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Small Solutions to a Given Quadratic Form
with a Variable Modulus
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For a positive definite integral quadratic form Q(x) in at least 4 variables, we
show that there is a constant ¢ = ¢(Q) so that for any m >0, there is a non-zero
integral vector x = (x,} such that Q(x)=0mod(m), and max|x] éc\/);. © 1992

Academic Press, Inc.

Let O(x)e Z[x,, .., X,] be a quadratic form. For any vector xe Z’, let
x| = max,; ¢;,<,|x,| measure the size of x. Over the past decade, several
authors sought uniform bounds for the smallest solution to

Q(x) =0 mod(m), x #0, (1)

for some fixed modulus m>0 as Q varies over all quadratic forms.
Schinzel, Schlickewei, and Schmidt [5] showed that one can take
Ix]| <mY?+20-1  Heath-Brown [4] showed that |x||<m'?logm is
guaranteed so long as m is a prime. Cochrane first extended Heath-Brown’s
result to the case when m is the product of 2 distinct primes [2], and then
showed that when m is a prime, {x| <max(2',/m, 22210%) [3].

In this paper, we will turn the problem on its head, and find a bound for
the smallest solution to (1) for a fixed form Q, and varying modulus m.

THEOREM. Let Q(x) be a positive definite integral quadratic form inr >4
variables. Then there is a constant ¢ = c(Q), such that for every m =2, there
exists a non-zero vector X Z" with

Q(x) =0 mod(m),
and ||x|| < ey/m.

Remarks. (i) Setting j variables equal to zero gives a positive definite
quadratic form in r — j variables. It therefore suffices to prove the theorem
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when r=4. Since we would expect ¢ to increase as we specialize variables,
we will assume only that r is even.

(ii) We can assume that m is a squarefree number greater than 1.
If m=mj, then x,=m,y, x;=0 (1<i<r) gives a solution with c=1.
If m=m;m?, with m,>1, then a solution Q(x')=0mod(m,) with
el sc\/;@_l gives the solution Q(x)=0mod(m) with x=m,x" and
x|l < cif/m.

(ii1) If we fix a constant x, then we can assume that m is not divisible
by any primes p<k. Take m squarefree. Then m=mm, with
m,= nplm,p < k, pprime b, and my = nplm,p> x, pprime P Suppose that m, > 11
and O(x’)=0mod(m,) with |x'| < c’\/m_z. Then taking x =m,x’, and
c=c'cy where ¢o=IT,<x pprime ">, implies that Q(x)=0mod(m) with
x| < cﬁ. If m,=1, then x,=m, (1 <i<r)is a solution, so we need only
be sure to set ¢ 2 ¢,

(iv) If we take k>2, then we can assume m is odd as well. Then
Q(x)=0mod(m) if and only if 2Q(x)=0mod(m), so we might as well
assume that Q is an even integral quadratic form; ie, if we write
Q(x)=3,  a;x.x;="xAx with 4= [a;] a symmetric matrix, then a; €27,
a,;€Z. We say that A represents the quadratic form Q. Since @ is positive

definite, all the eigenvalues of 4 are positive.

From now on we will assume that Q(x)=‘xAx is an even integral,
positive definite quadratic form in r= 2k, k > 2, variables. We let ¢ be the
level of 4, that is, the least positive integer so that g4 ~' is also the matrix
of an even integral quadratic form.

A central object in the study of Q is its associated theta function 6(z),
which is defined by

@(Z)= Z em"vAv:, (2)

ve ZX

which is convergent for all complex ze b= {x+ iy| y > 0}. Immediately we
see that

O(z)= 3, r(Q,2n) ™™,

nelZ

where r(Q, 2n)= #{xeZ"|Q(x)=2n}. It is well known that &(z) is a
modular form [1]. We will describe the situation precisely.

Let (2) denote the Legendre symbol of an integer ¢ modulo an odd
prime p. We can define a Dirichlet character y mod ¢ by setting

H(=1)=(=1y

—1)*d
TR(E

> for p an odd prime, p | g,
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and
22)=2"% Y 2 ifgis odd.

ve (Z2Z)

Let Io(q)={(¢ )€ SLy(Z) | q|c}. Then I'y(q) acts on b by linear frac-
tional transformations. Recall that f(z) is a modular form of weight £ and
character y for I'y(¢q) if / is holomorphic on b (and at the cusps gotten by
compactifying o(¢)\b), and satisfies

7(Eg) =r@xe+ ar )

for all (* 5)e Iy(g). The space of such forms is denoted by M, (I'y(q), ¥)
and contains @(z) (see [1]). The C-vector space M (Iy(q), x) is finite
dimensional, and every element has a Fourier expansion (at the cusp at
infinity) of the form

Y a,q",  where g=e¥™"

nz0

Hence, there exists a constant k(k, g, x) such that if a,+#0, then o, #0 for
some 0 <n<k(k, q, x) (since 1¢ M, (Iy(n), x)).
The theorem now follows from the following proposition.

PROPOSITION. Let A be a matrix which represents an even integral,
positive definite quadratic form of level q in 2k variables, k>2. Let
k =max(x(k, g, x), g,2), and A be the smallest eigenvalue of A. Then if
m=[T._, p:, where the p, are distinct primes greater than «x, then there is
a non-zero vector x € Z* satisfying (1), such that

Il < /2x/A/m.

Proof. Let T, denote the pth-Hecke operator on M, (Iy(g), x). When p
is prime p[ g, T, applied to a form =3, ., a,4" yields

T,(f)= X b.q4"e M(Tolg), x),

nz0

where b,=a,,+x(p) p*~',,, and a,, is taken to be O if p)}n Let

&(z)=23,50%,,9" be asin (2), and set 7, - T,0(z}=%,50%,,9" Then

Tp;"'Tm@(Z)zaj,O"' Z O‘j.nqn'

nzl
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Since Q(0)=0, we have a, ,=r(Q, 0)#0. Hence

J
&% 0= n (t+x(ps) P?ml) o070,

i=1

since k> 1.

Therefore there exists a positive integer 7, 0 <n<x, such that «;,#0.
We can solve recursively for «; , in terms of a,;, i>0.

Indeed

_ k—1
O =0 1 pnt X(Pj) P %t e
But p;>k>n, so p; | n, and

&

jon = &

j— 1 pn
Likewise p,_,>n, so p;_, | p;n, and
Xjn=%j—2 g pyn-
Continuing inductively we get
O?é ij,n = agspl Cpyn =g, mn -
But oy, = r(Q, 2mn) #0, so there exists a vector x e 7%, x #0, such that
O(x)=2mn < 2km.

Since x? < Q(x)/4 for 1 <i< 2k, we have

lx;| </2K/4 \/E

and
Ix|| < /2K/2 /m.
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