We consider small cardinal functions on the following classes of BAs; these were not con-
sidered in Monk [14] or Monk [18]: interval algebras, complete BAs, tree algebras, atomless
tree algebras, pseudo-tree algebras, atomless pseudo-tree algebras.

1. Interval algebras
|A]

w
Interval algebras

Several of the invariants considered in Monk [18] do not exist in some interval algebras.
These are omitted in the above diagram. Thus h does not exist in an atomic interval
algebra, since such algebras are completely distributive. tow(A) does not always exist;
see Monk [09]. s(A) does not exist if A has an atom. Some of the invariants always
exist, but are trivial (equal to 1) in some interval algebras. By Proposition 2 of Monk
[18], the existence of atoms implies that t(A) = mmin(A) = i(A) = f(A) = 1 for interval
algebras which have an atom. Moreover, Incym,(A) = i,(A4) = q(A4) = 2 if A has an atom.
Cardy_(A) = w for any interval algebra, by Koppelberg, Monk [92]. Now t(A4) <i(A) in
general, and i(A) is countable for any interval algebra A by Corollary 15.15 of Koppelberg
[89]; so i(A) = w = ¢ for any interval algebra. u(A) = p(A) for any interval algebra A
by Theorem 14.18 of Monk [14], and f(A) = u(A) for any atomless interval algebra A by
Proposition 4.6 of Monk [12]. Hence f(A) < u(A) for any interval algebra A. Clearly
Cardy_(A) = w for any infinite interval algebra; see Lemma 9.10 of Monk [14].

2. Complete BAs

First we check that the implications in the diagram on the next page hold. cf(A) =
alt = p-alt(4) = wy and Cardg_(A) = 2¥ by Monk [14], Chapter 9 and Koppelberg [77].
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Clearly p = tow = a = w. We have mxins(A) = t(A) by Balcar, Simon [91]. h(A) < ¢(A)
by Proposition 25 in Monk [01]. We have w; < i,(A) by Bruns [13], 6.6. The other
implications hold for BAs in general.

We now turn to other possible implications, and we first indicate a construction of a
complete atomless BA A such that [(A4) > 2v.

Lemma 2.1. Let A be a complete atomless BA, X a maximal chain in A of size 2, and
x € X. Then there exists a BA B such that

(i) A is a subalgebra of B;

(i) B is complete and atomless;

(iii) X is not a mazimal chain in B.

Proof. Let A(y) be a free extension of A by an element y. Let I be the ideal in A(y)
generated by {z- —y}U{y - —z:2z¢€ X,z < z}.

(1) AN T = {0}.

A

CardH, =2v S

cf =alt=p-alt=w,

p=tow=a=w

Complete BAs
In fact, suppose that a € AN I. Then we can write

(2) a<zT-—y+y - —20+-+Y - —Zm_1
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with zp,...,2zm-1 € X and = < 25 < ... < 2Zpy_1. Since X is dense, there is an element
u € X such that x < u < zy. Fixing A pointwise and mapping y to u, (2) yields a = 0.

By -—xz¢l.

In fact, otherwise we get y - —x < the right side of (2) for some zp,...,2,-1 as in (2).
With u as above, fixing A pointwise and mapping y to u, we get u- —x = 0, contradiction.

Now take C' = A(y)/I, let D be an atomless BA such that C' < D, and let B be the
completion of D. ]

Lemma 2.2. If A is a complete atomless BA, then there is a complete atomless BA B
such that A < B, and no maximal chain in A of size 2% is maximal in B.

Proof. Let k = |A|>", and let (X, : @ < k) enumerate all of the maximal chains
of A of size 2“. By an obvious transfinite construction using Lemma 2.1, and at limit

steps taking the completion of th union of previous algebras we obtain the desired algebra
B. O

Proposition 2.3. There is an atomless complete BA A such that [(A) > 2.

Proof. Tterate Lemma 2.2 (2¥)" times, taking the completion of the union at limit
stages. ]

For k uncountable and regular, let A = Fr(x). We claim that [(4) < 2¥ and i,(A) > k.
In fact, we claim that every chain in A has size at most 2¢. Suppose that X is a chain in
A with | X| > 2¥. Let < be a well-order of A, and define f : [X]? — 2 by setting, for any
distinct z,y € X, say with x < v,

fean={y §isy

ify <.

By the Erdds, Rado theorem (2¢)* — (w1)? there exist Y € [X]“t and e € 2 such that
flIY]?] € {e}. Say e = 1. Then x < y with z,y € Y implies that = < y. This contradicts
cece.

Now we also claim that i,,(A) > k. For, suppose that Z is n-independent and |Z| < k.
For each z € Z let M, be a countable subset of Fr(x) such that z =) M,. Let x be a free
generator of Fr(x) not in the support of any element of | J,., M.. Then z -2 # 0 for all
z € Z, and it follows that Z U {x} is n-independent. Thus Z is not maximal, and hence
i,(A) > k.

We have i, (Fr(w)) = w. In fact, let X be a maximal n-independent subset of Fr(w)
containing all the free generators of Fr(w). If y € Fr(w)\Fr(w), then there is a monomial z
such that z < y. Then z- —y shows that X U {y} is not n-independent.

This example gives a BA A such that i,(A) < cf(A).

3. Tree algebras

i(A), f(A4), Incym(A), in(A) can be finite; see Monk [18]. s(A) is undefined if A has an
atom. p(A) is undefined. For Cardy_(A) = w, see Koppelberg, Monk [92].



|A]

Tree algebras

4. Atomless tree algebras

See the diagram on the following page. For Cardy_(A) = w see Koppelberg, Monk [92].

5. Pseudo-tree algebras

See the diagram below.



4]




|A]

Pseudo-tree algebras



4]

[
w=hd¢ = h-cofpm

Atomless pseudo-tree algebras
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