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1. σ-algebras

Let A be a σ-algebra. We say that X ⊆ A is an irredundant σ-generating set for A iff X
is a σ-generating set for A but no proper subset is.

The following results are from Aniszczyk, Frankiewicz 1984.

Proposition 1.1. Any family of size ω1 of subsets of ω1 is contained in a σ-field of subsets
of ω1 generated by a countable set.

Proof. Let F ⊆ P(ω1) with |F | ≤ ω1. Let A be the subfield of P(ω1) generated
by F ∪ ω1. Let ϕ be an isomorphism of A into P(ω)/fin. For each a ∈ A choose χa ⊆ ω
such that ϕ(a) = [χa]. Let χ′ = χ ↾ ω1.

For any b ∈ F let Kb = {x ⊆ ω : |χb△x| < ω}.

(1) Kb is a Borel subset of P(ω).

In fact,

Kb = {x ⊆ ω : |χb△x| < ω}

= {x ⊆ ω : |χb\x| < ω and |x\χb| < ω}

=
⋃

{x : χb\x = F and x\χb = G : F ∈ [χb]
<ω and G ∈ [ω\χb]

<ω}

=
⋃

{x : χb\F ⊆ x, x ∩ F = ∅, G ⊆ x, x ∩ (ω\(G ∪ χb)) = ∅ :

F ∈ [χb]
<ω and G ∈ [ω\χb]

<ω}

=
⋃

{

⋂

{UHF : H ∈ [χb\F ]<ω} ∩
⋂

{UGk : K ∈ [ω\(G ∪ χb)]
<ω :

F ∈ [χb]
<ω and G ∈ [ω\χb]

<ω

}

(2) ∀b ∈ F [χ−1[Kb] = {b}].

For if c ∈ F then c ∈ χ−1[Kb] iff χc ∈ Kb iff |χb△χc| < ω iff [χb] = [χc] iff ϕ(b) = ϕ(c)
iff b = c.

It now follows that F ⊆ {χ−1[A] : A borel}. This last set is clearly a σ-field of subsets of
ω1, and it is countably generated.

Proposition 1.2. If F is a family of ω1 clubs on ω1, then there is a club C on ω1 such
that ∀D ∈ F [C\D is countable].

Proof. Let 〈Cξ : ξ < ω1〉 enumerate F , possibly with repetitions. Then
△ξ<ω1

Cξ\Cα ⊆ α for all α < ω1.

Proposition 1.3. Let A = {X ⊆ ω1 : ∃ club C[C ⊆ X or C ∩ X = ∅]}. Then A is a
σ-field of subsets of ω1.

Proof. A is clearly closed under complements. Now suppose that Xi ∈ A for all
i ∈ ω.
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Case 1. ∃i ∈ ω∃ club C ⊆ Xi. Then C ⊆
⋃

j∈ωXj, so
⋃

j∈ωXj ∈ A.
Case 2. ∀i ∈ ω∃ club Ci such that Ci∩Xi = ∅. Then

⋂

i∈ω Ci is club, and (
⋂

i∈ω Ci)∩
⋃

i∈ωXi = ∅. So
⋃

j∈ωXj ∈ A.

Proposition 1.4. The σ-BA A of Proposition 1.3 does not have an irredundant σ-
generating set.

Proposition 1.5. Let X be the collection of all ultrafilters on ω and let X ′ = {{F} :
F ∈ X}. Let A be the σ-field of subsets of X generated by X ′. Then X ′ is an irredundant
σ-generating set for A.

Proposition 1.6. (CH) P(ω1) does not have an irredundant σ-generating subset.

Proposition 1.7. (CH) The σ-field of Lebesgue measurable subsets of R does not have an
irredundant σ-generating subset.

The following is from Balcerzak 1988.

A proper σ-ideal I in P(X) is a σ-ideal such that X /∈ I and {x} ∈ I for all x ∈ X . A
proper ideal I in P(X) satisfies ccc iff there is no uncountable family F ⊆ P(X)\I of
pairwise disjoint sets.

Proposition 1.8. (1.1) If I and J are proper σ-ideals in P(X), I ⊆ J , and J satisfies
ccc, then I satisfies ccc.

Proposition 1.9. (1.2) If I and J are proper σ-ideals in P(X), then I ∩ J satisfies ccc
iff both I and J satisfy ccc.

Suppose that X and Y are spaces and I, J are ideals in P(X),P(Y ) respectively. Then

∀E ⊆ X × Y ∀x ∈ X [Ex = {y ∈ Y : (x, y) ∈ E}];

∀E ⊆ X × Y ∀y ∈ Y [Ey = {x ∈ X : (x, y) ∈ E}];

V (I, J) = {E ⊆ X × Y : {x ∈ X : Ex /∈ J} ∈ I};

H(I, J) = {E ⊆ X × Y : {y ∈ Y : Ey /∈ I} ∈ J}.

Theorem 1.10. If V (I, J) satisfies ccc, then both I and J satisfy ccc.

The following is from Balcerzak 1990.

An involution is a function f : Ξ → X such that f2 =identity. If I and J are ideals in
P(ω1), then they are isomorphic iff there is a bijection f : ω1 → ω1 such that J = {f [X) :
X ∈ I}. They are n-isomorphic iff there are n involutions fi : ω1 → ω1 for i < n such that
f0 ◦ · · · ◦ fn−1 is ann isomorphism from I to J .

Proposition 1.11. For any infinite set, every bijection f : X → X is the composition of
two involutions.
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The following is from Balcerzak 1992.

Ideals I and J are orthogonal iff there is an a ∈ I such that −a ∈ J . If M is a family
of σ-ideals, then I ∈ M is orthogonalizable in M iff it has an orthogonal member in M.
The set of all σ-ideals orthogonalizable in M is denoted by ORT(M). T is the set of all
cardinalities of maximal almost disjoint families on ω1. For each κ ∈ T , A(κ) is the set of
all σ-ideals on ω1 which can be generated by mad families of size κ.

Proposition 1.12. ORT(A(κ))=A(κ) for all κ ∈ T .

The following is from Bell, J. 1976.

A BA A is κ-universal iff every BA of size < κ can be isomorphically embedded in A.

Theorem 1.13. Let κ be an infinite cardinal, and let A be a κ-complete BA. Then the
following are equivalent:

(i) A is κ-universal.
(ii) ∀κ < κ[finco(λ) can be isomorphically embedded in A.
(iii) ∀λ < κ[A has an antichain of size λ].

Proof. Obviously (i)⇒(ii)⇒(iii). Now assume (iii), and let B be a BA of size less
than κ. If B is finite, clearly B can be isomorphically embedded in A. Say |B| = λ < κ.
Let 〈aξ : ξ < λ〉 be an antichain in A. Since A is κ-complete, we may assume that
∑

ξ<λ aξ = 1. Let 〈bξ : ξ < λ〉 enumerate the nonzero elements of B, and for each ξ < λ let
Fξ be an ultrafilter on B such that bξ ∈ Fξ. Now define for any x ∈ B, f(x) =

∑

x∈Fξ
aξ.

Then
f(x+ y) =

∑

x+y∈Fξ

aξ =
∑

x∈Fξ

aξ +
∑

y∈Fξ

aξ = f(x) + f(y),

and
f(−x) =

∑

−x∈Fξ

aξ = −
∑

x∈Fξ

aξ = f(−x).

Moreover, f(bξ) ≥ aξ 6= 0, so f is the desired isomorphic embedding.

Corollary 1.14. Every infinite σ-algebra is ω1-universal.

Corollary 1.15. For any infinite cardinal κ, P(κ) is κ+-universal.

The following is from Bell, C. 1956.

If A is a collection of subsets of X and κ is an infinite cardinal, then Fκ(A) is the smallest
κ-field of subsets of X containing A.

Proposition 1.16. (Theorem 2) Let A be a collection of subsets of X and κ be a regular
cardinal, Let B ∈ Fκ(A). Then there is an A′ ∈ [A]<κ such that B ∈ Fκ(A

′).

Proof. Clearly Fκ(A) ⊇
⋃

{Fκ(A
′) : A′ ∈ [A]<κ}, so it suffices to show that this

union is a κ-field of sets. Clearly it is closed under complements. Now suppose that X ∈
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[
⋃

{Fκ(A
′) : A′ ∈ [A]<κ}]

<κ
. For each x ∈ X choose A′

x ∈ [A]<κ such that x ∈ Fκ(A
′
x).

Let A′′ =
⋃

x∈X A
′
x. Then |A′′| < κ since κ is regular, and

⋃

X ∈ Fκ(A
′′).

Proposition 1.17. (Theorem 4) Let 〈ai : i ∈ I〉 be a system of sets. Let X =
⋃

i∈I ai.
Then the intersection A of all complete fields of subsets of X containing all elements ai
consists of all unions of sets of the form

⋂

i∈I a
ε(i)
i for ε ∈ I2. Moreover, each element of

A can be written uniquely as a union of nonempty such intersections.

Proof. For each j ∈ I,

aj =
⋃

{

⋂

i∈I

a
ε(i)
i : ε(j) = 1

}

.

Hence the proposition follows.

Proposition 1.18. (Theorem 9) Let K,L be collections of subsets of X, Y respectively.
Suppose that κ is a successor cardinal λ+. Let f : K → L be given. Then f can be extended
to a κ-homomorphism of Fκ(K) into Fκ(L) iff for every a ∈ λK and every ε ∈ λ2, the

condition
⋂

α<λ a
ε(α)
α = ∅ implies that

⋂

α<λ(f(aα))ε(α) = ∅.

Proof. ⇒: clear. ⇐: Assume the indicated condition. Suppose that b ∈ Fκ(K). By
Proposition 1.16 let K ′ ∈ [K]≤λ be such that b ∈ Fκ(K

′). Let 〈aα : α < λ〉 enumerate

K ′. Then by Proposition 1.17 there is an M ⊆ λ2 such that b =
⋃

ε∈M

⋂

α∈λ a
ε(α)
α , with

each
⋂

α∈λ a
ε(α)
α 6= 0. We then define

fa(b) =
⋃

ε∈M

⋂

α∈λ

(f(aα))ε(α).

Now suppose that K ′′ ∈ [K]≤λ be such that b ∈ Fκ(K
′′), and let 〈cα : α < λ〉 enumerate

K ′′. Further, let 〈dα : α < λ〉 enumerate K ′ ∪ K ′′. Say aα = dξ(α) for all α < λ and
cα = dη(α) for all α < λ. Then

b =
⋃

ε∈M

⋂

α∈λ

aε(α)
α

=
⋃

ε∈M

⋂

α∈λ

d
ε(α)
ξ(α)

=
⋃

ε∈M ′

⋂

α∈λ

dε(α)
α ,

where M ′ is the set of all ε ∈ λ2 such that 〈ε(ξ(α)) : α ∈ λ〉 ∈M and each
⋂

α∈λ d
ε(α)
α 6= ∅.

Similarly we get

b =
⋃

ε∈M ′

⋂

α∈λ

dε(α)
α ,
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where the same M ′ is the set of all ε ∈ λ2 such that 〈ε(η(α)) : α ∈ λ〉 ∈ N and each
⋂

α∈λ d
ε(α)
α 6= ∅. From this it follows that fa(b) = fd(b) = fc(b).

Now for any b ∈ Fκ(K) we define f∗(b) = fa(b) for any a as above.
If x ∈ K, we can apply the definition to a = 〈x : α < λ〉, M = {〈1 : α < λ〉} to get

f∗(x) = f(x). Thus f∗ extends f .
Now take any b ∈ Fκ(K). Then we obtain K ′ and a as above. Then

−b =
⋃

ε∈λ2\M

⋂

α∈λ

aε(α)
α =

⋃

ε∈M ′

⋂

α∈λ

aε(α)
α ,

where M ′ = {ε ∈ λ2\M :
⋂

α∈λ a
ε(α)
α 6= ∅}. It follows that f∗(b) ∩ f∗(−b) = ∅. If

⋂

α∈λ a
ε(α)
α = ∅, then by the condition of the Proposition,

⋂

α∈λ(f(aα))ε(α) = ∅. Hence
f∗(b) ∪ f∗(−b) = X . Thus f∗ preserves complements.

Now suppose that 〈bα : α < λ〉 is a system of elements of Fκ(K). Let K ′ ∈ [K]λ

be such that each bα ∈ Fκ(K
′). Let 〈aα : α < λ〉 enumerate K ′. For each α < λ

choose Mα ⊆
λ2 such that bα =

⋃

ε∈Mα

⋂

β∈λ a
ε(β)
β , with each

⋂

β∈λ a
ε(β)
β 6= ∅. Then

⋃

β∈λ bβ =
⋃

ε∈M ′

⋂

β∈λ a
ε(β)
β , where M ′ =

⋃

β<λMβ.

The following is from Bukovsky, Galavec 1972. Let Aκλ be the free κ+-BA with λ κ+-free
generators.

Proposition 1.19. (Theorem 3) (i) If λ ≤ κ, then Aκλ has exactly 2λ atoms.
(ii) If κ < λ, then Aκλ is atomless.

Proposition 1.20. (Theorem 4) If λ ≥ ω, then |Aκλ| = λκ.
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2. P(ω)/fin

The following is from Aviles, Brech 2011.

If B is a BA and S and A are subalgebras of B, then B is the internal push-out of A and
S provided the following conditions hold:

(1) B〈S ∪A〉.

(2) ∀a ∈ A∀s ∈ S[a · s = 0→ ∃r ∈ A ∩ S[a ≤ r and s ≤ −r]].

A push-out diagram is a diagram

S B

R A

such that S and A are subalgebras of B, R = A ∩ S, B is the internal push-out of A and
S, and the arrows are inclusions.

A BA B is a posex of a subalgebra A if there exists a push-out diagram as above with
S and R countable.

A BA A is tightly σ-filtered iff there exist and ordinal λ and a system 〈Bα : α ≤ λ〉
such that the following conditions hold:

(3) Bα ⊆ Bβ wheneverα ≤ β ≤ λ.

(4) B0 = {0, 1} and Bλ = A.

(5) ∀α < λ[Bα+1 is a posex of Bα].

(6) Bβ =
⋃

α<β Bα for every limit ordinal β ≤ λ.

Theorem 2.1. Assume that 2ω is regular. Then there is a BA B, unique up to isomor-
phism, such that the following conditions hold:

(i) |B| = 2ω.
(ii) B is tightly σ-filtered.
(iii) If A is a subalgebra of B and of another BA C, and C is a posex of A, then there

is an isomorphic embedding f : C → B which makes the following diagram commute:

C

A B

f

Theorem 2.2. If P(ω)/fin satisfies the conditions on B in Theorem 2.1, then 2ω ≤ ω2.

10



The following is from Aviles, Todorcevic 2011.

I, J are orthogonal iff ∀a ∈ I∀b ∈ J [a · b = 0];

I ∨ J = {a+ b : a ∈ I, b ∈ J};

I ∧ J = {a · b : a ∈ I, b ∈ J};

I⊥ = {a ∈ A : ∀b ∈ I[a · b = 0]};

I ↾ a = {b ∈ I : b ≤ a};

I ≤ a iff ∀b ∈ I[b ≤ a].

For a tree T , we denote by [T ] the set of all branches of T .
For N ∈ [ω]<ω\1, an N -gap of a BA A is a family 〈Ii : i ∈ N〉 of pairwise orthogonal

ideals of A such that ∀c ∈ NA[∀i ∈ N [Ii ≤ c(i)]→
∏

i∈N c(i) 6= 0].

A multiple gap as above is dense iff (
∨

i∈N Ii)
⊥ = {0}.

Let B ⊂ N . An N -gap 〈Ii : i ∈ N〉 is a B-clover iff ¬∃a ∈ A[〈Ij ↾ a : j ∈ B〉 is a
B-gap and ∀i ∈ N\B[a ∈ I⊥i ]]. An N -gap is a clover iff it is a B-clover for every B such
that ∅ 6= B ⊂ N .

If 〈Ii : i ∈ N〉 is an N -gap, and B ⊂ N , then 〈Ii : i ∈ N〉 is a B-jigsaw iff ∀A[B ⊂
A ⊆ N∀a ∈ A[〈Ii ↾ a : i ∈ A〉 is an A-gap→ ∃b < a[〈Ii ↾ b : i ∈ B〉 is a B-gap and
∀i ∈ A\B[b ∈ I⊥i ]]]].

Two orthogonal ideals I0 and I1 are countably separated iff there is a sequence 〈cn :
n ∈ ω〉 such that ∀x ∈ I0∀y ∈ I1∃n[x ≤ cn and y · cn = 0].

Theorem 2.3. (Theorem 4) If I0 and I1 are orthogonal analytic ideals in P(ω)/fin, then
one of the following holds:

(i) I0 and I1 are countably separated in P(ω)/fin.
(ii) There exist a ∈ 2ω

I0 and b ∈ 2ω

I1 such that ∀s[as ∩ bs = ∅] and ∀s, t[s 6= t →
(as ∩ bt) ∪ (at ∩ bs) 6= ∅ and 〈as : s ∈ 2ω〉 and 〈bs : s ∈ 2ω〉 are continuous.

Now let X be a family of subsets of n, and let 〈Ii : i ∈ n〉 be a system of ideals in a BA A.
A multiple gap 〈Ii : i ∈ n〉 is X -countably separated iff there exist elements cki for i ∈ n
and k ∈ ω such that:

(1)
∏

i∈X c
k
i = 0 for every k ∈ ω and X ∈X .

(2) ∀x ∈
∏

i<n Ii∃k ∈ ω∀i < n[xi ≤ cki ].

We say that 〈Ii : i ∈ n〉 is weakly countably separated iff it is [n]n-countably separated. We
say that 〈Ii : i ∈ n〉 is strongly countably separated iff it is [n]2-countably separated.

Theorem 2.4. (Theorem 6) Let T = <ωn. For each branch x of T and each i < n let
aix = {s ∈ T : s⌢〈i〉 ∈ x}. Let Ii be the ideal in P(T )/fin generated by {[aix] : x a branch
of T}. Then 〈Ii : i < n〉 is an n-jigsaw which is not weakly countably separated.

Theorem 2.5. (Theorem 7) Let 〈Ji : i ∈ n〉 be analytic ideals in P(ω)/fin which
constitute a multiple gap. Then one of the following holds:
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(i) The ideals are weakly countably separated in P(ω)/fin.
(ii) There is a one-one function u : <ωn such that u(Ii) ⊆ Ji for all i ∈ n, where Ii is

as in Theorem 2.4.

Proposition 2.6. (Proposition 8) Let T = <ω2 and for i ∈ and x a branch of T let
aix = {s ∈ T : s⌢〈i〉 ∈ x}. Let Ii be the ideal of P(T )/fin generated by all [aix] for x a
branch of T . Let J be the ideal of P(T )/fin generated by all [b], b an antichain of T .

Then I0, J0, J are analytic ideals, {I0, I1.J} is a multiple gap, but it is not weakly
countably separated and is neither a jigsaw nor a clover.

The following result is from Baayen, Paalman-de-Miranda 1963

Proposition 2.7. For any infinite κ, P(κ)/fin has a disjoint subset of size λ iff λ ≤ κω.

Proof. First, for each f ∈ ωκ let Df = {f ↾ m : m ∈ ω}. Then Df ∩Dg is finite for
f 6= g. So this gives a disjoint subset of P(κ)/fin of size κω.

Now suppose that A ⊆ P(κ)/fin is pairwise disjoint. Say A = {E/fin : E ∈ B}
with |A | = |B|. For each E ∈ B let E′ be a subset of E of size ω. Then 〈E′ : E ∈ B〉 is a
system of pairwise almost disjoint subsets of κ, each of size ω. Thus {E′ : E ∈ B} ⊆ [κ]ω,
so |A | = |{E′ : E ∈ B}| ≤ κω.

The following is from Baumgartner 1980.

Theorem 2.8. The following is relatively consistent:
(i) MA.
(ii) 2ω = ω2.
(iii) Every uncountable subset of P(ω) contains an uncountable chain or antichain

with respect to ⊆.
(iv) Every uncountable BA has an uncountable antichain.
(v) All ω1-dense subsets of R are isomorphic.

The following is from Bashkirov 1978.

Let X be a maximal almost disjoint family of infinite subsets of ω. Let a be a one-one
function with domain X and range disjoint from ω. For each m ∈ ω let B(m) = {m}, and
for each x ∈ X let B(ax) = {{ax} ∪M : M ⊆ x, x\M is finite}. Let IX = ω ∪ rng(a).

Proposition 2.9. 〈B(x) : x ∈ IX〉 is a neighborhood system for IX .

Proof. Clearly ∀x ∈ IX [x ∈ B(x)]. Suppose that x ∈ U ∈ B(y) with y ∈ IX . If
y ∈ ω, then U = {y}, hence x = y, so {x} ∈ B(x) and {x} ⊆ {x}. If y ∈ rng(a), say
y = ax. Then there is a finite M ⊆ x such that U = {ax} ∪M and x\M is finite.

Case 1. x = ax. Then U ∈ B(x) and U ⊆ U .
Case 2. x ∈M . Then {x} ∈ B(x) and {x} ⊆ U .
Finally, suppose that U1, U2 ∈ B(x) with x ∈ IX .
Case 1. x ∈ ω. Then U1 = U2 = {x} and the desired conclusion is clear.
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Case 2. x ∈ rng(a); say x = ax. Say U1 = {ax} ∪M and U2 = {ax} ∪N , with x\M
and x\N finite. Then X\(M ∩N) = (x\M) ∪ (x\N) is finite, so {ax} ∪ (M ∩N) ∈ B(x),
and {ax} ∪ (M ∩N) ⊆ U1 ∩ U2.

Proposition 2.10. IX is locally compact but not compact.

Proof. It suffices to show that each set {ax} ∪ M with M ⊆ x and x\M finite
is compact. Suppose that O is a collection of open sets covering {ax} ∪ M . Choose
U ∈ O such that ax ∈ U . Say U = ax ∪ N with N ⊆ x and x\N finite. Then M\N is
finite, since M\N ⊆ x\N . For each y ∈ M\N choose Vy ∈ O such that y ∈ Vy. Then
{ax} ∪M ⊆ ax ∪N ∪

⋃

y∈M\N Vy.

Thus IX is locally compact. {ω} ∪ {{ax} ∪ x : x ∈ X} is a cover of IX with no finite
subcover.

Proposition 2.11. IX is Hausdorff.

Proof. Let x, y ∈ IX , x 6= y. If one of x, y is in ω, clearly they have disjoint open
neighborhoods. Suppose that x = au and y = av. Then u∩ v is finite, and so {au}∪ (u\v)
and {av} ∪ (v\u) are disjoint open neighborhoods.

Proposition 2.12. Y ⊆ IX is compact iff there exist a finite F ⊆ X and a G ⊆ ω such
that {m ∈ G : ∀x ∈ F [m /∈ x]} is finite, and Y = {ax : x ∈ F} ∪G.

Proof. ⇒: Let F = {x : ax ∈ Y } and G = {m : m ∈ Y }. Thus Y = {ax : x ∈ F}∪G.
If F is infinite, then {{ax ∪ x : ax ∈ F} ∪ {{m} : m ∈ ω} covers Y , but there is no finite
subcover. So F is finite. If {m ∈ G : ∀x ∈ F [m /∈ x]} is infinite, then the same set covers
Y but has no finite subcover.
⇐: Assume the indicated conditions, and suppose that U is an open cover of Y . For

each x ∈ F let {ax} ∪Mx ∈ U with Mx ⊆ x and x\Mx finite. Let

G′ = {m ∈ G : ∃x ∈ F [m ∈ x\Mx]} ∪ {m ∈ G : ∀x ∈ F [m /∈ x]}.

Thus G′ is finite. For each m ∈ G′ choose Vx ∈ U such that m ∈ Vx. Then {{ax} ∪Mx :
x ∈ F} ∪ {Vx : x ∈ G′} covers Y .

Let I∗X be the one-point compactification of IX . Thus I∗X = IX ∪ {∞}, with open sets
those of IX plus all sets {∞} ∪ (IX\F ) with F compact in IX .

Proposition 2.13. I∗X is Hausdorff.

Proof. Let x, y be distinct points of I∗X . If x, y 6= ∞, then the desired disjoint open
neighborhoods exist by Proposition 2.11. Suppose wlog x = ∞. If y ∈ ω, then {∞} ∪
(IX\{y}) and {y} are disjoint open neighborhoods. If y = au, then {∞}∪ (IX\({au}∪u))
and {au} ∪ u are disjoint open neighborhoods.

Proposition 2.14. The clopen sets form a base for the topology on I∗X .

Proof. By Proposition 2.12, each set {au} ∪ M , with M ⊆ u and u\M finite, is
clopen. Hence it suffices to show that each set {∞}∪ (IX\Y ), Y compact in IX , is a union
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of clopen sets. Suppose that y ∈ {∞}∪ (IX\Y ); we want to find a clopen set V such that
y ∈ V ⊆ {∞} ∪ (IX\Y ).

Case 1. y ∈ ω. Then take V = {y}.
Case 2. y = ax. Let F,G be as in Proposition 2.12. Let Y ′ = Y ∪

⋃

ay∈F
y.

Then Y ′ is compact by Proposition 2.12, and it is clearly open; so it is clopen. Clearly
y ∈ {∞} ∪ (IX\Y

′) ⊆ {∞} ∪ (IX\Y ).
Case 3. y = ∞. Let F,G be as in Proposition 2.12. Let Y ′ = Y ∪

⋃

ay∈F
y. Then

Y ′ is compact by Proposition 2.12, and it is clearly open; so it is clopen. Clearly y ∈
{∞} ∪ (IX\Y

′) ⊆ {∞} ∪ (IX\Y ).

Theorem 2.15. Let A be the subalgebra of P(ω) generated by X ∪ {{m} : m ∈ ω}. Then
Ult(A) is homeomorphic to I∗X .

Proof. For each m ∈ ω let Fm be the ultrafilter on A generated by {m}.

(1) For each x ∈ X the set {x} ∪ {M : ω\M is finite} has fip.

In fact, otherwise we get x ∩
⋂

M∈F M = ∅ for some finite set F of M ’s such that ω\M
is finite. Hence x ⊆

⋃

M∈F (ω\M). Since x is infinite and
⋃

M∈F (ω\M) is finite, this is a
contradiction.

For each x ∈ X let Gx be the filter on A generated by {x} ∪ {M : ω\M is finite}.
By (1), Gx is proper. We claim that it is an ultrafilter. For, let A′ = {s ∈ A : s ∈ Gx or
(ω\s) ∈ Gx}. Clearly {m} ∈ A′ for all m ∈ ω. Clearly x ∈ Gx. Suppose that y ∈ X\{x}.
Then x ∩ y is finite, so (ω\(x ∩ y)) ∈ Gx. Now (ω\(x ∩ y)) = (ω\x) ∪ (ω\y) and x ∈ Gx,
so (ω\y) ∈ Gx. Thus y ∈ A′. Clearly A′ is closed under \ and ∪, so A′ = A. This shows
that Gx is an ultrafilter.

Let Y = {s ∈ A : (ω\s) ∈ X} ∪ {ω\F : F ∈ [ω]<ω}. We claim that Y has fip.
For, suppose that K ∈ [X ]<ω, H ∈ [[ω]<ω]<ω, and

⋂

s∈K(ω\s) ∩
⋂

b∈H(ω\b) = ∅. Then
⋂

s∈K(ω\s) ⊆
⋃

b∈H b, so
⋂

s∈K(ω\s) is finite. Take any c ∈ X\K. Then ∀s ∈ K[c ∩ s is
finite], so c ∩

⋃

s∈K s is finite, and so c ∩
⋂

s∈K(ω\s) is infinite, contradiction.
Let L be the filter generated by Y . Clearly L is an ultrafilter.

(2) Ult(A) = {Fm : m ∈ ω} ∪ {Gx : x ∈ X} ∪ {L}.

To prove this, let M be any ultrafilter on A. If M is principal, say M is generated by
{m}. Then M = Fm. Assume that M is not principal. If x ∈ M for some x ∈ X , clearly
M = Gx. If x /∈M for all x ∈ X , clearly M = L. Thus (2) holds.

Define f(Fm) = m, f(Gx) = ax, f(L) =∞. Thus f is a bijection from Ult(A) to I∗X ,
so it suffices to show that f is continuous. So let N ∈ f−1[U ] with U a clopen set in I∗X ;
we want to find an open subset V in Ult(A) such that N ∈ V ⊆ f−1[U ].

Case 1. U = {m} with m ∈ ω. Then f(N) = m, hence N = Fm. So N ∈ {Fm} ⊆
f−1[U ].

Case 2. U = {ax} ∪M with x ∈ X , M ⊆ x, x\M finite. Then f(N) ∈ U .
Subcase 2.1. f(N) = ax. Then N = Gx. So N ∈ S(x) ⊆ f−1[U ].
Subcase 2.2. f(N) = m ∈M . Then N = Fm and N ∈ S({m}) ⊆ f−1[U ].

Case 3. (See the proof of Proposition 2.14, Case 3.) U = {∞} ∪ (IX\Y ) with
Y =

⋃

x∈F ({ax}∪x)∪G, F a finite subset of X , G ⊆ ω such that {m ∈ G : ∀x ∈ F [m /∈ x]}
finite.
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Subcase 3.1. N = Fm for some m ∈ ω. Then f(Fm) = m ∈ U . Hence N ∈
S({m}) ⊆ f−1[U ].

Subsubcase 3.2. N = Gx with x ∈ X . So f(N) = ax, hence x /∈ F . Suppose that
P ∈ S(x).

Subsubcase 3.2.1. {m} ∈ P for some m ∈ ω. Then x ∩ {m} ∈ P , hence m ∈ x,
and f(P ) = m ∈ U .

Subcase 3.2.2. ax ∈ P for some x ∈ X , and P is nonprincipal. Then P = Gx
and x /∈ F . So f(P ) = ax ∈ U .

Subsubcase 3.2.3. P is nonprincipal, and ω\s ∈ P for all s ∈ X . Then P = L
and f(P ) =∞ ∈ U .

Subcase 3.3. N = L. So f(N) = ∞. Let V =
⋂

x∈F (ω\x) ∪ (ω\{m ∈ G : ∀x ∈
F [m /∈ x]}. Thus N ∈ f−1[V ]. Suppose that P ∈ f−1[V ].

Subsubcase 3.3.1. {m} ∈ P for some m ∈ ω. Then f(P ) = m ∈ V .
Subsubcase 3.3.2. P = Gx for some x ∈ X . Then f(P ) = x ∈ V .
Subsubcase 3.3.3. P = L. Then f(P ) =∞ ∈ V .

The following is from Baumgartner, Frankiewicz, Zbierski 1990.

Theorem 2.16. There is a model of ZFC with 2ω arbitrarily large in which every BA A
of size ≤ 2ω can be isomorphically embedded in P(ω)/fin. Moreover, each automorphism
of A can be extended to an automorphism of P(ω)/fin.

The following is from Baumgartner, Komjath 1981.

Theorem 2.17. (♦) There is an atomless field of subsets of ω such that every nonzero
element is uncountable and every chain and antichain is countable.

Theorem 2.18. (♦) There is an uncountable atomless field of subsets of ω such that the
countable elements form a maximal ideal and every chain and antichain is countable.

