An Explicit Theorem of the Square for Hyperelliptic Jacobians

JANE ARLEDGE & DAVID GRANT

Introduction

Let A be an abelian variety over a field k, D a symmetric divisor on A, s and d the sum and difference maps from $A \times A$ into A, and p_1 and p_2 the projections onto the first and second factors. The theorem of the square and the seesaw principle [M1, Secs. 5, 6] guarantee that there exists a function $f(u, v)$ on $A \times A$ (determined up to constant multiples) with divisor $s^*D + d^*D - 2p_1^*D - 2p_2^*D$. Since this function encodes all the information about the group morphism on A, it is useful to know $f(u, v)$ explicitly. Indeed, if $a, b, c \in A$ and if D_c is the image of D under the translation-by-c map, then the divisor of $f(u - \frac{a+b}{2}, -\frac{a+b}{2})/f(u - \frac{a+b}{2}, -\frac{a+b}{2})$ is $D_{a+b} + D - D_a - D_b$, which is the theorem of the square for D. If k is the complex numbers, then the construction of f is classical. One merely takes a theta function θ with divisor D (see e.g. [La]); then

$$f(u, v) = \theta(u + v)\theta(u - v)/\theta(u)^2\theta(v)^2,$$

for u, v in the universal cover of A, has the desired property.

When A is the Jacobian J of a curve C, it is useful to determine f in terms of symmetric functions on C. If k is the complex numbers and D is a theta divisor of J, then Riemann’s theta identities (see [Mu, p. 212]) express $\theta(u + v)\theta(u - v)$ in terms of sums of products of theta functions with characteristics evaluated at u and v. When C is hyperelliptic, Baker [Ba2] described how the resulting functions of u and v can be expressed as explicit symmetric functions in the coordinates of the points in the support of the divisors corresponding to u and v; he found a way to express $f(u, v)$ as a polynomial in the second logarithmic derivatives of a theta function evaluated at u and v. In genus 1, Baker’s formula was well known and is a cornerstone of the analytic theory of elliptic curves. In genus 2, this formula was recently used to understand the group law on J [G1], the derivatives of theta functions [G3], and the arithmetic of certain points on intersections of divisors [G2]. In genus 3, some of these same applications were carried out in [O]; in [A], a version of this formula was needed that worked over any field k in order to understand the arithmetic of certain torsion points.

In this paper we prove a version of Baker’s formula for hyperelliptic curves of any genus g over any field k, generalizing the argument in [A]. Our formula takes a different shape than Baker’s, but it must agree with his when k is the complex
numbers. We do not know whether our formula was known to Baker or his contemporaries in the complex case, but related formulas appear for \(g = 2 \) in [Bal, Sec. 218].

We hope the explicit nature of the result will be of use not only to number theorists and geometers but also—with the introduction of hyperelliptic curves into coding and cryptology [BHHW; K]—to computer scientists.

We would like to thank the referee for several useful suggestions.

Preliminaries

Let \(k \) be a field and \(\bar{k} \) an algebraic closure of \(k \). Unless stated otherwise, all algebraic geometric objects will be assumed to be defined over \(\bar{k} \): Take \(g_1 = 1 \): Let \(p, q \in k[x] \) be such that \(p \) is monic of degree 2, \(g \) is of degree at most \(g \), and the affine curve

\[
y^2 + q(x)y = p(x)
\]

is nonsingular (for the conditions this puts on \(p \) and \(q \), see [L]). Let \(C \) be the projective nonsingular curve over \(k \) associated to the affine curve, and let \(\hat{1} \) denote the lone point at infinity on \(C \) with respect to the affine model, which is \(k \)-rational. Then \(C \) is a hyperelliptic curve of genus \(g \); and every hyperelliptic curve of genus \(g \) over \(k \) with a \(k \)-rational Weierstrass point arises in this fashion. The hyperelliptic involution on \(C \) is given by \(\hat{p} = (x, -y - q(x)) \) for a point \(P = (x, y) \), with \(\hat{\infty} = \infty \). We let \(\hat{y} = -y - q(x) \). The Weierstrass points of \(C \) are the fixed points of the involution. Note that \(x \) and \(y \) have poles of order 2 and 2 (respectively) at \(\infty \).

