
The Halpern-Läuchli Theorem

We expand the origonal proof. We deal with trees of height ω, finitely branching, with a
unique root, and with no maximal nodes. A set S of nodes is (h, k)-dense iff there is a
node x of height h such that S dominates the nodes of height h + k which are above x.
k-dense means (0, k)-dense, and ∞-dense means k-dense for all k.

Proposition 1. S is k-dense iff S dominates the nodes of height k.

Proposition 2. S is ∞-dense iff S dominates all nodes of T .

We define T ↑ t = {s : t ≤ s}. For each n ∈ ω, n(T ) = {T ↑ x : |x| = n}. For B ⊆ T ,
n(T,B) = {(T ↑ t) ∩ B : |t| = n}. If T = (T1, . . . , Td) is a system of trees, then an

(h, k)-matrix for T is a product
∏d

i=1Ai with each Ai (h, k)-dense in Ti. A k-matrix is a
(0, k)-matrix.

Theorem 3. (Halpern-Läuchli) Let T = (T1, . . . , Td) be a system of trees, each finitely

branching, with a single root, and of height ω. Suppose that Q ⊆
∏d

i=1 Ti. Then one of
the following conditions holds:

(i) For all k ∈ ω there is a k-matrix contained in Q.
(ii) There is an h ∈ ω such that for each k there is an (h, k)-matrix contained in

(
∏d

i=1 Ti)\Q.

Proof. We first introduce a certain algebra of symbols. Atomic symbols are

∃Ai, ∀xi, ∀ai, ∃xi for each positive integer i.

For each positive integer d we define

Ld = {σ : σ is a function with domain {1, . . . , 2d}, and for each i ∈ {1, . . . , d} exactly one
of the following holds:

(i) Each of ∃Ai and ∀xi occurs exactly once in σ, with ∃Ai before ∀xi.
(ii) Each of ∀ai and ∃xi occurs exactly once in σ, with ∀ai before ∃xi.

Examples:

L1 = {〈∃A1, ∀x1〉, 〈∀a1∃x1〉}.
L2 = {〈∃A1, ∀x1, ∃A2, ∀x2〉, 〈∃A1, ∃A2, ∀x1, ∀x2〉, . . .}.

Now we define a relation ⊢d on Ld. α, β stand for Ai, ai, xi and U and V are strings of
atomic symbols each of length d− 1.

Rules 1.
U∃α∃βV ⊢d U∃β∃αV , if U∃α∃βV, U∃β∃αV ∈ Ld.
U∀α∀βV ⊢d U∀β∀αV , if U∀α∀βV, U∀β∀αV ∈ Ld.
U∃α∀βV ⊢d U∀β∃αV , if U∃α∀βV, U∀β∃αV ∈ Ld,

Rules 2.
U∀ai∃xiV ⊢d U∃Ai∀xiV for all i = 1, . . . , d such that U∀ai∃xiV, U∃Ai∀xiV ∈ Ld.
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U∃Ai∀xiV ⊢ U∀ai∃xiV for all i = 1, . . . , d such that U∀ai∃xiV, U∃Ai∀xiV ∈ Ld.

To state rules 3, we first define, if 〈Vi : r ≤ i ≤ k〉 is a sequence of strings of atomis
symbols, then (Vi)

k
r is the concatenation Vr · · ·Vk.

Rules 3.
If σ is a permutation of {1, . . . , d}, then
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V ⊢d (∃Aσ(i))

d
r+1(∀aσ(i))

r
1V for r = 1 . . . d− 1.

Example

d = 4, r = 2, V = ∃x3∀x1∀x4∃x2, σ =

(

1 2 3 4
2 3 1 4

)

gives
∀a2∀a3∃A1∃A4∃x3∀x1∀x4∃x2 ⊢d ∃A1∃A4∀a2∀a3∃x3∀x1∀x4∃x9.

|=d is the transitive closure of ⊢d.

(1) ∀ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∃xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd.

