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An Explicit Theorem of the Square
for Hyperelliptic Jacobians
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Introduction

Let A be an abelian variety over a fietd D a symmetric divisor om, s andd the
sum and difference maps framx A into A, andp; andp, the projections onto the
first and second factors. The theorem of the square and the seesaw principle [M1,
Secs. 5, 6] guarantee that there exists a funcfi@n v) on A x A (determined up
to constant multiples) with divisor*D +d*D — 2p;D — 2p3 D. Since this func-
tion encodes all the information about the group morphisnioit is useful to
know f(u, v) explicitly. Indeed, ifa, b, c € A and if D, is the image oD under
the translation-by-map, then the divisor of (u — 452, —432) / f(u — 4$2, =4tb)
isD,.,+ D — D, — Dy, which is the theorem of the square fbr If k is the com-
plex numbers, then the construction pfis classical. One merely takes a theta
functioné with divisor D (see e.g. [La]); then

Fu,v) =0 +v)0u — v)/0w)%0(v)?,

for u, v in the universal cover ofl, has the desired property.

When A is the Jacobiad of a curveC, it is useful to determing’ in terms of
symmetric functions oit. If k is the complex numbers amd is a theta divisor
of J, then Riemann’s theta identities (see [Mu, p. 212]) expfgsst v)0 (u — v)
in terms of sums of products of theta functions with characteristics evaluated at
andv. When( is hyperelliptic, Baker [Ba2] described how the resulting functions
of u andv can be expressed as explicit symmetric functions in the coordinates of
the points in the support of the divisors corresponding émdv; he found a way
to expressf(u, v) as a polynomial in the second logarithmic derivatives of a theta
function evaluated at andv. In genus 1, Baker’s formula was well known and is
a cornerstone of the analytic theory of elliptic curves. In genus 2, this formula was
recently used to understand the group law/d&1], the derivatives of theta func-
tions [G3], and the arithmetic of certain points on intersections of divisors [G2].
In genus 3, some of these same applications were carried out in [O]; in [A], a ver-
sion of this formula was needed that worked over any fiefdorder to understand
the arithmetic of certain torsion points.

In this paper we prove a version of Baker’s formula for hyperelliptic curves of
any genug over any fieldk, generalizing the argument in [A]. Our formula takes
a different shape than Baker’s, but it must agree with his whenthe complex
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numbers. We do not know whether our formula was known to Baker or his con-
temporaries in the complex case, but related formulas appegr$o@ in [Bal,
Sec. 218].

We hope the explicit nature of the result will be of use not only to number the-
orists and geometers but also—with the introduction of hyperelliptic curves into
coding and cryptology [BHHW; K]—to computer scientists.

We would like to thank the referee for several useful suggestions.

Preliminaries

Let k be a field and an algebraic closure & Unless stated otherwise, all alge-
braic geometric objects will be assumed to be defined bvdiakeg > 1. Let
P, q € k[x] be such thap is monic of degree 2+ 1, ¢ is of degree at most,
and the affine curve
Y24 q(x)y = p(x)

is nonsingular (for the conditions this puts prandg, see [L]). LetC be the pro-
jective nonsingular curve ovérassociated to the affine curve, anddetdenote
the lone point at infinity or with respect to the affine model, whichkgational.
ThenC is a hyperelliptic curve of genug and every hyperelliptic curve of genus
g overk with ak-rational Weierstrass point arises in this fashion. The hyperelliptic
involution onC is given byP = (x, —y — ¢ (x)) for a pointP = (x, y), with 6o =
0o. We lety = —y — g(x). The Weierstrass points 6f are the fixed points of the
involution. Note thak andy have poles of order 2 ang2-1 (respectively) ato.

Let J be the Jacobian @ overk, so that the points af parameterize the group
Pic®(C) of divisors of degree 0 o6 modulo linear equivalence. We will identify
points of J with the corresponding divisor classes in®R©). We write D; ~ D,
to denote that two divisors are linearly equivalent, and we g2 tbe the class of
the divisorD modulo linear equivalence. For a#ye C, considering the divisor
of x — x(P) shows thatP + P ~ 2c0.

