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SINGULAR TORSION POINTS ON ELLIPTIC CURVES

John Boxall and David Grant

Introduction

Let k be a perfect field and k an algebraic closure of k. We write Γk for
the Galois group of k over k. Let G be a commutative algebraic group over k.
We write the group law of G additively and denote the origin of G by O. For
each integer n we denote by [n] the multiplication-by-n map on G, by G[n] the
subgroup of points of G(k) of order dividing n, and by G[n]∗ the subset of G(k)
of points of order n. We write Gtors for the group of all torsion points of G(k).
If Ω is a set of prime numbers, we let GΩ denote the subgroup of Gtors consisting
of points whose order is divisible only by primes in Ω.

We now recall the definition of a singular torsion point on an elliptic curve E
over k, as given in [5]. Suppose the characteristic of k is not 2, and that n ≥ 1
is an integer. We say that P ∈ E[n] is a singular n-torsion point if for any local
parameter t at O satisfying [−1]∗t = −t, any function fP ∈ k(E) (defined up to
constant multiples) with divisor n(P −O) has a Laurent expansion at O of the
form

fP =
a

tn
+ O

( 1
tn−2

)

, a ̸= 0,

(i.e., the coefficient of 1
tn−1 vanishes). We say that P ∈ Etors is a singular torsion

point if P is a singular n-torsion point when n is the order of P . We denote the
set of all singular torsion points by Esing.

When k has characteristic zero, Esing is a finite set. Indeed, by an easy
specialization argument, it suffices to consider the case when k is a number
field. As explained in [5], if Jm is the generalized Jacobian of E with modulus
m = 2O, and s : E → Jm is the map that takes P ∈ E(k) to the point in
Jm(k) representing the class of P − O + (t), then Esing = s−1(s(E) ∩ Jm,tors),
so the finiteness of Esing follows using a result of Hindry [14] which shows that
s(E) ∩ Jm,tors is finite. Singular torsion points are an elliptic curve analogue of
torsion packets on jacobians (see for example [10]).

The purpose of the present paper is to show that for elliptic curves over
number fields, the set of singular torsion points can be effectively determined,
by showing that their orders can be effectively bounded in a strong way (see
Corollaries D and E below). We also provide proofs of results announced at the
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end of [5] (see Corollary B and Proposition C below). Before stating our results,
we need some further definitions.

Definition 0.1. Let Σ be a subset of G(k). We say that Σ is geometrically-rigid
if whenever P, Q, R, S ∈ Σ, then

P + Q = R + S

implies that P = R, S, or −Q. If in addition Σ is Γk-invariant, we call Σ
a Galois-invariant, geometrically-rigid, or GIGR (pronounced “Geiger”) set of
points.

We will see in section 2 that if the characteristic of k is not 2, then Esing−E[2]
is a GIGR set.

Recall that Ribet defines P ∈ G(k) to be almost rational [22] (see also [3]) if,
whenever σ and τ ∈ Γk are such that σ(P )+τ(P ) = 2P , then σ(P ) = τ(P ) = P .
Note that all points of order at least 3 in a GIGR set (and hence singular torsion
points of order at least 3) are almost rational. Ribet has proved that on an
abelian variety defined over a number field, there are only finitely many almost
rational torsion points. This gives a second proof that Esing is finite when k has
characteristic 0.

In what follows, we first study Esing when E is defined over a finite extension
of Qp, and then deduce that when E is defined over a number field, the orders
of points in Esing can be bounded depending only on the degree of the field. We
normalize the p-adic valuation so that ordp(p) = 1.

It is easy to see that points of order 2 are singular torsion (see Proposition 1.2
(ii)). We prove the following results.

Theorem A. Let p be a prime number and let E be an elliptic curve over a
finite extension K of Qp. Let eK denote the ramification degree of K over Qp.
Let N ≥ 3 be an integer and suppose that Esing contains a point of order N .

(i) Suppose E has potential multiplicative reduction, and let a be the largest
integer such that K contains a primitive pa-th root of unity. Then if p
is odd, ordp(N) ≤ a, and if p = 2, ord2(N) ≤ a + 1. In particular, if
p ≥ 3 and eK < p − 1, then ordp(N) = 0, and if p = 2 and eK = 1, then
ord2(N) ≤ 2.

(ii) Suppose E has good reduction. If p ≥ 3 and eK < p−1, then ordp(N) ≤ 1.
If p = 2 and eK = 1, then ord2(N) ≤ 3.

(iii) If r is a positive integer, define M(r) to be the largest real zero of the
function

fr(x) = x2 − r(r2 − r + 6)x− 4(r − 1)(r − 2)x1/2 + 3(r3 + r2 + 1).

If E has good reduction, if p ≥ 3 and if p > M(eK), then p does not divide N .
Noting that M(1) = 3, we see in particular that if E has good reduction, p ≥ 5,
and eK = 1, then p does not divide N .
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A calculation shows that M(2) = 13, and that if r = 3, 4, 5, 6 then the
smallest integer greater than M(r) is respectively 35, 72, 131, 218. Furthermore,
if r ≥ 7, then r3 − r2 < M(r) < r3. This implies in particular that

M(r + 1) > M(r) ≥ 2r + 1 > r + 1,(1)

for all r ≥ 1.
We note the following corollary to Theorem A stated in [5].

Corollary B. Let E be a semistable elliptic curve defined over a number field
K. Let Ω contain the set of primes 2, 3, and those p such that every prime of
K over p is either ramified or a prime of bad reduction. Then Esing ⊆ EΩ.

To get an effective determination of Esing, we apply the following for elliptic
curves over number fields.

For a prime ℓ, set δ = δ(ℓ) = 1 when ℓ is odd, and δ(2) = 2.

Proposition C. Let k be a perfect field, G be a commutative algebraic group
over k, Σ be the set of almost rational torsion points of G(k), and let Ω be a finite
set of primes. Define L =

∏

ℓ∈Ω ℓ
δ(ℓ). Let k1 = k(G[L]), and suppose that there

exist an integer M , divisible only by primes in Ω, such that G(k1)∩GΩ ⊆ G[M ].
Then Σ ∩GΩ ⊆ G[M ].

Note that such an M exists if G is a semi-abelian variety and k is a finite field,
or a finite extension of Q or Qp. In this case, the result shows that the intersection
of the set of almost rational torsion points — and hence the intersection with
any GIGR set of torsion points — with GΩ can, in principle, be effectively
determined.

Here is another consequence of Theorem A and Proposition C.

Corollary D. Let d ≥ 1 be an integer. Then there exists an explicit integer Nd,
such that for any elliptic curve E defined over a number field of degree at most
d, we have Esing ⊆ E[Nd].