Proof of (1): Let σ(1) = d, σ(i + 1) = i for i = 2, . . . , d − 1, r = 1. Then an instance of
rules 3 is

(∀aσ(i))
1
1(∃Aσ(i))

d
2(∀xi)

d−1
1 ∃xd |=d (∃Aα(i))

d
2(∀aσ(i))

1
1(∀xi)

d−1
1 ∃xd,

or

(1a) ∀ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∃xd |=d (∃Ai)

d−1
1 ∀ad(∀xi)

d−1
1 ∃xd

By Rules 1,

(1b) (∃Ai)
d−1
1 ∀ad(∀xi)

d−1
1 ∃xd |=d (∃Ai)

d−1
1 (∀xi)

d−1
1 ∀ad∃xd

Again using rules 1,

(∃Ai)
d−1
1 (∀xi)

d−1
1 ∀ad∃xd |=d ∃A1∀x1(∃Ai)

d−1
2 (∀xi)

d−1
2 ∀ad∃xd

· · ·

|=d (∃Ai∀xi)
d−1
1 ∀ad∃xd (1c)

By rules 2,

(1d) (∃Ai∀xi)
d−1
1 ∀ad∃xd |=d (∀ai∃xi)

d−1
1 ∃Ad∀xd

By Rules 1,

(∀ai∃xi)
d−1
1 ∃Ad∀xd |=d (∀ai∃xi)

d−2
1 ∀ad−1∃xd−1∃Ad∀xd

|=d (∀ai∃xi)
d−3
1 ∀ad−2∃xd−2∀ad−1∃xd−1∃Ad∀xd

|=d (∀ai∃xi)
d−3
1 ∀ad−2∃xd−2∀ad−1∃Ad∃xd−1∀xd

|=d (∀ai∃xi)
d−3
1 ∀ad−2∀ad−1∃xd−2∃Ad∃xd−1∀xd

|=d (∀ai∃xi)
d−3
1 ∀ad−2∀ad−1∃Ad∃xd−2∃xd−1∀xd

· · ·

|=d (∀ai)
d−1
1 ∃Ad(∃xi)

d−1
1 ∀xd (1e)
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Now with σ the identity and r = d− 1, rules 3 give

(1f) (∀ai)
d−1
1 ∃Ad(∃xi)

d−1
1 ∀xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd

Now (1a)–(1f) give (1).

(2) Suppose that UV ∈ Ld, U has length d, no atoms of the forms ∀xi, ∃xi occur in U ,
and Ū is any rearrangement of U . Then UV |=d ŪV .

In fact, assume the hypotheses. So only ∃Ai and ∀ai occur in U . If no ∀ai occurs, or no
∃Ai occurs, the conclusion is clear by rules 1. So suppose some ∀ai occurs and some ∃Ai

occurs. By rules 1 there is a permutation σ of {1, . . . , d} such that

UV |=d (∀aσ(i))
r
1(∃Aσ(i))

d
r+1V

By rules 3,
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V |=d (∃Aσ(i))

d
r+1(∀aσ(i))

r
1V

Then by rules 1,
(∀aσ(i))

r
1(∃Aσ(i))

d
r+1V |=d ŪV.

Thus (2) holds.

(3) If W |=d−1 W̄ , then ∀adW∃xd |=d ∀adW̄∃xd.

For, assume that W |=d−1 W̄ . Say

W = S0 ⊢d−1 S1 ⊢d−1 S2 · · · ⊢d−1 Sn = W̄ .

We claim that

∀adW∃xd = ∀adS0∃xd ⊢d ∀adS1∃xd · · · ⊢d ∀adSn∃xd = ∀adW̄∃xd.

Consider the step from Si to Si+1. If rules (1) or rules (2) are used in going from Si to
Si+1, clearly the same rules go from ∀adSi∃xd to ∀adSi+1∃xd. Suppose that rules (3) are
used. Say Si is (aσ(i))

r
1(∃Aσ(i))

d−1
r+1V and Si+1 is (∃Aσ(i))

d−1
r+1(∀aσ(i))

r
1V . Then ∀adSi∃xd

is ∀ad(aσ(i))
r
1(∃Aσ(i))

d−1
r+1V ∃xd and ∀adSi+1∃xd is ∀ad(∃Aσ(i))

d−1
r+1(∀aσ(i))

r
1V ∃xd. Hence

∀adSi∃xd |=d ∀adSi+1∃xd by (2). Hence (3) holds.

(4) (∀ai)
d
1(∃xi)

d
1 |=d (∃Ai)

d
1(∀xi)

d
1.

