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§1. Introduction

In this paper we report on various relationships between theta functions
and torsion points on certain commutative algebraic groups. In §3 we
consider products Gn of degree 2 theta constants, which are Siegel modular
forms that vanish at the period matrix of a curve of genus two precisely
when the curve has a point of exact order n in its hyperelliptic torsion
packet. The proof of the Manin-Mumford conjecture then shows that at any
given period matrix, there are only finitely many n for which Gn vanishes.

In §4, by studying the asymptotic behavior of Gn near the points of
the Siegel upper half space of degree 2 which correspond to the product
of elliptic curves, we are led to consider elliptic modular functions fn and
gn, which are the products of derivatives at 0 of elliptic theta functions
with rational characteristics. On the one hand, as we discuss in §5, an
understanding of the zeros of fn and gn is a generalization of Jacobi’s
derivative formula; but on the other hand, we show in §6 that fn and gn
vanish at the period matrix of an elliptic curve E precisely when E contains
a special point of order n we call a “singular torsion point.”

In §7 we show that the singular torsion points of E are in 1-1 corre-
spondence with the torsion points on the image of E embedded into the
generalized Jacobian of E with modulus twice the origin [S]. Hindry’s proof
of the generalization of the Manin-Mumford conjecture to commutative al-
gebraic groups then shows that every complex elliptic curve has only finitely
many singular torsion points. Finally, for E defined over a number field, we
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briefly describe in §8 a procedure which in principle allows one to compute
all the singular torsion points on E.

In §2 we recall what information we need from the theory of theta func-
tions. The proofs of the results in §8 will appear in [BG1].

§2. Preliminaries

Let g ≥ 1 be an integer and letHg denote the Siegel space of complex g×
g symmetric matrices with positive definite imaginary part. We write Γg for
the group Sp2g(Z) of symplectic 2g×2g matrices with integral coefficients.
We let Ag be the (uncompactified) moduli space of principally polarized
complex abelian varieties of dimension g, so that with the standard action
of Γg on Hg, we can identify Ag(C) with Γg\Hg. IfMg denotes the moduli
space of smooth proper complex curves of genus g, then Torelli’s theorem
allows us to view Mg as a subvariety of Ag. In particular, M2 is a dense
open subvariety of A2 whose complement is a divisor which we denote by
D. Then D is isomorphic to A1 ×A1 and D(C) corresponds to the points
of Γ2\H2 that are images under the canonical projection H2 → Γ2\H2 of
the diagonal matrices in H2 [I1]. We denote by D∗(C) and M∗2(C) the
pullbacks of D(C) and M2(C) under this projection.

The Riemann theta function of genus g with characteristic α =
[
a
b

]
,

a, b ∈ Qg, is defined on Cg ×Hg by

θg[α](z, τ) =
∑
n∈Zg

eπi
t(n+a)τ(n+a)+2πit(n+a)(z+b),

where (z, τ) ∈ Cg × Hg and tX denotes the transpose of the vector X.
We often identify the characteristics modulo 1. Since θg[α + ε](z, τ) =

e2πitaqθg[α](z, τ) for all α =
[
a
b

]
, ε =

[
p
q

]
, p, q ∈ Zg, this means that some

of our functions will only be defined up to a multiplication by a root of
unity. If α =

[
a
b

]
, then the order of α is defined to be the order of (a, b)

in Q2g/Z2g. If n ∈ N∗, we denote by Φg(n) the set of all characteristics in
Q2g/Z2g of order n and by φg(n) the cardinality of Φg(n). Thus

(1) φg(n) = n2g
∏
p|n

(
1− 1

p2g

)
,

the product running over all primes p dividing n.
For every characteristic δ =

[
δ1
δ2

]
∈ Φg(2)∪{

[
0
0

]
}, θ2[δ](z, τ) is an even or

odd function of z, and δ is called an even or odd characteristic accordingly.
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We write Φg(2)+ and Φg(2)− respectively for the set of even and odd
characteristics.

We shall be almost exclusively interested in values of θg[α](z, τ) with
z = 0, the so-called theta constants or thetanullwerte. We denote τ 7→
θg[α](0, τ) by θg[α](τ), and when g = 1, τ 7→ ∂

∂z

(
θ1[α](z, τ)

)
z=0

by θ′1[α](τ).
We record the following standard results for future reference.

