
We consider small cardinal functions on the following classes of BAs; these were not con-
sidered in Monk [14] or Monk [18]: interval algebras, complete BAs, tree algebras, atomless
tree algebras, pseudo-tree algebras, atomless pseudo-tree algebras.

1. Interval algebras
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Interval algebras

Several of the invariants considered in Monk [18] do not exist in some interval algebras.
These are omitted in the above diagram. Thus h does not exist in an atomic interval
algebra, since such algebras are completely distributive. tow(A) does not always exist;
see Monk [09]. s(A) does not exist if A has an atom. Some of the invariants always
exist, but are trivial (equal to 1) in some interval algebras. By Proposition 2 of Monk
[18], the existence of atoms implies that r(A) = πmin(A) = i(A) = f(A) = 1 for interval
algebras which have an atom. Moreover, Incmm(A) = in(A) = q(A) = 2 if A has an atom.
CardH−(A) = ω for any interval algebra, by Koppelberg, Monk [92]. Now r(A) ≤ i(A) in
general, and i(A) is countable for any interval algebra A by Corollary 15.15 of Koppelberg
[89]; so i(A) = ω = r for any interval algebra. u(A) = p(A) for any interval algebra A
by Theorem 14.18 of Monk [14], and f(A) = u(A) for any atomless interval algebra A by
Proposition 4.6 of Monk [12]. Hence f(A) ≤ u(A) for any interval algebra A. Clearly
CardH−(A) = ω for any infinite interval algebra; see Lemma 9.10 of Monk [14].

2. Complete BAs

First we check that the implications in the diagram on the next page hold. cf(A) =
alt = p-alt(A) = ω1 and CardH−(A) = 2ω by Monk [14], Chapter 9 and Koppelberg [77].
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Clearly p = tow = a = ω. We have πχinf(A) = r(A) by Balcar, Simon [91]. h(A) ≤ r(A)
by Proposition 25 in Monk [01]. We have ω1 ≤ in(A) by Bruns [13], 6.6. The other
implications hold for BAs in general.

We now turn to other possible implications, and we first indicate a construction of a
complete atomless BA A such that l(A) > 2ω.

Lemma 2.1. Let A be a complete atomless BA, X a maximal chain in A of size 2ω, and
x ∈ X. Then there exists a BA B such that

(i) A is a subalgebra of B;
(ii) B is complete and atomless;
(iii) X is not a maximal chain in B.

Proof. Let A(y) be a free extension of A by an element y. Let I be the ideal in A(y)
generated by {x · −y} ∪ {y · −z : z ∈ X, x < z}.

(1) A ∩ I = {0}.
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Complete BAs

In fact, suppose that a ∈ A ∩ I. Then we can write

(2) a ≤ x · −y + y · −z0 + · · · + y · −zm−1
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with z0, . . . , zm−1 ∈ X and x < z0 < . . . < zm−1. Since X is dense, there is an element
u ∈ X such that x < u < z0. Fixing A pointwise and mapping y to u, (2) yields a = 0.

(3) y · −x /∈ I.

In fact, otherwise we get y · −x ≤ the right side of (2) for some z0, . . . , zm−1 as in (2).
With u as above, fixing A pointwise and mapping y to u, we get u · −x = 0, contradiction.

Now take C = A(y)/I, let D be an atomless BA such that C ≤ D, and let B be the
completion of D.

Lemma 2.2. If A is a complete atomless BA, then there is a complete atomless BA B
such that A ≤ B, and no maximal chain in A of size 2ω is maximal in B.

Proof. Let κ = |A|2
ω

, and let 〈Xα : α < κ〉 enumerate all of the maximal chains
of A of size 2ω. By an obvious transfinite construction using Lemma 2.1, and at limit
steps taking the completion of th union of previous algebras we obtain the desired algebra
B.

Proposition 2.3. There is an atomless complete BA A such that l(A) > 2ω.

Proof. Iterate Lemma 2.2 (2ω)+ times, taking the completion of the union at limit
stages.

For κ uncountable and regular, let A = Fr(κ). We claim that l(A) ≤ 2ω and in(A) ≥ κ.
In fact, we claim that every chain in A has size at most 2ω. Suppose that X is a chain in
A with |X | > 2ω. Let ≺ be a well-order of A, and define f : [X ]2 → 2 by setting, for any
distinct x, y ∈ X , say with x ≺ y,

f({x, y}) =

{

1 if x < y,
0 if y < x.

By the Erdös, Rado theorem (2ω)+ → (ω1)
2
ω

there exist Y ∈ [X ]ω1 and ε ∈ 2 such that
f [[Y ]2] ⊆ {ε}. Say ε = 1. Then x ≺ y with x, y ∈ Y implies that x < y. This contradicts
ccc.

Now we also claim that in(A) ≥ κ. For, suppose that Z is n-independent and |Z| < κ.
For each z ∈ Z let Mz be a countable subset of Fr(κ) such that z =

∑

Mz. Let x be a free
generator of Fr(κ) not in the support of any element of

⋃

z∈Z
Mz. Then z · x 6= 0 for all

z ∈ Z, and it follows that Z ∪ {x} is n-independent. Thus Z is not maximal, and hence
in(A) ≥ κ.

We have in(Fr(ω)) = ω. In fact, let X be a maximal n-independent subset of Fr(ω)
containing all the free generators of Fr(ω). If y ∈ Fr(ω)\Fr(ω), then there is a monomial z
such that z ≤ y. Then z · −y shows that X ∪ {y} is not n-independent.

This example gives a BA A such that in(A) < cf(A).

3. Tree algebras

i(A), f(A), Incmm(A), in(A) can be finite; see Monk [18]. s(A) is undefined if A has an
atom. p(A) is undefined. For CardH−(A) = ω, see Koppelberg, Monk [92].
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4. Atomless tree algebras

See the diagram on the following page. For CardH−(A) = ω see Koppelberg, Monk [92].

5. Pseudo-tree algebras

See the diagram below.
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Atomless tree algebras
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Pseudo-tree algebras
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Atomless pseudo-tree algebras

References

Balcar, Simon [91] On minimal π-character of points in extremally disconnected compact
spaces. Topol. Appl. 41, 133-145.
Koppelberg [77] Boolean algebras as unions of chains of subalgebras. Alg. univ. 7, 195-203.
Koppelberg [89] Handbook of Boolean algebras, vol 1.

Koppelberg, Monk [92] Pseudo-trees and Boolean algebras. Order 8, 359=372.
Monk [01] Continuum cardinals generalized to Boolean algebras. J. Symb. Logic 66,
192801958.
Monk [09] On the existence of towers in pseudo-tree algebras. Order 26, 163-175.
Monk [12] Remarks on continuum cardinals on Boolean algebras. Math. logic quarterly
58, 159-167.

7



Monk [14] Cardinal invariants on Boolean algebras.

Monk [18] A large list of small cardinal characteristics of Boolean algebras. Math. logic
quarterly 64, 336-348.

8