Lety: C — J be the Albanese embedding that usesas base point. Then
we have morphisms ovét

ctLcw by,

from the product¢ into the symmetric produd (¢ into J, wherer is the natural
projection andp is induced fromy. It follows from the Riemann—Roch theorem
thaty is a surjective birational map, and weawe will often identify symmetric
functions onC¢ with functions onJ.

LetM; bethedivisoC x---xCxooxC x---xCinCé# (theoco occurringinthe
ith slot), letM be the image under of any M;, and let® be the image under of
M. Let N;; be the divisorirC# consisting of points whosgh componentis the hy-
perelliptic involution of theth component; ledv be the image under of any N;;.

If Pod-- 4Py~ Q14+ Qg thenPi+ - -4 Py 4+ Q14 - -+ 0, — 200
is the divisor of a function, which must be a polynomiakinThus, if theQ; are
not a permutation of th@; thenP; = 15j for somei # ;.

It follows that every divisor clas® e Pic%(C) can be uniquely represented
by a divisor of the formP; + --- + P, — roo for somer < g, whereP; # oo
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and, fori # j, P; # P;. In particular,® consists of divisor classes of the form
cl(Pi+---+ P, —roo) forr < g —1andJ — © consists of divisor classes of
the form c( Py + - - - 4+ P, — goo), whereP; # oo andP; # 13j fori £ j. Hence
(N) C ® andg is an isomorphism front (¢ — N — M ontoJ — ® [M2, Sec. 5].

Lemma 1. Let f € k(J), and takeF = m*¢*f in k(C#~1)(C) by considering
functions ink(C#) as functions of the first factar with coefficients in the function
field of the product of the other factors. Then

orde (f) = ords (F).

Proof. From the foregoing we hawe*® = mM + nN for some positiven and
n. Sinceg is a birational morphism of nonsingular projective varieties and since
@(N) is not dense ir®, [I, Thm. 2.28] implies thatn = 1. Hence

orde (f) = ordy ¢*(f).

By constructiong*(M) = I[(M1+ M> + - - - + M,) for some positivé. Sincer
is a surjective finite morphism of nonsingular varieties, [I, Lemma 2.26] gives us

8
ZJ[IE(M,-) : k(M)] = deg 7).
i=1
But deg ) = [k(C?) : k(C®)] = gland [k(M;) : k(M)] = (g — D!, sol =1.
Hencer*(M) = M1+ --- + M, and

orde (f) = ordy, m*¢*(f).

Finally, we note that org, (F) is just the order ato of F considered as a func-
tion of the first factoiC with coefficients in the function field of the product of the
other factors. 0

NotaTtion. We letO denote the identity af ; for a functionf, we let( f) denote
its divisor. ForP € J, we let®p denote the translate & under the translation-
by-P map.

The Function

Let Py, ..., Py, be independent generic points @¢h sou = cl(Py+ --- +

P, — goo) andv = cl(Pyq1+ - - - + P2, — goo) are independent generic points
onJ. We write P; = (x;, y;). Leta = [g—;z] andb = [3“’7’1] where the square
brackets denote the greatest integer function.

Define the matrices

2 b 2
yix{ yixg y1X1 1 x] ... Xxf x1 1
a 2 b 2
W VeXg oo VeXg VeXg Yo o X oo Xg x, 1
- a 2 b 2
YetlXgyq - Ye+lXgi1 Ye+lXgtl Vo4l Xghg --- Xgg Xeq1 1
b 2

a 2
V2gX3e ..o Y2gX3, Y2gX2g Yog  XJy ... X3y X2 1
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and
2 b 2
yix{ yix;i y1X1 y1 xy ... x{ x1 1
a 2 b 2
_ VeXg cee o YgXg VgXg Ve X, ... X, x, 1
W=1_ a - 2 - - b 2
Ve+1Xgi1 - Ve+lXgin YVetlXgtl Yeg+l Xgiq oo Xgpp Xgpr 1
- a = .2 - - b 2
VogXge oo Y2gXi, V24 X2g Vog  Xgg .- X3 X2 1

Let D and D denote (respectively) the determinantsibfand W, and sety =
DD. SinceDD is invariant under the action of the symmetric groupran. . ., P,
and P41, ..., Py, We can consides to be a function irk(J x J) and writen =
n(u, v), which is then regular fo, ve J — ©.