Theorem 2.19. If every antichain in A is countable, the A has a countable dense subal-
gebra.

The following is from Baumgartner, Weese 1982.

Let F be a mad family of subsets of ω. A set a ⊆ ω is a partitioner of F iff ∀b ∈ F [b · a or
b · −a is finite]. The partitioners of F form a BA PF . IF is the ideal of PF generated by
F together with the finite subsets of ω. The algebra PF /I is the partition algebra of F . A
BA A is partition-representable iff there is a mad family F such that A is isomorphic to
PF /I.

Theorem 2.20. (Theorem 2.1) Every countable BA is partition-representable.

Theorem 2.21. (Theorem 2.2) For all λ ≤ 2ω the algebra finco(λ) is partition-
representable.

Theorem 2.22. (Theorem 2.4) intalg(R) is partition-representable.
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Theorem 2.23. (CH; Theorem 3.1) Every BA of size ≤ 2ω is partition-representable.

Theorem 2.24. (Theorem 4.1) Assume CH, and let κ ≥ ω2 and let P = Fn(κ, ω, ω). In
a generic extension, if A has an independent subset of size ω2 then A is not partition-
representable. In particular, no infinite complete BA is partition-representable.

The following is from Frankiewicz 1977.

Theorem 2.25. (Lemma 1) If ω1 ≤ κ and P(ω)/fin ∼= P(κ)/fin, then P(ω)/fin ∼=
P(ω1)/fin.

Proof. Let A = P(ω)/fin, B = P(ω1)/fin, C = P(κ)/fin. Note that if X ∈ [ω]ω

then A ↾ [X ]A ∼= A, and C ↾ [ω1]C ∼= B. Assume that f is an isomorphism from A onto C.
Then there is an X ∈ [ω]ω such that f−1([ω1]C) = [X ]A. Hence A ∼= B.

Theorem 2.26. (Lemma 2) If κ is singular and ∀λ < κ[P(λ)/fin 6∼= P(κ)/fin], then
P(κ)/fin 6∼= P(κ+)/fin.

Proof. We consider the following property of a cardinal µ:

(1µ) There is an isomorphism f of P(cf(κ)) into P(µ)/fin such that:

∀α < cf(κ)[(P(µ)/fin) ↾ f({α}) 6∼= P(µ)/fin];(a)

∀X ∈P(µ)[(P(µ)/fin) ↾ [X ] ∼= P(µ)/fin→ ∃α < cf(κ)[f({α}) · [X ] 6= 0].(b)

We claim that (1κ) but not (1κ+). Once we prove this, it follows that P(κ)/fin 6∼=
P(κ+)/fin. In fact, suppose that (1κ), not (1κ+), and g is an isomorphism of P(κ)/fin
onto P(κ+)/fin. Let f be as in (1κ). We claim that g ◦ f shows that (1κ+).
(Contradiction.) For, if α < cf(κ) then (P(κ+)/fin) ↾ g(f({α})) ∼= (P(κ)/fin) ↾

f({α}) 6∼= P(κ)/fin ∼= P(κ+)/fin, so that (1κ+)(a) holds. If X ∈ P(κ+) and
(P(κ+)/fin) ↾ [X ] ∼= P(κ+)/fin, let Y be such that g−1([X ]) = [Y ]. Thus Y ∈P(κ) and
(P(κ)/fin) ↾ [Y ] ∼= P(κ)/fin. By (1κ)(b) choose α < cf(κ) such that f({α}) · [Y ] 6= 0.
Then g(f({α})) · [X ] 6= 0, as desired.

To prove (1κ), let 〈γα : α < cf(κ)〉 be a strictly increasing sequence of cardinals, with
γ0 = 0, γ1 infinite, γλ =

⋃

α<λ γα for λ limit, with supα<cf(α) γα = κ. For each X ⊆ cf(κ)

let f(X) =
[
⋃

α∈X(γα+1\γα)
]

. Clearly f is an isomorphism of P(cf(κ)) into P(κ)/fin.
For (1κ)(a), suppose that α < cf(κ). Then f({α}) = [γα+1\γα], and |γα+1\γα| = γα+1 < κ.
Thus (P(κ)/fin) ↾ f(α) ∼= P(γα+1)/fin, and by hypothesis this is not isomorphic to
P(κ)/fin. For (1κ)(b), suppose that X ∈ P(κ) and (P(κ)/fin) ↾ [X ] ∼= P(κ)/fin.
Then |X | = κ by the hypothesis of the theorem. Choose α < cf(κ) such that X∩(γα+1\γα)
is infinite. Then f({α}) ∩ [X ] 6= 0.

Now suppose that (1κ+); we want to get a contradiction. Let f be as in the definition of
(1κ+). By (1κ+)(a), for each α < cf(κ) there is an Xα ∈ [κ+]≤κ such that f({α}) = [Xα].
Let Y =

⋃

α<cf(κ)Xα. Thus |Y | ≤ κ. So |κ+\Y | = κ+, hence (P(κ+)/fin) ↾ [κ+\Y ] ∼=

P(κ+)/fin. By (1κ+)(b) it follows that there is an α < cf(κ) such that f({α})·[κ+\Y ] 6= 0.
But f({α}) · [κ+\Y ] = [Xα] · [κ+\Y ] = 0, contradiction.
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Lemma 2.27. Suppose that µ is an infinite cardinal and P(µ)/fin is not isomorphic
to P(µ+)/fin. Then for any κ, λ, if µ ≤ κ < λ then P(κ)/fin is not isomorphic to
P(λ)/fin.

Proof. Assume that µ is an infinite cardinal and P(µ)/fin is not isomorphic to
P(µ+)/fin. Suppose that there exist κ, λ with µ ≤ κ < λ and P(κ)/fin is isomorphic
to P(λ)/fin; we want to get a contradiction. Let such a κ be minimum. Let f be an
isomorphism from P(κ)/fin to P(λ)/fin. Choose X ⊆ κ such that f([X ]κ) = [κ+]λ.
Then

P(|X |)/fin ∼= (P(κ)/fin) ↾ [X ]κ ∼= (P(λ)/fin) ↾ [κ+]λ ∼= P(κ+)/fin.

Now |X | ≤ κ, so by the minimality of κ we have |X | = κ. Thus P(κ)/fin ∼= P(κ+)/fin.
Let g be an isomorphism of P(κ)/fin to P(κ+)/fin. By Theorem 2.26, κ is regular. Let
〈θα : α < κ〉 be a strictly increasing sequence of ordinals with supremum κ, with µ < θ0.

(1) ∀X ∈ [κ]κ∃α < κ[[θα] · [X ] 6= 0].

In fact, suppose that X ∈ [κ]κ. Choose Y ⊆ X with |Y | = µ. Say Y ⊆ θα with
α < κ. Then [θα] · [X ] ≥ [Y ] 6= 0. Say g([θα]) = [Yα]. Note that |θα| < κ. Now
(P(κ)/fin) ↾ [θα] ∼= (P(κ+)/fin) ↾ [Yα], so by the minimality of κ we have |Yα| < κ.
Choose X ⊆ κ so that g([X ]) = [κ+\

⋃

α<κ Yα]. Now |κ+\
⋃

α<κ Yα| = κ+, and

P(κ)/fin) ↾ [X ] ∼= (P(κ+)/fin) ↾ g([X ]),

so it follows by the minimality of κ that |X | = κ. By (1), choose α < κ so that [θα]·[X ] 6= 0.
Hence 0 = [Yα] · g([X ]) = g([θα]) · g([X ]) 6= 0, contradiction.

The following is from Balcar, Frankiewicz 1978.

A scale is a system 〈fα : α < µ〉 of members of ωω such that ∀α, β < µ[α < β → fα <
∗ fβ]

and ∀g ∈ ωω∃α < µ[g <∗ fα].

Lemma 2.28. There is at most one regular cardinal µ such that there is a scale 〈fα : α <
µ〉.

Proof. Suppose that µ < ν and 〈fα : α < µ〉 and 〈fα : α < ν〉 are scales. For each
α < µ let β(α) < ν be minimum such that fα <

∗ gβ(α). Let γ = (supα<µ β(α)) + 1. Then
choose α < µ such that gγ <

∗ fα. Then fα <
∗ gβ(α) <

∗ gγ <
∗ fα, contradiction.

Lemma 2.29. If µ is an uncountable regular cardinal and P(µ)/fin is isomorphic to
P(ω)/fin, then there is a scale of length µ.

Proof. Let f be an isomorphism of P(µ)/fin onto P(ω)/fin. Let 〈pn : n ∈ ω〉
be a partition of µ into sets of size µ. For each n ∈ ω let f([pn]) = [qn]. Define r0 = q0
and rn+1 = qn+1\

⋃

i≤n qi. Then each rn is infinite; this is obvious for n = 0, and qn+1 =
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(qn+1 ∩
⋃

i≤n qn) ∪ rn+1, so rn+1 is infinite. Clearly rn ∩ rm = ∅ for m 6= n. Obviously
f([p0]) = [r0]. Also,

[rn+1] =



qn+1\
⋃

i≤n

qi





= [qn+1] · −
∑

i≤n

[qi]

= f([pn+1]) · −
∑

i≤n

f([pi])

= f







pn+1\
⋃

i≤n

pi









= f([pn+1]).

Now let 〈an : n ∈ ω〉 be a system of pairwise disjoint finite sets such that
⋃

n∈ω an =
ω\
⋃

i∈ω qi. Define si = ri ∪ ai for all i ∈ ω. Then 〈si : i ∈ ω〉 is a partition of ω into
infinite sets, and f([pi]) = [si] for all i ∈ ω.

Now for each α < µ let tα = µ\α, and let uα ⊆ ω be such that f([tα]) = [uα].

(1) ∀α < µ∀n ∈ ω[uα ∩ sn is infinite].

In fact, suppose that α < µ and n ∈ ω. Then |tα ∩ pn| = µ, hence [tα] · [pn] 6= 0, so
[uα] · [sn] 6= 0, and (1) follows.

Now for each α < µ and n ∈ ω let hα(n) be the least element of uα ∩ sn.

(2) If α < β, then hα ≤
∗ hβ .

For, suppose that α < β. Then tβ ⊆ tα, so [tβ] ≤ [tα], and hence [uβ] ≤ [uα]. Let m be
greater than each member of {n ∈ ω : (uβ\uα) ∩ sn 6= 0}. Suppose that n ≥ m. Then
(uβ\uα) ∩ sn = 0, so uβ ∩ sn ⊆ uα ∩ sn. Hence hα(n) ≤ hβ(n), proving (2).

(3) ∀g ∈ ωω∃α < µ[g ≤∗ hα].

In fact, suppose that ∀α < µ[g 6≤∗ hα]. Thus each set Iα = {n ∈ ω : hα(n) < g(n)} is
infinite. For each n ∈ ω let Gn = {i ∈ ω : i < g(n)}. Set V =

⋃

n∈ω(sn ∩Gn).

(4) ∀α < µ[{hα(n) : n ∈ Iα} ⊆ V ].

For, let n ∈ Iα. Then hα(n) < g(n), so hα(n) ∈ Gn. Also by definition, hα(n) ∈ sn. So
hα(n) ∈ V .

(5) ∀α < µ[{hα(n) : n ∈ Iα} is infinite].

In fact, let α < µ. Now Iα is infinite, and for all n ∈ Iα, hα(n) ∈ sn, and the s′ns are
pairwise disjoint. So (5) holds.

(6) ∀α < µ[V ∩ uα is infinite].
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For, take α < µ. By (5), {hα(n) : n ∈ Iα} is infinite, and by (4) it is a subset of V . Clearly
it is a subset of uα too.

(7) ∀n ∈ ω[V ∩ sn is finite].

For, let n ∈ ω. Then V ∩ sn = sn ∩Gn ⊆ g(n), and (7) holds.
Now by (7), [V ] · [sn] = 0. Say f([U ]) = [V ]. Then [U ] · [pn] = 0, so U ∩ pn is finite.

It follows that U is countable. Choose α < µ such that U ∩ tα = ∅. Then [U ] · [tα] = 0, so
[V ] · [uα] = 0. Hence V ∩ uα is finite, contradicting (6).

Hence (3) holds.

(8) ∀α < µ∃β ∈ (α, µ)[hα <
∗ hβ ].

For, let α < µ. Define g(n) = hα(n) + 1 for all n ∈ ω. By (3), choose β so that g ≤∗ hβ .
By (2) we may assume that α < β. Clearly hα <

∗ hβ .
Now from (8) the existence of a scale of length µ is clear.

Theorem 2.30. If κ and λ are uncountable and distinct, then P(κ)/fin 6∼= P(λ)/fin.

Proof. By Lemma 2.27 with µ = ω it suffices to show that P(ω1)/fin 6∼= P(ω2)/fin.
Suppose that P(ω1)/fin ∼= P(ω2)/fin. Again by Lemma 2.27 with µ = ω we have
P(ω)/fin ∼= P(ω1)/fin. Then by Lemma 2.29, there is a scale of length ω1. Now
P(ω1)/fin ∼= P(ω2)/fin and P(ω)/fin ∼= P(ω1)/fin, so P(ω)/fin ∼= P(ω2)/fin.
Hence by Lemma 2.29 there is a scale of length ω2. This contradicts Lemma 2.28.

The following is from Bell, M. 1980.

If A is a collection of sets, then
∧

A = {
⋂

A′ : A′ ∈ [A]<ω} and
∨

A = {
⋃

A′ : A′ ∈ [A]<ω}.
Let P = {f ∈ ωω : ∀n ∈ ω[f(n) ≤ n + 1]} and N = {f ↾ n : f ∈ P, n ∈ ω}. Let
T = {π ∈ ωN : ∀n ∈ ω[dmn(π(n)) = n + 1]}. For each s ∈ N let Cs = {t ∈ N : s ⊆ t},
and for each π ∈ T let Cπ =

⋃

n∈ω Cπ(n).

Proposition 2.31. (i) N = {g : ∃n ∈ ω[g ∈ n+1ω and ∀i ≤ n[g(i) ≤ i+ 1]]}.
(ii) T = {π : dmn(π) = ω and ∀n ∈ ω[π(n) ∈ n+1ω and ∀i ≤ n[(π(n))(i) ≤ i+ 1]]}.
(iii) ∀π ∈ T [Cπ = {t ∈ N : ∃n ∈ ω[π(n) ⊆ t]]}].
(iv) ∀π ∈ T [N\Cπ is infinite].

Proof. (i)–(iii) are clear. For (iv), suppose that π ∈ T . Note that Q
def
=
∏

n∈ω(n +
2)\{(π(n))(n)} is uncountable. Clearly Q ⊆ N\Cπ.

Now we define A = {Cπ : π ∈ T} ∪ {N\Cπ : π ∈ T} and B =
∨

(
∧

(A )).

Proposition 2.32. B is a subalgebra of P(N), and {{x} : s ∈ N} ∪ {Cs : s ∈ N} ⊆ B.

Clearly {s} : s ∈ N} is dense in B. Let C = B/[N ]<ω.

Proposition 2.33. C does not have a countable dense subalgebra. It has a set of genera-
tors which is a countable union of linked subsets.

The following is from Bell, M. 1982.
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If G is a graph, then C(G) is the set of all complete subgraphs of G. For v ∈ G we set
v+ = {C ∈ C(G) : v ∈ C} and v− = {C ∈ C(G) : v /∈ C}. Then

⋃

v∈G{v
+, v−} is a

subbase for a topology on C(G).

Proposition 2.34. C(G) is a closed subspace of P(G).

Proof. Clearly C(G) is a subspace of P(G). Suppose that X ∈ P(G)\C(G); we
want to find an open subset U of P(G) such that X ∈ U and U ∩C(G) = ∅. Since X ⊆ G
but is not a complete subgraph of G, there exist distinct a, b ∈ X such that {a, b} is not
an edge of G. Then X ∈ U{a,b}∅ and U{a,b}∅ ∩ C(G) = ∅.

Proposition 2.35. C(G) is supercompact.

A spaceX is Frechet-Urysohn iff for all A ⊆ X and all a ∈ A there is a sequence 〈bn : n ∈ ω〉
of elements of A which converges to a.

Proposition 2.36. C(G) is Frechet-Urysohn iff every complete subgraph of G is countable.

The following is from Bell, M. 1983.

Let

A =

{

∏

i∈ω

Ai : ∀i < ω[Ai ⊆ ω and |Ai\Ai+1| < ω]

}

;

H = subalgebra of P(ωω) generated by A .

Proposition 2.37. H can be isomorphically embedded in P(ω)/fin.

Proposition 2.38. For any j ≥ 2 there is a subalgebra of H which is σ− j-linked but not
σ − (j + 1)-linked.

Proposition 2.39. There is a subalgebra of H which is ccc but not σ-2-linked.

The following is from Bell, M. 1985

Proposition 2.40. Let S be a collection of closed subsets of X, with S closed under finite
intersection. Then S is a closed subbase for X iff ∀ closed K∀ open U [K ⊆ U → ∃F ∈
[S]<ω[K ⊆

⋃

F ⊆ U ]].

If k < n and s ∈ [ω1]
n, then s(k) is the k-th element of S in the order of ω1. Thus

s = {s(0), . . . , s(n−1)}.
Suppose that n is a positive integer and f : [ω1]

n → [ω1]
<ω is such that ∀s ∈ [ω1]

n[s∩
f(s) = ∅]. Suppose that A ⊆ ω1. Then

A is free iff ∀s ∈ [A]n[A ∩ f(s) = ∅];

A is almost free iff ∀s ∈ [A]n[A ∩ f(s) ⊆ {γ : s(0) < γ < s(n−1)}.
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If S is an infinite set and 0 < n ∈ ω, for each s ∈ S let s+ = {F ∈ [S]≤n : s ∈ F} and
s− = {F ∈ [S]≤n : s /∈ F}. Then {s+ : s ∈ S} ∪ {s− : s ∈ S} generates a subalgebra ASn
of P([S]≤n).

Proposition 2.41. There is an (n+ 1)− ary closed generating set for ASn.

Proposition 2.42. The compactness number of Ult(AS(2n−1)) and of Ult(AS(2n)) is n+1.

The following is from Bell 1985a.

If S is a collection of sets, then Cen(S) is the set of all centered subsets of S. For s ∈ S
we let s+ = {C ∈ Cen(S) : s ∈ C} and s− = {C ∈ Cen(S) : s /∈ C}. C(S) is the field of
subsets of S generated by all sets s+, s−.

Proposition 2.43. A is isomorphic to Cen(S) for some family S of sets iff A is generated
by a set G such that for all finite F,H ⊆ G,

∏

F · −
∑

H 6= 0 iff
∏

F 6= 0 and F ∩H = ∅.

The following is from van Douwen 1990.

Let

Tκ = {τ ⊆ κ× κ : τ is a one-one function and |κ\dmn(τ)|+ |κ\rng(τ)| < κ}.

Proposition 2.44. For each τ ∈ Tκ there is an automorphism τ∗ of P(κ)/[κ]<κ such that
for any X ⊆ κ, τ∗([X ]) = [τ [X ]].

Proof. First we claim

(1) τ [X△Y ] = τ [X ]△τ [Y ].

For, suppose that x ∈ X△Y and x ∈ dmn(τ). Then τ(x) ∈ τ [X ]. If τ(x) ∈ τ [Y ], say
y ∈ Y ∩dmn(τ) and τ(x) = τ(y). Then x = y, so x ∈ Y , contradiction. Hence τ(x) /∈ τ [Y ].
By symmetry this proves ⊆ in (1).

Suppose that z ∈ τ [X ]\τ [Y ]. Say x ∈ X ∩ dmn(τ) and z = τ(x). If x ∈ Y , then
z ∈ τ [Y ], contradiction. Thus x /∈ Y , so z ∈ τ [X\Y ]. By symmetry this prove ⊇ in (1).

Now by (1), |X△Y | < κ iff |τ [X△Y ]| < κ iff |τ [X ]△τ [Y ]| < κ. Hence τ∗ is well-defined
and one-one.

(2) τ [τ−1[X ]] ⊆ X .

In fact, suppose that m ∈ τ [τ−1[X ]]. Then there is an n ∈ τ−1[X ] such that τ(n) = m.
Now n ∈ dmn(τ and τ(n) ∈ X ; so m ∈ X .

(3) X\τ [τ−1[X ]] ⊆ ((κ\dmn(τ)) ∪ (κ\rng(τ))).

For, suppose that m ∈ X ∩ dmn(τ ∩ rng(τ). Say τ(n) = m. Then n ∈ τ−1[X ], and
τ(n) = m. So m ∈ τ [τ−1[X ]].

By (2) and (3), τ∗([τ−1[X ]]) = [X ]. So τ∗ maps onto P(κ)/[κ]<κ.

(4) τ [X ] ⊆ τ [X ∪ Y ].
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In fact, let m ∈ τ [X ]. Then there is an n ∈ X ∩ dmn(τ) such that m = τ(n). Since
n ∈ X ∪ Y , this shows that m ∈ τ [X ∪ Y ].

(5) τ [X ∪ Y ]\(τ [X ] ∪ τ [Y ]) ⊆ ((κ\dmn(τ)) ∪ (κ\rng(τ))).

For, suppose that m ∈ τ [X ∪ Y ] ∩ dmn(τ) ∩ rng(τ). and m /∈ τ [Y ]. Say n ∈ X ∪ Y ,
n ∈ dmn(τ), and m = τ(n). If n ∈ Y , then m ∈ τ [Y ], contradiction. So n /∈ Y , hence
n ∈ X . Thus m ∈ τ [X ]. This proves (5).

By (4) and (5), τ∗([X ] + [Y ]) = τ∗([X ∪ Y ]) = [τ [X ∪ Y ]] = [τ [X ]] + [τ [Y ]] =
τ∗([X ]) + τ∗([Y ]).

Next,

(6) τ∗(−[X ]) = −τ∗([X ]).

In fact, τ∗([X ]) + τ∗(−[X ]) = τ∗([X ]) + τ∗([κ\X ]) = τ∗([κ]) = 1. We also claim

(7) τ [X ] ∩ τ [κ\X ] ∩ dmn(τ ∩ rng(τ) = ∅.

In fact, suppose that m ∈ τ [X ] ∩ τ [κ\X ] ∩ dmn(τ ∩ rng(τ) = ∅. Choose n ∈ X such that
τ(n) = m, and choose p ∈ κ\X such that τ(p) = m. Then n = p, contradiction. So (7)
holds.

From (7) it is clear that τ∗([X ]) · τ∗(−[X ]) = 0. Hence (6) follows.
Now we have shown that τ∗ is an automorphism of P(κ)/[κ]<κ.

Let T ∗
κ = {τ∗ : τ ∈ Tκ} and let S∗

κ = {τ∗ : τ is a permutation of κ.

Proposition 2.45. (Theorem 6.1) There is a homomorphism h from T ∗
ω onto Z with

kernel S∗
ω.

Proposition 2.46. (Proposition 6.2) If κ > ω then T ∗
κ = S∗

κ.

The following is from van Douwen 1991.

Theorem 2.47. |P(κ)/[κ]<κ| = 2κ.

Proof. Write κ =
⋃

α<κXα with each |Xα| = κ and Xα∩Xβ = ∅ for α 6= β. For each
S ⊆ κ let aS =

⋃

α∈S Xα. Then for S, T ∈P(κ) and S 6= T we have [aS] 6= [aT ].

Corollary 2.48. (Fact 1.1) If P(κ)/[κ]<κ ∼= P(λ)/[λ]<λ, then 2κ = 2λ.

Proposition 2.49. P(κ)/[κ]<κ is cf(κ)-complete but not cf(κ)+-complete.

Proof. Suppose that 〈Xα : α < γ〉 is a system of elements of [κ]κ with γ < cf(κ).

Then
[

⋃

α<γ Xα

]

is an upper bound for {[Xα] : α < γ}. Suppose that [Y ] is any upper

bound for {[Xα] : α < γ}. Then

[

⋃

α<γ

Xα

]

\[Y ] =

[

⋃

α<γ

(Xα\Y )

]

,
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and
⋃

α<γ(Xα\Y ) has size less than κ since ∀α < γ[|Xα\Y | < κ] and γ < cfκ. So
[

⋃

α<γ Xα

]

is the least upper bound for {[Xα] : α < γ}.

Now to show that P(κ)/[κ]<κ is not cf(κ)+-complete, we take two cases.
Case 1. κ is regular. Let 〈Xα : α < κ〉 be a pairwise disjoint system of members of

[κ]κ with union κ. We claim that
∑

α<κ[Xα] does not exist. Suppose that Y ∈ [κ]κ and
[Y ] is an upper bound for {[Xα] : α < κ}. For each α < κ let Wα be of size less than κ
such that Xα\Y ⊂ Wα ⊆ Xα. Let Z =

⋃

α<κ(Xα\Wα). Then

Z\Y =
⋃

α<κ

(Xα\Wα)\Y ) = ∅.

Moreover, if xα ∈ Wα ∩ Y for each α < κ, Then {xα : α < κ} is a subset of Y of size κ
which is disjoint from Z; so [Z] < [Y ]. If α < κ, then Xα\Z = Wα has size less than κ, as
desired.

Case 2. κ is singular. Let 〈λξ : ξ < cf(κ)〉 be a strictly increasing sequence of nonzero
cardinals with supremum κ. Let 〈Xξ : ξ < cf(κ)〉 be a pairwise disjoint system of members
of [κ]κ with union κ. We claim that

∑

ξ<cf(κ)[Xα] does not exist. Suppose that Y ∈ [κ]κ

and [Y ] is an upper bound for {[Xξ] : ξ < cf(κ)}. For each ξ < cf(κ) let Wξ be such that
Xξ\Y ⊂Wξ ⊆ Xξ, |Wξ| < κ, and |Wξ ∩ Y | = λξ. Let Z =

⋃

ξ<cf(κ)(Xξ\Wξ). Then

Z\Y =
⋃

ξ<cf(κ)

(Xξ\Wξ)\Y ) = ∅.

Moreover, if Vξ ∈ [Wξ ∩ Y ]λξ for each ξ < cf(κ), Then
⋃

ξ<cf(κ) Vξ is a subset of Y of size

κ which is disjoint from Z; so [Z] < [Y ]. If ξ < cf(κ), then Xξ\Z = Wξ has size less than
κ, as desired.

Corollary 2.50. (Fact 1.2) If P(κ)/[κ]<κ ∼= P(λ)/[λ]<λ, then cf(κ) = cf(λ).

Proposition 2.51. (Fact 3.1) If 2<κ = κ, then P(κ)/[κ]<κ has a disjoint subset of size
2κ.

Proof. Let T =
⋃

α<κ
α2. Then |T | = κ by assumption. For each f ∈ κ2 let

f ′ = {f ↾ α : α < κ}. Then |f ′| = κ. If f, g ∈ κ2 and f 6= g, then |f ′ ∩ g′| < κ. Let k be
a bijection from T to κ. For each f ∈ κ2 let af = [k[f ′]]. Then 〈af : f ∈ κ2 is a disjoint
system.

Let B be a BA. We say that S ⊆ B separates P ⊆ B iff ∀p, q ∈ P [p 6= q → ∃s ∈ S[p ≤ s
and q ≤ −s]. Then B has the (σ, π)-separated chain condition ((σ, π)-scc) iff

∀P ⊆ B\{0}[∃S ⊆ B[S separates P and |S| < σ]→ |P | < π].

Proposition 2.52. If 2<κ = κ, then P(κ)/[κ]<κ does not have the (κ+, 2κ)-scc.

Proof. Let T be as in the proof of Proposition 2.51, and let k : T → κ be a
bijection. Let P = {[k[f ′]] : f ∈ κ2}. Thus P ⊆ P(κ)/[κ]<κ. For each s ∈ T let
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s∗ = {l ∈ T : k ⊆ l}, and let S = {[k[s∗]] : s ∈ T}. Thus S ⊆ P(κ)/[κ]<κ. Suppose that
f, g are distinct members of κ2. Say f(α) 6= g(α). Then [k[f ′]] ≤ [k[(f ↾ (α + 1))∗]] and
[k[g′]] ≤ −[k[(f ↾ (α + 1))∗]]. So S separates P . Since |S| = κ and |P | = 2κ, this shows
that P(κ)/[κ]<κ does not have the (κ+, 2κ)-scc.

Proposition 2.53. (Fact 4.1) P(κ)/[κ]<κ has the (cf(κ), κ+)-scc.

Proof. Suppose that P ⊆ P(κ)/[κ]<κ\{0}, S ⊆ P(κ)/[κ]<κ, S separates P , and
|S| < cf(κ); we want to show that |P | ≤ κ. We may assume that 0 /∈ S. Choose P ′ ⊆ [κ]κ

and S′ ⊆ [κ]κ so that P = {[p] : p ∈ P ′}, S = {[s] : s ∈ S′}, [p] 6= [p′] for p, p′ ∈ P ′ and
p 6= p′, and [s] 6= [s′] for s, s′ ∈ S′ and s 6= s′. Let S′′ = {s : κ\s ∈ S′}, and for each p ∈ P ′

let

(∗) p∗ = p\
⋃

{p ∩ s : s ∈ S′ ∪ S′′, |p ∩ s| < κ}.

Since |S′ ∪ S′′| < cf(κ), it follows that |p∗| = κ. Suppose that p, q ∈ P ′ and p 6= q. Choose
s ∈ S′ such that p ⊆κ s and q ⊆ κ\s. Then |p ∩ (κ\s)| < κ, and κ\s ∈ S′′, so p ∩ (κ\s) is
in the big union of (∗) for p∗, so p∗ ⊆ s. Also, |q ∩ s| < κ, so q ∩ s is in the big union of
(∗) for q, and so q∗ ⊆ κ\s. Hence p∗ ∩ q∗ = ∅. It follows that |P | ≤ κ.

Proposition 2.54. (Fact 3.4(b)) If σ > π, then A has the π-cc iff A has the (σ, π)-scc.

Proof. ⇒: obvious. ⇐: Suppose that A has the (σ, π)-scc but X ⊆ A is a system of
pairwise disjoint nonzero elements of A with |X | = π. Let S = P . Clearly S separates P .
This is a contradiction.

Proposition 2.55. (Fact 4.4) If there is a γ < σ such that 2γ ≥ π, then there is a BA A
of size π which does not have the (σ, π)-scc.

Proof. Assume that γ < σ and 2γ ≥ π.
Case 1. σ > π. Let A be the finite-cofinite algebra on π. Then [π]1 separates [π]1 and

|[π]1| = π, and this proves that A does not have the (σ, π)-scc.
Case 2. σ ≤ π. Since 2γ ≥ π, we can pick P ⊆P(γ) such that |P | = π. Define

S = {{A ∈P(γ) : α ∈ A} : α ∈ γ}.

Let A be the subalgebra of P(P(γ)) generated by [P ]1 ∪ S. Since |P | = π and |S| ≤
γ, σ ≤ π, we have |A| = π. Note that [P ]1 is pairwise disjoint. Finally, S ∪ {−s : s ∈ S}
separates [P ]1. For, suppose that p, q ∈ P with p 6= q. Say α ∈ p\q. Then {p} ⊆ {A ∈
P(γ) : α ∈ A} ∈ S and {q} ⊆P(γ)\{A ∈P(γ) : α ∈ A}.

