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Abstract. This paper introduces a new type of cryptosystem which is
based on sparse polynomials over finite fields. We evaluate its theoretic
characteristics and give some security analysis. Some prelilninary timings
are presented as well, which compare quite favourably with published
optimized RSA timings. We believe that similar ideas can be used in
some other settings as well.

1 Overview

In this paper we present a new idea for the construction of one-way functions.
The hard problem underlying our one-way functions can be stated as follows:

Given a system of sparse polynomial equations of high degree over certain large
rings, it is hard to find a solution to this system.

On the other hand, because the polynomials involved are sparse, their values
at any point can be computed quite efficiently. We have conducted tests of our
cryptosystem with parameter choices equivalent to four different levels of secu-
rity, including the two most popular RSA levels of security and a 280 level of
security. Even with no serious attempt at optimization, our cryptosystem can
encrypt and decrypt a message at speeds roughly equal to that of optimized
RSA. In addition, key generation in our scheme is several orders of magnitude
faster than in RSA.

We remark that several other cryptosystems based on polynomials have been
developed, see [7,9,10] for example, but all of them exploit quite different ideas.

Througout the paper log x and In x denote the binary logarithm and the
natural logarithm of x > 0, respectively.
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2 Construction of a Cryptosystem

Here we describe one of several possible variants of this cryptosystem, which we
construct from polynomials over finite fields.

Following the established tradition, we call the communicating parties Alice
and Bob.

The algorithm ENRoOT (encryption with roots) can be described as follows:

Algorithm ENRoOT

Step 1
Alice and Bob choose a large finite field IFq , and positive integers k, Si and
ti, i = 1, ... , k. This information is public.

Step 2
Alice puts el = 1 and selects a random element "J E IFq and k - 1 exponents
ez,··· ,ek E 'll/(q -1), which are all secret.

Step 3
Alice selects k random polynomials hi E IFq [Xll ... , Xk] of degree at most
q - 1, containing at most ti - 1 monomials, and makes the polynomials

i = 1, ... ,k,

public, where
i = 1, ... ,k.

Step 4
To send a message m E IFq , Bob selects k random polynomials

i = 1, ... ,k,

of degree at most q - 1, with each containing at most Si monomials and
having non-zero constant coefficients. Bob then computes the reduction If! of
the polynomial ftgl + ... + /kgk modulo the ideal generated by

and sends the polynomial if> = m + If!.
Step 5

To decrypt the message, Alice merely computes if>(a 1 , ... ,ak) = m.

It is obvious that the computational cost of this algorithm is polynomial.
More precisely, let us denote

M(r) = r log rlog logr.

It is known that the bit cost of multiplication and addition of r-bit integers as
well as the bit cost of multiplication and addition over IFq, where the prime power
q is r-bits long, can be estimated by O(M(r)), see [1,3,12].
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Put
k

R = LtiSi.
i=l

Theorem. Let a prime power q be r-bits long. The Algorithm ENRoOT has
the following characteristics:

o the complexity of generating the public key, that is, the set of polynomials
h, ... ,fk, is O((k+r)TM(r)) bit operations plus the cost of generating
O(krT) random bits;

o the size of the public key is O(krT) bits;
o the complexity of encryption, that is, generating the polynomial if>, is

O(kRM(r)) bit operations plus the cost of generating O(krS) random bits;
o the size of the encrypted message is O(krR) bits;
o the complexity of decryption, that is, finding the plain text message m E IFq ,

is 0 ((k + r)RM(r)) bit operations.

