Small Solutions to a Given Quadratic Form with a Variable Modulus

David Grant
Department of Mathematics, Campus Box 426, University of Colorado at Boulder, Boulder, Colorado 80309-0426
Communicated by H. Zassenhaus
Received June 4, 1990

For a positive definite integral quadratic form $Q(\mathbf{x})$ in at least 4 variables, we show that there is a constant $c=c(Q)$ so that for any $m>0$, there is a non-zero integral vector $\mathbf{x}=\left(x_{i}\right)$ such that $Q(\mathbf{x}) \equiv 0 \bmod (m)$, and $\max \left|x_{i}\right| \leqslant c \sqrt{m}$. © 1992 Academic Press, Inc.

Let $Q(\mathbf{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ be a quadratic form. For any vector $\mathbf{x} \in \mathbb{Z}^{r}$, let $\|\mathbf{x}\|=\max _{1 \leqslant i \leqslant r}\left|x_{i}\right|$ measure the size of \mathbf{x}. Over the past decade, several authors sought uniform bounds for the smallest solution to

$$
\begin{equation*}
Q(\mathbf{x}) \equiv 0 \bmod (m), \quad \mathbf{x} \neq 0 \tag{1}
\end{equation*}
$$

for some fixed modulus $m>0$ as Q varies over all quadratic forms. Schinzel, Schlickewei, and Schmidt [5] showed that one can take $\|\mathbf{x}\| \leqslant m^{1 / 2+1 / 2(r-1)}$. Heath-Brown [4] showed that $\|\mathbf{x}\| \leqslant m^{1 / 2} \log m$ is guaranteed so long as m is a prime. Cochrane first extended Heath-Brown's result to the case when m is the product of 2 distinct primes [2], and then showed that when m is a prime, $\|\mathbf{x}\|<\max \left(2^{19} \sqrt{m}, 2^{22} 10^{6}\right)$ [3].

In this paper, we will turn the problem on its head, and find a bound for the smallest solution to (1) for a fixed form Q, and varying modulus m.

Theorem. Let $Q(\mathbf{x})$ be a positive definite integral quadratic form in $r \geqslant 4$ variables. Then there is a constant $c=c(Q)$, such that for every $m \geqslant 2$, there exists a non-zero vector $\mathbf{x} \in \mathbb{Z}^{r}$ with

$$
Q(\mathbf{x}) \equiv 0 \bmod (m),
$$

and $\|\mathbf{x}\| \leqslant c \sqrt{m}$.
Remarks. (i) Setting j variables equal to zero gives a positive definite quadratic form in $r-j$ variables. It therefore suffices to prove the theorem
when $r=4$. Since we would expect c to increase as we specialize variables, we will assume only that r is even.
(ii) We can assume that m is a squarefree number greater than 1 . If $m=m_{0}^{2}$, then $x_{1}=m_{0}, x_{i}=0(1<i \leqslant r)$ gives a solution with $c=1$. If $m=m_{1} m_{0}^{2}$, with $m_{1}>1$, then a solution $Q\left(\mathbf{x}^{\prime}\right) \equiv 0 \bmod \left(m_{1}\right)$ with $\left\|\mathbf{x}^{\prime}\right\| \leqslant c \sqrt{m_{1}}$ gives the solution $Q(\mathbf{x}) \equiv 0 \bmod (m)$ with $\mathbf{x}=m_{0} \mathbf{x}^{\prime}$ and $\|\mathbf{x}\| \leqslant c \sqrt{m}$.
(iii) If we fix a constant κ, then we can assume that m is not divisible by any primes $p \leqslant \kappa$. Take m squarefree. Then $m=m_{1} m_{2}$ with $m_{1}=\prod_{p \mid m, p \leqslant \kappa, p \text { prime }} p$, and $m_{2}=\prod_{p \mid m, p>\kappa, p \text { prime }} p$. Suppose that $m_{2}>1$, and $Q\left(\mathbf{x}^{\prime}\right) \equiv 0 \bmod \left(m_{2}\right)$ with $\left\|\mathbf{x}^{\prime}\right\| \leqslant c^{\prime} \sqrt{m_{2}}$. Then taking $\mathbf{x}=m_{1} \mathbf{x}^{\prime}$, and $c=c^{\prime} c_{0}$ where $c_{0}=\Pi_{p \leqslant \kappa, p \text { prime }} p^{1 / 2}$, implies that $Q(\mathbf{x}) \equiv 0 \bmod (m)$ with $\|\mathbf{x}\| \leqslant c \sqrt{m}$. If $m_{2}=1$, then $x_{i}=m_{1}(1 \leqslant i \leqslant r)$ is a solution, so we need only be sure to set $c \geqslant c_{0}$.
(iv) If we take $\kappa \geqslant 2$, then we can assume m is odd as well. Then $Q(\mathbf{x}) \equiv 0 \bmod (m)$ if and only if $2 Q(\mathbf{x}) \equiv 0 \bmod (m)$, so we might as well assume that Q is an even integral quadratic form; i.e., if we write $Q(\mathbf{x})=\sum_{i, j} a_{i j} x_{i} x_{j}={ }^{\prime} \mathbf{x} A \mathbf{x}$ with $A=\left[a_{i j}\right]$ a symmetric matrix, then $a_{i i} \in 2 \mathbb{Z}$, $a_{i j} \in \mathbb{Z}$. We say that A represents the quadratic form Q. Since Q is positive definite, all the eigenvalues of A are positive.

