61T-166. HARRY KESTEN, The Hebrew University of Jerusalem, Israel. Some probabilistic

Let $\langle \xi \rangle$ be the (positive) distance between ξ and the integer closest to ξ . Instead of a fixed ξ a random x is chosen with a uniform distribution on [0,1] and the limiting distribution $(m \to \infty)$ of $m \cdot \min_{1 \le k \le m} \langle kx \rangle$ is determined. At the same time the limiting distribution $(m \to \infty)$ of the smallest integer k for which $\langle kx \rangle \le m^{-1}$ is found. Going to higher dimensions, let x_1, x_2, \ldots be independent random variables, each with a uniform distribution on [0,1] and define: $N(m,\gamma,p)$ = the number of integers $k,1 \le k \le m$, for which simultaneously $\langle kx_1 \rangle \le \gamma$, $\langle kx_2 \rangle \le \gamma$,..., $\langle kx_p \rangle \le \gamma$. Then it is shown that for fixed $0 < \gamma < 1/2$ the distribution of $N(m,\gamma,p)$ tends to a Poisson distribution with mean λ if $p \to \infty$, $m \to \infty$ such that $m(2\gamma)^p \to \lambda$. (Received May 22, 1961.)

61T-167. R. J. BUEHLER, Statistical Laboratory, Iowa State University, Ames, Iowa. New proofs and generalization of an optimum-gradient theorem.

as and et solder , when it progressed to supply also repaired by a reliable. In the last of the

In an optimum-gradient iteration, successive values ϕ_1 , ϕ_2 ,..., of a positive definite quadratic function $\phi = x^i Ax$ satisfy $\phi_2^2 \le \phi_1 \phi_3$ for any initial vector x_1 , and hence $\phi_{n+2}/\phi_{n+1} \ge \phi_{n+1}/\phi_n$. Proof: It is easily shown that $x_2 = (I + \lambda A)x_1$ where $\lambda = -x_1^i A^2 x_1/x_1^i A^3 x_1$, and $x_3 = (I + \mu A)x_2$, whence $x_1^i Ax_3 = x_1^i (I + \lambda A)Ax_1 = x_2^i Ax_2$. By Schwarz's inequality, $\phi_2^2 = (x_1^i Ax_3)^2 \le (x_1^i Ax_1)(x_3^i Ax_3) = \phi_1^i \phi_3$. In a second proof, ϕ is represented in a canonical form $\sum_{\alpha_1 x_1^2}$, and $3(\phi_1 \phi_3 - \phi_2^2)/[\phi_1(\phi_2 - \phi_3)]$ is shown to equal $(\sum_{\alpha_1 x_1^2} x_{\alpha_1}^2)^2 \sum_{\alpha_1 x_2^2} \sum_{\alpha_1 x_1^2} \sum_{\alpha_$

61T-168. DONALD MONK, University of California, Berkeley, California. Relation algebras and cylindric algebras.

Let \mathcal{U} be a CA_{α} with $\alpha > 2$ (Henkin and Tarski, Cylindric algebras, Proceedings of Symposia in Pure Mathematics, vol. 2, Amer. Math. Soc., 1961, pp. 83-113). Let $R(\mathcal{U}) = \langle R(A), +, \cdot, -, \cdot, \cdot, \cdot, 1' \rangle$, where $R(A) = \{a: \Delta a \subseteq 2\}$, $x:y = c_2(c_1(d_{12} \cdot x) \cdot c_0(d_{02} \cdot y))$ for all $x,y \in R(A)$, $x^{\upsilon} = c_2(d_{12} \cdot c_1(d_{01} \cdot c_0(d_{02} \cdot x)))$ for all $x \in R(A)$, and $1' = d_{01}$. Under certain conditions, $R(\mathcal{U})$ is a relation algebra (in the sense of Chin and Tarski, University of California Publications in Mathematics, new series, vol. 1; no. 9, pp. 341-384). Conversely, given a relation algebra \mathcal{U} we construct a CA_3 $C(\mathcal{U})$, using an idea of Lyndon. Theorem 1. If \mathcal{U} is a relation algebra, then $C(\mathcal{U})$ is a cylindric algebra, and $\mathcal{U} \cong RA(\mathcal{U})$. Also, $\mathcal{U} \cong \mathcal{U}$ if and only if $C(\mathcal{U}) \cong C(\mathcal{U})$. Theorem 2. There is a relation algebra \mathcal{U} such that for no CA_5 do we have $\mathcal{U} \cong R(\mathcal{U})$. (Received May 23, 1961.)

61T-169. STEFAN BERGMAN, Stanford University, Stanford, California. Bounds for functions of two complex variables in a domain with a distinguished boundary set.

Let M be a domain with the "smallest maximum set" I in the space of two complex variables, and let I be a proper part of the boundary of M. (See Bergman, <u>Über eine in gewissen Bereichen mit</u>