Lemma 1. Let a =
[
a1

a2

]
, b =

[
b1
b2

]
, with ai, bi ∈ Q. Then, for all (τ1, τ2) ∈

H1 ×H1 we have

(i) θ2

[
a
b

] ( τ1 0

0 τ2

)
= θ1

[
a1

b1

]
(τ1)θ1

[
a2

b2

]
(τ2),

(ii) 2πi ∂
∂σ

(
θ2

[
a
b

] ( τ1 σ

σ τ2

))
σ=0

= θ′1
[
a1

b1

]
(τ1)θ′1

[
a2

b2

]
(τ2).

Lemma 2. Let α =
[
a
b

]
, a, b ∈ Q.

(i) We have θ1[α](τ) = 0 precisely when (a, b) ≡ ( 1
2 ,

1
2 ) (mod Z× Z).

(ii) θ′1[α](τ) is a modular form of weight 3
2 on an appropriate subgroup

of Γ1. It vanishes identically if and only if α ∈ Φ1(2)+.
(iii) (Jacobi’s derivative formula.) For all τ ∈ H1, we have

θ′1
[
1/2
1/2

]
(τ) = −π θ1

[
0
0

]
(τ)θ1

[
1/2
0

]
(τ)θ1

[
0

1/2

]
(τ) = −2πη(τ)3,

where for q = e2πiτ , η(τ) = e
πiτ
12

∏
n≥1(1− qn).

Lemma 1 is proved via easy calculations using the definitions. Lemma
2 (i) is in [M], and (ii) follows from the functional equation of the theta
function and by looking at q-expansions. There are many proofs of Lemma
2 (iii) in the literature, including one in [M].

§3. The genus 2 case

Let X be a smooth proper curve of genus two over C, and let J be the
Jacobian of X. Let (A1, A2, B1, B2) be a symplectic basis of H1(X(C),Z).
Then there exists a unique basis (ω1, ω2) of the holomorphic differentials
on X such that

∫
Ai
ωj = δij for i, j ∈ {1, 2}. Then the matrix

τX =

(∫
B1
ω1

∫
B2
ω1∫

B1
ω2

∫
B2
ω2

)
lies in H2 and the orbit of τX under Γ2 represents the isomorphism class of
X inM2. If τ ∈ H2, denote by Λτ the lattice {τm+ n | m,n ∈ Z2} of C2.

Let X(2) denote the symmetric square of X, whose points we identify
with positive divisors onX of degree 2. Fix a Weierstrass pointW onX and
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define a morphism of complex analytic varieties εW : X(2)(C) → C2/ΛτX
by

εW (P +Q) =

∫ P

W

(
ω1

ω2

)
+

∫ Q

W

(
ω1

ω2

)
(mod ΛτX ),

where the integrals are taken over any paths joining W to P and to Q.
Embed X in X(2) by sending P ∈ X(C) to the divisor P + W . Then
Riemann’s vanishing theorem then shows that there exists a δ = δW ∈
Φ2(2)− such that

(2) εW (X(C)) = {z ∈ C2/ΛτX | θ2[δ](z, τX) = 0}.

In fact, given a choice of symplectic basis for H1(X(C),Z), the map W →
δW is a bijection between the set of Weierstrass points on X and Φ2(2)−

[M]. Note that it follows from the definitions that θ2[δ](z + u, τ) is equal
to an exponential factor times θ2[δ](z, τ) for all (u, z, τ) ∈ (Λτ ,C2,H2), so
that the vanishing of θ2[δ](z, τ) depends only on z (mod Λτ ). We write ΘW

for εW (X(C)). Let µ : X(2) → J be the map defined by sending P +Q to
the class of P+Q−2W in the Picard group of C. Then εW and µ induce an
isomorphism J(C) ' C2/ΛτX . Using this isomorphism, we often identify
ΘW with its image in J . If n ∈ N∗, and A is a commutative algebraic
group defined over a field k with algebraic closure k̄, we denote by A[n] the
group of points in A(k̄) of order dividing n and by A[n]∗ the subset of A[n]
consisting of the points of (exact) order n. Let Ators = ∪∞n=1A[n] be the
torsion subgroup of A(k̄).