Proposition 2.56. (Fact 4.6) If |A| ≤ λ, then A can be isomorphically embedded into
P(λ).

Proof. We may assume that A is a field of subsets of some set X . Let f be a
surjection from λ onto A\{0}. Then define, for any a ∈ A, e(a) = f−1[a]. Then e(a+ b) =
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f−1[a+ b] = f−1[a] ∪ f−1[b] and e(−a) = f−1[−a] = X\f−1[a]. So e is a homomorphism.
It is clearly one-one.

Proposition 2.57. (Fact 4.6) P(λ) can be isomorphically embedded into P(λ)/[λ]<λ.

Proof. Let B be a partition of λ into λ sets each of size λ. It suffices to show that
P(B) can be isomorphically embedded into P(λ)/[λ]<λ. For each X ⊆ B let e(X) =
[
⋃

X ]. Clearly e is the desired embedding.

Corollary 2.58. (Fact 4.6) If |A| ≤ λ, then A can be isomorphically embedded into
P(λ)/[λ]<λ.

Proposition 2.59. If B has the (σ, π)-scc and A ≤ B, then A has the (σ, π)-scc.

Proposition 2.60. (Fact 4.3) If 2<cf(κ) > κ < λ, then P(λ)/[λ]<λ does not have the
(cf(κ), κ+)-scc.

Proof. Assume that 2<cf(κ) > κ < λ. Then there is a γ < cf(κ) such that 2γ > κ.
Hence by Proposition 2.55 there is a BA A of size κ+ which does not have the (cf(κ), κ+-
scc. By Corollary 2.58, A can be isomorphically embedded into P(λ)/[λ]<λ. Hence by
Proposition 2.59, P(λ)/[λ]<λ does not have the (cf(κ), κ+)-scc.

Proposition 2.61. (Main lemma) If κ < 2<cf(κ) and κ < λ, then P(κ)/[κ]<κ 6∼=
P(λ)/[λ]<λ].

Proof. By Propositions 2.53 and 2.60.

Proposition 2.62. If κ and λ are regular and P(κ)/[κ]<κ ∼= P(λ)/[λ]<λ, then κ = λ.

Proof. By Corollary 2.50.

Proposition 2.63. (Theorem 2.1) If κ is regular and κ < 2<κ, then ∀λ 6= κ[P(κ)/[κ]<κ 6∼=
P(λ)/[λ]<λ].

Proof. Assume that κ is regular and κ < 2<κ, and suppose that λ 6= κ.
Case 1. λ < κ. Then cf(λ) 6= κ = cf(κ) and the desired result holds by Corollary

2.50.
Case 2. κ < λ. Apply Proposition 2.61.

Proposition 2.64. If m < n ∈ ω, κ is regular or ∀γ < κ[2γ < 2κ], and

∃λ 6= κ+m[P(λ)/[λ]<λ ∼= P(κ+m)/[κ+m]<κ
+m

], then ∀λ 6= κ+n[P(λ)/[λ]<λ 6∼=

P(κ+n)/[κ+n]<κ
+n

].

Proof. Assume that m < n ∈ ω, κ is regular or ∀γ < κ[2γ < 2κ], λ 6= κ+m, and

P(λ)/[λ]<λ ∼= P(κ+m)/[κ+m]<κ
+m

. Then n ≥ 1, so κ+n is regular. If µ < κ+n then

cf(µ) < κ+n = cf(κ+n) and so P(µ)/[µ]<µ 6∼= P(κ+n)/[κ+n]<κ
+n

by Corollary 2.50. So
it remains to take care of the case µ > κ+n. By Proposition 2.63 it suffices to show that
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κ+n < 2<κ
+n

. To do this it suffices to show that κ+ω ≤ 2κ
+m

. Now by Corollary 2.48 we
have 2λ = 2κ

+m

, so it suffices to show that κ+ω ≤ λ.
Now cf(λ) = cf(κ+m) by Corollary 2.50. Hence we cannot have κ+m < λ < κ+ω. We

now consider several cases.
Case 1. m 6= 0. Then λ 6< κ+m, since cf(λ) = cf(κ+m) by Corollary 2.50.
Case 2. m = 0 and κ is regular. Similarly, λ 6< κ+m.
Case 3. m = 0 and κ is singular. Suppose that λ < κ. Then by assumption, 2λ < 2κ.

This contradicts Corollary 2.48.

Theorem 2.65. If κ is regular or ∀γ < κ[2γ < 2κ], then there is at most one m ∈ ω such

that ∃λ 6= κ+m[P(λ)/[λ]<λ ∼= P(κ+m)/[κ+m]<κ
+m

].

The following is from Farah 2001.

Proposition 2.66. The following are equivalent;
(i) There is a continuous function mapping ω∗ onto 2ω∗.
(ii) There is an n ∈ ω such that there is a continuous function mapping nω∗ onto

n+1ω∗.
(iii) There is a continuous function mapping ω∗ onto ωω∗.

The following is from Hajnal, Juhasz, Soukup 1987.

If X is an infinite set and A is a collection of subsets of X , then IA is the ideal generated
by A . If A is almost disjoint, then it is saturated iff for every H /∈ IA there is an A ∈ A
such that A ⊆ H.

Theorem 2.67. (Theorem) If P is the poset that adds ω1 dominating reals to M , then in
M [G] there is a saturated almost disjoint family.

The following is from Hrusak, Ferreira 2003.

If A is a MAD family on ω, then I(A ) = {X ⊆ ω : ∃F ∈ [A ]<ω[X ⊆∗
⋃

F ]}. If I ,J
are ideals on ω, let I ≤K J iff ∃f : ω → ω∀I ∈ I [f−1[I] ∈ J ]. For MAD families
A ,B we write A ≤K B iff I(A ) ≤K I(B).

Theorem 2.68. (Corollary 2.4) For any MAD family A there is a strictly decreasing
chain of length (2ω)+ below A in the Katetov ordering.

Theorem 2.69. (Proposition 2.5) For any MAD family A there is a collection of 2ω

pairwise Katetov incomparable MAD families below A .

The following is from Kojman, Shelah 2001.

We define

Col(κ, λ) = {f : f is a function with domain in κ and range contained in λ}.

Theorem 2.70. (Theorem 2.1) Suppose that µ is singular with cf(µ) = ω, and let λ = µω.
Then P(µ)/[µ]<µ has a complete subalgebra isomorphic to Col(ω1, λ).
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The following is from Koszmider 1998.

A set A ⊆ [ω1]
ω1 is strongly almost disjoint iff |A | = ω2 and all intersections of two

members of A are finite. A sequence X ∈ ω2P(ω1 is a strong chain iff ∀α, β < ω2[α <
β → [Xα\Xβ is finite and Xβ\Xα is uncountable].

Theorem 2.71. Chang’s conjecture implies that there is no strong chain.

Theorem 2.72. It is relatively consistent that a strong chain exists.

The following is from Mill 1983.

Proposition 2.73. (CH) For any BA A the following are equivalent:
(i) A satisfies CSP and |A| ≤ ω1.
(ii) A is a homomorphic image of P(ω).

Proposition 2.74. (CH) ω∗ has exactly 2ω1 autohomeomorphisms.

The following is from Mill 1983.

Proposition 2.75. (Dow, CH) There is a BA A with a countably generated ideal I such
that P(ω) can be embedded in A/I but not in A itself.

The following is from Rabus 1994.

A (κ, λ∗)-pre-gap is a pair (A,B) such that A ∈ κP(ω) is ⊆∗-increasing, B ∈ λP(ω) is
⊆∗-decreasing, and ∀α < κ∀β < λ[Aα ⊆

∗ Bβ]. An infinite set C ⊆ ω is beside (A,B) iff
∀β < λ[C ⊆ Bβ] and ∀α < κ[C\Aα is infinite]. A tight gap is a pre-gap with no set beside
it.

Theorem 2.76. In M let A ∈ ω1P(ω) be ⊆∗-increasing. Then there is a ccc poset P such
that P forces the existence of B ∈ ω2P(ω) which is ⊆∗-decreasing, with (A,B) a tight gap.
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3. Cardinal functions

Arhangelski 1972 proved:

Theorem 3.1. If |Ult(A)| ≤ 2ω, c(A) = ω, and t(A) = ω, then s(A) = ω.

The following is from Balcar, Hrušák 2005.

If A is any BA, then finA = {a ∈ ωA : {i ∈ ω : ai 6= 0 is finite}. Clearly finA is an ideal in
ωA.

Proposition 3.2. Let A be a non-trivial BA. For each a ⊆ ω define f(a) ∈ ωA by

(f(a))i =
{

1 if i ∈ a,
0 otherwise.

Then there is a function g : P(ω)/fin → ωA/finA such that the following conditions
hold:

(i) g([a]) = [f(a)] for all a ⊆ ω.
(ii) g is an isomorphic embedding.
(iii) rng(g) is a regular subalgebra of ωA/finA.

Proof.

[a] = [b] iff a△b is finite

iff {i ∈ ω : i ∈ a\b or i ∈ b\a} is finite

iff {i ∈ ω : [(f(a))i = 1 and (f(b))i = 0] or

[(f(a))i = 0 and (f(b))i = 1]} is finite

iff {i ∈ ω : (f(a)△f(b))i 6= 0} is finite

iff [f(a)] = [f(b)].

Hence (i) holds; and (ii) is then clear.
For (iii), suppose that X ⊆ P(ω) and

∑

x∈X [x] exists; say
∑

x∈X [x] = [y]. Then
if x ∈ X then [x] ≤ [y], and hence [f(x)] ≤ [f(y)]. So [f(y)] is an upper bound for
{[f(x)] : x ∈ X}. Suppose that [z] is any upper bound, but [f(y)] · −[z] 6= 0. Thus

{i ∈ ω : (f(y))i·−zi 6= 0} is infinite. Now w
def
= {i ∈ ω : (f(y))i·−zi 6= 0} = {i ∈ y : zi 6= 1}.

Thus w ⊆ y, so [w] ≤ [y] and [w] 6= 0. So there is an x ∈ X such that [w] · [x] 6= 0. Thus
w ∩ x is infinite. Now [f(x)] ≤ [z], so f(x) · −z ∈ finA. Thus {i ∈ x : zi 6= 1} is finite. So
w\{i ∈ x : zi 6= 1} is infinite. But w ⊆ {i ∈ y : zi 6= 1}, contradiction.

Theorem 3.3. (Theorem 2.2) h(ωFr(ω)/fin) ≤ min(h, add(meag)).

Theorem 3.4. (Theorem 2.3 (Dow)) h(ωFr(ω)/fin) < h in the iterated Mathias model.

Theorem 3.5. (Theorem 2.4) t = t(ωFr(ω)/fin).
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Corollary 3.6. (t = h) P(ω)/fin and P(R)/fin have isomorphic completions.

Theorem 3.7. It is relatively consistent that t < h((ωFr(ω)/fin).

The following is from Balcar, Frankiewicz 1979.

If ν is a cardinal and X is a topological space, then a point p of X is a ν-point iff there is
a family of ν pairwise disjoint open sets of X each of which has p in its closure.

Theorem 3.8. (Theorem A) Every ultrafilter on P(ω)/fin is a b-point in the space
Ult(P(ω)/fin).

Theorem 3.9. (Theorem B) If cf(2ω) ≤ b, then every ultrafilter on P(ω)/fin is a
2ω-point in Ult(P(ω)/fin).

The following is from Balcar, Pelant, Simon 1980.

If P is a dense-in-itself topological space, then n(P ) is the least cardinality of a family of
nowhere dense sets covering P .

Proposition 3.10. For any BA A, n(Ult(A)) = min{κ :there is a family A of partitions
of unity of A such that for every F ∈ Ult(A) there is a P ∈ A such that P ∩ F = ∅}.

Let κ be the least cardinal such that P(ω)/fin is not (κ, 2ω)-distributive.

Theorem 3.11. (Lemma 2.5) ω1 ≤ κ ≤ 2ω.

Theorem 3.12. (Corollary 2.9) κ is regular.

Theorem 3.13. (Theorem 3.5(i)) If κ < 2ω, then κ ≤ n(P(ω)/fin) ≤ κ+.

Theorem 3.14. (Theorem 3.5(ii)) If κ = 2ω, then κ ≤ n(P(ω)/fin) ≤ 22ω

.

Theorem 3.15. (Theorem 4.2) κ ≤ cf(2ω).

Theorem 3.16. (Theorem 4.5) κ ≤ b.

The following is from Balcar, Simon 1988

Theorem 3.17. If κ is regular and uncountable, then P(κ)/[κ]<κ is (ω, ., bκ)-nowhere
distributive.

Theorem 3.18. If κ is singular with cf(κ) > ω, then P(κ)/[κ]<κ is (ω, ., κ+)-nowhere
distributive.

The following is from Bonnet, Shelah 1985

Theorem 3.19. There is a subset L of the real line such that the following condition hold:
(i) |L| = cf(2ω).
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(ii) Each open interval of R contains cf(2ω) elements of L.
(iii) Inc(Intalg(L)) < cf(2ω).

The following is from Brendle, Shelah 1999.

For U a nonprincipal ultrafilter on ω,

πp(U) = min{|X | : X ⊆ U and ¬∃B ∈ U∀A ∈ X [B ⊆∗ A]};

πp(U) = min{|X | : X ⊆ U and ¬∃B ∈ [ω]ω∀A ∈ X [B ⊆∗ A]}

Proposition 3.20. p = min{πp(U) : U a nonprincipal ultrafilter on ω}.

The following is from Campero-Arena, Cancino, Hrusak, Miranda-Perea 2016.

Theorem 3.21. (Corollary 2.4) Incmm(P(ω)/fin) = 2ω.

Theorem 3.22. (Corollary 3.3) It is consistent with ¬CH that there is a maximal tree in
P(ω)/fin of size ω1.

The following is from Cichon 1984.

For κ an infinite cardinal and p ∈ [κ]<ω the set Iκ
def
= {q ∈ [κ]<ω : p ∩ q = ∅} is an ideal in

P([κ]<ω). Let Bκ = P([κ]<ω)/Iκ.

Theorem 3.23. (Theorem 1.1) If cf(κ) = ω, then p(Bκ) ≥ ω1.

Theorem 3.24. (Theorem 1.3) If κ < d, then p(Bκ) ≥ ω1.

Theorem 3.25. (Theorem 2.1) If κω = κ, then p(Bκ) = ω.

The following is from Cichon 1989.

Let I be an ideal on a set X . A subset A ⊆ X is a (κ, λ)-Luzin set for I iff |A| = κ and
∀B ∈ I[|A ∩ B| < λ]. The article investigates this and similar notions, in particular with
respect to Cichon’s diagram.

The following is from Cichon, Kraszewski 1998.

Define
Pif(2) = {f : ϕ is a function and dmn(ϕ) ∈ [ω]ω and rng(ϕ) ∈ 2}.

For ϕ ∈ Pif(2) let [ϕ]∗2 = {x ∈ ω2 : ϕ ⊆ x}. Let I∗2 be the ideal on ω2 generated by all
sets [ϕ]∗2 for ϕ ∈ Pif(2).

Theorem 3.26. (Lemma 4.1) cov(I∗2 ) = r.

Theorem 3.27. (Lemma 4.2) non(I∗2 ) = s.

The following is from Day 1970.
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Theorem 3.28. A linearly ordered set L is isomorphic to a maximal chain in a κ-complete
atomic BA iff L is κ-complete, has a maximum and minimum element, and does not have
a complete dense interval.

The following is from Dordal 1989.

An α-tower in [ω]ω is a sequence 〈xξ : ξ < α〉 of members of [ω]ω such that ∀ξ, η < α[ξ <
η → xη ⊆

∗ xξ, while there is no y ∈ [ω]ω such that ∀ξ < α[y ⊆∗ xξ].

Theorem 3.29. (Lemma 1.1) Forcing with ([ω]ω. ⊆∗) collapses 2ω to h.

An α-tower in ωω is a sequence 〈fξ : ξ < α〉 of members of ωω such that ∀ξ, η < α[ξ <
η → fξ <

∗ fη, while there is no g ∈ ωω such that ∀ξ < α[xξ <
∗ g].

Theorem 3.30. (Lemma 1.2) If κ is regular and there is a κ-tower in ωω, then b ≤ κ ≤ d.

The following is from Hernandez-Hernandez 2009.

Recall the definition of finA from the beginning of this chapter.

Theorem 3.31. (Proposition 2.3) h(ωP(ω)/fin) = h.

Theorem 3.32. It is relatively consistent that h(ω(P(ω)/fin)/fin) 6= h.

The following is from Jech 1977.

For any BA A, the game G consists of players choosing a0 ≥ a1 ≥ · · ·. I wins if
∏

n∈ω an =
0.

Proposition 3.33. If A has a σ-closed dense subset, then II has a winning strategy.

Proposition 3.34. I fails to have a winning strategy iff A is (ω,∞)-distributive.

Proposition 3.35. There is a BA such that the game is undetermined.

The following is from Jech 1984.

The cut and choose game Gcc runs as follows. Let A be a BA. I chooses a ∈ A, Then I

cuts a into two disjoint pieces a0
1 and a1

1. Then II chooses one of these; etc. Let a
f(n)
n be

the element chosen by II on the n-th move. Then I wins iff
∏

n∈ω a
f(n)
n = 0.

Proposition 3.36. I fails to have a winning strategy in the game Gcc over A iff A is
(ω, 2)-distributive.

A Suslin algebra is an atomless ccc (ω, 2)-distributive BA.

Proposition 3.37. Gcc is undetermined in a Suslin algebra.

The following is from Jech, Prikry 1984.

We consider the cofinality of ω1ω under eventual domination.
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Theorem 3.38. If 2ω is real-valued measurable, then cf(ω1ω) = 2ℵ1 .

Theorem 3.39. If 2ω < ℵω1
and 2ω < 2ω1, then cf(ω1ω) = 2ℵ1 .

The following is from Juhasz 1993.

Theorem 3.40. Let κ be uncountable and regular, and let X be compact Hausdorff with
w(X) ≥ κ. Then there is a closed subspace F of X such that

w(F ) ∈ [κ, 2<κ] and

|F | ≤
∑

{22λ

: λ < κ}

The following is from Just 1988.

Theorem 3.41. It is consistent with ¬CH that every BA has altitude at most ω1.

The following is from Just, Koszmider 1991.

Theorem 3.42. If in M κ is a cardinal of uncountable cofinality, then there is a generic
extension M [G] such that in M [G] the following hold:

(i) 2ω = κ.
(ii) There is a BA A such that cf(A) = |A| = ω1.
(iii) For every cardinal λ ≤ κ of uncountable cofinality there is a BA B such that

h(B) = λ.

The following is from Koppelberg, Shelah 1995 (Shelah 415).

Theorem 3.43. It is relatively consistent to have a cardinal κ, a system 〈Aα : α < κ〉 of
BAs, and an ultrafilter D on κ such that

d(
∏

α<κ

Aα/D) ≤ π(
∏

α<κ

Aα/D) <

∣

∣

∣

∣

∣

∏

α<κ

π(Aα)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∏

α<κ

d(Aα)

∣

∣

∣

∣

∣

.

Theorem 3.44. If µ is a strong limit cardinal, cf(µ) = ω, and 2µ = µ+, then there is a

BA A such that |A| = |End(A)| = µ+ and |Id(A)| = 2µ
+

.

The following is from Laflamme 1993.

For a natural number m and a BA A, an m-partition of A is a set P ∈ [A]m such that
∑

P = 1 and a · b = 0 for all {a, b} ∈ [P ]2. A subset X of A is (m,n)-reaped by an
m-partition P iff

∀a ∈ X [|{b ∈ P : a · b 6= 0}| ≥ n].

Now we define

rmn(A) = min{|X | : 0 /∈ X and X cannot be (m,n)-reaped}.
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Proposition 3.45. rmn(A) = min{|X | : 0 /∈ X and for every m-partition P there is an
a ∈ X such that |{b ∈ P : a · b 6= 0}| < n}.

Proposition 3.46. rm2(A) = min{|X | : 0 /∈ X and for every m-partition P there is an
a ∈ X such that a ≤ b}.

Proof. ≤: let |X | be minimum such that 0 /∈ X and X cannot be (m, 2)-reaped.
Then for any m-partition P there is an a ∈ X such that |{b ∈ P : a · b 6= 0}| < 2. Since
∑

P = 1, there is a b ∈ P such that a · b 6= 0. This b is unique, so a ≤ b.
≥: let |X | be minimum such that 0 /∈ X and for every m-partition P there is an

a ∈ X such that a ≤ b}. Then for every m-partition P there is an a ∈ X such that
|{b ∈ P : a · b 6= 0}| < 2.

Now we consider trees which consist of finite collections of finite sequences of natural
numbers, closed under initial segments. A tree is k-branching iff each of its nonmaximal
nodes has at least k immediate successors. For any tree T , µ(T ) is the collection of maximal
nodes of T .

For integers k, l,m, n ≥ 2, P (k, l,m, n) abbreviates the statement that for every k-
branching tree T and every c : µ(T ) → l, there is a subtree S of T such that S is
m-branching, µ(S) ⊆ µ(T ), and |c[µ(S)]| ≤ n.

Proposition 3.47. P (k, ⌊ k−1
m−1⌋, m, 1) holds.

Proof. Suppose that T is a k-branching tree and c : µ(T )→ ⌊ k−1
m−1
⌋. We may assume

that T has more than one element. Let s be the maximum height of any element of T , and
let a be an element of height s. Let b be the immediate predecessor of a. Then b has at least
k immediate successors. There is an i < ⌊ k−1

m−1⌋ such that there is a set M of immediate

successors of b with ∀d ∈M [c(d) = i] and |M | = m. Otherwise, k ≤ ⌊ k−1
m−1
⌋(m−1) ≤ k−1,

contradiction. Let T ′ be b together with m of its immediate successors d for which c(d) = i.
This is as desired.

Theorem 3.48. P (k, l,m, n) holds iff ⌈ ln⌉ < ⌈
k

m−1⌉.

Proof. ⇐: Let a = ⌈ l
n
⌉ and b = ⌈ k

m−1
⌉ and assume that a < b; we show that

P (k, l,m, n) holds. Since l ≤ an, there is a partition 〈si : i < a′〉 of l into sets si each of
size ≤ n, with a′ ≤ a. Now let T be a k-branching tree, and suppose that c : µ(T ) → l.
Define c′ : µ(T )→ a′ by c′(σ) = i iff c(σ) = i. Now b−1 < k

m−1 , so b(m−1)−(m−1) < k,

hence (b − 1)(m − 1) ≤ k − 1 and so a ≤ b − 1 ≤ k−1
m−1

. By Proposition 3.47, T has an
m-branching subtree T ′ with δ(T ′) ⊆ δ(T ) and c′ ↾ δ(T ′) has a constant value. Then
c ↾ δ(T ′) has range of size at most n, as desired.

⇒: We show that ∀n, k,m, l

[

⌈ ln⌉ ≥ ⌈
k

m−1⌉ implies ¬P (k, l,m, n)

]

by induction on n.

n = 1: Assume that l ≥ ⌈ k
m−1
⌉. Thus l(m − 1) ≥ k. Let f : k → l × (m − 1) be

one-one. Let T be the tree with root r and k immediate successors t0, . . . , tk−1. Define
c(ti) = j where f(i) = (j, s) for some s. Then for all j < l, |{i < k : c(ti) = j}| ≤ m − 1.
This shows ¬P (k, l,m, 1).
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Now assume the result for n and suppose that ⌈ l
n+1 ⌉ ≥ ⌈

k
m−1⌉. Let a = ⌈ l

n+1⌉ and

b = ⌈ k
m−1⌉. Let l′ = an− (n− 1).

(1) a = ⌈ l
′

n ⌉.

In fact, l′ = an− (n− 1) ≤ an, so l′

n
≤ a. Also, an− n < l′, so a− 1 < l′

n
; so (1) holds.

(2) If s < l′, then ⌈ sn⌉ < a.

In fact, s < an− (n− 1), so s ≤ an− n, hence s
n ≤ a− 1.

By (1), ⌈ l
′

n⌉ ≥ ⌈
k

m−1⌉. Hence by the inductive hypothesis we have ¬P (k, l′, m, n).

Note that l′ ≤ l. For each s ∈ [l]l
′

there exist a κ-branching tree Ts and a cs : µ(Ts) → s
such that for every m-branching subtree S of Ts such that µ(S) ⊆ µ(Ts), |rng(cs)| ≥ n+1.
Note that if k ≤ m− 1, then obviously ¬P (k, l′, m, n). Hence we assume that k > m− 1
and hence a ≥ b ≥ 2. Hence by (1), l′ > n.

Now for each σ ∈ an−2n+1k we associate a one-one function fσ : {1, . . . , l′} →
{1, . . . , l} as follows. Let fσ ↾ {1, . . . , n} be the identity. Now suppose that fσ ↾

{1, . . . , n+ i} has been defined and n+ i+1 ≤ l′. Let t = {1, . . . , l}\fσ[{1, . . . , n+ i}] and
let π : t→ {1, . . . , l− n− i} be the order preserving bijection.

(3) l ≥ a(n+ 1)− n.

For, a− 1 < l
n+1 , so a(n+ 1)− n− 1 < l and (3) follows.

(4) k ≤ a(m− 1).

For, ⌈ k
m−1
⌉ = b ≤ a, so k ≤ a(m− 1).

(5) If j < k and i ≤ an− 2n, then ⌊ j
m−1⌋ < l − n− i.

For, let s = ⌊ k−1
m−1
⌋. Then s ≤ k−1

m−1
< k

m−1
≤ b ≤ a, so ⌊ j

m−1
⌋ ≤ s < a ≤ l + n − an (by

(3)) = l − n− (an− 2n) ≤ l − n− i.
Now σ(i) < k and i ≤ l′ − n − 1 = an − n + 1 − n − 1 = an − 2n. Hence by (5),

⌊ σ(i)
m−1⌋ < l − n− i. We define fσ(n+ i+ 1) = π−1(⌊ σ(i)

m−1 + 1⌋). Now if τ ∈ ik, let σ be a
maximal node extending τ , and set rτ = fσ[{1, . . . , n+ i}].

(6) ⌊ u
m−1⌋ < ⌊

u+m−1
m−1 ⌋.

In fact, let u
m−1 = ⌊ u

m−1⌋+ f where 0 ≤ f < 1. Then u+m−1
m−1 = u

m−1 + 1 = ⌊ u
m−1⌋+ f + 1

and so ⌊u+m−1
m−1 = ⌊ u

m−1⌋+ 1, giving (6).

(7) Define u ≡ v iff ⌊ u
m−1⌋ = ⌊ v

m−1⌋. Then each ≡ class has at most m− 1 members.

For, the equivalence classes are clearly convex, so (7) follows from (6).

(8) If τ, τ ′ ∈ i+1k, τ ↾ i = τ ′ ↾ i, and rτ 6= rτ ′ , then rτ ∩ rτ ′ = rτ↾i.

For, say τ ⊆ σ ∈ an−2n+1k and rτ = fσ[{1, . . . , n + i + 1}] and τ ′ ⊆ σ′ ∈ an−2n+1k and
rτ ′ = fσ′ [{1, . . . , n+ i+ 1}]. Now

fσ[{1, . . . , n+ i+ 1}] = {1, . . . , n} ∪

{

π−1

(⌊

σ(j)

m− 1

⌋

+ 1

)

: 0 ≤ j ≤ i

}
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= {1, . . . , n} ∪

{

π−1

(⌊

σ(j)

m− 1

⌋

+ 1

)

: 0 ≤ j < i

}

∪

{⌊

σ(i)

m− 1

⌋

+ 1

}

Similarly,

fσ′ [{1, . . . , n+ i+ 1}] = {1, . . . , n} ∪

{

π−1

(⌊

σ′(j)

m− 1

⌋

+ 1

)

: 0 ≤ j < i

}

∪

{⌊

σ′(i)

m− 1

⌋

+ 1

}

Hence

rτ ∩ rτ ′ = {1, . . . , n} ∪

{

π−1

(⌊

σ′(j)

m− 1

⌋

+ 1

)

: 0 ≤ j < i

}

= rτ↾i.

The following is from Lagrange 1967.

Suppose that A is a BA, a ∈ IA, and
∑

i∈I ai exists. We say that a can be disjointed iff
there is a b ∈ IA such that b is disjointed, ∀i ∈ I[bi ≤ ai], and

∑

i∈I bi =
∑

i∈I ai.
Let X be the set of all functions f such that dmn(f) is a successor ordinal less than ω1

and rng(f) ⊆ ω2. For each g ∈ X let ag = {f ∈ X : g ⊆ f}, and let A be the subalgebra
of P(X) generated by {ag : g ∈ X}.

Proposition 3.49. For each α < ω1 let hα be the function with domain α+ 1 and range
{0}. Then

∑

α<ω1
−ahα

= 1.

Proposition 3.50. A does not have a maximal disjoint subset of size ω1.

Corollary 3.51. 〈−ahα
: α < ω1〉 cannot be disjointed.

The following is from Losada, Todorcevic 2000.

Proposition 3.52. Every BA without an uncountable set of pairwise incomparable ele-
ments is isomorphic to a subalgebra of P(ω).

Proposition 3.53. (MA(ω1)) If A is a BA with an uncountable chain, then A has an
uncountable antichain.

The following is from Shelah 1984.

Theorem 3.54. (4.4) It is relatively consistent that 2ω = 2ω1 = ω2 + b = d > s.

Theorem 3.55. (5.2) It is relatively consistent that 2ω = 2ω1 = ω2 +h = ω1 +b = s = ω1.

The following is from Shelah, Spasojevic 2002.
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Theorem 3.56. (3.7) Let M be a ctm of GCH and κ < λ ≤ µ ≤ θ such that κ, λ, µ are
regular and λ ≤ cf(θ). Then there is a cardinal preserving extension M [G] such that

M [G] |= tκ = λ and bκ = µ and 2κ = θ.

The following is from Shelah, Spinas 1998.

Let h(λ) be the least cardinal κ such that λ((P(ω)/fin)\{0}) is not κ-distributive.

Theorem 3.57. For each n ∈ ω\1 it is relatively consistent that h(n) = ω2 and h(n+1) =
ω1.

The following is from Spasojevic 1996.

For a poset P , Γ(P ) is the statement that for every increasing a ∈ ω1P there is a decreasing
b ∈ ω1P such that ∀α, β < ω1[aα, bβ] and there is no c ∈ P such that ∀α < ω1[aα < c < bα].

Theorem 3.58. The following are equivalent:
(i) t > ω1.
(ii) Γ(P(ω),⊂∗).
(iii) Γ(ωω,≤∗).

The following is from Steprans 2001.

Define a′(A) to be the least size of an uncountable partition of A.

Theorem 3.59. In the iterated Lavel model, a′(P(ω)/fin) = ω2 and a′(nwd) = ω1, where
nwd is the ideal of nowhere dense subsets of Q.

Theorem 3.60. If I is any ideal on ω, then b ≤ a′(Fin× I).

The following is from Zapletal 1997.

Proposition 3.61. Let κ be uncountable and regular. Then κ is strongly inaccessible iff
s(κ) ≥ κ.

