We consider small cardinal functions on the following classes of BAs; these were not considered in Monk [14] or Monk [18]: interval algebras, complete BAs, tree algebras, atomless tree algebras, pseudo-tree algebras, atomless pseudo-tree algebras.

Several of the invariants considered in Monk [18] do not exist in some interval algebras. These are omitted in the above diagram. Thus \mathfrak{h} does not exist in an atomic interval algebra, since such algebras are completely distributive. tow(A) does not always exist; see Monk [09]. $\mathfrak{s}(A)$ does not exist if A has an atom. Some of the invariants always exist, but are trivial (equal to 1) in some interval algebras. By Proposition 2 of Monk [18], the existence of atoms implies that $\mathfrak{r}(A) = \pi_{\min}(A) = \mathfrak{i}(A) = \mathfrak{f}(A) = 1$ for interval algebras which have an atom. Moreover, $\operatorname{Inc}_{\mathrm{mm}}(A) = \mathfrak{i}_n(A) = \mathfrak{q}(A) = 2$ if A has an atom. $\operatorname{Card}_{H-}(A) = \omega$ for any interval algebra, by Koppelberg, Monk [92]. Now $\mathfrak{r}(A) \leq \mathfrak{i}(A)$ in general, and $\mathfrak{i}(A)$ is countable for any interval algebra. $\mathfrak{u}(A) = \mathfrak{p}(A)$ for any interval algebra A by Corollary 15.15 of Koppelberg [89]; so $\mathfrak{i}(A) = \omega = \mathfrak{r}$ for any interval algebra. $\mathfrak{u}(A) = \mathfrak{p}(A)$ for any interval algebra A by Proposition 4.6 of Monk [14], and $\mathfrak{f}(A) = \mathfrak{u}(A)$ for any interval algebra A. Clearly $\operatorname{Card}_{\mathrm{H-}}(A) = \omega$ for any infinite interval algebra; see Lemma 9.10 of Monk [14].

2. Complete BAs

First we check that the implications in the diagram on the next page hold. $cf(A) = alt = p-alt(A) = \omega_1$ and $Card_{H-}(A) = 2^{\omega}$ by Monk [14], Chapter 9 and Koppelberg [77].

Clearly $\mathfrak{p} = \mathfrak{tow} = \mathfrak{a} = \omega$. We have $\pi \chi_{\inf}(A) = \mathfrak{r}(A)$ by Balcar, Simon [91]. $\mathfrak{h}(A) \leq \mathfrak{r}(A)$ by Proposition 25 in Monk [01]. We have $\omega_1 \leq \mathfrak{i}_n(A)$ by Bruns [13], 6.6. The other implications hold for BAs in general.

We now turn to other possible implications, and we first indicate a construction of a complete atomless BA A such that $l(A) > 2^{\omega}$.

Lemma 2.1. Let A be a complete atomless BA, X a maximal chain in A of size 2^{ω} , and $x \in X$. Then there exists a BA B such that

- (i) A is a subalgebra of B;
- (ii) B is complete and atomless;
- (iii) X is not a maximal chain in B.

Proof. Let A(y) be a free extension of A by an element y. Let I be the ideal in A(y) generated by $\{x \cdot -y\} \cup \{y \cdot -z : z \in X, x < z\}$.

In fact, suppose that $a \in A \cap I$. Then we can write

(2) $a \le x \cdot -y + y \cdot -z_0 + \dots + y \cdot -z_{m-1}$

with $z_0, \ldots, z_{m-1} \in X$ and $x < z_0 < \ldots < z_{m-1}$. Since X is dense, there is an element $u \in X$ such that $x < u < z_0$. Fixing A pointwise and mapping y to u, (2) yields a = 0.

(3) $y \cdot -x \notin I$.

In fact, otherwise we get $y \cdot -x \leq$ the right side of (2) for some z_0, \ldots, z_{m-1} as in (2). With u as above, fixing A pointwise and mapping y to u, we get $u \cdot -x = 0$, contradiction.

Now take C = A(y)/I, let D be an atomless BA such that $C \leq D$, and let B be the completion of D.

Lemma 2.2. If A is a complete atomless BA, then there is a complete atomless BA B such that $A \leq B$, and no maximal chain in A of size 2^{ω} is maximal in B.