In fact, we prove this by induction on d. For d = 1 the assertion is that ∀a1∃x1 |=d ∃A1∀x1,
which is an instance of rules 2. Now assume (4) for d− 1 ≥ 1. Then rules 1 give

(4a) (∀ai)
d
1(∃xi)

d
1 |=d ∀ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∃xd

By the inductive hypothesis and (3) we have

(4b) ∀ad(∀ai)
d−1
1 (∃xi)

d−1
1 ∃xd |=d ∀ad(∃Ai)

d−1
1 ∀xi)

d−1
1 ∃xd
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By (1) we have

(4c) ∀ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∃xd |=d ∃Ad(∀ai)

d−1
1 (∃xi)

d−1
1 ∀xd

By the inductive hypothesis and (3) we have

(4d) ∃Ad(∀ai)
d−1
1 (∃xi)

d−1
1 ∀xd |=d ∃Ad(∃Ai)

d−1
1 (∀xi)

d−1
1 ∀xd

Now by rules (1) we get

(4e) ∃Ad(∃Ai)
d−1
1 (∀xi)

d−1
1 ∀xd |=d (∃Ai)

d
1(∀xi)

d
1

Now (4a)–(4e) give (4).

Now suppose that T = 〈Ti : 1 ≤ i ≤ d〉 is a vector tree and Q ⊆
∏d

i=1 Ti. We define a
(d+1)-sorted language L . The sorts are S1, . . . , Sd+1. Additional constants are as follows.

A d-ary function symbol Seq acting on d-tuples from S1×· · ·×Sd with values in Sd+1.
For each i = 1, . . . , d, a binary relation symbol <i acting on Si.
x1, . . . , xd are variables ranging over S1, . . . , Sd respectively.
B1, . . . , Bd are constants for subsets of S1, . . . , Sd respectively.
A1, . . . , Ad are variables ranging over subsets of S1, . . . , Sd respectively.
vik for i = 1, . . . , d and k ∈ ω are variables ranging over Si,
a1, . . . , ad are variables ranging over subsets of S1, . . . , Sd respectively.
Q, a constant for a subset of Sd+1

A structure for this language assigns Ti to Si for i = 1, . . . , d, the product
∏d

i=1 Ti to Sd+1,
and subsets Bi of T1 for i = 1, . . . , d, with Q assigned to Q.

Now with each sequence n = (n1, . . . , nd) of positive integers and each sequence W of
atomic symbols we associate a formula ϕ = ϕWn. This is done by induction on the length
of W

If W is empty, we let ϕWn be the formula Seq(x1, . . . , xd) ∈ Q.
If W = ∃AiW

′, then we let ϕWn be the formula ∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in
Si ∧ ϕW ′n]. Here “Ai is ni-dense in Si” is the formula

∀t ∈ Si[|t| = ni → ∃s ∈ Ai[t ≤i s]].

We use the variables vik to express this.
If W = ∀xiW

′, then we let ϕWn be the formula ∀xi[xi ∈ Ai → ϕW ′n].
If W = ∀aiW

′, then we let ϕWn be the formula ∀ai[ai ∈ ni(Si, Bi) → ϕW ′n] Here
ai ∈ ni(Si, Bi) is the formula

∃t ∈ Si[|t| = ni ∧ ∀s[s ∈ ai ↔ [t ≤ s ∧ s ∈ Bi]]].

If W = ∃xiW
′, then we let ϕWn be the formula ∃xi[xi ∈ ai ∧ ϕW ′n].

Now we let ψ(W,n, p) be the statement “∀B1 ⊆ S1 · · · ∀Bd ⊆ Sd[[∀i = 1, . . . , d[Bi is p-dense
in Si] → ϕWn]]”
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(5) Suppose that W,W ′, ρ are sequences of atomic symbols. Suppose that under
every assignment of values to the variables, ϕWn implies ϕW ′n. Then ϕρWn under any
assignment implies ϕρW ′n under that assignment.

We prove this by induction on ρ. If ρ is empty, it is obvious. The induction step is clear
upon looking at what ϕρWn is:

Case 1. ρ = ∃Aiρ
′. Then ϕρWn is

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕρ′Wn]

Case 2. ρ = ∀xiρ
′. Then ϕρWn is

∀xi[xi ∈ Ai → ϕρ′Wn].

Case 3. ρ = ∀aiρ
′. Then ϕρWn is

∀ai[ai ∈ ni(Si, Bi) → ϕρ′Wn]

Case 4. ρ = ∃xiρ
′. Then ϕρWn is

∃xi[xi ∈ ai ∧ ϕρ′Wn]

This proves (5).

(6) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then under
that assignment, ϕ∃Ai∃AjWn implies that ϕ∃Aj∃AiW ′n.