Let \(J \) be the Jacobian of \(C \) over \(k \), so that the points of \(J \) parameterize the group \(\text{Pic}^0(C) \) of divisors of degree 0 on \(C \) modulo linear equivalence. We will identify points of \(J \) with the corresponding divisor classes in \(\text{Pic}^0(C) \). We write \(D_1 \sim D_2 \) to denote that two divisors are linearly equivalent, and we let \(\text{cl}(D) \) be the class of the divisor \(D \) modulo linear equivalence. For any \(P \in C \), considering the divisor of \(x - x(P) \) shows that \(P + \hat{P} \sim 2\infty \).

Let \(\psi : C \to J \) be the Albanese embedding that uses \(\infty \) as base point. Then we have morphisms over \(k \),

\[
C^g \xrightarrow{\pi} C^{(g)} \xrightarrow{\psi} J,
\]

from the product \(C^g \) into the symmetric product \(C^{(g)} \) into \(J \), where \(\pi \) is the natural projection and \(\psi \) is induced from \(\hat{\psi} \). It follows from the Riemann–Roch theorem that \(\overline{\varphi} \) is a surjective birational map, and via \(\psi \) we will often identify symmetric functions on \(C^g \) with functions on \(J \).

Let \(M_i \) be the divisor \(C \times \cdots \times C \times C \times \cdots \times C \) in \(C^g \) (the \(\infty \) occurring in the \(i \)th slot), let \(M \) be the image under \(\pi \) of any \(M_i \), and let \(\Theta \) be the image under \(\varphi \) of \(M \). Let \(N_{ij} \) be the divisor in \(C^g \) consisting of points whose \(j \)th component is the hyperelliptic involution of the \(i \)th component; let \(N \) be the image under \(\pi \) of any \(N_{ij} \).

If \(P_1 + \cdots + P_g \sim Q_1 + \cdots + Q_g \), then \(P_1 + \cdots + P_g + \hat{Q}_1 + \cdots + \hat{Q}_g - 2g \infty \) is the divisor of a function, which must be a polynomial in \(x \). Thus, if the \(Q_i \) are not a permutation of the \(P_i \), then \(P_i = \hat{P}_j \) for some \(i \neq j \).

It follows that every divisor class \(D \in \text{Pic}^0(C) \) can be uniquely represented by a divisor of the form \(P_1 + \cdots + P_r - r \infty \) for some \(r \leq g \), where \(P_i \neq \infty \).
and, for $i \neq j$, $P_i \neq \tilde{P}_j$. In particular, Θ consists of divisor classes of the form $\text{cl}(P_1 + \cdots + P_r - r\infty)$ for $r \leq g - 1$ and $J - \Theta$ consists of divisor classes of the form $\text{cl}(P_1 + \cdots + P_g - g\infty)$, where $P_i \neq \infty$ and $P_i \neq \tilde{P}_i$ for $i \neq j$. Hence $\varphi(N) \subset \Theta$ and φ is an isomorphism from $C(\overline{x}) - N - M$ onto $J - \Theta$ [M2, Sec. 5].

Lemma 1. Let $f \in \tilde{k}(J)$, and take $F = \pi^*\varphi^*f$ in $\tilde{k}(C^{g-1})(C)$ by considering functions in $\tilde{k}(C^{g-1})$ as functions of the first factor C with coefficients in the function field of the product of the other factors. Then

$$\text{ord}_{\varphi}(f) = \text{ord}_{\infty}(F).$$

Proof. From the foregoing we have $\varphi^*\Theta = mM + nN$ for some positive m and n. Since φ is a birational morphism of nonsingular projective varieties and since $\varphi(N)$ is not dense in Θ, [I, Thm. 2.28] implies that $m = 1$. Hence

$$\text{ord}_{\varphi}(f) = \text{ord}_{M} \varphi^*(f).$$

By construction, $\pi^*(M) = I(M_1 + M_2 + \cdots + M_g)$ for some positive I. Since π is a surjective finite morphism of nonsingular varieties, [I, Lemma 2.26] gives us

$$\sum_{i=1}^{g} l[\tilde{k}(M_i) : \tilde{k}(M)] = \deg(\pi).$$

But $\deg(\pi) = [\tilde{k}(C^{g}) : \tilde{k}(C^{g-1})] = g!$ and $[\tilde{k}(M_i) : \tilde{k}(M)] = (g - l)!$, so $l = 1$. Hence $\pi^*(M) = M_1 + \cdots + M_g$ and

$$\text{ord}_{\varphi}(f) = \text{ord}_{M_1} \pi^* \varphi^*(f).$$

Finally, we note that $\text{ord}_{M_1}(F)$ is just the order at ∞ of F considered as a function of the first factor C with coefficients in the function field of the product of the other factors.