Let n ∈ N∗ and suppose z ∈ ΘW . Then z lies in J [n]∗ if and only z is
of order n as an element of C2/ΛτX , that is to say, if and only if z is of
the form (τXp+ q)/n for some p, q ∈ Z2 with the greatest common divisor
of n and the coefficients of p and q equal to one. This is the same thing

as saying that the characteristic
[
p/n
q/n

]
belongs to Φ2(n). Again, an easy

calculation shows that θ2[δ]((τp + q)/n, τ) is the same as θ2[δ +
[
p/n
q/n

]
](τ)

up to an exponential factor. Using (2) we conclude that ΘW contains an
point of order n if and only if θ2[δ + α](τ) vanishes at τ = τX for some
α ∈ Φ2(n). If δ ∈ Φ2(2) and n ∈ N∗, we define the functions Fδ,n and Gn
on H2 by

(3) Fδ,n(τ) =
∏

α∈Φ2(n)

θ[δ + α](τ), Gn =
∏

δ∈Φ2(2)−

Fδ,n.

We have proved (see also [Go1]):
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Proposition 3. Let n ∈ N∗.
(i) Let W be a Weierstrass point on X. A necessary and sufficient

condition for ΘW to contain a point of J [n]∗ is that FδW ,n vanishes at τX .
(ii) A necessary and sufficient condition for X to have a Weierstrass

point W such that ΘW contains a point of J [n]∗ is that Gn vanishes at τX .

Remarks. 1) When n = 2m, m odd, up to constant multiples we have

Fδ,n =
∏

ε∈Φ2(2)
ε6=δ

Fε,m.

So in what follows we will only consider Fδ,n when n is odd or a multiple
of 4.

2) When n is a multiple of 4, [α] 7→ [δ + α] is just a permutation of
Φ2(n), so up to constant multiples, Fδ,n does not depend on δ in this case,
and we often denote it by Fn.

3) When δ ∈ Φ2(2)−, we have θ2[δ](τ) = 0. It follows that Fδ,1 = 0. It
is shown in [Gr1] that for n ≥ 3, Gn is a modular form on Γ2. With more
work, using Proposition 5 one can show that Gn is the square of a modular
form on Γ2.

Recall that the Manin-Mumford conjecture in its original form asserts
that if X is a smooth projective curve of genus ≥ 2 over C embedded
in its Jacobian, then X(C) contains only finitely many torsion points of
the Jacobian. This is of course a theorem, first proved by Raynaud [R]
and several other proofs have appeared since, see for example [Col] and
[H]. In particular, ΘW ∩ Jtors is finite for all Weierstrass points W (these
intersections comprise the image under εW of the so-called hyperelliptic
torsion packet on X [Col]). So Proposition 3 implies that given τ ∈ H2

whose orbit under Γ2 represents a point ofM2(C), only finitely many of the
functions Gn vanish at τ . Equivalently, only finitely many of the functions
θ2[α](τ), α =

[
a
b

]
, a, b ∈ Q2/Z2, can vanish at any given τ ∈M∗2(C).

§4. Asymptotic behavior

Given the results of the last section, it is natural to study the asymptotic
behavior of Fδ,n and Gn on the points of A2 near D ∼= A1 × A1, to see
what their limiting behavior tells us about torsion points on elliptic curves.
To do so, we first need to recall some of the properties of the genus 2
discriminant function.

We define ∆2 : H2 → C by ∆2(τ) = 2−12
∏
δ∈Φ2(2)+ θ[δ](τ)2. This does

not depend on the choice of representatives of the δ’s. We call ∆2 the
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genus two discriminant function because when τ /∈ D∗(C), ∆2(τ) is related
to the discriminant of a quintic or sextic polynomial P such that y2 = P (x)
defines a Weierstrass model of a genus 2 curve with period matrix τ (see
[Gr2] and [L]).

Proposition 4. (i) ∆2 is a modular form of weight 10 on Γ2.
(ii) ∆2 has a zero of order 2 along D∗ and no other zeros.
(iii) We have

∆2

( τ1 σ

σ τ2

)
= (2πi)2∆(τ1)∆(τ2)σ2 +O(σ3),

where ∆(τ) = η(τ)24 is the usual genus one ∆-function.

For a proof of (i) and (ii), see [K], page 118. Part (iii) is an easy
application of Lemmas 1 and 2. We can now study the behavior of Fδ,n
near H1 ×H1.

The elements δ ∈ Φ2(2)− are δ =
[
δ′

δ′′

]
with δ′ = (δ′1, δ

′
2), δ′′ = (δ′′1 , δ

′′
2 )

and
(
δ′1 δ′2
δ′′1 δ′′2

)
equal to one of

(
1
2 0
1
2 0

)
,
(

0 1
2

0 1
2

)
,
(

1
2 0
1
2

1
2

)
,
(

1
2

1
2

1
2 0

)
,
(

0 1
2

1
2

1
2

)
,
(

1
2

1
2

0 1
2

)
.