To see this, we recall that any elliptic curve E over a finite extension F
of Q acquires semistable reduction over F (E[12]), which is an extension of F
of degree at most #

(

GL2(Z/12Z)
)

= 29 · 32. Thus, replacing F by F (E[12])
if necessary, we can assume without loss of generality that E is a semistable
elliptic curve defined over a number field F of degree at most d. We claim that
the set Ω of primes which divide the order of singular torsion points is now
bounded in terms of d. Indeed, if p > M(d), then by (1), p > d + 1 and p is
odd. Hence, if e is the absolute ramification degree of any prime of F , then by
(1), p > M(e) > e + 1, and so p /∈ Ω. Now if Ω contains only primes lying
below primes of F of potential multiplicative reduction, and N is the order of
a singular torsion point, then Theorem A (i) bounds ordp(N) for all p ∈ Ω in
terms of d. So suppose now that Ω contains a prime below a prime p of F of
good reduction. Since the primes in Ω are bounded in terms of d, we deduce
from Proposition C that the degree of F ′ = F (E[L]) is bounded only in terms
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of d. Then EΩ(F ′) can be bounded in terms of d by applying the Corollary on
page 30 of [12] to a prime of F ′ above p.

Corollary E. If E is a semistable elliptic curve over Q, then Esing ⊆ E[24].

Indeed, Theorem A (i) and (iii) show in this case that if p > 3, then p does
not divide the order N of a singular torsion point. Then (i) and (ii) give that
ord3(N) ≤ 1 and ord2(N) ≤ 3. It is worth comparing this with a result of
Calegari [9], who proved that if E is a semistable elliptic curve over Q, then
every almost rational torsion point is either rational or of order dividing 24 · 33

(see Theorem 1.2 of [9] for a more precise statement).
To summarize the proof of Theorem A, let E be an elliptic curve over K

and let P ∈ Esing be of order N ≥ 3. Our purpose is to bound ordp(N). To do
this, we study separately the cases of potential multiplicative, good ordinary and
supersingular reduction. In the case of multiplicative reduction, we reformulate
the definition of singular torsion in terms of zeros of p-adic theta functions, and
prove that these theta functions cannot have zeros at torsion points satisfying
appropriate hypotheses. When the reduction is ordinary, there are two cases
according as to whether the order of the reduction of P is strictly less than
that of P or not. When the order doesn’t decrease, we use the non-existence of
singular torsion points of order a multiple of p over a field of characteristic p ≥ 3.
When the order does decrease, we use formal group arguments. Throughout the
proof, extensive use is made of the action of ΓK and various inertia subgroups on
the torsion points of E, in the spirit of Lang [16] or Serre [23]. (For applications
of similar ideas to torsion packets on quotients of Fermat curves and modular
curves, see [1], [2], [3], [11], [26] and the survey [27].)

The paper consists of four sections. In the first, we review some simple prop-
erties of singular torsion points. In the second, we check that Esing − E[2] is
a GIGR set and study almost rational torsion points. In particular, we prove
Proposition C and some related results, using ideas from [4] that simplify in the
situation at hand. Proposition C generalizes Proposition 12 of [5], whose proof
we promised to give in the present paper. Section 3 contains a proof Theorem
A (i). In the final section, we prove the remaining assertions of Theorem A.

Acknowledgements. We would like to thank Matt Baker and Frank Calegari
for drawing our attention to the notion of an almost rational point. This pa-
per was completed while the first author was enjoying the hospitality of the
University of Colorado at Boulder.

1. Preliminaries

We use the same notation as in the Introduction. However, for technical
reasons, we want to extend the definition of singular torsion to ordinary elliptic
curves in characteristic two. From a geometric point of view this definition is
not very satisfying, and many of the basic properties of singular torsion points
detailed below do not hold in characteristic two, but the ad hoc definition below
will suffice for our purposes.
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So, let E be an elliptic over a field k (of arbitrary characteristic). Let

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6, ai ∈ k,(2)

be a Weierstrass model of E. Then [−1]∗x = x, and [−1]∗y = −y − a1x− a3. If
t is a local parameter at the origin, then [−1]∗t is also a local parameter at the
origin, and there exists αt ∈ k such that [−1]∗t = −t + αtt2 + O(t3) in the local
ring at O. If s is a second local parameter at O, then there exist b, c ∈ k with
b ̸= 0 and s = bt + ct2 + O(t3). Therefore

αs =
αt

b
+

2c

b2
.(3)

From now on, if P ∈ E[n] − {O}, we denote by fP a function with divisor
n(P −O). When k is of characteristic ̸= 2, one finds that P ∈ E[n] is a singular
n-torsion point if and only if, for any local parameter t at O, we have, up to a
multiplicative constant, an expansion

fP =
1
tn

+
n

2
αt

tn−1
+ O

( 1
tn−2

)

.(4)

When the characteristic of k is 2, we can use (4) to define a singular n-torsion
point provided n is even. However, taking t = x

y with x and y as in (2), we find
that αt = a1, which vanishes if and only if E is supersingular. Then, using (3),
we see that E is supersingular if and only if αs = 0 for all local parameters s at
O, and that E is ordinary if and only if αs ̸= 0 for all s. It is for this reason
that we restrict attention to ordinary elliptic curves in characteristic 2.

Definition 1.1. Let k be a field, let E be an elliptic curve over k, and let n ≥ 1
be an integer. If k is of characteristic two, we suppose E ordinary and n even.
If P ∈ E[n] − {O}, we say that P is a singular n-torsion point if fP satisfies
(4) for all local parameters t at O. We say that P is a singular torsion point if
it is a singular n-torsion point when n is the order of P .

As just indicated, when k is of characteristic ̸= 2, this definition is equivalent
to the previous one. Note that in any characteristic, (3) implies that to show that
P ∈ E[n] is singular n-torsion, it suffices to check (4) for any local parameter t
at O.

As before, we denote by Esing the set of all singular torsion points of E.
If t is a local parameter at O, we say that fP is normalized (with respect to

t) if fP = 1
tn + O

(

1
tn−1

)

. Once a Weierstrass model (2) of E has been chosen,
we usually take t = x

y as local parameter, and normalized will mean normalized
with respect to this choice of t.

Proposition 1.2. Let E be an elliptic curve over k, and let n > 1, m ≥ 1, be
integers.

(i) If P ∈ E[n], and P ̸= O is singular n-torsion, then P is singular mn-
torsion.

(ii) We have E[2]∗ ⊆ Esing.
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Proof. (i) Suppose d is the precise order of P . Then the function f
mn

d
P has divisor

mn(P −O). By hypothesis fn/d
P = 1

tn + n
2

αt
tn−1 + O

(

1
tn−2

)

, and developing f
mn

d
P

by the binomial theorem gives the result.
(ii) Let E be defined as in (2), and take t = x/y. Then x = 1

t2 + a1
t + O(1),

and fP = x− x(P ). The result thus follows from Definition 1.1.

Similarly, one sees easily that if P ∈ E[n], and P ̸= O is singular mn-torsion,
that when m is prime to the characteristic of k, then P is singular n-torsion.
Also, if char k = p > 0, and if P ∈ E[n] and P ̸= O, then P is always singular
np-torsion.

Proposition 1.3. Let k be a field of characteristic p ≥ 2, and let E be an
elliptic curve over k.

(i) If p ≥ 3, then for all integers n ≥ 1, E[pn]∗ ∩ Esing = ∅.
(ii) If p = 2, then for all integers n ≥ 1, E[4n]∗ ∩ Esing = ∅.