From now on we will assume that $Q(\mathbf{x})={ }^{\prime} \mathbf{x} A \mathbf{x}$ is an even integral, positive definite quadratic form in $r=2 k, k \geqslant 2$, variables. We let q be the level of A, that is, the least positive integer so that $q A^{-1}$ is also the matrix of an even integral quadratic form.

A central object in the study of Q is its associated theta function $\Theta(z)$, which is defined by

$$
\begin{equation*}
\Theta(z)=\sum_{\vee c \mathbb{Z}^{r}} e^{\pi i^{i v} v v z} \tag{2}
\end{equation*}
$$

which is convergent for all complex $z \in \mathfrak{h}=\{x+i y \mid y>0\}$. Immediately we see that

$$
\Theta(z)=\sum_{n \in \mathbb{Z}} r(Q, 2 n) e^{2 \pi i n z}
$$

where $r(Q, 2 n)=\#\left\{\mathbf{x} \in \mathbb{Z}^{r} \mid Q(\mathbf{x})=2 n\right\}$. It is well known that $\Theta(z)$ is a modular form [1]. We will describe the situation precisely.

Let $\left(\frac{a}{p}\right)$ denote the Legendre symbol of an integer a modulo an odd prime p. We can define a Dirichlet character $\chi \bmod q$ by setting

$$
\begin{aligned}
\chi(-1) & =(-1)^{k} \\
\chi(p) & =\left(\frac{(-1)^{k} \operatorname{det} A}{p}\right) \quad \text { for } p \text { an odd prime, } p \nmid q,
\end{aligned}
$$

and

$$
\chi(2)=2^{-k} \sum_{v \in(\mathbb{Z} / 2 \mathbb{Z})^{k}} e^{\pi i^{i} v A v / 2} \quad \text { if } q \text { is odd. }
$$

Let $\Gamma_{0}(q)=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})|q| c\right\}$. Then $\Gamma_{0}(q)$ acts on \mathfrak{h} by linear fractional transformations. Recall that $f(z)$ is a modular form of weight k and character χ for $\Gamma_{0}(q)$ if f is holomorphic on \mathfrak{h} (and at the cusps gotten by compactifying $\left.\Gamma_{0}(q) \backslash \mathfrak{h}\right)$, and satisfies

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{k} f(z)
$$

for all $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(q)$. The space of such forms is denoted by $M_{k}\left(\Gamma_{0}(q), \chi\right)$ and contains $\Theta(z)$ (see [1]). The \mathbb{C}-vector space $M_{k}\left(\Gamma_{0}(q), \chi\right)$ is finite dimensional, and every element has a Fourier expansion (at the cusp at infinity) of the form

$$
\sum_{n \geqslant 0} \alpha_{n} q^{n}, \quad \text { where } \quad q=e^{2 \pi i z}
$$

Hence, there exists a constant $\kappa(k, q, \chi)$ such that if $\alpha_{0} \neq 0$, then $\alpha_{n} \neq 0$ for some $0<n \leqslant \kappa(k, q, \chi)$ (since $1 \notin M_{k}\left(\Gamma_{0}(n), \chi\right)$).

The theorem now follows from the following proposition.