Proposition 3.62. Let κ be uncountable and regular. Then κ is weakly compact iff
s(κ) > κ.

Proposition 3.63. It is relatively consistent that there is a regular cardinal κ > ω such
that s(κ) > κ+.

Proposition 3.64. s(ℵω) ≤ maxpcf{ℵn : n ∈ ω}.

The following is from Zapletal 1997a.

Functions f, g : ω1 → ω are strongly almost disjoint iff {α < ω1 : f(α) 6= g(α)} is finite.

Theorem 3.65. In M assum GCH and κ is a cardinal. Then there is a generic extension
M [G] preserving cardinals in which there is a strongly disjoint family of size κ.
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4. Cohen algebras

The following is from Balcar, Jech, Zapletal 1997.

A Cohen algebra is the completion of Fr(κ) for some κ. A BA A has uniform density iff
π(A ↾ a) = π(A) for every nonzero a ∈ A. A BA A is semi-Cohen iff A has uniform density
and [A]ω has a closed unbounded set of countable regular subalgebras of A.

Theorem 4.1. (Theorem 3.2) Let A be a BA with uncountable uniform density. Then A
is semi-Cohen iff {B : B ≤reg A} contains a closed unbounded set C such that ∀M,N ∈
C[〈M ∪N〉 ∈ C].

Example 4.2. (Theorem 5.2) There is a semi-Cohen algebra of uniform density ω2 which
cannot be embedded as a regular subalgebra of a Cohen algebra.

Example 4.3. (Theorem 5.11) There is an increasing chain 〈An : n ∈ ω〉 of Cohen
algebras, with ∀n[An ≤reg An+1], such that

⋃

n∈ω An is not a Cohen algebra.

Example 4.4. (Theorem 5.1; Koppelberg, Shelah) it For every κ ≥ ω2 the algebra Fr(κ)
has a complete subalgebra of uniform density κ which is not Cohen.

The following is from Koppelberg 1993.

If A ≤ B, then π(B/A) is the least |X | such that X ⊆ B and A ∪ X generates a dense
subalgebra of B.

S is a Cohen skeleton for A iff the following conditions hold:

(1) The elements of S are regular subalgebras of A.
(2) There is an S ∈ S such that π(S) ≤ ω.
(3) ∀S ∈ S∀X ∈ [A]≤ω∃S′ ∈ S[S ∪X ⊆ S′ and π(S′/S) ≤ ω].
(4) For every nonempty chain C in S there is some S ∈ S such that

⋃

C is dense in S.

Theorem 4.5. For any BA A the following are equivalent:
(i) A is a Cohen algebra.
(ii) A has a Cohen skeleton.
(iii) A is the union of a continuous chain 〈Aα : α < ρ〉 such that π(A0) ≤ ω, Aα is

regular in Aα+1, and π(Aα+1/Aα) ≤ ω.
(iv) like (iii), but in addition A0 = 2 and Aα+1 is a simple extension of Aα.
(v) like (iv), but in addition Aα is dense in Aα+1.
(vi) like (iv), but in addition Aα is relatively complete in Aα+1.
(vii) A has a dense projective subalgebra.

The following is from Koppelberg, Shelah 1996.

Proposition 4.6. For any κ ≥ ω2 the BA Fr(κ) has a complete regular subalgebra of
π-weight κ which is not Cohen.
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5. Complete BAs

The following is proved in Argyros 1980.

Theorem 5.1. For any complete BA A there exist finitely many cBAs B1, . . . , Bm such
that A ∼= B1 × · · · ×Bm and for each i, |Bi|

<c′(Bi) = |Bi|.

Arhangelski 1967 proves the following

Theorem 5.2. If A is a cBA of size 2ω, then Ult(A) is not homogeneous.

The following summarizes results in Baker 2002.

Let b0, b1, . . . be pairwise disjoint nonzero elements of a complete BA A. A filter F on A
is nice over {bn : n ∈ ω} iff the following conditions hold:

(1)
∑

n∈ω bn ∈ F .

(2) ∀n ∈ ω[−bn ∈ F ].

(3) ∀b ∈ F [{n ∈ ω : b · bn = 0} is finite].

If F is any filter on a BA A, then KF is the set of all ultrafilters G such that F ⊆ G.
A closed subset Y of a space X is 2ω-ok over X iff whenever U1, U2, . . . are open

supersets of Y ther are open supersets Vζ for ζ < 2ω such that ∀m ∈ ω∀ζ1 < ζ2 < · · · <
ζm < 2ω[Vζ1 ∩ Vζ2 ∩ . . . ∩ Vζm

⊆ Um].

Theorem 5.3. (Theorem 1.6) Assume that A and B are complete BAs of size 2ω. Let
b0, b1, . . . be pairwise disjoint nonzero elements of B; let Z = S(

∑

n∈ω bn)\
⋃

n∈ω S(bn).
Let F be a nice filter over {bn : n ∈ ω}. Then Ult(A) is homeomorphic to some K ⊆ KF

such that K is 2ω-ok in Z .

The following is from Balcar, Franek 87.

Col(λ, κ) is the completion of the poset of all functions f such that dmn(f) ∈ [λ]<λ and
rng(f) ⊆ κ, ordered by ⊇.

For I an ideal over κ we let I+ = {X ⊆ κ : X /∈ I}. If S ∈ I+, then a set P\P(S)∩I+

is I-disjoint iff ∀x, y ∈ P [x 6= y → x ∩ y ∈ I]. P is an I-partition of S iff it is I-disjoint
and maximal. 〈Pα : α < λ〉 is a descending sequence of I-partitions of S iff each Pα is
an I-partition of S, and for all α, β < κ, if α < β then Pβ is a refinement of Pα. I is
a precipitous ideal iff it is an ideal, and for every S ∈ I+ and every descending sequence
〈Pn : n ∈ ω〉 of I partitionns of S, there is an x ∈

∏

n∈ω Pn such that
⋂

n∈ω xn 6= ∅. I is
nowhere precipitous iff for every A ∈ I+, {x ∩A : x ∈ I} is not precipitous.

Theorem 5.4. (Theorem 1) Suppose that κ is uncountable and regular, and 2κ = κ+.
Let I be a κ-complete nowhere precipitous ideal over κ. Then P(κ)/I is isomorphic to
Col(ω, κ+).

Theorem 5.5. (Theorem 3) If κ is singular with cf(κ) = ω, 2κ = κ+, and 2ω = ω1, then
for any precipitous ideal I on κ, P(κ)/I is isomorphic to Col(ω1, κ

+).
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Theorem 5.6. (Theorem 3) If κ is singular with cf(κ) > ω, 2κ = κ+, and 2cf(κ) =
(cf(κ))+, then P(κ)/[κ]<κ is isomorphic to Col(ω, κ+).

The following is from Balcar, Štěpánek 1977.

B is a maximal subalgebra of a complete BA A iff ∀c ∈ A∃a ≤ c[B ↾ a = A ↾ a].

Theorem 5.7. (Theorem 5) A complete BA A is rigid iff it does not have a proper
maximal subalgebra.

The following is from Balcar, Vopěnka 1972.

Theorem 5.8. If κ is uncountable and regular and 2κ = κ+, then P(κ)/[κ]<κ and
Col(κ+, ω) are isomorphic.

The following is from Baldwin 2002.

If A is a BA and I is an ideal in A, then (A, I) has the hull property iff ∀X ⊆ A∃Y ∈
A[X ⊆ Y and ∀Z ∈ A[X ⊆ Z → Y \Z ∈ I]].

Theorem 5.9. (Theorem 1) (P(R), [R]≤ω) has the hull property, but P(R)/I is not
complete.

Theorem 5.10. (Theorem 2) If I is an ideal in A, A/I is atomless, and κ ≥ |A|, then
there exist a BA B and an ideal J in B such that (B, J) does not have the hull property,
|B| = κ, and A/I ∼= B/J .

Corollary 5.11. (Corollary 3) There exist a BA A and an ideal I of A such that A/I is
complete, but (A, I) does not have the hull property.

Theorem 5.12. (Theorem 5) There exist a σ-algebra A and a σ-ideal I of A such that
A/I is complete but (A, I) does not satisfy the hull property.

Let I be an ideal in a BA A. A subset S of A\I is predense in A\I iff ∀a ∈ A\I∃b ∈
S[a · b ∈ A\I]. (A, I) has the density property iff for every predense S ⊆ A\I we have
A\
⋃

S ⊆ I.

Theorem 5.13. (Theorem 7) If A/I is a complete BA and (A, I) has the density property,
then (A, I) has the hull property.

The following is from Baumgartner, Erdös, Higgs 1984.

A cross-cut in a poset P is a maximal antichain C in P such that for all x, y ∈ P , if x ≤ y,
∃z ∈ C[x ≤ z], and ∃z ∈ C[z ≤ y], then ∃z ∈ C[x ≤ z ≤ y].

Proposition 5.14. If E is infinite, and k is a positive integer, then [E]k is a cross-cut in
P(E).

Theorem 5.15. (MA, Theorem 3) There is a cross-cut of P(ω1) consisting of uncountable
sets whose complements are also incountable.
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Theorem 5.16. (MA, Theorem 4) There is a cross-cut of P(ω2) consisting of countable
sets.

The following is from Beazer 1972.

An inverse system of BAs is a triple (I, A, f) such that I is an upwards directed poset,
A = 〈Ai : i ∈ I〉 is a system of BAs, and f = 〈fij : i, j ∈ I, i ≤ j〉 is a system of
homomorphisms fij : Aj → Ai such that fii is the identity on Ai and if i ≤ j ≤ k then
fik = fij ◦ fjk.

The limit of an inverse system (I, A, f) is the subset of
∏

i∈I Ai consisting of all
x ∈

∏

i∈I Ai such that ∀i, j ∈ I[i ≤ j → fij(x(j)) = x(i).

Theorem 5.17. Any complete BA is isomorphic to an inverse limit of BAs such that no
fij, i 6= j, is an isomorphism.

The following is from Blaszczyk, Shelah 2001.

A filter D on ω is nowhere dense iff for every function f : ω → ω2 there is an A ∈ D such
that f [A] is nowhere dense in ω2.

Theorem 5.18. (Theorem 1) There exists an atomless, complete, σ-centered Boolean
algebra without a countable atomless regular subalgebra iff there is a nowhere dense ultra-
filter.

The following is from Ciesielski, Galvin 1987.

If F ⊆P(X) is closed under intersections, we define [F ]α for α < ω1 by

[F ]α =







F if α = 0;
all countable unions of members of

⋃

β<α[F ]β if α 6= 0 and α is odd;
all countable intersections of members of

⋃

β<α[F ]β if α 6= 0 and α is even.

If n ≤ m < ω and i0 < · · · < in−1 < m we let

Cm〈i0,...,in−1〉
(X) = {{x ∈ mX : 〈xi0 , . . . , xin−1

〉 ∈ S} : S ⊆ nX}.

Let
Cmn =

⋃

{Cm〈i0,...,in−1〉
(X) : i0 < · · · < in−1 < m}.

Then the n-dimensional cylinder statement is the assertion

Pn(X), saying that P(n+1X) = [Cn+1
n (X)].

Theorem 5.19. (Corollary 1) If 1 ≤ n < ω and Pn(κ), then Pn+1(κ
+).

Theorem 5.20. (Theorem 2) If 1 ≤ n < ω and Pn(κ) holds, then κ ≤ in.

Theorem 5.21. (Corollary 3) (GCH) For 1 ≤ n < ω, Pn(κ) holds iff κ ≤ ωn.
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The following is from Day 1965.

Given a BA A, a free complete extension of A is a complete BA B which extends A such
that A completely generates B and for any homomorphism f of A into a complete BA C
there is an extension g : B → C of f to a complete homomorphism of B into C.

Theorem 5.22. If A is an infinite free BA, then A does not have a free complete extension.

Proof. Suppose to the contrary that B is a free complete extension of A. Say A is
freely generated by X . We claim that (id ↾ X,B) is a free complete BA, contradicting the
Gaifman, Hales theorem. For, let f : X → C be any mapping, with C a complete BA.
Since A is freely generated by X , there is a homomorphism g : A → C which extends f .
By assumption, there is a complete homomorphism h : B → C which extends g. So h
extends f . Since A competely generates B, h is unique.

Theorem 5.23. If B is a free complete extension of A and A′ is a subalgebra of A, then
A′ has a free complete extension.

Proof. Let B′ be the complete subalgebra of B completely generated by A′. We claim
that B′ is a free complete extension of A′. Suppose that f : A′ → C is a homomorphism of
A′ into a complete BA C. By Sikorski’s extension theorem, let f ′ : A→ C be a homomor-
phism extending f . Let g : B → C be an extension of f ′ to a complete homomorphism of
B into C. Then clearly g ↾ B′ is a homomorphism from B′ into C. It is complete, since if

X ⊆ B′, then (g ↾ B′)(
∑B′

X) = g(
∑B

X) =
∑C

g[X ] =
∑C

(g ↾ B′)[X ].

Corollary 5.24. If A has a free complete extension, then A is superatomic.

Proof. Suppose that A is not superatomic. Then A has an atomless subalgebra, and
hence it has a denumerable atomless subalgebra A′. A′ is free, and so A′ does not have
a free complete extension, by Theorem 5.22. Hence by Theorem 5.23, A does not have a
free complete extension.

Theorem 5.25. If A is superatomic, then A has a free complete extension.

Proof. It suffices to show that P(Ult(A)) is a free complete extension of S[A].
Suppose that f : S[A]→ C is a homomorphism with C complete. For F ∈ Ult(A) and F
an isolated point of (Ult(A))(α), let bF ∈ A be such that S(bF ) ∩ (Ult(A))(α) = {F}. For
F ∈ Ult(A) we define g(F ) ∈ C by induction on the rank of F ; recall the definition of rank
given just before Proposition 12.29. We define

g(F ) = f(S(bF )) ·
∏

{−g(G) : G ∈ S(bF ), rank(G) < rank(F )}.

Then for any X ⊆ Ult(A) let g′(X) =
∑

F∈X g(F ). Now we claim that for any β,

(1) For all b ∈ A, if S(b) ∩ (Ult(A))(β) = ∅, then g′(S(b)) = f(S(b)).

(2) For all b ∈ A, if S(b) ∩ (Ult(A))(β) is finite and nonempty, then

f(S(b)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β} = g′(S(b) ∩ (Ult(A))(β)).
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We prove (1) and (2) by induction on β. Assume that b = 0. For (1), if S(b)∩(Ult(A))(0) =
∅, then S(b) ∩ Ult(A) = ∅, and so b = 0 and g′(S(b)) = g′(∅) = 0 = f(S(b). For (2), if
S(b) ∩ (Ult(A))(0) = {F}, then S(b) ∩Ult(A) = {F}, which is impossible. So (2) holds.

Now suppose inductively that β > 0. For (1), suppose that b ∈ A and S(b) ∩
(Ult(A))(β) = ∅.

Case 1. β is a limit ordinal. Thus S(b)∩
⋂

α<β(Ult(A))(α) = ∅. Now each (Ult(A))(α)

is closed and S(b) is clopen, so by compactness there is an α < β such that S(b) ∩
(Ult(A))(α) = ∅. Hence by the inductive hypothesis, g′(S(b)) = f(S(b)).

Case 2. β is not a limit ordinal.
Subcase 2.1. S(b) ∩ (Ult(A))(β−1) = ∅. Then by the inductive hypothesis,

g′(S(b)) = f(S(b)).
Subcase 2.2. S(b) ∩ (Ult(A))(β−1) 6= ∅. Now

∅ = S(b) ∩ (Ult(A))(β) = S(b) ∩ (Ult(A))(β−1)\Is((Ult(A))(β−1)),

so S(b)∩ (Ult(A))(β−1) ⊆ Is((Ult(A))(β−1)). Thus for each F ∈ S(b)∩ (Ult(A))(β−1) there
is a cF ∈ A such that (Ult(A))(β−1) ∩ S(cF ) = {F}. So

S(b) ∩ (Ult(A))(β−1) ⊆
⋃

{S(cF ) : F ∈ S(b) ∩ (Ult(A))(β−1)}.

Since S(b) ∩ (Ult(A))(β−1) is compact, it follows that S(b) ∩ (Ult(A))(β−1) is finite. By
the case assumption it is nonempty. Hence by (2) in the inductive hypothesis, f(S(b)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β − 1} = g′(S(b) ∩ (Ult(A))(β−1)). Hence

f(S(b)) ≤ g′(S(b) ∩ (Ult(A))(β−1)) +
∑

{g(G) : G ∈ S(b), rank(G) < β − 1} = g′(S(b)).

Now suppose that F ∈ S(b). Since S(b)∩(Ult(A))(β) = ∅, it follows that γ
def
= rank(F ) < β.

Now F is an isolated point of (Ult(A))(γ). Hence S(bF ) ∩ (Ult(A))(γ) = {F}. Hence also
S(b·bF )∩(Ult(A))(γ) = {F}. So by the inductive hypothesis with (2), g(F ) ≤ f(S(b·bF )) ≤
f(S(b)). Since F is arbitrary, g′(S(b)) ≤ f(S(b). Hence by the above, g′(S(b)) = f(S(b)).
This proves (1) for β.

Now for (2), suppose that S(b) ∩ (Ult(A))(β) is finite and nonempty; say S(b) ∩
(Ult(A))(β) = {F0, . . . , Fn}. Then

b = b · bF0
+ b · −bF0

· bF1
+ · · ·+ b · −bF0

· −bF1
· bF2

+ · · ·+ b · −bF0
· . . . · −bFn

.

If i < n, then

f(S(b · −bF0
· . . . · −bFi−1

· bFi
)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β}

≤ f(S(bFi
)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β}

= g(Fi) ≤ g
′(S(b) ∩ (Ult(A))(β)).

Now S(b · −bF0
· . . . · −bFn

) ∩ (Ult(A))(β) = ∅, so by (1)

g′(S(b · −bF0
· . . . · −bFn

)) = f(S(b · −bF0
· . . . · −bFn

)).
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Now if G ∈ S(b) and γ
def
= rank(G) ≥ β, then G ∈ (Ult(A))(γ) ⊆ (Ult(A))(β). Hence each

member of S(b · −bF0
· . . .− bFn

) has rank less than β. It follows that

g′(S(b · −bF0
· . . . · −bFn

)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β} = 0.

Hence

f(S(b · −bF0
· . . . · −bFn

)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β} = 0.

Now putting all this together, we get

f(S(b)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β} ≤ g′(S(b) ∩ (Ult(A))(β)).

For the other inequality, we first claim

(3) ∀i ≤ n∀G ∈ S(bFi
· −b)[rank(G) < β].

In fact, suppose that i ≤ n, G ∈ S(bFi
· −b), and rank(G) ≥ β. Then G ∈ S(bFi

) ∩
(Ult(A))(β) = {Fi}, so G = Fi and b ∈ G, contradiction. So (3) holds.

Now by (3) we have S(bFi
· −b)) ∩ (Ult(A))(β) = ∅, so by (1), g′(S(bFi

· −b))) =
f(S(bFi

· −b)). Moreover,

g′(S(bFi
· −b) ·

∏

{−g(G) : G ∈ S(b), rank(G) < β} = 0

Hence for any i ≤ n,

g(Fi) = f(S(bFi
)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β}

≤ f(S(b)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β},

It follows that

g′(S(b) ∩ (Ult(A))(β)) ≤ f(S(b)) ·
∏

{−g(G) : G ∈ S(b), rank(G) < β}.

This finishes the proof of (1) and (2).
Next we claim

(4) For all distinct F,G ∈ Ult(A) we have g(F ) ∩ g(G) = ∅.

In fact, choose e so that e ∈ F and −e ∈ G. Choose b, c, β, γ so that b ≤ e, c ≤ −a,
S(b) ∩ (Ult(A))(β) = {F}, and S(c) ∩ (Ult(A))(γ) = {G}. Then f(S(b)) · f(S(c)) = 0, and

g′({F}) = g′(S(b) ∩ (Ult(A))(β)) ≤ f(S(b));

g′({G}) = g′(S(c) ∩ (Ult(A))(γ)) ≤ f(S(c)).

Now (4) follows.
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Clearly g′ preserves finite and infinite sums. If X ⊆ Ult(A), then g′(X) +
g′(Ult(A)\X) = 1, and by (4), g′(X) ∩ g′(Ult(A)\X) = 0. So g′ is a complete homomor-
phism of P(Ult(A)) into C. Applying (1) with β large, we see that g′ extends f .

The following is from Dobrinen 2002.

B satisfies the (η, κ)-distributive law iff for all I, J with |I| ≤ η and |J | ≤ κ, and for all
b ∈ I×JB,

∏

i∈I

∑

j∈J

bij =
∑

f∈IJ

∏

i∈I

bif(i).

Let κ, η be cardinals, with η infinite, and let A be an η+-complete BA. The game G η
1 (κ)

goes as follows. There are η rounds. At the beginning, P1 chooses b ∈ A+. At round
α < η, P1 chooses a partition Wα of α with |Wα| ≤ κ, and P2 chooses bα ∈ Wα. The
game gives a play

〈b,W0, b0,W1, b1, . . . ,Wα, bα, . . .〉α<η.

P1 wins the play iff
∏

α<η bα = 0.

Theorem 5.26. If A is η+-complete and P1 has a winning strategy for G η
1 (κ), then:

(i) The (κ<η, κ)-distributive law fails.
(ii) The (η, κ<η)-distributive law fails.

The following is from Dobrinen 2004.

The κ-Cohen algebra is the completion of Fr(κ).

Theorem 5.27. (Galvin, Hajnal) There is a family 〈Sα : α < 2ω〉 with the following
properties

(i) ∀α < 2ω[Sα ⊆ α].
(ii) ∀α < 2ω[[Sα]2 ⊆

⋃

γ<2ω{{β, γ} : β ∈ Sγ}].
(iii) ∀α < 2ω[ot(Sα) ≤ ω.
(iv) ∀S ⊆ 2ω[[S]2 ⊆

⋃

γ<2ω{{β, γ} : β ∈ Sγ} and ot(S) ≤ ω → ∃α < 2ω[S = Sα]].

Now we define the Galvin, Hajnal poset PGH :

∀α < 2ω[Wα = {f ∈ 2ω

2 : f(α = 1) and ∀β ∈ Sα[f(β) = 0]};

PGH =

{

⋂

α∈F

Wα : F ∈ [2ω]<ω and
⋂

α∈F

Wα 6= ∅

}

.

Theorem 5.28. (Theorem 2.5) Fr(cf(2ω)) can be completely embedded in RO(PGH).

Argyros constructed a rather complicated poset PA.

Theorem 5.29. (Theorem 3.5) Fr(ω) can be completely embedded in PA.

Gaifman constructed a rather complicated poset PG.
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Theorem 5.30. (Theorem 5.2) Fr(ω) can be completely embedded in PG.

The following is from van Douwen, van Mill 1980.

Lemma 5.31. Suppose that B is countably complete, g : B → C and f : C → P(ω) are
surjections. Then there is an isomorphic embedding e : P(ω) → C such that f ◦ e is the
identity.

Proof. For each n ∈ ω choose an ∈ C such that f(an) = {n}. Then choose bn ∈ B
so that g(bn)) = an. Thus f(g(bn)) = {n} for all n ∈ ω. Let b′n = bn ·

∏

m<n−bm. Thus
f(g(b′n)) = {n} for all n ∈ ω, and the b′n are pairwise disjoint. Let c =

∑

n∈ω bn. Define
e : P(ω)→ C by setting, for each Y ⊆ ω,

e(Y ) =

{

g(
∑

n∈Y b
′
n) if 0 /∈ Y ;

g(−c+
∑

n∈Y b
′
n) if 0 ∈ Y .

If n ∈ Y , then {n} = f(g(b′n)) ≤ f(g(Y )). If n /∈ Y , then {n} ∩ {m} = ∅ for all m ∈ Y ,
hence f(g(b′n)) · f(g(b′m)) = 0 and so f(g(b′n)) · f(g(Y )) = 0. Hence f ◦ e is the identity.

For Y, Z ⊆ ω we have

e(Y ∪ Z) =















g(
∑

n∈Y ∪Z b
′
n) if 0 /∈ Y ∪ Z,

= g(−c+
∑

n∈Y ∪Z b
′
n) if 0 /∈ Y and 0 ∈ Z,

= g(−c+
∑

n∈Y ∪Z b
′
n) if 0 ∈ Y and 0 /∈ Z,

= g(−c+
∑

n∈Y ∪Z b
′
n) if 0 ∈ Y and 0 ∈ Z,

=















g(
∑

n∈Y b
′
n) + g(

∑

n∈Z b
′
n) if 0 /∈ Y ∪ Z,

g(
∑

n∈Y b
′
n) + g(−c+

∑

n∈Z b
′
n) if 0 /∈ Y and 0 ∈ Z,

g(−c+
∑

n∈Y b
′
n) + g(

∑

n∈Z b
′
n) if 0 ∈ Y and 0 /∈ Z,

g(−c+
∑

n∈Y b
′
n) + g(−c+

∑

n∈Z b
′
n) if 0 ∈ Y and 0 ∈ Z,

= e(Y ) + e(Z).

Clearly e(ω) = 1, and e(X) · e(ω\X) = 0. So e is a homomorphism. Clearly e is injective.

The following is from Dow, Gubbi, Szymanski 1988.

For each s ∈ <ωω let Fs be a nonprincipal ultrafilter on ω. Let

O = {V ⊆ <ωω : ∀s ∈ V [{n : s⌢〈n〉 ∈ V } ∈ Fs]}.

Proposition 5.32. O is a topology on <ωω.

Proof. Clearly ∅,<ωω ∈ O . Suppose that V1, V2 ∈ O . Take any s ∈ V1 ∩ V2. Then
{n : s⌢〈n〉 ∈ V1} ∈ Fs and {n : s⌢〈n〉 ∈ V2} ∈ Fs. Hence

{n : s⌢〈n〉 ∈ V1 ∩ V2 = {n : s⌢〈n〉 ∈ V1} ∩ {n : s⌢〈n〉 ∈ V2} ∈ Fs.

Thus V1 ∩ V2 ∈ O .
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Suppose that A ⊆ O . Take any s ∈
⋃

A . Say s ∈ V ∈ A . Since V ∈ O , we have
{n : s⌢〈n〉 ∈ V } ∈ Fs. This shows that

⋃

A ∈ O .

Theorem 5.33. <ωω is extremally disconnected Hausdorff.

Proof. For brevity let seq = <ωω.
Hausdorff: Suppose that s, t ∈ ωω and s 6= t.
Case 1. s ⊂ t. Say dmn(s) = m. Let

V1 = {s} ∪ {u ∈ seq : s ⊂ u and u(m) 6= t(m)};

V2 = {u ∈ seq : t ⊆ u}.

Clearly V1 and V2 are open, s ∈ V1, t ∈ V2, and V1 ∩ V2 = ∅.
Case 2. t ⊂ s. Similarly.
Case 3. ∃m ∈ dmn(s) ∩ dmn(t)[s(m) 6= t(m)]. Let V1 = {u ∈ seq : s ↾ (m + 1) ⊆ u}

and V2 = {u ∈ seq : t ↾ (m+ 1) ⊆ u}.
Extremally disconnected: Let V be open and s ∈ V ; we want to show that {n :

s⌢〈n〉 ∈ V } ∈ Fs. ???

Proposition 5.34. There are 22ω

pairwise non homeomorphic extremally disconnected
compact Hausdorff spaces.

The following is from Foreman 1983.

Gω is a game of length ω, played on a complete BA A. I moves first, and I and II choose
in turn a0 ≥ a1 ≥ · · ·. If at some stage a player cannot move, then I wins. If the game
goes all the way, then II wins if there is a nonzero b such that b ≤ ai for all i.

Theorem 5.35. For any complete BA A, and any successor cardinal κ, assume that
(i) II has a winning strategy in Gω.
(ii) A has a dense subset of size κ.
(iii) A is (κ,∞)-distributive.

Then A has a dense ω-closed subset.

The following is from Jech 1974.

A complete BA A is simple iff it is atomless but has no proper atomless complete subal-
gebra.

Proposition 5.36. Every simple complete BA is rigid.

Proof. Suppose that A is complete but is not rigid. Say f is a nontrivial automor-
phism of A. Then there is an a ∈ A+ such that a · f(a) = 0. Then {b + f(b) + c : b ≤
a, c · (a+ f(a)) = 0} is a proper atomless complete subalgebra of A.

Theorem 5.37. If κ is weakly compact, then there is no simple complete BA of size κ.

Theorem 5.38. (GCH) If κ is singular, then there is no simple complete BA of size κ.
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Theorem 5.39. (V = L) If κ is uncountable, regular, and not weakly compact, then there
is a simple complete BA of size κ.

The following is from Jech, Shelah 2001.

Theorem 5.40. Let κ be an uncountable regular cardinal. Then there is a simple complete
BA with κ generators.

The following is from Jipsen, Pinus, Rose 2001.

The Rudin, Keisler order on ultrafilters is extended to arbitrary complete BAs.

Theorem 5.41. If there is a κ+-complete ultrafilter on A, then ∀λ ≤ κ[RK(P(λ)) can
be isomorphically embedded in RK(κA).

The following is from Koppelberg 1980.

If A is a complete BA and X ⊆ A, then [X ] is the complete subalgebra of A generated
by X . If A is a complete BA, then cfc(A) is the least κ such that there is an increasing
sequence of complete subalgebras of A with union A, if such a sequence exists; ∞ if no
such sequence exists. Also, we define

τ(A) = min{|X | : [X ] = A}.

Theorem 5.42. If A is a complete BA and cf(A) <∞, then
(i) cf(A) is regular.
(ii) ω1 ≤ cf(A).
(iii) cf(A) ≤ τ(A).

For A a complete BA, let

t(A) = sup{|D|+ : D is a disjointed subset of A}.

Proposition 5.43. If A is a complete BA and t(A) ≤ cf(τ(A)), then cf(A) ≤ cf(τ(A)).

The following is from Jech 1972.

Theorem 5.44. If A is complete and atomless, and if A has a proper complete atomless
subalgebra, then A has a complete atomless subalgebra which is not rigid.

Proof. Let A be complete and atomless, and let B be a proper complete atomless
subalgebra of A. Fix u ∈ A\B. Let B[u] be the set of all elements of A of the form
a · u+ b · −u with a, b ∈ B. Clearly B[u] is a subalgebra of A. To see that it is a complete
subalgebra, suppose that 〈xi : i ∈ I〉 is a system of elements of B[u]. Say xi = ai ·u+bi ·−u

with ai, bi ∈ B. Then (
∑B
i∈I ai) · u+ (

∑B
i∈I bi) · −u is an element of B[u], and

(

B
∑

i∈I

ai

)

·u+

(

B
∑

i∈I

bi

)

·−u =

(

A
∑

i∈I

ai

)

·u+

(

A
∑

i∈I

bi

)

·−u =

A
∑

i∈I

(ai ·u+ bi ·−u) =

A
∑

i∈I

xi.
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Thus since
∑A
i∈I xi is in B[u], it follows that

∑B[u]
i∈I xi exists and equals

∑A
i∈I xi. So B[u]

is a complete subalgebra of A.
To show that B[u] is atomless it suffices to take a nonzero element of the form a · u

with a ∈ B and find c ∈ B[u] with 0 6= c < a · u. Now 0 6= a · u ≤
∏A{b ∈ B : a · u ≤ b},

so it follows from B being a complete subalgebra of A that
∏B{b ∈ B : a · u ≤ b} =

∏A{b ∈ B : a · u ≤ b} 6= 0. Choose c ∈ B such that 0 6= c <
∏B{b ∈ B : a · u ≤ b}.