Notation. We let O denote the identity of J; for a function f, we let (f) denote its divisor. For $P \in J$, we let Θ_P denote the translate of Θ under the translation-by-P map.

The Function

Let P_1, \ldots, P_{2g} be independent generic points on C, so $u = \text{cl}(P_1 + \cdots + P_g - g\infty)$ and $v = \text{cl}(P_{g+1} + \cdots + P_{2g} - g\infty)$ are independent generic points on J. We write $P_i = (x_i, y_i)$. Let $a = \left[\frac{g-2}{2}\right]$ and $b = \left[\frac{3g-1}{2}\right]$, where the square brackets denote the greatest integer function.

Define the matrices

$$W = \begin{pmatrix}
y_1 x_1^a & \cdots & y_1 x_1^2 & y_1 x_1 & x_1^b & \cdots & x_1^2 & x_1 & 1 \\
y_2 x_2^a & \cdots & y_2 x_2^2 & y_2 x_2 & x_2^b & \cdots & x_2^2 & x_2 & 1 \\
y_{g+1} x_{g+1}^a & \cdots & y_{g+1} x_{g+1}^2 & y_{g+1} x_{g+1} & x_{g+1}^b & \cdots & x_{g+1}^2 & x_{g+1} & 1 \\
y_{2g} x_{2g}^a & \cdots & y_{2g} x_{2g}^2 & y_{2g} x_{2g} & x_{2g}^b & \cdots & x_{2g}^2 & x_{2g} & 1
\end{pmatrix}.$$
Theorem 2. \[f \text{ of the form } 1 \] and we let \[D \] let \[P \] and we similarly consider as a function in \(P \) and evaluate the divisor of \(H(u, v) \) regular for \(u, v \in J - \Theta \).

Our main result is as follows.

Theorem 2. The divisor of \(H(u, v) \) is

\[
s^*\Theta + d^*\Theta - 2p_1^*\Theta - 2p_2^*\Theta.
\]

In order to prove the theorem, we will specialize \(v \) and evaluate the divisor of \(H_v(u) = \eta_v(u)/\delta_v(u) \in \tilde{k}(J), \) where \(\eta_v(u) = \eta(u, v) \in \tilde{k}(J) \) and \(\delta_v(u) = \delta(u, v) \in \tilde{k}(J). \)

Let \(E \subset J \) be the irreducible divisor on \(J \) representing divisor classes in \(\text{Pic}^0(C) \) of the form \(\{\text{cl}(2Q_1 + Q_2 + \cdots + Q_{g-1} - g\infty) | Q_i \in C\} \). If \(g = 1 \), we take \(E \) to be the zero divisor.

Proposition 3. Let \(u = \text{cl}(P_1 + \cdots + P_g - g\infty) \) and \(v = \text{cl}(P_{g+1} + \cdots + P_{2g} - g\infty) \) be points in \(J - \Theta - E \), and suppose that \(P_i \neq P_j \) and \(P_i \neq \hat{P}_j \) for any \(1 \leq i \leq g \) and \(g + 1 \leq j \leq 2g \). Then \(u + v \in \Theta \) if and only if \(D = 0 \), and \(u - v \in \Theta \) if and only if \(D = 0 \).

Proof. Suppose the sum \(u + v \in \Theta \). Then we can write \(u + v = \text{cl}(\hat{P}_{2g+1} + \cdots + \hat{P}_{3g-1} - (g - 1)\infty) \) for some \(P_{2g+1}, \ldots, P_{3g-1} \in C \). Then we have \(R = \text{cl}(P_1 + \cdots + P_{3g-1} - (3g - 1)\infty) \sim O \), which implies that there exists a function \(F \in \mathcal{L}(3g - 1) \) with divisor \(R \). By the Riemann–Roch theorem, \(\mathcal{L}(3g - 1) \) has a basis consisting of the \(2g \) functions

\[
\{1, x, x^2, \ldots, x^b, y, xy, yx^2, \ldots, xy^a\}.
\]

Hence we can put
We now turn our attention to the divisor of \(v.u/ \): \(fP.u/ \) Then \(C^{2ˆ} \) has poles precisely along \(.x \)