Proof. Let $\kappa = |A|^{2^{\omega}}$, and let $\langle X_{\alpha} : \alpha < \kappa \rangle$ enumerate all of the maximal chains of A of size 2^{ω} . By an obvious transfinite construction using Lemma 2.1, and at limit steps taking the completion of the union of previous algebras we obtain the desired algebra B.

Proposition 2.3. There is an atomless complete BA A such that $\mathfrak{l}(A) > 2^{\omega}$.

Proof. Iterate Lemma 2.2 $(2^{\omega})^+$ times, taking the completion of the union at limit stages.

For κ uncountable and regular, let $A = \overline{\operatorname{Fr}(\kappa)}$. We claim that $\mathfrak{l}(A) \leq 2^{\omega}$ and $\mathfrak{i}_n(A) \geq \kappa$. In fact, we claim that every chain in A has size at most 2^{ω} . Suppose that X is a chain in A with $|X| > 2^{\omega}$. Let \prec be a well-order of A, and define $f : [X]^2 \to 2$ by setting, for any distinct $x, y \in X$, say with $x \prec y$,

$$f(\{x, y\}) = \begin{cases} 1 & \text{if } x < y, \\ 0 & \text{if } y < x. \end{cases}$$

By the Erdös, Rado theorem $(2^{\omega})^+ \to (\omega_1)^2_{\omega}$ there exist $Y \in [X]^{\omega_1}$ and $\varepsilon \in 2$ such that $f[[Y]^2] \subseteq \{\varepsilon\}$. Say $\varepsilon = 1$. Then $x \prec y$ with $x, y \in Y$ implies that x < y. This contradicts ccc.

Now we also claim that $i_n(A) \ge \kappa$. For, suppose that Z is n-independent and $|Z| < \kappa$. For each $z \in Z$ let M_z be a countable subset of $Fr(\kappa)$ such that $z = \sum M_z$. Let x be a free generator of $Fr(\kappa)$ not in the support of any element of $\bigcup_{z \in Z} M_z$. Then $z \cdot x \neq 0$ for all $z \in Z$, and it follows that $Z \cup \{x\}$ is n-independent. Thus Z is not maximal, and hence $i_n(A) \ge \kappa$.

We have $i_n(\operatorname{Fr}(\omega)) = \omega$. In fact, let X be a maximal *n*-independent subset of $\operatorname{Fr}(\omega)$ containing all the free generators of $\operatorname{Fr}(\omega)$. If $y \in \overline{\operatorname{Fr}(\omega)} \setminus \operatorname{Fr}(\omega)$, then there is a monomial z such that $z \leq y$. Then $z \cdot -y$ shows that $X \cup \{y\}$ is not *n*-independent.

This example gives a BA A such that $i_n(A) < cf(A)$.

3. Tree algebras

 $\mathfrak{i}(A)$, $\mathfrak{f}(A)$, $\operatorname{Inc}_{mm}(A)$, $\mathfrak{i}_n(A)$ can be finite; see Monk [18]. $\mathfrak{s}(A)$ is undefined if A has an atom. $\mathfrak{p}(A)$ is undefined. For $\operatorname{Card}_{H^-}(A) = \omega$, see Koppelberg, Monk [92].

Tree algebras

4. Atomless tree algebras

See the diagram on the following page. For $\operatorname{Card}_{H^-}(A) = \omega$ see Koppelberg, Monk [92].

5. Pseudo-tree algebras

See the diagram below.

Atomless tree algebras

Atomless pseudo-tree algebras

References

Balcar, Simon [91] On minimal π -character of points in extremally disconnected compact spaces. Topol. Appl. 41, 133-145.

Koppelberg [77] *Boolean algebras as unions of chains of subalgebras.* Alg. univ. 7, 195-203. Koppelberg [89] **Handbook of Boolean algebras, vol 1.**

Koppelberg, Monk [92] Pseudo-trees and Boolean algebras. Order 8, 359=372.

Monk [01] Continuum cardinals generalized to Boolean algebras. J. Symb. Logic 66, 192801958.

Monk [09] On the existence of towers in pseudo-tree algebras. Order 26, 163-175.

Monk [12] *Remarks on continuum cardinals on Boolean algebras.* Math. logic quarterly 58, 159-167.

Monk [14] Cardinal invariants on Boolean algebras.

Monk [18] A large list of small cardinal characteristics of Boolean algebras. Math. logic quarterly 64, 336-348.