Now a ∈ {b ∈ B : a · u ≤ b}, so c ≤ a. Hence c · u ≤ a · u. If c · u = a · u, then
∏B{b ∈ B : a ·u ≤ b} ≤ c, contradiction. Thus c ·u < a ·u. If c ·u = 0, then a ·u ≤ u ≤ −c,

and it follows that c ≤
∏B{b ∈ B : a · u ≤ b} ≤ −c and hence c = 0, contradiction. So

c · u is the required nonzero element of B[u] < a · u.
It remains only to show that B[u] is not rigid. Let

c = −

(

B
∑

{a ∈ B : a ≤ u}+
B
∑

{a ∈ B : a ≤ −u}

)

.

(1) c 6= 0.

In fact, suppose that u = 0. Then
∑B{a ∈ B : a ≤ u} ≤ u,

∑B{a ∈ B : a ≤ −u} ≤ −u,
(

∑B{a ∈ B : a ≤ u}
)

·
(

∑B{a ∈ B : a ≤ −u}
)

= 0 and
∑B{a ∈ B : a ≤ u}+

∑B{a ∈

B : a ≤ −u} = 1, so u =
∑B{a ∈ B : a ≤ u} ∈ B, contradiction. So (∗) holds.

Let c+ = c · u and c− = c · −u.

(2) c+ 6= 0 6= c−.

In fact, suppose that c+ = 0. Then c ≤ −u, so c ≤ −c, hence c = 0, contradicting (1).
Similarly c− 6= 0.

(3) If x ∈ B[u] and 0 6= x ≤ c+, then there is an a ∈ B such that x = a · u.

In fact, suppose that x ∈ B[u] and 0 6= x ≤ c+. Write x = a · u + b · −u with a, b ∈ B.
Since x ≤ c+, it follows that b · −u = 0, and (3) follows.

(4) If a, a′ ∈ B and a · u = a′ · u, then a · c− = a′ · c−.

In fact, suppose that a, a′ ∈ B and a · u = a′ · u. Then (a△a′) · u = 0, so (a△a′) · c = 0,
hence a · c = a′ · c, and (4) follows.

Similarly to (3) and (4) we have

(5) If x ∈ B[u] and 0 6= x ≤ c−, then there is an a ∈ B such that x = a · −u.

(6) If a, a′ ∈ B and a · −u = a′ · −u, then a · c+ = a′ · c+.

Now if x ∈ B[u] and 0 6= x ≤ c+, by (3) we choose a ∈ B such that x = a ·u, and we define
x̃ = a · c−. This does not depend on a, by (4). Similarly, if x ∈ B[u] and 0 6= x ≤ c−, by
(5) we choose a ∈ B such that x = a · −u, and we define x̃ = a · c+. This does not depend
on a, by (6).

(7) If x ∈ B[u] and 0 6= x ≤ c+, then ˜̃x = x.
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For, assume that x ∈ B[u] and 0 6= x ≤ c+. By (3) choose a ∈ B such that x = a ·u. Then
x̃ = a · c− = a · c · −u. Hence ˜̃x = a · c · u = a · u = x.

Similarly,

(8) If x ∈ B[u] and 0 6= x ≤ c−, then ˜̃x = x.

(9) If x, y ∈ B[u] and 0 6= x, y ≤ c−, then (x+ y)̃ = x̃+ ỹ.

For, suppose that x, y ∈ B[u] and 0 6= x, y ≤ c−. Choose a, b ∈ B such that x = a · u and
y = b · u. Then x+ y = (a+ b) · u, and so (x+ y)̃ = (a+ b) · c+ = a · c+b · c+ = x̃+ ỹ.

Similarly,

(10) If x, y ∈ B[u] and 0 6= x, y ≤ c+, then (x+ y)̃ = x̃+ ỹ.

(11) If x ∈ B[u] and 0 6= x ≤ c+, then (c+ · −x)̃ = c− · −x̃.

For, suppose that x ∈ B[u] and 0 6= x ≤ c+. Choose a ∈ B such that x = a · u. Then
c+ ·−x = c·u·(−a+−u) = c·−a·u, and so (c+ ·−x)̃ = c·−a·−u = c·−u·−(a·−u) = c− ·−x̃.

Similarly,

(12) If x ∈ B[u] and 0 6= x ≤ c−, then (c− · −x)̃ = c= · −x̃.

Now by the above,˜is an isomorphism from B[u] ↾ c+ onto B[u] ↾ c−. So this isomorphism
induces a nontrivial automorphism of B[u] which is the identity on B[u] ↾ −c.

The following is from Kurilic, Sobot 2008.

The game Gls(κ) runs as follows. It is played on a complete BA A. White starts by
choosing a nonzero p ∈ A. At the α-th move (α < κ), white chooses pα < p and black

chooses i(α) ∈ 2. White wins the play 〈p, p0, i(0), . . .〉 iff
∏

β∈κ

∑

α≥β p
i(α)
α = 0. The game

Gc&c(κ) has the same rules, but white wins if
∏

α∈κ p
i(α)
α = 0.

Proposition 5.45. Let 〈p, p0, i(0), . . .〉 be a play in the game Gls(κ).
(i) If white has a winning strategy for Gls(κ), then white has a winning strategy for

Gc&c(κ).
(ii) If black has a winning strategy for Gc&c(κ), then black has a winning strategy for

Gls(κ).

Proposition 5.46. If A is a complete BA with a λ-closed dense subset, then for each
κ < λ black has a winning strategy in the games Gc&c(κ) and Gls(κ).

Proposition 5.47. If A is a complete BA and κ ≥ π(A), then black has a winning strategy
in the game Gls(κ).

The following is from Mansfield 1971.
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If A is a complete BA, an A-valued L -structure is a pair (M, f) such that M is a nonempty
set and for each m-ary relation symbol R, fR : mM → A. Satisfaction is defined as follows.
For each formula ϕ and each a ∈ ωM we define ||ϕ, a|| by recursion.

||vi = vj , a|| =

{

1 if ai = aj ,
0 otherwise;

||Rvi(0) . . . vi(m−1), a|| = fR(ai(0), . . . , ai(m−1));

||¬ϕ, a|| = −||ϕ, a||;

||ϕ ∨ ψ, a|| = ||ϕ, a||+ ||ψ, a||;

||∃viϕ, a|| =
∑

{||ϕ, aix|| : x ∈M}.

Now if M is an ordinary L -structure, we define an A-structure M (A) as follows. The
universe of M (A) is

{

f ∈ MA : ∀a, b ∈M [a 6= b→ f(a) · f(b) = 0] and
∑

a∈M

f(a) = 1

}

.

For any m-ary relation symbol R,

RM(A)

=

〈

∑

(a0,...,am−1)∈RM

∧

i<m

fi(mi) : (f0, . . . , fm−1) ∈
m(M (A))

〉

.

Theorem 5.48. For any complete BA A, any L -structure M , any f ∈ m(M (A)), and
any formula ϕ(v0, . . . , vm−1),

||ϕ, f || =
∨

M|=ϕ[a]

∧

i<m

fi(ai).

The following is from Koppelberg 1981.

For any complete BA A, let τ(A) be the isomorphism type of A, and T (A) = {τ(A ↾ a) :
a ∈ A}. Let τ(A) ≤ τ(B) iff A is isomorphic to B ↾ b for some b ∈ B.

Theorem 5.49. For any complete BA A, T (A) is a distributive lattice with 0 and 1; it is
a Stone algebra and a Heyting algebra.

The following is from Monro 1974.

Theorem 5.50. If A,B,C are complete BAs, A is a complete subalgebra of both B and C,
and A = B∩C, then there is a complete BA D such that B and C are complete subalgebras
of D.

The proof uses the correspondence between forcing and complete BAs.

The following is from Pierce 1961.

Let κ, λ, µ be cardinals, with κ, λ infinite and µ ≥ 2. Φ(κ, λ, µ) is the set of finite functions
⊆ λ× µ of size less than κ. Φ(κ, λ, µ) is a dense subset of a complete BA Bκλµ.

Proposition 5.51. For κ ≤ λ, c′(Bκλµ) = sup{γδ : δ < α}.

Under GCH the values of several cardinal functions on the algebras Bκλµ are determined.
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6. Free algebras

The following results are from Argyros 1982.

Theorem 6.1. Let λ be an uncountable regular cardinal, and let A be generated by a set
X of size λ. Assume that for every filter F on A we have |F ∩X | < λ. Then A does not
have an independent subset of size λ.

Theorem 6.2. (GCH) For every singular cardinal κ there is a BA A of size κ+ such that
A has the (cf(κ))+-chain condition and A does not have an independent subset of size κ+.

The following is from Arhangelski, Buzyakova 2009,

For any set X , ord(X) is the set of all linear orders on X .

Proposition 6.3. Let X be any nonempty set. For each L ∈ ord(X) let

B(L) =
⋃

F∈[X]<ω

{M ∈ ord(X) : M ∩ (F × F ) = L× (F × F )}

Then 〈B(L) : L ∈ ord(X)〉 is a neighborhood system for a topology on ord(X)

Proposition 6.4. (Theorem 4) ord(ω) is homeomorphic to ω2.

Proposition 6.5. (Theorem 6) ord(ω1) is homeomorphic to ω12.

The following is from Banaschewski 2010.

Proposition 6.6. (Comparison principle) In A⊕ B, if a, a′ ∈ A, b, b′ ∈ B, a, b 6= 0, and
a · b ≤ a′ · b′, then a ≤ a′ and b ≤ b′.

Proof. Assume the hypotheses. Then a ·b ·(−a′+−b′) = 0, and the conclusion follows
from Definition 11.3 in Koppelberg.

Proposition 6.7. Suppose that f : C → A, g : C → B, and I = 〈{f(a)△g(a)}〉id, an
ideal in A⊕B. Let h : A⊕B → (A⊕B)/I be the natural map. Then h ◦ f = h ◦ g.

Proof. (h ◦ f)(a) = h(f(a)) = [f(a)]I = [g(a)]I = h(g(a)) = (h ◦ g)(a).

Proposition 6.8. (LaGrange) Let A,B,C be BAs with C a subalgebra of A and B. Let
J = 〈{a ⊗ (−a) : a ∈ A}〉. Suppose that c ∈ A, b ∈ B, and c ⊗ b ∈ J . Then there is an
a ∈ A such that c⊗ b ≤ a⊗ (−a).

Proof. Choose n ∈ ω and a ∈ nA such that c⊗ b ≤
∑

i<n(ai ⊗ (−ai)). Let P be the
set of atoms of the subalgebra of A generated by rng(a). Then for each i < n,

ai ⊗ (−ai) =
∑

{u⊗ v : u, v ∈ P, u ≤ ai, v ≤ (−ai)}

≤
∑

{u⊗ (−u) : u ∈ P, u ≤ ai};
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the last ≤ is because u ≤ ai implies that −ai ≤ −u. Then

c⊗ b ≤
∑

{u⊗ (−u) : u ∈ P, u ≤ ai, i < n}.

Hence

c⊗ b ≤ c ·
∑

{u⊗ (−u) : u ∈ P, u ≤ ai, i < n}

=
∑

{(c · u)⊗ (−u) : u ∈ P, u ≤ ai, i < n}

≤
∑

{u⊗ (−u) : u ∈ P, u ≤ ai, i < n, c · u 6= 0}

= b ·
∑

{u⊗ (−u) : u ∈ P, u ≤ ai, i < n, c · u 6= 0}

=
∑

{u⊗ b · (−u) : u ∈ P, u ≤ ai, i < n, c · u 6= 0}

≤
∑

{u⊗ (−u) : u ∈ P, u ≤ ai, i < n, c · u 6= 0, b · (−u) 6= 0}.

Let P ′ = {u ∈ P : ∃i < n[u ≤ qi, c · u 6= 0, b · (−u) 6= 0]}. Now if u, v ∈ P ′ then, since the
members of P ′ are pairwise disjoint, (c · u)⊗ (b · −v) ≤ u⊗ (−u · −v). By the comparison
principle, b · −v ≤ −u · −v. This is true for all v ∈ P ′, so b · −v ≤ −

∑

P ′. Hence

c⊗ b ≤
∑

u∈P ′

((c · u)⊗ (b · −u))

≤
∑

u∈P ′

(

(c · u)⊗ (−
∑

P ′)
)

≤
(

∑

P ′
)

⊗
(

−
∑

P ′
)

.

Several somewhat complicated normal forms for elements of free poset algebras are given
in Alami, Bekkali, Faouzi, Zhani 2007.

The following is from Bekkali, Zhani 2004.

Proposition 6.9. For any BA A the following are equivalent:
(i) A is a free poset algebra.
(ii) A has a set X of generators such that 1 ∈ X, and for all m,n ∈ ω and all a ∈ mX

and b ∈ nX we have
(a)

∏

i<m ai 6= 0.
(b) If

∏

i<m ai ·
∏

j<n−bj = 0, then there exist i < m and j < n such that ai ≤ bj.

The following is from Blaszczyk, Kucharski, Turek 2014

A subgroup H of Aut(A) acts minimally on A iff for every a ∈ A+ there exist
h0, . . . , hn−1 ∈ H such that h0(a) + · · ·+ hn−1(a) = 1.

Lemma 6.10. If H acts minimally on A, then c(A) ≤ |H|.
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Theorem 6.11. If a countable group of automorphisms acts minimally on A, then A has
a dense projective subalgebra of size π(A).

The following is from Bonnet, Rubin 2004.

A poset P has finite width iff there is an n ∈ ω such that P is the union of n chains. P is
scattered iff it does not have a subset isomorphic to Q. P is semi-well ordered iff for every
a ∈ ωP there exist m < n such that am ≤ an.

Theorem 6.12. (Theorem 1.1) If P is a scattered poset with finite width, then there is a
semi-well ordered poset Q such that the free BA over Q can be embedded in the free BA
over P .

The following is from Cramer 1974.

C (λ) is the class of all BAs which have no subalgebra isomorphic to Fr(λ). D(µ) is the
class of all BAs which have no homomorphic image isomorphic to P(µ).

Theorem 6.13. (Proposition 2.2) ∀µ[D(µ) = C (2µ).

For any BA A we let D(λ,A) be the set of all elements a ∈ A such that A ↾ a ∈ D(λ).

Theorem 6.14. (Proposition 3.6) A ∈ C (λ) iff D(λ,A) = A.

The following is from Fuchino, Koppelberg, Shelah 1996.

A has the weak Freese-Nation property (WFN) iff there is an f : A→ [A]≤ω such that

∀a, b ∈ A[a ≤ b→ ∃c ∈ f(a) ∩ f(b)[a ≤ c ≤ b]].

A has the κ-Freese-Nation property (κ-FN) iff there is an f : A→ [A]<κ such that

∀a, b ∈ A[a ≤ b→ ∃c ∈ f(a) ∩ f(b)[a ≤ c ≤ b]].

Proposition 6.15. (Proposition 4.1) If A has the κ-FN, then Depth(A) ≤ κ.

Proposition 6.16. (Theorem 4.2) If κ is regular, A has the κ-FN, λ = λ<κ, X ⊆ A, and
|X | > λ, then X has an independent subset of size > λ.

Proposition 6.17. (Proposition 5.3) If κ is uncountable and regular, then P(κ) and
P(κ)/[κ]<κ do not have the κ-FN.

The following is from Grygiel 1989

Theorem 6.18. (Theorem) Every countably generated proper filter in an atomless BA
has an independent set of generators.

The following is from Grygiel 1995.

For a filter F on a BA A, µ(F ) is the least size of a generating set for F .
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Theorem 6.19. (Theorem 2) If F is a filter in a free BA A and cf(µ(F )) > ω, then F is
generated by an independent set.

The following is from Grygiel 1990.

Theorem 6.20. (Theorem 3) If H is a proper countably generated filter with finitely many
coatoms, then H is generated by an independent set.

The following is from Koszmider, Shelah 2013.

A has the weak subsequential separation property iff for every disjoint a ∈ ωA there is a
b ∈ A such that both of the sets

{n ∈ ω : an ≤ b} and {n ∈ ω : an · b = 0}

are infinite.

Theorem 6.21. If A has the weak subsequential separation property, then A has an
independent subset of size 2ω.

A has the subsequential separation property iff for every disjoint a ∈ ωA there is a b ∈ A
such that

{n ∈ ω : a2n ≤ b and a2n+1 · b = 0}

is infinite.

Corollary 6.22. If A has the weak subsequential separation property, then βω is a subspace
of Ult(A).

The following is from Kunen 1983.

A subset A of P(κ) is θ-independent iff for every B ∈ [A ]<θ and every ε ∈ B2 we have

∣

∣

∣

∣

∣

⋂

A∈B

Aε(A)

∣

∣

∣

∣

∣

= κ.

Theorem 6.23. If κ = κ<θ then there is a θ-independent subset of P(κ) of size 2κ.

Proof. Let F = [κ]<θ and Φ = [F ]<θ. Thus |F × Φ| = κ. For each Γ ⊆ κ let

bΓ = {(∆, ϕ) ∈ F ×Φ : ∆ ∩ Γ ∈ ϕ}.

Suppose that H,K ⊆P(κ) are disjoint and of size less than θ; we claim

(∗)

∣

∣

∣

∣

∣

(

⋂

A∈H

bA

)

∩

(

⋂

B∈K

((F ×Φ)\bB

)∣

∣

∣

∣

∣

= κ.

This will complete the proof.
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For distinct A,B ∈ H ∪K choose αAB ∈ A△B. Let ∆ = {αAB : A,B ∈ H ∪K,A 6=
B}, β ∈ κ\∆, and ϕ = {∆ ∩ A : A ∈ H} ∪ {{β}}. Note that by varying β we get κ
many such ϕ. We claim that (∆, ϕ) ∈ (∗). If A ∈ H, then ∆∩A ∈ ϕ, and so (∆, ϕ) ∈ bA.
Suppose that B ∈ K and (δ, ϕ) ∈ bB. Then ∆∩B ∈ ϕ. Since β /∈ ∆, it follows that there is
an A ∈ H such that δ∩B = ∆∩A. Now αAB ∈ A△B and αAB ∈ ∆, contradiction.

Theorem 6.24. If θ is uncountable and regular and there is a maximal θ-independent
family A ⊆P(κ) of size ≥ θ, then:

(i) 2<θ = θ.
(ii) There is a λ with sup{(2α)+ : α < θ} ≤ λ ≤ min(κ, 2θ) such that there is a

nontrivial θ+-saturated λ-complete ideal over λ.

Theorem 6.25. If ZFC plus the existence of a measurable cardinal is consistent, then so
is ZFC plus the existence of a maximal σ-independent subset of P(2ω1).

The following is from Koppelberg 1997. Proofs of the following theorems are given using
σ-filtered BAs.

An ideal I is σ-directed iff every countable subset of I has an upper bound in I.

Theorem 6.26. (Mokobodzki) (CH) If p : B → A is an epimorphism, B is CSP, ker(p)
is σ-directed, |A| ≤ ω2, and A satisfies ccc, then there is a homomorphism f : A→ B such
that p ◦ f is the identity.

Theorem 6.27. (Dow, Vermeer) (CH) If |A| ≤ ω2 and A satisfies CSP, then A is a
homomorphic image of a complete BA.

Bor(R) is the algebra of Borel subsets of R.

Theorem 6.28. (Carlson, Frankiewicz, Zbierski) In the Cohen model there is a homo-
morphism f : Bor(R)/meag → Bor(R) such that π ◦ f is the identity, where π : Bor(R)→
Bor(R)/meag is the natural mapping.

Theorem 6.29. (Carlson, Frankiewicz, Zbierski) In the Cohen model there is a homo-
morphism f : Bor(R)/null → Bor(R) such that π ◦ f is the identity, where π : Bor(R) →
Bor(R)/null is the natural mapping.

Theorem 6.30. (Frankiewicz, Zbierski) In the Cohen model, P(ω1 does not embed in
P(ω)/fin.

Theorem 6.31. (Frankiewicz, Zbierski) In the Cohen model, A is a homomorphic image
of P(ω)/fin iff |A| ≤ 2ω and A has CSP.

The following is from Trnkova 1980.

Theorem 6.32. If A is a countable BA and n ⊕ A ∼= m ⊕ B with n < m, then n ⊕ A ∼=
n+1 ⊕ A.
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7. Homogeneous BAs

In Arhangelski 1970 the following is proved.

Theorem 7.1. (GCH) If Ult(A) is homogeneous, then |Ult(A)| is not a limit cardinal.

The following is from van Douwen 1978.

U(κ) is the set of all uniform ultrafilters on κ. Let X be a space, κ an infinite cardinal,
and I a collection of subsets of X . We define

∀x ∈ X∀ϕ ∈ κI

[

w(x, ϕ) =

{

a ⊆ κ : x ∈
⋃

{ϕ(α) : α ∈ a}

}]

;

∀x ∈ X [W (x, κ,I ) = {w(x, ϕ) : ϕ ∈ κI }].

A family I of subsets of X is invariant iff for every I ∈ I and every autohomeomorphism
h of X , h[I] ∈ I .

Proposition 7.2. (Criterion 2.2) If there exist a familyy I of subsets of X, an infinite
cardinal κ, a ϕ ∈ κI , and a p ∈ X such that

|W (p, κ,I )| < |{w(x, ϕ) : x ∈ S}|,

then X is not homogeneous.

Theorem 7.3. For any infinite cardinal κ, no power of β(κ), β(κ)\κ, or U(κ) is homo-
geneous.

The following is from Geschke, Shelah 2003.

Theorem 7.4. (Theorem 1.1) If A is a BA such that every ultrafilter on A is count-
ably generated, and A has a dense subset D such that ∀a ∈ D[A ↾ a ∼= A], then A is
homogeneous.

Theorem 7.5. (Corollary 2.3) If A is an atomic BA, then ω ⊕ A is homogeneous.

Theorem 7.6. (Corollary 2.6) If X is a first countable Boolean space and every point in
X has a dense aut(X)-orbit, then X and clop(X) are homogeneous.

The following is from Koppelberg 1985.

Theorem 7.7. (CH) There is a homogeneous BA A such that the following conditions
hold:

(i) |A| = ω1.
(ii) A has a countable dense subalgebra.
(iii) Aut(A) is not simple.
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Theorem 7.8. (MA) If A is homogeneous, |A| < 2ω, and A has a countable dense
subalgebra, then Aut(A) is simple.

Theorem 7.9. For every infinite free BA A, Aut(A) is simple.

The following is from Morozov 1982.

See Chapter 14 for the Tarski invariants; we write inv(A) = (inv1(A), inv2(A), inv3(A)).
A countable BA A is model-homogeneous iff

∀a, b ∈ A[inv(A ↾ a) = inv(A ↾ b) and inv(A ↾ −a) = inv(A ↾ −b)→

∀a0 ≤ a∃b0 ≤ b[inv(a0) = inv(b0) and inv(a · −a0) = inv(b · −b0)]].

For any BA A let Ai = A/Ti(A). Let Aω = {a ∈ A : inv(A ↾ a) = (ω, 0, 0)}.

Proposition 7.10. The model-homogeneous countable BAs A with inv1(A) = 0 are up to
isomorphism the following:

(i) intalg(ω + η);
(ii) intalg(ω + η + 1 + η);
(iii) intalg(n) for n ∈ ω;
(iv) intalg(n+ η) for n ∈ ω;
(v) intalg(ω);
(vi) intalg(η + ω);
(vii) intalg(ω + ω);
(viii) intalg(ω + ω + 1 + η).

Proposition 7.11. If inv1(A) > 0 then one of the following holds:
(i) Aω = ∅.
(ii) Aω = {a ∈ A : A ↾ a ∼= intalg(ω + η)} 6= ∅.
(iii) Aω = {a ∈ A : A ↾ a ∼= intalg(ω)} 6= ∅.

The type ρ(A) of a countable model-homogeneous BA A is defined as follows. If inv1(A) >
0 then ρ(A) is 1,2, or 3 as in Proposition 7.11. If inv1(A) = 0 then ρ(A) is one of the
orders given in Proposition 1.10.

Proposition 7.12. If A is a countable model-homogeneous BA with inv1(A) = ∞, then
one of the following holds:

(i) ∀a ∈ A[inv1(A ↾ a) <∞ or inv1(−a) <∞].
(ii) ∃b ∈ A[inv1(A ↾ a) =∞ and inv1(−a) =∞] and (ii) of Proposition 7.11 holds.
(iii) ∀a ∈ A[inv1(A ↾ a) =∞→ ∃c ≤ a[inv1(c) = inv1(a · −c) =∞]].

The case (i)–(iii) is denoted by t(A); if inv1(A) <∞ then t(A) = 0.

Theorem 7.13. Countable model-homogeneous BAs A and B are isomorphic iff t(A) =
t(B) and ρ(Ai) = ρ(Bi) for all i.
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elementary characteristic number of countable model homogeneous BAs

(∞, 0, 0) 2ω

(n,∞, ε) 3 · 2n

(n.l.ε), 1 6= l <∞ 2n

(n, 1, 1) 2n

(n, 1, 0) 3 · 2n−1

(0, 1, ε) 1
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8. Homomorphisms

The following is from Bacsich 1972.

Proposition 8.1. If I is an ideal of A, F is a filter of A, I ∩ F = ∅, and F ∗ = {a ∈ A :
−a ∈ F}, then I ∪ F ∗ generates a proper ideal.

Theorem 8.2. If A is a subalgebra of B, D is a maximal ideal of A, I is an ideal of B,
and I ∩ A ⊆ D, then there is a maximal ideal E of B such that E ∩A = D.

A semimorphism from A to B is a function f : A→ B such that f preserves 0, 1, and +.
Sem(A,B) is the set of all semimorphisms from A to B. For f, g ∈ Sem(A,B) we define
f ≤ g iff ∀a ∈ A[f(a) ≤ g(a)].

Proposition 8.3. (Sem(A, 2),≤) is isomorphic to (I ∗,⊇), where I ∗ = {I : I is a proper
ideal of A}.

Theorem 8.4. (Monteiro) If C is a complete BA, A is a subalgebra of B, f : A → C
is a homomorphism, d ∈ Sem(B,C), and f ≤ (d ↾ A), then there is a homomorphism
g;B → C such that g ≤ d and (g ↾ A) = f .

The following is from Dwinger 1963.

If D is a poset directed upwards, then a D-inverse system is a pair (B, f) such that
B = 〈Bα : α ∈ D〉 is a system of BAs and for α, β ∈ D with α < β, fαβ : Bβ → Bα is a
homomorphism, fαα is the identity, and for α < β < γ, fαγ = fαβ ◦ fβγ. The limit of this
system is

B∞
def
=

{

x ∈
∏

α∈D

Bα : ∀α, β ∈ D[α ≤ β → xα = fαβ(xβ)]

}

.

The article is concerned with the topological dual of this construction.

The following is from Geschke 2006.

Let D be the subalgebra of P(ω) ×P(ω) consisting of all pairs (a, b) such that a△b is
finite.

Theorem 8.5. (Corollary 3.5) For every BA A, cf(A) = ω iff there is a homomorphism
f : A→ D such that rng(f) contains all atoms of D.

The following is from Hyttinen, Shelah 2002.

Theorem 8.6. (Conclusion 5) Con(ZFC) implies Con(ZFC+∃A[A is an atomic BA,
|A| = ℵ1 and |Aut(A)| = ℵω and ℵω < 2ω).

The following is from McKenzie 1977.

Proposition 8.7. If A and B are denumerable BAs such that Aut(A) ∼= Aut(B), then
∑

at(A) exists iff
∑

at(B) exists.
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Proposition 8.8. If A and B are BAs not isomorphic to Fr(ω), if Aut(A) ∼= Aut(B),
and if

∑

at(A) exists, then A ∼= B.

Proposition 8.9. There exist denumerable BAs A,B each having denumerably many
atoms, such that Aut(A) ∼= Aut(B) but A 6∼= B.

The following is from Perovic 1999.

Members f, g of Aut(A) are strongly distinct iff for every nonzero b ∈ A there is an s ∈ A
such that f(s)·b 6= g(s)·b. If C ≤ B, then AutC(B) is the set of all automorphisms ofB that
fix C pointwise. If G is a subgroup of Aut(A), then Fix(G) = {a ∈ A : ∀f ∈ G[f(a) = a]}.
B is Galois over C iff B is a finite extension of C and there exists a finite subgroup of
strongly distinct members of AutC(B) such that Fix(G) = C. For the notion of a sheaf,
see the Handbook, pp. 116ff. For Boolean powers see Burris 1975.

Theorem 8.10. If B is a finite extension of C then the following are equivalent:
(i) B is Galois over C.
(ii) The sheaf of B over C is Hausdorff with all stalks of equal cardinality.
(iii) B is a Boolean power of a finite BA by C.
(iv) There is a natural number k such that B = C ⊕ k2.

The following is from Palchunov, Trofimov 2012.

For any BA A and any f ∈ Aut(A), let fix(f, A) = {a ∈ A : f(a) = a}. Clearly this is a
subalgebra of A.

Theorem 8.11. For any BA A and any subalgebra B of A the following are equivalent:
(i) There is an automorphism f of A such that B = fix(f, A).
(ii) For any a ∈ A there exist b, c, d ∈ A such that the following conditions hold:

(a) a = b+ c and b · c = 0 and a · d = 0 and c, b+ c ∈ B.
(b) ∀e ≤ b[e 6= 0→ e /∈ B].
(c) ∀p ≤ d[p 6= 0→ p /∈ B].
(d) ∀e ≤ b∃p ≤ d[e+ p ∈ B].
(e) ∀p ≤ d∃e ≤ b[e+ p ∈ B].

Theorem 8.12. Let f be an automorphism of A. Then the following are equivalent:
(i) For every automorphism g of A, if fix(f, A) = fix(g, A), then f = g.
(ii) f = f−1.

The following is from Pinus 2014.

For G a subgroup of Aut(A), fix(G) =
⋂

f∈G fix(f). For B a subalgebra of A, Stab(B) =

{f ∈ Aut(A) : B ⊆ fix(f)}. Also, B = fix(Stab(B)). B is Galois-closed iff B = B. A is
separable iff all of its subalgebras are Galois-closed.

Theorem 8.13. A is separable iff A is finite.

The following is from Roitman 1981. A rather complicated theorem is proved of which a
special case is the following.
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Theorem 8.14. It is consistent to have an atomic BA A of size ℵω such that A has ℵω
atoms and ℵω+1 automorphisms.

The following is from Rubin 1996.