Proposition 5. J: sider as a function on \(k \) This is clear from the definitions and Proposition 3 if the characteristic of \(2 \) least to order \(i \) for \(\alpha_i \) Consider the dependence relation between the columns of \(W \), \(\gamma_0 + \gamma_1 x_i + \gamma_2 x_i^2 + \cdots + \gamma_b x_i^b + \alpha_0 y_i + \alpha_1 y_i x_i + \alpha_2 y_i x_i^2 + \cdots + \alpha_n y_i x_i^n = 0 \) for \(i = 1, \ldots, 2g \). Since \(u, v \neq O \), we do not have \(\alpha_j, \gamma_j \) all zero. Thus the determinant \(D = 0 \).

Conversely, suppose \(D = 0 \). Then there exists a dependence relationship between the columns of \(W \); say,

\[\gamma_0 + \gamma_1 x_i + \gamma_2 x_i^2 + \cdots + \gamma_b x_i^b + \alpha_0 y_i + \alpha_1 y_i x_i + \alpha_2 y_i x_i^2 + \cdots + \alpha_n y_i x_i^n = 0 \]

for \(i = 1, \ldots, 2g \) and some \(\alpha_j, \gamma_j \in \tilde{k} \), not all 0. Then

\[F = \gamma_0 + \gamma_1 x + \gamma_2 x^2 + \cdots + \gamma_b x^b + \alpha_0 y + \alpha_1 y x + \alpha_2 y x^2 + \cdots + \alpha_n y x^n \]

is in \(L(3g - 1)\infty \). Because the \(P_i \) \((1 \leq i \leq 2g) \) are distinct points in the support of the divisor of zeros of \(F \), it follows that there exist points \(P_{2g+1}, \ldots, P_{3g-1} \in C \) such that

\[(F) = P_1 + \cdots + P_{3g-1} - (3g - 1)\infty \]

and hence \(u + v = \text{cl}(\tilde{P}_{2g+1} + \cdots + \tilde{P}_{3g-1} - (g - 1)\infty) \in \Theta \).

Now \(-v = \text{cl}(\tilde{P}_{g+1} + \cdots + \tilde{P}_g - g\infty) \). Since \(P_i \neq \tilde{P}_j \) for \(1 \leq i \leq g \) and \(g + 1 \leq j \leq 2g \), we can substitute \(-v\) for \(v \) in the proof just described to get \(u - v \in \Theta \) if and only if \(\tilde{D} = 0 \).

Corollary 4. Let \(v \in J - \Theta - E = \text{cl}(P_{g+1} + \cdots + P_g - g\infty) \). Then \(\eta_v(u) \) has poles precisely along \(\Theta \) and zeros precisely along \(\Theta - v, \Theta - v, E, \Theta - \phi(P), \) and \(\Theta - \phi(P) \) for \(g + 1 \leq i \leq 2g \). If the characteristic of \(k \) is 2, then \(\eta_v(u) \) vanishes at least to order 2 at \(E \).

Proof. This is clear from the definitions and Proposition 3 if the characteristic of \(k \) is not 2, so suppose it is. Then, since \(-1 = 1 \), it follows that \(D \) and \(\tilde{D} \) are both functions on \(C^* \) that are invariant under the symmetric group and so can be considered as functions on \(J \); each of them vanishes on \(E \).

We now turn our attention to the divisor of \(\delta_e(u) \). It has poles only along \(\Theta \), and we need to determine its divisor of zeros.

Let \(P = (r, s) \in C - \infty \), let \(P_i = (x_i, y_i), 1 \leq i \leq g \), be independent generic points on \(C \), and let \(u = \text{cl}(P_1 + P_2 + \cdots + P_g - g\infty) \in J \). Define \(f_P(u) = (x_1 - r)(x_2 - r) \cdots (x_g - r) \), which is a symmetric function on \(C^* \) that we consider as a function on \(J \).

Proposition 5. The divisor of \(f_P(u) \) is given by

\[(f_P(u)) = \Theta_{\phi(P)} + \Theta_{\phi(P)} - 2\Theta. \]

Proof. Note that \(f_P \) is regular off \(\Theta \) and, by Lemma 1, has a pole at \(\Theta \) of order 2.