Proof. If E is supersingular, then E[np]∗ is empty for all n ≥ 1 and there is
nothing to prove. So suppose that E is ordinary and let P ∈ E[np]∗, and if
p = 2 we suppose n is even. Let t be a parameter at the origin. We want to
show for fP normalized, if fP = 1

tnp + A
tnp−1 +O

(

1
tnp−2

)

, then A ̸= 0. To do this,
we recall the basic fact that ω = dfP /fP is a non-trivial holomorphic differential
on E. Further, a calculation shows that ω = (A + O(t))dt, and on an elliptic
curve a non-trivial differential has no zeros, so A ̸= 0.

Now let p be a prime and suppose that Qp is a fixed algebraic closure of Qp.
Let O be the valuation ring of Qp and k its residue field. When E has good
reduction, we choose a Weierstrass model (2) of E with coefficients in O and
such that the cubic over k obtained by reducing the coefficients is a Weierstrass
model of the reduced elliptic curve Ẽ. In general, we denote by X̃ the reduction
to k or to Ẽ of some object X associated to O or to E, such as a polynomial
over O or a point of E(Qp).

Lemma 1.4. Let E be an elliptic curve over Qp with good reduction, and let
P ∈ Etors be such that P̃ ̸= Õ. Let n > 1 be the order of P and d ̸= n the divisor
of n such that P̃ is of order n

d .
(i) If fP is normalized, we have fP ∈ O[x, y] and f̃P = fd

P̃
, where fP̃ is the

normalized function with divisor n
d (P̃ − Õ).

(ii) If d = 1 and if P ∈ Esing, then P̃ ∈ Ẽsing.

Proof. (i) Note that E and P are defined over some finite extension L of Qp, with
ring of integers OL and uniformizer π. Since O is the only pole of fP , we certainly
have fP ∈ L[x, y]. By the hypotheses on P and P̃ , we have

(

x(P ), y(P )
)

∈ O2
L.

Hence, changing models we can suppose
(

x(P ), y(P )
)

= (0, 0), so that a6 = 0.
We first suppose that P̃ is not a two-torsion point. Hence ã3 ∈ (OL/π)∗, and so
a3 is a unit of OL. Then x is a local parameter at P , and we can develop y as
a formal power series y = a−1

3 x(a4 + · · · ) that actually lies in xOL[[x]].
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Write fP = U(x) + yV (x) with U , V polynomials in L[x]. Then fP has a
bounded denominator as an element of L[[x]], and the same is true of f−P . Since
fP f−P = xn, Gauss’s Lemma gives that fP , f−P ∈ OL[[x]]. Since f−P = U(x)+
(−y−a1x−a3)V (x), subtracting f−P from fP gives (2y+a1x+a3)V (x) ∈ OL[[x]],
hence since a3 + a1x + 2y is invertible, that V (x) ∈ OL[[x]]∩L[x] = OL[x]. Our
formula for fP implies that U(x) ∈ OL[[x]] ∩ L[x] = OL[x], as well.

To deduce the second assertion, one notes that f̃P is clearly normalized, and
its polar divisor is nÕ. But since the degree of the divisor of zeros can only
increase with specialization, it is of the form nP̃ + D, with D positive and with
support not containing Õ. But then D = 0 since the divisor of a function is of
degree 0. So comparing divisors on Ẽ gives f̃P = cfd

P̃
for some c ∈ k∗. Then

c = 1 since f̃P and fP̃ are normalized. The case where P̃ is a two-torsion point
is similar, but in that case we use that ã4 ̸= 0 and that y is a local parameter
at P .

(ii) Since fP ∈ O[x, y] by (i) and x ∈ O((t)), y ∈ O((t)), we have fP ∈ O((t))
and fP̃ ∈ k((t)) is obtained by reducing the coefficients of fP . The assertion is
now clear.

Remark. More generally, keeping to the notations of Lemma 1.4, we find that
if f ∈ Qp(E) is a function whose divisor is of the form

∑

i niPi − nO, the Pi

being distinct non-zero torsion points of E none of which reduce to Õ, and if
f = 1

tn + O
(

1
tn−1

)

at O, then f ∈ O[x, y] and the divisor of f̃ is
∑

i niP̃i − nÕ.
This follows at once from Lemma 1.4, since some power of f is a product of
powers of the normalized fPi ’s, and O[x, y] is a normal ring.

For a point P on E, we let P̄ = −P .

Proposition 1.5. Let p be a prime, let E be an elliptic curve over Qp with
ordinary reduction, and let m ≥ 1 be an integer.

(i) Let p ≥ 3 and let P ∈ E[pm]∗ be such that P̃ ∈ Ẽ[pm]∗. Then P /∈ Esing.
(ii) Let p = 2 and let P ∈ E[4m]∗ be such that P̃ ∈ Ẽ[4m]∗. Then P /∈ Esing.
(iii) Let p = 2 and let P ∈ E[8m]∗ be such that P̃ ∈ Ẽ[4m]∗. Then P /∈ Esing.

Proof. (i) and (ii). These follow directly from Lemma 1.4 (ii) and Proposi-
tion 1.3.

(iii) We can assume that Ẽ is ordinary and fix a model (2) where now a1 is
a unit of O, and take t = x

y . Write S = [2m]P , so that S is of order 4 and S̃

of order 2. Let g be a function with divisor 2mP + S̄ − (2m + 1)O, which we
can suppose normalized by the condition g = 1

t2m+1 + A
t2m + O

(

1
t2m−1

)

. Then
g4 = fP f−S , so that g ∈ O[x, y] by Lemma 1.4 (i), and so A ∈ O. Write
f−S = x2 + ay + bx + c, so that again a, b, c ∈ O. Since x = 1

t2 + a1
t + O(1) and

x = ty, we have f−S = 1
t4 + 2a1+a

t3 + O
(

1
t2

)

.
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Now suppose that P is singular, so that fP = 1
t8m + 4ma1

t8m−1 +O
(

1
t8m−2

)

. Then,
comparing coefficients of 1

t8m+3 in g4 = fP f−S gives

4A = 2(2m + 1)a1 + a.(5)

Now fS = x2 − a(y + a1x + a3) + bx + c and fSf−S = (x− x(S))4, so that the
coefficient of x3 in fSf−S is −4x(S) = 2b−a(a1 +a). Since x(S) ∈ O, we deduce
that

2b− a(a1 + a) ∈ 4O.(6)

Also, by Lemma 1.4 (i), f̃−S = (f−S̃)2 =
(

x− x(−S̃)
)2 = x2 − x(−S̃)2, so that

a and b lie in the maximal ideal M of O. But since E has ordinary reduction,
a1, and therefore also a1 + a, is a unit of O. We deduce from (6) that a ∈ 2M.
But then (5) implies that a1 ∈M, which is a contradiction.

2. Singular torsion and almost rational torsion points

We continue to use the notation already introduced.

Lemma 2.1. If E is an elliptic curve over a field k of characteristic not 2, then
Esing − E[2] is geometrically-rigid.