We now define

swovy= [] =2 ] wi-x [] @i—xp,
l<i<j<g gtl<i<j<2g l<i<g
g+1<j<2g
which we similarly consider as a functioni#iJ x J), regular foru,ve J — ©,
and we let
_ v
S(u,v)’

Hu,v)

Our main result is as follows.

THEOREM 2. The divisor ofH (u, v) is
s*O+d*0 —2pi0 — 2p50.
In order to prove the theorem, we will specializand evaluate the divisor of
H, (u) = 0, (w)/8, (u) € k(J),
wheren, (1) = n(u, v) € k(J) ands, (u) = 8(u, v) € k(J).
Let E C J betheirreducible divisor os representing divisor classes in Ri€)

of the form{cl(2Q1+ Q2+ --- 4+ Q,—1—go0) | Q; € C}. If g =1, we takeE to
be the zero divisor.

ProposiTiION 3. Letu = cl(P1+ ---+ P, — goo) andv = Cl(Pyg1 + -+ +
P,, — goo) be points in/ — ® — E, and suppose thak; # P; and P; # I3j for
anyl<i<gandg+1<j <2 Thenu+ve®ifandonlyifD =0, and
u—ve®ifandonlyifD = 0.

Proof. Suppose the sum+ v € ®. Then we can writeg + v = cI(P2g+1+ st
}_)38—1_ (g—Doo) for somePng, ceey P3g_1 eC. Thenwe haveR = P1+---+
P3,_1 — (3¢ — Doo ~ O, which implies that there exists a functiafi €
L((3g —1)oo) with divisor R. By the Riemann—Roch theorei((3g —1)o0) has
a basis consisting of thegZXunctions

L x, x2 ..., x° Yy, ¥X, yxz, e, YX4L
Hence we can put
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F=yo+yix +yax’+ - +ypx’ +aoy + a1yx +apyx®+ -+ + g yx*

for someq;, y; € k and so obtain the dependence relation between the columns
of W,

Yo+ Yixi + vax? + -+ vpx] + ooy +onyix; + aayixl 4 +agyixt =0

fori =1,...,2¢. Sinceu, v # O, we do not havey;, y; all zero. Thus the deter-
minantD = 0.

Conversely, supposP = 0. Then there exists a dependence relationship be-
tween the columns d¥; say,

Yo+ vaxi + vox? + -+ ypxl + ooy +aayix; +opyixi + o +agyix! =0
fori =1,...,2g and somey;, y; € k, notall 0. Then
F=yo+yix+yax®+- +ypx’ + ooy + aayx + aoyx® + -+ + ogyx”

isin £L((3g —1)oo). Because th®; (1 < i < 2g) are distinct points in the support
of the divisor of zeros of, it follows that there exist point®,,41, ..., P3,—1 €
C such that

(F)=P1+--+ P3_1—(3g —Doo

and hence: + v = Cl(Pag1+ - + P3g_1— (g — Do) € ©.

Now —v = Cl(Pyiq+ -+ + Py — goo). SinceP; # P;forl <i < g and
g+ 1< j < 2g, we can substitute-v for v in the proof just described to get
u—ve®ifandonlyif D =0. 0O

CorOLLARY 4. LetveJ — O — E =cl(Pgy1+ - - - + P2y — g00). Thenn, ()
has poles precisely alon@ and zeros precisely alon@,, ©_,, E, ©yp,, and
Oy 5, for g +1 <i < 2g. If the characteristic ok is 2, thenn, (u) vanishes at
leastto order2 at E.

