \forall x_1$, which is an instance of rules 2. Now assume (4) for $d - 1 \ge 1$. Then rules 1 give

(4a)
$$(\forall a_i)_1^d (\exists x_i)_1^d \models_d \forall a_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \exists x_d$$

By the inductive hypothesis and (3) we have

(4b)
$$\forall a_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \exists x_d \models_d \forall a_d (\exists A_i)_1^{d-1} \forall x_i)_1^{d-1} \exists x_d$$

By (1) we have

(4c)
$$\forall a_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \exists x_d \models_d \exists A_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \forall x_d$$

By the inductive hypothesis and (3) we have

(4d)
$$\exists A_d (\forall a_i)_1^{d-1} (\exists x_i)_1^{d-1} \forall x_d \models_d \exists A_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \forall x_d$$

Now by rules (1) we get

(4e)
$$\exists A_d (\exists A_i)_1^{d-1} (\forall x_i)_1^{d-1} \forall x_d \models_d (\exists A_i)_1^d (\forall x_i)_1^d$$

Now (4a)-(4e) give (4).

Now suppose that $\mathbf{T} = \langle T_i : 1 \leq i \leq d \rangle$ is a vector tree and $Q \subseteq \prod_{i=1}^{d} T_i$. We define a (d+1)-sorted language \mathscr{L} . The sorts are S_1, \ldots, S_{d+1} . Additional constants are as follows.

A *d*-ary function symbol Seq acting on *d*-tuples from $S_1 \times \cdots \times S_d$ with values in S_{d+1} . For each $i = 1, \ldots, d$, a binary relation symbol $<_i$ acting on S_i .

 x_1, \ldots, x_d are variables ranging over S_1, \ldots, S_d respectively.

 B_1, \ldots, B_d are constants for subsets of S_1, \ldots, S_d respectively.

 A_1, \ldots, A_d are variables ranging over subsets of S_1, \ldots, S_d respectively.

 v_{ik} for $i = 1, \ldots, d$ and $k \in \omega$ are variables ranging over S_i ,

 a_1, \ldots, a_d are variables ranging over subsets of S_1, \ldots, S_d respectively.

Q, a constant for a subset of S_{d+1}

A structure for this language assigns T_i to S_i for i = 1, ..., d, the product $\prod_{i=1}^{d} T_i$ to S_{d+1} , and subsets B_i of T_1 for i = 1, ..., d, with Q assigned to Q.

Now with each sequence $\mathbf{n} = (n_1, \ldots, n_d)$ of positive integers and each sequence W of atomic symbols we associate a formula $\varphi = \varphi_{W\mathbf{n}}$. This is done by induction on the length of W

If W is empty, we let $\varphi_{W\mathbf{n}}$ be the formula $Seq(x_1, \ldots, x_d) \in Q$.

If $W = \exists A_i W'$, then we let $\varphi_{W\mathbf{n}}$ be the formula $\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i\text{-dense in } S_i \land \varphi_{W'\mathbf{n}}]$. Here " A_i is $n_i\text{-dense in } S_i$ " is the formula

$$\forall t \in S_i[|t| = n_i \to \exists s \in A_i[t \leq_i s]].$$

We use the variables v_{ik} to express this.

If $W = \forall x_i W'$, then we let $\varphi_{W\mathbf{n}}$ be the formula $\forall x_i [x_i \in A_i \to \varphi_{W'\mathbf{n}}]$.

If $W = \forall a_i W'$, then we let $\varphi_{W\mathbf{n}}$ be the formula $\forall a_i [a_i \in n_i(S_i, B_i) \to \varphi_{W'\mathbf{n}}]$ Here $a_i \in n_i(S_i, B_i)$ is the formula

$$\exists t \in S_i[|t| = n_i \land \forall s[s \in a_i \leftrightarrow [t \le s \land s \in B_i]]].$$

If $W = \exists x_i W'$, then we let $\varphi_{W\mathbf{n}}$ be the formula $\exists x_i [x_i \in a_i \land \varphi_{W'\mathbf{n}}]$.

Now we let $\psi(W, n, p)$ be the statement " $\forall B_1 \subseteq S_1 \cdots \forall B_d \subseteq S_d[[\forall i = 1, \dots, d[B_i \text{ is } p\text{-dense} \text{ in } S_i] \rightarrow \varphi_{W\mathbf{n}}]]$ "

(5) Suppose that W, W', ρ are sequences of atomic symbols. Suppose that under every assignment of values to the variables, φ_{Wn} implies $\varphi_{W'n}$. Then $\varphi_{\rho Wn}$ under any assignment implies $\varphi_{\rho W'n}$ under that assignment.