Proof. Since k is of characteristic not 2, we use a Weierstrass model (2) with
a1 = a3 = 0. Let P, Q, R, S ∈ Esing satisfy P + S = Q + R. Then there is a
function g ∈ k(E) with divisor P +Q̄+R̄+S−4O. Furthermore, we can suppose
that g is of the form x2+ay+bx+c with a, b, c ∈ k. Note that if the characteristic
of k is p > 0, then by Proposition 1.5 (i), the orders of P, Q, R, and S are prime
to p. So in any case, we can choose n ∈ N∗ not divisible by the characteristic
of k and annihilating P , Q, R and S. Let FP be the power of fP with divisor
n(P − O) and define FQ̄, FR̄ and FS analogously. Then gn = FP FQ̄FR̄FS , and
the four points are all singular n-torsion points by Proposition 1.2 (i), so we find
that gn = 1

t4n + O
(

1
t4n−2

)

and hence g = 1
t4 + O

(

1
t2

)

. Since x = 1
t2 + O(1), this

implies that a = 0 and therefore [−1]∗g = g. Thus the zero-divisor of g is stable
under [−1]∗, and since P, Q, R, S /∈ E[2], the Lemma follows.

Since Esing is clearly Γk-invariant, it follows that Esing −E[2] is a GIGR set.
Although we shall only use the remaining results of this section in the case

where G is an elliptic curve E and Σ = Esing − E[2], we state them in greater
generality in view of the applications of these results to other sets of almost
rational torsion points (see [6] and [13]).

The following is elementary. Let p be a prime. Recall we set δ = δ(p) = 1
when p is odd, and δ(2) = 2.

Lemma 2.2. For any prime p, all b > 1, and 2 ≤ r ≤ b, we have

ordp

(

(

b

r

)

p(r−1)δ
)

> ordp(b).
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Proposition 2.3. Let G be a commutative algebraic group over a field k, let p
be a prime number, and let ∆ be a subgroup of Γk that acts trivially on G[pδ].

(i) If P ∈ G[pn]∗ and τ ∈ ∆ doesn’t fix P , then the order of (τ − 1)P divides
pn−δ.

(ii) If P ∈ G[p∞] and τ ∈ ∆ doesn’t fix P , then setting Q = (τ − 1)P , for all
b ≥ 1, the order of τ b(P )− P is the same as the order of [b]Q.

(iii) If P ∈ G[p∞] and τ ∈ ∆ doesn’t fix P , there exists a σ ∈ ∆, a power of τ ,
such that O ̸= σ(P )− P ∈ G[pδ].

Proof. (i) By hypothesis, there exists a τ ∈ ∆ such that τ(P ) ̸= P . Let m ≤
n−1−δ be the largest integer such that τ acts non-trivially on [pm]P . Then since
τ([pm+1]P ) = [pm+1]P , we have O ̸= τ([pm]P )− [pm]P ∈ E[p] and τ(P )− P =
(τ − 1)P is of order pm+1.

(ii) The case b = 1 is trivial. For every b ≥ 2, we have

τ b(P )− P = [b]Q +
b

∑

r=2

[
(

b

r

)

](τ − 1)r−1(Q).(7)

By Lemma 2.2 and (i), the order of [
(b
r

)

](τ − 1)r(Q) is a proper divisor of the
order of [b]Q, for all 2 ≤ r ≤ b, so by (7) the order of τ b(P )− P is the same as
the order of [b]Q.

(iii) Let P be of order pn. By hypothesis, there exists a τ ∈ ∆ such that
τ(P ) ̸= P . Let Q = (τ − 1)P . We can take b so that [b]Q ∈ G[pδ], [b]Q ̸= O,
and then applying (ii) we can take σ = τ b.

Proposition 2.4. Let G be a commutative algebraic group over a field k, and
suppose τ ∈ Γk acts trivially on G[pδ]. Suppose we can write P ∈ Gtors as
P = Q+R with R ∈ G[p∞], τ(Q) = Q and τ(R) ̸= R. Then P cannot be almost
rational.

Proof. By Proposition 2.3 (iii), there exists σ ∈ Γk, a power of τ , such that
O ̸= σ(R)−R = σ(P )−P ∈ G[pδ]. Put W = σ(P )−P . Then σ(W ) = W , and
therefore σ(P ) = P + W and σ2(P ) = P + 2W . Hence

P + σ2(P ) = 2σ(P ).

If P is almost rational, then so is σ(P ), hence P = σ(P ), a contradiction.

Proof of Proposition C. Suppose that P ∈ Σ∩GΩ, but P /∈ G[M ]. Let π be any
element of Γk1 such that Q = π(P )− P ̸= O. Breaking Q into its prime-power
components and applying Proposition 2.3 (ii) to each, we see that for any b ≥ 1,
the order of πb(P ) − P is the same as that of [b]Q. We can choose b divisible
only by primes in Ω and such that O ̸= [b]Q ∈ G[L]. If now τ = πb, then τ
fixes τ(P ) − P , so that τ2(P ) + P = 2τ(P ). Thus if P were almost rational,
τ(P ) = P , a contradiction.
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3. The case of multiplicative reduction

In this section we prove Theorem A (i), and we keep the notation used therein.
In particular, K is a finite extension of Qp, and E is an elliptic curve over
K with potential multiplicative reduction. Since Esing is independent of the
choice of model for E, replacing E by a quadratic twist if necessary, we can
assume that E has split multiplicative reduction over K. We therefore have at
our disposal Tate’s theory of p-adic uniformization of E (see for example [25],
pp 422–448). We first recall some aspects of that theory. Let q ∈ K be the
parameter associated to E. Let Cp be the completion of an algebraic closure of
Qp, and let u ∈ C∗

p be a variable. As in [25], we have the theta function

Θ(u, q) = (1− u)
∏

n≥1

(1− qnu)(1− qnu−1)/(1− qn)2,

which is analytic in u, and has a simple zero at every point u ∈ qZ. Furthermore,
it satisfies the functional equation

Θ(uq, q) = −(1/u)Θ(u, q).

We now define θ(u, q) =
∑

n∈Z
q(n+1)n/2un+1(−1)n, which is also easy to check

is analytic in u and has the same functional equation

θ(uq, q) = −(1/u)θ(u, q),

as Θ. Therefore Θ and θ differ only by a multiplicative constant, so θ also has
a simple zero at every point u ∈ qZ. Let P ∈ C∗

p/qZ ∼= E(C∗
p ) be of order N .

We can represent P as Qrζs, where Q is a chosen N th-root of q, ζ is a primitive
N th-root of unity, and 0 ≤ r, s < N and gcd(r, s, N) = 1. It follows from the
functional equation for θ that we can take

fP (u) = (1/ur)(θ(uQ−rζ−s, q)/θ(u, q))N .