In each case, there is exactly one index i = iδ ∈ {1, 2} such that
[δ′i
δ′′i

]
=[

1/2
1/2

]
. Let j = jδ = 3 − iδ be the other index. We denote

[
1/2
1/2

]
by δ0 and

set δ+ =
[δ′j
δ′′j

]
. We see that in each case δ+ ∈ Φ1(2)+.

If n ∈ N∗ and δ ∈ Φ1(2) ∪ {
[
0
0

]
} we define the function fn on H1 by

fδ,n(τ) =
∏

α∈Φ1(n)

θ′1[δ + α](τ).

In particular, we set fn = fδ0,n. When n is a multiple of 4, up to constant
multiples, fδ,n is independent of δ and so it is just fn in this case.

Proposition 5. Let n ≥ 3 and let τ =
( τ1 σ

σ τ2

)
∈ H2.

(i) Suppose n is odd, δ ∈ Φ2(2)−. Then for some constant c 6= 0 (de-
pending on n and δ) we have

Fδ,n(τ) = cfδ+,n(τjδ)η(τiδ)
3φ1(n)

(
η(τ1)η(τ2)

)φ2(n)−φ1(n)
σφ1(n)

(
1 +O(σ)

)
as σ → 0;

(ii) Suppose n is a multiple of 4. Then there is a constant c 6= 0 (de-
pending on n) such that

Fn(τ) = cfn(τ1)fn(τ2)
(
η(τ1)η(τ2)

)φ2(n)+φ1(n)
σ2φ1(n)

(
1 +O(σ)

)



THETA FUNCTIONS AND SINGULAR TORSION ON ELLIPTIC CURVES 7

as σ → 0.

Proof: We use Lemma 1 which gives

θ2[δ + α](τ) = θ1

[
a1

b1

]
(τ1)θ1

[
a2

b2

]
(τ2) + 1

2πiθ
′
1

[
a1

b1

]
(τ1)θ′1

[
a2

b2

]
(τ2)σ +O(σ2)

whenever δ + α =
[
a
b

]
, with a = (a1, a2) and b = (b1, b2). We apply this to

each term in the product (3) defining Fδ,n. By Lemma 2(i), the terms for
which θ1

[
a1

b1

]
(τ1)θ1

[
a2

b2

]
(τ2) vanishes are just those for which either

[
a1

b1

]
= δ0

or
[
a2

b2

]
= δ0. When n is odd, this can only happen for one of the indices,

which is then equal to iδ, in which case
[ajδ
bjδ

]
+ δ+ ∈ Φ1(n). When n

is a multiple of 4, this occurs with either index, and we must again have[ajδ
bjδ

]
+δ+ ∈ Φ1(n). Thus, among the expressions θ1

[
a1

b1

]
(τ1)θ1

[
a2

b2

]
(τ2), φ1(n)

vanish when n is odd and 2φ1(n) vanish when n is a multiple of 4. This
accounts for the powers of σ and the term fδ+,n(τjδ) when n is odd and
fn(τ1)fn(τ2) when n is a multiple of 4. We use Lemma 2(iii) to transform
the powers of θ′1[δ0](τiδ) into powers of η3(τiδ). To deal with the terms
where θ1

[
a1

b1

]
(τ1)θ1

[
a2

b2

]
(τ2) does not vanish, we need the following lemma,

whose use will complete the proof of the proposition.

Lemma 6. Let n ≥ 3 and let δ ∈ Φ1(2) ∪ {
[
0
0

]
}. Then there is a constant

cn,δ 6= 0 such that
∏
α∈Φ1(n) θ1[δ + α](τ) = cn,δη(τ)φ1(n).

For a proof of similar results, see [KL] or [Gr1].

Remarks. 1) If n ≥ 3 and α ∈ Φ1(n), by Lemma 2, θ′1[α](τ) cannot vanish
identically. Hence fδ+,n cannot vanish identically when n ≥ 3 and so
Proposition 5 gives the exact order of vanishing of Fδ,n along D∗(C).

2) It is shown in [Gr1] and [Go2] that Fδ,3 and F4 are respectively
constant multiples of ∆4

2 and ∆12
2 , and hence do not vanish on M∗2(C).