We prove this by induction on ρ . If ρ is empty, it is obvious. The induction step is clear upon looking at what $\varphi_{\rho Wn}$ is:

Case 1. $\rho = \exists A_i \rho'$. Then $\varphi_{\rho W n}$ is

 $\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \varphi_{\rho'Wn}]$

Case 2. $\rho = \forall x_i \rho'$. Then $\varphi_{\rho W n}$ is

$$\forall x_i [x_i \in A_i \to \varphi_{\rho'Wn}].$$

Case 3. $\rho = \forall a_i \rho'$. Then $\varphi_{\rho W n}$ is

$$\forall a_i [a_i \in n_i(S_i, B_i) \to \varphi_{\rho'Wn}]$$

Case 4. $\rho = \exists x_i \rho'$. Then $\varphi_{\rho W n}$ is

$$\exists x_i [x_i \in a_i \land \varphi_{\rho'Wn}]$$

This proves (5).

(6) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\exists A_i \exists A_j Wn}$ implies that $\varphi_{\exists A_j \exists A_i W'n}$.

In fact, $\varphi_{\exists A_i \exists A_j W n}$ is

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \varphi_{A_i W \mathbf{n}}];$$

expanding we get

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \exists A_j [A_j \subseteq B_j \land A_j \text{ is } n_j \text{-dense in } S_j \land \varphi_{Wn}]].$$

This is logically equivalent to

$$\exists A_i \exists A_j [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land A_j \subseteq B_j \land A_j \text{ is } n_j \text{-dense in } S_j \land \varphi_{W\mathbf{n}}].$$

Hence (6) holds.

(7) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\exists A_i \exists x_j Wn}$ implies that $\varphi_{\exists x_j \exists A_i W'n}$.

In fact, $\varphi_{\exists A_i \exists x_j W n}$ is

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \varphi_{x_i W \mathbf{n}}];$$

expanding we get

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \exists x_j [x_j \in a_j \land \varphi_{W\mathbf{n}}]].$$

This is logically equivalent to

$$\exists A_i \exists x_j [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land x_j \in a_j \land \varphi_{W\mathbf{n}}].$$

Hence (7) holds.

(8) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\exists x_i \exists A_j Wn}$ implies that $\varphi_{\exists A_j \exists x_i W'n}$.

This is proved as for (7).

(9) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\exists x_i \exists x_j Wn}$ implies that $\varphi_{\exists x_i \exists x_i W'n}$.

In fact, $\varphi_{\exists x_i \exists x_j Wn}$ is

$$\exists x_i [x_i \in a_i \land \varphi_{x_j W \mathbf{n}}];$$

expanding we get

$$\exists x_i [x_i \in a_i \land \exists x_j [x_j \in a_j \land \varphi_{W\mathbf{n}}]]$$

This is logically equivalent to

$$\exists x_i \exists x_j [x_i \in a_i \land x_j \in a_j \land \varphi_{W\mathbf{n}}].$$

Hence (9) holds.

(10) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\forall x_i \forall x_j Wn}$ implies that $\varphi_{\forall x_j \forall x_i Wn}$.

In fact, $\varphi_{\forall x_i \forall x_j Wn}$ is

$$\forall x_i [x_i \in A_i \to \varphi_{\forall x_i W n}];$$

expanding we get

$$\forall x_i [x_i \in A_i \to \forall x_j [x_j \in A_j \to \varphi_{Wn}]]$$

This is logically equivalent to

$$\forall x_i \forall x_j [x_i \in A_i \to [x_j \in A_j \to \varphi_{Wn}]]$$

Hence (10) follows.

(11) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\forall a_i \forall x_j Wn}$ implies that $\varphi_{\forall x_j \forall a_i Wn}$.

In fact, $\varphi_{\forall a_i \forall x_j W n}$ is

$$\forall a_i [a_i \in n_i(S_i, B_i) \to \varphi_{\forall x_i W n}];$$

expanding we get

$$\forall a_i[a_i \in n_i(S_i, B_i) \to \forall x_j[x_j \in A_j \to \varphi_{Wn}]]$$

This is logically equivalent to

$$\forall a_i \forall x_j [x_i \in n_i(S_i, B_i) \to [x_j \in A_j \to \varphi_{Wn}]]$$

Hence (11) follows.

(12) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\forall x_i \forall a_j Wn}$ implies that $\varphi_{\forall a_j \forall x_i Wn}$.

This is similar to (11).

(13) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\forall a_i \forall a_j Wn}$ implies that $\varphi_{\forall a_j \forall a_i Wn}$.