Proof. First of all, we remark that the value of any monomial Xfl ...
with exponents 0 ::; nl, ... ,nk ::; q - 1, can be computed at (al, ... ,ak) with
o ((k + r)M(r)) bit operations, by using repeated squaring. Indeed, first of all
one may compute

k

E == L eknk (mod q - 1), 1::; E ::; q - 1,
i=l

with kM(r) bit operations. After this the computation of

anl ank = .QEI ... k ·v

can be done with O(rM(r)) bit operations.
To generate f) and the exponents e2,". , ek we need to generate O(rk) ran-

dom bits.
To generate the coefficients of the polynomials h, ... , fk, we need to generate

T - k random elements of IFq . This requires O(rT) random bits. We also need
to generate T - k random k-tuples (nl, . .. , nk), with 0 ::; nl, ... , nk ::; q - 1,
giving the exponents of the T - k non-constant monomials involved in these
polynomials. This requires O(krT) random bits and, as it follows from the above
remark, 0 ((k + r)TM(r)) bit operations.

Similar analysis applies to the cost of generating gl, ... , gk.
Next, the cost of computing the sum of the products figi, i = 1, ... , k is

O(kRM(r)), which consists of the cost of computing O(R) products over IFq

and the cost of computing kR sums of O(r) bit integers (to compute th the
exponents for each monomial in the product). The cost of reduction modulo the
ideal generated by Xl - Xl, ... ,XZ - Xk involves only O(kR) subtractions of
O(r) bit integers.
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Noting that P contains at most O(R) monomials and that each of them can
be computed at (all'" ,ak) with 0 ((k + r)M(r)) bit operations, we obtain the
desired result. 0

We remark that the implied constants in these estimates can be easily eval-
uated.

3 Security Considerations

One possible attack on this cryptosystem is to try to find a solution to the system
of equations

i = 1, ... ,k. (1)

All known algorithms to solve systems of polynomial equations of total degree n
require (regardless of sparsity) time polynomial in n, see [6,12], but the degree
of the polynomials in (1) is very large in our settings, namely it can be of order q.
Thus this attack is totally infeasible, taking into account that n is exponentially
large in our setting.

Another possible attack is to guess a solution. However, one expects that a
system of k sparse polynomial equations in k variables of high degree over IFq

has few zeroes over IFq' Thus the probability that such a random guess gives a
solution is, apparently, very small. The best known estimate on this problem
when k = 1 is given in [2,5] and it confirms that sparse polynomials over IFq

have very few zeros in IFq . Thus this brute force attack should take about 0.5qk

trials "on average".
Of course, it is very tempting to select k = 1. Unfortunately it seems that in

this case there are more intelligent attacks, one of which is based upon consid-
ering the difference set of the powers of monomials of the polynomial P.

Indeed, if

t

f(X) = LAiXn,
i=l

and
s

g(X) = LBiXmj

j=l

are the polynomials selected by Alice and Bob, respectively, with nl = ml = 0,
then P(X) contains st monomials CijXr'j, where

i = 1, ... , t; j = 1, ... ,s.

In particular, for any pair iI,j2 = 1, ... ,s, we have

for any i = 1, ... , t.
Therefore, finding the repeated elements in the difference set
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which is considered as a subset of the residue ring Z/(q - l)Z, may reveal some
information about the polynomial g.

In addition, if k = 1, one may also compute the greatest common divisor of
f(X) with xq - X. This yields a product of the linear factors of f. If f has
few roots, it may be easy to find a root of this new polynomial, which will have
much smaller degree than f. Although it is not clear how to do this in time that
would be polynomial in the sparsity t (rather than in the degree of f, which is
of order q) and logq, potentially this may be a threat.

On the other hand, even for k = 2, these attacks seem to fail. Indeed, the
first attack may help to get some information about the total set of monomials
in all the polynomials 91, . .. ,gk, but does not provide any information about
the individual polynomials because it is not clear which monomial comes from
which product fi9i, i = 1, ... ,k. In order to try all possible partitions into k
groups of Siti monomials, i = 1, ... ,k, one should examine

(2)

combinations. In particular, in the most interesting case when all Si are of ap-
proximately the same size and so are ti, that is, if Si rv S, ti rv t, i = 1, ... , k,
then

log N rv R log k.
Thus the number N of combinations to consider grows exponentially with respect
to all parameters, provided that k 2.