Theorem 8.15. Let A be a complete atomless BA. For each f ∈ Aut(A) let var(f) =
∑

{a ∈ A : a · f(a) = 0}. A subgroup G of Aut(A) is locally moving iff {var(g) : g ∈
G} is dense in A. Then every locally moving subgroup of Aut(A) determines A up to
isomorphism. That is, if A and B are complete atomless BAs, G and H are locally moving
subgroups of Aut(A) and Aut(B) respectively, and ϕ is an isomorphism from G to H, then
there is an isomorphism τ of A onto B such that ∀f ∈ G[ϕ(f) = τ ◦ f ◦ τ−1].

The following is from Senf, Vladimirov 1987.

Proposition 8.16. A complete BA is not the free product of other algebras.

Proposition 8.17. A system 〈fi : i ∈ I〉 of BAs 〈Ai : i ∈ I〉 can be extended to an
automorphism of the free product ⊕i∈IAi.

Proposition 8.18. A system 〈fi : i ∈ I〉 of BAs 〈Ai : i ∈ I〉 can be extended to an
automorphism of the completion ⊕i∈IAi.

The following is from Steprans 2003. He shows that it is consistent for Aut(P(ω)/fin) to
be any regular cardinal between 2ω and 22ω

.
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9. Ideals

The following is from Baumgartner, Taylor, Wagon 1982.

An infinitary ideal on a regular uncountable cardinal κ is a proper κ-complete ideal on κ
containing all singletons. If 〈Xα : α < κ〉 is a sequence of subsets of κ, then the diagonal
union of 〈Xα : α < κ〉 is

∇α<κXα
def
= {β < κ : ∃α < β[β ∈ Xα]}.

For I an infinitary ideal on κ we let ∇(I) = {Y : ∃X ∈ κI[Y = ∇α<κXα]}. An ideal I is
normal iff ∇(I) = I. NSκ is the ideal of nonstationary subsets of κ.

Theorem 9.1. (Fodor) NSκ is a normal ideal on κ.

If A /∈ I and f : A→ κ, then f is I-small iff ∀α ∈ κ[f−1[{α}] ∈ I. An ideal I on κ is

a P -point iff for every I-small f : κ → κ there is an X with κ\X ∈ I such that f ↾ X is
[κ]<κ-small.

a Q-point iff for every [κ]<κ-small f : κ→ κ there is an X with κ\X ∈ I such that f ↾ X
is one-one.

selective iff for every I-small f : κ → κ there is an X with κ\X ∈ I such that f ↾ X is
one-one.

Theorem 9.2. (Theorem 3.9) (i) Every normal ideal is selective.
(ii) Every extension of NSκ is a Q-point.

The following is from Galvin, Jech, Magidor 1978.

Let I be a σ-complete ideal on a set S containing all singletons. Players empty and
nonempty successively choose S ⊇ T0 ⊇ T1 · · · with each Ti /∈ I. If

⋂

i∈ω Ti is empty, then
empty wins; otherwise nonempty wins.

Theorem 9.3. (Theorem 1) If |S| ≤ 2ω, then nonempty does not have a winning strategy.

Theorem 9.4. (Theorem 2) If S = κ, an infinite cardinal, then empty has a winning
strategy iff I is not precipitous.

The following is from Foreman 1983a.

An ideal I on κ is normal iff for every X ⊆ κ with X /∈ I and every regressive function f
defined on X there is a β ∈ κ such that {α ∈ X : f(α) = β} /∈ I. I is λ-saturated iff it is
normal and P(κ)/I has the λ-cc.

Theorem 9.5. Con(ZFC+there is a huge cardinal) implies Con(ZFC+∀n ∈ ω[there is a
normal ℵn-complete, ℵn+1-saturated ideal on ℵn]+there is a normal ℵω+1-complet, ℵω+2-
saturated ideal on ℵω+1.
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Theorem 9.6. Con(ZFC+there is a huge cardinal) implies Con(ZFC+every regular car-
dinal carries a κ+-saturated ideal).

The following is from Huberich 1996.

If A is κ+-complete, then Partκ(A) is the set of all partitions of A of size κ. If F is a filter
on A and a, b ∈ τA are partitions of A, then a ≡F b iff

∑

α<τ (a(α) · b(α)) ∈ F .

Theorem 9.7. If κ is uncountable and regular and A is a κ-complete BA with a dense
subset of size ≤ κ, then there is a filter F on A such that ∀τ < κ[|{a/ ≡F : a ∈ Partτ (A)}| ≤
2<κ.

The following is from Hrusak 2011. This is a survey of results on filters and ideals over ω.
An ideal I is tall iff ∀Y ∈ [ω]ω∃I ∈ I [I ∩ Y is infinite].
Orders on ideals: Katetov, Katetov-Blass, Rudin-Keisler, Tukey.
Ultrafilters: selective, P -points, Q-points, rapid, nowhere dense.
Frechet ideal, eventually different ideal.
Fubini product.
Random graph ideal.

The following is from Jech 1977.

Let I be an ideal on a cardinal κ. If S /∈ I, then an I-partition of S is a maximal collection
W of subsets of S such that each member of W is not in I, and ∀X, Y ∈ W [X 6= y →
X ∩ Y ∈ I]. An I-partition W ′ is a refinement of an I-partition W , in symbols W ′ ≤ W ,
iff ∀X ∈ W ′∃Y ∈ W [X ⊆ Y ]. A κ-complete ideal I on a cardinal κ is precipitous iff for
every S ⊆ κ which is not in I and for every sequence

W0 ≥W1 ≥ · · ·

of I partitions of S there is a sequence

X0 ⊇ X1 ⊇ · · ·

with each Xi ∈ Wi, such that
⋂

n∈ω Xn 6= ∅.

Proposition 9.8. [κ]<κ is not precipitous.

Proposition 9.9. If I is κ+-saturated, then I is precipitous.

Theorem 9.10. If there is a precipitous ideal, then there is a transitive model with a
measurable cardinal.

Theorem 9.11. (Mitchell) If κ is a measurable cardinal in M , then there is a generic
extension M [G] in which κ = ω1 and κ has a precipitous ideal.

The following is from Kunen 1978.

Let S∗(κ, λ) abbreviate: there is a nontrivial κ-complete ideal on κ which is λ-saturated,
but not λ′-saturated for any λ′ < λ.
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S∗(κ, λ) for κ not measurable

ω < λ < κ λ = κ λ = κ+

κ successor FALSE (Ulam [5]) FALSE (Ulam [5]) con: sec. 4

κ w.i., not s.i. con (Prikry [3]) con ([2]) con

κ s.i., not w.c. FALSE (Tarski [4]) con; sec. 3 con (Boos [1])

κ s.i., w.c. FALSE (Tarski [4]) FALSE (Levy, Silver) con ([2])

Here w.i. means weakly inaccessible; s.i. means strongly inaccessible; w.c. means weakly
compact; con means consistent

[1] Boos Boolean extensions which efface the Mahlo property. JSL 39 (1974), 254–268.
[2] Kunen, Paris Boolean extensions and measurable cardinals. Annals Math. Logic 2
(1971), 359–378.
[3] Prikry Changing measurable into accessible cardinals. Rosp. Math. 68 (1970).
[4] Tarski Ideale in vollstandigen Mengenkörper. FM 33 (1945), 51-65.
[5] Ulam Zur Masstheorie in der algemeinen Mengenlehre. FM 16 (1930), 140–150.

The following is from Matet 1997.

If J is a nontrivial ideal over X , A ⊆ X , and A /∈ J , then we set J ↾ A = {B ⊆ X :
A ∩B ∈ J}. J is nowhere prime iff ∀A ∈P(X)\J [J ↾ A is not prime].

Let I be a nontrivial ideal on κ such that κ ⊆ I. I is tall iff ∀A ∈P(κ)\I[I∩[A]κ 6= ∅].
I is nowhere tall iff ∀A ∈ P(κ)\I∃B ∈ P(A) ∩P(κ)\I[[B]κ ⊆ I]. An ideal I is feeble
iff there is an increasing f ∈ κκ such that {f−1[E] : E ∈ [κ]κ} ⊆ P(κ)\I. Several other
notions are considered.

There are several papers by Y. Abe concerning ideals on [λ]<κ.
Aragon gives some model-theoretic results concerning BAs with a distinguished ideal.
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10. Interval algebras

The following theorem is from Alami, Zhani 2004.

Theorem 10.1. If A is an infinite interval algebra, consider the following statements:
(i) Every subalgebra of A is isomorphic to an interval algebra.
(ii) π(A) = ω.
(iii) A is isomorphic to an interval algebra on a subset of R

Then (ii) and (iii) are equivalent, and (i) implies (ii).

The following is from Bekkali 1994.

Theorem 10.2. (Theorem 1.4) If A is a subalgebra of an interval algebra and |B| is
singular, and π(B) = ω, then B has a chain or antichain of size |B|.

Theorem 10.3. (Theorem 2.3) It is consistent that there is a BA A with the following
properties:

(i) A is a subalgebra of an interval algebra.
(ii) |A| = ℵω1

.
(iii) π(A) = ω1.
(iv) Inc(A) = ω1.
(v) Length(A) = ℵω1

not attained.

The following is from Bekkali, Todorcevic 20110.

Proposition 10.4. (Theorem 2.5) If A is a subalgebra of an interval algebra and A is not
σ-centered, then A has a subalgebra which is not isomorphic to an iterval algebra.

Theorem 10.5. Any σ-centered pseudotree algebra of size less than b is isomorphic to an
interval algebra.

Example 10.6. There is a σ-centered pseudotree algebra of cardinality 2ω which is not
isomorphic to an interval algebra.

The following is from Bell, M. 1978.

A space X is supercompact iff there is a subbase O for the topology on X such that every
cover of X using elements of O has a subcover using just 1 or 2 elements. A BA A is
supercompact iff Ult(A) is supercompact.

Proposition 10.7. Every interval algebra is supercompact.

Proof. Let A = intalg(L), where L is an infinite linear order with first element 0.
Let X = {[0, a) : 0 < a ≤ ∞} ∪ {[a,∞) : 0 ≤ a < ∞}. Let O = {S(x) : x ∈ X}. Clearly
O is a subbase for the topology on Ult(A). Now suppose that Y ⊆ X and {S(x) : x ∈ Y }
covers Ult(A). Let Y ′ ∈ [Y ]<ω be such that {S(x) : x ∈ Y ′} covers Ult(A). If [0,∞) ∈ Y ′,
then {S([0,∞))} covers Ult(A). Suppose that [0,∞) /∈ Y ′. There is some a ∈ L such
that [0, a) ∈ Y ′; let a be maximum with this property. There is some b ∈ L such that
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[b,∞) ∈ Y ′; let b be minimum with this property. Clearly b ≤ a. Then {[0, a), [b,∞)}
covers Ult(A).

In the paper it is shown that no infinite complete BA is supercompact.
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11. Scott rank

We describe notions and results from Alaev 1998, 1999.

Translation of Tarski invariants in chapter 2 to the invariants given here, with ∞ = ω:
ch1(A) is the least k such that Ik+1(A) = A, or ∞ if there is no such k. Thus ch1(A)

is k if inv(A) = (k, l,m) for some l,m.
ch2(A) is 0 if ch1(A) =∞, while if ch1(A) = m ∈ ω, then ch2(A) is k if A/Im(A) has

exactly k < ω atoms, or ∞ if A/Im(A) has infinitely many atoms. Thus ch2(A) is m if
inv(A) = (k, l,m).

ch3(A) is 0 if ch1(A) =∞, while if ch1(A) = m ∈ ω, then ch3(A) = 1 if A/Im(A) has
a nonzero atomless element, and 0 otherwise. Thus ch1(A) is l if inv(A) = (k, l,m) with
k ∈ ω.

ch(A) = (ch1(A), ch2(A), ch3(A)). Thus ch(A) = (k,m, l) iff inv(A) = (k, l,m).

Recall also the ideals Iα(A) defined after Proposition 1.13. A BA A is α-atomic iff for
each β < α A/Iβ(A) is atomic. Thus every BA is 0-atomic. A is 1-atomic iff it is atomic.

A system 〈ai : i ∈ I〉 is a partition of unity iff
∑

i∈I ai = 1 and ai · aj = 0 for i 6= j.

Note that some ai = 0 is allowed. If b ∈ nA then B(b) is the system 〈
∏ε(i)
i<n : ε ∈ n2〉. Thus

B(b) is a partition of unity.

For ϕ a formula in L∞ω we define the quantifier rank qr(ϕ) as follows:
If ϕ is atomic, then qr(ϕ) = 0.
If ϕ is ¬ψ, then qr(ϕ) = qr(ψ).
If ϕ is

∧

Φ or
∨

Φ, then qr(ϕ) = supψ∈Φ qr(ψ).
If ϕ is ∀xψ or ∃xψ, then qr(ϕ) = qr(ψ) + 1.

If A and B are L -structures, then A ≡α B iff the following holds:

∀ sentences θ[qr(θ) ≤ α→ [A |= θ ↔ B |= θ]].

If A and B are L -structures, then a partial isomorphism from A to B is an isomorphism
from a substructure of A to a substructure of B.

For an ordinal α, an α-regular chain of partial isomorphisms from A to B is a chain
I0 ⊇ I1 ⊇ · · · ⊇ Iα such that each Iβ is a set of partial isomorphisms of A to B, Iα 6= ∅,
and the following conditions hold:

∀β1 < β2 ≤ α∀a ∈ A∀f ∈ Iβ2
∃g ∈ Iβ1

[f ⊆ g and a ∈ dmn(g)];

∀β1 < β2 ≤ α∀b ∈ B∀f ∈ Iβ2
∃g ∈ Iβ1

[f ⊆ g and b ∈ rng(g)].

The following results are attributed to Goncharov, Countable Boolean algebras and decid-
ability.

Theorem 11.1. A ≡α B iff there is an σ-regular chain of partial isomorphisms from A
to B.

Theorem 11.2. If λ is a limit ordinal, then A ≡λ B iff ∀β < λ[A ≡β A].
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Theorem 11.3.

A ≡α+1 B iff ∀x ∈ A∃y ∈ B[(A, x) ≡α (B, y)]

and ∀y ∈ B∃x ∈ A[(A, x) ≡α (B, y)]

We say that A is partially isomorphic to B, and write A ∼=p B iff there is an F 6= ∅ such
that F is a set of partial isomorphisms from A to B and the following conditions hold:

∀f ∈ F∀a ∈ A∃g ∈ F [f ⊆ g and a ∈ dmn(g)]

∀f ∈ F∀b ∈ B∃g ∈ F [f ⊆ g and b ∈ rng(g)]

Two more results from Goncharov:

Theorem 11.4. A ∼=p B iff ∀α[A ≡α B].

Theorem 11.5. If A and B are countable, then A ∼=p B iff A ∼= B.

The following fact is basic for the definition of Scott rank.

Theorem 11.6. For any structure A there is an ordinal α such that for all n ∈ ω and all
a, b ∈ nA[(A, a) ≡α (A, b)→ (A, a) ≡α+1 (A, b)].

Now for any structure A, the Scott rank of A is

sr(A) = min{α : ∀n ∈ ω∀a, b ∈ nA[(A, a) ≡α (A, b)→ (A, a) ≡α+1 (A, b)]}.

Another result from Goncharov is:

Theorem 11.7. If sr(A) = α then ∀n ∈ ω∀a, b ∈ nA[(A, a) ≡α (A, b)→ (A, a) ∼=p (A, b)].

If I is an ideal in a BA A and a ∈ A, let I ↾ a = {x ∈ I : x ≤ a}.

Proposition 11.8. For any a ∈ A we have (E(A)) ↾ a = E(A ↾ a).

For any BA A, let o(A) be the least ordinal such that A/Iα(A) is atomless, where we count
the one-element BA as atomless.

Proposition 11.9. For all n ∈ ω, all a, b ∈ nA, and all ordinals α the following are
equivalent:

(i) (A, a) ≡α (A, b).
(ii) (A,B(a)) ≡α (A,B(b)).

Lemma 11.10. (Lemma 1) Suppose that A and B are BAs, n ∈ ω, a ∈ nA and b ∈ nB
are partitions of unity, and α is an ordinal. Then

(A, a) ≡α (B, b) iff ∀i < n[(A, ai) ≡
α (B, bi)].
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Lemma 11.11. (Lemma 1) Suppose that A and B are BAs, a ∈ A, b ∈ B, and α is an
ordinal. Then

(A, a) ≡ (B, b) (A ↾ a) ≡α (B ↾ b) and (A ↾ (−a)) ≡α (B ↾ (−b)).

Lemma 11.12. (Lemma 2) Suppose that A and B are BAs and α is an ordinal. Then
A ≡α B iff the following two conditions hold:

(i) ∀a ∈ A∃b ∈ B[(A ↾ a) ≡α (B ↾ b) and (A ↾ (−a)) ≡α (B ↾ (−b))].
(ii) ∀b ∈ B∃a ∈ A[(A ↾ a) ≡α (B ↾ b) and (A ↾ (−a)) ≡α (B ↾ (−b))].

Lemma 11.13. (Lemma 3) Suppose that A is a BA, I is an ideal of A, and a ∈ I. Then
A/I ∼= (A ↾ (−a))/(I ↾ (−a)).

(Definition 4) Let Φ be a set of L∞ω-sentences in the language of BAs. We say that Φ is
a characterizing set for rank α iff

∀A,B[A ≡α B iff ∀ϕ ∈ Φ[A |= ϕ iff B |= ϕ]].

Lemma 11.14. (Lemma 5) Let Φα be a characterizing set for rank α. Define Φ′
α =

{
∧

ϕ∈Φα
ϕε(ϕ) : ε ∈ Φα2}. For all ψ1, ψ2 ∈ Φ′

α let

Θ(ψ1, ψ2) = {θ : θ is a sentence and ∀BA A[A |= θ

↔ ∃a ∈ A[A ↾ a |= ψ1 and (A ↾ (−a)) |= ψ2]]}.

Then Θ(ψ1, ψ2) 6= ∅.
Moreover, let Φα+1 be a collection of sentences such that the following two conditions

hold:
(i) ∀ψ1, ψ2 ∈ Φ′

α∃θ ∈ Φα+1 ∩Θ(ψ1, ψ1).
(ii) ∀θ ∈ Φα+1∃ψ1, ψ2 ∈ Φ′

α[θ ∈ Θ(ψ1, ψ2)].
Then Φα+1 is a characterizing set for α+ 1.

Lemma 11.15. (Lemma 6) Suppose that ϕ(x) is a formula with quantifier rank β. Also

suppose that R
def
= {x ∈ A : A |= ϕ(x)} is an ideal of A. Then for each formula

ψ(x1, . . . , xn) of quantifier rank α there is a formula ψ′(x1, . . . , xn) of quantifier rank β+α
such that for all a1, . . . , an ∈ A,

A/R |= ψ(a1/R, . . . , an/R) iff A |= ψ′(a1, . . . , an).

Lemma 11.16. (Lemma 7) If I is an ideal in A and a ∈ A, then (A/I) ↾ (a/I) ∼= (A ↾

a)/(I ↾ a).

If I is an ideal on A and J is an ideal on A/I, then I ◦ J = {a ∈ A : (a/I) ∈ J}. This is
an ideal on A. For any BA A, Iat(A) is the ideal generated by the set of atoms of A.
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Lemma 11.17. (Lemma 8) If I is an ideal on A and a ∈ A, then (I ◦ Iat(A/I)) ∩ (A ↾

a) = (I ↾ a) ◦ Iat((A ↾ a)/(I ↾ a)).

Lemma 11.18. (Lemma 9) If A is a BA, a ∈ A, and α is an ordinal, then ((Iα(A)) ↾

a) = Iα(A ↾ a).

Lemma 11.19. (Lemma 10) If A is a BA, a ∈ A, and α is an ordinal, then ((A/Iα(A)) ↾

(a/Iα(A))) ∼= ((A ↾ a)/Iα(A ↾ a)).

For any k ∈ ω, Mk is a finite BA with exactly k atoms; |M0| = 1.

Lemma 11.20. (Lemma 11) For any BAs A,B the following are equivalent:
(i) A ≡0 B.
(ii) A ∼= M0 iff B ∼= M0.

Lemma 11.21. (Lemma 11) For any BAs A,B the following are equivalent:
(i) A ≡1 B.
(ii) The following conditions hold:

(a) A ∼= M0 iff B ∼= M0.
(b) A ∼= M1 iff B ∼= M1.

Lemma 11.22. (Lemma 11) For any BAs A,B the following are equivalent:
(i) A ≡2 B.
(ii) The following conditions hold:

(a) ∀k < 4[A ∼= Mk iff B ∼= Mk].
(b) A is atomless iff B is atomless.

Lemma 11.23. (Lemma 11) For any BAs A,B the following are equivalent:
(i) A ≡3 B.
(ii) The following conditions hold:

(a) ∀k < 8[A ∼= Mk iff B ∼= Mk].
(b) ∀l = 1, 2, 3, 4[A has exactly l atoms iff B has exactly l atoms].
(c) A is atomic iff B is atomic.

Lemma 11.24. (Lemma 11) For any BAs A,B and any k ∈ ω\4 the following are
equivalent:

(i) A ≡k B.
(ii) The following conditions hold:

(a) ∀j < 2k[A ∼= Mj iff B ∼= Mj ].
(b) ∀j = 1, . . . , 2k − 4[A has exactly j atoms iff B has exactly j atoms].
(c) A is atomic iff B is atomic.
(d) (A/E(A)) ≡k−4 (B/E(B)).

Lemma 11.25. (Lemma 12) For any BA A,

sr(A) = min{α : ∀a, b ∈ A[(A, a) ≡α (A, b)→ (A, a) ≡α+1 (A, b)]}.
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Lemma 11.26. (Lemma 13) Suppose that sr(A) = α. Then ∀a ∈ A[sr(A ↾ a) ≤ α].

For each k ∈ ω let

Mk = {A : ch(A) = (0, k, 0)};

M∗
k = {A : ch(A) = (0, k, 1)}.

Theorem 11.27. (Theorem 14) Each BA of finite Scott rank belongs to one of the classes
Mk,M

∗
k .

Theorem 11.28. (Theorem 14) (i) If A ∈M0 then sr(A) = 0.
(ii) If A ∈M1 then sr(A) = 0.
(iii) If k ≥ 2 and A ∈Mk then sr(A) = ⌊log2(k − 1)⌋.
(iv) If A ∈M∗

0 then sr(A) = 0.
(v) If A ∈M∗

1 then sr(A) = 2.
(vi) If A ∈M∗

2 then sr(A) = 2.
(vii) If k ≥ 3 and A ∈M∗

k then sr(A) = ⌊log2(k + 7)⌋.

Lemma 11.29. (Lemma 15) A ≡ω B iff ch(A) = ch(B).

Lemma 11.30. (Lemma 16) Let A and B be BAs and α and γ ordinals. Assume that A
and B are α-atomic, |A/Iα(A)| > 1 and |B/Iα(B)| > 1. Then

A ≡ω·α+γ B iff (A/Iα(A)) ≡γ (B/Iα(B)).

Lemma 11.31. (Lemma 17) If A and B are α-atomic and A ≡ω·α+γ B, the (A/Iα(A)) ≡γ

(B/Iα(B)).

Lemma 11.32. (Lemma 17) If A and B are α-atomic, A ≡ω·α+γ B, and (A/Iα(A)) ≡β

(B/Iα(B)), then A ≡ω·α+β B.

Lemma 11.33. (Proposition 18) If A and B are BAs, sr(A) ≤ α, and A ≡α+1 B, then
A ∼=p B.

Theorem 11.34. (Theorem 19) If A is α-atomic and |A/Iα(A)| > 1, then sr(A) =
ω · α+ sr(A/Iα(A)).

Lemma 11.35. (Lemma 20) If |A/Iα(A)| = 1, then A is α-atomic.

Lemma 11.36. (Theorem 21) If o(A) is a limit ordinal α, then sr(A) ≥ ω · α.

Lemma 11.37. (Theorem 21) If o(A) is a successor ordinal α + 1 and A/Iα(A) has
infinitely many atoms, then sr(A) ≥ ω · (α+ 1).
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Lemma 11.38. (Theorem 21) If o(A) is a successor ordinal α+1 and A/Iα(A) has exactly
k ∈ ω atoms, then sr(A) ≥ ω + α+ sr(B), where B ∈Mk.

Lemma 11.39. (Theorem 21) If A is a superatomic BA, then o(A) is a successor ordinal
α+1 and there is a k ∈ ω such that A/Iα(A) has exactly k atoms, and sr(A) = ω ·α+sr(B)
where B ∈Mk.

A BA A is decomposable iff 1 ∈ E(A).

Lemma 11.40. (Lemma 22) Suppose that A and B are decomposable; say 1A = tA + pA
and 1B = tB + pB, where tA and TB are sums of atoms and pA = 0 iff pB = 0. Then

A ≡α B iff (A ↾ tA) ≡α (B ↾ tB).

Theorem 11.41. (Theorem 23) If A is a decomposable BA, with say 1 = tA + pA with tA
atomic and pA atomless, then

sr(A) = α iff sr(A ↾ tA) = α.

Theorem 11.42. (Proposition 24) If max(sr(A), sr(B)) = α, then α ≤ sr(A×B) ≤ α+4.

(End of summary of Alaev 1998; begin summary of Alaev 1999.)

For n ≥ 1 we define B ∈ nA to mean that there are pairwise disjoint ai ∈ A for i < n such
that B ∼= (A ↾ ai) for all i < n. Let B ∈ ωA abbreviate that for all k ∈ ω\1 and all a ∈ kA
with ai · aj = 0 for i 6= j we have:

(1) ∀i < k[B ∼= (A ↾ ai)].

(2) B ∈ 1(A ↾ −
∑

i<k ai).

B ∈ ∞A abbreviates that B ∈ 1A and for all a ∈ A\{0, 1}, if (A ↾ a) ∼= B then A ∼= (A ↾

(−a)).
If (D, f) is a semi-tree in a BA A and α ∈ D, then we define D(α) = {β ∈ <ω2 : αβ ∈

D} and f (α) : D(α) → A is defined by f (α)(β) = f(αβ).

Proposition 11.43. (Lemma 1) Let A be an atomic BA. Then:
(i) If B0, . . . , Bn−1 ∈

∞A, then B0 × · · · ×Bn−1 ∈
∞A.

(ii) If ∀i < m[Bi ∈
1A and Bi 6∼= A], then A×B0 × · · · ×Bn−1

∼= A.
(iii) If B ∈ ∞A and b ∈ B, then (B ↾ b) ∈ ∞A.
(iv) If B ∈ n(A0 × · · · × Ank−1

), then there exist m0, . . . , mk−1 such that m0 + · · ·+
mk−1 = n and ∀i < k[B ∈ miA].

(v) If ∀n ∈ ω[B ∈ nA], then B ∈ ωA.
(vi) If B ∈ ω(A× C), then B ∈ ωA or B ∈ ωC.
(vii) If A is a countable BA and B ∈ ωA, then B ∈ ∞A.

We define α � β iff α, β ∈ <ω2 and there is a γ ∈ <ω2 such that α = βγ. A set D ⊆ <ω2
is a semi-tree iff ∅ ∈ D and ∀α, β[α ∈ D and α � β → β ∈ D]. A semi-tree in a Boolean
algebra A is a pair (D, f) such that D is a semi-tree and the following conditions hold:
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(1) f(∅) = 1, and f(α) 6= 1 for all α ∈ D\{∅}.

(2) If α, α0, α1 ∈ D, then f(α0) · f(α1) = 0 and f(α)) + f(α1) = f(α).

(3) If α ∈ D, ε ∈ {0, 1}. αε ∈ D, and α(1− α0) /∈ D, then f(αε) = f(α).

(D.f) is a generating semi-tree in A iff it is a semi-tree in A and rng(f) generates A.
A tree is a semi-tree such that for any a ∈ <ω2 and any ε ∈ 2, αε ∈ D iff α(1−ε) ∈ D.

Lemma 11.44. (Lemma 2) (i) If (D.f) is a tree in A and α � β, then f(α) ≤ f(β).
(ii) If (D.f) is a tree in A and α and β are incomparable, then f(α) · f(β) = 0.
(iii) If (D, f) is a generating semi-tree, then any a 6= 0 in A can be written in the

form a = f(b0) + · · ·+ f(bn−1) with each bi ∈ D and bi and bj incomparable for i 6= j.
(iv) If D is a semi-tree, then there exist a BA A and a function f : D → A such that

(D, f) is a generating semi-tree in A.
(v) If (D, f1) and (D, f2) are generating semi-trees in A,B respectively, then there is

an isomorphism g : A→ B such that f2 = g ◦ f1.

Lemma 11.45. (Lemma 3) Suppose that (D, f) is a semi-tree in a BA A, I is an ideal
of A, and f [D] ∪ I generates A. Then:

(i) Any element a ∈ A can be written in the form a = (f(α0) · −b0) + · · ·+ (f(αk−1) ·
−bk−1) + c, where k ≥ 0, each αi ∈ D, each bi ∈ I, and c ∈ I.

(ii) If I 6= A and E = {α ∈ D : f(α) ∈ I}, then (D\I, g) is a semi-tree in A/I, where
g(α) = f(α)/I for all α ∈ D\I.

Lemma 11.46. (Lemma 4) Suppose that (D, f) is a semitree in a BA A, I is an ideal of
A, and f [D] ∩ I = ∅. Then:

(i) If
∑

i<m f(αi)/I ≤
∑

i<n f(βi)/I with each αi, βj ∈ D, then
∑

i<m f(αi) ≤
∑

i<n f(βi).
(ii) If

∑

i<m f(αi)/I =
∑

i<n f(βi)/I with each αi, βj ∈ D, then
∑

i<m f(αi) =
∑

i<n f(βi).
(iii)
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12. Superatomic BAs

Theorem 12.1. (Abraham, Bonnet 1992) Every superatomic BA which is embeddable in
an interval algebra is embeddable in the interval algebra of some ordinal.

The following definitions and results are essentially from Abraham, Bonnet, Kubís, Rubin
2003.

Theorem 12.2. Let P be a poset, and let A be a BA freely generated by P . Let I be the
ideal in A generated by {p · −q : p ≤P q}.

Suppose that B is a BA and f : P → B is such that ∀p, q ∈ P [p ≤P q implies that
f(p) ≤B f(q)].

Then there is a homomorphism g : A/I → B such that g(p/I) = f(p) for all p ∈ P .
Moreover, such a homomorphism g is unique.

Proof. The function f extends to a homomorphism f+ : A → B. If p, q ∈ P and
p ≤P q, then f+(p · −q) = f(p) · −f(q) = 0. Thus I ⊆ ker(f+), so g exists as indicated.
Clearly g is unique.

Theorem 12.3. Let P be a poset, and let 〈ap : p ∈ P 〉 be a system of elements of a BA
C such that

(i) {ap : p ∈ P} generates C, and
(ii) ∀p, q ∈ P [p ≤P q → ap ≤C qq ].

and for any BA B and function f : P → B such that ∀p, q ∈ P [p ≤P q implies that
f(p) ≤B f(q)] there is a unique homomorphism g : C → B such that g(ap) = f(p) for all
p ∈ P .

Then C is isomorphic to the algebra A/I described in Theorem 12.2.