By Proposition 3, this means that ΘW cannot contain any points of J of
order 3 or 4. This can of course also be verified directly using the Riemann-
Roch theorem, see for example [BG1]

Now suppose n ≥ 5. Then the quotient rn =
G10
n

∆
3φ2(n)
2

is modular of

weight 0 with respect to Γ2, and using Propositions 4 and 5 and (1) one
sees that it actually has a pole along D and thus cannot be a constant.
Since a non-constant modular function necessarily vanishes somewhere,
and cannot vanish only at infinity when the genus is ≥ 2, and rn has a
pole along D∗, we deduce that Gn vanishes somewhere on M∗2(C). From
this one can deduce that for all α ∈ Φ2(n), θ2[α](τ) vanishes somewhere
on M∗2(C).
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Put more prosaically, this shows that if n ≥ 5, then there actually exist
genus two curves X with Weierstrass points W such that ΘW contains
points of J [n]∗. In fact, the family of such curves sweeps out a finite union
of surfaces in the three-dimensional variety M2.

§5. The genus 1 case

We now return our attention to questions about elliptic curves that are
suggested by the behavior of the functions Fδ,n near H1 ×H1.

Since η does not vanish on H1, Proposition 5 suggests that one study
the zero set of the functions fδ+,n.

If n ∈ N∗, we write gn =
∏
δ∈Φ1(2)+ fδ,n, and recall we set fn = fδ0,n.

If f , g are two non-zero meromorphic functions on H1, we write f ∼ g to
mean that f

g is constant.

Note that the fn’s and gn’s are related: when n is odd f2n ∼ gn, g2n ∼
fn

3gn
2, and when n is even, g2n ∼ f3

2n, so one need only calculate fn when
n is odd or a multiple of 4, and gn for n odd.

By Jacobi’s derivative formula (Lemma 2 (iii)), one knows that f1 ∼ η3

and it also follows from Lemma 2 that g1 = 0. On the other hand, it was
shown in [Gr1] that

g3 ∼ ∆3, f4 ∼ η36,

which can be regarded as generalizations of Jacobi’s derivative formula.
More generally we are led to ask the shape of further generalizations:

What are the zeros of fn and gn?
Much of the remainder of the paper is devoted to showing that a solution

to this problem is related to a “Manin-Mumford problem”of a certain type.
It will follow from Proposition 8 that for any given τ ∈ H1, there are only
finitely many n such that fn(τ) or gn(τ) vanish.

As for individual fn and gn, it is shown in [Gr1] that if f is f3
3 or fn or

gn for any n > 4, then f is a power of η2 times the square of a modular
form on Γ1. However, computations with the q-expansions of these f shows
that none (except f6 ∼ g3) is a constant times a power of η.

For example, letting j denote Klein’s j-function j = q−1 + 744 + · · · , a
computer calculation shows that f3

3∆(τ)−3 ∼ j2, f5∆(τ)−3 ∼ (−20480 +
243j)2, and that g5(τ)∆(τ)−9 ∼ (19465109 + 248832j)2.

These are not as pretty as the expressions for f1, g3, and f4, but are in
some sense the generalizations of Jacobi’s derivative formula that nature
provides.

For generalizations of Jacobi’s derivative formula in different directions,
see [I2], [Gr1], and [Coo].
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§6. Singular torsion

In the previous section we were studying the zero set of the θ′1[α](τ) as
a function of τ . In this section we will fix τ and study the zeros of θ′1[α](τ)
as a function of α. Since we shall only be concerned with genus one theta
constants, we simply write θ[α](τ) for θ1[α](τ) and θ′[α](τ) for θ′1[α](τ)
from now on.

If τ ∈ H1 we write Λτ for the lattice {mτ + n | m,n ∈ Z} and O for the

origin of the complex torus C/Λτ . Recall that δ0 =
[
1/2
1/2

]
.

Lemma 7. Let n ≥ 2. Let τ ∈ H1, and let α =
[
a
b

]
∈ Φ1(n). Let Pα be

the point aτ + b (mod Λτ ) on C/Λτ , and let eα be an elliptic function on
C/Λτ with divisor n(Pα −O). Let

eα(z) =
a

zn
+

b

zn−1
+O

( 1

zn−2

)
be the Laurent expansion of eα at O. Then θ′[δ0 + α](τ) vanishes if and
only if b = 0.