This is similar to (11).

(14) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\exists A_i \forall a_j Wn}$ implies that $\varphi_{\forall a_j \exists A_i Wn}$.

In fact, $\varphi_{\exists A_i \forall a_j W n}$ is

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \varphi_{\forall a_i W n}]$$

Expanding, we get

$$\exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land \forall a_j [a_j \in n_j (S_j, B_j) \to \varphi_{Wn}]].$$

This is logically equivalent to

$$\exists A_i \forall a_j [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land [a_j \in n_j(S_j, B_j) \to \varphi_{Wn}]].$$

This implies

$$\forall a_j \exists A_i [A_i \subseteq B_i \land A_i \text{ is } n_i \text{-dense in } S_i \land [a_j \in n_j(S_j, B_j) \to \varphi_{Wn}]].$$

Hence (14) holds.

One similarly treats other sequences of the form $\exists \alpha \forall \beta$.

(15) $A_i \subseteq B_i$ is n_i -dense in T_i iff $A_i \subseteq B_i$ and $\forall a_i \in n_i(T_i, B_i)[a_i \cap A_i \neq \emptyset]$.

In fact, for \Rightarrow , suppose that $A_i \subseteq B_i$ is n_i -dense in T_i and $a_i \in n_i(T_i, B_i)$. Say $a_i = (T_i \uparrow t) \cap B_i$ with $|t| = n_i$. There is an $s \in A_i$ such that $t \leq s$. Thus $s \in a_i \cap A_i$.

For \Leftarrow , suppose that $A_i \subseteq B_i$ and $\forall a_i \in n_i(T_i, B_i)[a_i \cap A_i \neq \emptyset]$ and $|t| = n_i$. Set $a_i = (T_i \uparrow t) \cap B_i$. Choose $u \in a_i \cap A_i$. Then $t \leq u$, as desired.

(16) If under some assignment of values to the variables, φ_{Wn} implies that $\varphi_{W'n}$, then under that assignment, $\varphi_{\forall a_i \exists x_i Wn}$ implies that $\varphi_{\exists A_i \forall x_i Wn}$. In fact, $\varphi_{\forall a_i \exists x_i W n}$ is

$$\forall a_i [a_i \in n_i(S_i, B_i) \to \varphi_{\exists x_i W n}];$$

expanding, we get

$$\forall a_i [a_i \in n_i(S_i, B_i) \to \exists x_i [x_i \in a_i \land \varphi_{Wn}]].$$

Now assume $\varphi_{\forall a_i \exists x_i Wn}$. For each $a_i \in n_i(T_i, B_i)$ choose $x_i(a_i) \in a_i$ such that φ_{Wn} . Let $A_i = \{x_i(a_i) : a_i \in n_i(T_i, B_i)\}$. Note that $\forall a_i \in n_i(T_i, B_i)[a_i \subseteq B_i]$. Hence $A_i \subseteq B_i$. Hence by (15), A_i is n_i -dense in T_i . Now $\forall x_i \in A_i \varphi_{Wn}$. So (16) holds.

(17) If $W \vdash W'$ using rules 1 or 2, then $\forall n \exists p \psi(W.n.p)$ implies that $\forall n \exists p \psi(W'.n.p)$.

In fact, $\forall n \exists p \psi(W.n.p)$ is

 $\forall n \exists p \forall B_1 \subseteq S_1 \cdots \forall B_d \subseteq S_d[[\forall i = 1, \dots, d[B_i \text{ is } p\text{-dense in } S_i] \to \varphi_{W\mathbf{n}}]],$

and similarly for $\forall n \exists p \psi(W'.n.p)$. Hence (17) follows from (5)–(16).

Now suppose that σ is a permutation of $\{1, \ldots, d\}$. Let $W = (\forall a_{\sigma(i)})_1^r (\exists A_{\sigma(i)})_{r+1}^d V$ and $\overline{W} = (\exists A_{\sigma(i)})_{r+1}^d (\forall a_{\sigma(i)})_1^r V$ with $r \in \{1 \ldots d-1\}$. Now for simplicity we assume that σ is the identity. Note that V is a string of length d whose entries are $\forall x_i$ for $r+1 \leq i \leq d$ and $\exists x_j$ for $1 \leq j \leq r$; moreover, only A_i for $i = r+1, \ldots, d$ and a_i for $i = 1 \ldots, r$ are free. If V is such a string, **a** is an assignment of values to the a_i 's, A_{r+1}, \ldots, A_d an assignment of values to the A_i 's, then the assertion $\varphi_{Vn}[\mathbf{a}, A_{r+1}, \ldots, A_d]$ has the natural meaning.

