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For a positive definite integral quadratic form Q(x) in at least 4 variables, we 
show that there is a constant c = c(Q) so that for any m > 0, there is a non-zero 
integral vector x = (xi) such that Q(x) E 0 mod(m), and max Ix,1 <c&. 0 1992 
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Let Q(x)eZ[x,, . . . . x,] be a quadratic form. For any vector x E Z’, let 
llxll = maxi CiGr [xi1 measure the size of x. Over the past decade, several 
authors sought uniform bounds for the smallest solution to 

Q(x) E 0 mod(m), x #O, (1) 

for some fixed modulus m >O as Q varies over all quadratic forms. 
Schinzel, Schlickewei, and Schmidt [S] showed that one can take 
llxll <m’/2+1’2(r-1). Heath-Brown [4] showed that llxll <m”*logm is 
guaranteed so long as m is a prime. Cochrane first extended Heath-Brown’s 
result to the case when m is the product of 2 distinct primes [2], and then 
showed that when m is a prime, //xl1 ~rnax(2’~&, 2**106) [3]. 

In this paper, we will turn the problem on its head, and find a bound for 
the smallest solution to (1) for a fixed form Q, and varying modulus m. 

THEOREM. Let Q(x) be a positive definite integral quadratic form in r > 4 
variables. Then there is a constant c = c(Q), such that for every m > 2, there 
exists a non-zero vector x E E’ with 

Q(x) = 0 mod(m), 

and llxll <c,,&. 

Remarks. (i) Settingj variables equal to zero gives a positive definite 
quadratic form in r-j variables. It therefore suffices to prove the theorem 
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when r = 4. Since we would expect c to increase as we specialize variables, 
we will assume only that r is even. 

(ii) We can assume that m is a squarefree number greater than 1. 
If m=m& then xi =m,, xi=0 (l<iQr) gives a solution with c= 1. 
If m=m,mi, with m, > 1, then a solution Q(x’)~Omod(m,) with 
IIX’II d CJm, g’ Ives the solution Q(x)=0 mod(m) with x =mox’ and 
llxll G CJ;;;. 

(iii) If we fix a constant K, then we can assume that m is not divisible 
by any primes p 6 K. Take m squarefree. Then m = m,m, with 
ml =lJ~~,~~~,pp~i~~ P, and m2= Hplm,p,K,pprime P. Suppose that m2> 1, 
and Q(x’) = 0 mod(m,) with IIx’II 6 c’&. Then taking x = ml x’, and 
c = C’C~ where co = HP G K, pprime P”~, implies that Q(x) = 0 mod(m) with 
IIx(J < c,/&. If m2 = 1, then xi = m, (1 < i < r) is a solution, so we need only 
be sure to set c > cO. 

(iv) If we take K 2 2, then we can assume m is odd as well. Then 
Q(x) = 0 mod(m) if and only if 2Q(x) ~0 mod(m), so we might as well 
assume that Q is an even integral quadratic form; i.e., if we write 
Q(x) = & aUxixj = ‘xAx with A = [aii] a symmetric matrix, then a,, E 2H, 
aiiE Z. We say that A represents the quadratic form Q. Since Q is positive 
definite, all the eigenvalues of A are positive. 

From now on we will assume that Q(x) = ‘xAx is an even integral, 
positive definite quadratic form in r = 2k, k > 2, variables. We let q be the 
level of A, that is, the least positive integer so that qA-’ is also the matrix 
of an even integral quadratic form. 

A central object in the study of Q is its associated theta function Q(z), 
which is defined by 

Q(z) = 1 eni’vAvz, (2) 
VEL 

which is convergent for all complex z E h = (x + iy 1 y > 0 >. Immediately we 
see that 

Q(z) = 1 r(Q, 2n) e2ni”z, 
nsiz 

where r(Q, 2n) = # {x E Z’ I Q(x) = 2n}. It is well known that O(z) is a 
modular form [l]. We will describe the situation precisely. 

Let (%) denote the Legendre symbol of an integer a modulo an odd 
prime p. We can define a Dirichlet character x mod q by setting 

X(-l)=(-l)k 

x(p)= 
(-l)kdetA 

P > 
for p an odd prime, p ! q, 
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and 
if q is odd. 

Let f,,(q) = {(z “,) E X,(Z) 1 q 1 c}. Then f,,(q) acts on h by linear frac- 
tional transformations. Recall that f(z) is a modular form of weight k and 
character x for TO(q) iff is holomorphic on h (and at the cusps gotten by 
compactifying T,,(q)\t)), and satisfies 

az + b 

f( ) cz+ =X(4(cz+4kf(4 

for all (z 2) E T,,(q). The space of such forms is denoted by Mk(r,(q), 1) 
and contains 8(z) (see [I]). The @-vector space Mk(r,(q), x) is finite 
dimensional, and every element has a Fourier expansion (at the cusp at 
infinity) of the form 

c %I 4”> where q = e2niz. 
?I>0 

Hence, there exists a constant K(k, q, x) such that if a, # 0, then a, # 0 for 
some 0 <n 6 K(k, q, x) (since 1$ Mk(ro(n), x)). 

The theorem now follows from the following proposition. 

PROPOSITION. Let A be a matrix which represents an even integral, 
positive definite quadratic form of level q in 2k variables, k3 2. Let 
K = max(ic(k, q, x), q, 2), and I be the smallest eigenualue of A. Then if 
m = Hi= 1 pi, where the pi are distinct primes greater than K, then there is 
a non-zero vector x E ZZk satisfying (1 ), such that 

Proof. Let T, denote the pth-Hecke operator on Mk(rO(q), x). When p 
is prime p I q, T, applied to a form f = C, p o a,q” yields 

T,(f)= 1 bt'~ Mk(rO(q), x), 
II20 

where 6, = aPn +x(p) pk- ‘anlp, and a,,p is taken to be 0 if p 1 n. Let 
Q(z) = Cnro ao,,q” be as in (2), and set T,;.. T,,@(z)=C,~, aienq”. Then 

TP, . ..Tp.Q(z)=aj,o+ 1 a,,,q”. 
n,l 
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Since Q(O)=O, we have c~,,~=r(Q, O)#O. Hence 

since k> 1. 
Therefore there exists a positive integer n, 0 <n <K, such that a,i,n # 0. 

We can solve recursively for !xj.n in terms of aO.i, i > 0. 
Indeed 

aj.,=aj- l,p,n + X(Pj) Pr- l’j- l,n/p,’ 

Butpj>K>n, sopj[n, and 

Lx J-n =aj- I,~,~ 

Likewise pj- , > n, so pjP 1 [ pjn, and 

c1 .J. n =O1j-?,p,-lp,n. 

Continuing inductively we get 

OZ~j,n=~o,p ,... p,n=aO,mn. 

But tl - r(Q, 2mn) # 0, so there exists a vector x E Z?, x # 0, such that 0,mn - 

Q(x) = 2mn < 2~m. 

Since x2 d Q(x)/A for 16 i 6 2k, we have 

IXil q/5$& 

and 
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