Proposition. Let A be a matrix which represents an even integral, positive definite quadratic form of level q in $2 k$ variables, $k \geqslant 2$. Let $\kappa=\max (\kappa(k, q, \chi), q, 2)$, and λ be the smallest eigenvalue of A. Then if $m=\prod_{i=1}^{j} p_{i}$, where the p_{i} are distinct primes greater than κ, then there is a non-zero vector $\mathbf{x} \in \mathbb{Z}^{2 k}$ satisfying (1), such that

$$
\|\mathbf{x}\| \leqslant \sqrt{2 \kappa / \lambda} \sqrt{m}
$$

Proof. Let T_{p} denote the p th-Hecke operator on $M_{k}\left(\Gamma_{0}(q), \chi\right)$. When p is prime $p \nmid q, T_{p}$ applied to a form $f=\sum_{n \geqslant 0} \alpha_{n} q^{n}$ yields

$$
T_{p}(f)=\sum_{n \geqslant 0} b_{n} q^{n} \in M_{k}\left(\Gamma_{0}(q), \chi\right)
$$

where $b_{n}=\alpha_{p n}+\chi(p) p^{k-1} \alpha_{n / p}$, and $\alpha_{n / p}$ is taken to be 0 if $p \backslash n$. Let $\Theta(z)=\sum_{n \geqslant 0} \alpha_{0, n} q^{n}$ be as in (2), and set $T_{p_{i}} \cdots T_{p_{1}} \Theta(z)=\sum_{n \geqslant 0} \alpha_{i, n} q^{n}$. Then

$$
T_{p_{j}} \cdots T_{p_{1}} \Theta(z)=\alpha_{j, 0}+\sum_{n \geqslant 1} \alpha_{j, n} q^{n} .
$$

Since $Q(0)=0$, we have $\alpha_{0.0}=r(Q, 0) \neq 0$. Hence

$$
\alpha_{j, 0}=\prod_{i=1}^{j}\left(1+\chi\left(p_{i}\right) p_{i}^{k-1}\right) \alpha_{0.0} \neq 0,
$$

since $k>1$.
Therefore there exists a positive integer $n, 0<n \leqslant \kappa$, such that $\alpha_{j, n} \neq 0$. We can solve recursively for $\alpha_{j, n}$ in terms of $\alpha_{0, i}, i \geqslant 0$.

Indeed

$$
\alpha_{j, n}=\alpha_{j-1, p_{j} n}+\chi\left(p_{j}\right) p_{j}^{k-1} \alpha_{j-1, n / p_{i}}
$$

But $p_{j}>\kappa \geqslant n$, so $p_{j} \nmid n$, and

$$
\alpha_{j, n}=\alpha_{j-1, p_{j} n}
$$

Likewise $p_{j-1}>n$, so $p_{j-1} \nmid p_{j} n$, and

$$
\alpha_{j, n}=\alpha_{j-2, p_{j-1} p_{j} n} .
$$

Continuing inductively we get

$$
0 \neq \alpha_{j, n}=\alpha_{0, p_{1} \cdots p_{j} n}=\alpha_{0, m n} .
$$

But $\alpha_{0, m n}=r(Q, 2 m n) \neq 0$, so there exists a vector $\mathbf{x} \in \mathbb{Z}^{2 k}, \mathbf{x} \neq 0$, such that

$$
Q(\mathbf{x})=2 m n \leqslant 2 \mathrm{~km} .
$$

Since $x_{i}^{2} \leqslant Q(\mathbf{x}) / \lambda$ for $1 \leqslant i \leqslant 2 k$, we have

$$
\left|x_{i}\right| \leqslant \sqrt{2 \kappa / \lambda} \sqrt{m}
$$

and

$$
\|\mathbf{x}\| \leqslant \sqrt{2 \kappa / \lambda} \sqrt{m}
$$

References

1. A. N. Andrianov, Quadratic forms and Hecke operators, Grundl. Math. Wiss. 286 (1987).
2. T. Cochrane, "Small Zeros of Quadratic Congruences Modulo pq," preprint.
3. T. Cochrane, "Small Zeros of Quadratic Congruences Modulo p, III," preprint.
4. D. R. Heath-Brown, Small solutions of quadratic congruences, Glasgow Math. J. 27 (1985), 87-93.
5. A. Schinzel, H. P. Schlickewei, and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241-248.