The second attack fails as well, because the notion of the greatest common
divisor of multivariate polynomials is not defined, and taking resolvents to reduce
to one variable is too costly.

Moreover, it may be that if the polynomials h1, ... ,hk contain the same
monomials (or monomials which differ by the same degrees), then the cryptosys-
tem is more secure, and it may also help to reduce the computational cost of the
encryption and decryption.

We have also constructed several lattice attacks to recover the private key,
but these attacks are based on lattices of dimension equal to the cardinality of
the base field. They are thus completely impractical provided the size of the base
field is large, as in the sample parameters below.

4 Parameter Choices and Runtimes

We have tested ENRoOT with four parameter choices which provide different
levels of security. In all our experiments we use k = 3 and work over the prime
field IFq with q = 231 - 1. Thus for these values of parameters the brute force
attack of searching for a common root of the polynomials Ii, i = 1, ... , k, takes
about 292 trials.

Our implementation uses the NTL library [13] quite substantially. Replacing
some of the general purpose programs of this library by some more special-
ized and better tuned to our applications programs should provide an essential
speeding up of the process.
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We tested the following combination parameters 8i = (Si1, SiZ, Si3) and ti =
(til> t i 2, t i 3)

81 = (4,4,4),
t 1 =(3,3,4),

82 = (4,4,4),
t2 = (4,4,4),

83 = (4,4,5),
t 3 = (4,4,4),

84 = (4,5,5);
t4 = (4,4,4).

From (2) we estimate the corresponding security levels with respect to our
best idea of attack

N ER - 257
1 - , N ER _ 270

2 - , N ER _ 276
3 - , N ER - 282

4 - .

With these parameter choices, the total time required to execute a complete
cycle of loading the cryptosystem; choosing a private key; constructing a public
key; encrypting a message and decrypting that message is given below

TfR = 0.009 sec, TfR = 0.010 sec, TfR = 0.011 sec, TlR = 0.013 sec.

These times are on a 600 MHz DEC AlphaStation.
The results are compared with corresponding results for RSA (the RSA time

is scaled from the runtimes announced in [8] on a 255 MHz DEC AlphaStation -
these times may be compared directly to those in the previous paragraph). Note
that the RSA times include only encryption and decryption, and do not include
substantial key generation times (as much as 1 second!).

To estimate the level of security of RSA we use the formula

from [4] for the expected complexity of factoring of an integer M by the number
field sieve.

For the key lengths (in bits)

Kf-SA = 512,

and the security levels

we have corresponding times

TfSA = 0.004 sec,

KfSA = 768,

TfSA = 0.011 sec,

Kf"SA = 1024

T3
RSA = 0.019 sec.

Moreover, the key generation time for ENROOT is several orders of magnitude
faster than for RSA. Please note that the highest security level tested for RSA
is the same (roughly) as our medium security level, and that the ENRoOT times
do include key generation!
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5 Concluding Remarks

Clearly, our cryptosystem is naturally suited to private key sharing among mul-
tiple parties.

The initial set and decryption can probably be accelerated in ENRoOT if one
uses more sophisticate algorithms to evaluate sparse polynomials, see [11,14].

We remark that this entire cryptosystem is based on a special case of the
following problem: Let R be a commutative ring with identity. Given a set of
elements II, ... !k in an R-algebra S, find an R-algebra homomorphism 'P :
S ---+ R such that 'P(/i) = 0 for all i = 1, ... ,k.

Even more generally, the problem could be stated as: Given a morphism of
schemes f : X ---+ Y, find a section s : Y ---+ X for f.

One inherent weakness of our cryptosystem is its high message expansion
cost. Perhaps working with noncommutative rings or rings which are not prin-
cipal ideal domains will allow the possibility of more secure or more efficient
implementations of the above algorithm.
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