To see this, one notes that, up to a multiplicative constant,

eα(z) =
(θ[δ0 + α](z, τ)

θ[δ0](z, τ)

)n
,

which follows from standard transformation formulas for theta functions.
Since θ[δ0](z, τ) is an odd function of z, it is equal to θ′[δ0](τ)z + O(z3).
Since θ[δ0+α](z, τ) = θ[δ0+α](τ)+θ′[δ0+α](τ)z+O(z2), and θ′[δ0](τ)θ[δ0+
α](τ) 6= 0 by Lemma 2, the result follows at once.

The interest of Lemma 7 is that it suggests the following purely algebraic
definition. For the rest of the paper, let k be an algebraically closed field
of characteristic not 2.

Definition. Let E be an elliptic curve over k. We say that P ∈ E[n] is
a singular n-torsion point if, letting t be an odd uniformizer at the origin
O of E, a function eP ∈ k(E) with divisor n(P − O) has an expansion in
powers of t of the form

eP =
a

tn
+O

( 1

tn−2

)
i.e., with no term in 1

tn−1 .
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Here the uniformizer t is said to be odd if [−1]∗t = −t, where [−1]
denotes multiplication by −1 on E. It is clear that the definition is inde-
pendent of the choice of t.

If P ∈ E[n]∗ and P is a singular n-torsion point, we call P a singular
torsion point, and write Esing for the subset of singular torsion points of
Etors. If k has characteristic 0, it follows easily that for any m ≥ 1 (and
if the characteristic of k is p, for any m prime to p) that P ∈ E[n] is a
singular n-torsion point if and only if P is a singular mn-torsion point.
So if the characteristic of k is 0, Esing is just the set of singular n-torsion
points for all n. But if the characteristic of k is p, for any P ∈ E[n], P is
automatically a singular np-torsion point, so we need the more restrictive
definition of Esing above, and let E′sing denote the singular n-torsion points

of E of order prime to p. Note that always E[2]∗ ⊆ Esing.
Now the Manin-Mumford conjecture and Proposition 3 suggest

Proposition 8. Let E be an elliptic curve over a field of characteristic 0.
Then Esing is a finite set.

As we shall see in a moment, Proposition 8 is in fact a special case of
Theorem 2 of [H].

§7. The generalized Jacobian case

In this section we want to explain how Esing may be viewed as the set
of torsion points lying on a curve contained in a certain extension of E by
the additive group Ga. Let O denote the origin of E and let G denote the
generalized Jacobian of E with modulus 2O as defined in [S]. Explicitly,
let Div0(E) be the group of degree zero divisors on E, Pr(E) the subgroup
of principal divisors, Div0(E)O the subgroup of divisors in Div0(E) whose
support does not contain O and Pr(E)O = Pr(E) ∩Div0(E)O. The inclu-
sion Div0(E)O → Div0(E) induces an isomorphism Div0(E)O/Pr(E)O '
Div0(E)/Pr(E) and E(k) is isomorphic to this latter group by P 7→ P −O
(mod Pr(E)) as usual. Let Pr2O(E) denote the subgroup of Pr(E) con-
sisting of divisors of functions f such that f − 1 has a zero of order at
least 2 at O. Then, with the above identifications, the exact sequence
0→ Ga(k)→ G(k)→ E(k)→ 0 is isomorphic to the exact sequence
(4)
0→ Pr(E)O/Pr2O(E)→ Div0(E)O/Pr2O(E)→ Div0(E)O/Pr(E)O → 0.

Indeed, picking t ∈ k(E), an odd uniformizer at O, the isomorphism
Ga(k) ' Pr(E)O/Pr2O(E) is given by a 7→ (1 + at) (mod Pr2O(E)). Let
p : G → E be the projection. Then p has a section s : E → G defined



THETA FUNCTIONS AND SINGULAR TORSION ON ELLIPTIC CURVES 11

by s(P ) = P − O + (t) (mod Pr2O(E)). It is easy to see that s does not
depend on the choice of t.

Proposition 9. Let G′tors denote the elements of Gtors of order not divis-
ible by the characteristic of k. Then the projection p induces a bijection
from s(E)(k) ∩G′tors onto E′sing.