In fact, ϕ∃Ai∃AjWn is

∃Ai[Ai ⊆ Bi ∧Ai is ni-dense in Si ∧ ϕAjWn];

expanding we get

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ∃Aj [Aj ⊆ Bj ∧ Aj is nj-dense in Sj ∧ ϕWn]].

This is logically equivalent to

∃Ai∃Aj [Ai ⊆ Bi ∧Ai is ni-dense in Si ∧ Aj ⊆ Bj ∧ Aj is nj-dense in Sj ∧ ϕWn].

Hence (6) holds.

(7) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then under
that assignment, ϕ∃Ai∃xjWn implies that ϕ∃xj∃AiW ′n.

In fact, ϕ∃Ai∃xjWn is

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ϕxjWn];
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expanding we get

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ∃xj [xj ∈ aj ∧ ϕWn]].

This is logically equivalent to

∃Ai∃xj [Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ xj ∈ aj ∧ ϕWn].

Hence (7) holds.

(8) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then under
that assignment, ϕ∃xi∃AjWn implies that ϕ∃Aj∃xiW ′n.

This is proved as for (7).

(9) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then under
that assignment, ϕ∃xi∃xjWn implies that ϕ∃xj∃xiW ′n.

In fact, ϕ∃xi∃xjWn is
∃xi[xi ∈ ai ∧ ϕxjWn];

expanding we get
∃xi[xi ∈ ai ∧ ∃xj [xj ∈ aj ∧ ϕWn]].

This is logically equivalent to

∃xi∃xj [xi ∈ ai ∧ xj ∈ aj ∧ ϕWn].

Hence (9) holds.

(10) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∀xi∀xjWn implies that ϕ∀xj∀xiWn.

In fact, ϕ∀xi∀xjWn is
∀xi[xi ∈ Ai → ϕ∀xjWn];

expanding we get
∀xi[xi ∈ Ai → ∀xj [xj ∈ Aj → ϕWn]]

This is logically equivalent to

∀xi∀xj [xi ∈ Ai → [xj ∈ Aj → ϕWn]]

Hence (10) follows.

(11) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∀ai∀xjWn implies that ϕ∀xj∀aiWn.

In fact, ϕ∀ai∀xjWn is
∀ai[ai ∈ ni(Si, Bi) → ϕ∀xjWn];
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expanding we get
∀ai[ai ∈ ni(Si, Bi) → ∀xj [xj ∈ Aj → ϕWn]]

This is logically equivalent to

∀ai∀xj [xi ∈ ni(Si, Bi) → [xj ∈ Aj → ϕWn]]

Hence (11) follows.

(12) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∀xi∀ajWn implies that ϕ∀aj∀xiWn.

This is similar to (11).

(13) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∀ai∀ajWn implies that ϕ∀aj∀aiWn.

This is similar to (11).

(14) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∃Ai∀ajWn implies that ϕ∀aj∃AiWn.

In fact, ϕ∃Ai∀ajWn is

∃Ai[Ai ⊆ Bi ∧Ai is ni-dense in Si ∧ ϕ∀ajWn]

Expanding, we get

∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ ∀aj [aj ∈ nj(Sj , Bj) → ϕWn]].

This is logically equivalent to

∃Ai∀aj [Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ [aj ∈ nj(Sj , Bj) → ϕWn]].

This implies

∀aj∃Ai[Ai ⊆ Bi ∧ Ai is ni-dense in Si ∧ [aj ∈ nj(Sj , Bj) → ϕWn]].

Hence (14) holds.
One similarly treats other sequences of the form ∃α∀β.

(15) Ai ⊆ Bi is ni-dense in Ti iff Ai ⊆ Bi and ∀ai ∈ ni(Ti, Bi)[ai ∩Ai 6= ∅].

In fact, for ⇒, suppose that Ai ⊆ Bi is ni-dense in Ti and ai ∈ ni(Ti, Bi. Say ai = (Ti ↑
t) ∩Bi with |t| = ni. There is an s ∈ Ai such that t ≤ s. Thus s ∈ ai ∩ Ai.

For ⇐, suppose that Ai ⊆ Bi and ∀ai ∈ ni(Ti, Bi)[ai ∩ Ai 6= ∅] and |t| = ni. Set
ai = (Ti ↑ t) ∩Bi. Choose u ∈ ai ∩ Ai. Then t ≤ u, as desired.