To see if P is a singular torsion point, we need to expand fP in terms of any odd
parameter at the origin t. Since “odd” in this setting translates to a function
being sent to its negative under the transformation u → u−1, we can expand
any such t as a power series in v = u − u−1, convergent in a neighborhood of
v = 0, with only odd powers appearing. Hence to see if P is singular, we can
multiply fP by vN and expand in terms of v and see if the linear term vanishes.
From the functional equation, it is clear that θ(u, q)/(1− u) is even, so we need
only check the vanishing of the linear term in v of

θ(uQ−rζ−s, q)NvN/(ur(1− u)N ),

but for this it suffices to check the vanishing of the linear term in 1 − u. A
straightforward calculation shows that this term vanishes if and only if ψ(r, s, N),
defined by

ψ(r, s, N) =
∑

n∈Z

qn(n−1)/2Q−rnζ−sn(−1)n(−r/N − 1/2 + n),(8)
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vanishes. That is, P ∈ Esing if and only if ψ(r, s, N) = 0. Our goal is to prove if
N ≥ 3, and a is the largest integer such that K contains a primitive pa-th root
of unity, then ordp(N) ≤ a if p ≥ 3, and if p = 2, ord2(N) ≤ a + 1.

Let α = 1
2 + r

N . It is convenient to rewrite the condition ψ(r, s, N) = 0 in (8)
as

∑

n∈Z

(n− α)(−1)nζ−snQn(n−1)N/2−rn = 0.(9)

Elementary manipulations show that the vanishing of ψ(r, s, N) depends only on
the values of r, s mod N , and that ψ(r, s, N) vanishes if and only if ψ(−r,−s, N)
does. Hence without loss of generality we can assume that 0 ≤ α ≤ 1

2 .

Lemma 3.1. If P = Qrζs represents a singular torsion point, then α ∈ Zp, or
α = 0 or 1

2 . In other words, if p is odd and p|N , then r/N is a p-adic integer,
so p does not divide s. If p = 2 and 2|N , then 2r/N is a 2-adic integer, so if
4|N , s is odd.

Proof. If α /∈ Zp, then ordp(n−α) = ordp(α) is independent of n, and if α ̸= 0, 1
2 ,

then n(n− 1)N/2− rn = m(m− 1)N/2− rm for n, m ∈ Z if and only if n = m.
This implies that the different terms in the series (8) have different valuations
and so the sum cannot vanish, and hence P is not a singular torsion point.

So to complete the proof of Theorem A (i), we need to consider three cases:
(a) Suppose α = 0. Then r = − 1

2N and N is even. We regroup the summands
for n and −n in (9) to get

ψ(−N

2
, s, N) =

∑

n≥1

n(−1)n(ζ−sn − ζsn)Q
n2N

2 .

Suppose ζs ̸= 1. Since n +→ n2N
2 is a strictly increasing function of n ≥ 1, and

ζ−s − ζs divides ζ−ns − ζns for all n ≥ 1, we find that the summand for n = 1
in ψ(−N

2 , s, N) has strictly smaller p-adic valuation than all the others, and so
ψ(−N

2 , s, N) cannot vanish. Hence if ψ(−N
2 , s, N) = 0, we have ζs = 1, so s = 0.

Lemma 3.1 now gives in this case that for p odd, ordp(N) = 0, and when p = 2,
ord2(N) ≤ 1.

(b) Suppose α = 1
2 . We note that r = 0, and that the quadratic form

x +→ x(x−1)
2 N is symmetric about x = 1

2 . Thus, combining the summands with
n = 1 and n = 0, n = 2 and n = −1, and in general n = m and n = −m + 1
in (9), we get by an argument similar to (a) that ζs = −1, so again for p odd,
ordp(N) = 0, and when p = 2, ord2(N) ≤ 1.

(c) Suppose that 0 < α < 1
2 is in Zp. Then since the quadratic form x +→

x(x−1)
2 N − rx is symmetric about x = α, its values at 0, 1, −1, 2, −2, 3, −3,

etc., form a strictly increasing sequence. Note the summand for n in the left
hand side of (9) has p-adic order equal to ordp(n−α)+ (n(n−1)

2 N − rn)ordp(Q).
Now at least one of −α and 1−α is a p-adic unit. Hence, if the left hand side of
(9) vanishes, the p-adic valuation of the summands for n = 0 and n = 1 must be
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the same, since otherwise one of them will have p-adic valuation strictly smaller
than all the other summands. When this happens, we must have ordp(−α) > 0
and therefore ordp(1− α) = 0.

To conclude, we use a Galois-theoretic argument. Write r
N = r0

N0
with r0 and

N0 coprime integers. By Lemma 3.1, N0 is not a multiple of p when p is odd,
and when p = 2, if N is even, N0 = 2N ′ with N ′ odd. Write also s

N = s1
N1pb ,

with N1 not divisible by p and s1 prime to N1pb. Fix Q0 with Q0 = QN/N0 and
write ζ−s = ζ1ζ0, where ζ1 is a primitive N1-th root of 1 and ζ0 a primitive pb-th
root of unity. Then the vanishing condition (9) is equivalent to

∑

n∈Z

(n− α)(−1)nζn
1 ζ

n
0 Q

n(n−1)
2 N0−nr0

0 = 0.(10)

Fix a primitive N0-th root of unity η. For any g ∈ ΓK , define a function ϵ
with values in Z/N0Z by g(Q0) = Q0ηϵ(g). Now take g ∈ ΓK , and apply 1 − g
to (10). Since the action of ΓK is continuous and α ∈ Zp, we get

∑

n∈Z

(n− α)(−1)n
(

ζn
1 ζ

n
0 − g(ζ1)nη−ϵ(g)nr0g(ζ0)n

)

Q
n(n−1)

2 N0−nr0
0 = 0.

The summand with n = 0 vanishes. Recall that ordp(n − α) ≥ 0 for all n and
that ordp(1−α) = 0. Suppose that g(ζ1)η−ϵ(g)r0g(ζ0) ̸= ζ1ζ0. Since the sequence
n +→ n(n−1)

2 N0 − nr0 is strictly increasing when n takes the values 1, −1, 2, −2,
. . . , and ζ1ζ0 − g(ζ1)η−ϵ(g)r0g(ζ0) divides ζn

1 ζ
n
0 − g(ζ1)nη−ϵ(g)nr0g(ζ0)n for all

n ∈ Z, we deduce that the summand for n = 1 has valuation strictly smaller
than all the others, and so the sum of the series cannot vanish, a contradiction.

It follows that g(ζ1)η−ϵ(g)r0g(ζ0) = ζ1ζ0 for all g ∈ ΓK . Take p odd. Then
since ζ1 and η are roots of unity of order prime to p, and ζ0 is a primitive pb-th
root of unity, we deduce that g(ζ1)η−ϵ(g)r0 = ζ1 and g(ζ0) = ζ0 for all g ∈ ΓK .
In particular, the second equality implies that ζ0 ∈ K and, since we defined a as
the largest integer such that a primitive pa-root of unity was in K, we conclude
that ordp(N) = b ≤ a as claimed. Now if p = 2, −η is a primitive N ′-th root of
unity, so we get that g(ζ2

1 )(−η)−2ϵ(g)r0g(ζ2
0 ) = ζ2

1ζ
2
0 for all g ∈ ΓK . We conclude

as before that ζ2
0 ∈ K, and so ord2(N) ≤ max (1, b) ≤ a + 1 as desired.

4. The Case of Good Reduction

In this section we complete the proof of Theorem A in the Introduction. Since
we have already established (i) we can suppose that E has good reduction.