(18) If V is such a string, **a** assigns values to the a_i for $i = 1, ..., r, A_{r+1}, ..., A_d$ an assignment of values to the A_i 's, $A'_{r+1} \subseteq A_{r+1}, ..., A'_d \subseteq A_d$, and $\varphi_{Vn}[\mathbf{a}, A_{r+1}, ..., A_d]$, then $\varphi_{Vn}[\mathbf{a}, A'_{r+1}, ..., A'_d]$.

We prove (18) by induction on the length of V. It is trivial for the empty string. Now suppose that the string is $\forall x_i V'$. Then $\varphi_{\forall x_i V'n}[\mathbf{a}, A_{r+1}, \ldots, A_d]$ is

$$\forall x_i [x_i \in A_i \to \varphi_{V'n}[\mathbf{a}, A_{r+1}, \dots, A_d]],$$

 \mathbf{SO}

$$\forall x_i [x_i \in A'_i \to \varphi_{V'n}[\mathbf{a}, A'_{r+1}, \dots, A'_d]],$$

If the string is $\exists x_i V'$, then $\varphi_{\exists x_i V' n}[\mathbf{a}, A_{r+1}, \dots, A_d]$ is

$$\exists x_i [x_i \in a_i \land \varphi_{V'n}[\mathbf{a}, A_{r+1}, \dots, A_d]],$$

and the conclusion is obvious. So (18) holds.

To prove the implication in (17) for rules 3, suppose that $\forall \mathbf{n} \exists p \psi(W, \mathbf{n}, p)$. Let F be such that $\forall \mathbf{n} \psi(W, \mathbf{n}, F(\mathbf{n}))$. Thus

(19)
$$\forall \mathbf{n} [\forall B_1 \subseteq T_1 \cdots \forall B_d \subseteq T_d \forall i = 1, \dots, d[B_i \text{ is } F(\mathbf{n}) \text{-dense in } T_i] \rightarrow \varphi_{W\mathbf{n}}]]].$$

Since p'-density implies p-density for p < p', we may assume that for all **n** and all $i = 1, \ldots, d, F(\mathbf{n}) > n_i$.

Now fix a sequence $\mathbf{n} = (n_1, \ldots, n_d)$ of positive integers. We want to find p such that $\psi(\overline{W}, \mathbf{n}, p)$. Define G by induction, as follows.

$$G(0) = \max\{n_i : r < i \le d\};$$

$$G(j+1) = F(\mathbf{k}), \text{ where } k_i = \begin{cases} n_i & \text{if } 1 \le i \le r, \\ G(j) & \text{if } r < i \le d. \end{cases}$$

Now for each i = 1, ..., r let z_i be the number of elements of T_i of height n_i , and let $m = \prod_{i=1}^r z_i$. For each $j \le m$ let $p_j = G(m-j)$. (20) If j < m, then $p_{j+1} \le p_j$.

For,

$$p_{j} = G(m-j) = G(m-j-1+1) = F(\mathbf{k}^{j}), \text{ where } k_{i}^{j} = \begin{cases} n_{i} & \text{if } 1 \le i \le r, \\ G(m-j-1) & \text{if } r < i \le d \end{cases}$$
$$= \begin{cases} n_{i} & \text{if } 1 \le i \le r, \\ p_{j+1} & \text{if } r < i \le d \end{cases}$$

Since p_{j+1} is an entry of \mathbf{k}^{j} , (20) holds.

It follows that

(21) If a set is p_j -dense in T_i , then it is also p_{j+1} -dense in T_i .

We claim that $\psi(\overline{W}, \mathbf{n}, p_0)$. Now $\psi(\overline{W}, \mathbf{n}, p_0)$ is

$$\forall B_1 \subseteq T_1 \cdots \forall B_d \subseteq T_d [\forall i = 1, \dots, d[B_i \text{ is } p_0 \text{-dense in } T_i \to \varphi_{\overline{W}n}]].$$

So, assume that $B_1 \subseteq T_1 \cdots \forall B_d \subseteq T_d$ and $\forall i = 1, \dots, d[B_i \text{ is } p_0 \text{-dense in } T_i]$.

(22) If $a_1 \in n_1(T_1, B_1) \land \ldots \land a_r \in n_r(T_r, B_r), 0 \leq j < m, A_{r+1} \subseteq B_{r+1}, \ldots, A_d \subseteq B_d$, and A_{r+1}, \ldots, A_d are p_j -dense in T_{r+1}, \ldots, T_d respectively, then there exist $A'_{r+1} \subseteq A_{r+1}, \ldots, A'_d \subseteq A_d$ which are p_{j+1} -dense such that $\varphi_{V\mathbf{k}^j}[\vec{a}, A'_{r+1}, \ldots, A'_d]$.