(16) If under some assignment of values to the variables, ϕWn implies that ϕW ′n, then
under that assignment, ϕ∀ai∃xiWn implies that ϕ∃Ai∀xiWn.
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In fact, ϕ∀ai∃xiWn is
∀ai[ai ∈ ni(Si, Bi) → ϕ∃xiWn];

expanding, we get
∀ai[ai ∈ ni(Si, Bi) → ∃xi[xi ∈ ai ∧ ϕWn]].

Now assume ϕ∀ai∃xiWn. For each ai ∈ ni(Ti, Bi) choose xi(ai) ∈ ai such that ϕWn. Let
Ai = {xi(ai) : ai ∈ ni(Ti, Bi)}. Note that ∀ai ∈ ni(Ti, Bi)[ai ⊆ Bi]. Hence Ai ⊆ Bi.
Hence by (15), Ai is ni-dense in Ti. Now ∀xi ∈ AiϕWn. So (16) holds.

(17) If W ⊢W ′ using rules 1 or 2, then ∀n∃pψ(W.n.p) implies that ∀n∃pψ(W ′.n.p).

In fact, ∀n∃pψ(W.n.p) is

∀n∃p∀B1 ⊆ S1 · · · ∀Bd ⊆ Sd[[∀i = 1, . . . , d[Bi is p-dense in Si] → ϕWn]],

and similarly for ∀n∃pψ(W ′.n.p). Hence (17) follows from (5)–(16).
Now suppose that σ is a permutation of {1, . . . , d}. Let W = (∀aσ(i))

r
1(∃Aσ(i))

d
r+1V

and W = (∃Aσ(i))
d
r+1(∀aσ(i))

r
1V with r ∈ {1 . . . d− 1}. Now for simplicity we assume that

σ is the identity. Note that V is a string of length d whose entries are ∀xi for r+1 ≤ i ≤ d
and ∃xj for 1 ≤ j ≤ r; moreover, only Ai for i = r+1, . . . , d and ai for i = 1 . . . , r are free.
If V is such a string, a is an assignment of values to the ai’s, Ar+1, . . . , Ad an assignment
of values to the Ai’s, then the assertion ϕV n[a, Ar+1, . . . , Ad] has the natural meaning.

(18) If V is such a string, a assigns values to the ai for i = 1, . . . , r, Ar+1, . . . , Ad an
assignment of values to the Ai’s, A

′
r+1 ⊆ Ar+1, . . .A

′

d ⊆ Ad, and ϕV n[a, Ar+1, . . . , Ad],
then ϕV n[a, A′

r+1, . . . , A
′

d].

We prove (18) by induction on the length of V . It is trivial for the empty string. Now
suppose that the string is ∀xiV

′. Then ϕ∀xiV ′n[a, Ar+1, . . . , Ad] is

∀xi[xi ∈ Ai → ϕV ′n[a, Ar+1, . . . , Ad]],

so
∀xi[xi ∈ A′

i → ϕV ′n[a, A′

r+1, . . . , A
′

d]],

If the string is ∃xiV
′, then ϕ∃xiV ′n[a, Ar+1, . . . , Ad] is

∃xi[xi ∈ ai ∧ ϕV ′n[a, Ar+1, . . . , Ad]],

and the conclusion is obvious. So (18) holds.
To prove the implication in (17) for rules 3, suppose that ∀n∃pψ(W,n, p). Let F be

such that ∀nψ(W,n, F (n)). Thus

(19) ∀n[∀B1 ⊆ T1 · · · ∀Bd ⊆ Td∀i = 1, . . . , d[Bi is F (n)-dense in Ti] → ϕWn]]].

Since p′-density implies p-density for p < p′, we may assume that for all n and all i =
1, . . . , d, F (n) > ni.
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Now fix a sequence n = (n1, . . . , nd) of positive integers. We want to find p such that
ψ(W,n, p). Define G by induction, as follows.

G(0) = max{ni : r < i ≤ d};

G(j + 1) = F (k), where ki =

{

ni if 1 ≤ i ≤ r,
G(j) if r < i ≤ d.

Now for each i = 1, . . . , r let zi be the number of elements of Ti of height ni, and let
m =

∏r
i=1 zi. For each j ≤ m let pj = G(m− j).

(20) If j < m, then pj+1 ≤ pj .

