
Math 4230, Fall 2012
Take-home midterm

Due Friday, November 2, 2012

You may use your book and class notes for this exam, and you may use Maple (or Mathematica)
if you wish. You may not consult with anyone else, but you may ask me questions about the
exam. Please show all your work, and also write and sign the honor code pledge: “On my honor,
as a University of Colorado at Boulder student, I have neither given nor received unauthorized
assistance on this work.”

1. Let α : I → R3 be a unit-speed curve whose torsion τ(s) is nonzero for all s. Suppose that
you know the binormal vector B(s) for all s. Show that you can recover the curvature function
κ(s) and the absolute value of the torsion τ(s). (Hint: when in doubt, differentiate! Show that the
entire Frenet apparatus can be expressed in terms of B(s) and its derivatives.)

2. Let α be a unit-speed curve with curvature κα(s) > 0. Recall from Exercise 1.3.28 that there is
a unique circle β with the property that

β(0) = α(0), β′(0) = α′(0), β′′(0) = α′′(0).

This is the osculating circle to α at s = 0, and it has curvature equal to κα(0).

Now suppose that the torsion τα of α is nonzero. We can construct the osculating helix to α at
s = 0 as follows: let p0 = α(0), κ0 = κα(0), τ0 = τα(0), and let {T0, N0, B0} denote the Frenet frame
of α at s = 0. Set

a =
κ0

κ2
0 + τ2

0

, b =
τ0

κ2
0 + τ2

0

, c =
√
a2 + b2 =

1√
κ2

0 + τ2
0

,

and define vectors

v1 = −N0

v2 =
a

c
T0 −

b

c
B0

v3 =
b

c
T0 +

a

c
B0.

(a) Show that {v1,v2,v3} form an oriented, orthonormal basis for R3. (“Oriented” means that
v1 × v2 = v3, v2 × v3 = v1, and v3 × v1 = v2.)

Now consider the curve

β(s) = (p0 + aN0) + a cos
(s
c

)
v1 + a sin

(s
c

)
v2 +

bs

c
v3.

(b) Show that β(0) = α(0).
(c) Check that β is a unit-speed curve, and show that the Frenet frame of β at s = 0 is {T0, N0, B0}.
(d) Show that β is a helix with curvature κ0 and torsion τ0.

Just for fun: I put a Maple worksheet called ”osculatinghelix.mw” on my web site to compute
and plot the osculating helix of any curve at any given point. Try it on your favorite space curves
and see what you get!



3. One way to define a system of coordinates for the sphere S2, given by x2 + y2 + (z − 1)2 = 1, is
to consider the so-called stereographic projection

π : S2 − {NP} → R2

which carries a point p = (x, y, z) of the sphere minus the north pole NP = (0, 0, 2) onto the
intersection of the xy plane with the straight line which connects NP to p. Let (u, v) = π(x, y, z),
where (x, y, z) ∈ S2 − {NP} and (u, v) is in the xy plane.

(a) Show that π−1 : R2 → S2 is given by

x =
4u

u2 + v2 + 4

y =
4v

u2 + v2 + 4

z =
2(u2 + v2)
u2 + v2 + 4

(Hint: Parametrize the line passing through the points (0, 0, 2) and (u, v, 0), and find the point
(other than (0, 0, 2)) where this line intersects the sphere.)
(b) We can regard π−1 as a parametrization x : R2 → S2 whose image is the entire sphere minus
the north pole. Show that this parametrization is conformal: i.e., it satisfies the conditions

E = G, F = 0.

(c) Use Gauss’s formula (i.e., do NOT expressK in terms of `,m, n) to compute the Gauss curvature
of the sphere from this parametrization. (Hint: it had better be equal to 1, right?)
(d) Use this parametrization to plot (most of) the sphere in Maple. What do the coordinate curves
look like?



4. Let α : [a, b] → R3 be a unit-speed curve. A tubular surface of radius r about α is the surface
with parametrization

x(u, v) = α(u) + r[cos(v)N(u) + sin(v)B(u)],

a ≤ u ≤ b, 0 ≤ v ≤ 2π, where N(u), B(u) are the Frenet normal and binormal vectors to α,
respectively.
(a) Show that, for r sufficiently small, x defines a regular surface. Exactly how small does r need
to be?
(b) Show that the area of x is 2πr(b− a). (Hint: the area of a parametrized surface x : U → R3 is∫∫
U

√
EG− F 2du dv. Use the Frenet equations for α to compute xu,xv and E,F,G.)

(c) Apply the result of part (b) to compute the area of a torus of revolution. (Hint: what should
the curve α be?)

5. A tangent vector v ∈ TpM is called an asymptotic direction if k(v) = 0; i.e., if the normal
curvature of M in the direction of v is zero. A curve α in M is called an asymptotic curve if α′(t)
always points in an asymptotic direction. Show that:
(a) There are no asymptotic directions at p unless K(p) ≤ 0, and if p is a hyperbolic point (i.e.,
K(p) < 0), then there are two linearly independent asymptotic directions.
(b) At a hyperbolic point p, the principal directions u1,u2 bisect the asymptotic directions v1,v2,
as in the diagram below.
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(c) At a hyperbolic point p, H(p) = 0 if and only if the asymptotic directions are orthogonal.
(d) If M contains a straight line in R3, then this line must be an asymptotic curve in M .
(Hint: Use Euler’s formula for parts (a) - (c).)

6. Let x be a parametrization of a regular surface M ⊂ R3 whose coordinate curves are lines of
curvature. (Recall that for such a parametrization, F = m = 0.)

(a) Show that the principal curvatures of M are given by k1 = l
E , k2 = n

G .

(b) Now suppose that k1, k2 are constants. Use the Codazzi equations to show that either k1 = k2

or k1k2 = 0. (This result can be used to show that any regular surface with constant principal
curvatures is either part of a plane, sphere, or cylinder.)



7. Let α : I → M be a regular curve in a surface M , parametrized by arc length. Let β : I → S2

be the image of α under the Gauss map of M ; i.e.,

β(s) = G(α(s)),

where G : M → S2 is the Gauss map of M . (Note that β is not necessarily parametrized by arc
length!) β is called the spherical image of α.
(a) Show that if M contains no points where K = 0, then β is a regular curve on S2.
(b) If α is a principal curve in M , with curvature κα at the point p = α(0) ∈M , then

κα = |kn|κβ,

where kn = k(α′(0)) is the normal curvature of M at p in the direction of α′(0), and κβ is the
curvature of β at the point G(p) = β(0) ∈ S2. (Hint: Start by computing κβ according to the
formula in Theorem 1.4.5.)