Recall we have an elliptic curve E over a finite extension K of Qp. Identifying
K = Qp, we have that O is the ring of integers of K, and k its residue field. If
F is an extension of K contained in K, we denote by OF the ring of integers of
F and by MF , kF , respectively, the maximal ideal and residue field of OF . We
denote by eF the ramification degree of F over Qp (when defined). We let IF

denote the inertia subgroup of ΓF .
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We fix once and for all a Weierstrass model (2) with coefficients ai ∈ OK . We
take t = x

y as a parameter for the formal group Ê over OK at the origin, so if
[p]Êt =

∑

r≥1 brtr as an endomorphism of the formal group, then br ∈ OK for all
r. We write Ẽ for the special fiber of our Weierstrass model. We define h = h(E)
(the height of the formal group) to be 1 if Ẽ is ordinary and 2 if it is supersingular.
Then it is well-known that Ê[pr] ≃ (Z/prZ)h and Ẽ[pr] ≃ Z/pr(2−h)Z as abstract
groups for all r ≥ 1. Indeed we have an exact sequence

O → Ê[pr]→ E[pr]→ Ẽ[pr]→ O(11)

for all integers r ≥ 1.

Lemma 4.1. (i) We have br ∈ pOK for all r not divisible by p.
(ii) if E has ordinary reduction, then bp ∈ O∗

K .
(iii) if E has supersingular reduction, then br ∈ MK for all r ≤ p2 − 1 but

bp2 ∈ O∗
K .

Proof. (i) is IV 4.4 in [24]. For (ii) and (iii), see [24] IV 7.5.

We know that the Tate module Tp(E) is a Zp-module of rank 2. Thus we have
a continuous representation ρ : ΓK → AutZp(Tp(E)). If n ≥ 1 is an integer, we
denote by Kn the extension K(E[pn]) of K and by ρn : ΓK → AutZ/pnZ(E[pn])
the corresponding representation on E[pn]. Let Ln be the maximal unramified
extension of Kn, so that IKn can be identified with ΓLn . Similarly, let L be the
maximal unramified extension of K.

We now complete the proofs of Theorem A (ii), and (iii). It is convenient to
treat separately the cases of ordinary and supersingular reduction.

4.1. The ordinary reduction case. Let V = Ê[p∞]. Since E has ordinary
reduction, T (V ) = lim←−V ∩ E[pn] is a rank one Zp-submodule of Tp(E). Hence
E[p∞] contains a subgroup U such that E[p∞] = V ⊕U , and such that T (U) =
lim←−U ∩ E[pn] is a second rank one Zp-submodule of Tp(E) such that Tp(E) =
T (U)⊕T (V ). By (11) the reduction map E(Qp)→ Ẽ(k) induces an isomorphism
U ≃ Ẽ[p∞]. If we fix a choice of U and generators u of T (U) and v of T (V ),
then ρn(ΓK) can be identified with a subgroup of the group of upper triangular
matrices in GL2(Z/pnZ) and ρn(IK) with a subgroup of the group Tn of matrices

of the form
(

1 θ
0 b

)

, where θ ∈ Z/pnZ and b ∈ (Z/pnZ)∗. The proof of the

following is straightforward.

Lemma 4.2. (i) Let M =
(

1 θ
0 b

)

∈ T1, where θ ∈ Fp and b ∈ F∗
p. If b ̸= 1,

then the order of M in T1 is equal to the order of b in F∗
p.

(ii) Let p = 2. Then T2 is a dihedral group of order 8.

Lemma 4.3. Let r ≥ 1 and let P ∈ Ê[pr]∗. Then ordp(t(P )) = 1
pr−1(p−1) .
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Proof. Since [p]Ê(t) = pt + O(t2), Lemma 4.1 shows that the Newton polygon
(see [15], page 89) of [p]Ê(t) has a single non-horizontal segment of length p− 1
and slope − 1

p−1 . Since [p]Ê(t(P )) = 0 if and only if P ∈ Ê[p], this proves the
result when r = 1. The case r > 1 is proved by induction by considering the
Newton polygon of [p]Ê(t)− t(Q) for Q ∈ Ê[pr−1]∗.

We also have a continuous representation ρ̂ : ΓK → AutZp(T (V )) ≃ Z∗
p under

which ρ̂(ΓK) can be identified with a closed subgroup of Z∗
p.

Lemma 4.4. (i) Suppose p ≥ 3 and eK < p − 1. Then no point vn of V of
order pn with n ≥ 2 is rational over L1.

(ii) Suppose p = 2 and eK = 1. Then no point of V of order 2n with n ≥ 4 is
rational over L2.

Proof. (i) Suppose for a contradiction that V contains a point vn of order pn

rational over L1, with n ≥ 2. Then since eK < p − 1, p does not divide eK ,
and Lemma 4.3 implies that ρ̂(IK) is a subgroup of Z∗

p of index less than p− 1
and therefore contains 1 + pZp but is not equal to it. It follows that there exists
an r > 1 such that Gal(L(V [pn])/L) contains an element of order rpn−1 for all
n ≥ 1. If vn ∈ L1, then L(V [pn]) ⊆ L1, so there is a surjective homomorphism
from some subgroup of T1 to a cyclic group of order rpn−1. But according to
Lemma 4.2 (i) this is not possible if n ≥ 2.

(ii) This is similar to (i), using Lemma 4.2 (ii) instead of (i). The crux is that
there are no surjective homomorphisms from a subgroup of a dihedral group of
order 8 to (Z/2nZ)× for n ≥ 4.

Proof of Theorem A (ii) in the ordinary case. Let P ∈ E[N ]∗, and suppose P ∈
Esing and that N ≥ 3. We write P = Q + R with Q of order prime to p and
R = um + vn, with um ∈ U of order pm and vn ∈ V of order pn. Thus
ordp(N) = max(m, n).

(a) Suppose m ≥ n. If m ≥ δ, then P̃ ∈ Ẽ[N ]∗ and so P /∈ Esing by
Proposition 1.5 (i) and (ii). If m < δ the result holds by hypothesis.

(b) Suppose p = 2, n ≥ 3 and m = n− 1. Then P̃ ∈ Ẽ[N
2 ]∗ and so P /∈ Esing

by Proposition 1.5 (iii).
Thus, to complete the proof of Theorem A (ii) in the ordinary case, we can

suppose m < n when p is odd and m < n − 1 when p = 2. Suppose p is
odd. By applying Proposition 2.4 to all elements of IK1 , we have R ∈ L1. If
m = 0, since by hypothesis, eK < p − 1, Lemma 4.4 (i) gives n ≤ 1. If m ≥ 1,
[pm−1]um ∈ L1 and hence [pm−1]vn ∈ L1, so by Lemma 4.4 (i), n−m + 1 ≤ 1,
a contradiction. Hence ordp(N) ≤ 1. The case p = 2 and n ≥ 4 is similar. By
Proposition 2.4 we have R ∈ L2. If m ≤ 2, vn ∈ L2, and by hypothesis, eK = 1,
so by Lemma 4.4 (ii) we have n ≤ 3. If m ≥ 2, [pm−2]um ∈ L2 and hence
[pm−2]vn ∈ L2, and n−m + 2 ≤ 3, a contradiction. Hence ord2(N) ≤ 3.