For,

pj = G(m− j) = G(m− j − 1 + 1) = F (kj), where kj
i =

{

ni if 1 ≤ i ≤ r,
G(m− j − 1) if r < i ≤ d

=

{

ni if 1 ≤ i ≤ r,
pj+1 if r < i ≤ d

Since pj+1 is an entry of kj , (20) holds.
It follows that

(21) If a set is pj-dense in Ti, then it is also pj+1-dense in Ti.

We claim that ψ(W,n, p0). Now ψ(W,n, p0) is

∀B1 ⊆ T1 · · · ∀Bd ⊆ Td[∀i = 1, . . . , d[Bi is p0-dense in Ti → ϕ
Wn

]].

So, assume that B1 ⊆ T1 · · · ∀Bd ⊆ Td and ∀i = 1, . . . , d[Bi is p0-dense in Ti].

(22) If a1 ∈ n1(T1, B1) ∧ . . . ∧ ar ∈ nr(Tr, Br), 0 ≤ j < m, Ar+1 ⊆ Br+1, . . . , Ad ⊆
Bd, and Ar+1, . . . , Ad are pj -dense in Tr+1, . . . , Td respectively, then there exist A′

r+1 ⊆
Ar+1,. . .,A

′

d ⊆ Ad which are pj+1-dense such that ϕV kj [~a, A′
r+1, . . . , A

′

d].

By (19), ϕWkj [Ar+1, . . . , Ad], and hence by the form ofW , there are A′
r+1 ⊆ Ar+1,. . .,A

′

d ⊆

Ad such that A′
r+1, . . . , A

′

d are kj
r+1-,. . . , k

j
d-dense and ϕV kj [~a, A′

r+1, . . . , A
′

d]. Now kj
r+1 =

· · · = kj
d = pj+1, as desired.

Now clearly |
∏r

i=1 ni(Ti, Bi)| ≤ |
∏r

i=1 zi| = m.

(23) For any J ⊆
∏r

i=1 ni(Ti, Bi) with |J | = j ≤ m, there are Ar+1 ⊆ Br+1, . . ., Ad ⊆ Bd

such that each Ai is pj-dense in Ti, and for every a ∈ J , ϕV n[a, Ar+1, . . . , Ad].

We prove this by induction on j. It is obvious for j = 0. Now assume that b /∈ J
and J ∪ {b} ⊆

∏r
i=1 ni(Ti, Bi) and the assertion is true for J . So j < m and there are

Ar+1 ⊆ Br+1, . . ., Ad ⊆ Bd such that each Ai is pj-dense in Ti, and for every a ∈ J ,
ϕV n[a, Ar+1, . . . , Ad]. Now by (22) there exist A′

r+1 ⊆ Ar+1, . . ., A
′

d ⊆ Ad such that
A′

r+1, . . . , A
′

d are pj+1-dense in Tr+1, . . . , Td respectively, and ϕV kj [b, A′
r+1, . . . , A

′

d]. By
(18), ϕV n[c, A′

r+1, . . . , A
′

d] for all c ∈ J ∪ {b}. This proves (23).
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This completes the proof of (17) for rules 3.

Now the proof of the theorem goes as follows. Let W0 = (∀ai)
d
1(∃xi)

d
1, W1 = (∃Ai)

d
1(∀xi)

d
1.

By (4), W0 |=d W1. By (17) as extended, ∀n∃pψ(W0, n, p) implies ∀n∃pψ(W1, n, p).
Case 1. ∀n∃pψ(W0, n, p). Hence ∀n∃pψ(W1, n, p). For any k ∈ ω let n be constantly k.

Then choose p so that ψ(W1,n, p). Then there exist Ai for i = 1, . . . , d such that Ai ⊆ BI

for all i = 1, . . . , d, Ai is ni-dense in Ti for all i = 1, . . . , d, and for all i = 1, . . . , d, ∀xi ∈ Ai,
ϕV n[A1, . . . , Ad, x1, . . . , xd]. Then ∀i = 1, . . . , d[Ai is k-dense in Ti and (x1, . . . , xd) ∈ Q.
Thus (i) in the theorem holds.

Case 2. There is an n such that for all p, ¬ψ(W0, n, p). Thus for every p there are
B1, . . . , Bd which are p-dense in their respective trees, and ai ∈ ni(Ti, Bi) for i = 1, . . . d

such that
∏d

i=1 ai ⊆
∏d

i=1 Ti\Q. Let h = max{ni : 1 ≤ i ≤ d}. For any k, take p = h+ k.

Then a1, . . . , ad is an (m, k)-matrix contained in
∏d

i=1 Ti\Q.
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