Proof. This is clear from the definitions and Proposition 3 if the characteristic of
k is not 2, so suppose it is. Then, sine& = 1, it follows that D and D are both
functions onC*# that are invariant under the symmetric group and so can be con-
sidered as functions ah; each of them vanishes dn O

We now turn our attention to the divisor 8f(u). It has poles only alon®, and
we need to determine its divisor of zeros.

LetP = (r,s) eC — oo, let P, = (x;,y:), 1 <i < g, be independent generic
points onC, and lety = cl(P1+ P2+ --- + P, — goo) € J. Define fp(u) =
(x1 —r)(x2 —71)--- (x, — r), Which is a symmetric function o@¢ that we con-
sider as a function od.

ProposiTioN 5. The divisor offp (1) is given by

Proof. Note thatfp is regular off® and, by Lemma 1, has a pole@tof order 2.
Suppose: € J — © andu = cl(P1+ P2+ --- + P, — goo) with P; = (x;, yi).
Then fp(u) = 0 exactly whenx; = r for somei, which happens exactly when
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u—Ccl(P—o0) € ®oru—cl(P—o0) € ©; thismeans that € O p) 0ru € © 5.

The irreducibility of these divisors implies that the support of the divisor of zeros of
fp(u) containgd,py) andO,, 5. By the theorem of the squar®,;») + © 5, ~

Oy p)+yp) + © ~ 20 and hence there exists a functigfu) € k(J) with divisor
Oy p) + Oy ) — 20. But this means thafp (u)/g(u) is regular on/ and hence

a constant. Sinc¢p (1) does not vanish identically, we have our result. [

Now define
d(u) = ]_[ (xi — x))2
l<i<j<g
We need the following well-known lemma, whose proof we include owing to a
lack of suitable reference.

LEmMMA 6. Letsy, ..., s, be the elementary symmetric polynomials in the inde-
pendent variables;, ..., x,, n > 2. Then, ifk is any field, the discriminant poly-
nomiald = [,;_;.,(x; — x;)* is an irreducible element in the ring of power
seriesk|[[s1, ..., s,]] if the characteristic ok is not2, and v is the square of an
irreducible element if the characteristic bfis 2.

Proof. Sincek[[xy, ..., x,]]is a unique factorization domain,if= fgfor f, g €
k[[s1, ..., s,]] then, for some < j, we have thak; — x; divides f if f is nota
unit. Since the symmetric grou), is doubly transitivee = [[,_; _;_,(x; — x;)
divides f. Likewise, if g also is not a unit thema dividesg, so f andg are units
multiplied bye. But if the characteristic of is not 2 there is not invariant under
S., sov isirreducible. If the characteristic &fis 2, the argument shows thats
irreducible. O

ProrosiTioN 7. The divisor ol (1) isnE — 4(g —1)©®, wheren = 2if the char-
acteristic ofk is 2 andn = 1 otherwise.

Proof. This is trivial if g = 1, so takeg > 1. Note thatd is regular off© and (by
Lemma 1) has a pole & of order 4 ¢ — 1). Note then that/(u) vanishes fou
J — © precisely whem € E and so, sincé is irreducible, the divisor of zeros of
d(u) is nE for some positive integer. We can compute by considering a local
equation forE in any local ring at a point along.

Let P € C be a non-Weierstrass point. Thén=cl(g(P —0))eJ -0, 0 €
E, so we consider the local rin@,, . This is isomorphic t@¢ . g, wherer =
¢~ 0. Let f be a local equation fap*E in Oc g, S0d = f"g for g € Oco g
andg not a multiple off. Sincex — r is a uniformizer atP, we know from [M2,
Prop. 3.2] that we can identify the completed local r'(figm,R with the power
series ring ovek generated by the elementary symmetric polynomials. ., s,
of x; — r. Considering the equatiath = f"g after embedding, f, andg into
k[[s1, ..., s.]], we see thaif is not a unit. Hence, if the characteristiciofs not
2 then (by Lemma 6) = 1 andd is a local equation foE. Likewise, if the char-
acteristic ofk is 2, thend is the square of an irreducible elemenkiiisy, . .., 5,]]
that must vanish ak, son = 2. O