Suppose \(u \in J - \Theta \) and \(u = \text{cl}(P_1 + P_2 + \cdots + P_g - g\infty) \) with \(P_i = (x_i, y_i) \). Then \(f_P(u) = 0 \) exactly when \(x_i = r \) for some \(i \), which happens exactly when
We need the following well-known lemma, whose proof we include owing to a lack of suitable reference.

Lemma 6. Let \(s_1, \ldots, s_n \) be the elementary symmetric polynomials in the independent variables \(x_1, \ldots, x_n \), \(n \geq 2 \). Then, if \(k \) is any field, the discriminant polynomial \(\Delta = \prod_{1 \leq i < j \leq n} (x_i - x_j)^2 \) is an irreducible element in the ring of power series \(k[[s_1, \ldots, s_n]] \) if the characteristic of \(k \) is not 2, and \(\Delta \) is the square of an irreducible element if the characteristic of \(k \) is 2.

Proof. Since \(k[[s_1, \ldots, s_n]] \) is a unique factorization domain, if \(\Delta = fg \) for \(f, g \in k[[s_1, \ldots, s_n]] \) then, for some \(i < j \), we have that \(x_i - x_j \) divides \(f \) if \(f \) is not a unit. Since the symmetric group \(S_n \) is doubly transitive, \(e = \prod_{1 \leq i < j \leq n} (x_i - x_j) \) divides \(f \). Likewise, if \(g \) also is not a unit then \(e \) divides \(g \), so \(f \) and \(g \) are units multiplied by \(e \). But if the characteristic of \(k \) is not 2 then \(e \) is not invariant under \(S_n \), so \(\Delta \) is irreducible. If the characteristic of \(k \) is 2, the argument shows that \(e \) is irreducible.

Proposition 7. The divisor of \(d(u) = nE - 4(g-1)\Theta \), where \(n = 2 \) if the characteristic of \(k \) is 2 and \(n = 1 \) otherwise.

Proof. This is trivial if \(g = 1 \), so take \(g > 1 \). Note that \(d \) is regular off \(\Theta \) and (by Lemma 1) has a pole at \(\Theta \) of order \(4(g-1) \). Note then that \(d(u) \) vanishes for \(u \in E - \Theta \) precisely when \(u \in E \) and so, since \(E \) is irreducible, the divisor of zeros of \(d(u) \) is \(nE \) for some positive integer \(n \). We can compute \(n \) by considering a local equation for \(E \) in any local ring at a point along \(E \).

Let \(P \in C \) be a non-Weierstrass point. Then \(Q = \text{cl}(g(P - \infty)) \in J - \Theta \), \(Q \in E \), so we consider the local ring \(\mathcal{O}_{J, Q} \). This is isomorphic to \(\mathcal{O}_{C^{(e)}_R} \), where \(R = \mathcal{O}_{C^{(e)}_R} \). Let \(f \) be a local equation for \(\phi^*E \) in \(\mathcal{O}_{C^{(e)}_R} \), so \(d = f^n g \) for \(g \in \mathcal{O}_{C^{(e)}_R} \) and \(g \) not a multiple of \(f \). Since \(x - r \) is a uniformizer at \(P \), we know from [M2, Prop. 3.2] that we can identify the completed local ring \(\hat{\mathcal{O}}_{C^{(e)}_R} \) with the power series ring over \(\hat{k} \) generated by the elementary symmetric polynomials \(s_1, \ldots, s_g \) of \(x_i - r \). Considering the equation \(d = f^n g \) after embedding \(d, f, \) and \(g \) into \(\hat{k}[[s_1, \ldots, s_n]] \), we see that \(f \) is not a unit. Hence, if the characteristic of \(k \) is not 2 then (by Lemma 6) \(n = 1 \) and \(d \) is a local equation for \(E \). Likewise, if the characteristic of \(k \) is 2, then \(d \) is the square of an irreducible element in \(\hat{k}[[s_1, \ldots, s_n]] \) that must vanish at \(E \), so \(n = 2 \).

Putting the last two propositions together, we have the following corollary.
We are finally in a position to prove our main result.