By (19), $\varphi_{W\mathbf{k}^{j}}[A_{r+1},\ldots,A_{d}]$, and hence by the form of W, there are $A'_{r+1} \subseteq A_{r+1},\ldots,A'_{d} \subseteq A_{d}$ such that A'_{r+1},\ldots,A'_{d} are k^{j}_{r+1} -,..., k^{j}_{d} -dense and $\varphi_{V\mathbf{k}^{j}}[\vec{a},A'_{r+1},\ldots,A'_{d}]$. Now $k^{j}_{r+1} = \cdots = k^{j}_{d} = p_{j+1}$, as desired. Now clearly $|\prod_{i=1}^{r} n_{i}(T_{i},B_{i})| \leq |\prod_{i=1}^{r} z_{i}| = m$.

(23) For any $J \subseteq \prod_{i=1}^{r} n_i(T_i, B_i)$ with $|J| = j \leq m$, there are $A_{r+1} \subseteq B_{r+1}, \ldots, A_d \subseteq B_d$ such that each A_i is p_j -dense in T_i , and for every $\mathbf{a} \in J$, $\varphi_{V\mathbf{n}}[\mathbf{a}, A_{r+1}, \ldots, A_d]$.

We prove this by induction on j. It is obvious for j = 0. Now assume that $\mathbf{b} \notin J$ and $J \cup \{\mathbf{b}\} \subseteq \prod_{i=1}^{r} n_i(T_i, B_i)$ and the assertion is true for J. So j < m and there are $A_{r+1} \subseteq B_{r+1}, \ldots, A_d \subseteq B_d$ such that each A_i is p_j -dense in T_i , and for every $\mathbf{a} \in J$, $\varphi_{V\mathbf{n}}[\mathbf{a}, A_{r+1}, \ldots, A_d]$. Now by (22) there exist $A'_{r+1} \subseteq A_{r+1}, \ldots, A'_d \subseteq A_d$ such that A'_{r+1}, \ldots, A'_d are p_{j+1} -dense in T_{r+1}, \ldots, T_d respectively, and $\varphi_{V\mathbf{k}^j}[\mathbf{b}, A'_{r+1}, \ldots, A'_d]$. By (18), $\varphi_{V\mathbf{n}}[\mathbf{c}, A'_{r+1}, \ldots, A'_d]$ for all $\mathbf{c} \in J \cup \{\mathbf{b}\}$. This proves (23). This completes the proof of (17) for rules 3.

Now the proof of the theorem goes as follows. Let $W_0 = (\forall a_i)_1^d (\exists x_i)_1^d, W_1 = (\exists A_i)_1^d (\forall x_i)_1^d$. By (4), $W_0 \models_d W_1$. By (17) as extended, $\forall n \exists p \psi(W_0, n, p)$ implies $\forall n \exists p \psi(W_1, n, p)$.

Case 1. $\forall n \exists p \psi(W_0, n, p)$. Hence $\forall n \exists p \psi(W_1, n, p)$. For any $k \in \omega$ let **n** be constantly k. Then choose p so that $\psi(W_1, \mathbf{n}, p)$. Then there exist A_i for $i = 1, \ldots, d$ such that $A_i \subseteq B_I$ for all $i = 1, \ldots, d$, A_i is n_i -dense in T_i for all $i = 1, \ldots, d$, and for all $i = 1, \ldots, d$, $\forall x_i \in A_i$, $\varphi_{V\mathbf{n}}[A_1, \ldots, A_d, x_1, \ldots, x_d]$. Then $\forall i = 1, \ldots, d[A_i]$ is k-dense in T_i and $(x_1, \ldots, x_d) \in Q$. Thus (i) in the theorem holds.

Case 2. There is an n such that for all $p, \neg \psi(W_0, n, p)$. Thus for every p there are B_1, \ldots, B_d which are p-dense in their respective trees, and $a_i \in n_i(T_i, B_i)$ for $i = 1, \ldots d$ such that $\prod_{i=1}^d a_i \subseteq \prod_{i=1}^d T_i \setminus Q$. Let $h = \max\{n_i : 1 \le i \le d\}$. For any k, take p = h + k. Then a_1, \ldots, a_d is an (m, k)-matrix contained in $\prod_{i=1}^d T_i \setminus Q$.