Proof of Theorem A (iii) in the ordinary case. We now have p ≥ 3. Let P ∈
Esing be of order N ≥ 3. If p verifies the hypotheses of Theorem A (iii), then



SINGULAR TORSION POINTS ON ELLIPTIC CURVES 861

eK < p−1 by (1), and from what has just been proved we deduce that ordp(N) ≤
1. Hence it suffices to eliminate the possibility that ordp(N) = 1.

The extension K(Ê[p])/K is abelian and the action of IK on Ê[p] is given
by a character IK → F∗

p whose image we denote by G. Let M = K(Ê[p]), so
#(G) = eM/eK . Let s be the index of G in F∗

p.
We first remark that s divides eK . Indeed, by Lemma 4.3, (p − 1)|eM , and

eK |eM , so that lcm(p − 1, eK) divides eM . Hence s = (p − 1)/#(G) = (p −
1)eK/eM divides (p− 1)eK/ lcm(p− 1, eK) = gcd(p− 1, eK), and s|eK .

Let b be a generator of G. Since eK < p − 1, G ̸= {1}, and so b ̸= 1. Let
(u′

1, v
′
1) be a Z/pZ-basis of E[p] with u′

1 ∈ U and v′1 ∈ V . Then IK contains an

element τ such that with respect to this basis ρ1(τ) =
(

1 θ
0 b

)

, where θ ∈ Fp.

Since b ̸= 1, one sees that
(

1 θ
0 b

)

fixes u′
1 − θ

b−1v′1, and so replacing u′
1 by this

point we can suppose that τ(u′
1) = u′

1 and τ(v′1) = bv′
1. From this, we deduce

the following.

Lemma 4.5. Let w ∈ G. Then after possibly changing U , there exists a σ ∈ IK

such that σ(u1) = u1 for all u1 ∈ U ∩E[p] and σ(v1) = wv1 for all v1 ∈ V ∩E[p].

Lemma 4.6. Let P ∈ Esing be of order N ≥ 3, and let p ≥ 3 be a prime such
that eK < p− 1. Let M(r) be as defined in the statement of Theorem A (iii).

(i) Suppose there exists (x, y, z) ∈ (F∗
p)3 such that 1+xs = ys +zs, 1+xs ̸= 0,

ys ̸= 1 and zs ̸= 1. Then ordp(N) = 0.
(ii) Let q be a power of a prime and let r > 0 divide q − 1. If q > M(r), then

there exists (x, y, z) ∈ (F∗
q)3 such that 1 + xr = yr + zr, 1 + xr ̸= 0, yr ̸= 1

and zr ̸= 1.

Proof. (i) Since F∗
p is cyclic, G is just the subgroup of s-th powers in F∗

p. We
write P = Q + u1 + v1 with Q of order prime to p, u1 ∈ U , v1 ∈ V . Since we
already know that ordp(N) ≤ 1, we can suppose u1 ∈ E[p] and v1 ∈ E[p]. Then
by Lemma 4.5, there exist α, β, γ ∈ IK such that α(u1) = β(u1) = γ(u1) = u1,
α(v1) = xsv1, β(v1) = ysv1 and γ(v1) = zsv1. By the Néron-Ogg-Shafarevich
criterion (see for example [24] p184), α(Q) = β(Q) = γ(Q) = Q, and therefore
P + α(P ) = β(P ) + γ(P ). Therefore, since Esing is ΓK-invariant, Lemma 2.1
implies that either P + α(P ) = O, or P = β(P ), or P = γ(P ). But then if
v1 ̸= O, either 1 + xs = 0, or ys = 1, or zs = 1, a contradiction. So v1 = O, and
Proposition 1.5 (i) shows u1 = O as well.

(ii) Let Vr denote the set of Fq-points on the surface 1 + xr = yr + zr in
affine three-space. Then we find, using Theorem 6.37 of [17], that #(Vr) ≥
q2 − (r3 − 4r2 + 6r− 3)q − (r2 − 3r + 2)√q. The result will be proved if we can
show that Vr contains a point that does not lie in the subset S = Z∪Vx∪Vy∪Vz,
where Z, Vx, Vy and Vz are the Fq-points of the algebraic sets defined respectively
by xyz = 0, by 1+xr = 0 and yr +zr = 0, by yr = 1 and xr = zr, and by zr = 1
and xr = yr. The maximal size of S is attained when −1 is an r-th power and
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elementary methods show that this value is at most

B(r) := 3(q + (r2 − 3r + 2)
√

q + r − 1)− 3r + 3r2(q − 1)− 3r3.

We conclude that there exists (x, y, z) ∈ (F∗
q)3 as required whenever q2−(r3−

4r2 + 6r − 3)q − (r2 − 3r + 2)√q − B(r) = q2 − (r3 − r2 + 6r)q − 4(r2 − 3r +
2)√q + 3r3 + 3r2 + 3 > 0. Referring to the definition of fr in the statement of
Theorem A, we deduce that fr(q) > 0 when q > M(r).

Since s is a divisor of eK , we deduce from (1) that if p > M(eK) then eK <
p− 1 and so ordp(N) = 0, which completes the proof of Theorem A (iii) in the
case of ordinary reduction.

4.2. The supersingular reduction case. In this case we have Ê[p∞] =
E[p∞]. Recall [p]Ê(t) =

∑

i≥1 biti.

Lemma 4.7. Let r ≥ 1 and let P ∈ E[pr]∗. Suppose that eK ≤ p + 1. Let
µ = ordp(bp) > 0.

(i) If µ ≥ p/(p + 1), then ordp(t(P )) = 1
p2(r−1)(p2−1)

.
(ii) If µ < p/(p+1), then ordp(t(P )) = µ

p2r−1(p−1) , or ordp(t(P )) = 1−µ
p2(r−1)(p−1)

.

Proof. First note that since E[p] ∼= (Z/pZ)2, E[p]∗ has p + 1 orbits Ci under
the action of multiplication of (Z/pZ)∗, and since each multiplication is an au-
tomorphism of Ê[p], that ci = ordp

(

t(P )
)

is the same for all P in a fixed orbit
Ci. We have two cases: (A), in which ci is the same for all i, or (B), in which
ci < cj for some i, j. In (B), since in a formal group t(P + Q) = t(P ) + t(Q)
modulo quadratic terms, we have ck = ci for all k ̸= j. It follows that in (A), the
Newton polygon of [p]Ê(t) has one segment with non-horizontal slope and length
p2 − 1, so must be of slope − 1

p2−1 and so we must have µ ≥ p/(p + 1). In (B),
the Newton polygon must have two non-horizontal segments of distinct non-zero
slopes, the segment of lesser slope having length p − 1, and the other having
length p2−p. It follows that µ < p/(p+1), and that the segment of length p−1
has slope (1−µ)/(1− p), and the segment of length p2− p has slope µ/(p− p2).
Since [p]Ê(t(P )) = 0 if and only if P ∈ E[p], this proves (i) and (ii) when r = 1.
Now suppose r ≥ 1 and that the assertions have been proved with r replaced by
r − 1. Let Q ∈ E[pr−1]∗ and consider the power series [p]Ê(t) − t(Q). In (A),
we get immediately that its Newton polygon has one non-horizontal segment of
length p2 with slope − 1

p2(r−1)(p2−1)
, and in (B), a calculation shows that since

eK ≤ p + 1, the Newton polygon has one non-horizontal segment of length p2

with slope either − µ
p2r−1(p−1) , or − 1−µ

p2(r−1)(p−1)
. In either case, the set of zeros

of [p]Ê(t) − t(Q) is just {P ∈ Ê[pr]∗ | [p]P = Q}. This proves the assertion at
level r.