Proposition 9. Let \(v \in J - \Theta - E \). Then the divisor of \(H_v(u) \) is given by

\[
(H_v(u)) = \Theta_v + \Theta_{-v} - 2\Theta.
\]

Proof. From the two corollaries, we have immediately that \(H_v(u) \) has poles only along \(\Theta \) and zeros at \(\Theta_v \) and \(\Theta_{-v} \). Considering \(D \) and \(\tilde{D} \) as functions of \(P_1 = (x_1, y_1) \), they have poles at \(\infty \) of order at most \(3g - 1 \) whether \(g \) is even or odd and so (by Lemma 1) \(D\tilde{D} \) has a pole at \(\Theta \) of order at most \(6g - 2 \). Hence, by Corollary 8, \(H_v(u) \) has a pole at \(\Theta \) of order at most 2. Since \(v + (-v) = O \), by the theorem of the square there exists a function \(g \in k(J) \) with \((g) = \Theta_v + \Theta_{-v} - 2\Theta \). Then \(H_v(u)/g(u) \) has no poles and is therefore constant. Since \(H_v(u) \) is not identically 0, for \(v \in J - \Theta - E \) we have

\[
(H_v(u)) = \Theta_v + \Theta_{-v} - 2\Theta. \quad \square
\]

We are finally in a position to prove our main result.

Proof of Theorem 2. Since \(\Theta \) is symmetric, we have noted that the divisor \(s^*\Theta + d^*\Theta - 2p_1^*\Theta - 2p_2^*\Theta \) is principal. Now let \(F \) be a function on \(J \times J \) with this divisor. Again, since \(\Theta \) is a symmetric divisor, the divisor of \(F(v, u) \) is the same as that of \(F(u, v) \), so they differ by a constant. Let \(F_v(u) \in k(J) \) be \(F(u, v) \) with \(v \) fixed in \(J - \Theta \), so that \((F_v) = \Theta_v + \Theta_{-v} - 2\Theta \). Then, by restricting \(v \) to \(J - \Theta - E \), we have that \(H_v(u) = F_v(u) \cdot g(v) \) for some \(g \) depending only on \(v \).

We now claim that \(\eta(v, u) = \pm \eta(u, v) \). Indeed, reversing the roles of \(u \) and \(v \) in \(W \) amounts to switching \(P_i \) and \(P_{i+g} \) for \(1 \leq i \leq g \), which induces \(g \) transpositions of the rows \(W \) and changes \(D \) by at most a sign. Reversing the roles of \(u \) and \(v \) in \(\tilde{W} \) amounts to switching \(P_i \) and \(P_{i+g} \) for \(1 \leq i \leq g \) (which again induces \(g \) transpositions of the rows of \(\tilde{W} \)) and applying the hyperelliptic involution to the entries of the first \(a + 1 \) columns of \(W \). Since \(a + g \leq b \), the application of the hyperelliptic involution to each of these columns changes merely the sign of \(D \). As a consequence, \(H(v, u) = \pm H(u, v) \).

Therefore, by a symmetric argument and restricting \(u \) to \(J - \Theta - E \), we see that \(H(u, v)/F(u, v) \) depends only on \(u \). Thus \(H(u, v)/F(u, v) \) is constant on an open dense subset of \(J \times J \) and hence is constant on all of \(J \times J \). Since \(H(u, v) \) is not identically 0, it follows that \(H(u, v) \) has the same divisor as \(F(u, v) \). \(\square \)

Examples. 1. When \(g = 1 \), we obtain the familiar \(H(u, v) = x_1 - x_2 \).
2. When \(g = 2 \), \(q(x) = 0 \), and \(p(x) = x^5 + b_1 x^4 + b_2 x^3 + b_3 x^2 + b_4 x + b_5 \), expanding the determinants for \(D \) and \(\tilde{D} \) and using \(y^2 = p(x) \) yields
\[H(u, v) = \varphi_{11}(u) - \varphi_{11}(v) + \varphi_{12}(u)\varphi_{22}(v) - \varphi_{12}(v)\varphi_{22}(u), \]

where, for the divisor class \(z = \text{cl}((x, y) + (x', y') - 2\infty) \), we have \(\varphi_{22}(z) = x + x' \), \(\varphi_{12}(z) = -xx' \), and

\[
\varphi_{11}(z) = \frac{(x + x')(xx')^2 + 2b_1(xx')^2 + b_2(xx')xx'}{(x - x')^2} + 2b_3xx' + b_4(x + x') + 2b_5 - 2yy',
\]

which (up to a change in notation, since Baker did not take \(p \) to be monic) agrees over the complex numbers with the formula given by Baker in [Ba2, p. 381] and [Ba1, Sec. 218]. See also [G1].

References