Putting the last two propositions together, we have the following corollary.
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CorOLLARY 8. Letve J — 0O — E = Cl(Pyp1+ - + Py, — goo). Then the
divisor of §, () is

28

Gu()) =nk + ( Z Oy + ®¢(ﬁi)> — (6g — 40,
i=g+1

wheren = 2 if the characteristic ok is 2 andn = 1 otherwise.

ProrosiTION 9. Letv e J — ® — E. Then the divisor o, (1) is given by
(Hy(u)) =0y +0_, — 20.

Proof. From the two corollaries, we have immediately thit(x) has poles only
along® and zeros a®, and®_,. ConsideringD and D as functions ofP; =
(x1, ¥1), they have poles ab of order at most 8 — 1 whetherg is even or odd and
so (by Lemma 1D D has a pole ab of order at most — 2. Hence, by Corollary
8, H,(u) has a pole a® of order at most 2. Since+ (—v) = O, by the theorem
of the square there exists a functigr k(J) with (g) = ®, + ®_, — 20. Then
H,(u)/g(u) has no poles and is therefore constant. Siéigé:) is not identically
0,forveJ — ® — E we have

(H,(w)) = 0, + 0_, — 20. O
We are finally in a position to prove our main result.

Proof of Theorem 2Since ® is symmetric, we have noted that the divisor
§*0O + d*0 — 2p7O — 2p30 is principal. Now letF be a function on/ x J
with this divisor. Again, since is a symmetric divisor, the divisor af (v, u)

is the same as that @f(u, v), so they differ by a constant. Lét,(u) € k(J) be
F(u, v) withv fixedinJ — ®, so that(F,) = ®, + ®_, — 20. Then, by restrict-
ingvtoJ — ® — E, we have thatd,(u) = F,(u) - g(v) for someg depending
only onv.

We now claim that)(v, u) = +n(u, v). Indeed, reversing the roles afandv
in W amounts to switching; and P, for1 <i < g, which inducesg transpo-
sitions of the rows¥ and change® by at most a sign. Reversing the rolesiof
andv in W amounts to switching?; andP;, forl <i < g (which again induces
g transpositions of the rows &% ) and applying the hyperelliptic involution to the
entries of the first + 1 columns ofW. Sincea + g < b, the application of the hy-
perelliptic involution to each of these columns changes merely the sign A5
a consequencé (v, u) = +H(u, v).

Therefore, by a symmetric argument and restriciing J — ® — E, we see
thatH(u, v)/F(u, v) depends only on. ThusH (u, v)/F(u, v) is a constant on an
open dense subset #fx J and hence is constant on all 6fx J. SinceH (u, v)
is not identically 0, it follows tha# (u, v) has the same divisor @u, v). O

ExampLEs. 1. Wheng = 1, we obtain the familiat (u, v) = x1 — x2.
2. Wheng = 2, g(x) = 0, andp(x) = x5+ bix* 4+ bax3 + bgx? + bsx + bs,
expanding the determinants forand D and usingy? = p(x) yields
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H(u, v) = p1u) — p1(v) + p12u)922(v) — ©12(v)022(u),
where, for the divisor class = cl((x, y) + (x/, y') — 200), we havep,,(z) =
x +x/, p12(z) = —xx’, and
(x 4+ x)(xx")2 4+ 2b1(xx")2 + bo(x + x")xx’
4+ 2b3xx’ + ba(x + x') + 2bs — 2yy’
(x —x)? ’
which (up to a change in notation, since Baker did not take be monic) agrees

over the complex numbers with the formula given by Baker in [Ba2, p. 381] and
[Bal, Sec. 218]. See also [G1].

pu(z) =
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