We call (A) of the last proof the one-slope case and (B) the two-slope case, in
reference to the shape of the Newton polygon of [p]Ê . In the two-slope case, we
refer to the line Cj as the fixed line, since it is fixed by ΓK .
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Lemma 4.8. (i) Suppose p is odd and eK ≤ p−1. Then no point P ∈ E[pn]∗
with n ≥ 2 is rational over L1.

(ii) Suppose p = 2 and eK = 1. Then no point P ∈ E[2n]∗ with n ≥ 4 is
rational over L2.

Proof. (i) By assumption ordp(eK) = 0, and ordp(#(GL2(Z/pZ))) = 1, so we
get ordp(eL1) ≤ 1. By Lemma 4.7, this prevents P ∈ E[pn]∗ with n ≥ 2 being
rational over L1.

(ii) This is similar to (i), noting that ord2(#(GL2(Z/4Z))) = 5.

Proof of Theorem A (ii) in the supersingular case. Again, let P ∈ E[N ]∗ with
N ≥ 3, and write P = Q + Rn, with Q of order prime to p and Rn ∈ E[pn]∗.
Let n0 be the largest integer such that E(Lδ) contains a point of order pn0 . If
n > n0, then there exists a τ ∈ ILδ such that τ(Rn) ̸= Rn. Since τ(Q) = Q
by the Néron-Ogg-Shafarevich criterion, we deduce from Proposition 2.4 that
P /∈ Esing. By Lemma 4.8, n0 ≤ 1 when p is odd, and n0 ≤ 3 when p = 2.

Note that the proof of Theorem A (ii) in the supersingular case shows equally
well that if P is an almost rational torsion point of order N , and eK ≤ p − 1,
then ordp(N) ≤ 1 if p is odd, and ord2(N) ≤ 3 if p = 2.

Proof of Theorem A (iii) in the supersingular case. Again we take p ≥ 3. Let
P ∈ Esing be of order N ≥ 3. By Theorem A (ii), we know since M(eK) ≥ eK +1
that ordp(N) ≤ 1 when p satisfies the conditions of Theorem A (iii). Hence it
suffices to eliminate the possibility ordp(N) = 1.

Suppose first that we are in the one-slope case. Let Iw denote the wild inertia
subgroup of IK . Recall that Iw is the maximal normal pro-p-subgroup of IK .
Let It = IK/Iw be the tame inertia group.

Lemma 4.9. Suppose we are in the one-slope case. Then Iw acts trivially on
E[p], and E[p] has the structure of an Fp2-vector space of dimension one such
that the action of It on E[p] is given by a character It → F∗

p2 .

Proof. This is well-known when eK = 1, and the proof in general mimics that of
Proposition 9 of [23]. This is possible since, by Lemma 4.7 (i), ordp(t(P )) = 1

p2−1

is independent of P ∈ E[p]∗.

By Lemma 4.9 we view E[p] as an Fp2-vector space of dimension one. Then
the action of IK on E[p] is given by a character IK → F∗

p2 , whose image we
denote by G. Let s be the index of G in F∗

p2 . As in the ordinary case, since
K1/K is totally ramified, we see that s divides eK . Since eK < p− 1 < p2 − 1,
we deduce that G ̸= {1}.

Lemma 4.10. Suppose we are in the one-slope case. Let P ∈ Esing be of order
N ≥ 3, and let p ≥ 3 be a prime such that eK < p − 1. Let M(r) be as defined
in the statement of Theorem A (iii).
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(i) Suppose there exists (x, y, z) ∈ (F∗
p2)3 such that 1+xs = ys+zs, 1+xs ̸= 0,

ys ̸= 1 and zs ̸= 1. Then ordp(N) = 0.
(ii) If p2 > M(s), then there do exist (x, y, z) ∈ (F∗

p2)3 satisfying the conditions
in (i).

Proof. (i) Since F∗
p2 is a cyclic group, G is just the subgroup of s-th powers in F∗

p2 .
We write P = Q+R with Q of order prime to p and R of order a power of p. By
Theorem A (ii), R ∈ E[p]. By the definition of G, there exist α, β, γ ∈ IK such
that α(R) = xsR, β(R) = ysR and γ(R) = zsR. By the Néron-Ogg-Shafarevich
criterion, α(Q) = β(Q) = γ(Q) = Q and therefore P + α(P ) = β(P ) + γ(P ).
Again we conclude that P + α(P ) = O, or P = β(P ), or P = γ(P ), so in any
case R = O.

(ii) Let q = p2 in Lemma 4.6 (ii).

Since p2 > p, we deduce that if p > M(eK) then p2 > M(eK) and also
eK < p − 1 by (1). Since s is a divisor of eK , it follows from Lemma 4.10 that
if p > M(eK), then ordp(N) = 0. This completes the proof of Theorem A (iii)
in the one-slope case.

Suppose we are now in the two-slope case.

Lemma 4.11. (i) Suppose eK ≤ p + 1 in the two-slope case. Then there
is a basis u, v for E[p] such that v is in the fixed line, and an element
σ ∈ Gal(K1/K) of order p such that σ(v) = v and σ(u) = u + v.

(ii) Suppose that P ∈ Esing is of the form Q+[α]u+[β]v with Q of order prime
to p and α,β ∈ Z/pZ. Then α = 0.

Proof. (i) Since there is a fixed line, Gal(K1/K) is contained in a Borel subgroup
of GL2(Fp) fixing the fixed line, and let I be the inertia subgroup. Recall
µ = a/eK for some positive integer a, and µ < p/(p+1). Then since eK ≤ p+1,
we have a < p. Hence by the proof of Lemma 4.7, if R ∈ E[p]∗ is not in the fixed
line, ordp(t(R)) = a/(eKp(p− 1)), so p divides the order of I. Hence I contains
a transvection σ, and there is a basis u, v for E[p], v in the fixed line, such that
σ(v) = v and σ(u) = u + v.

(ii) Note that σ(Q) = Q and σ([β]v) = [β]v. Hence P +σ2(P ) = σ(P )+σ(P ),
so P = σ(P ) or 2σ(P ) = O. The latter is excluded since N ≥ 3, and the former
implies α = 0.

By Lemma 4.11 (ii), we can write P = Q + [β]v with Q of order prime to p
and β ∈ Z/pZ. We suppose from now on that eK < p− 1. As at the beginning
of the proof of Theorem A (iii) in the ordinary case, IK acts on the fixed line
via a character IK → F∗

p, whose image we denote by G. Again, the index of G
divides eK . Arguing as in the proof of Lemma 4.6 and taking q = p we deduce
that ordp(N) = 0 if p > M(eK).
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