Proof. By Theorem 12.2, there is a unique homomorphism g : A/I → C such
that ∀p ∈ P [g(p/I) = ap]. Now ∀p, q ∈ P [p ≤P q → p/I ≤ q/I], so by the condition
on C, there is a homomorphism h : C → A/I such that ∀p ∈ P [h(ap) = p/I]. Now
∀p ∈ P [h(g(p/I)) = p/I, so (h ◦ g)(x) = x for all x ∈ A/I. Similarly (g ◦ h)(y) = y for all
y ∈ C.

We call the algebra A/I of Theorem 12.2 the free P -algebra and denote it by free(P ).
A BA A is well-generated iff A has a subset L which is closed under + and · such that

L generates A and (L,≤A) is well-founded.

Theorem 12.4. For any poset P the following are equivalent:
(i) P does not contain an infinite subset consisting of pairwise incomparable elements,

and does not contain a subset isomorphic to Q.
(ii) free(P ) is superatomic.
(iii) free(P ) is well-generated.

If P is a poset, then X ⊆ P is a final segment of P iff ∀p ∈ X∀q ∈ P [p ≤ q → q ∈ X ].
fs(P ) is the set of all final segments of P .
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Theorem 12.5. For any poset P , the set fs(P ) is a closed subspace of P(P ).

Proof. Suppose that X ∈P(P )\fs(P ). Then there exist p ∈ X and q ∈ P such that
p ≤ q but q /∈ X . Then X ∈ U{p}{q} ⊆P(P )\fs(P ).

Let P be a poset. For each p ∈ P let Vp = {X ∈ fs(P ) : p ∈ X}. Let free′(P ) be the
subalgebra of P(fs(P )) generated by {Vp : p ∈ P}.

Theorem 12.6. free′(P ) is the set of all clopen subsets of Fs(P ).

Proof. If p ∈ P and X ∈ Vp, then X ∈ U{p}∅ ∩ fs(P ) ⊆ Vp. So Vp is open in fs(P ). If
X ∈ fs(P )\Vp, then X ∈ U∅{p} ∩ fs(P ) ⊆ fs(P )\Vp. Thus Vp is clopen in fs(P ). It follows
that free′(P ) is a subset of the collection of all clopen subsets of fs(P ).

Now suppose that W is any clopen subset of fs(P ). Note that if F,G are finite disjoint
subsets of fs(P ), then

(∗)
⋂

p∈F

Vp ∩
⋂

q∈G

(fs(P )\Vq) = {W ∈ fs(P ) : F ⊆W and G ∩W = ∅} = UFG ∩ fs(P ).

Now since W is open, there is a set H of pairs (F,G) with F,G finite and disjoint subsets
of fs(P ) such that W =

⋃

(F,G)∈H
UFG; hence by (∗),

W =
⋃

(F,G)∈H





⋂

p∈F

Vp ∩
⋂

q∈G

(fs(P )\Vq)



 .

Now compactness of W shows that W ∈ free′(P ).

Theorem 12.7. Suppose that F,G are finite disjoint subsets of P . Then

⋂

p∈F

Vp ∩
⋂

q∈G

(fs(P )\Vq) = ∅ iff ∃p ∈ F∃q ∈ G[p ≤P q].

Proof. ←: clear. ⇒: Suppose that
⋂

p∈F Vp ∩
⋂

q∈G(fs(P )\Vq) = ∅. Let X = {r ∈
P : ∃p ∈ F [p ≤P r]}. Then X ∈

⋂

p∈F Vp, so there is a q ∈ G such that X ∈ Vq. So q ∈ X ,
hence there is a p ∈ F such that p ≤P q.

Theorem 12.8. For any poset P , free(P ) ∼= free′(P ).

Proof. If p ≤ q, then Vp ⊆ Vq . Hence by Theorem 12.2 there is an epimorphism g :
free(P )→ free′(P ) such that g(p/I) = Vp for all p ∈ P . Suppose that F,G are disjoint finite
subsets of P and g(

∏

p∈F (p/I) ·
∏

q∈G−(q/I)) = 0. Thus
⋂

p∈F Vp ∩
∏

q∈G(fs(P )\Vq) = ∅.
By Theorem 12.7, there exist p ∈ F and q ∈ G such that p ≤P q. So (p/I) ≤ (q/I), and
hence

∏

p∈F (p/I) ·
∏

q∈G−(q/I) = 0.

The following comes from an unpublished paper of Bonnet, Rubin, Si-Kadoor.
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If f : A → B is a homomorphism, we denote by fd the dual of f , mapping Ult(B) into
Ult(A), defined by fd(F ) = f−1[F ]. This is a continuous map. If I is an ideal of A, then
Id =

⋃

a∈I S(a); this is an open set in Ult(A).

Proposition 12.9. If G ∈ Ult(A), then G /∈ Id iff π[G] is an ultrafilter on A/I, where
π : A→ A/I is the natural map.

Proof. Assume that G ∈ Ult(A)
First suppose that G /∈ Id. If a, b ∈ G then π(a) · π(b) = π(a · b) ∈ π[G]. If a ∈ G and

π(a) ≤ π(b), then π(a · −b) = 0, so a · −b ∈ I, hence G /∈ S(a · −b), so a · −b /∈ G, hence
b ∈ G. For any a ∈ A, either a ∈ G and hence π(a) ∈ π[G], or −a ∈ G, hence −π(a) ∈ G.
0 /∈ π[G], as otherwise there is an a ∈ G with π(a) = 0, hence a ∈ I, hence S(a) ⊆ Id, and
G ∈ S(a), contradiction. All this shows that π[G] is an ultrafilter on A/I.

Second suppose that π[G] is an ultrafilter on A/I. If G ∈ Id, say G ∈ S(a) with
a ∈ I. Then a ∈ G. But π(−a) = 1 ∈ π[G], so there is a b ∈ G such that π(−a) = π(b).
Then −π(a) +−π(b) = π(−a+ −b) = 1 ∈ G and π(a) ∈ π[G], so −π(b) ∈ π[G]. But also
π(b) ∈ π[G], contradiction.

Proposition 12.10. Let I be an ideal of A, and let π : A → A/I be the natural homo-
morphism. Then πd is a homeomorphism from Ult(A/I) onto the closed subset Ult(A)\Id

of Ult(A).

Proof. Since π is a surjection, it follows that πd is an injection; so we just need to
show that the range of πd is Ult(A)\Id.

rng(πd) ⊆ (Ult(A)\Id): Suppose that F ∈ Ult(A/I). For each a ∈ I we have π(−a) =
−a/I = 1 ∈ F , so −a ∈ π−1[F ] = πd(F ). Hence πd(F ) ∈ S(−a). Hence πd(F ) ∈
⋂

a∈I S(−a) = Ult(A)\Id, as desired.

Ult(A)\Id ⊆ rng(πd): Suppose that G ∈ (Ult(A)\Id). By Proposition 1, π[G] is an
ultrafilter on A/I. We have πd(π[G]) = π−1[π[G]]. Now π−1[π[G]] = G (as desired).
In fact, if a ∈ G then π(a) ∈ π[G], hence a ∈ π−1[π[G]]. Thus G ⊆ π−1[π[G]], so
G = π−1[π[G]].

For all a ∈ A let Fa be the filter generated by a.

Proposition 12.11. a is an atom iff Fa is an ultrafilter.

Proposition 12.12. For any ultrafilter F , F is principal iff F is isolated in Ult(A).

Proposition 12.13. S(a) is a singleton iff a is an atom.

We define the standard sequence of ideals 〈Iα(A) : α ∈ On〉 of a BA A:

I0(A) = {0};

Iα+1(A) = {a ∈ A : a/Iα(A) is a finite sum of atoms of A/Iα(A)};

Iλ(A) =
⋃

α<λ

Iα(A) for λ limit.
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Proposition 12.14. A ∼= A/I0(A).

Let Iat(A) be the ideal of A generated by the atoms of A.

Proposition 12.15. A/Iα+1(A) ∼= (A/Iα(A))/Iat(A/Iα(A)).

Proof. For each a ∈ A let f(a) = a/Iα(A), and for each b ∈ A/Iα(A) let g(b) =
b/Iat(A/Iα(A)). Thus g ◦ f : A → (A/Iα(A))/Iat(A/Iα(A)) is a surjection. Its kernel is
Iα+1(A), and the proposition follows.

If X is a topological space, then is(X) is the set of all isolated points of X ; it is an open
subset of X . Then we set X ′ = X\is(X); further,

X(0) = X ;

X(α+1) = (X(α))′;

X(λ) =
⋂

α<λ

X(α) for λ limit.

Proposition 12.16. (Iat(A))d is the set of all isolated points of Ult(A).

Proof. Suppose that G ∈ (Iat(A))d. Choose a ∈ Iat(A) such that G ∈ S(a). Then
a ∈ G. There is a finite collection F of atoms of A such that a ≤

∑

F . Thus
∑

F ∈ G,
so there is an x ∈ F such that x ∈ G. So G is principal, and hence by Proposition 4 it is
isolated in Ult(A).

Conversely, suppose that G is isolated in Ult(A). By Proposition 4, it is principal; say
it is generated by the atom a. Then G ∈ S(a), so G ∈ (Iat(A))d.

Proposition 12.17. Ult(A/Iat(A)) is homeomorphic to (Ult(A))′.

Proof. By Proposition 2, Ult(A/Iat(A)) is homeomorphic to Ult(A)\(Iat(A))d. So
our proposition follows from Proposition 12.16.

Proposition 12.18. (Iα+1(A))d = (Iα(A))d ∪
⋃

{S(a) : a/Iα(A) is an atom}.

Proof. First suppose that F ∈ (Iα+1(A))d. Choose a ∈ Iα+1(A) such that F ∈ S(a).
Say a/Iα(A) =

∑

b∈M b/Iα(A) with M a finite subset of A and each b/Iα(A) an atom of
A/Iα(A). Then a ·

∏

b∈M −b ∈ Iα(A).
Case 1 ∀b ∈M [−b ∈ F ]. Then a ·

∏

b∈M −b ∈ F , and F is in the right side.
Case 2. There is a b ∈M such that b ∈ F . Then F ∈ S(b) and b/Iα(A is an atom, so

again F is in the right side.

Second suppose that F ∈ (Iα(A))d. Say F ∈ S(a) with a ∈ Iα(A). Since clearly Iα(A) ⊆
Iα+1(A), F is in the left side.

Finally, suppose that F ∈ S(a) with a/Iα(A) an atom. Then a ∈ Iα+1(A) and again
F is in the left side.

Proposition 12.19. (Iα(A))d = Ult(A)\(Ult(A))α.
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Proof. By induction on α. The case α = 0 is obvious. Now we assume the condition
for α and prove it for α+ 1. By Proposition 12.18 and the inductive hypothesis,

(Iα+1(A))d = (Iα(A))d ∪
⋃

{S(a) : a/Iα(A) is an atom}

= (Ult(A)\(Ult(A))α) ∪
⋃

{S(a) : a/Iα(A) is an atom}

Ult(A)\(Ult(A))(α+1) = Ult(A)\((Ult(A))(α))′

Suppose that F ∈ (Iα+1(A))d

Case 12.18 F ∈ (Ult(A)\(Ult(A))α). Since ((Ult(A))(α))′ ⊆ (Ult(A))(α), it follows
that F ∈ Ult(A)\((Ult(A))(α))′.

Case 2. F /∈ (Iα(A))d, but F ∈ S(a) for some a such that a/Iα(A) is an atom.
Thus a ∈ F . Let π : A → A/Iα(A) be the natural map. Then by Proposition 2, πd

is a homeomorphism from Ult(A/Iα(A)) onto Ult(A)\(Iα(A))d, Say πd(G) = F . Thus
π−1[G] = F . Since a ∈ F , we have π(a) ∈ G, i.e. a/Iα(A) ∈ G. Thus G is isolated in
Ult(A/Iα(A)), so F is isolated in Ult(A)\(Iα(A))d. Now Ult(A)\(Iα(A))d = (Ult(A))(α)

by the inductive hypothesis, so F ∈ is((Ult(A))(α)) and hence F /∈ (Ult(A))(α))′.
Now suppose conversely that F ∈ Ult(A)\(Ult(A))(α+1), and F ∈ (Ult(A))(α); we

want to find an a ∈ A such that a/Iα(A) is an atom and F ∈ S(a). Now (Ult(A))(α+1) =
((Ult(A))(α))′, and ((Ult(A))(α))′ = (Ult(A))(α)\is(Ult(A))(α)), so F ∈ is(Ult(A))(α)). Let
π : A → A/Iα(A) be the natural map. Then by Proposition 12.10, πd is a homeomor-
phism from Ult(A/Iα(A)) onto Ult(A)\(Iα(A))d. Now Ult(A)\(Iα(A))d = (Ult(A))(α)

by the inductive hypothesis. Hence there is an isolated point G of Ult(A/Iα(A)) such
that πd(G) = F . Say G is determined by the atom a/Iα(A) of A/Iα(A). Then
a ∈ π−1[G] = πd(G) = F , as desired.

Now assume that λ is limit, and ∀α < λ[(Iα(A))d = Ult(A)\(Ult(A))α], Then

(Iλ(A))d =

(

⋃

α<λ

Iα(A)

)d

=
⋃

{

S(a) : a ∈
⋃

α<λ

Iα(A)

}

=
⋃

α<λ

⋃

{S(a) : a ∈ Iα(A)} =
⋃

α<λ

(Iα(A))d

=
⋃

α<λ

[Ult(A)\(Ult(A))(α)] = Ult(A)\
⋂

α<λ

(Ult(A))(α)

= Ult(A)\(Ult(A))(λ).

Corollary 12.20. (Ult(A))(α) = Ult(A)\(Iα(A))d.

Proposition 12.21. Ult(A/Iα(A)) is homeomorphic to (Ult(A))(α).

Proof. By Corollary 12.20 we have (Ult(A))(α) = Ult(A)\(Iα(A))d. By Proposition
2, Ult(A)/Iα(A) is homeomorphic to Ult(A)\(Iα(A))d.

A subspace Y of a space S is dense in itself iff it has no isolated points in the relative
topology. A space X is scattered iff it has no nonempty dense in itself subspace.
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Proposition 12.22. A is superatomic iff Ult(A) is scattered.

Proof. ⇒: Suppose that ∅ 6= Y ⊆ Ult(A) is dense in itself. Define f(a) = S(a) ∩ Y
for all a ∈ A. Thus f is a homomorphism, so f [B] is atomic. Let a be such that f(a) is
an atom. Since Y is dense in itself, there are distinct F,G ∈ (S(a) ∩ y). Choose b ∈ F\G.
Then a · b ∈ F , and a · −b ∈ G. So

f(a) = S(a) ∩ Y = (S(a · b) ∩ Y ) ∪ (S(a · −b) ∩ Y ) = f(a · b) ∪ f(a · −b),

contradicting f(a) being an atom.
←: Suppose that A is not superatomic. Let f be a homomorphism from A onto an

atomless BA B. Then fd is a homeomorphism from Ult(B) onto a subspace of Ult(A).
Ult(B) has no isolated points by Proposition 8. So A is not scattered.

Proposition 12.23. A is superatomic iff there is an α such that Iα(A) = A. If A
is superatomic, then the least α such that Iα(A) = A is a successor ordinal β + 1, and
A/Iβ(A) is finite.

Proof. ⇒: Suppose that A is superatomic. Let α be minimum such that Iα(A) =
Iα+1(A). By the definition of Iα(A), it follows that A/Iα(A) does not have any atoms; so
|A/Iα(A)| = 1 or A/Iα(A) is atomless. Since A is superatomic, it follows that |A/Iα(A)| =
1. Then α cannot be a limit ordinal, since 1 /∈ Iβ(A) for all β < α. So α = 0 and |A| = 1,
or α is a successor ordinal β + 1 and A/Iβ(A) is finite.
⇐: Suppose that A is not superatomic. Let f : A → A/I be a homomorphism such

that A/I is atomless. Then fd[A/I] is a dense in itself subspace of Ult(A). By induction,
fd[A/I] ⊆ (Ult(A))(α) for all α, and so there is no α such that Iα(A) = A.

If A is superatomic, then the rank of A is rk(A) =least α[Iα+1(A) = A]. The cardinal
sequence of A is CS(A) = 〈|At(A/Iα(A)| : α < rk(A)〉. Thus if A is infinite, then this is a
sequence of infinite cardinals.

Proposition 12.24. |At(A)| = |is(Ult(A))|.

Proof. We claim that F is a bijection from At(A) onto is(Ult(A)); see the definition
preceding Proposition 12.112. If a is an atom of A, then Fa is an isolated ultrafilter by
Propositions 12.11 and 12.12. If F is isolated, then by Proposition 12.12 F is principal;
hence there is an atom a such that Fa = F . So F maps At(A) onto (Ult(A)). Clearly it
is one-one.

Proposition 12.25. If A is superatomic and α < rk(A), then

|At(A/Iα(A))| = |is((Ult(A))(α))|.

Proof. For a/Iα(A) an atom of A/Iα(A) let g(a/Iα(A)) = fd(Fa/Iα(A)), where
f : A → A/Iα(A) is the natural map. Thus Fa/Iα(A) is an isolated point of

Ult(A/Iα(A)) by Propositions 12.11 and 12.12, and so fd(Fa/Iα(A)) is an isolated point
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of Ult(A)\(Iα(A))d = (Ult(A))(α) by Propositions 12.10 and 12.20. Thus g maps
At(A/Iα(A)) into is((Ult(A))(α)). g is one-one since f is onto.

Conversely, if G is an isolated point of (Ult(A))(α), then fd−1(G) is an isolated point of
Ult(A/Iα(A)), and so there is an atom a/Iα(A) of A/Iα(A) such that fd−1(G) = Fa/Iα(A).

Then g(a/Iα(A)) = fd(Fa/Iα(A)) = G.

Note by Proposition 12.21 that rk(A) =least α[X(α+1) = ∅]. By Proposition 12.25,
CS(A) = 〈|is((Ult(A))(α))| : α < rk(A)〉.

Proposition 12.26. A is not superatomic iff there is an α such that (Ult(A))(α) is dense
in itself.

Proof. ⇒: Suppose that A is not superatomic. Let α be minimum such that
Iα(A) = Iα+1(A). By Corollary 12.20, (Ult(A))(α) = (Ult(A))(α+1). Hence by defini-
tion, is((Ult(A))(α)) = ∅, so (Ult(A))(α) is dense in itself.
⇐: Assume that (Ult(A))(α) is dense in itself. Now (Ult(A))(α) is a subspace of

Ult(A), so Ult(A) is not scattered. By Proposition 14, A is not superatomic.

Proposition 12.27. A is superatomic iff there is an ordinal α such that (Ult(A))(α) = ∅.

Proof. ⇒: suppose that A is superatomic. By Proposition 12.23 there is an α such
that Iα(A) = A. By Proposition 12.21 we then have (Ult(A))(α) = ∅.
⇐: suppose that (Ult(A))(α) = ∅. By Proposition 13, Iα(A) = A. By Proposition

12.23, A is superatomic.

Proposition 12.28. Let F be an ultrafilter on a nontrivial superatomic BA A. Then
there is an α such that F /∈ (Ult(A))(α). The least such α is a successor ordinal.

Proof. The first statement holds by Proposition 12.27. Now let α be minimum such
that F /∈ (Ult(A))(α). Since A is nontrivial, α 6= 0. Clearly α is not a limit ordinal.

If A is a nontrivial superatomic BA and F ∈ Ult(A), then the rank of F is rk(F ) = min{α :
F /∈ (Ult(A))(α+1)}.

Proposition 12.29. Suppose that A is a nontrivial superatomic BA and F ∈ Ult(A).
Then rk(F ) = α iff the following condition holds:

F ∈ (Ult(A))(α) and ∃a ∈ F [a/Iα(A) is an atom].

Proof. ⇒: Assume that rk(F ) = α. By definition we have F ∈ Ult(A)\(Ult(A))(α+1).
Hence by Proposition 12.19 we have F ∈ (Iα+1(A))d. So, choose a ∈ Iα+1(A) such that
F ∈ S(a). By definition there is a finite subset G of A such that a/Iα(A) =

∑

b∈G b/Iα(A)

with each b/Iα(A) an atom. Thus a ·
∏

b∈G−b ∈ Iα(A). Now F ∈ (Ult(A))(α), so by

Proposition 12.19, F /∈ (Iα(A))d. It follows that a ·
∏

b∈G−b /∈ F , so −a +
∑

b∈G b ∈ F .
Hence there is a b ∈ G such that b ∈ F , as desired.
⇐: Assume the indicated condition. Then a ∈ Iα+1(A), so F ∈ (Iα+1(A))d. Hence

F /∈ (Ult(A))(α+1) by Proposition 12.19. Since F ∈ (Ult(A))(α), it follows that rk(F ) = α.
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If A is a nontrivial superatomic BA and a ∈ A, then there is a least ordinal α such that
a ∈ Iα(A). If a 6= 0, then this ordinal is a successor ordinal β + 1, and we define the rank
of A, rk(a) to be β.

Proposition 12.30. If A is a nontrivial superatomic BA, F is an ultrafilter on A, and
rk(F ) = α, then rk(a) ≥ α for all a ∈ F .

Proof. We have F ∈ (Ult(A))(α)\(Ult(A))(α+1). Suppose that a ∈ F and rk(a) < α;
say rk(a) = β. Thus a ∈ Iβ+1(A)\Iβ(A). Say a/Iβ(A) = b1/Iβ(A) + · · · − bn/Iβ(A), with
each bi/Iβ(A) an atom. Then a·−b1 ·. . .·−bn ∈ Iβ(A). Now F ∈ (Ult(A))(α) ⊆ (Ult(A))(β),
so F /∈ (Iβ(A))d by Corollary 12.20. Thus a · −b1 · . . . · −bn /∈ F , so −a+ b1 + · · ·+ bn ∈ F .
Hence bi ∈ F for some i. Then rk(F ) = β by Proposition 19, contradiction.

Proposition 12.31. If X is an open subset of Ult(A), then X(α) = X ∩ (Ult(A))(α).

Proof. We use induction on α. It is obvious for α = 0. For α limit,

X(α) =
⋂

β<α

X(β) =
⋂

β<α

(X ∩ (Ult(A))(β)) = X ∩
⋂

β<α

(Ult(A))(β) = X ∩ (Ult(A))(α).

Now assume X(α) = X ∩ (Ult(A))(α). Suppose that F ∈ X(α+1) while F /∈ (Ult(A))(α+1).
Now F ∈ X(α), so F ∈ (Ult(A))(α) by the inductive hypothesis. Hence F is an isolated
point of (Ult(A))(α). Thus {F} is a clopen subset of (Ult(A))(α). Say U is open in
(Ult(A))(α) and U ∩ (Ult(A))(α) = {F}. Thus U ∩ X(α) = U ∩ X ∩ (Ult(A))(α) = {F}.
Thus F is isolated in X(α), contradiction,

Conversely, suppose F ∈ X ∩ (Ult(A))(α+1) but F /∈ X(α+1). Now F ∈ (Ult(A))(α),
so F ∈ X ∩ (Ult(A))(α), hence by the inductive hypothesis, F ∈ X(α). So F is an isolated
point of X(α). Thus {F} is a clopen subset of X(α), hence by the inductive hypothesis also
of X∩(Ult(A))α). Say U is open in (Ult(A))(α) and U∩X∩(Ult(A))α) = {F}. Since U∩X
is open in (Ult(A))(α), this shows that F is isolated in (Ult(A))(α), contradiction.

The following is from Bagaria 2002.

If θ = 〈κα : α < λ〉 is a sequence of infinite cardinals, then a θ-poset is a poset (T,≤) such
that the following conditions hold:

(1) T =
⋃

α<λ Sα, where each Sα has the form {α} × Yα, with Yα of size κα.

(2) For all distinct s, t ∈ T there is a finite i({s, t}) ⊆ T such that
(a) ∀u ∈ i({s, t})[u ≤ s, t];
(b) ∀u ≤ s, t∃v ∈ i({s, t})[u ≤ v].

(3) ∀s ∈ Sα∀t ∈ Sβ [s < t→ α < β].

(4) ∀α, β∀t[α < β < λ ∧ t ∈ Sβ → {s ∈ Sα : s < t} is infinite].

A topological space X is locally compact iff ∀x ∈ X∃open U [x ∈ U and U is compact]. For
X locally compact, its one-point compactification is X ∪{Ω}, where a subset V of X ∪{Ω}
is called open iff it is an open subset of X , or else has the form {ω}∪ (X\F ) with F closed
and compact in X .
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Proposition 12.32. The definition does give a topology on X ∪ {Ω}.

Proof. Clearly ∅ and X ∪ {Ω} are open. Suppose that V1 and V2 are open. If one of
them is a subset of X , clearly U1 ∩ U2 ⊆ X and U1 ∩ U2 is open in X , hence in X ∪ {Ω}.
Suppose that V1 = {Ω} ∪ (X\F1) and V2 = {Ω} ∪ (X\F2) with F1 and F2 closed and
compact in X . Then V1 ∩ V2 = {Ω} ∪ (X\(F1 ∪ F2)), and F1 ∪ F2 is closed and compact
in X . So V1 ∩ V2 is open.

Now suppose that A is a family of open subsets of X ∪ {Ω}. If Ω is not in the
union, then the union is open in X , and hence in X ∪ {Ω}. If Ω is in the union, say
{ω} ∪ (X\F ) ∈ A with F closed and compact in X . Then

⋃

A has the form {Ω} ∪W
with W ⊆ X and W open, so

⋃

A = {Ω}∪ (X\(X\W )), and X\W\F , so X\W is closed
and compact in X .

Proposition 12.33. X ∪ {Ω} is compact.

Proof. Suppose that O is an open cover of X ∪{Ω}. Choose V ∈ O such that ω ∈ V .
Say V = {Ω} ∪ (X\F ), where F is closed and compact in X . Let O ′ be a finite subset of
O such that F ⊆

⋃

O ′. Then O ′ ∪{V } is a finite subset of O which covers X ∪{Ω}.

Proposition 12.34. If X is compact, then Ω is isolated in X ∪ {Ω}.

Proof. {Ω} ∪ (X\X) is open.

Proposition 12.35. If X is locally compact, then X is Hausdorff iff X∪{Ω} is Hausdorff.

Proof. ⇒: Assume that X is Hausdorff, and suppose that x, y are distinct members
of X∪{Ω}. If x, y ∈ X , then the conclusion is clear. Suppose that x = Ω and y 6= ω. Let U
be open with y ∈ U and U compact. Then {Ω}∪ (X\U) and U are disjoint neighborhoods
of Ω, y respectively.
⇐: Assume that X ∪ {Ω} is Hausdorff and x, y are distinct members of X . Let V,W

be disjoint open neighborhoods of x, y respectively, in X ∪ {Ω}. Then V \{Ω} and W\{Ω}
are disjoint open neighborhoods of x, y respectively, in X .

Proposition 12.36. If X is locally compact but not compact, then is(X) = is(X ∪ {Ω}).

Proof. ⊆ is clear. Now suppose that x ∈ is(X ∪ {Ω}). If x = Ω, then X is compact,
contradiction. So x 6= Ω. Let V be open in X ∪ {Ω} with V = {x}. Then V must be open
in X .

Proposition 12.37. If X is locally compact but not compact, and Y = X ∪ {Ω}, then for
any α,

(i) if Ω ∈ Y (α+1), then is(Y (α)) = is(X(α)) and Y (α+1) = X(α+1) ∪ {Ω};
(ii) if Ω ∈ Y (α)\Y (α+1), then Y (α+1) = X(α+1);
(iii) if Ω /∈ Y (α), then Y (α+1) = X(α+1).

Proof. By induction on α. For α = 0 we have Ω /∈ is(Y ), and is(Y (0)) = is(X(0)) by
Proposition 12.36. Then

Y (1) = Y \is(Y (0)) = (X ∪ {Ω})\is(X(0)) = (X\is(X0)) ∪ {Ω} = X(1) ∪ {Ω}.
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This proves (i) for α = 0. (ii) and (iii) hold vacuously for α = 0.
Now assume (i)–(iii) for α. For (i) for α+1, assume that Ω ∈ Y (α+2). So Ω ∈ Y (α+1),

and hence Y (α+1) = X(α+1) ∪ {Ω} by (i) for α. It follows that is(Y (α+1)) = is(X(α+1)).
Also,

Y (α+2) = Y (α+1)\is(Y (α+1))

= (X(α+1) ∪ {Ω})\is(X(α+1)

= (X(α+1)\is(X(α+1)) ∪ {Ω}

= X(α+2) ∪ {Ω}.

For (ii) for α+ 1, assume that Ω ∈ Y (α+1)\Y (α+2). Thus Ω ∈ is(Y (α+1)). Hence, using (i)
for α,

Y (α+2) = Y (α+1)\is(Y (α+1))

= (X(α+1) ∪ {Ω})\is(X(α+1) ∪ {Ω})

= X(α+1)\is(X(α+1)) = X(α+2).

Finally, for (iii) for α+1, assume that Ω /∈ Y (α+1). By (ii) and (iii) for α, Y (α+1) = X(α+1).
Hence Y (α+2) = Y (α+1)\is(Y (α+1)) = X(α+1)\is(X(α+1)) = X(α+2).

Now suppose inductively that α is limit. For (i), suppose that Ω ∈ Y (α+1). Then
Ω ∈ Y (α), hence Ω ∈ Y (β+1) for each β < α, and so by the inductive hypothesis,
Y (β+1) = X(β+1) ∪ {Ω}. Hence Y (α) = X(α) ∪ {Ω}. So is(Y (α)) = is(X(α)) and
Y (α+1) = Y (α)\is(Y (α)) = (X(α) ∪ {Ω})\is(X(α) ∪ {Ω}) = X(α+1) ∪ {Ω}.

For (ii), suppose that Ω ∈ Y (α)\Y (α+1). Then clearly Y (α) = X(α) ∪ {Ω}, and so
Y (α+1) = Y (α)\is(Y (α)) = (X(α) ∪ {Ω})\is(X(α) ∪ {Ω}) = X(α+1).

For (iii), suppose that Ω /∈ Y (α). Then there is a β < α such that Ω /∈ Y (β), and so
Y (β) = X(β) by the inductive hypothesis. So Y (α) = X(α) and hence Y (α+1) = X(α+1).

Theorem 12.38. (Lemma 1) Let θ be a sequence of infinite cardinals such that there is a
θ-poset. Then there is a locally compact Hausdorff scattered space X such that CS(X) = θ.

Theorem 12.39. (Theorem 1) Let η be an ordinal less than ω2, and let θ = 〈κα : α < η〉
be a sequence of cardinals, each κα either ω or ω1. Then there is a θ-poset.

Theorem 12.40. (Theorem 2, Juhász, Weiss) Let η be an ordinal less than ω2, and let
θ = 〈κα : α < η〉 be a sequence of cardinals. Assume ∀α < η[ω ≤ κα ≤ 2ω and κα ≤ ω1 for
all α < η such that cf(α) = ω1]. Then there is a locally compact scattered space X such
that CS(X) = θ.

The following is from Baker 1972.