To see this, suppose P ∈ E(k), P 6= O is such that s(P ) ∈ G[n]∗. Then
n(P − O + (t)) is the divisor of a function f ∈ Pr2O(E), so we can write

f = 1 + ut2 with u regular at O. But then n(P − O) is the divisor of f
tn ,

and f
tn = 1

tn + O
(

1
tn−2

)
at O, so that P ∈ E[n], and if n is not a multiple

of the characteristic of k, then P ∈ E′sing. Conversely, suppose P ∈ E[n]∗

is a singular torsion point, with n not divisible by the characteristic of
k. Then there is a function eP ∈ k(E) with divisor n(P − O) such that
eP = a

tn +O
(

1
tn−2

)
, a 6= 0. Thus tneP /eP (O) = 1 + ut2 for u regular at O,

and has divisor n(P −O+(t)). Hence s(P ) ∈ G[n]. Putting these together,
we see that p induces a bijection from s(E)(k) ∩ G[n]∗ onto Esing ∩ E[n]∗

for all n not divisible by the characteristic of k, giving us the result.
We can now apply Theorem 2 of [H] to show that s(E) ∩Gtors is finite

when the characteristic of k is 0, and thus prove Proposition 8. To do
this, we have to check that s(E) does not contain a translate of a non-
trivial algebraic subgroup H of G by some point u ∈ G(k). Assume that
TuH ⊆ s(E), where Tu is the translation-by-u map on G. Then H and
s(E) are of dimension 1 and s(E) is irreducible, so s(E) = TuH. Therefore
H is an elliptic curve isomorphic to E, and T−u ◦ s : E → H is a surjective
morphism between abelian varieties of the same dimension, and hence there
exists v ∈ G(k) such that Tv ◦s : E → H is an isomorphism. Thus p◦Tv ◦s
is an automorphism of E. Since p ◦ Tv ◦ s = Tp(v) ◦ p ◦ s = Tp(v), this
implies Tp(v) is the identity, and v ∈ ker p ' Ga(k). But on the other hand,
s(E[2]∗) ⊆ Gtors by Proposition 9, and, since v = Tv ◦ s(P ) − s(P ) for all
P ∈ E(k) and Tv ◦ s is an isomorphism, we deduce that v ∈ Gtors. Hence
v ∈ Ga(k) ∩ Gtors = {0} and s is an isomorphism. This implies that G is
the trivial extension of E by Ga which violates the results in [S, VII], and
completes the proof of Proposition 8.

We close this section by describing G and s explicitly in the case k = C
when E has a Weierstrass model y2 = x3 + Ax + B with origin O. Let
ω1 = dx

2y , ω2 = x dx
2y be the standard basis of the differential forms on

E with pole of order at most 2 at O and holomorphic elsewhere, and let
L = {

∫
γ
ω1 | γ ∈ H1(E(C),Z)} = {

∫
γ
ω1 | γ ∈ H1(E(C) \ {O},Z)} be

the period lattice of ω1. We identify E(C) with C/L via P 7→
∫ P
O
ω1

(mod L) as usual. If P ∈ E(C), we denote by zP any representative
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of
∫ P
O
ω1 in C. Let ℘(z) = 1

z2 +
∑
λ∈L\{0}

(
1

(z+λ)2 − 1
λ2

)
be the usual

Weierstrass elliptic function and let ζ be the unique odd meromorphic
function satisfying ℘ = ζ ′. Recall that there is a unique homomorphism
η : L→ C such that η(λ) = ζ(z + λ)− ζ(z) for all z ∈ C \L and all λ ∈ L.
Extend η by R-linearity to a map C → C, also denoted by η. Using the
parameterization (C\L)/L→ E(C)\{O} given by (x, y) = (℘(z), 1

2℘
′(z)),

it follows that if γ ∈ H1(E(C) \ {O},Z) and λ ∈ L, then
∫
γ
ω1 = λ implies∫

γ
ω2 = η(λ). Furthermore,

∫ P
Q
ω2 = ζ(zP )− ζ(zQ) (mod {η(λ) | λ ∈ L}).

Hence if we write

M =
{( λ

η(λ)

) ∣∣∣ λ ∈ Λ
}
,

then by [S, V, §19], the exponential map of G can be identified with the
canonical map C2 → C2/M . Furthermore, if we define u : Div0(E)O →
C2/M by

(5) u(
∑
i

Pi −
∑
i

Qi) =

( ∑
zPi −

∑
zQi∑

ζ(zPi)−
∑
ζ(zQi)

)
(mod M),

then u is surjective and keru = Pr2O(E). Thus the exact sequence (4)
becomes

0→ C→ C2/M → C/L→ 0.