For any ordinal ξ, Γ(ξ) is the set ξ + 1 with the order topology. If X is a scattered space
and α is the ordinal such that X(α) is finite and nonempty, then the characteristic of X is
the pair (α < |X(α)|).
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Theorem 12.41. (Theorem 1) If X is a compact scattered space with characteristic
(λ, n) and every point of X has a neighborhood base consisting of a (possibly transfinite)
decreasing sequence of sets, then there is a continuous mapping of X onto Γ(ωλ · n).

Theorem 12.42. (Theorem 2) it X is homeomorphic to Γ(ωλ ·n) iff X has characteristic
(λ, n) and every point of X has a neighborhood base consisting of a decreasing sequence
〈Uα : α < β〉 of sets such that if γ < α is limit, then

⋂

β<γ Uβ\Uγ | ≤ 1.

The following is from Baumgartner, Shelah 1987.

For A a superatomic BA and α < rk(A), let wdα(A) the the size of the set of atoms of
A/Iα(A). The sequence 〈wdα(A) : α < rk(A)〉 is the cardinal sequence of A. For κ and
infinite cardinal, A is

κ− thin-thick iff rk(A) = κ+ 1 and ∀α < κ[wdα(A) = κ] and wdκ(A) = κ+;

κ− thin-very thick iff rk(A) = κ+ 1 and ∀α < κ[wdα(A) = κ] and wdκ(A) ≥ κ++;

κ− thin-tall iff rk(A) = κ+ and ∀α < κ+[wdα(A) = κ];

κ− thin-very tall iff rk(A) = κ++ and ∀α < κ++[wdα(A) = κ].

Theorem 12.43. (Theorem 2.1) The following is relatively consistent: ZFC+MA+2ω

large + there are no ω1-thin-very thick BAs.

Theorem 12.44. (Corollary 3.3) If it is consistent that a strong inaccessible exists, then
it is consistent that there is no ω1-thin-thick BA.

Theorem 12.45. (Theorem 7.1) It is relatively consistent that there is an ω1-thin-very
tall BA.

The following is from Bekkali 2001.

Theorem 12.46. (Theorem 3.1) For T a pseudotree the following are equivalent:
(i) treealg(T ) is superatomic.
(ii) η and <ω2 do not embed in T .

The following is from Juhasz, Weiss 2006.

Theorem 12.47. (Theorem 5) A sequence 〈κα : α < ω1〉 is the cardinal sequence of a
superatomic BA iff ∀ξ, η[ξ < η → κη ≤ κ

ω
ξ ].

The following is from Just 1985.

A superatomic BA is thin-tall iff it has countable width but uncountable height. It is thin
very-tall iff in addition it has height ≥ ω2 +1. It is thin-thick iff it has height ω1 +2, width
≤ ω1, with ω2 atoms at the next to last level.

Theorem 12.48. (Theorem 2.11) It is relatively consistent that there is no thin-thick
subalgebra of P(ω).
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Theorem 12.49. (Theorem 2.13) It is relatively consistent that there is no thin very-tall
BA.

The following is from Martinez 1995.

Theorem 12.50. Suppose that in M, θ = 〈κα : α < ω1〉 is a sequence of infinite cardinals
Then, there is a partial order P in M which preserves cardinals and such that changes car-
dinal exponentiation and whenever G is P-generic over M, in M[G] there is a superatomic
BA B such that θ is the cardinal sequence of B.

Theorem 12.51. Suppose that in M, κ is an uncountable cardinal such that κ<κ = κ and
θ = 〈κα : α < κ+〉 a cardinal sequence such that κα ≥ κ for every α < κ+ and κα = κ
for every α < κ+ cf(α) < κ. Then, there is a partial order in M which preserves cardinals
and such that P changes cardinal exponentiation an whenever G is P-generic over M, in
M[G] there is a superatomic BA B such that θ is the cardinal sequence of B.

The following is from Martinez 1999.

If A is superatomic, the width of A is the supremum of the cardinality of the set of atoms
of A/Iα(A). The height of A is the least ordinal α such that A/Iα is finite.

Theorem 12.52. Assume that in M , κ is a cardinal such that κ<κ = κ, and η is an
ordinal with 0 < η < κ++. Then there is a generic extension preserving cardinals such
that in the extension there is a superatomic BA of height η and width κ.

The following is from Pierce 1959.

Let κ be an infinite cardinal. A poset P is κ-compact iff P has a zero element 0 and
∀M ⊆ P [|M | ≤ κ and ∀F ∈ [M ]<ω∃p ∈ P\{0}[p ≤ f ]]→ ∃p ∈ P\{0}[p ≤M ]. A BA A is
κ-compact iff it has a dense κ-compact subset.

Examples of κ-compact BAs are given, with connections with distributive laws.
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13. Tail algebras

The following is from Bekkali, Pouzet, Zhani 2007.

An incidence structure is a triple R
def
= (I, ρ, J) such that ρ ⊆ I × J . We define RR =

{ρ[{i}] : i ∈ I}. B(R) is the subalgebra of P(J) generated by RR.

Proposition 13.1. For any BA A, A ∼= B(R) with R = (A,∈,Ult(A)).

If P is a poset, define F<ω(P ) = {{p : ∃q ∈ X [q ≤ p]} : X ∈ [P ]<ω}; F<ω(P ) is ordered
by inclusion.

Proposition 13.2. (Proposition 2.10) For any poset P , the free BA on P is isomorphic
to tailalg(F<ω(P )).

The following is from Brown 2015.

If T is a pseudo-tree algebra and C ⊆ T is an initial chain, then a subset R ⊆ T is a set
of approximate immediate successors of C iff the following conditions hold:

(1) C < r for all r ∈ R.

(2) For all s > C there is an r ∈ R such that r ≤ s.

Then we define

εC = min{|R| : R is a set of approximate immediate successors of C}.

Theorem 13.3. (Theorem 2) For any pseudotree T , the character of Treealg(T ) is
sup{εC : C is an initial chain of T}.

The following is from Eda 1975.

Proposition 13.4. If T is a tree, then {T ↑ t : t ∈ T} is a base for a topology on T .

Proof. Suppose that s ∈ (T ↑ t1) ∩ (T ↑ t2). Then s ∈ (T ↑ s) ⊆ (T ↑ t1) ∩ (T ↑ t2).
If t ∈ T , then t ∈ (T ↑ t).

treealg′(T ) is the complete BA of all regular open sets in this topology. A tree is ever
splitting iff every node has at least two immediate successors.

Proposition 13.5. (Lemma 2) A complete BA is isomorphic to Treealg′(T ) for some tree
T iff it contains a dense ever splitting tree.

For any BA A, sat(A) is the least cardinal λ such that every pairwise disjoint subset of A
has size ≤ λ.

Proposition 13.6. (Theorem 3) If Treealg′(T ) is atomless and sat(Treealg′(T )) ≤ κ,
then the (κ, 2)-distributive law fails in Treealg′(T ).

The following is from Pierce 1973.

Theorem 13.7. If A is a countable BA, then A has an ordered basis of one of the following
types: ωλ ·n+ 1, λ a countable ordinal;

∑

r∈η ω
αr + 1, each αr a countable ordinal; a sum

of these two types.
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14. The Tarski invariants

We sketch the treatment from Koppelberg 1989. For any BA A we define

E(A) = {x ∈ A : ∃y, z ∈ A[x = y + z, A ↾ y is atomless, A ↾ z is atomic]};

T0(A) = {0};

Ti+1(A) = {a ∈ A : a/Ti(A) ∈ E(A/Ti(A))}.

Now we define the invariants:

Inv = {(−1, 0, 0), (ω, 0, 0)}

∪ {(k, l,m) : k ∈ ω, l ∈ 2, m ∈ (ω + 1), l +m 6= 0};

inv(A) = (−1, 0, 0) iff |A| = 1;

inv(A) = (ω, 0, 0) iff ∀i ∈ ω[|A/Ti(A)| > 1];

inv(A) = (k, l,m) iff k ∈ ω and the following hold:

(a) |A/Tk(A)| > 1 = |A/Tk+1(A)|;

(b) A/Tk(A) is atomic and l = 0;

(c) A/Tk(A) is not atomic and l = 1;

(d) m = min{ω, |At(A/Tk(A))|}.

Theorem 14.1. For each (k, l,m) ∈ Inv there is a BA A such that inv(A) = (k, l,m).

Theorem 14.2. A ≡ B iff inv(A) = inv(B).

Theorem 14.3. For each (k, l,m) ∈ Inv there is a set Tklm of sentences such that for any
BA A, A |= Tklm iff inv(A) = (k, l,m).

The following is from Bonnet, Rubin 1991.

For each θ ∈ Inv let Mθ be the class of all BAs with invariant θ; Mκ
θ is the class of A ∈Mθ

of size ≤ κ.

Theorem 14.4. (Theorem 2) For every θ ∈ Inv\{(ω, 0, 0)}. every sequence in (Mω
θ ,�)

has an increasing subsequence.

Theorem 14.5. (Theorem 3) (i) There is a family of size 2ω of pairwise �-incomparable
members of Mω

(ω,0,0).

(ii) There is a system 〈Ar : r ∈ R〉 of members of Mω
(ω,0,0) such that r ≤ s iff Ar � As.
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15. Ultrafilters

A general theorem in Arhangelski 1969a has the following consequence:

Theorem 15.1. If Ult(A) is uncountable and every ultrafilter on A is countably generated,
then |Ult(A)| = 2ω.

The following is from Balcar, Simon 1980.

Let κ, τ be cardinal numbers, and M ⊆ [κ]κ. We say that M is strongly τ -decomposable
iff there is an almost disjoint A ⊆ [κ]κ and a partition 〈Aα : α < τ〉 of A such that
∀a ∈M∀α < τ∃b ∈ Aα[|b ∩ a| = κ].

Theorem 15.2. (Theorem) If κ is regular and uncountable, then every uniform ultrafilter
on κ is strongly bκ-indecomposable.

Theorem 15.3. (Proposition 8) The collection of all stationary subsets of κ is strongly
bκ-decomposable.

The following is from Bartoszynski, Shelah 2004.

If f ∈ ωω and U is an ultrafilter on ω, then we define f(U) = {X ⊆ ω : f−1[X ] ∈ U}.
An ultrafilter U on ω is Hausdorff iff for any f, g ∈ ωω, if f(U) = g(U) then ∃X ∈

U [f ↾ X = g ↾ X ].
A function f ∈ ωω is finite-to-one iff ∀n ∈ ω[f−1[{n}] is finite].
An ultrafilter U on ω is weakly Hausdorff iff for any finite-to-one f, g ∈ ωω, if f(U) =

g(U) then ∃X ∈ U [f ↾ X = g ↾ X ].

Theorem 15.4. If f(U) = U , then {n : f(n) = n} ∈ U .

Theorem 15.5. (Theorem 12) There is an ultrafilter which is not weakly Hausdorff.

The following is from Banaschewski 1955.

Theorem 15.6. (Satz 2) For every infinite cardinal κ, there are exactly 22κ

uniform
ultrafilters on κ.

Theorem 15.7. (Satz 3) For infinite cardinals κ, λ with 2λ ≤ κ, there are at most 2λ

ultrafilters F on κ such that λ is the smallest size of a member of F .

Lemma 15.8. (Lemma 3) The automorphisms of the space Ult(P(κ)) are the permuta-
tions of Ult(P(κ)) induced by order isomorphisms of the set of filters on P(κ).

Lemma 15.9. (Satz 4) Let κ be an infinite cardinal. Let f be an automorphism of P(κ).
(i) There is a permutation g of κ such that f({α}) = {g(α} for all α ∈ κ.
(ii) For any A ⊆ κ, f(A)) = {g(α) : α ∈ A}.
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Proof. (i) is clear. For (ii), suppose that A ⊆ κ. If α ∈ A, then {α} ⊆ A, hence
f({α}) ⊆ f(A). So {g(α)} ⊆ f(A) and so g(α) ∈ f(A). On the other hand, suppose that
g(α) ∈ f(A). Thus f({α}) = {g(α)} ⊆ f(A), hence {α} ⊆ A and so α ∈ A.

Theorem 15.10. (Satz 5) The conjugacy classes of Aut(Ult(P(κ))) are exactly the classes
of order-isomorphic ultrafilters.

The following is from Blass 1973.

If E is an ultrafilter on ω and f : ω → ω, then f(E) = {x ⊆ ω : f−1[x] ∈ E}. Clearly
f(E) is an ultrafilter on ω.

Proposition 15.11. If E is an ultrafilter on ω, f, g : ω → ω, and f ↾ x = g ↾ x for some
x ∈ E, then f(E) = g(E).

Proof. Assume the hypotheses, and suppose that y ∈ f(E). Then f−1[y] ∈ E. Hence
x ∩ f−1[y] ∈ E. Now x ∩ f−1[y]} = {m ∈ ω : m ∈ x and f(m) ∈ y} ⊆ {m ∈ ω : g(m) ∈
y} = g−1[y] ∈ E; so y ∈ g(E).

We say that D ≤RK E iff there is an f : ω → ω such that D = f(E).

We say that D is isomorphic to E iff there is a permutation f of ω such that D = F (E).

Proposition 15.12. If D = f(E) and f is one-one on a member of E, then D ∼= E.

Proof. Assume the hypotheses. Say f ↾ x is one-one, with x ∈ E. If x is finite, then
E is principal; say {m} ∈ E. Then {f(m)} ∈ D and so D ∼= E. Suppose that x is infinite.
Write x = y ∪ z with y ∩ z = ∅ and y, z infinite. Say y ∈ E. Then ω\y and ω\f [y] are
infinite. Let g be a permutation of ω which agrees with f ↾ y. Then D = f(E) = g(E) by
Proposition 15.11, and E ∼= g(E) by definition.

Proposition 15.13. If D ≤RK E ≤RK F , then D ≤RK F .

Proof. Let f, g : ω → ω be such that D = f(E) and E = g(F ). Then

F = {x ⊆ ω : g−1[x] ∈ E} = {x ⊆ ω : f−1[g−1[E]] ∈ D} = {x ⊆ ω : (g ◦ f)−1[D]}

Theorem 15.14. (Theorem 1) If f(D) = D, then {m ∈ ω : f(m) = m} ∈ D.

Proof. Assume that f(D) = D. Let T = {n ∈ ω : f(n) < n}. Suppose that T ∈ D;
we want to get a contradiction.

(1) ∀m ∈ ω∃n ∈ ω[fn(m) /∈ T ].

For, assume that m ∈ ω and ∀n ∈ ω[fn(m) ∈ T ]. Then · · · < f2(m) < f(m) < m,
contradiction.

For each n ∈ ω let Tn = {m ∈ ω : n is minimum such that fn(m) /∈ T}.

(2) T =
⋃

0<n∈ω Tn.
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In fact, clearly Tn ⊆ T for n > 0. Now let m ∈ T . By (1) there is an n ∈ ω such that
fn(m) /∈ T ; hence m ∈ Tp for some p.

(3) ∀n ∈ ω[Tn+1 = f−1[Tn]].

In fact, f−1[Tn] = {m ∈ ω : f(m) ∈ Tn} = Tn+1.

(4)
⋃

n∈ω T2n ∈ D iff
⋃

n∈ω T2n+2 ∈ ω.

In fact, suppose that X =
⋃

n∈ω T2n ∈ D. Then

f−1[X ] =
⋃

n∈ω

f−1[T2n] =
⋃

n∈ω

T2n+1 ∈ ω.

On the other hand, suppose that
⋃

n∈ω T2n+1 ∈ D. Then f−1[X ] ∈ D, and so X ∈ D.
Now by (2),

⋃

n∈ω T2n = ω\
⋃

n∈ω T2n+1. So (4) is a contradiction.
It follows that T /∈ D.
Now let R = {m ∈ ω : m < f(m)}. Suppose that R ∈ D. For each n ∈ ω let

Rn = {m ∈ ω : n is minimum such that fn(m) /∈ R}. Then f−1[Rn] = {m ∈ ω :
f(m) ∈ Rn} = Rn+1. If

⋃

n∈ω R2n ∈ D, then f−1[
⋃

n∈ω R2n] =
⋃

n∈ω R2n+1 ∈ D.
Similarly,

⋃

n∈ω R2n+1 ∈ D implies that
⋃

n∈ω R2n ∈ D. Hence
⋃

n∈ω R2n /∈ D and
⋃

n∈ω R2n+1 /∈ D. So Y
def
= ω\

⋃

n∈ω Rn ∈ D. With m the least element of Y we have
m < f(m) < f2(m) < · · ·. Let Z = {m, f2(m), f4(m), . . .} and W = {f(m), f3(m), . . .}.
Then f−1[Z] = W and so Z ∈ D iffW ∈ D. Since Z∪W = Y , this is a contradiction.

Corollary 15.15. (Corollary 1) If f(D) ∼= D, then f is one-one on some member of D.

Proof. Assume that f(D) ∼= D; say g : ω → ω and g(f(D)) = D. Then by Theorem

15.14, x
def
= {m ∈ ω : g(f(m)) = m} ∈ D. Clearly f is one-one on x.

Corollary 15.16. If D ≤RK E ≤RK D, then D ∼= E.

Proof. Assume that D ≤RK E ≤RK D. Say D = f(E) and E = g(D). Then

D = f(g(D)), so by Theorem 15.14, x
def
= {m ∈ ω : f(g(m)) = m} ∈ D. Hence g is one-one

on x ∈ D, so D ∼= E by Proposition 15.12.

Proposition 15.17. All principal ultrafilters are isomorphic.

Proof. Suppose that {m} ∈ D and {n} ∈ E. Let f ;ω → ω be the function with
constant value n. Then x ∈ f(D) iff f−1[x] ∈ D iff n ∈ x, so f(D) = E. Thus E ≤RK D.
Similarly, D ≤RK E. So D ∼= E by Corollary 15.16.

Proposition 15.18. If D is principal and E is arbitrary, the D ≤RK E.

Proof. Assume that D is principal and E is arbitrary, Say {m} ∈ D. Let f : ω → ω
have constant value m. Then for any x ⊆ ω, x ∈ f(E) iff f−1[x] ∈ E iff m ∈ x. Thus
f(E) = D.
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Proposition 15.19. If D is an ultrafilter and D ≤RK E for every ultrafilter E, then D
is principal.

Proof. Assume that D is an ultrafilter and D ≤RK E for every ultrafilter E. Let
{m} ∈ E, and let f : ω → ω be such that D = f(E). Then for any x ⊆ ω, x ∈ D iff
f−1[x] ∈ E iff m ∈ f−1[x] iff f(m) ∈ x. So D is principal, with {f(m)} ∈ D.

Proposition 15.20. D is minimal among nonprincipal ultrafilters iff for every f : ω → ω
there is an x ∈ D such that f ↾ x is constant or one-one.

Proof. ⇒: Suppose that D is minimal among nonprincipal ultrafilters, and f : ω →
ω. Then f(D) ≤RK D, so f(D) is principal or f(D) = D. If f(D) is principal, say
{m} ∈ f(D). Then f−1[{m}] ∈ D. Thus f ↾ f−1[{m] is constant. If f(D) ∼= D, then f is
one-one on a member of D by Corollary 15.15.
⇐: Assume the indicated condition, and suppose that E ≤RK D. Say f : ω → ω and

E = f(D).
Case 1. f has constant value m on x ∈ D. Thus x ⊆ f−1[{m}], so f−1[{m}] ∈ D.

Now for any y ⊆ ω, y ∈ E iff f−1[{m}] ∩ f−1[y] ∈ D iff f(m) ∈ y; so E = {f(m)}.
Case 2. f is one-one on x ∈ D. Then D ∼= E by Proposition 15.12.

A P -point is a nonprincipal ultrafilter D such that for every f : ω → ω there is an x ∈ D
such that f ↾ x is constant or finite-to-one (∀m ∈ x[{n ∈ x : f(n) = f(m)} is finite]).

Proposition 15.21. Every minimal nonprincipal ultrafilter is a P -point.

Proof. By Proposition 15.20.

Proposition 15.22. If D is a P -point, E ≤RK D, and E is nonprincipal, then E is a
P -point.

Proof. Suppose thatD is a P -point, E ≤RK D, and E is nonprincipal. Let f : ω → ω.
Since E ≤RK D, let g : ω → ω be such that E = g(D). Since D is a P -point, we have two
cases.

Case 1. There is an x ∈ D such that (f ◦ g) ↾ x is constant, say with value m. Then
{n : f(n) = m} ∈ E iff g−1[{n : f(n) = m}] ∈ D iff {p : f(g(p)) = m} ∈ D; since
x ⊆ {p : f(g(p)) = m}, we have {p : f(g(p)) = m} ∈ D, and hence {n : f(n) = m} ∈ E, as
desired.

Case 2. There is an x ∈ D such that (f ◦ g) ↾ x is finite-to-one. Then x ⊆ g−1[g[x]],
so g−1[g[x]] ∈ D, and hence g[x] ∈ E. Now ∀n ∈ x[{m ∈ x : f(g(m)) = f(g(n))} is finite].
Hence for all p ∈ g[x], {m ∈ x : f(g(m)) = f(p)} is finite, so {q ∈ g[x] : f(q) = f(p)} is
finite, as desired.

Proposition 15.23. Ultrafilters are directed upwards under ≤RK .

Proposition 15.24. (Theorem 2) (MA) There are 22ω

isomorphism classes of minimal
ultrafilters under ≤RK , and also of P -points.
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Let A be a first-order structure and f : ω → ω withD = f(E). Then there is an elementary
embedding f∗ of ωA/D into ωA/E such that for any x ∈ ωA we have f∗(x/D) = (x◦f)/E.
In fact,

x/D = y/D iff {m ∈ ω : x(m) = y(m)} ∈ D

iff f−1[{m ∈ ω : x(m) = y(m)}] ∈ E

iff {m ∈ ω : x(f(m)) = y(f(m))} ∈ E

iff (x ◦ f)/E = (y ◦ f)/E.

Thus f∗ is well-defined and one-one. For the elementary embedding property, let x ∈
ω(ωA), π : ωA→ ωA/D natural, π′ : ωA→ ωA/E natural. Then

ωA/D |= ϕ[π ◦ x] iff {i ∈ ω : A |= ϕ[pri ◦ x]} ∈ D

iff f−1[{i ∈ ω : A |= ϕ[pri ◦ x]}] ∈ E

iff {i ∈ ω : A |= ϕ[prf(i) ◦ x]} ∈ E.

Now let x′k(i) = xk(f(i)) for any i, k ∈ ω. Then for any i, k, (prf(i) ◦ x)(k) = xk(f(i)) =
x′k(i) = (pri ◦ x

′)k. Hence by the above,

ωA/D |= ϕ[π ◦ x] iff {i ∈ ω : A |= ϕ[pri ◦ x
′]

iff ωA/E |= ϕ[π′ ◦ x′].

Now for any i, k ∈ ω, (xk ◦f)(i) = xk(f(i)) = x′k(i); so xk ◦f = x′k. Hence (f∗ ◦π ◦x)(k) =
f∗(xk/D) = (xk ◦ f)/E = x′k/E. So f∗ ◦ π ◦ x = π′ ◦ x′. Hence by the above we get
ωA/D |= ϕ[π ◦ x] iff ωA/E |= ϕ[f∗ ◦ π ◦ x].

Theorem 15.25. (Theorem 8) (MA) There is an order-isomorphism of R into the set of
equivalence classes of P -points.

The following is from Blass 1981.

Theorem 15.26. (Corollary 2c) (CH) There is an initial segment of the Rudin-Keisler
order of order type ω1.

Theorem 15.27. (Corollary 2d) (CH) There is an initial segment of the Rudin-Keisler
order which is a tree of height ω1 in which each node has 2ω1 immediate successors and
each increasing ω-sequence of nodes has a unique least upper bound.

The following is from Brown, Dobrinen 2016.

For posets P,Q, a cofinal map from P to Q is a function f : P → Q such that ∀X ⊆ P [X
cofinal in P → f [X ] is cofinal in Q]. If there is a cofinal map from P to Q, then we say
that Q is Tukey reducible to P , and we write Q ≤T P . P and Q are Tukey equivalent iff
P ≤T Q ≤T P . For an ultrafilter U on a BA A, the Tukey type of U is the Tukey type of
the poset (U,≥).
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Proposition 15.28. An ultrafilter U on a BA A has maximal Tukey type among all
ultrafilters on A iff U ≡I ([|A|]<ω,⊆).

For any BA A, its Tukey spectrum is the set TS(A) of all Tukey types of ultrafilters on A,
ordered by ≤T .

Proposition 15.29. For each infinite cardinal κ there is a maximal Tukey type of ultra-
filters on P(κ).

Theorem 15.30. (Theorem 2.1) If A has an independent subset of size |A|, then there is
a maximal Tukey type of ultrafilters on A.

The following is from Dow 1984

For any infinite cardinal κ, a function f : [κ]<ω → P(κ) is multiplicative iff ∀H ∈
[κ]<ω[f(H) = {f({α}) : α ∈ H}]. A filter P on κ is κ+-good iff ∀g : [κ]<ω → P∃f :
[κ]<ω → P∀H ∈ [κ]<ω[f(H) ⊆ g(H)].

If (S, L) is a linear order, then (C,D) is a (κ, λ)-gap in (S, L) iff L(C,D), C is an
increasing chain of type κ, D is a decreasing chain of type λ, and there is no x ∈ S with
L(C, x) and L(x,D).

For any infinite cardinal κ and any γ < κ, let γ ∈ κκ be the function with constant
value γ. For each P ∈ U(κ), let λ(α, P ) = min{µ : (κκ, S)/P has a (ωα, µ)-gap of the form
([{γ], γ < ωα}, {[fδ] : δ < µ}) for each regular ωα < µ}.

Theorem 15.31. (Proposition 1.4) Let P ∈ U(κ) be countably incomplete and κ+-good.
Suppose that (S, L) has chains of each finite length. Then for each regular ωα ≤ κ, λ(α, P )
is the unique regular cardinal µ such that κκ, S)/P has an (ωα, µ)-gap.

Theorem 15.32. (Theorem 2.1) There is an ω-incomplete α+-good ultrafilter p on α so
that λ(β, p) = cf(2α) for every ωβ ≤ α.

Theorem 15.33. (Theorem 2.2) For each regular κ with ω1 ≤ κ ≤ 2ω there is a uniform
ultrafilter p on ω such that λ(p) = κ.

Jipsen, Rose 1990 characterizes saturated atomic BAs in terms of an ultraproduct of finite
BAs.

The following is from Hajnal, Juhasz 1972.

If A is a collection of ultrafilters on a set X , then a function f : A →P(X) is a disjoint
representation iff ∀U ∈ [A [f(U) ∈ u] and ∀U, V ∈ A [U 6= V → f(U) ∩ f(V ) = ∅].

Theorem 15.34. (GCH) If κ is an infinite cardinal, then there is a set A of ultrafilters
on κ such that |A | = 22κ

and no uncountable subset of A has a disjoint representation.

The following is from Lacava 1983.

An atomic BA A is principal iff for every subalgebra B of A such that |B| < |at(A)| and
for every ultrafilter F of B there is a principal ultrafilter G of A such that F = G ∩B.
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Proposition 15.35. An atomic BA A is principal iff for every F ⊆ A such that F has
fip and |F | < |at(A)| there is a nonzero a ∈ A such that ∀b ∈ F [a ≤ b].

Proof. ⇒: Let B = 〈F 〉 and let F ′ be an ultrafilter on B containing F . Let G be
a principal ultrafilter on A such that F ′ = G ∩ B. Say G is generated by an atom a. If
b ∈ F , then b ∈ F ′ and so b ∈ G, hence a ≤ b.
⇐: assume the indicated condition, and suppose that B is a subalgebra of A such that

|B| < |at(A)| and F is an ultrafilter on B. Choose a nonzero a ∈ A such that ∀b ∈ F [a ≤ b].
We may assume that a is an atom. Let G be the principal ultrafilter on A determined by
a. Clearly F = G ∩B.

An atomic BA A is uniform iff for every a ∈ A, if A ↾ a is infinite, then |A ↾ a| = |at(A)|.

Proposition 15.36. Every principal BA is uniform.

Proof. Suppose that A is principal, but also suppose that A ↾ a is infinite and
|A ↾ a| < |at(A)|. Let X = {−x : x ≤ a} ∪ {a}. Then |X | < |at(A)| and X has fip. By
Proposition 1 choose a nonzero b ∈ A such that ∀y ∈ X [b ≤ y]. Then b ≤ a, so −b ∈ X
and b ≤ −b, hence b = 0, contradiction.

Proposition 15.37. Every saturated atomic BA is principal.
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16. Subalgebras

The following is from Duntsch 1985.

Theorem 16.1. (Proposition 3.3) Sub(A× A) is simple.

Theorem 16.2. (Proposition 3.4) If A has an independent subset of size |A|, then Sub(A)
is simple.

Theorem 16.3. (Proposition 3.5)
∑

(A⊕B) is simple.

Theorem 16.4. (Proposition 3.8) For each n ∈ ω, the congruences of Sub(Finco(ℵn))
form a chain of type n+ 3.

Theorem 16.5. (Proposition 3.8) For each α ≥ ω, the congruences of Sub(Finco(ℵα))
form a chain of type α+ 2.

Theorem 16.6. (Proposition 3.9) If |A| = κ is regular, and for all a ∈ A, |A ↾ a| < κ or
|A ↾ −a| < κ, then Sub(A) is not simple.

Theorem 16.7. (Proposition 3.11) For any infinite ordinal α, Sub(intalg(α)) is not simple
iff α is a regular cardinal.
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17. Model theory of BAs

We list most papers on this subject, without a detailed description of contents.

Ershov 1964 Decidability of the elementary theory of relatively complemented lattices and
the theory of filters. (Russian) Alg. i Log. Sem 3, no. 3, 17-38.

Mead 1975 Prime models and model companions for the theories of Boolean

algebras. PhD thesis, University of Iowa, 1975.

Mead 1979 Recursive prime models for Boolean algebras. Colloq. Math. 41, 25 - 33.

Mead, Nelson 1980 Model companions and k-model completeness for the complete theories
of Boolean algebras. J. Symb. Logic 45, 47-55.

Mijajlovic 1979 Saturated Boolean algebras with ultrafilters. Publ. Inst. Math. (Beograd)
26, 175-197.

Olin 1976 Homomorphisms of elementary types of Boolean algebras. Algebra Universalis
6, 259-260.

Tarski 1949 Arithmetical classes and types of Boolean algebras. Bull. Amer. Math. Soc.
55, 64 (abstract)

Waszkiewicz 1974 ∀n-theories of Boolean algebras. Colloq. Math. 30, 171-175.

The following is from Pinus 1991.

Theorem 17.1. The Löwenheim number of (BA,⊕,≤) is the least cardinal κ such that for
any n ∈ ω and any BAs A0, . . . , An−1 there exists a cardinal κ′ ≤ κ and BAs A′

0, . . . , A
′
n−1

of size less than κ′ such that the the structures (BA,⊕,≤, A0, . . . , An−1) and ({A ∈ BA :
|A| < κ′},⊕,≤, A′

0, . . . , A
′
n−1) are elementarily equivalent.

The Löwenheim number of (BA,⊕,≤) is equal to the Löwenheim number of full
second-order logic.
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18. [λ]κ

The following is from Abe [86]. We define Dκλ = {{x, y} : x.y ∈ [λ]<κ and x ⊂ y}.
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