Here the map C2/M → C/L is induced by the projection of C2 onto its
first factor. The map C→ C2/M depends on the choice of the function t,
but is necessarily of the form a 7→

(
0
va

)
(mod M) for some v ∈ C∗.

Proposition 10. (i) The section s : E → G induces the map (C\L)/L→
C2/M given by z (mod L) 7→

(
z
ζ(z)

)
(mod M).

(ii) Let z ∈ C. Then z (mod L) belongs to Esing if and only if z ∈ QL,
z /∈ L and ζ(z) = η(z).

Proof. (i) If W1, W2, W3 are the three points of order 2 on E, we can
take t to be a function with divisor O + W1 − W2 − W3. Then if P ∈
E(C) with P 6= O, s(P ) is represented by u(P + W1 −W2 −W3). But
zW1
−zW2

−zW3
= λ is an element of L and the addition formula for ζ shows

that ζ(zWi
) = 1

2η(2zWi
), and hence that ζ(zW1

)− ζ(zW2
)− ζ(zW3

) = η(λ).
The result follows using (5).

(ii) Suppose z (mod L) ∈ Esing. Then z ∈ QL and z /∈ L since z
must represent a non-zero torsion point. Then by (i) and Proposition 9,
s(P ) =

(
z
ζ(z)

)
∈ QM/M . If n ∈ N∗ is such that nz ∈ L, then nζ(z) =

η(nz) = nη(z) so ζ(z) = η(z). The converse is similar.
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Remarks. (a) The discussion leading up to Proposition 10 shows that our
extension of E by Ga is just one of a family of such extensions with ap-
plications to transcendental number theory (see for example [W], page 64,
and [B], [Coh1], [Coh2]).

(b) Part (ii) shows that Esing is just the set of torsion points on which
the real-analytic L-periodic function z 7→ ζ(z) − η(z), z /∈ L, vanishes
(see [Coh1],[Coh2]). This can of course be proved directly using classical
relations between Weierstrass and theta functions. Furthermore, ζ(z)−η(z)
is just the non-holomorphic weight one Eisenstein series G1(z) obtained by

analytic continuation to s = 1 of
∑
λ∈L

(z̄+λ̄)
|z+λ|2s (see for example [GS], §1).

So Esing is just the set of points of (QL \L)/L on which G1(z) vanishes. A
natural question is thus whether G1 has only finitely many zeros (mod L)
(not necessarily in (QL \ L)/L). A positive answer would obviously imply
Proposition 8.

§8. Effective results for singular torsion

Recall that an essential step in Coleman’s proof [Col] of the Manin-
Mumford conjecture is the following:

Theorem. Let X be a smooth proper curve of genus g ≥ 2 defined over
a number field K. Suppose X is embedded in its Jacobian J using an
Albanese embedding with base point in X(K). Then any torsion point of J
that lies on X is defined over an extension of K that is unramified except
possibly at places above rational primes p ≤ 2g, places that are ramified in
K/Q or where X has bad reduction.

Inspired by this, we have proved

Theorem 11. Let E be an elliptic curve over a number field K and let
P ∈ Esing. Then the order of P is divisible only by 2, 3, and primes p
such that every prime π of K above p is either ramified or a place of bad
reduction of E.

A proof of this, as well as of the next Proposition, will appear in [BG2].
For E an elliptic curve we denote by E[n∞] the subgroup of Etors of points
of order dividing a power of n.

Proposition 12. Let k0 be a finite field of characteristic p 6= 2, let n ∈ N∗
be prime to p, let E be an elliptic curve over k0 and let L =

∏
`|n `

′, where

`′ = ` if ` is odd and `′ = 4 if ` = 2. Let k1 = k0(E[L]) and let M be
the smallest integer, divisible only by the primes dividing n and such that
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E(k1) ∩ E[n∞] ⊆ E[M ] (or E(k2) ∩ E[n∞] ⊆ E[M ] when n is even, k2

being the quadratic extension of k1). Then Esing ∩ E[n∞] ⊆ E[M ].

This leads, in principle, to a method of calculating Esing in numerical
examples. Indeed, Theorem 11 gives an explicit n ∈ N∗ such that Esing ⊆
E[n∞] and then Proposition 12 gives a method of determining Esing by
reduction at a place not excluded by Theorem 11.

Acknowledgements. We would like to thank Patrice Philippon, Bjorn Poo-
nen and David Roberts for suggesting (in different ways) the relationship
between singular torsion and group extensions discussed in §7, as well as
Brett Simon for the calculations summarized in §5.
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